xref: /linux/net/ipv4/udp.c (revision 385f186aba3d2f7122b71d6d4c7e236b9d4e8003)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip.h>
104 #include <net/ip_tunnels.h>
105 #include <net/route.h>
106 #include <net/checksum.h>
107 #include <net/gso.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include <linux/static_key.h>
111 #include <linux/btf_ids.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115 #include <net/sock_reuseport.h>
116 #include <net/addrconf.h>
117 #include <net/udp_tunnel.h>
118 #include <net/gro.h>
119 #if IS_ENABLED(CONFIG_IPV6)
120 #include <net/ipv6_stubs.h>
121 #endif
122 
123 struct udp_table udp_table __read_mostly;
124 EXPORT_SYMBOL(udp_table);
125 
126 long sysctl_udp_mem[3] __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_mem);
128 
129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136 
137 static struct udp_table *udp_get_table_prot(struct sock *sk)
138 {
139 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_table *udptable = udp_get_table_prot(sk);
244 	struct udp_hslot *hslot, *hslot2;
245 	struct net *net = sock_net(sk);
246 	int error = -EADDRINUSE;
247 
248 	if (!snum) {
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 		unsigned short first, last;
251 		int low, high, remaining;
252 		unsigned int rand;
253 
254 		inet_sk_get_local_port_range(sk, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = get_random_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sock_set_flag(sk, SOCK_RCU_FREE);
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
369 static int compute_score(struct sock *sk, const struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	if (sk->sk_bound_dev_if)
406 		score += 4;
407 
408 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409 		score++;
410 	return score;
411 }
412 
413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414 		const __be32 faddr, const __be16 fport)
415 {
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 EXPORT_SYMBOL(udp_ehashfn);
422 
423 /**
424  * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
425  * @net:	Network namespace
426  * @saddr:	Source address, network order
427  * @sport:	Source port, network order
428  * @daddr:	Destination address, network order
429  * @hnum:	Destination port, host order
430  * @dif:	Destination interface index
431  * @sdif:	Destination bridge port index, if relevant
432  * @udptable:	Set of UDP hash tables
433  *
434  * Simplified lookup to be used as fallback if no sockets are found due to a
435  * potential race between (receive) address change, and lookup happening before
436  * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
437  * result sockets, because if we have one, we don't need the fallback at all.
438  *
439  * Called under rcu_read_lock().
440  *
441  * Return: socket with highest matching score if any, NULL if none
442  */
443 static struct sock *udp4_lib_lookup1(const struct net *net,
444 				     __be32 saddr, __be16 sport,
445 				     __be32 daddr, unsigned int hnum,
446 				     int dif, int sdif,
447 				     const struct udp_table *udptable)
448 {
449 	unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
450 	struct udp_hslot *hslot = &udptable->hash[slot];
451 	struct sock *sk, *result = NULL;
452 	int score, badness = 0;
453 
454 	sk_for_each_rcu(sk, &hslot->head) {
455 		score = compute_score(sk, net,
456 				      saddr, sport, daddr, hnum, dif, sdif);
457 		if (score > badness) {
458 			result = sk;
459 			badness = score;
460 		}
461 	}
462 
463 	return result;
464 }
465 
466 /* called with rcu_read_lock() */
467 static struct sock *udp4_lib_lookup2(const struct net *net,
468 				     __be32 saddr, __be16 sport,
469 				     __be32 daddr, unsigned int hnum,
470 				     int dif, int sdif,
471 				     struct udp_hslot *hslot2,
472 				     struct sk_buff *skb)
473 {
474 	struct sock *sk, *result;
475 	int score, badness;
476 	bool need_rescore;
477 
478 	result = NULL;
479 	badness = 0;
480 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
481 		need_rescore = false;
482 rescore:
483 		score = compute_score(need_rescore ? result : sk, net, saddr,
484 				      sport, daddr, hnum, dif, sdif);
485 		if (score > badness) {
486 			badness = score;
487 
488 			if (need_rescore)
489 				continue;
490 
491 			if (sk->sk_state == TCP_ESTABLISHED) {
492 				result = sk;
493 				continue;
494 			}
495 
496 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
497 						       saddr, sport, daddr, hnum, udp_ehashfn);
498 			if (!result) {
499 				result = sk;
500 				continue;
501 			}
502 
503 			/* Fall back to scoring if group has connections */
504 			if (!reuseport_has_conns(sk))
505 				return result;
506 
507 			/* Reuseport logic returned an error, keep original score. */
508 			if (IS_ERR(result))
509 				continue;
510 
511 			/* compute_score is too long of a function to be
512 			 * inlined, and calling it again here yields
513 			 * measureable overhead for some
514 			 * workloads. Work around it by jumping
515 			 * backwards to rescore 'result'.
516 			 */
517 			need_rescore = true;
518 			goto rescore;
519 		}
520 	}
521 	return result;
522 }
523 
524 #if IS_ENABLED(CONFIG_BASE_SMALL)
525 static struct sock *udp4_lib_lookup4(const struct net *net,
526 				     __be32 saddr, __be16 sport,
527 				     __be32 daddr, unsigned int hnum,
528 				     int dif, int sdif,
529 				     struct udp_table *udptable)
530 {
531 	return NULL;
532 }
533 
534 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
535 			u16 newhash4)
536 {
537 }
538 
539 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
540 {
541 }
542 #else /* !CONFIG_BASE_SMALL */
543 static struct sock *udp4_lib_lookup4(const struct net *net,
544 				     __be32 saddr, __be16 sport,
545 				     __be32 daddr, unsigned int hnum,
546 				     int dif, int sdif,
547 				     struct udp_table *udptable)
548 {
549 	const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
550 	const struct hlist_nulls_node *node;
551 	struct udp_hslot *hslot4;
552 	unsigned int hash4, slot;
553 	struct udp_sock *up;
554 	struct sock *sk;
555 
556 	hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
557 	slot = hash4 & udptable->mask;
558 	hslot4 = &udptable->hash4[slot];
559 	INET_ADDR_COOKIE(acookie, saddr, daddr);
560 
561 begin:
562 	/* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
563 	udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
564 		sk = (struct sock *)up;
565 		if (inet_match(net, sk, acookie, ports, dif, sdif))
566 			return sk;
567 	}
568 
569 	/* if the nulls value we got at the end of this lookup is not the
570 	 * expected one, we must restart lookup. We probably met an item that
571 	 * was moved to another chain due to rehash.
572 	 */
573 	if (get_nulls_value(node) != slot)
574 		goto begin;
575 
576 	return NULL;
577 }
578 
579 /* In hash4, rehash can happen in connect(), where hash4_cnt keeps unchanged. */
580 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
581 			u16 newhash4)
582 {
583 	struct udp_hslot *hslot4, *nhslot4;
584 
585 	hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
586 	nhslot4 = udp_hashslot4(udptable, newhash4);
587 	udp_sk(sk)->udp_lrpa_hash = newhash4;
588 
589 	if (hslot4 != nhslot4) {
590 		spin_lock_bh(&hslot4->lock);
591 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
592 		hslot4->count--;
593 		spin_unlock_bh(&hslot4->lock);
594 
595 		spin_lock_bh(&nhslot4->lock);
596 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
597 					 &nhslot4->nulls_head);
598 		nhslot4->count++;
599 		spin_unlock_bh(&nhslot4->lock);
600 	}
601 }
602 
603 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
604 {
605 	struct udp_hslot *hslot2, *hslot4;
606 
607 	if (udp_hashed4(sk)) {
608 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
609 		hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
610 
611 		spin_lock(&hslot4->lock);
612 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
613 		hslot4->count--;
614 		spin_unlock(&hslot4->lock);
615 
616 		spin_lock(&hslot2->lock);
617 		udp_hash4_dec(hslot2);
618 		spin_unlock(&hslot2->lock);
619 	}
620 }
621 
622 void udp_lib_hash4(struct sock *sk, u16 hash)
623 {
624 	struct udp_hslot *hslot, *hslot2, *hslot4;
625 	struct net *net = sock_net(sk);
626 	struct udp_table *udptable;
627 
628 	/* Connected udp socket can re-connect to another remote address,
629 	 * so rehash4 is needed.
630 	 */
631 	udptable = net->ipv4.udp_table;
632 	if (udp_hashed4(sk)) {
633 		udp_rehash4(udptable, sk, hash);
634 		return;
635 	}
636 
637 	hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
638 	hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
639 	hslot4 = udp_hashslot4(udptable, hash);
640 	udp_sk(sk)->udp_lrpa_hash = hash;
641 
642 	spin_lock_bh(&hslot->lock);
643 	if (rcu_access_pointer(sk->sk_reuseport_cb))
644 		reuseport_detach_sock(sk);
645 
646 	spin_lock(&hslot4->lock);
647 	hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
648 				 &hslot4->nulls_head);
649 	hslot4->count++;
650 	spin_unlock(&hslot4->lock);
651 
652 	spin_lock(&hslot2->lock);
653 	udp_hash4_inc(hslot2);
654 	spin_unlock(&hslot2->lock);
655 
656 	spin_unlock_bh(&hslot->lock);
657 }
658 EXPORT_SYMBOL(udp_lib_hash4);
659 
660 /* call with sock lock */
661 void udp4_hash4(struct sock *sk)
662 {
663 	struct net *net = sock_net(sk);
664 	unsigned int hash;
665 
666 	if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
667 		return;
668 
669 	hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
670 			   sk->sk_daddr, sk->sk_dport);
671 
672 	udp_lib_hash4(sk, hash);
673 }
674 EXPORT_SYMBOL(udp4_hash4);
675 #endif /* CONFIG_BASE_SMALL */
676 
677 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
678  * harder than this. -DaveM
679  */
680 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
681 		__be16 sport, __be32 daddr, __be16 dport, int dif,
682 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
683 {
684 	unsigned short hnum = ntohs(dport);
685 	struct udp_hslot *hslot2;
686 	struct sock *result, *sk;
687 	unsigned int hash2;
688 
689 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
690 	hslot2 = udp_hashslot2(udptable, hash2);
691 
692 	if (udp_has_hash4(hslot2)) {
693 		result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
694 					  dif, sdif, udptable);
695 		if (result) /* udp4_lib_lookup4 return sk or NULL */
696 			return result;
697 	}
698 
699 	/* Lookup connected or non-wildcard socket */
700 	result = udp4_lib_lookup2(net, saddr, sport,
701 				  daddr, hnum, dif, sdif,
702 				  hslot2, skb);
703 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
704 		goto done;
705 
706 	/* Lookup redirect from BPF */
707 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
708 	    udptable == net->ipv4.udp_table) {
709 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
710 					       saddr, sport, daddr, hnum, dif,
711 					       udp_ehashfn);
712 		if (sk) {
713 			result = sk;
714 			goto done;
715 		}
716 	}
717 
718 	/* Got non-wildcard socket or error on first lookup */
719 	if (result)
720 		goto done;
721 
722 	/* Lookup wildcard sockets */
723 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
724 	hslot2 = udp_hashslot2(udptable, hash2);
725 
726 	result = udp4_lib_lookup2(net, saddr, sport,
727 				  htonl(INADDR_ANY), hnum, dif, sdif,
728 				  hslot2, skb);
729 	if (!IS_ERR_OR_NULL(result))
730 		goto done;
731 
732 	/* Primary hash (destination port) lookup as fallback for this race:
733 	 *   1. __ip4_datagram_connect() sets sk_rcv_saddr
734 	 *   2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
735 	 *   3. rehash operation updating _secondary and four-tuple_ hashes
736 	 * The primary hash doesn't need an update after 1., so, thanks to this
737 	 * further step, 1. and 3. don't need to be atomic against the lookup.
738 	 */
739 	result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
740 				  udptable);
741 
742 done:
743 	if (IS_ERR(result))
744 		return NULL;
745 	return result;
746 }
747 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
748 
749 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
750 						 __be16 sport, __be16 dport,
751 						 struct udp_table *udptable)
752 {
753 	const struct iphdr *iph = ip_hdr(skb);
754 
755 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
756 				 iph->daddr, dport, inet_iif(skb),
757 				 inet_sdif(skb), udptable, skb);
758 }
759 
760 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
761 				 __be16 sport, __be16 dport)
762 {
763 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
764 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
765 	struct net *net = dev_net(skb->dev);
766 	int iif, sdif;
767 
768 	inet_get_iif_sdif(skb, &iif, &sdif);
769 
770 	return __udp4_lib_lookup(net, iph->saddr, sport,
771 				 iph->daddr, dport, iif,
772 				 sdif, net->ipv4.udp_table, NULL);
773 }
774 
775 /* Must be called under rcu_read_lock().
776  * Does increment socket refcount.
777  */
778 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
779 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
780 			     __be32 daddr, __be16 dport, int dif)
781 {
782 	struct sock *sk;
783 
784 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
785 			       dif, 0, net->ipv4.udp_table, NULL);
786 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
787 		sk = NULL;
788 	return sk;
789 }
790 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
791 #endif
792 
793 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
794 				       __be16 loc_port, __be32 loc_addr,
795 				       __be16 rmt_port, __be32 rmt_addr,
796 				       int dif, int sdif, unsigned short hnum)
797 {
798 	const struct inet_sock *inet = inet_sk(sk);
799 
800 	if (!net_eq(sock_net(sk), net) ||
801 	    udp_sk(sk)->udp_port_hash != hnum ||
802 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
803 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
804 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
805 	    ipv6_only_sock(sk) ||
806 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
807 		return false;
808 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
809 		return false;
810 	return true;
811 }
812 
813 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
814 EXPORT_SYMBOL(udp_encap_needed_key);
815 
816 #if IS_ENABLED(CONFIG_IPV6)
817 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
818 EXPORT_SYMBOL(udpv6_encap_needed_key);
819 #endif
820 
821 void udp_encap_enable(void)
822 {
823 	static_branch_inc(&udp_encap_needed_key);
824 }
825 EXPORT_SYMBOL(udp_encap_enable);
826 
827 void udp_encap_disable(void)
828 {
829 	static_branch_dec(&udp_encap_needed_key);
830 }
831 EXPORT_SYMBOL(udp_encap_disable);
832 
833 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
834  * through error handlers in encapsulations looking for a match.
