xref: /linux/net/ipv4/udp.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
415 
416 	return __inet_ehashfn(laddr, lport, faddr, fport,
417 			      udp_ehash_secret + net_hash_mix(net));
418 }
419 
420 /* called with rcu_read_lock() */
421 static struct sock *udp4_lib_lookup2(struct net *net,
422 				     __be32 saddr, __be16 sport,
423 				     __be32 daddr, unsigned int hnum,
424 				     int dif, int sdif,
425 				     struct udp_hslot *hslot2,
426 				     struct sk_buff *skb)
427 {
428 	struct sock *sk, *result;
429 	int score, badness;
430 
431 	result = NULL;
432 	badness = 0;
433 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
434 		score = compute_score(sk, net, saddr, sport,
435 				      daddr, hnum, dif, sdif);
436 		if (score > badness) {
437 			badness = score;
438 
439 			if (sk->sk_state == TCP_ESTABLISHED) {
440 				result = sk;
441 				continue;
442 			}
443 
444 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
445 						       saddr, sport, daddr, hnum, udp_ehashfn);
446 			if (!result) {
447 				result = sk;
448 				continue;
449 			}
450 
451 			/* Fall back to scoring if group has connections */
452 			if (!reuseport_has_conns(sk))
453 				return result;
454 
455 			/* Reuseport logic returned an error, keep original score. */
456 			if (IS_ERR(result))
457 				continue;
458 
459 			badness = compute_score(result, net, saddr, sport,
460 						daddr, hnum, dif, sdif);
461 
462 		}
463 	}
464 	return result;
465 }
466 
467 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
468  * harder than this. -DaveM
469  */
470 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
471 		__be16 sport, __be32 daddr, __be16 dport, int dif,
472 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
473 {
474 	unsigned short hnum = ntohs(dport);
475 	unsigned int hash2, slot2;
476 	struct udp_hslot *hslot2;
477 	struct sock *result, *sk;
478 
479 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
480 	slot2 = hash2 & udptable->mask;
481 	hslot2 = &udptable->hash2[slot2];
482 
483 	/* Lookup connected or non-wildcard socket */
484 	result = udp4_lib_lookup2(net, saddr, sport,
485 				  daddr, hnum, dif, sdif,
486 				  hslot2, skb);
487 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
488 		goto done;
489 
490 	/* Lookup redirect from BPF */
491 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
492 	    udptable == net->ipv4.udp_table) {
493 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
494 					       saddr, sport, daddr, hnum, dif,
495 					       udp_ehashfn);
496 		if (sk) {
497 			result = sk;
498 			goto done;
499 		}
500 	}
501 
502 	/* Got non-wildcard socket or error on first lookup */
503 	if (result)
504 		goto done;
505 
506 	/* Lookup wildcard sockets */
507 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
508 	slot2 = hash2 & udptable->mask;
509 	hslot2 = &udptable->hash2[slot2];
510 
511 	result = udp4_lib_lookup2(net, saddr, sport,
512 				  htonl(INADDR_ANY), hnum, dif, sdif,
513 				  hslot2, skb);
514 done:
515 	if (IS_ERR(result))
516 		return NULL;
517 	return result;
518 }
519 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
520 
521 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
522 						 __be16 sport, __be16 dport,
523 						 struct udp_table *udptable)
524 {
525 	const struct iphdr *iph = ip_hdr(skb);
526 
527 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
528 				 iph->daddr, dport, inet_iif(skb),
529 				 inet_sdif(skb), udptable, skb);
530 }
531 
532 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
533 				 __be16 sport, __be16 dport)
534 {
535 	const struct iphdr *iph = ip_hdr(skb);
536 	struct net *net = dev_net(skb->dev);
537 	int iif, sdif;
538 
539 	inet_get_iif_sdif(skb, &iif, &sdif);
540 
541 	return __udp4_lib_lookup(net, iph->saddr, sport,
542 				 iph->daddr, dport, iif,
543 				 sdif, net->ipv4.udp_table, NULL);
544 }
545 
546 /* Must be called under rcu_read_lock().
547  * Does increment socket refcount.
548  */
549 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
551 			     __be32 daddr, __be16 dport, int dif)
552 {
553 	struct sock *sk;
554 
555 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
556 			       dif, 0, net->ipv4.udp_table, NULL);
557 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
558 		sk = NULL;
559 	return sk;
560 }
561 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
562 #endif
563 
564 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
565 				       __be16 loc_port, __be32 loc_addr,
566 				       __be16 rmt_port, __be32 rmt_addr,
567 				       int dif, int sdif, unsigned short hnum)
568 {
569 	const struct inet_sock *inet = inet_sk(sk);
570 
571 	if (!net_eq(sock_net(sk), net) ||
572 	    udp_sk(sk)->udp_port_hash != hnum ||
573 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
574 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
575 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
576 	    ipv6_only_sock(sk) ||
577 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
578 		return false;
579 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
580 		return false;
581 	return true;
582 }
583 
584 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
585 EXPORT_SYMBOL(udp_encap_needed_key);
586 
587 #if IS_ENABLED(CONFIG_IPV6)
588 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
589 EXPORT_SYMBOL(udpv6_encap_needed_key);
590 #endif
591 
592 void udp_encap_enable(void)
593 {
594 	static_branch_inc(&udp_encap_needed_key);
595 }
596 EXPORT_SYMBOL(udp_encap_enable);
597 
598 void udp_encap_disable(void)
599 {
600 	static_branch_dec(&udp_encap_needed_key);
601 }
602 EXPORT_SYMBOL(udp_encap_disable);
603 
604 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
605  * through error handlers in encapsulations looking for a match.
606  */
607 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
608 {
609 	int i;
610 
611 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
612 		int (*handler)(struct sk_buff *skb, u32 info);
613 		const struct ip_tunnel_encap_ops *encap;
614 
615 		encap = rcu_dereference(iptun_encaps[i]);
616 		if (!encap)
617 			continue;
618 		handler = encap->err_handler;
619 		if (handler && !handler(skb, info))
620 			return 0;
621 	}
622 
623 	return -ENOENT;
624 }
625 
626 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
627  * reversing source and destination port: this will match tunnels that force the
628  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
629  * lwtunnels might actually break this assumption by being configured with
630  * different destination ports on endpoints, in this case we won't be able to
631  * trace ICMP messages back to them.
632  *
633  * If this doesn't match any socket, probe tunnels with arbitrary destination
634  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
635  * we've sent packets to won't necessarily match the local destination port.
636  *
637  * Then ask the tunnel implementation to match the error against a valid
638  * association.
639  *
640  * Return an error if we can't find a match, the socket if we need further
641  * processing, zero otherwise.
642  */
643 static struct sock *__udp4_lib_err_encap(struct net *net,
644 					 const struct iphdr *iph,
645 					 struct udphdr *uh,
646 					 struct udp_table *udptable,
647 					 struct sock *sk,
648 					 struct sk_buff *skb, u32 info)
649 {
650 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
651 	int network_offset, transport_offset;
652 	struct udp_sock *up;
653 
654 	network_offset = skb_network_offset(skb);
655 	transport_offset = skb_transport_offset(skb);
656 
657 	/* Network header needs to point to the outer IPv4 header inside ICMP */
658 	skb_reset_network_header(skb);
659 
660 	/* Transport header needs to point to the UDP header */
661 	skb_set_transport_header(skb, iph->ihl << 2);
662 
663 	if (sk) {
664 		up = udp_sk(sk);
665 
666 		lookup = READ_ONCE(up->encap_err_lookup);
667 		if (lookup && lookup(sk, skb))
668 			sk = NULL;
669 
670 		goto out;
671 	}
672 
673 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
674 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
675 			       udptable, NULL);
676 	if (sk) {
677 		up = udp_sk(sk);
678 
679 		lookup = READ_ONCE(up->encap_err_lookup);
680 		if (!lookup || lookup(sk, skb))
681 			sk = NULL;
682 	}
683 
684 out:
685 	if (!sk)
686 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
687 
688 	skb_set_transport_header(skb, transport_offset);
689 	skb_set_network_header(skb, network_offset);
690 
691 	return sk;
692 }
693 
694 /*
695  * This routine is called by the ICMP module when it gets some
696  * sort of error condition.  If err < 0 then the socket should
697  * be closed and the error returned to the user.  If err > 0
698  * it's just the icmp type << 8 | icmp code.
699  * Header points to the ip header of the error packet. We move
700  * on past this. Then (as it used to claim before adjustment)
701  * header points to the first 8 bytes of the udp header.  We need
702  * to find the appropriate port.