835  */
836 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
837 {
838 	int i;
839 
840 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
841 		int (*handler)(struct sk_buff *skb, u32 info);
842 		const struct ip_tunnel_encap_ops *encap;
843 
844 		encap = rcu_dereference(iptun_encaps[i]);
845 		if (!encap)
846 			continue;
847 		handler = encap->err_handler;
848 		if (handler && !handler(skb, info))
849 			return 0;
850 	}
851 
852 	return -ENOENT;
853 }
854 
855 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
856  * reversing source and destination port: this will match tunnels that force the
857  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
858  * lwtunnels might actually break this assumption by being configured with
859  * different destination ports on endpoints, in this case we won't be able to
860  * trace ICMP messages back to them.
861  *
862  * If this doesn't match any socket, probe tunnels with arbitrary destination
863  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
864  * we've sent packets to won't necessarily match the local destination port.
865  *
866  * Then ask the tunnel implementation to match the error against a valid
867  * association.
868  *
869  * Return an error if we can't find a match, the socket if we need further
870  * processing, zero otherwise.
871  */
872 static struct sock *__udp4_lib_err_encap(struct net *net,
873 					 const struct iphdr *iph,
874 					 struct udphdr *uh,
875 					 struct udp_table *udptable,
876 					 struct sock *sk,
877 					 struct sk_buff *skb, u32 info)
878 {
879 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
880 	int network_offset, transport_offset;
881 	struct udp_sock *up;
882 
883 	network_offset = skb_network_offset(skb);
884 	transport_offset = skb_transport_offset(skb);
885 
886 	/* Network header needs to point to the outer IPv4 header inside ICMP */
887 	skb_reset_network_header(skb);
888 
889 	/* Transport header needs to point to the UDP header */
890 	skb_set_transport_header(skb, iph->ihl << 2);
891 
892 	if (sk) {
893 		up = udp_sk(sk);
894 
895 		lookup = READ_ONCE(up->encap_err_lookup);
896 		if (lookup && lookup(sk, skb))
897 			sk = NULL;
898 
899 		goto out;
900 	}
901 
902 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
903 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
904 			       udptable, NULL);
905 	if (sk) {
906 		up = udp_sk(sk);
907 
908 		lookup = READ_ONCE(up->encap_err_lookup);
909 		if (!lookup || lookup(sk, skb))
910 			sk = NULL;
911 	}
912 
913 out:
914 	if (!sk)
915 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
916 
917 	skb_set_transport_header(skb, transport_offset);
918 	skb_set_network_header(skb, network_offset);
919 
920 	return sk;
921 }
922 
923 /*
924  * This routine is called by the ICMP module when it gets some
925  * sort of error condition.  If err < 0 then the socket should
926  * be closed and the error returned to the user.  If err > 0
927  * it's just the icmp type << 8 | icmp code.
928  * Header points to the ip header of the error packet. We move
929  * on past this. Then (as it used to claim before adjustment)
930  * header points to the first 8 bytes of the udp header.  We need
931  * to find the appropriate port.
932  */
933 
934 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
935 {
936 	struct inet_sock *inet;
937 	const struct iphdr *iph = (const struct iphdr *)skb->data;
938 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
939 	const int type = icmp_hdr(skb)->type;
940 	const int code = icmp_hdr(skb)->code;
941 	bool tunnel = false;
942 	struct sock *sk;
943 	int harderr;
944 	int err;
945 	struct net *net = dev_net(skb->dev);
946 
947 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
948 			       iph->saddr, uh->source, skb->dev->ifindex,
949 			       inet_sdif(skb), udptable, NULL);
950 
951 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
952 		/* No socket for error: try tunnels before discarding */
953 		if (static_branch_unlikely(&udp_encap_needed_key)) {
954 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
955 						  info);
956 			if (!sk)
957 				return 0;
958 		} else
959 			sk = ERR_PTR(-ENOENT);
960 
961 		if (IS_ERR(sk)) {
962 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
963 			return PTR_ERR(sk);
964 		}
965 
966 		tunnel = true;
967 	}
968 
969 	err = 0;
970 	harderr = 0;
971 	inet = inet_sk(sk);
972 
973 	switch (type) {
974 	default:
975 	case ICMP_TIME_EXCEEDED:
976 		err = EHOSTUNREACH;
977 		break;
978 	case ICMP_SOURCE_QUENCH:
979 		goto out;
980 	case ICMP_PARAMETERPROB:
981 		err = EPROTO;
982 		harderr = 1;
983 		break;
984 	case ICMP_DEST_UNREACH:
985 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
986 			ipv4_sk_update_pmtu(skb, sk, info);
987 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
988 				err = EMSGSIZE;
989 				harderr = 1;
990 				break;
991 			}
992 			goto out;
993 		}
994 		err = EHOSTUNREACH;
995 		if (code <= NR_ICMP_UNREACH) {
996 			harderr = icmp_err_convert[code].fatal;
997 			err = icmp_err_convert[code].errno;
998 		}
999 		break;
1000 	case ICMP_REDIRECT:
1001 		ipv4_sk_redirect(skb, sk);
1002 		goto out;
1003 	}
1004 
1005 	/*
1006 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
1007 	 *	4.1.3.3.
1008 	 */
1009 	if (tunnel) {
1010 		/* ...not for tunnels though: we don't have a sending socket */
1011 		if (udp_sk(sk)->encap_err_rcv)
1012 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
1013 						  (u8 *)(uh+1));
1014 		goto out;
1015 	}
1016 	if (!inet_test_bit(RECVERR, sk)) {
1017 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
1018 			goto out;
1019 	} else
1020 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
1021 
1022 	sk->sk_err = err;
1023 	sk_error_report(sk);
1024 out:
1025 	return 0;
1026 }
1027 
1028 int udp_err(struct sk_buff *skb, u32 info)
1029 {
1030 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
1031 }
1032 
1033 /*
1034  * Throw away all pending data and cancel the corking. Socket is locked.
1035  */
1036 void udp_flush_pending_frames(struct sock *sk)
1037 {
1038 	struct udp_sock *up = udp_sk(sk);
1039 
1040 	if (up->pending) {
1041 		up->len = 0;
1042 		WRITE_ONCE(up->pending, 0);
1043 		ip_flush_pending_frames(sk);
1044 	}
1045 }
1046 EXPORT_SYMBOL(udp_flush_pending_frames);
1047 
1048 /**
1049  * 	udp4_hwcsum  -  handle outgoing HW checksumming
1050  * 	@skb: 	sk_buff containing the filled-in UDP header
1051  * 	        (checksum field must be zeroed out)
1052  *	@src:	source IP address
1053  *	@dst:	destination IP address
1054  */
1055 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1056 {
1057 	struct udphdr *uh = udp_hdr(skb);
1058 	int offset = skb_transport_offset(skb);
1059 	int len = skb->len - offset;
1060 	int hlen = len;
1061 	__wsum csum = 0;
1062 
1063 	if (!skb_has_frag_list(skb)) {
1064 		/*
1065 		 * Only one fragment on the socket.
1066 		 */
1067 		skb->csum_start = skb_transport_header(skb) - skb->head;
1068 		skb->csum_offset = offsetof(struct udphdr, check);
1069 		uh->check = ~csum_tcpudp_magic(src, dst, len,
1070 					       IPPROTO_UDP, 0);
1071 	} else {
1072 		struct sk_buff *frags;
1073 
1074 		/*
1075 		 * HW-checksum won't work as there are two or more
1076 		 * fragments on the socket so that all csums of sk_buffs
1077 		 * should be together
1078 		 */
1079 		skb_walk_frags(skb, frags) {
1080 			csum = csum_add(csum, frags->csum);
1081 			hlen -= frags->len;
1082 		}
1083 
1084 		csum = skb_checksum(skb, offset, hlen, csum);
1085 		skb->ip_summed = CHECKSUM_NONE;
1086 
1087 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1088 		if (uh->check == 0)
1089 			uh->check = CSUM_MANGLED_0;
1090 	}
1091 }
1092 EXPORT_SYMBOL_GPL(udp4_hwcsum);
1093 
1094 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1095  * for the simple case like when setting the checksum for a UDP tunnel.
1096  */
1097 void udp_set_csum(bool nocheck, struct sk_buff *skb,
1098 		  __be32 saddr, __be32 daddr, int len)
1099 {
1100 	struct udphdr *uh = udp_hdr(skb);
1101 
1102 	if (nocheck) {
1103 		uh->check = 0;
1104 	} else if (skb_is_gso(skb)) {
1105 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1106 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1107 		uh->check = 0;
1108 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1109 		if (uh->check == 0)
1110 			uh->check = CSUM_MANGLED_0;
1111 	} else {
1112 		skb->ip_summed = CHECKSUM_PARTIAL;
1113 		skb->csum_start = skb_transport_header(skb) - skb->head;
1114 		skb->csum_offset = offsetof(struct udphdr, check);
1115 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1116 	}
1117 }
1118 EXPORT_SYMBOL(udp_set_csum);
1119 
1120 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1121 			struct inet_cork *cork)
1122 {
1123 	struct sock *sk = skb->sk;
1124 	struct inet_sock *inet = inet_sk(sk);
1125 	struct udphdr *uh;
1126 	int err;
1127 	int is_udplite = IS_UDPLITE(sk);
1128 	int offset = skb_transport_offset(skb);
1129 	int len = skb->len - offset;
1130 	int datalen = len - sizeof(*uh);
1131 	__wsum csum = 0;
1132 
1133 	/*
1134 	 * Create a UDP header
1135 	 */
1136 	uh = udp_hdr(skb);
1137 	uh->source = inet->inet_sport;
1138 	uh->dest = fl4->fl4_dport;
1139 	uh->len = htons(len);
1140 	uh->check = 0;
1141 
1142 	if (cork->gso_size) {
1143 		const int hlen = skb_network_header_len(skb) +
1144 				 sizeof(struct udphdr);
1145 
1146 		if (hlen + cork->gso_size > cork->fragsize) {
1147 			kfree_skb(skb);
1148 			return -EINVAL;
1149 		}
1150 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1151 			kfree_skb(skb);
1152 			return -EINVAL;
1153 		}
1154 		if (sk->sk_no_check_tx) {
1155 			kfree_skb(skb);
1156 			return -EINVAL;
1157 		}
1158 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1159 			kfree_skb(skb);
1160 			return -EIO;
1161 		}
1162 
1163 		if (datalen > cork->gso_size) {
1164 			skb_shinfo(skb)->gso_size = cork->gso_size;
1165 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1166 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1167 								 cork->gso_size);
1168 
1169 			/* Don't checksum the payload, skb will get segmented */
1170 			goto csum_partial;
1171 		}
1172 	}
1173 
1174 	if (is_udplite)  				 /*     UDP-Lite      */
1175 		csum = udplite_csum(skb);
1176 
1177 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1178 
1179 		skb->ip_summed = CHECKSUM_NONE;
1180 		goto send;
1181 
1182 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1183 csum_partial:
1184 
1185 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1186 		goto send;
1187 
1188 	} else
1189 		csum = udp_csum(skb);
1190 
1191 	/* add protocol-dependent pseudo-header */
1192 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1193 				      sk->sk_protocol, csum);
1194 	if (uh->check == 0)
1195 		uh->check = CSUM_MANGLED_0;
1196 
1197 send:
1198 	err = ip_send_skb(sock_net(sk), skb);
1199 	if (err) {
1200 		if (err == -ENOBUFS &&
1201 		    !inet_test_bit(RECVERR, sk)) {
1202 			UDP_INC_STATS(sock_net(sk),
1203 				      UDP_MIB_SNDBUFERRORS, is_udplite);
1204 			err = 0;
1205 		}
1206 	} else
1207 		UDP_INC_STATS(sock_net(sk),
1208 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1209 	return err;
1210 }
1211 
1212 /*
1213  * Push out all pending data as one UDP datagram. Socket is locked.
1214  */
1215 int udp_push_pending_frames(struct sock *sk)
1216 {
1217 	struct udp_sock  *up = udp_sk(sk);
1218 	struct inet_sock *inet = inet_sk(sk);
1219 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1220 	struct sk_buff *skb;
1221 	int err = 0;
1222 
1223 	skb = ip_finish_skb(sk, fl4);
1224 	if (!skb)
1225 		goto out;
1226 
1227 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1228 
1229 out:
1230 	up->len = 0;
1231 	WRITE_ONCE(up->pending, 0);
1232 	return err;
1233 }
1234 EXPORT_SYMBOL(udp_push_pending_frames);
1235 
1236 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1237 {
1238 	switch (cmsg->cmsg_type) {
1239 	case UDP_SEGMENT:
1240 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1241 			return -EINVAL;
1242 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1243 		return 0;
1244 	default:
1245 		return -EINVAL;
1246 	}
1247 }
1248 
1249 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1250 {
1251 	struct cmsghdr *cmsg;
1252 	bool need_ip = false;
1253 	int err;
1254 
1255 	for_each_cmsghdr(cmsg, msg) {
1256 		if (!CMSG_OK(msg, cmsg))
1257 			return -EINVAL;
1258 
1259 		if (cmsg->cmsg_level != SOL_UDP) {
1260 			need_ip = true;
1261 			continue;
1262 		}
1263 
1264 		err = __udp_cmsg_send(cmsg, gso_size);
1265 		if (err)
1266 			return err;
1267 	}
1268 
1269 	return need_ip;
1270 }
1271 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1272 
1273 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1274 {
1275 	struct inet_sock *inet = inet_sk(sk);
1276 	struct udp_sock *up = udp_sk(sk);
1277 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1278 	struct flowi4 fl4_stack;
1279 	struct flowi4 *fl4;
1280 	int ulen = len;
1281 	struct ipcm_cookie ipc;
1282 	struct rtable *rt = NULL;
1283 	int free = 0;
1284 	int connected = 0;
1285 	__be32 daddr, faddr, saddr;
1286 	u8 tos, scope;
1287 	__be16 dport;
1288 	int err, is_udplite = IS_UDPLITE(sk);
1289 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1290 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1291 	struct sk_buff *skb;
1292 	struct ip_options_data opt_copy;
1293 	int uc_index;
1294 
1295 	if (len > 0xFFFF)
1296 		return -EMSGSIZE;
1297 
1298 	/*
1299 	 *	Check the flags.