703  */
704 
705 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
706 {
707 	struct inet_sock *inet;
708 	const struct iphdr *iph = (const struct iphdr *)skb->data;
709 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
710 	const int type = icmp_hdr(skb)->type;
711 	const int code = icmp_hdr(skb)->code;
712 	bool tunnel = false;
713 	struct sock *sk;
714 	int harderr;
715 	int err;
716 	struct net *net = dev_net(skb->dev);
717 
718 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
719 			       iph->saddr, uh->source, skb->dev->ifindex,
720 			       inet_sdif(skb), udptable, NULL);
721 
722 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
723 		/* No socket for error: try tunnels before discarding */
724 		if (static_branch_unlikely(&udp_encap_needed_key)) {
725 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
726 						  info);
727 			if (!sk)
728 				return 0;
729 		} else
730 			sk = ERR_PTR(-ENOENT);
731 
732 		if (IS_ERR(sk)) {
733 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
734 			return PTR_ERR(sk);
735 		}
736 
737 		tunnel = true;
738 	}
739 
740 	err = 0;
741 	harderr = 0;
742 	inet = inet_sk(sk);
743 
744 	switch (type) {
745 	default:
746 	case ICMP_TIME_EXCEEDED:
747 		err = EHOSTUNREACH;
748 		break;
749 	case ICMP_SOURCE_QUENCH:
750 		goto out;
751 	case ICMP_PARAMETERPROB:
752 		err = EPROTO;
753 		harderr = 1;
754 		break;
755 	case ICMP_DEST_UNREACH:
756 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
757 			ipv4_sk_update_pmtu(skb, sk, info);
758 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
759 				err = EMSGSIZE;
760 				harderr = 1;
761 				break;
762 			}
763 			goto out;
764 		}
765 		err = EHOSTUNREACH;
766 		if (code <= NR_ICMP_UNREACH) {
767 			harderr = icmp_err_convert[code].fatal;
768 			err = icmp_err_convert[code].errno;
769 		}
770 		break;
771 	case ICMP_REDIRECT:
772 		ipv4_sk_redirect(skb, sk);
773 		goto out;
774 	}
775 
776 	/*
777 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
778 	 *	4.1.3.3.
779 	 */
780 	if (tunnel) {
781 		/* ...not for tunnels though: we don't have a sending socket */
782 		if (udp_sk(sk)->encap_err_rcv)
783 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
784 						  (u8 *)(uh+1));
785 		goto out;
786 	}
787 	if (!inet_test_bit(RECVERR, sk)) {
788 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
789 			goto out;
790 	} else
791 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
792 
793 	sk->sk_err = err;
794 	sk_error_report(sk);
795 out:
796 	return 0;
797 }
798 
799 int udp_err(struct sk_buff *skb, u32 info)
800 {
801 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
802 }
803 
804 /*
805  * Throw away all pending data and cancel the corking. Socket is locked.
806  */
807 void udp_flush_pending_frames(struct sock *sk)
808 {
809 	struct udp_sock *up = udp_sk(sk);
810 
811 	if (up->pending) {
812 		up->len = 0;
813 		WRITE_ONCE(up->pending, 0);
814 		ip_flush_pending_frames(sk);
815 	}
816 }
817 EXPORT_SYMBOL(udp_flush_pending_frames);
818 
819 /**
820  * 	udp4_hwcsum  -  handle outgoing HW checksumming
821  * 	@skb: 	sk_buff containing the filled-in UDP header
822  * 	        (checksum field must be zeroed out)
823  *	@src:	source IP address
824  *	@dst:	destination IP address
825  */
826 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
827 {
828 	struct udphdr *uh = udp_hdr(skb);
829 	int offset = skb_transport_offset(skb);
830 	int len = skb->len - offset;
831 	int hlen = len;
832 	__wsum csum = 0;
833 
834 	if (!skb_has_frag_list(skb)) {
835 		/*
836 		 * Only one fragment on the socket.
837 		 */
838 		skb->csum_start = skb_transport_header(skb) - skb->head;
839 		skb->csum_offset = offsetof(struct udphdr, check);
840 		uh->check = ~csum_tcpudp_magic(src, dst, len,
841 					       IPPROTO_UDP, 0);
842 	} else {
843 		struct sk_buff *frags;
844 
845 		/*
846 		 * HW-checksum won't work as there are two or more
847 		 * fragments on the socket so that all csums of sk_buffs
848 		 * should be together
849 		 */
850 		skb_walk_frags(skb, frags) {
851 			csum = csum_add(csum, frags->csum);
852 			hlen -= frags->len;
853 		}
854 
855 		csum = skb_checksum(skb, offset, hlen, csum);
856 		skb->ip_summed = CHECKSUM_NONE;
857 
858 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
859 		if (uh->check == 0)
860 			uh->check = CSUM_MANGLED_0;
861 	}
862 }
863 EXPORT_SYMBOL_GPL(udp4_hwcsum);
864 
865 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
866  * for the simple case like when setting the checksum for a UDP tunnel.
867  */
868 void udp_set_csum(bool nocheck, struct sk_buff *skb,
869 		  __be32 saddr, __be32 daddr, int len)
870 {
871 	struct udphdr *uh = udp_hdr(skb);
872 
873 	if (nocheck) {
874 		uh->check = 0;
875 	} else if (skb_is_gso(skb)) {
876 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
877 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
878 		uh->check = 0;
879 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
880 		if (uh->check == 0)
881 			uh->check = CSUM_MANGLED_0;
882 	} else {
883 		skb->ip_summed = CHECKSUM_PARTIAL;
884 		skb->csum_start = skb_transport_header(skb) - skb->head;
885 		skb->csum_offset = offsetof(struct udphdr, check);
886 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
887 	}
888 }
889 EXPORT_SYMBOL(udp_set_csum);
890 
891 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
892 			struct inet_cork *cork)
893 {
894 	struct sock *sk = skb->sk;
895 	struct inet_sock *inet = inet_sk(sk);
896 	struct udphdr *uh;
897 	int err;
898 	int is_udplite = IS_UDPLITE(sk);
899 	int offset = skb_transport_offset(skb);
900 	int len = skb->len - offset;
901 	int datalen = len - sizeof(*uh);
902 	__wsum csum = 0;
903 
904 	/*
905 	 * Create a UDP header
906 	 */
907 	uh = udp_hdr(skb);
908 	uh->source = inet->inet_sport;
909 	uh->dest = fl4->fl4_dport;
910 	uh->len = htons(len);
911 	uh->check = 0;
912 
913 	if (cork->gso_size) {
914 		const int hlen = skb_network_header_len(skb) +
915 				 sizeof(struct udphdr);
916 
917 		if (hlen + cork->gso_size > cork->fragsize) {
918 			kfree_skb(skb);
919 			return -EINVAL;
920 		}
921 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
922 			kfree_skb(skb);
923 			return -EINVAL;
924 		}
925 		if (sk->sk_no_check_tx) {
926 			kfree_skb(skb);
927 			return -EINVAL;
928 		}
929 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
930 		    dst_xfrm(skb_dst(skb))) {
931 			kfree_skb(skb);
932 			return -EIO;
933 		}
934 
935 		if (datalen > cork->gso_size) {
936 			skb_shinfo(skb)->gso_size = cork->gso_size;
937 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
938 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
939 								 cork->gso_size);
940 		}
941 		goto csum_partial;
942 	}
943 
944 	if (is_udplite)  				 /*     UDP-Lite      */
945 		csum = udplite_csum(skb);
946 
947 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
948 
949 		skb->ip_summed = CHECKSUM_NONE;
950 		goto send;
951 
952 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
953 csum_partial:
954 
955 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
956 		goto send;
957 
958 	} else
959 		csum = udp_csum(skb);
960 
961 	/* add protocol-dependent pseudo-header */
962 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
963 				      sk->sk_protocol, csum);
964 	if (uh->check == 0)
965 		uh->check = CSUM_MANGLED_0;
966 
967 send:
968 	err = ip_send_skb(sock_net(sk), skb);
969 	if (err) {
970 		if (err == -ENOBUFS &&
971 		    !inet_test_bit(RECVERR, sk)) {
972 			UDP_INC_STATS(sock_net(sk),
973 				      UDP_MIB_SNDBUFERRORS, is_udplite);
974 			err = 0;
975 		}
976 	} else
977 		UDP_INC_STATS(sock_net(sk),
978 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
979 	return err;
980 }
981 
982 /*
983  * Push out all pending data as one UDP datagram. Socket is locked.
984  */
985 int udp_push_pending_frames(struct sock *sk)
986 {
987 	struct udp_sock  *up = udp_sk(sk);
988 	struct inet_sock *inet = inet_sk(sk);
989 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
990 	struct sk_buff *skb;
991 	int err = 0;
992 
993 	skb = ip_finish_skb(sk, fl4);
994 	if (!skb)
995 		goto out;
996 
997 	err = udp_send_skb(skb, fl4, &inet->cork.base);
998 
999 out:
1000 	up->len = 0;
1001 	WRITE_ONCE(up->pending, 0);
1002 	return err;
1003 }
1004 EXPORT_SYMBOL(udp_push_pending_frames);
1005 
1006 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1007 {
1008 	switch (cmsg->cmsg_type) {
1009 	case UDP_SEGMENT:
1010 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1011 			return -EINVAL;
1012 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1013 		return 0;
1014 	default:
1015 		return -EINVAL;
1016 	}
1017 }
1018 
1019 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1020 {
1021 	struct cmsghdr *cmsg;
1022 	bool need_ip = false;
1023 	int err;
1024 
1025 	for_each_cmsghdr(cmsg, msg) {
1026 		if (!CMSG_OK(msg, cmsg))
1027 			return -EINVAL;
1028 
1029 		if (cmsg->cmsg_level != SOL_UDP) {
1030 			need_ip = true;
1031 			continue;
1032 		}
1033 
1034 		err = __udp_cmsg_send(cmsg, gso_size);
1035 		if (err)
1036 			return err;
1037 	}
1038 
1039 	return need_ip;
1040 }
1041 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1042 
1043 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1044 {
1045 	struct inet_sock *inet = inet_sk(sk);
1046 	struct udp_sock *up = udp_sk(sk);
1047 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1048 	struct flowi4 fl4_stack;
1049 	struct flowi4 *fl4;
1050 	int ulen = len;
1051 	struct ipcm_cookie ipc;
1052 	struct rtable *rt = NULL;
1053 	int free = 0;
1054 	int connected = 0;
1055 	__be32 daddr, faddr, saddr;
1056 	u8 tos, scope;
1057 	__be16 dport;
1058 	int err, is_udplite = IS_UDPLITE(sk);
1059 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1060 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1061 	struct sk_buff *skb;
1062 	struct ip_options_data opt_copy;
1063 	int uc_index;
1064 
1065 	if (len > 0xFFFF)
1066 		return -EMSGSIZE;
1067 
1068 	/*
1069 	 *	Check the flags.
1070 	 */
1071 
1072 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1073 		return -EOPNOTSUPP;
1074 
1075 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1076 
1077 	fl4 = &inet->cork.fl.u.ip4;
1078 	if (READ_ONCE(up->pending)) {
1079 		/*
1080 		 * There are pending frames.
1081 		 * The socket lock must be held while it's corked.
1082 		 */
1083 		lock_sock(sk);
1084 		if (likely(up->pending)) {
1085 			if (unlikely(up->pending != AF_INET)) {
1086 				release_sock(sk);
1087 				return -EINVAL;
1088 			}
1089 			goto do_append_data;
1090 		}
1091 		release_sock(sk);
1092 	}
1093 	ulen += sizeof(struct udphdr);
1094 
1095 	/*
1096 	 *	Get and verify the address.
1097 	 */
1098 	if (usin) {
1099 		if (msg->msg_namelen < sizeof(*usin))
1100 			return -EINVAL;
1101 		if (usin->sin_family != AF_INET) {
1102 			if (usin->sin_family != AF_UNSPEC)
1103 				return -EAFNOSUPPORT;
1104 		}
1105 
1106 		daddr = usin->sin_addr.s_addr;
1107 		dport = usin->sin_port;
1108 		if (dport == 0)
1109 			return -EINVAL;
1110 	} else {
1111 		if (sk->sk_state != TCP_ESTABLISHED)
1112 			return -EDESTADDRREQ;
1113 		daddr = inet->inet_daddr;
1114 		dport = inet->inet_dport;
1115 		/* Open fast path for connected socket.
1116 		   Route will not be used, if at least one option is set.
1117 		 */
1118 		connected = 1;
1119 	}
1120 
1121 	ipcm_init_sk(&ipc, inet);
1122 	ipc.gso_size = READ_ONCE(up->gso_size);
1123 
1124 	if (msg->msg_controllen) {
1125 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1126 		if (err > 0)
1127 			err = ip_cmsg_send(sk, msg, &ipc,
1128 					   sk->sk_family == AF_INET6);
1129 		if (unlikely(err < 0)) {
1130 			kfree(ipc.opt);
1131 			return err;
1132 		}
1133 		if (ipc.opt)
1134 			free = 1;
1135 		connected = 0;
1136 	}
1137 	if (!ipc.opt) {
1138 		struct ip_options_rcu *inet_opt;
1139 
1140 		rcu_read_lock();
1141 		inet_opt = rcu_dereference(inet->inet_opt);
1142 		if (inet_opt) {
1143 			memcpy(&opt_copy, inet_opt,
1144 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1145 			ipc.opt = &opt_copy.opt;
1146 		}
1147 		rcu_read_unlock();
1148 	}
1149 
1150 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1151 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1152 					    (struct sockaddr *)usin,
1153 					    &msg->msg_namelen,
1154 					    &ipc.addr);
1155 		if (err)
1156 			goto out_free;
1157 		if (usin) {
1158 			if (usin->sin_port == 0) {
1159 				/* BPF program set invalid port. Reject it. */
1160 				err = -EINVAL;
1161 				goto out_free;
1162 			}
1163 			daddr = usin->sin_addr.s_addr;
1164 			dport = usin->sin_port;
1165 		}
1166 	}
1167 
1168 	saddr = ipc.addr;
1169 	ipc.addr = faddr = daddr;
1170 
1171 	if (ipc.opt && ipc.opt->opt.srr) {
1172 		if (!daddr) {
1173 			err = -EINVAL;
1174 			goto out_free;
1175 		}
1176 		faddr = ipc.opt->opt.faddr;
1177 		connected = 0;
1178 	}
1179 	tos = get_rttos(&ipc, inet);
1180 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1181 	if (scope == RT_SCOPE_LINK)
1182 		connected = 0;
1183 
1184 	uc_index = READ_ONCE(inet->uc_index);
1185 	if (ipv4_is_multicast(daddr)) {
1186 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1187 			ipc.oif = READ_ONCE(inet->mc_index);
1188 		if (!saddr)
1189 			saddr = READ_ONCE(inet->mc_addr);
1190 		connected = 0;
1191 	} else if (!ipc.oif) {
1192 		ipc.oif = uc_index;
1193 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1194 		/* oif is set, packet is to local broadcast and
1195 		 * uc_index is set. oif is most likely set
1196 		 * by sk_bound_dev_if. If uc_index != oif check if the
1197 		 * oif is an L3 master and uc_index is an L3 slave.
1198 		 * If so, we want to allow the send using the uc_index.
1199 		 */
1200 		if (ipc.oif != uc_index &&
1201 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1202 							      uc_index)) {
1203 			ipc.oif = uc_index;
1204 		}
1205 	}
1206 
1207 	if (connected)
1208 		rt = (struct rtable *)sk_dst_check(sk, 0);
1209 
1210 	if (!rt) {
1211 		struct net *net = sock_net(sk);
1212 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1213 
1214 		fl4 = &fl4_stack;
1215 
1216 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1217 				   sk->sk_protocol, flow_flags, faddr, saddr,
1218 				   dport, inet->inet_sport, sk->sk_uid);
1219 
1220 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1221 		rt = ip_route_output_flow(net, fl4, sk);
1222 		if (IS_ERR(rt)) {
1223 			err = PTR_ERR(rt);
1224 			rt = NULL;
1225 			if (err == -ENETUNREACH)
1226 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1227 			goto out;
1228 		}
1229 
1230 		err = -EACCES;
1231 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1232 		    !sock_flag(sk, SOCK_BROADCAST))
1233 			goto out;
1234 		if (connected)
1235 			sk_dst_set(sk, dst_clone(&rt->dst));
1236 	}
1237 
1238 	if (msg->msg_flags&MSG_CONFIRM)
1239 		goto do_confirm;
1240 back_from_confirm:
1241 
1242 	saddr = fl4->saddr;
1243 	if (!ipc.addr)
1244 		daddr = ipc.addr = fl4->daddr;
1245 
1246 	/* Lockless fast path for the non-corking case. */
1247 	if (!corkreq) {
1248 		struct inet_cork cork;
1249 
1250 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1251 				  sizeof(struct udphdr), &ipc, &rt,
1252 				  &cork, msg->msg_flags);
1253 		err = PTR_ERR(skb);
1254 		if (!IS_ERR_OR_NULL(skb))
1255 			err = udp_send_skb(skb, fl4, &cork);
1256 		goto out;
1257 	}
1258 
1259 	lock_sock(sk);
1260 	if (unlikely(up->pending)) {
1261 		/* The socket is already corked while preparing it. */
1262 		/* ... which is an evident application bug. --ANK */
1263 		release_sock(sk);
1264 
1265 		net_dbg_ratelimited("socket already corked\n");
1266 		err = -EINVAL;
1267 		goto out;
1268 	}
1269 	/*
1270 	 *	Now cork the socket to pend data.
1271 	 */
1272 	fl4 = &inet->cork.fl.u.ip4;
1273 	fl4->daddr = daddr;
1274 	fl4->saddr = saddr;
1275 	fl4->fl4_dport = dport;
1276 	fl4->fl4_sport = inet->inet_sport;
1277 	WRITE_ONCE(up->pending, AF_INET);
1278 
1279 do_append_data:
1280 	up->len += ulen;
1281 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1282 			     sizeof(struct udphdr), &ipc, &rt,
1283 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1284 	if (err)
1285 		udp_flush_pending_frames(sk);
1286 	else if (!corkreq)
1287 		err = udp_push_pending_frames(sk);
1288 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1289 		WRITE_ONCE(up->pending, 0);
1290 	release_sock(sk);
1291 
1292 out:
1293 	ip_rt_put(rt);
1294 out_free:
1295 	if (free)
1296 		kfree(ipc.opt);
1297 	if (!err)
1298 		return len;
1299 	/*
1300 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1301 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1302 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1303 	 * things).  We could add another new stat but at least for now that
1304 	 * seems like overkill.
1305 	 */
1306 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1307 		UDP_INC_STATS(sock_net(sk),
1308 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1309 	}
1310 	return err;
1311 
1312 do_confirm:
1313 	if (msg->msg_flags & MSG_PROBE)
1314 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1315 	if (!(msg->msg_flags&MSG_PROBE) || len)
1316 		goto back_from_confirm;
1317 	err = 0;
1318 	goto out;
1319 }
1320 EXPORT_SYMBOL(udp_sendmsg);
1321 
1322 void udp_splice_eof(struct socket *sock)
1323 {
1324 	struct sock *sk = sock->sk;
1325 	struct udp_sock *up = udp_sk(sk);
1326 
1327 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1328 		return;
1329 
1330 	lock_sock(sk);
1331 	if (up->pending && !udp_test_bit(CORK, sk))
1332 		udp_push_pending_frames(sk);
1333 	release_sock(sk);
1334 }
1335 EXPORT_SYMBOL_GPL(udp_splice_eof);
1336 
1337 #define UDP_SKB_IS_STATELESS 0x80000000
1338 
1339 /* all head states (dst, sk, nf conntrack) except skb extensions are
1340  * cleared by udp_rcv().