1300 	 */
1301 
1302 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1303 		return -EOPNOTSUPP;
1304 
1305 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1306 
1307 	fl4 = &inet->cork.fl.u.ip4;
1308 	if (READ_ONCE(up->pending)) {
1309 		/*
1310 		 * There are pending frames.
1311 		 * The socket lock must be held while it's corked.
1312 		 */
1313 		lock_sock(sk);
1314 		if (likely(up->pending)) {
1315 			if (unlikely(up->pending != AF_INET)) {
1316 				release_sock(sk);
1317 				return -EINVAL;
1318 			}
1319 			goto do_append_data;
1320 		}
1321 		release_sock(sk);
1322 	}
1323 	ulen += sizeof(struct udphdr);
1324 
1325 	/*
1326 	 *	Get and verify the address.
1327 	 */
1328 	if (usin) {
1329 		if (msg->msg_namelen < sizeof(*usin))
1330 			return -EINVAL;
1331 		if (usin->sin_family != AF_INET) {
1332 			if (usin->sin_family != AF_UNSPEC)
1333 				return -EAFNOSUPPORT;
1334 		}
1335 
1336 		daddr = usin->sin_addr.s_addr;
1337 		dport = usin->sin_port;
1338 		if (dport == 0)
1339 			return -EINVAL;
1340 	} else {
1341 		if (sk->sk_state != TCP_ESTABLISHED)
1342 			return -EDESTADDRREQ;
1343 		daddr = inet->inet_daddr;
1344 		dport = inet->inet_dport;
1345 		/* Open fast path for connected socket.
1346 		   Route will not be used, if at least one option is set.
1347 		 */
1348 		connected = 1;
1349 	}
1350 
1351 	ipcm_init_sk(&ipc, inet);
1352 	ipc.gso_size = READ_ONCE(up->gso_size);
1353 
1354 	if (msg->msg_controllen) {
1355 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1356 		if (err > 0) {
1357 			err = ip_cmsg_send(sk, msg, &ipc,
1358 					   sk->sk_family == AF_INET6);
1359 			connected = 0;
1360 		}
1361 		if (unlikely(err < 0)) {
1362 			kfree(ipc.opt);
1363 			return err;
1364 		}
1365 		if (ipc.opt)
1366 			free = 1;
1367 	}
1368 	if (!ipc.opt) {
1369 		struct ip_options_rcu *inet_opt;
1370 
1371 		rcu_read_lock();
1372 		inet_opt = rcu_dereference(inet->inet_opt);
1373 		if (inet_opt) {
1374 			memcpy(&opt_copy, inet_opt,
1375 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1376 			ipc.opt = &opt_copy.opt;
1377 		}
1378 		rcu_read_unlock();
1379 	}
1380 
1381 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1382 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1383 					    (struct sockaddr *)usin,
1384 					    &msg->msg_namelen,
1385 					    &ipc.addr);
1386 		if (err)
1387 			goto out_free;
1388 		if (usin) {
1389 			if (usin->sin_port == 0) {
1390 				/* BPF program set invalid port. Reject it. */
1391 				err = -EINVAL;
1392 				goto out_free;
1393 			}
1394 			daddr = usin->sin_addr.s_addr;
1395 			dport = usin->sin_port;
1396 		}
1397 	}
1398 
1399 	saddr = ipc.addr;
1400 	ipc.addr = faddr = daddr;
1401 
1402 	if (ipc.opt && ipc.opt->opt.srr) {
1403 		if (!daddr) {
1404 			err = -EINVAL;
1405 			goto out_free;
1406 		}
1407 		faddr = ipc.opt->opt.faddr;
1408 		connected = 0;
1409 	}
1410 	tos = get_rttos(&ipc, inet);
1411 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1412 	if (scope == RT_SCOPE_LINK)
1413 		connected = 0;
1414 
1415 	uc_index = READ_ONCE(inet->uc_index);
1416 	if (ipv4_is_multicast(daddr)) {
1417 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1418 			ipc.oif = READ_ONCE(inet->mc_index);
1419 		if (!saddr)
1420 			saddr = READ_ONCE(inet->mc_addr);
1421 		connected = 0;
1422 	} else if (!ipc.oif) {
1423 		ipc.oif = uc_index;
1424 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1425 		/* oif is set, packet is to local broadcast and
1426 		 * uc_index is set. oif is most likely set
1427 		 * by sk_bound_dev_if. If uc_index != oif check if the
1428 		 * oif is an L3 master and uc_index is an L3 slave.
1429 		 * If so, we want to allow the send using the uc_index.
1430 		 */
1431 		if (ipc.oif != uc_index &&
1432 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1433 							      uc_index)) {
1434 			ipc.oif = uc_index;
1435 		}
1436 	}
1437 
1438 	if (connected)
1439 		rt = dst_rtable(sk_dst_check(sk, 0));
1440 
1441 	if (!rt) {
1442 		struct net *net = sock_net(sk);
1443 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1444 
1445 		fl4 = &fl4_stack;
1446 
1447 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1448 				   sk->sk_protocol, flow_flags, faddr, saddr,
1449 				   dport, inet->inet_sport, sk->sk_uid);
1450 
1451 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1452 		rt = ip_route_output_flow(net, fl4, sk);
1453 		if (IS_ERR(rt)) {
1454 			err = PTR_ERR(rt);
1455 			rt = NULL;
1456 			if (err == -ENETUNREACH)
1457 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1458 			goto out;
1459 		}
1460 
1461 		err = -EACCES;
1462 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1463 		    !sock_flag(sk, SOCK_BROADCAST))
1464 			goto out;
1465 		if (connected)
1466 			sk_dst_set(sk, dst_clone(&rt->dst));
1467 	}
1468 
1469 	if (msg->msg_flags&MSG_CONFIRM)
1470 		goto do_confirm;
1471 back_from_confirm:
1472 
1473 	saddr = fl4->saddr;
1474 	if (!ipc.addr)
1475 		daddr = ipc.addr = fl4->daddr;
1476 
1477 	/* Lockless fast path for the non-corking case. */
1478 	if (!corkreq) {
1479 		struct inet_cork cork;
1480 
1481 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1482 				  sizeof(struct udphdr), &ipc, &rt,
1483 				  &cork, msg->msg_flags);
1484 		err = PTR_ERR(skb);
1485 		if (!IS_ERR_OR_NULL(skb))
1486 			err = udp_send_skb(skb, fl4, &cork);
1487 		goto out;
1488 	}
1489 
1490 	lock_sock(sk);
1491 	if (unlikely(up->pending)) {
1492 		/* The socket is already corked while preparing it. */
1493 		/* ... which is an evident application bug. --ANK */
1494 		release_sock(sk);
1495 
1496 		net_dbg_ratelimited("socket already corked\n");
1497 		err = -EINVAL;
1498 		goto out;
1499 	}
1500 	/*
1501 	 *	Now cork the socket to pend data.
1502 	 */
1503 	fl4 = &inet->cork.fl.u.ip4;
1504 	fl4->daddr = daddr;
1505 	fl4->saddr = saddr;
1506 	fl4->fl4_dport = dport;
1507 	fl4->fl4_sport = inet->inet_sport;
1508 	WRITE_ONCE(up->pending, AF_INET);
1509 
1510 do_append_data:
1511 	up->len += ulen;
1512 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1513 			     sizeof(struct udphdr), &ipc, &rt,
1514 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1515 	if (err)
1516 		udp_flush_pending_frames(sk);
1517 	else if (!corkreq)
1518 		err = udp_push_pending_frames(sk);
1519 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1520 		WRITE_ONCE(up->pending, 0);
1521 	release_sock(sk);
1522 
1523 out:
1524 	ip_rt_put(rt);
1525 out_free:
1526 	if (free)
1527 		kfree(ipc.opt);
1528 	if (!err)
1529 		return len;
1530 	/*
1531 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1532 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1533 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1534 	 * things).  We could add another new stat but at least for now that
1535 	 * seems like overkill.
1536 	 */
1537 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1538 		UDP_INC_STATS(sock_net(sk),
1539 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1540 	}
1541 	return err;
1542 
1543 do_confirm:
1544 	if (msg->msg_flags & MSG_PROBE)
1545 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1546 	if (!(msg->msg_flags&MSG_PROBE) || len)
1547 		goto back_from_confirm;
1548 	err = 0;
1549 	goto out;
1550 }
1551 EXPORT_SYMBOL(udp_sendmsg);
1552 
1553 void udp_splice_eof(struct socket *sock)
1554 {
1555 	struct sock *sk = sock->sk;
1556 	struct udp_sock *up = udp_sk(sk);
1557 
1558 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1559 		return;
1560 
1561 	lock_sock(sk);
1562 	if (up->pending && !udp_test_bit(CORK, sk))
1563 		udp_push_pending_frames(sk);
1564 	release_sock(sk);
1565 }
1566 EXPORT_SYMBOL_GPL(udp_splice_eof);
1567 
1568 #define UDP_SKB_IS_STATELESS 0x80000000
1569 
1570 /* all head states (dst, sk, nf conntrack) except skb extensions are
1571  * cleared by udp_rcv().
1572  *
1573  * We need to preserve secpath, if present, to eventually process
1574  * IP_CMSG_PASSSEC at recvmsg() time.
1575  *
1576  * Other extensions can be cleared.
1577  */
1578 static bool udp_try_make_stateless(struct sk_buff *skb)
1579 {
1580 	if (!skb_has_extensions(skb))
1581 		return true;
1582 
1583 	if (!secpath_exists(skb)) {
1584 		skb_ext_reset(skb);
1585 		return true;
1586 	}
1587 
1588 	return false;
1589 }
1590 
1591 static void udp_set_dev_scratch(struct sk_buff *skb)
1592 {
1593 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1594 
1595 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1596 	scratch->_tsize_state = skb->truesize;
1597 #if BITS_PER_LONG == 64
1598 	scratch->len = skb->len;
1599 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1600 	scratch->is_linear = !skb_is_nonlinear(skb);
1601 #endif
1602 	if (udp_try_make_stateless(skb))
1603 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1604 }
1605 
1606 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1607 {
1608 	/* We come here after udp_lib_checksum_complete() returned 0.
1609 	 * This means that __skb_checksum_complete() might have
1610 	 * set skb->csum_valid to 1.
1611 	 * On 64bit platforms, we can set csum_unnecessary
1612 	 * to true, but only if the skb is not shared.
1613 	 */
1614 #if BITS_PER_LONG == 64
1615 	if (!skb_shared(skb))
1616 		udp_skb_scratch(skb)->csum_unnecessary = true;
1617 #endif
1618 }
1619 
1620 static int udp_skb_truesize(struct sk_buff *skb)
1621 {
1622 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1623 }
1624 
1625 static bool udp_skb_has_head_state(struct sk_buff *skb)
1626 {
1627 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1628 }
1629 
1630 /* fully reclaim rmem/fwd memory allocated for skb */
1631 static void udp_rmem_release(struct sock *sk, int size, int partial,
1632 			     bool rx_queue_lock_held)
1633 {
1634 	struct udp_sock *up = udp_sk(sk);
1635 	struct sk_buff_head *sk_queue;
1636 	int amt;
1637 
1638 	if (likely(partial)) {
1639 		up->forward_deficit += size;
1640 		size = up->forward_deficit;
1641 		if (size < READ_ONCE(up->forward_threshold) &&
1642 		    !skb_queue_empty(&up->reader_queue))
1643 			return;
1644 	} else {
1645 		size += up->forward_deficit;
1646 	}
1647 	up->forward_deficit = 0;
1648 
1649 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1650 	 * if the called don't held it already
1651 	 */
1652 	sk_queue = &sk->sk_receive_queue;
1653 	if (!rx_queue_lock_held)
1654 		spin_lock(&sk_queue->lock);
1655 
1656 
1657 	sk_forward_alloc_add(sk, size);
1658 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1659 	sk_forward_alloc_add(sk, -amt);
1660 
1661 	if (amt)
1662 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1663 
1664 	atomic_sub(size, &sk->sk_rmem_alloc);
1665 
1666 	/* this can save us from acquiring the rx queue lock on next receive */
1667 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1668 
1669 	if (!rx_queue_lock_held)
1670 		spin_unlock(&sk_queue->lock);
1671 }
1672 
1673 /* Note: called with reader_queue.lock held.
1674  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1675  * This avoids a cache line miss while receive_queue lock is held.
1676  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1677  */
1678 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1679 {
1680 	prefetch(&skb->data);
1681 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1682 }
1683 EXPORT_SYMBOL(udp_skb_destructor);
1684 
1685 /* as above, but the caller held the rx queue lock, too */
1686 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1687 {
1688 	prefetch(&skb->data);
1689 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1690 }
1691 
1692 /* Idea of busylocks is to let producers grab an extra spinlock
1693  * to relieve pressure on the receive_queue spinlock shared by consumer.
1694  * Under flood, this means that only one producer can be in line
1695  * trying to acquire the receive_queue spinlock.