1341  *
1342  * We need to preserve secpath, if present, to eventually process
1343  * IP_CMSG_PASSSEC at recvmsg() time.
1344  *
1345  * Other extensions can be cleared.
1346  */
1347 static bool udp_try_make_stateless(struct sk_buff *skb)
1348 {
1349 	if (!skb_has_extensions(skb))
1350 		return true;
1351 
1352 	if (!secpath_exists(skb)) {
1353 		skb_ext_reset(skb);
1354 		return true;
1355 	}
1356 
1357 	return false;
1358 }
1359 
1360 static void udp_set_dev_scratch(struct sk_buff *skb)
1361 {
1362 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1363 
1364 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1365 	scratch->_tsize_state = skb->truesize;
1366 #if BITS_PER_LONG == 64
1367 	scratch->len = skb->len;
1368 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1369 	scratch->is_linear = !skb_is_nonlinear(skb);
1370 #endif
1371 	if (udp_try_make_stateless(skb))
1372 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1373 }
1374 
1375 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1376 {
1377 	/* We come here after udp_lib_checksum_complete() returned 0.
1378 	 * This means that __skb_checksum_complete() might have
1379 	 * set skb->csum_valid to 1.
1380 	 * On 64bit platforms, we can set csum_unnecessary
1381 	 * to true, but only if the skb is not shared.
1382 	 */
1383 #if BITS_PER_LONG == 64
1384 	if (!skb_shared(skb))
1385 		udp_skb_scratch(skb)->csum_unnecessary = true;
1386 #endif
1387 }
1388 
1389 static int udp_skb_truesize(struct sk_buff *skb)
1390 {
1391 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1392 }
1393 
1394 static bool udp_skb_has_head_state(struct sk_buff *skb)
1395 {
1396 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1397 }
1398 
1399 /* fully reclaim rmem/fwd memory allocated for skb */
1400 static void udp_rmem_release(struct sock *sk, int size, int partial,
1401 			     bool rx_queue_lock_held)
1402 {
1403 	struct udp_sock *up = udp_sk(sk);
1404 	struct sk_buff_head *sk_queue;
1405 	int amt;
1406 
1407 	if (likely(partial)) {
1408 		up->forward_deficit += size;
1409 		size = up->forward_deficit;
1410 		if (size < READ_ONCE(up->forward_threshold) &&
1411 		    !skb_queue_empty(&up->reader_queue))
1412 			return;
1413 	} else {
1414 		size += up->forward_deficit;
1415 	}
1416 	up->forward_deficit = 0;
1417 
1418 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1419 	 * if the called don't held it already
1420 	 */
1421 	sk_queue = &sk->sk_receive_queue;
1422 	if (!rx_queue_lock_held)
1423 		spin_lock(&sk_queue->lock);
1424 
1425 
1426 	sk_forward_alloc_add(sk, size);
1427 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1428 	sk_forward_alloc_add(sk, -amt);
1429 
1430 	if (amt)
1431 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1432 
1433 	atomic_sub(size, &sk->sk_rmem_alloc);
1434 
1435 	/* this can save us from acquiring the rx queue lock on next receive */
1436 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1437 
1438 	if (!rx_queue_lock_held)
1439 		spin_unlock(&sk_queue->lock);
1440 }
1441 
1442 /* Note: called with reader_queue.lock held.
1443  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1444  * This avoids a cache line miss while receive_queue lock is held.
1445  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1446  */
1447 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1448 {
1449 	prefetch(&skb->data);
1450 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1451 }
1452 EXPORT_SYMBOL(udp_skb_destructor);
1453 
1454 /* as above, but the caller held the rx queue lock, too */
1455 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1456 {
1457 	prefetch(&skb->data);
1458 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1459 }
1460 
1461 /* Idea of busylocks is to let producers grab an extra spinlock
1462  * to relieve pressure on the receive_queue spinlock shared by consumer.
1463  * Under flood, this means that only one producer can be in line
1464  * trying to acquire the receive_queue spinlock.
1465  * These busylock can be allocated on a per cpu manner, instead of a
1466  * per socket one (that would consume a cache line per socket)
1467  */
1468 static int udp_busylocks_log __read_mostly;
1469 static spinlock_t *udp_busylocks __read_mostly;
1470 
1471 static spinlock_t *busylock_acquire(void *ptr)
1472 {
1473 	spinlock_t *busy;
1474 
1475 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1476 	spin_lock(busy);
1477 	return busy;
1478 }
1479 
1480 static void busylock_release(spinlock_t *busy)
1481 {
1482 	if (busy)
1483 		spin_unlock(busy);
1484 }
1485 
1486 static int udp_rmem_schedule(struct sock *sk, int size)
1487 {
1488 	int delta;
1489 
1490 	delta = size - sk->sk_forward_alloc;
1491 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1492 		return -ENOBUFS;
1493 
1494 	return 0;
1495 }
1496 
1497 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1498 {
1499 	struct sk_buff_head *list = &sk->sk_receive_queue;
1500 	int rmem, err = -ENOMEM;
1501 	spinlock_t *busy = NULL;
1502 	int size;
1503 
1504 	/* try to avoid the costly atomic add/sub pair when the receive
1505 	 * queue is full; always allow at least a packet
1506 	 */
1507 	rmem = atomic_read(&sk->sk_rmem_alloc);
1508 	if (rmem > sk->sk_rcvbuf)
1509 		goto drop;
1510 
1511 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1512 	 * having linear skbs :
1513 	 * - Reduce memory overhead and thus increase receive queue capacity
1514 	 * - Less cache line misses at copyout() time
1515 	 * - Less work at consume_skb() (less alien page frag freeing)
1516 	 */
1517 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1518 		skb_condense(skb);
1519 
1520 		busy = busylock_acquire(sk);
1521 	}
1522 	size = skb->truesize;
1523 	udp_set_dev_scratch(skb);
1524 
1525 	/* we drop only if the receive buf is full and the receive
1526 	 * queue contains some other skb
1527 	 */
1528 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1529 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1530 		goto uncharge_drop;
1531 
1532 	spin_lock(&list->lock);
1533 	err = udp_rmem_schedule(sk, size);
1534 	if (err) {
1535 		spin_unlock(&list->lock);
1536 		goto uncharge_drop;
1537 	}
1538 
1539 	sk_forward_alloc_add(sk, -size);
1540 
1541 	/* no need to setup a destructor, we will explicitly release the
1542 	 * forward allocated memory on dequeue
1543 	 */
1544 	sock_skb_set_dropcount(sk, skb);
1545 
1546 	__skb_queue_tail(list, skb);
1547 	spin_unlock(&list->lock);
1548 
1549 	if (!sock_flag(sk, SOCK_DEAD))
1550 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1551 
1552 	busylock_release(busy);
1553 	return 0;
1554 
1555 uncharge_drop:
1556 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1557 
1558 drop:
1559 	atomic_inc(&sk->sk_drops);
1560 	busylock_release(busy);
1561 	return err;
1562 }
1563 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1564 
1565 void udp_destruct_common(struct sock *sk)
1566 {
1567 	/* reclaim completely the forward allocated memory */
1568 	struct udp_sock *up = udp_sk(sk);
1569 	unsigned int total = 0;
1570 	struct sk_buff *skb;
1571 
1572 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1573 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1574 		total += skb->truesize;
1575 		kfree_skb(skb);
1576 	}
1577 	udp_rmem_release(sk, total, 0, true);
1578 }
1579 EXPORT_SYMBOL_GPL(udp_destruct_common);
1580 
1581 static void udp_destruct_sock(struct sock *sk)
1582 {
1583 	udp_destruct_common(sk);
1584 	inet_sock_destruct(sk);
1585 }
1586 
1587 int udp_init_sock(struct sock *sk)
1588 {
1589 	udp_lib_init_sock(sk);
1590 	sk->sk_destruct = udp_destruct_sock;
1591 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1592 	return 0;
1593 }
1594 
1595 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1596 {
1597 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1598 		sk_peek_offset_bwd(sk, len);
1599 
1600 	if (!skb_unref(skb))
1601 		return;
1602 
1603 	/* In the more common cases we cleared the head states previously,
1604 	 * see __udp_queue_rcv_skb().
1605 	 */
1606 	if (unlikely(udp_skb_has_head_state(skb)))
1607 		skb_release_head_state(skb);
1608 	__consume_stateless_skb(skb);
1609 }
1610 EXPORT_SYMBOL_GPL(skb_consume_udp);
1611 
1612 static struct sk_buff *__first_packet_length(struct sock *sk,
1613 					     struct sk_buff_head *rcvq,
1614 					     int *total)
1615 {
1616 	struct sk_buff *skb;
1617 
1618 	while ((skb = skb_peek(rcvq)) != NULL) {
1619 		if (udp_lib_checksum_complete(skb)) {
1620 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1621 					IS_UDPLITE(sk));
1622 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1623 					IS_UDPLITE(sk));
1624 			atomic_inc(&sk->sk_drops);
1625 			__skb_unlink(skb, rcvq);
1626 			*total += skb->truesize;
1627 			kfree_skb(skb);
1628 		} else {
1629 			udp_skb_csum_unnecessary_set(skb);
1630 			break;
1631 		}
1632 	}
1633 	return skb;
1634 }
1635 
1636 /**
1637  *	first_packet_length	- return length of first packet in receive queue
1638  *	@sk: socket
1639  *
1640  *	Drops all bad checksum frames, until a valid one is found.
1641  *	Returns the length of found skb, or -1 if none is found.
1642  */
1643 static int first_packet_length(struct sock *sk)
1644 {
1645 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1646 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1647 	struct sk_buff *skb;
1648 	int total = 0;
1649 	int res;
1650 
1651 	spin_lock_bh(&rcvq->lock);
1652 	skb = __first_packet_length(sk, rcvq, &total);
1653 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1654 		spin_lock(&sk_queue->lock);
1655 		skb_queue_splice_tail_init(sk_queue, rcvq);
1656 		spin_unlock(&sk_queue->lock);
1657 
1658 		skb = __first_packet_length(sk, rcvq, &total);
1659 	}
1660 	res = skb ? skb->len : -1;
1661 	if (total)
1662 		udp_rmem_release(sk, total, 1, false);
1663 	spin_unlock_bh(&rcvq->lock);
1664 	return res;
1665 }
1666 
1667 /*
1668  *	IOCTL requests applicable to the UDP protocol
1669  */
1670 
1671 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1672 {
1673 	switch (cmd) {
1674 	case SIOCOUTQ:
1675 	{
1676 		*karg = sk_wmem_alloc_get(sk);
1677 		return 0;
1678 	}
1679 
1680 	case SIOCINQ:
1681 	{
1682 		*karg = max_t(int, 0, first_packet_length(sk));
1683 		return 0;
1684 	}
1685 
1686 	default:
1687 		return -ENOIOCTLCMD;
1688 	}
1689 
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL(udp_ioctl);
1693 
1694 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1695 			       int *off, int *err)
1696 {
1697 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1698 	struct sk_buff_head *queue;
1699 	struct sk_buff *last;
1700 	long timeo;
1701 	int error;
1702 
1703 	queue = &udp_sk(sk)->reader_queue;
1704 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1705 	do {
1706 		struct sk_buff *skb;
1707 
1708 		error = sock_error(sk);
1709 		if (error)
1710 			break;
1711 
1712 		error = -EAGAIN;
1713 		do {
1714 			spin_lock_bh(&queue->lock);
1715 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1716 							err, &last);
1717 			if (skb) {
1718 				if (!(flags & MSG_PEEK))
1719 					udp_skb_destructor(sk, skb);
1720 				spin_unlock_bh(&queue->lock);
1721 				return skb;
1722 			}
1723 
1724 			if (skb_queue_empty_lockless(sk_queue)) {
1725 				spin_unlock_bh(&queue->lock);
1726 				goto busy_check;
1727 			}
1728 
1729 			/* refill the reader queue and walk it again
1730 			 * keep both queues locked to avoid re-acquiring
1731 			 * the sk_receive_queue lock if fwd memory scheduling
1732 			 * is needed.
1733 			 */
1734 			spin_lock(&sk_queue->lock);
1735 			skb_queue_splice_tail_init(sk_queue, queue);
1736 
1737 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1738 							err, &last);
1739 			if (skb && !(flags & MSG_PEEK))
1740 				udp_skb_dtor_locked(sk, skb);
1741 			spin_unlock(&sk_queue->lock);
1742 			spin_unlock_bh(&queue->lock);
1743 			if (skb)
1744 				return skb;
1745 
1746 busy_check:
1747 			if (!sk_can_busy_loop(sk))
1748 				break;
1749 
1750 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1751 		} while (!skb_queue_empty_lockless(sk_queue));
1752 
1753 		/* sk_queue is empty, reader_queue may contain peeked packets */
1754 	} while (timeo &&
1755 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1756 					      &error, &timeo,
1757 					      (struct sk_buff *)sk_queue));
1758 
1759 	*err = error;
1760 	return NULL;
1761 }
1762 EXPORT_SYMBOL(__skb_recv_udp);
1763 
1764 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1765 {
1766 	struct sk_buff *skb;
1767 	int err;
1768 
1769 try_again:
1770 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1771 	if (!skb)
1772 		return err;
1773 
1774 	if (udp_lib_checksum_complete(skb)) {
1775 		int is_udplite = IS_UDPLITE(sk);
1776 		struct net *net = sock_net(sk);
1777 
1778 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1779 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1780 		atomic_inc(&sk->sk_drops);
1781 		kfree_skb(skb);
1782 		goto try_again;
1783 	}
1784 
1785 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1786 	return recv_actor(sk, skb);
1787 }
1788 EXPORT_SYMBOL(udp_read_skb);
1789 
1790 /*
1791  * 	This should be easy, if there is something there we
1792  * 	return it, otherwise we block.
1793  */
1794 
1795 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1796 		int *addr_len)
1797 {
1798 	struct inet_sock *inet = inet_sk(sk);
1799 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1800 	struct sk_buff *skb;
1801 	unsigned int ulen, copied;
1802 	int off, err, peeking = flags & MSG_PEEK;
1803 	int is_udplite = IS_UDPLITE(sk);
1804 	bool checksum_valid = false;
1805 
1806 	if (flags & MSG_ERRQUEUE)
1807 		return ip_recv_error(sk, msg, len, addr_len);
1808 
1809 try_again:
1810 	off = sk_peek_offset(sk, flags);
1811 	skb = __skb_recv_udp(sk, flags, &off, &err);
1812 	if (!skb)
1813 		return err;
1814 
1815 	ulen = udp_skb_len(skb);
1816 	copied = len;
1817 	if (copied > ulen - off)
1818 		copied = ulen - off;
1819 	else if (copied < ulen)
1820 		msg->msg_flags |= MSG_TRUNC;
1821 
1822 	/*
1823 	 * If checksum is needed at all, try to do it while copying the
1824 	 * data.  If the data is truncated, or if we only want a partial
1825 	 * coverage checksum (UDP-Lite), do it before the copy.
1826 	 */
1827 
1828 	if (copied < ulen || peeking ||
1829 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1830 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1831 				!__udp_lib_checksum_complete(skb);
1832 		if (!checksum_valid)
1833 			goto csum_copy_err;
1834 	}
1835 
1836 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1837 		if (udp_skb_is_linear(skb))
1838 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1839 		else
1840 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1841 	} else {
1842 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1843 
1844 		if (err == -EINVAL)
1845 			goto csum_copy_err;
1846 	}
1847 
1848 	if (unlikely(err)) {
1849 		if (!peeking) {
1850 			atomic_inc(&sk->sk_drops);
1851 			UDP_INC_STATS(sock_net(sk),
1852 				      UDP_MIB_INERRORS, is_udplite);
1853 		}
1854 		kfree_skb(skb);
1855 		return err;
1856 	}
1857 
1858 	if (!peeking)
1859 		UDP_INC_STATS(sock_net(sk),
1860 			      UDP_MIB_INDATAGRAMS, is_udplite);
1861 
1862 	sock_recv_cmsgs(msg, sk, skb);
1863 
1864 	/* Copy the address. */
1865 	if (sin) {
1866 		sin->sin_family = AF_INET;
1867 		sin->sin_port = udp_hdr(skb)->source;
1868 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1869 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1870 		*addr_len = sizeof(*sin);
1871 
1872 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1873 						      (struct sockaddr *)sin,
1874 						      addr_len);
1875 	}
1876 
1877 	if (udp_test_bit(GRO_ENABLED, sk))
1878 		udp_cmsg_recv(msg, sk, skb);
1879 
1880 	if (inet_cmsg_flags(inet))
1881 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1882 
1883 	err = copied;
1884 	if (flags & MSG_TRUNC)
1885 		err = ulen;
1886 
1887 	skb_consume_udp(sk, skb, peeking ? -err : err);
1888 	return err;
1889 
1890 csum_copy_err:
1891 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1892 				 udp_skb_destructor)) {
1893 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1894 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1895 	}
1896 	kfree_skb(skb);
1897 
1898 	/* starting over for a new packet, but check if we need to yield */
1899 	cond_resched();
1900 	msg->msg_flags &= ~MSG_TRUNC;
1901 	goto try_again;
1902 }
1903 
1904 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1905 {
1906 	/* This check is replicated from __ip4_datagram_connect() and
1907 	 * intended to prevent BPF program called below from accessing bytes
1908 	 * that are out of the bound specified by user in addr_len.
1909 	 */
1910 	if (addr_len < sizeof(struct sockaddr_in))
1911 		return -EINVAL;
1912 
1913 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1914 }
1915 EXPORT_SYMBOL(udp_pre_connect);
1916 
1917 int __udp_disconnect(struct sock *sk, int flags)
1918 {
1919 	struct inet_sock *inet = inet_sk(sk);
1920 	/*
1921 	 *	1003.1g - break association.