1696  * These busylock can be allocated on a per cpu manner, instead of a
1697  * per socket one (that would consume a cache line per socket)
1698  */
1699 static int udp_busylocks_log __read_mostly;
1700 static spinlock_t *udp_busylocks __read_mostly;
1701 
1702 static spinlock_t *busylock_acquire(void *ptr)
1703 {
1704 	spinlock_t *busy;
1705 
1706 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1707 	spin_lock(busy);
1708 	return busy;
1709 }
1710 
1711 static void busylock_release(spinlock_t *busy)
1712 {
1713 	if (busy)
1714 		spin_unlock(busy);
1715 }
1716 
1717 static int udp_rmem_schedule(struct sock *sk, int size)
1718 {
1719 	int delta;
1720 
1721 	delta = size - sk->sk_forward_alloc;
1722 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1723 		return -ENOBUFS;
1724 
1725 	return 0;
1726 }
1727 
1728 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1729 {
1730 	struct sk_buff_head *list = &sk->sk_receive_queue;
1731 	int rmem, err = -ENOMEM;
1732 	spinlock_t *busy = NULL;
1733 	int size, rcvbuf;
1734 
1735 	/* Immediately drop when the receive queue is full.
1736 	 * Always allow at least one packet.
1737 	 */
1738 	rmem = atomic_read(&sk->sk_rmem_alloc);
1739 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1740 	if (rmem > rcvbuf)
1741 		goto drop;
1742 
1743 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1744 	 * having linear skbs :
1745 	 * - Reduce memory overhead and thus increase receive queue capacity
1746 	 * - Less cache line misses at copyout() time
1747 	 * - Less work at consume_skb() (less alien page frag freeing)
1748 	 */
1749 	if (rmem > (rcvbuf >> 1)) {
1750 		skb_condense(skb);
1751 
1752 		busy = busylock_acquire(sk);
1753 	}
1754 	size = skb->truesize;
1755 	udp_set_dev_scratch(skb);
1756 
1757 	atomic_add(size, &sk->sk_rmem_alloc);
1758 
1759 	spin_lock(&list->lock);
1760 	err = udp_rmem_schedule(sk, size);
1761 	if (err) {
1762 		spin_unlock(&list->lock);
1763 		goto uncharge_drop;
1764 	}
1765 
1766 	sk_forward_alloc_add(sk, -size);
1767 
1768 	/* no need to setup a destructor, we will explicitly release the
1769 	 * forward allocated memory on dequeue
1770 	 */
1771 	sock_skb_set_dropcount(sk, skb);
1772 
1773 	__skb_queue_tail(list, skb);
1774 	spin_unlock(&list->lock);
1775 
1776 	if (!sock_flag(sk, SOCK_DEAD))
1777 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1778 
1779 	busylock_release(busy);
1780 	return 0;
1781 
1782 uncharge_drop:
1783 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1784 
1785 drop:
1786 	atomic_inc(&sk->sk_drops);
1787 	busylock_release(busy);
1788 	return err;
1789 }
1790 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1791 
1792 void udp_destruct_common(struct sock *sk)
1793 {
1794 	/* reclaim completely the forward allocated memory */
1795 	struct udp_sock *up = udp_sk(sk);
1796 	unsigned int total = 0;
1797 	struct sk_buff *skb;
1798 
1799 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1800 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1801 		total += skb->truesize;
1802 		kfree_skb(skb);
1803 	}
1804 	udp_rmem_release(sk, total, 0, true);
1805 }
1806 EXPORT_SYMBOL_GPL(udp_destruct_common);
1807 
1808 static void udp_destruct_sock(struct sock *sk)
1809 {
1810 	udp_destruct_common(sk);
1811 	inet_sock_destruct(sk);
1812 }
1813 
1814 int udp_init_sock(struct sock *sk)
1815 {
1816 	udp_lib_init_sock(sk);
1817 	sk->sk_destruct = udp_destruct_sock;
1818 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1819 	return 0;
1820 }
1821 
1822 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1823 {
1824 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1825 		sk_peek_offset_bwd(sk, len);
1826 
1827 	if (!skb_unref(skb))
1828 		return;
1829 
1830 	/* In the more common cases we cleared the head states previously,
1831 	 * see __udp_queue_rcv_skb().
1832 	 */
1833 	if (unlikely(udp_skb_has_head_state(skb)))
1834 		skb_release_head_state(skb);
1835 	__consume_stateless_skb(skb);
1836 }
1837 EXPORT_SYMBOL_GPL(skb_consume_udp);
1838 
1839 static struct sk_buff *__first_packet_length(struct sock *sk,
1840 					     struct sk_buff_head *rcvq,
1841 					     int *total)
1842 {
1843 	struct sk_buff *skb;
1844 
1845 	while ((skb = skb_peek(rcvq)) != NULL) {
1846 		if (udp_lib_checksum_complete(skb)) {
1847 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1848 					IS_UDPLITE(sk));
1849 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1850 					IS_UDPLITE(sk));
1851 			atomic_inc(&sk->sk_drops);
1852 			__skb_unlink(skb, rcvq);
1853 			*total += skb->truesize;
1854 			kfree_skb(skb);
1855 		} else {
1856 			udp_skb_csum_unnecessary_set(skb);
1857 			break;
1858 		}
1859 	}
1860 	return skb;
1861 }
1862 
1863 /**
1864  *	first_packet_length	- return length of first packet in receive queue
1865  *	@sk: socket
1866  *
1867  *	Drops all bad checksum frames, until a valid one is found.
1868  *	Returns the length of found skb, or -1 if none is found.
1869  */
1870 static int first_packet_length(struct sock *sk)
1871 {
1872 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1873 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1874 	struct sk_buff *skb;
1875 	int total = 0;
1876 	int res;
1877 
1878 	spin_lock_bh(&rcvq->lock);
1879 	skb = __first_packet_length(sk, rcvq, &total);
1880 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1881 		spin_lock(&sk_queue->lock);
1882 		skb_queue_splice_tail_init(sk_queue, rcvq);
1883 		spin_unlock(&sk_queue->lock);
1884 
1885 		skb = __first_packet_length(sk, rcvq, &total);
1886 	}
1887 	res = skb ? skb->len : -1;
1888 	if (total)
1889 		udp_rmem_release(sk, total, 1, false);
1890 	spin_unlock_bh(&rcvq->lock);
1891 	return res;
1892 }
1893 
1894 /*
1895  *	IOCTL requests applicable to the UDP protocol
1896  */
1897 
1898 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1899 {
1900 	switch (cmd) {
1901 	case SIOCOUTQ:
1902 	{
1903 		*karg = sk_wmem_alloc_get(sk);
1904 		return 0;
1905 	}
1906 
1907 	case SIOCINQ:
1908 	{
1909 		*karg = max_t(int, 0, first_packet_length(sk));
1910 		return 0;
1911 	}
1912 
1913 	default:
1914 		return -ENOIOCTLCMD;
1915 	}
1916 
1917 	return 0;
1918 }
1919 EXPORT_SYMBOL(udp_ioctl);
1920 
1921 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1922 			       int *off, int *err)
1923 {
1924 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1925 	struct sk_buff_head *queue;
1926 	struct sk_buff *last;
1927 	long timeo;
1928 	int error;
1929 
1930 	queue = &udp_sk(sk)->reader_queue;
1931 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1932 	do {
1933 		struct sk_buff *skb;
1934 
1935 		error = sock_error(sk);
1936 		if (error)
1937 			break;
1938 
1939 		error = -EAGAIN;
1940 		do {
1941 			spin_lock_bh(&queue->lock);
1942 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1943 							err, &last);
1944 			if (skb) {
1945 				if (!(flags & MSG_PEEK))
1946 					udp_skb_destructor(sk, skb);
1947 				spin_unlock_bh(&queue->lock);
1948 				return skb;
1949 			}
1950 
1951 			if (skb_queue_empty_lockless(sk_queue)) {
1952 				spin_unlock_bh(&queue->lock);
1953 				goto busy_check;
1954 			}
1955 
1956 			/* refill the reader queue and walk it again
1957 			 * keep both queues locked to avoid re-acquiring
1958 			 * the sk_receive_queue lock if fwd memory scheduling
1959 			 * is needed.
1960 			 */
1961 			spin_lock(&sk_queue->lock);
1962 			skb_queue_splice_tail_init(sk_queue, queue);
1963 
1964 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1965 							err, &last);
1966 			if (skb && !(flags & MSG_PEEK))
1967 				udp_skb_dtor_locked(sk, skb);
1968 			spin_unlock(&sk_queue->lock);
1969 			spin_unlock_bh(&queue->lock);
1970 			if (skb)
1971 				return skb;
1972 
1973 busy_check:
1974 			if (!sk_can_busy_loop(sk))
1975 				break;
1976 
1977 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1978 		} while (!skb_queue_empty_lockless(sk_queue));
1979 
1980 		/* sk_queue is empty, reader_queue may contain peeked packets */
1981 	} while (timeo &&
1982 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1983 					      &error, &timeo,
1984 					      (struct sk_buff *)sk_queue));
1985 
1986 	*err = error;
1987 	return NULL;
1988 }
1989 EXPORT_SYMBOL(__skb_recv_udp);
1990 
1991 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1992 {
1993 	struct sk_buff *skb;
1994 	int err;
1995 
1996 try_again:
1997 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1998 	if (!skb)
1999 		return err;
2000 
2001 	if (udp_lib_checksum_complete(skb)) {
2002 		int is_udplite = IS_UDPLITE(sk);
2003 		struct net *net = sock_net(sk);
2004 
2005 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
2006 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
2007 		atomic_inc(&sk->sk_drops);
2008 		kfree_skb(skb);
2009 		goto try_again;
2010 	}
2011 
2012 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
2013 	return recv_actor(sk, skb);
2014 }
2015 EXPORT_SYMBOL(udp_read_skb);
2016 
2017 /*
2018  * 	This should be easy, if there is something there we
2019  * 	return it, otherwise we block.
2020  */
2021 
2022 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2023 		int *addr_len)
2024 {
2025 	struct inet_sock *inet = inet_sk(sk);
2026 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
2027 	struct sk_buff *skb;
2028 	unsigned int ulen, copied;
2029 	int off, err, peeking = flags & MSG_PEEK;
2030 	int is_udplite = IS_UDPLITE(sk);
2031 	bool checksum_valid = false;
2032 
2033 	if (flags & MSG_ERRQUEUE)
2034 		return ip_recv_error(sk, msg, len, addr_len);
2035 
2036 try_again:
2037 	off = sk_peek_offset(sk, flags);
2038 	skb = __skb_recv_udp(sk, flags, &off, &err);
2039 	if (!skb)
2040 		return err;
2041 
2042 	ulen = udp_skb_len(skb);
2043 	copied = len;
2044 	if (copied > ulen - off)
2045 		copied = ulen - off;
2046 	else if (copied < ulen)
2047 		msg->msg_flags |= MSG_TRUNC;
2048 
2049 	/*
2050 	 * If checksum is needed at all, try to do it while copying the
2051 	 * data.  If the data is truncated, or if we only want a partial
2052 	 * coverage checksum (UDP-Lite), do it before the copy.
2053 	 */
2054 
2055 	if (copied < ulen || peeking ||
2056 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2057 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
2058 				!__udp_lib_checksum_complete(skb);
2059 		if (!checksum_valid)
2060 			goto csum_copy_err;
2061 	}
2062 
2063 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2064 		if (udp_skb_is_linear(skb))
2065 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2066 		else
2067 			err = skb_copy_datagram_msg(skb, off, msg, copied);
2068 	} else {
2069 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2070 
2071 		if (err == -EINVAL)
2072 			goto csum_copy_err;
2073 	}
2074 
2075 	if (unlikely(err)) {
2076 		if (!peeking) {
2077 			atomic_inc(&sk->sk_drops);
2078 			UDP_INC_STATS(sock_net(sk),
2079 				      UDP_MIB_INERRORS, is_udplite);
2080 		}
2081 		kfree_skb(skb);
2082 		return err;
2083 	}
2084 
2085 	if (!peeking)
2086 		UDP_INC_STATS(sock_net(sk),
2087 			      UDP_MIB_INDATAGRAMS, is_udplite);
2088 
2089 	sock_recv_cmsgs(msg, sk, skb);
2090 
2091 	/* Copy the address. */
2092 	if (sin) {
2093 		sin->sin_family = AF_INET;
2094 		sin->sin_port = udp_hdr(skb)->source;
2095 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2096 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2097 		*addr_len = sizeof(*sin);
2098 
2099 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2100 						      (struct sockaddr *)sin,
2101 						      addr_len);
2102 	}
2103 
2104 	if (udp_test_bit(GRO_ENABLED, sk))
2105 		udp_cmsg_recv(msg, sk, skb);
2106 
2107 	if (inet_cmsg_flags(inet))
2108 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2109 
2110 	err = copied;
2111 	if (flags & MSG_TRUNC)
2112 		err = ulen;
2113 
2114 	skb_consume_udp(sk, skb, peeking ? -err : err);
2115 	return err;
2116 
2117 csum_copy_err:
2118 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2119 				 udp_skb_destructor)) {
2120 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2121 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2122 	}
2123 	kfree_skb(skb);
2124 
2125 	/* starting over for a new packet, but check if we need to yield */
2126 	cond_resched();
2127 	msg->msg_flags &= ~MSG_TRUNC;
2128 	goto try_again;
2129 }
2130 
2131 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2132 {
2133 	/* This check is replicated from __ip4_datagram_connect() and
2134 	 * intended to prevent BPF program called below from accessing bytes
2135 	 * that are out of the bound specified by user in addr_len.