1922 	 */
1923 
1924 	sk->sk_state = TCP_CLOSE;
1925 	inet->inet_daddr = 0;
1926 	inet->inet_dport = 0;
1927 	sock_rps_reset_rxhash(sk);
1928 	sk->sk_bound_dev_if = 0;
1929 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1930 		inet_reset_saddr(sk);
1931 		if (sk->sk_prot->rehash &&
1932 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1933 			sk->sk_prot->rehash(sk);
1934 	}
1935 
1936 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1937 		sk->sk_prot->unhash(sk);
1938 		inet->inet_sport = 0;
1939 	}
1940 	sk_dst_reset(sk);
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL(__udp_disconnect);
1944 
1945 int udp_disconnect(struct sock *sk, int flags)
1946 {
1947 	lock_sock(sk);
1948 	__udp_disconnect(sk, flags);
1949 	release_sock(sk);
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL(udp_disconnect);
1953 
1954 void udp_lib_unhash(struct sock *sk)
1955 {
1956 	if (sk_hashed(sk)) {
1957 		struct udp_table *udptable = udp_get_table_prot(sk);
1958 		struct udp_hslot *hslot, *hslot2;
1959 
1960 		hslot  = udp_hashslot(udptable, sock_net(sk),
1961 				      udp_sk(sk)->udp_port_hash);
1962 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1963 
1964 		spin_lock_bh(&hslot->lock);
1965 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1966 			reuseport_detach_sock(sk);
1967 		if (sk_del_node_init_rcu(sk)) {
1968 			hslot->count--;
1969 			inet_sk(sk)->inet_num = 0;
1970 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1971 
1972 			spin_lock(&hslot2->lock);
1973 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1974 			hslot2->count--;
1975 			spin_unlock(&hslot2->lock);
1976 		}
1977 		spin_unlock_bh(&hslot->lock);
1978 	}
1979 }
1980 EXPORT_SYMBOL(udp_lib_unhash);
1981 
1982 /*
1983  * inet_rcv_saddr was changed, we must rehash secondary hash
1984  */
1985 void udp_lib_rehash(struct sock *sk, u16 newhash)
1986 {
1987 	if (sk_hashed(sk)) {
1988 		struct udp_table *udptable = udp_get_table_prot(sk);
1989 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1990 
1991 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1992 		nhslot2 = udp_hashslot2(udptable, newhash);
1993 		udp_sk(sk)->udp_portaddr_hash = newhash;
1994 
1995 		if (hslot2 != nhslot2 ||
1996 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1997 			hslot = udp_hashslot(udptable, sock_net(sk),
1998 					     udp_sk(sk)->udp_port_hash);
1999 			/* we must lock primary chain too */
2000 			spin_lock_bh(&hslot->lock);
2001 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2002 				reuseport_detach_sock(sk);
2003 
2004 			if (hslot2 != nhslot2) {
2005 				spin_lock(&hslot2->lock);
2006 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2007 				hslot2->count--;
2008 				spin_unlock(&hslot2->lock);
2009 
2010 				spin_lock(&nhslot2->lock);
2011 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2012 							 &nhslot2->head);
2013 				nhslot2->count++;
2014 				spin_unlock(&nhslot2->lock);
2015 			}
2016 
2017 			spin_unlock_bh(&hslot->lock);
2018 		}
2019 	}
2020 }
2021 EXPORT_SYMBOL(udp_lib_rehash);
2022 
2023 void udp_v4_rehash(struct sock *sk)
2024 {
2025 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2026 					  inet_sk(sk)->inet_rcv_saddr,
2027 					  inet_sk(sk)->inet_num);
2028 	udp_lib_rehash(sk, new_hash);
2029 }
2030 
2031 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2032 {
2033 	int rc;
2034 
2035 	if (inet_sk(sk)->inet_daddr) {
2036 		sock_rps_save_rxhash(sk, skb);
2037 		sk_mark_napi_id(sk, skb);
2038 		sk_incoming_cpu_update(sk);
2039 	} else {
2040 		sk_mark_napi_id_once(sk, skb);
2041 	}
2042 
2043 	rc = __udp_enqueue_schedule_skb(sk, skb);
2044 	if (rc < 0) {
2045 		int is_udplite = IS_UDPLITE(sk);
2046 		int drop_reason;
2047 
2048 		/* Note that an ENOMEM error is charged twice */
2049 		if (rc == -ENOMEM) {
2050 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2051 					is_udplite);
2052 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2053 		} else {
2054 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2055 				      is_udplite);
2056 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2057 		}
2058 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2059 		kfree_skb_reason(skb, drop_reason);
2060 		trace_udp_fail_queue_rcv_skb(rc, sk);
2061 		return -1;
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 /* returns:
2068  *  -1: error
2069  *   0: success
2070  *  >0: "udp encap" protocol resubmission
2071  *
2072  * Note that in the success and error cases, the skb is assumed to
2073  * have either been requeued or freed.
2074  */
2075 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2076 {
2077 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2078 	struct udp_sock *up = udp_sk(sk);
2079 	int is_udplite = IS_UDPLITE(sk);
2080 
2081 	/*
2082 	 *	Charge it to the socket, dropping if the queue is full.
2083 	 */
2084 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2085 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2086 		goto drop;
2087 	}
2088 	nf_reset_ct(skb);
2089 
2090 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2091 	    READ_ONCE(up->encap_type)) {
2092 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2093 
2094 		/*
2095 		 * This is an encapsulation socket so pass the skb to
2096 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2097 		 * fall through and pass this up the UDP socket.
2098 		 * up->encap_rcv() returns the following value:
2099 		 * =0 if skb was successfully passed to the encap
2100 		 *    handler or was discarded by it.
2101 		 * >0 if skb should be passed on to UDP.
2102 		 * <0 if skb should be resubmitted as proto -N
2103 		 */
2104 
2105 		/* if we're overly short, let UDP handle it */
2106 		encap_rcv = READ_ONCE(up->encap_rcv);
2107 		if (encap_rcv) {
2108 			int ret;
2109 
2110 			/* Verify checksum before giving to encap */
2111 			if (udp_lib_checksum_complete(skb))
2112 				goto csum_error;
2113 
2114 			ret = encap_rcv(sk, skb);
2115 			if (ret <= 0) {
2116 				__UDP_INC_STATS(sock_net(sk),
2117 						UDP_MIB_INDATAGRAMS,
2118 						is_udplite);
2119 				return -ret;
2120 			}
2121 		}
2122 
2123 		/* FALLTHROUGH -- it's a UDP Packet */
2124 	}
2125 
2126 	/*
2127 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2128 	 */
2129 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2130 		u16 pcrlen = READ_ONCE(up->pcrlen);
2131 
2132 		/*
2133 		 * MIB statistics other than incrementing the error count are
2134 		 * disabled for the following two types of errors: these depend
2135 		 * on the application settings, not on the functioning of the
2136 		 * protocol stack as such.
2137 		 *
2138 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2139 		 * way ... to ... at least let the receiving application block
2140 		 * delivery of packets with coverage values less than a value
2141 		 * provided by the application."
2142 		 */
2143 		if (pcrlen == 0) {          /* full coverage was set  */
2144 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2145 					    UDP_SKB_CB(skb)->cscov, skb->len);
2146 			goto drop;
2147 		}
2148 		/* The next case involves violating the min. coverage requested
2149 		 * by the receiver. This is subtle: if receiver wants x and x is
2150 		 * greater than the buffersize/MTU then receiver will complain
2151 		 * that it wants x while sender emits packets of smaller size y.
2152 		 * Therefore the above ...()->partial_cov statement is essential.
2153 		 */
2154 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2155 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2156 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2157 			goto drop;
2158 		}
2159 	}
2160 
2161 	prefetch(&sk->sk_rmem_alloc);
2162 	if (rcu_access_pointer(sk->sk_filter) &&
2163 	    udp_lib_checksum_complete(skb))
2164 			goto csum_error;
2165 
2166 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2167 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2168 		goto drop;
2169 	}
2170 
2171 	udp_csum_pull_header(skb);
2172 
2173 	ipv4_pktinfo_prepare(sk, skb, true);
2174 	return __udp_queue_rcv_skb(sk, skb);
2175 
2176 csum_error:
2177 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2178 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2179 drop:
2180 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2181 	atomic_inc(&sk->sk_drops);
2182 	kfree_skb_reason(skb, drop_reason);
2183 	return -1;
2184 }
2185 
2186 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2187 {
2188 	struct sk_buff *next, *segs;
2189 	int ret;
2190 
2191 	if (likely(!udp_unexpected_gso(sk, skb)))
2192 		return udp_queue_rcv_one_skb(sk, skb);
2193 
2194 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2195 	__skb_push(skb, -skb_mac_offset(skb));
2196 	segs = udp_rcv_segment(sk, skb, true);
2197 	skb_list_walk_safe(segs, skb, next) {
2198 		__skb_pull(skb, skb_transport_offset(skb));
2199 
2200 		udp_post_segment_fix_csum(skb);
2201 		ret = udp_queue_rcv_one_skb(sk, skb);
2202 		if (ret > 0)
2203 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2204 	}
2205 	return 0;
2206 }
2207 
2208 /* For TCP sockets, sk_rx_dst is protected by socket lock
2209  * For UDP, we use xchg() to guard against concurrent changes.
2210  */
2211 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2212 {
2213 	struct dst_entry *old;
2214 
2215 	if (dst_hold_safe(dst)) {
2216 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2217 		dst_release(old);
2218 		return old != dst;
2219 	}
2220 	return false;
2221 }
2222 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2223 
2224 /*
2225  *	Multicasts and broadcasts go to each listener.
2226  *
2227  *	Note: called only from the BH handler context.
2228  */
2229 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2230 				    struct udphdr  *uh,
2231 				    __be32 saddr, __be32 daddr,
2232 				    struct udp_table *udptable,
2233 				    int proto)
2234 {
2235 	struct sock *sk, *first = NULL;
2236 	unsigned short hnum = ntohs(uh->dest);
2237 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2238 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2239 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2240 	int dif = skb->dev->ifindex;
2241 	int sdif = inet_sdif(skb);
2242 	struct hlist_node *node;
2243 	struct sk_buff *nskb;
2244 
2245 	if (use_hash2) {
2246 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2247 			    udptable->mask;
2248 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2249 start_lookup:
2250 		hslot = &udptable->hash2[hash2];
2251 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2252 	}
2253 
2254 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2255 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2256 					 uh->source, saddr, dif, sdif, hnum))
2257 			continue;
2258 
2259 		if (!first) {
2260 			first = sk;
2261 			continue;
2262 		}
2263 		nskb = skb_clone(skb, GFP_ATOMIC);
2264 
2265 		if (unlikely(!nskb)) {
2266 			atomic_inc(&sk->sk_drops);
2267 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2268 					IS_UDPLITE(sk));
2269 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2270 					IS_UDPLITE(sk));
2271 			continue;
2272 		}
2273 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2274 			consume_skb(nskb);
2275 	}
2276 
2277 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2278 	if (use_hash2 && hash2 != hash2_any) {
2279 		hash2 = hash2_any;
2280 		goto start_lookup;
2281 	}
2282 
2283 	if (first) {
2284 		if (udp_queue_rcv_skb(first, skb) > 0)
2285 			consume_skb(skb);
2286 	} else {
2287 		kfree_skb(skb);
2288 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2289 				proto == IPPROTO_UDPLITE);
2290 	}
2291 	return 0;
2292 }
2293 
2294 /* Initialize UDP checksum. If exited with zero value (success),
2295  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2296  * Otherwise, csum completion requires checksumming packet body,
2297  * including udp header and folding it to skb->csum.
2298  */
2299 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2300 				 int proto)
2301 {
2302 	int err;
2303 
2304 	UDP_SKB_CB(skb)->partial_cov = 0;
2305 	UDP_SKB_CB(skb)->cscov = skb->len;
2306 
2307 	if (proto == IPPROTO_UDPLITE) {
2308 		err = udplite_checksum_init(skb, uh);
2309 		if (err)
2310 			return err;
2311 
2312 		if (UDP_SKB_CB(skb)->partial_cov) {
2313 			skb->csum = inet_compute_pseudo(skb, proto);
2314 			return 0;
2315 		}
2316 	}
2317 
2318 	/* Note, we are only interested in != 0 or == 0, thus the
2319 	 * force to int.
2320 	 */
2321 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2322 							inet_compute_pseudo);
2323 	if (err)
2324 		return err;
2325 
2326 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2327 		/* If SW calculated the value, we know it's bad */
2328 		if (skb->csum_complete_sw)
2329 			return 1;
2330 
2331 		/* HW says the value is bad. Let's validate that.
2332 		 * skb->csum is no longer the full packet checksum,
2333 		 * so don't treat it as such.
2334 		 */
2335 		skb_checksum_complete_unset(skb);
2336 	}
2337 
2338 	return 0;
2339 }
2340 
2341 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2342  * return code conversion for ip layer consumption
2343  */
2344 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2345 			       struct udphdr *uh)
2346 {
2347 	int ret;
2348 
2349 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2350 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2351 
2352 	ret = udp_queue_rcv_skb(sk, skb);
2353 
2354 	/* a return value > 0 means to resubmit the input, but
2355 	 * it wants the return to be -protocol, or 0
2356 	 */
2357 	if (ret > 0)
2358 		return -ret;
2359 	return 0;
2360 }
2361 
2362 /*
2363  *	All we need to do is get the socket, and then do a checksum.
2364  */
2365 
2366 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2367 		   int proto)
2368 {
2369 	struct sock *sk;
2370 	struct udphdr *uh;
2371 	unsigned short ulen;
2372 	struct rtable *rt = skb_rtable(skb);
2373 	__be32 saddr, daddr;
2374 	struct net *net = dev_net(skb->dev);
2375 	bool refcounted;
2376 	int drop_reason;
2377 
2378 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2379 
2380 	/*
2381 	 *  Validate the packet.
2382 	 */
2383 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2384 		goto drop;		/* No space for header. */
2385 
2386 	uh   = udp_hdr(skb);
2387 	ulen = ntohs(uh->len);
2388 	saddr = ip_hdr(skb)->saddr;
2389 	daddr = ip_hdr(skb)->daddr;
2390 
2391 	if (ulen > skb->len)
2392 		goto short_packet;
2393 
2394 	if (proto == IPPROTO_UDP) {
2395 		/* UDP validates ulen. */
2396 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2397 			goto short_packet;
2398 		uh = udp_hdr(skb);
2399 	}
2400 
2401 	if (udp4_csum_init(skb, uh, proto))
2402 		goto csum_error;
2403 
2404 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2405 			     &refcounted, udp_ehashfn);
2406 	if (IS_ERR(sk))
2407 		goto no_sk;
2408 
2409 	if (sk) {
2410 		struct dst_entry *dst = skb_dst(skb);
2411 		int ret;
2412 
2413 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2414 			udp_sk_rx_dst_set(sk, dst);
2415 
2416 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2417 		if (refcounted)
2418 			sock_put(sk);
2419 		return ret;
2420 	}
2421 
2422 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2423 		return __udp4_lib_mcast_deliver(net, skb, uh,
2424 						saddr, daddr, udptable, proto);
2425 
2426 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2427 	if (sk)
2428 		return udp_unicast_rcv_skb(sk, skb, uh);
2429 no_sk:
2430 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2431 		goto drop;
2432 	nf_reset_ct(skb);
2433 
2434 	/* No socket. Drop packet silently, if checksum is wrong */
2435 	if (udp_lib_checksum_complete(skb))
2436 		goto csum_error;
2437 
2438 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2439 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2440 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2441 
2442 	/*
2443 	 * Hmm.  We got an UDP packet to a port to which we
2444 	 * don't wanna listen.  Ignore it.
2445 	 */
2446 	kfree_skb_reason(skb, drop_reason);
2447 	return 0;
2448 
2449 short_packet:
2450 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2451 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2452 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2453 			    &saddr, ntohs(uh->source),
2454 			    ulen, skb->len,
2455 			    &daddr, ntohs(uh->dest));
2456 	goto drop;
2457 
2458 csum_error:
2459 	/*
2460 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2461 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2462 	 */
2463 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2464 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2465 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2466 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2467 			    ulen);
2468 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2469 drop:
2470 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2471 	kfree_skb_reason(skb, drop_reason);
2472 	return 0;
2473 }
2474 
2475 /* We can only early demux multicast if there is a single matching socket.
2476  * If more than one socket found returns NULL
2477  */
2478 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2479 						  __be16 loc_port, __be32 loc_addr,
2480 						  __be16 rmt_port, __be32 rmt_addr,
2481 						  int dif, int sdif)
2482 {
2483 	struct udp_table *udptable = net->ipv4.udp_table;
2484 	unsigned short hnum = ntohs(loc_port);
2485 	struct sock *sk, *result;
2486 	struct udp_hslot *hslot;
2487 	unsigned int slot;
2488 
2489 	slot = udp_hashfn(net, hnum, udptable->mask);
2490 	hslot = &udptable->hash[slot];
2491 
2492 	/* Do not bother scanning a too big list */
2493 	if (hslot->count > 10)
2494 		return NULL;
2495 
2496 	result = NULL;
2497 	sk_for_each_rcu(sk, &hslot->head) {
2498 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2499 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2500 			if (result)
2501 				return NULL;
2502 			result = sk;
2503 		}
2504 	}
2505 
2506 	return result;
2507 }
2508 
2509 /* For unicast we should only early demux connected sockets or we can
2510  * break forwarding setups.  The chains here can be long so only check
2511  * if the first socket is an exact match and if not move on.
2512  */
2513 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2514 					    __be16 loc_port, __be32 loc_addr,
2515 					    __be16 rmt_port, __be32 rmt_addr,
2516 					    int dif, int sdif)
2517 {
2518 	struct udp_table *udptable = net->ipv4.udp_table;
2519 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2520 	unsigned short hnum = ntohs(loc_port);
2521 	unsigned int hash2, slot2;
2522 	struct udp_hslot *hslot2;
2523 	__portpair ports;
2524 	struct sock *sk;
2525 
2526 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2527 	slot2 = hash2 & udptable->mask;
2528 	hslot2 = &udptable->hash2[slot2];
2529 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2530 
2531 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2532 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2533 			return sk;
2534 		/* Only check first socket in chain */
2535 		break;
2536 	}
2537 	return NULL;
2538 }
2539 
2540 int udp_v4_early_demux(struct sk_buff *skb)
2541 {
2542 	struct net *net = dev_net(skb->dev);
2543 	struct in_device *in_dev = NULL;
2544 	const struct iphdr *iph;
2545 	const struct udphdr *uh;
2546 	struct sock *sk = NULL;
2547 	struct dst_entry *dst;
2548 	int dif = skb->dev->ifindex;
2549 	int sdif = inet_sdif(skb);
2550 	int ours;
2551 
2552 	/* validate the packet */
2553 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2554 		return 0;
2555 
2556 	iph = ip_hdr(skb);
2557 	uh = udp_hdr(skb);
2558 
2559 	if (skb->pkt_type == PACKET_MULTICAST) {
2560 		in_dev = __in_dev_get_rcu(skb->dev);
2561 
2562 		if (!in_dev)
2563 			return 0;
2564 
2565 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2566 				       iph->protocol);
2567 		if (!ours)
2568 			return 0;
2569 
2570 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2571 						   uh->source, iph->saddr,
2572 						   dif, sdif);
2573 	} else if (skb->pkt_type == PACKET_HOST) {
2574 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2575 					     uh->source, iph->saddr, dif, sdif);
2576 	}
2577 
2578 	if (!sk)
2579 		return 0;
2580 
2581 	skb->sk = sk;
2582 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2583 	skb->destructor = sock_pfree;
2584 	dst = rcu_dereference(sk->sk_rx_dst);
2585 
2586 	if (dst)
2587 		dst = dst_check(dst, 0);
2588 	if (dst) {
2589 		u32 itag = 0;
2590 
2591 		/* set noref for now.