2136 	 */
2137 	if (addr_len < sizeof(struct sockaddr_in))
2138 		return -EINVAL;
2139 
2140 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2141 }
2142 EXPORT_SYMBOL(udp_pre_connect);
2143 
2144 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2145 {
2146 	int res;
2147 
2148 	lock_sock(sk);
2149 	res = __ip4_datagram_connect(sk, uaddr, addr_len);
2150 	if (!res)
2151 		udp4_hash4(sk);
2152 	release_sock(sk);
2153 	return res;
2154 }
2155 
2156 int __udp_disconnect(struct sock *sk, int flags)
2157 {
2158 	struct inet_sock *inet = inet_sk(sk);
2159 	/*
2160 	 *	1003.1g - break association.
2161 	 */
2162 
2163 	sk->sk_state = TCP_CLOSE;
2164 	inet->inet_daddr = 0;
2165 	inet->inet_dport = 0;
2166 	sock_rps_reset_rxhash(sk);
2167 	sk->sk_bound_dev_if = 0;
2168 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2169 		inet_reset_saddr(sk);
2170 		if (sk->sk_prot->rehash &&
2171 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2172 			sk->sk_prot->rehash(sk);
2173 	}
2174 
2175 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2176 		sk->sk_prot->unhash(sk);
2177 		inet->inet_sport = 0;
2178 	}
2179 	sk_dst_reset(sk);
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL(__udp_disconnect);
2183 
2184 int udp_disconnect(struct sock *sk, int flags)
2185 {
2186 	lock_sock(sk);
2187 	__udp_disconnect(sk, flags);
2188 	release_sock(sk);
2189 	return 0;
2190 }
2191 EXPORT_SYMBOL(udp_disconnect);
2192 
2193 void udp_lib_unhash(struct sock *sk)
2194 {
2195 	if (sk_hashed(sk)) {
2196 		struct udp_table *udptable = udp_get_table_prot(sk);
2197 		struct udp_hslot *hslot, *hslot2;
2198 
2199 		hslot  = udp_hashslot(udptable, sock_net(sk),
2200 				      udp_sk(sk)->udp_port_hash);
2201 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2202 
2203 		spin_lock_bh(&hslot->lock);
2204 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2205 			reuseport_detach_sock(sk);
2206 		if (sk_del_node_init_rcu(sk)) {
2207 			hslot->count--;
2208 			inet_sk(sk)->inet_num = 0;
2209 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2210 
2211 			spin_lock(&hslot2->lock);
2212 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2213 			hslot2->count--;
2214 			spin_unlock(&hslot2->lock);
2215 
2216 			udp_unhash4(udptable, sk);
2217 		}
2218 		spin_unlock_bh(&hslot->lock);
2219 	}
2220 }
2221 EXPORT_SYMBOL(udp_lib_unhash);
2222 
2223 /*
2224  * inet_rcv_saddr was changed, we must rehash secondary hash
2225  */
2226 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2227 {
2228 	if (sk_hashed(sk)) {
2229 		struct udp_table *udptable = udp_get_table_prot(sk);
2230 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2231 
2232 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2233 		nhslot2 = udp_hashslot2(udptable, newhash);
2234 		udp_sk(sk)->udp_portaddr_hash = newhash;
2235 
2236 		if (hslot2 != nhslot2 ||
2237 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2238 			hslot = udp_hashslot(udptable, sock_net(sk),
2239 					     udp_sk(sk)->udp_port_hash);
2240 			/* we must lock primary chain too */
2241 			spin_lock_bh(&hslot->lock);
2242 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2243 				reuseport_detach_sock(sk);
2244 
2245 			if (hslot2 != nhslot2) {
2246 				spin_lock(&hslot2->lock);
2247 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2248 				hslot2->count--;
2249 				spin_unlock(&hslot2->lock);
2250 
2251 				spin_lock(&nhslot2->lock);
2252 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2253 							 &nhslot2->head);
2254 				nhslot2->count++;
2255 				spin_unlock(&nhslot2->lock);
2256 			}
2257 
2258 			if (udp_hashed4(sk)) {
2259 				udp_rehash4(udptable, sk, newhash4);
2260 
2261 				if (hslot2 != nhslot2) {
2262 					spin_lock(&hslot2->lock);
2263 					udp_hash4_dec(hslot2);
2264 					spin_unlock(&hslot2->lock);
2265 
2266 					spin_lock(&nhslot2->lock);
2267 					udp_hash4_inc(nhslot2);
2268 					spin_unlock(&nhslot2->lock);
2269 				}
2270 			}
2271 			spin_unlock_bh(&hslot->lock);
2272 		}
2273 	}
2274 }
2275 EXPORT_SYMBOL(udp_lib_rehash);
2276 
2277 void udp_v4_rehash(struct sock *sk)
2278 {
2279 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2280 					  inet_sk(sk)->inet_rcv_saddr,
2281 					  inet_sk(sk)->inet_num);
2282 	u16 new_hash4 = udp_ehashfn(sock_net(sk),
2283 				    sk->sk_rcv_saddr, sk->sk_num,
2284 				    sk->sk_daddr, sk->sk_dport);
2285 
2286 	udp_lib_rehash(sk, new_hash, new_hash4);
2287 }
2288 
2289 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2290 {
2291 	int rc;
2292 
2293 	if (inet_sk(sk)->inet_daddr) {
2294 		sock_rps_save_rxhash(sk, skb);
2295 		sk_mark_napi_id(sk, skb);
2296 		sk_incoming_cpu_update(sk);
2297 	} else {
2298 		sk_mark_napi_id_once(sk, skb);
2299 	}
2300 
2301 	rc = __udp_enqueue_schedule_skb(sk, skb);
2302 	if (rc < 0) {
2303 		int is_udplite = IS_UDPLITE(sk);
2304 		int drop_reason;
2305 
2306 		/* Note that an ENOMEM error is charged twice */
2307 		if (rc == -ENOMEM) {
2308 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2309 					is_udplite);
2310 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2311 		} else {
2312 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2313 				      is_udplite);
2314 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2315 		}
2316 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2317 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2318 		sk_skb_reason_drop(sk, skb, drop_reason);
2319 		return -1;
2320 	}
2321 
2322 	return 0;
2323 }
2324 
2325 /* returns:
2326  *  -1: error
2327  *   0: success
2328  *  >0: "udp encap" protocol resubmission
2329  *
2330  * Note that in the success and error cases, the skb is assumed to
2331  * have either been requeued or freed.
2332  */
2333 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2334 {
2335 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2336 	struct udp_sock *up = udp_sk(sk);
2337 	int is_udplite = IS_UDPLITE(sk);
2338 
2339 	/*
2340 	 *	Charge it to the socket, dropping if the queue is full.
2341 	 */
2342 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2343 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2344 		goto drop;
2345 	}
2346 	nf_reset_ct(skb);
2347 
2348 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2349 	    READ_ONCE(up->encap_type)) {
2350 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2351 
2352 		/*
2353 		 * This is an encapsulation socket so pass the skb to
2354 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2355 		 * fall through and pass this up the UDP socket.
2356 		 * up->encap_rcv() returns the following value:
2357 		 * =0 if skb was successfully passed to the encap
2358 		 *    handler or was discarded by it.
2359 		 * >0 if skb should be passed on to UDP.
2360 		 * <0 if skb should be resubmitted as proto -N
2361 		 */
2362 
2363 		/* if we're overly short, let UDP handle it */
2364 		encap_rcv = READ_ONCE(up->encap_rcv);
2365 		if (encap_rcv) {
2366 			int ret;
2367 
2368 			/* Verify checksum before giving to encap */
2369 			if (udp_lib_checksum_complete(skb))
2370 				goto csum_error;
2371 
2372 			ret = encap_rcv(sk, skb);
2373 			if (ret <= 0) {
2374 				__UDP_INC_STATS(sock_net(sk),
2375 						UDP_MIB_INDATAGRAMS,
2376 						is_udplite);
2377 				return -ret;
2378 			}
2379 		}
2380 
2381 		/* FALLTHROUGH -- it's a UDP Packet */
2382 	}
2383 
2384 	/*
2385 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2386 	 */
2387 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2388 		u16 pcrlen = READ_ONCE(up->pcrlen);
2389 
2390 		/*
2391 		 * MIB statistics other than incrementing the error count are
2392 		 * disabled for the following two types of errors: these depend
2393 		 * on the application settings, not on the functioning of the
2394 		 * protocol stack as such.
2395 		 *
2396 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2397 		 * way ... to ... at least let the receiving application block
2398 		 * delivery of packets with coverage values less than a value
2399 		 * provided by the application."
2400 		 */
2401 		if (pcrlen == 0) {          /* full coverage was set  */
2402 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2403 					    UDP_SKB_CB(skb)->cscov, skb->len);
2404 			goto drop;
2405 		}
2406 		/* The next case involves violating the min. coverage requested
2407 		 * by the receiver. This is subtle: if receiver wants x and x is
2408 		 * greater than the buffersize/MTU then receiver will complain
2409 		 * that it wants x while sender emits packets of smaller size y.
2410 		 * Therefore the above ...()->partial_cov statement is essential.
2411 		 */
2412 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2413 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2414 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2415 			goto drop;
2416 		}
2417 	}
2418 
2419 	prefetch(&sk->sk_rmem_alloc);
2420 	if (rcu_access_pointer(sk->sk_filter) &&
2421 	    udp_lib_checksum_complete(skb))
2422 			goto csum_error;
2423 
2424 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2425 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2426 		goto drop;
2427 	}
2428 
2429 	udp_csum_pull_header(skb);
2430 
2431 	ipv4_pktinfo_prepare(sk, skb, true);
2432 	return __udp_queue_rcv_skb(sk, skb);
2433 
2434 csum_error:
2435 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2436 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2437 drop:
2438 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2439 	atomic_inc(&sk->sk_drops);
2440 	sk_skb_reason_drop(sk, skb, drop_reason);
2441 	return -1;
2442 }
2443 
2444 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2445 {
2446 	struct sk_buff *next, *segs;
2447 	int ret;
2448 
2449 	if (likely(!udp_unexpected_gso(sk, skb)))
2450 		return udp_queue_rcv_one_skb(sk, skb);
2451 
2452 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2453 	__skb_push(skb, -skb_mac_offset(skb));
2454 	segs = udp_rcv_segment(sk, skb, true);
2455 	skb_list_walk_safe(segs, skb, next) {
2456 		__skb_pull(skb, skb_transport_offset(skb));
2457 
2458 		udp_post_segment_fix_csum(skb);
2459 		ret = udp_queue_rcv_one_skb(sk, skb);
2460 		if (ret > 0)
2461 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2462 	}
2463 	return 0;
2464 }
2465 
2466 /* For TCP sockets, sk_rx_dst is protected by socket lock
2467  * For UDP, we use xchg() to guard against concurrent changes.
2468  */
2469 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2470 {
2471 	struct dst_entry *old;
2472 
2473 	if (dst_hold_safe(dst)) {
2474 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2475 		dst_release(old);
2476 		return old != dst;
2477 	}
2478 	return false;
2479 }
2480 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2481 
2482 /*
2483  *	Multicasts and broadcasts go to each listener.
2484  *
2485  *	Note: called only from the BH handler context.
2486  */
2487 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2488 				    struct udphdr  *uh,
2489 				    __be32 saddr, __be32 daddr,
2490 				    struct udp_table *udptable,
2491 				    int proto)
2492 {
2493 	struct sock *sk, *first = NULL;
2494 	unsigned short hnum = ntohs(uh->dest);
2495 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2496 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2497 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2498 	int dif = skb->dev->ifindex;
2499 	int sdif = inet_sdif(skb);
2500 	struct hlist_node *node;
2501 	struct sk_buff *nskb;
2502 
2503 	if (use_hash2) {
2504 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2505 			    udptable->mask;
2506 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2507 start_lookup:
2508 		hslot = &udptable->hash2[hash2].hslot;
2509 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2510 	}
2511 
2512 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2513 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2514 					 uh->source, saddr, dif, sdif, hnum))
2515 			continue;
2516 
2517 		if (!first) {
2518 			first = sk;
2519 			continue;
2520 		}
2521 		nskb = skb_clone(skb, GFP_ATOMIC);
2522 
2523 		if (unlikely(!nskb)) {
2524 			atomic_inc(&sk->sk_drops);
2525 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2526 					IS_UDPLITE(sk));
2527 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2528 					IS_UDPLITE(sk));
2529 			continue;
2530 		}
2531 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2532 			consume_skb(nskb);
2533 	}
2534 
2535 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2536 	if (use_hash2 && hash2 != hash2_any) {
2537 		hash2 = hash2_any;
2538 		goto start_lookup;
2539 	}
2540 
2541 	if (first) {
2542 		if (udp_queue_rcv_skb(first, skb) > 0)
2543 			consume_skb(skb);
2544 	} else {
2545 		kfree_skb(skb);
2546 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2547 				proto == IPPROTO_UDPLITE);
2548 	}
2549 	return 0;
2550 }
2551 
2552 /* Initialize UDP checksum. If exited with zero value (success),
2553  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2554  * Otherwise, csum completion requires checksumming packet body,
2555  * including udp header and folding it to skb->csum.
2556  */
2557 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2558 				 int proto)
2559 {
2560 	int err;
2561 
2562 	UDP_SKB_CB(skb)->partial_cov = 0;
2563 	UDP_SKB_CB(skb)->cscov = skb->len;
2564 
2565 	if (proto == IPPROTO_UDPLITE) {
2566 		err = udplite_checksum_init(skb, uh);
2567 		if (err)
2568 			return err;
2569 
2570 		if (UDP_SKB_CB(skb)->partial_cov) {
2571 			skb->csum = inet_compute_pseudo(skb, proto);
2572 			return 0;
2573 		}
2574 	}
2575 
2576 	/* Note, we are only interested in != 0 or == 0, thus the
2577 	 * force to int.
2578 	 */
2579 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2580 							inet_compute_pseudo);
2581 	if (err)
2582 		return err;
2583 
2584 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2585 		/* If SW calculated the value, we know it's bad */
2586 		if (skb->csum_complete_sw)
2587 			return 1;
2588 
2589 		/* HW says the value is bad. Let's validate that.
2590 		 * skb->csum is no longer the full packet checksum,
2591 		 * so don't treat it as such.
2592 		 */
2593 		skb_checksum_complete_unset(skb);
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2600  * return code conversion for ip layer consumption
2601  */
2602 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2603 			       struct udphdr *uh)
2604 {
2605 	int ret;
2606 
2607 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2608 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2609 
2610 	ret = udp_queue_rcv_skb(sk, skb);
2611 
2612 	/* a return value > 0 means to resubmit the input, but
2613 	 * it wants the return to be -protocol, or 0
2614 	 */
2615 	if (ret > 0)
2616 		return -ret;
2617 	return 0;
2618 }
2619 
2620 /*
2621  *	All we need to do is get the socket, and then do a checksum.
2622  */
2623 
2624 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2625 		   int proto)
2626 {
2627 	struct sock *sk = NULL;
2628 	struct udphdr *uh;
2629 	unsigned short ulen;
2630 	struct rtable *rt = skb_rtable(skb);
2631 	__be32 saddr, daddr;
2632 	struct net *net = dev_net(skb->dev);
2633 	bool refcounted;
2634 	int drop_reason;
2635 
2636 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2637 
2638 	/*
2639 	 *  Validate the packet.
2640 	 */
2641 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2642 		goto drop;		/* No space for header. */
2643 
2644 	uh   = udp_hdr(skb);
2645 	ulen = ntohs(uh->len);
2646 	saddr = ip_hdr(skb)->saddr;
2647 	daddr = ip_hdr(skb)->daddr;
2648 
2649 	if (ulen > skb->len)
2650 		goto short_packet;
2651 
2652 	if (proto == IPPROTO_UDP) {
2653 		/* UDP validates ulen. */
2654 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2655 			goto short_packet;
2656 		uh = udp_hdr(skb);
2657 	}
2658 
2659 	if (udp4_csum_init(skb, uh, proto))
2660 		goto csum_error;
2661 
2662 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2663 			     &refcounted, udp_ehashfn);
2664 	if (IS_ERR(sk))
2665 		goto no_sk;
2666 
2667 	if (sk) {
2668 		struct dst_entry *dst = skb_dst(skb);
2669 		int ret;
2670 
2671 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2672 			udp_sk_rx_dst_set(sk, dst);
2673 
2674 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2675 		if (refcounted)
2676 			sock_put(sk);
2677 		return ret;
2678 	}
2679 
2680 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2681 		return __udp4_lib_mcast_deliver(net, skb, uh,
2682 						saddr, daddr, udptable, proto);
2683 
2684 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2685 	if (sk)
2686 		return udp_unicast_rcv_skb(sk, skb, uh);
2687 no_sk:
2688 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2689 		goto drop;
2690 	nf_reset_ct(skb);
2691 
2692 	/* No socket. Drop packet silently, if checksum is wrong */
2693 	if (udp_lib_checksum_complete(skb))
2694 		goto csum_error;
2695 
2696 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2697 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2698 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2699 
2700 	/*
2701 	 * Hmm.  We got an UDP packet to a port to which we
2702 	 * don't wanna listen.  Ignore it.
2703 	 */
2704 	sk_skb_reason_drop(sk, skb, drop_reason);
2705 	return 0;
2706 
2707 short_packet:
2708 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2709 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2710 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2711 			    &saddr, ntohs(uh->source),
2712 			    ulen, skb->len,
2713 			    &daddr, ntohs(uh->dest));
2714 	goto drop;
2715 
2716 csum_error:
2717 	/*
2718 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2719 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2720 	 */
2721 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2722 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2723 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2724 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2725 			    ulen);
2726 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2727 drop:
2728 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2729 	sk_skb_reason_drop(sk, skb, drop_reason);
2730 	return 0;
2731 }
2732 
2733 /* We can only early demux multicast if there is a single matching socket.
2734  * If more than one socket found returns NULL
2735  */
2736 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2737 						  __be16 loc_port, __be32 loc_addr,
2738 						  __be16 rmt_port, __be32 rmt_addr,
2739 						  int dif, int sdif)
2740 {
2741 	struct udp_table *udptable = net->ipv4.udp_table;
2742 	unsigned short hnum = ntohs(loc_port);
2743 	struct sock *sk, *result;
2744 	struct udp_hslot *hslot;
2745 	unsigned int slot;
2746 
2747 	slot = udp_hashfn(net, hnum, udptable->mask);
2748 	hslot = &udptable->hash[slot];
2749 
2750 	/* Do not bother scanning a too big list */
2751 	if (hslot->count > 10)
2752 		return NULL;
2753 
2754 	result = NULL;
2755 	sk_for_each_rcu(sk, &hslot->head) {
2756 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2757 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2758 			if (result)
2759 				return NULL;
2760 			result = sk;
2761 		}
2762 	}
2763 
2764 	return result;
2765 }
2766 
2767 /* For unicast we should only early demux connected sockets or we can
2768  * break forwarding setups.  The chains here can be long so only check
2769  * if the first socket is an exact match and if not move on.
2770  */
2771 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2772 					    __be16 loc_port, __be32 loc_addr,
2773 					    __be16 rmt_port, __be32 rmt_addr,
2774 					    int dif, int sdif)
2775 {
2776 	struct udp_table *udptable = net->ipv4.udp_table;
2777 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2778 	unsigned short hnum = ntohs(loc_port);
2779 	struct udp_hslot *hslot2;
2780 	unsigned int hash2;
2781 	__portpair ports;
2782 	struct sock *sk;
2783 
2784 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2785 	hslot2 = udp_hashslot2(udptable, hash2);
2786 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2787 
2788 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2789 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2790 			return sk;
2791 		/* Only check first socket in chain */
2792 		break;
2793 	}
2794 	return NULL;
2795 }
2796 
2797 int udp_v4_early_demux(struct sk_buff *skb)
2798 {
2799 	struct net *net = dev_net(skb->dev);
2800 	struct in_device *in_dev = NULL;
2801 	const struct iphdr *iph;
2802 	const struct udphdr *uh;
2803 	struct sock *sk = NULL;
2804 	struct dst_entry *dst;
2805 	int dif = skb->dev->ifindex;
2806 	int sdif = inet_sdif(skb);
2807 	int ours;
2808 
2809 	/* validate the packet */
2810 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2811 		return 0;
2812 
2813 	iph = ip_hdr(skb);
2814 	uh = udp_hdr(skb);
2815 
2816 	if (skb->pkt_type == PACKET_MULTICAST) {
2817 		in_dev = __in_dev_get_rcu(skb->dev);
2818 
2819 		if (!in_dev)
2820 			return 0;
2821 
2822 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2823 				       iph->protocol);
2824 		if (!ours)
2825 			return 0;
2826 
2827 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2828 						   uh->source, iph->saddr,
2829 						   dif, sdif);
2830 	} else if (skb->pkt_type == PACKET_HOST) {
2831 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2832 					     uh->source, iph->saddr, dif, sdif);
2833 	}
2834 
2835 	if (!sk)
2836 		return 0;
2837 
2838 	skb->sk = sk;
2839 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2840 	skb->destructor = sock_pfree;
2841 	dst = rcu_dereference(sk->sk_rx_dst);
2842 
2843 	if (dst)
2844 		dst = dst_check(dst, 0);
2845 	if (dst) {
2846 		u32 itag = 0;
2847 
2848 		/* set noref for now.
2849 		 * any place which wants to hold dst has to call
2850 		 * dst_hold_safe()
2851 		 */
2852 		skb_dst_set_noref(skb, dst);
2853 
2854 		/* for unconnected multicast sockets we need to validate
2855 		 * the source on each packet
2856 		 */
2857 		if (!inet_sk(sk)->inet_daddr && in_dev)
2858 			return ip_mc_validate_source(skb, iph->daddr,
2859 						     iph->saddr,
2860 						     ip4h_dscp(iph),
2861 						     skb->dev, in_dev, &itag);
2862 	}
2863 	return 0;
2864 }
2865 
2866 int udp_rcv(struct sk_buff *skb)
2867 {
2868 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2869 }
2870 
2871 void udp_destroy_sock(struct sock *sk)
2872 {
2873 	struct udp_sock *up = udp_sk(sk);
2874 	bool slow = lock_sock_fast(sk);
2875 
2876 	/* protects from races with udp_abort() */
2877 	sock_set_flag(sk, SOCK_DEAD);
2878 	udp_flush_pending_frames(sk);
2879 	unlock_sock_fast(sk, slow);
2880 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2881 		if (up->encap_type) {
2882 			void (*encap_destroy)(struct sock *sk);
2883 			encap_destroy = READ_ONCE(up->encap_destroy);
2884 			if (encap_destroy)
2885 				encap_destroy(sk);
2886 		}
2887 		if (udp_test_bit(ENCAP_ENABLED, sk))
2888 			static_branch_dec(&udp_encap_needed_key);
2889 	}
2890 }
2891 
2892 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2893 				       struct sock *sk)
2894 {
2895 #ifdef CONFIG_XFRM
2896 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2897 		if (family == AF_INET)
2898 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2899 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2900 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2901 	}
2902 #endif
2903 }
2904 
2905 /*
2906  *	Socket option code for UDP
2907  */
2908 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2909 		       sockptr_t optval, unsigned int optlen,
2910 		       int (*push_pending_frames)(struct sock *))
2911 {
2912 	struct udp_sock *up = udp_sk(sk);
2913 	int val, valbool;
2914 	int err = 0;
2915 	int is_udplite = IS_UDPLITE(sk);
2916 
2917 	if (level == SOL_SOCKET) {
2918 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2919 
2920 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2921 			sockopt_lock_sock(sk);
2922 			/* paired with READ_ONCE in udp_rmem_release() */
2923 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2924 			sockopt_release_sock(sk);
2925 		}
2926 		return err;
2927 	}
2928 
2929 	if (optlen < sizeof(int))
2930 		return -EINVAL;
2931 
2932 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2933 		return -EFAULT;
2934 
2935 	valbool = val ? 1 : 0;
2936 
2937 	switch (optname) {
2938 	case UDP_CORK:
2939 		if (val != 0) {
2940 			udp_set_bit(CORK, sk);
2941 		} else {
2942 			udp_clear_bit(CORK, sk);
2943 			lock_sock(sk);
2944 			push_pending_frames(sk);
2945 			release_sock(sk);
2946 		}
2947 		break;
2948 
2949 	case UDP_ENCAP:
2950 		switch (val) {
2951 		case 0:
2952 #ifdef CONFIG_XFRM
2953 		case UDP_ENCAP_ESPINUDP:
2954 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2955 #if IS_ENABLED(CONFIG_IPV6)
2956 			if (sk->sk_family == AF_INET6)
2957 				WRITE_ONCE(up->encap_rcv,
2958 					   ipv6_stub->xfrm6_udp_encap_rcv);
2959 			else
2960 #endif
2961 				WRITE_ONCE(up->encap_rcv,
2962 					   xfrm4_udp_encap_rcv);
2963 #endif
2964 			fallthrough;
2965 		case UDP_ENCAP_L2TPINUDP:
2966 			WRITE_ONCE(up->encap_type, val);
2967 			udp_tunnel_encap_enable(sk);
2968 			break;
2969 		default:
2970 			err = -ENOPROTOOPT;
2971 			break;
2972 		}
2973 		break;
2974 
2975 	case UDP_NO_CHECK6_TX:
2976 		udp_set_no_check6_tx(sk, valbool);
2977 		break;
2978 
2979 	case UDP_NO_CHECK6_RX:
2980 		udp_set_no_check6_rx(sk, valbool);
2981 		break;
2982 
2983 	case UDP_SEGMENT:
2984 		if (val < 0 || val > USHRT_MAX)
2985 			return -EINVAL;
2986 		WRITE_ONCE(up->gso_size, val);
2987 		break;
2988 
2989 	case UDP_GRO:
2990 
2991 		/* when enabling GRO, accept the related GSO packet type */
2992 		if (valbool)
2993 			udp_tunnel_encap_enable(sk);
2994 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2995 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2996 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2997 		break;
2998 
2999 	/*
3000 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
3001 	 */
3002 	/* The sender sets actual checksum coverage length via this option.
3003 	 * The case coverage > packet length is handled by send module. */
3004 	case UDPLITE_SEND_CSCOV:
3005 		if (!is_udplite)         /* Disable the option on UDP sockets */
3006 			return -ENOPROTOOPT;
3007 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
3008 			val = 8;
3009 		else if (val > USHRT_MAX)
3010 			val = USHRT_MAX;
3011 		WRITE_ONCE(up->pcslen, val);
3012 		udp_set_bit(UDPLITE_SEND_CC, sk);
3013 		break;
3014 
3015 	/* The receiver specifies a minimum checksum coverage value. To make
3016 	 * sense, this should be set to at least 8 (as done below). If zero is
3017 	 * used, this again means full checksum coverage.                     */
3018 	case UDPLITE_RECV_CSCOV:
3019 		if (!is_udplite)         /* Disable the option on UDP sockets */
3020 			return -ENOPROTOOPT;
3021 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
3022 			val = 8;
3023 		else if (val > USHRT_MAX)
3024 			val = USHRT_MAX;
3025 		WRITE_ONCE(up->pcrlen, val);
3026 		udp_set_bit(UDPLITE_RECV_CC, sk);
3027 		break;
3028 
3029 	default:
3030 		err = -ENOPROTOOPT;
3031 		break;
3032 	}
3033 
3034 	return err;
3035 }
3036 EXPORT_SYMBOL(udp_lib_setsockopt);
3037 
3038 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3039 		   unsigned int optlen)
3040 {
3041 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
3042 		return udp_lib_setsockopt(sk, level, optname,
3043 					  optval, optlen,
3044 					  udp_push_pending_frames);
3045 	return ip_setsockopt(sk, level, optname, optval, optlen);
3046 }
3047 
3048 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3049 		       char __user *optval, int __user *optlen)
3050 {
3051 	struct udp_sock *up = udp_sk(sk);
3052 	int val, len;
3053 
3054 	if (get_user(len, optlen))
3055 		return -EFAULT;
3056 
3057 	if (len < 0)
3058 		return -EINVAL;
3059 
3060 	len = min_t(unsigned int, len, sizeof(int));
3061 
3062 	switch (optname) {
3063 	case UDP_CORK:
3064 		val = udp_test_bit(CORK, sk);
3065 		break;
3066 
3067 	case UDP_ENCAP:
3068 		val = READ_ONCE(up->encap_type);
3069 		break;
3070 
3071 	case UDP_NO_CHECK6_TX:
3072 		val = udp_get_no_check6_tx(sk);
3073 		break;
3074 
3075 	case UDP_NO_CHECK6_RX:
3076 		val = udp_get_no_check6_rx(sk);
3077 		break;
3078 
3079 	case UDP_SEGMENT:
3080 		val = READ_ONCE(up->gso_size);
3081 		break;
3082 
3083 	case UDP_GRO:
3084 		val = udp_test_bit(GRO_ENABLED, sk);
3085 		break;
3086 
3087 	/* The following two cannot be changed on UDP sockets, the return is
3088 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
3089 	case UDPLITE_SEND_CSCOV:
3090 		val = READ_ONCE(up->pcslen);
3091 		break;
3092 
3093 	case UDPLITE_RECV_CSCOV:
3094 		val = READ_ONCE(up->pcrlen);
3095 		break;
3096 
3097 	default:
3098 		return -ENOPROTOOPT;
3099 	}
3100 
3101 	if (put_user(len, optlen))
3102 		return -EFAULT;
3103 	if (copy_to_user(optval, &val, len))
3104 		return -EFAULT;
3105 	return 0;
3106 }
3107 EXPORT_SYMBOL(udp_lib_getsockopt);
3108 
3109 int udp_getsockopt(struct sock *sk, int level, int optname,
3110 		   char __user *optval, int __user *optlen)
3111 {
3112 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
3113 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3114 	return ip_getsockopt(sk, level, optname, optval, optlen);
3115 }
3116 
3117 /**
3118  * 	udp_poll - wait for a UDP event.
3119  *	@file: - file struct
3120  *	@sock: - socket
3121  *	@wait: - poll table
3122  *
3123  *	This is same as datagram poll, except for the special case of
3124  *	blocking sockets. If application is using a blocking fd
3125  *	and a packet with checksum error is in the queue;
3126  *	then it could get return from select indicating data available
3127  *	but then block when reading it. Add special case code
3128  *	to work around these arguably broken applications.
3129  */
3130 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3131 {
3132 	__poll_t mask = datagram_poll(file, sock, wait);
3133 	struct sock *sk = sock->sk;
3134 
3135 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3136 		mask |= EPOLLIN | EPOLLRDNORM;
3137 
3138 	/* Check for false positives due to checksum errors */
3139 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3140 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3141 		mask &= ~(EPOLLIN | EPOLLRDNORM);
3142 
3143 	/* psock ingress_msg queue should not contain any bad checksum frames */
3144 	if (sk_is_readable(sk))
3145 		mask |= EPOLLIN | EPOLLRDNORM;
3146 	return mask;
3147 
3148 }
3149 EXPORT_SYMBOL(udp_poll);
3150 
3151 int udp_abort(struct sock *sk, int err)
3152 {
3153 	if (!has_current_bpf_ctx())
3154 		lock_sock(sk);
3155 
3156 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3157 	 * with close()
3158 	 */
3159 	if (sock_flag(sk, SOCK_DEAD))
3160 		goto out;
3161 
3162 	sk->sk_err = err;
3163 	sk_error_report(sk);
3164 	__udp_disconnect(sk, 0);
3165 
3166 out:
3167 	if (!has_current_bpf_ctx())
3168 		release_sock(sk);
3169 
3170 	return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(udp_abort);
3173 
3174 struct proto udp_prot = {
3175 	.name			= "UDP",
3176 	.owner			= THIS_MODULE,
3177 	.close			= udp_lib_close,
3178 	.pre_connect		= udp_pre_connect,
3179 	.connect		= udp_connect,
3180 	.disconnect		= udp_disconnect,
3181 	.ioctl			= udp_ioctl,
3182 	.init			= udp_init_sock,
3183 	.destroy		= udp_destroy_sock,
3184 	.setsockopt		= udp_setsockopt,
3185 	.getsockopt		= udp_getsockopt,
3186 	.sendmsg		= udp_sendmsg,
3187 	.recvmsg		= udp_recvmsg,
3188 	.splice_eof		= udp_splice_eof,
3189 	.release_cb		= ip4_datagram_release_cb,
3190 	.hash			= udp_lib_hash,
3191 	.unhash			= udp_lib_unhash,
3192 	.rehash			= udp_v4_rehash,
3193 	.get_port		= udp_v4_get_port,
3194 	.put_port		= udp_lib_unhash,
3195 #ifdef CONFIG_BPF_SYSCALL
3196 	.psock_update_sk_prot	= udp_bpf_update_proto,
3197 #endif
3198 	.memory_allocated	= &udp_memory_allocated,
3199 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3200 
3201 	.sysctl_mem		= sysctl_udp_mem,
3202 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3203 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3204 	.obj_size		= sizeof(struct udp_sock),
3205 	.h.udp_table		= NULL,
3206 	.diag_destroy		= udp_abort,
3207 };
3208 EXPORT_SYMBOL(udp_prot);
3209 
3210 /* ------------------------------------------------------------------------ */
3211 #ifdef CONFIG_PROC_FS
3212 
3213 static unsigned short seq_file_family(const struct seq_file *seq);
3214 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3215 {
3216 	unsigned short family = seq_file_family(seq);
3217 
3218 	/* AF_UNSPEC is used as a match all */
3219 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3220 		net_eq(sock_net(sk), seq_file_net(seq)));
3221 }
3222 
3223 #ifdef CONFIG_BPF_SYSCALL
3224 static const struct seq_operations bpf_iter_udp_seq_ops;
3225 #endif
3226 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3227 					   struct net *net)
3228 {
3229 	const struct udp_seq_afinfo *afinfo;
3230 
3231 #ifdef CONFIG_BPF_SYSCALL
3232 	if (seq->op == &bpf_iter_udp_seq_ops)
3233 		return net->ipv4.udp_table;
3234 #endif
3235 
3236 	afinfo = pde_data(file_inode(seq->file));
3237 	return afinfo->udp_table ? : net->ipv4.udp_table;
3238 }
3239 
3240 static struct sock *udp_get_first(struct seq_file *seq, int start)
3241 {
3242 	struct udp_iter_state *state = seq->private;
3243 	struct net *net = seq_file_net(seq);
3244 	struct udp_table *udptable;
3245 	struct sock *sk;
3246 
3247 	udptable = udp_get_table_seq(seq, net);
3248 
3249 	for (state->bucket = start; state->bucket <= udptable->mask;
3250 	     ++state->bucket) {
3251 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3252 
3253 		if (hlist_empty(&hslot->head))
3254 			continue;
3255 
3256 		spin_lock_bh(&hslot->lock);
3257 		sk_for_each(sk, &hslot->head) {
3258 			if (seq_sk_match(seq, sk))
3259 				goto found;
3260 		}
3261 		spin_unlock_bh(&hslot->lock);
3262 	}
3263 	sk = NULL;
3264 found:
3265 	return sk;
3266 }
3267 
3268 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3269 {
3270 	struct udp_iter_state *state = seq->private;
3271 	struct net *net = seq_file_net(seq);
3272 	struct udp_table *udptable;
3273 
3274 	do {
3275 		sk = sk_next(sk);
3276 	} while (sk && !seq_sk_match(seq, sk));
3277 
3278 	if (!sk) {
3279 		udptable = udp_get_table_seq(seq, net);
3280 
3281 		if (state->bucket <= udptable->mask)
3282 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3283 
3284 		return udp_get_first(seq, state->bucket + 1);
3285 	}
3286 	return sk;
3287 }
3288 
3289 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3290 {
3291 	struct sock *sk = udp_get_first(seq, 0);
3292 
3293 	if (sk)
3294 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3295 			--pos;
3296 	return pos ? NULL : sk;
3297 }
3298 
3299 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3300 {
3301 	struct udp_iter_state *state = seq->private;
3302 	state->bucket = MAX_UDP_PORTS;
3303 
3304 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3305 }
3306 EXPORT_SYMBOL(udp_seq_start);
3307 
3308 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3309 {
3310 	struct sock *sk;
3311 
3312 	if (v == SEQ_START_TOKEN)
3313 		sk = udp_get_idx(seq, 0);
3314 	else
3315 		sk = udp_get_next(seq, v);
3316 
3317 	++*pos;
3318 	return sk;
3319 }
3320 EXPORT_SYMBOL(udp_seq_next);
3321 
3322 void udp_seq_stop(struct seq_file *seq, void *v)
3323 {
3324 	struct udp_iter_state *state = seq->private;
3325 	struct udp_table *udptable;
3326 
3327 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3328 
3329 	if (state->bucket <= udptable->mask)
3330 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3331 }
3332 EXPORT_SYMBOL(udp_seq_stop);
3333 
3334 /* ------------------------------------------------------------------------ */
3335 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3336 		int bucket)
3337 {
3338 	struct inet_sock *inet = inet_sk(sp);
3339 	__be32 dest = inet->inet_daddr;
3340 	__be32 src  = inet->inet_rcv_saddr;
3341 	__u16 destp	  = ntohs(inet->inet_dport);
3342 	__u16 srcp	  = ntohs(inet->inet_sport);
3343 
3344 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3345 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3346 		bucket, src, srcp, dest, destp, sp->sk_state,
3347 		sk_wmem_alloc_get(sp),
3348 		udp_rqueue_get(sp),
3349 		0, 0L, 0,
3350 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3351 		0, sock_i_ino(sp),
3352 		refcount_read(&sp->sk_refcnt), sp,
3353 		atomic_read(&sp->sk_drops));
3354 }
3355 
3356 int udp4_seq_show(struct seq_file *seq, void *v)
3357 {
3358 	seq_setwidth(seq, 127);
3359 	if (v == SEQ_START_TOKEN)
3360 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3361 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3362 			   "inode ref pointer drops");
3363 	else {
3364 		struct udp_iter_state *state = seq->private;
3365 
3366 		udp4_format_sock(v, seq, state->bucket);
3367 	}
3368 	seq_pad(seq, '\n');
3369 	return 0;
3370 }
3371 
3372 #ifdef CONFIG_BPF_SYSCALL
3373 struct bpf_iter__udp {
3374 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3375 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3376 	uid_t uid __aligned(8);
3377 	int bucket __aligned(8);
3378 };
3379 
3380 struct bpf_udp_iter_state {
3381 	struct udp_iter_state state;
3382 	unsigned int cur_sk;
3383 	unsigned int end_sk;
3384 	unsigned int max_sk;
3385 	int offset;
3386 	struct sock **batch;
3387 	bool st_bucket_done;
3388 };
3389 
3390 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3391 				      unsigned int new_batch_sz);
3392 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3393 {
3394 	struct bpf_udp_iter_state *iter = seq->private;
3395 	struct udp_iter_state *state = &iter->state;
3396 	struct net *net = seq_file_net(seq);
3397 	int resume_bucket, resume_offset;
3398 	struct udp_table *udptable;
3399 	unsigned int batch_sks = 0;
3400 	bool resized = false;
3401 	struct sock *sk;
3402 
3403 	resume_bucket = state->bucket;
3404 	resume_offset = iter->offset;
3405 
3406 	/* The current batch is done, so advance the bucket. */
3407 	if (iter->st_bucket_done)
3408 		state->bucket++;
3409 
3410 	udptable = udp_get_table_seq(seq, net);
3411 
3412 again:
3413 	/* New batch for the next bucket.
3414 	 * Iterate over the hash table to find a bucket with sockets matching
3415 	 * the iterator attributes, and return the first matching socket from
3416 	 * the bucket. The remaining matched sockets from the bucket are batched
3417 	 * before releasing the bucket lock. This allows BPF programs that are
3418 	 * called in seq_show to acquire the bucket lock if needed.
3419 	 */
3420 	iter->cur_sk = 0;
3421 	iter->end_sk = 0;
3422 	iter->st_bucket_done = false;
3423 	batch_sks = 0;
3424 
3425 	for (; state->bucket <= udptable->mask; state->bucket++) {
3426 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3427 
3428 		if (hlist_empty(&hslot2->head))
3429 			continue;
3430 
3431 		iter->offset = 0;
3432 		spin_lock_bh(&hslot2->lock);
3433 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3434 			if (seq_sk_match(seq, sk)) {
3435 				/* Resume from the last iterated socket at the
3436 				 * offset in the bucket before iterator was stopped.
3437 				 */
3438 				if (state->bucket == resume_bucket &&
3439 				    iter->offset < resume_offset) {
3440 					++iter->offset;
3441 					continue;
3442 				}
3443 				if (iter->end_sk < iter->max_sk) {
3444 					sock_hold(sk);
3445 					iter->batch[iter->end_sk++] = sk;
3446 				}
3447 				batch_sks++;
3448 			}
3449 		}
3450 		spin_unlock_bh(&hslot2->lock);
3451 
3452 		if (iter->end_sk)
3453 			break;
3454 	}
3455 
3456 	/* All done: no batch made. */
3457 	if (!iter->end_sk)
3458 		return NULL;
3459 
3460 	if (iter->end_sk == batch_sks) {
3461 		/* Batching is done for the current bucket; return the first
3462 		 * socket to be iterated from the batch.
3463 		 */
3464 		iter->st_bucket_done = true;
3465 		goto done;
3466 	}
3467 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3468 		resized = true;
3469 		/* After allocating a larger batch, retry one more time to grab
3470 		 * the whole bucket.
3471 		 */
3472 		goto again;
3473 	}
3474 done:
3475 	return iter->batch[0];
3476 }
3477 
3478 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3479 {
3480 	struct bpf_udp_iter_state *iter = seq->private;
3481 	struct sock *sk;
3482 
3483 	/* Whenever seq_next() is called, the iter->cur_sk is
3484 	 * done with seq_show(), so unref the iter->cur_sk.
3485 	 */
3486 	if (iter->cur_sk < iter->end_sk) {
3487 		sock_put(iter->batch[iter->cur_sk++]);
3488 		++iter->offset;
3489 	}
3490 
3491 	/* After updating iter->cur_sk, check if there are more sockets
3492 	 * available in the current bucket batch.
3493 	 */
3494 	if (iter->cur_sk < iter->end_sk)
3495 		sk = iter->batch[iter->cur_sk];
3496 	else
3497 		/* Prepare a new batch. */
3498 		sk = bpf_iter_udp_batch(seq);
3499 
3500 	++*pos;
3501 	return sk;
3502 }
3503 
3504 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3505 {
3506 	/* bpf iter does not support lseek, so it always
3507 	 * continue from where it was stop()-ped.
3508 	 */
3509 	if (*pos)
3510 		return bpf_iter_udp_batch(seq);
3511 
3512 	return SEQ_START_TOKEN;
3513 }
3514 
3515 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3516 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3517 {
3518 	struct bpf_iter__udp ctx;
3519 
3520 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3521 	ctx.meta = meta;
3522 	ctx.udp_sk = udp_sk;
3523 	ctx.uid = uid;
3524 	ctx.bucket = bucket;
3525 	return bpf_iter_run_prog(prog, &ctx);
3526 }
3527 
3528 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3529 {
3530 	struct udp_iter_state *state = seq->private;
3531 	struct bpf_iter_meta meta;
3532 	struct bpf_prog *prog;
3533 	struct sock *sk = v;
3534 	uid_t uid;
3535 	int ret;
3536 
3537 	if (v == SEQ_START_TOKEN)
3538 		return 0;
3539 
3540 	lock_sock(sk);
3541 
3542 	if (unlikely(sk_unhashed(sk))) {
3543 		ret = SEQ_SKIP;
3544 		goto unlock;
3545 	}
3546 
3547 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3548 	meta.seq = seq;
3549 	prog = bpf_iter_get_info(&meta, false);
3550 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3551 
3552 unlock:
3553 	release_sock(sk);
3554 	return ret;
3555 }
3556 
3557 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3558 {
3559 	while (iter->cur_sk < iter->end_sk)
3560 		sock_put(iter->batch[iter->cur_sk++]);
3561 }
3562 
3563 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3564 {
3565 	struct bpf_udp_iter_state *iter = seq->private;
3566 	struct bpf_iter_meta meta;
3567 	struct bpf_prog *prog;
3568 
3569 	if (!v) {
3570 		meta.seq = seq;
3571 		prog = bpf_iter_get_info(&meta, true);
3572 		if (prog)
3573 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3574 	}
3575 
3576 	if (iter->cur_sk < iter->end_sk) {
3577 		bpf_iter_udp_put_batch(iter);
3578 		iter->st_bucket_done = false;
3579 	}
3580 }
3581 
3582 static const struct seq_operations bpf_iter_udp_seq_ops = {
3583 	.start		= bpf_iter_udp_seq_start,
3584 	.next		= bpf_iter_udp_seq_next,
3585 	.stop		= bpf_iter_udp_seq_stop,
3586 	.show		= bpf_iter_udp_seq_show,
3587 };
3588 #endif
3589 
3590 static unsigned short seq_file_family(const struct seq_file *seq)
3591 {
3592 	const struct udp_seq_afinfo *afinfo;
3593 
3594 #ifdef CONFIG_BPF_SYSCALL
3595 	/* BPF iterator: bpf programs to filter sockets. */
3596 	if (seq->op == &bpf_iter_udp_seq_ops)
3597 		return AF_UNSPEC;
3598 #endif
3599 
3600 	/* Proc fs iterator */
3601 	afinfo = pde_data(file_inode(seq->file));
3602 	return afinfo->family;
3603 }
3604 
3605 const struct seq_operations udp_seq_ops = {
3606 	.start		= udp_seq_start,
3607 	.next		= udp_seq_next,
3608 	.stop		= udp_seq_stop,
3609 	.show		= udp4_seq_show,
3610 };
3611 EXPORT_SYMBOL(udp_seq_ops);
3612 
3613 static struct udp_seq_afinfo udp4_seq_afinfo = {
3614 	.family		= AF_INET,
3615 	.udp_table	= NULL,
3616 };
3617 
3618 static int __net_init udp4_proc_init_net(struct net *net)
3619 {
3620 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3621 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3622 		return -ENOMEM;
3623 	return 0;
3624 }
3625 
3626 static void __net_exit udp4_proc_exit_net(struct net *net)
3627 {
3628 	remove_proc_entry("udp", net->proc_net);
3629 }
3630 
3631 static struct pernet_operations udp4_net_ops = {
3632 	.init = udp4_proc_init_net,
3633 	.exit = udp4_proc_exit_net,
3634 };
3635 
3636 int __init udp4_proc_init(void)
3637 {
3638 	return register_pernet_subsys(&udp4_net_ops);
3639 }
3640 
3641 void udp4_proc_exit(void)
3642 {
3643 	unregister_pernet_subsys(&udp4_net_ops);
3644 }
3645 #endif /* CONFIG_PROC_FS */
3646 
3647 static __initdata unsigned long uhash_entries;
3648 static int __init set_uhash_entries(char *str)
3649 {
3650 	ssize_t ret;
3651 
3652 	if (!str)
3653 		return 0;
3654 
3655 	ret = kstrtoul(str, 0, &uhash_entries);
3656 	if (ret)
3657 		return 0;
3658 
3659 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3660 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3661 	return 1;
3662 }
3663 __setup("uhash_entries=", set_uhash_entries);
3664 
3665 void __init udp_table_init(struct udp_table *table, const char *name)
3666 {
3667 	unsigned int i, slot_size;
3668 
3669 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3670 		    udp_hash4_slot_size();
3671 	table->hash = alloc_large_system_hash(name,
3672 					      slot_size,
3673 					      uhash_entries,
3674 					      21, /* one slot per 2 MB */
3675 					      0,
3676 					      &table->log,
3677 					      &table->mask,
3678 					      UDP_HTABLE_SIZE_MIN,
3679 					      UDP_HTABLE_SIZE_MAX);
3680 
3681 	table->hash2 = (void *)(table->hash + (table->mask + 1));
3682 	for (i = 0; i <= table->mask; i++) {
3683 		INIT_HLIST_HEAD(&table->hash[i].head);
3684 		table->hash[i].count = 0;
3685 		spin_lock_init(&table->hash[i].lock);
3686 	}
3687 	for (i = 0; i <= table->mask; i++) {
3688 		INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3689 		table->hash2[i].hslot.count = 0;
3690 		spin_lock_init(&table->hash2[i].hslot.lock);
3691 	}
3692 	udp_table_hash4_init(table);
3693 }
3694 
3695 u32 udp_flow_hashrnd(void)
3696 {
3697 	static u32 hashrnd __read_mostly;
3698 
3699 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3700 
3701 	return hashrnd;
3702 }
3703 EXPORT_SYMBOL(udp_flow_hashrnd);
3704 
3705 static void __net_init udp_sysctl_init(struct net *net)
3706 {
3707 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3708 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3709 
3710 #ifdef CONFIG_NET_L3_MASTER_DEV
3711 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3712 #endif
3713 }
3714 
3715 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3716 {
3717 	struct udp_table *udptable;
3718 	unsigned int slot_size;
3719 	int i;
3720 
3721 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3722 	if (!udptable)
3723 		goto out;
3724 
3725 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3726 		    udp_hash4_slot_size();
3727 	udptable->hash = vmalloc_huge(hash_entries * slot_size,
3728 				      GFP_KERNEL_ACCOUNT);
3729 	if (!udptable->hash)
3730 		goto free_table;
3731 
3732 	udptable->hash2 = (void *)(udptable->hash + hash_entries);
3733 	udptable->mask = hash_entries - 1;
3734 	udptable->log = ilog2(hash_entries);
3735 
3736 	for (i = 0; i < hash_entries; i++) {
3737 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3738 		udptable->hash[i].count = 0;
3739 		spin_lock_init(&udptable->hash[i].lock);
3740 
3741 		INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3742 		udptable->hash2[i].hslot.count = 0;
3743 		spin_lock_init(&udptable->hash2[i].hslot.lock);
3744 	}
3745 	udp_table_hash4_init(udptable);
3746 
3747 	return udptable;
3748 
3749 free_table:
3750 	kfree(udptable);
3751 out:
3752 	return NULL;
3753 }
3754 
3755 static void __net_exit udp_pernet_table_free(struct net *net)
3756 {
3757 	struct udp_table *udptable = net->ipv4.udp_table;
3758 
3759 	if (udptable == &udp_table)
3760 		return;
3761 
3762 	kvfree(udptable->hash);
3763 	kfree(udptable);
3764 }
3765 
3766 static void __net_init udp_set_table(struct net *net)
3767 {
3768 	struct udp_table *udptable;
3769 	unsigned int hash_entries;
3770 	struct net *old_net;
3771 
3772 	if (net_eq(net, &init_net))
3773 		goto fallback;
3774 
3775 	old_net = current->nsproxy->net_ns;
3776 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3777 	if (!hash_entries)
3778 		goto fallback;
3779 
3780 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3781 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3782 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3783 	else
3784 		hash_entries = roundup_pow_of_two(hash_entries);
3785 
3786 	udptable = udp_pernet_table_alloc(hash_entries);
3787 	if (udptable) {
3788 		net->ipv4.udp_table = udptable;
3789 	} else {
3790 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3791 			"for a netns, fallback to the global one\n",
3792 			hash_entries);
3793 fallback:
3794 		net->ipv4.udp_table = &udp_table;
3795 	}
3796 }
3797 
3798 static int __net_init udp_pernet_init(struct net *net)
3799 {
3800 	udp_sysctl_init(net);
3801 	udp_set_table(net);
3802 
3803 	return 0;
3804 }
3805 
3806 static void __net_exit udp_pernet_exit(struct net *net)
3807 {
3808 	udp_pernet_table_free(net);
3809 }
3810 
3811 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3812 	.init	= udp_pernet_init,
3813 	.exit	= udp_pernet_exit,
3814 };
3815 
3816 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3817 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3818 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3819 
3820 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3821 				      unsigned int new_batch_sz)
3822 {
3823 	struct sock **new_batch;
3824 
3825 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3826 				   GFP_USER | __GFP_NOWARN);
3827 	if (!new_batch)
3828 		return -ENOMEM;
3829 
3830 	bpf_iter_udp_put_batch(iter);
3831 	kvfree(iter->batch);
3832 	iter->batch = new_batch;
3833 	iter->max_sk = new_batch_sz;
3834 
3835 	return 0;
3836 }
3837 
3838 #define INIT_BATCH_SZ 16
3839 
3840 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3841 {
3842 	struct bpf_udp_iter_state *iter = priv_data;
3843 	int ret;
3844 
3845 	ret = bpf_iter_init_seq_net(priv_data, aux);
3846 	if (ret)
3847 		return ret;
3848 
3849 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3850 	if (ret)
3851 		bpf_iter_fini_seq_net(priv_data);
3852 
3853 	return ret;
3854 }
3855 
3856 static void bpf_iter_fini_udp(void *priv_data)
3857 {
3858 	struct bpf_udp_iter_state *iter = priv_data;
3859 
3860 	bpf_iter_fini_seq_net(priv_data);
3861 	kvfree(iter->batch);
3862 }
3863 
3864 static const struct bpf_iter_seq_info udp_seq_info = {
3865 	.seq_ops		= &bpf_iter_udp_seq_ops,
3866 	.init_seq_private	= bpf_iter_init_udp,
3867 	.fini_seq_private	= bpf_iter_fini_udp,
3868 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3869 };
3870 
3871 static struct bpf_iter_reg udp_reg_info = {
3872 	.target			= "udp",
3873 	.ctx_arg_info_size	= 1,
3874 	.ctx_arg_info		= {
3875 		{ offsetof(struct bpf_iter__udp, udp_sk),
3876 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3877 	},
3878 	.seq_info		= &udp_seq_info,
3879 };
3880 
3881 static void __init bpf_iter_register(void)
3882 {
3883 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3884 	if (bpf_iter_reg_target(&udp_reg_info))
3885 		pr_warn("Warning: could not register bpf iterator udp\n");
3886 }
3887 #endif
3888 
3889 void __init udp_init(void)
3890 {
3891 	unsigned long limit;
3892 	unsigned int i;
3893 
3894 	udp_table_init(&udp_table, "UDP");
3895 	limit = nr_free_buffer_pages() / 8;
3896 	limit = max(limit, 128UL);
3897 	sysctl_udp_mem[0] = limit / 4 * 3;
3898 	sysctl_udp_mem[1] = limit;
3899 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3900 
3901 	/* 16 spinlocks per cpu */
3902 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3903 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3904 				GFP_KERNEL);
3905 	if (!udp_busylocks)
3906 		panic("UDP: failed to alloc udp_busylocks\n");
3907 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3908 		spin_lock_init(udp_busylocks + i);
3909 
3910 	if (register_pernet_subsys(&udp_sysctl_ops))
3911 		panic("UDP: failed to init sysctl parameters.\n");
3912 
3913 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3914 	bpf_iter_register();
3915 #endif
3916 }
3917