2592 		 * any place which wants to hold dst has to call
2593 		 * dst_hold_safe()
2594 		 */
2595 		skb_dst_set_noref(skb, dst);
2596 
2597 		/* for unconnected multicast sockets we need to validate
2598 		 * the source on each packet
2599 		 */
2600 		if (!inet_sk(sk)->inet_daddr && in_dev)
2601 			return ip_mc_validate_source(skb, iph->daddr,
2602 						     iph->saddr,
2603 						     iph->tos & IPTOS_RT_MASK,
2604 						     skb->dev, in_dev, &itag);
2605 	}
2606 	return 0;
2607 }
2608 
2609 int udp_rcv(struct sk_buff *skb)
2610 {
2611 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2612 }
2613 
2614 void udp_destroy_sock(struct sock *sk)
2615 {
2616 	struct udp_sock *up = udp_sk(sk);
2617 	bool slow = lock_sock_fast(sk);
2618 
2619 	/* protects from races with udp_abort() */
2620 	sock_set_flag(sk, SOCK_DEAD);
2621 	udp_flush_pending_frames(sk);
2622 	unlock_sock_fast(sk, slow);
2623 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2624 		if (up->encap_type) {
2625 			void (*encap_destroy)(struct sock *sk);
2626 			encap_destroy = READ_ONCE(up->encap_destroy);
2627 			if (encap_destroy)
2628 				encap_destroy(sk);
2629 		}
2630 		if (udp_test_bit(ENCAP_ENABLED, sk))
2631 			static_branch_dec(&udp_encap_needed_key);
2632 	}
2633 }
2634 
2635 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2636 				       struct sock *sk)
2637 {
2638 #ifdef CONFIG_XFRM
2639 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2640 		if (family == AF_INET)
2641 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2642 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2643 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2644 	}
2645 #endif
2646 }
2647 
2648 /*
2649  *	Socket option code for UDP
2650  */
2651 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2652 		       sockptr_t optval, unsigned int optlen,
2653 		       int (*push_pending_frames)(struct sock *))
2654 {
2655 	struct udp_sock *up = udp_sk(sk);
2656 	int val, valbool;
2657 	int err = 0;
2658 	int is_udplite = IS_UDPLITE(sk);
2659 
2660 	if (level == SOL_SOCKET) {
2661 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2662 
2663 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2664 			sockopt_lock_sock(sk);
2665 			/* paired with READ_ONCE in udp_rmem_release() */
2666 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2667 			sockopt_release_sock(sk);
2668 		}
2669 		return err;
2670 	}
2671 
2672 	if (optlen < sizeof(int))
2673 		return -EINVAL;
2674 
2675 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2676 		return -EFAULT;
2677 
2678 	valbool = val ? 1 : 0;
2679 
2680 	switch (optname) {
2681 	case UDP_CORK:
2682 		if (val != 0) {
2683 			udp_set_bit(CORK, sk);
2684 		} else {
2685 			udp_clear_bit(CORK, sk);
2686 			lock_sock(sk);
2687 			push_pending_frames(sk);
2688 			release_sock(sk);
2689 		}
2690 		break;
2691 
2692 	case UDP_ENCAP:
2693 		switch (val) {
2694 		case 0:
2695 #ifdef CONFIG_XFRM
2696 		case UDP_ENCAP_ESPINUDP:
2697 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2698 			fallthrough;
2699 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2700 #if IS_ENABLED(CONFIG_IPV6)
2701 			if (sk->sk_family == AF_INET6)
2702 				WRITE_ONCE(up->encap_rcv,
2703 					   ipv6_stub->xfrm6_udp_encap_rcv);
2704 			else
2705 #endif
2706 				WRITE_ONCE(up->encap_rcv,
2707 					   xfrm4_udp_encap_rcv);
2708 #endif
2709 			fallthrough;
2710 		case UDP_ENCAP_L2TPINUDP:
2711 			WRITE_ONCE(up->encap_type, val);
2712 			udp_tunnel_encap_enable(sk);
2713 			break;
2714 		default:
2715 			err = -ENOPROTOOPT;
2716 			break;
2717 		}
2718 		break;
2719 
2720 	case UDP_NO_CHECK6_TX:
2721 		udp_set_no_check6_tx(sk, valbool);
2722 		break;
2723 
2724 	case UDP_NO_CHECK6_RX:
2725 		udp_set_no_check6_rx(sk, valbool);
2726 		break;
2727 
2728 	case UDP_SEGMENT:
2729 		if (val < 0 || val > USHRT_MAX)
2730 			return -EINVAL;
2731 		WRITE_ONCE(up->gso_size, val);
2732 		break;
2733 
2734 	case UDP_GRO:
2735 
2736 		/* when enabling GRO, accept the related GSO packet type */
2737 		if (valbool)
2738 			udp_tunnel_encap_enable(sk);
2739 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2740 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2741 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2742 		break;
2743 
2744 	/*
2745 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2746 	 */
2747 	/* The sender sets actual checksum coverage length via this option.
2748 	 * The case coverage > packet length is handled by send module. */
2749 	case UDPLITE_SEND_CSCOV:
2750 		if (!is_udplite)         /* Disable the option on UDP sockets */
2751 			return -ENOPROTOOPT;
2752 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2753 			val = 8;
2754 		else if (val > USHRT_MAX)
2755 			val = USHRT_MAX;
2756 		WRITE_ONCE(up->pcslen, val);
2757 		udp_set_bit(UDPLITE_SEND_CC, sk);
2758 		break;
2759 
2760 	/* The receiver specifies a minimum checksum coverage value. To make
2761 	 * sense, this should be set to at least 8 (as done below). If zero is
2762 	 * used, this again means full checksum coverage.                     */
2763 	case UDPLITE_RECV_CSCOV:
2764 		if (!is_udplite)         /* Disable the option on UDP sockets */
2765 			return -ENOPROTOOPT;
2766 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2767 			val = 8;
2768 		else if (val > USHRT_MAX)
2769 			val = USHRT_MAX;
2770 		WRITE_ONCE(up->pcrlen, val);
2771 		udp_set_bit(UDPLITE_RECV_CC, sk);
2772 		break;
2773 
2774 	default:
2775 		err = -ENOPROTOOPT;
2776 		break;
2777 	}
2778 
2779 	return err;
2780 }
2781 EXPORT_SYMBOL(udp_lib_setsockopt);
2782 
2783 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2784 		   unsigned int optlen)
2785 {
2786 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2787 		return udp_lib_setsockopt(sk, level, optname,
2788 					  optval, optlen,
2789 					  udp_push_pending_frames);
2790 	return ip_setsockopt(sk, level, optname, optval, optlen);
2791 }
2792 
2793 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2794 		       char __user *optval, int __user *optlen)
2795 {
2796 	struct udp_sock *up = udp_sk(sk);
2797 	int val, len;
2798 
2799 	if (get_user(len, optlen))
2800 		return -EFAULT;
2801 
2802 	if (len < 0)
2803 		return -EINVAL;
2804 
2805 	len = min_t(unsigned int, len, sizeof(int));
2806 
2807 	switch (optname) {
2808 	case UDP_CORK:
2809 		val = udp_test_bit(CORK, sk);
2810 		break;
2811 
2812 	case UDP_ENCAP:
2813 		val = READ_ONCE(up->encap_type);
2814 		break;
2815 
2816 	case UDP_NO_CHECK6_TX:
2817 		val = udp_get_no_check6_tx(sk);
2818 		break;
2819 
2820 	case UDP_NO_CHECK6_RX:
2821 		val = udp_get_no_check6_rx(sk);
2822 		break;
2823 
2824 	case UDP_SEGMENT:
2825 		val = READ_ONCE(up->gso_size);
2826 		break;
2827 
2828 	case UDP_GRO:
2829 		val = udp_test_bit(GRO_ENABLED, sk);
2830 		break;
2831 
2832 	/* The following two cannot be changed on UDP sockets, the return is
2833 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2834 	case UDPLITE_SEND_CSCOV:
2835 		val = READ_ONCE(up->pcslen);
2836 		break;
2837 
2838 	case UDPLITE_RECV_CSCOV:
2839 		val = READ_ONCE(up->pcrlen);
2840 		break;
2841 
2842 	default:
2843 		return -ENOPROTOOPT;
2844 	}
2845 
2846 	if (put_user(len, optlen))
2847 		return -EFAULT;
2848 	if (copy_to_user(optval, &val, len))
2849 		return -EFAULT;
2850 	return 0;
2851 }
2852 EXPORT_SYMBOL(udp_lib_getsockopt);
2853 
2854 int udp_getsockopt(struct sock *sk, int level, int optname,
2855 		   char __user *optval, int __user *optlen)
2856 {
2857 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2858 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2859 	return ip_getsockopt(sk, level, optname, optval, optlen);
2860 }
2861 
2862 /**
2863  * 	udp_poll - wait for a UDP event.
2864  *	@file: - file struct
2865  *	@sock: - socket
2866  *	@wait: - poll table
2867  *
2868  *	This is same as datagram poll, except for the special case of
2869  *	blocking sockets. If application is using a blocking fd
2870  *	and a packet with checksum error is in the queue;
2871  *	then it could get return from select indicating data available
2872  *	but then block when reading it. Add special case code
2873  *	to work around these arguably broken applications.
2874  */
2875 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2876 {
2877 	__poll_t mask = datagram_poll(file, sock, wait);
2878 	struct sock *sk = sock->sk;
2879 
2880 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2881 		mask |= EPOLLIN | EPOLLRDNORM;
2882 
2883 	/* Check for false positives due to checksum errors */
2884 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2885 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2886 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2887 
2888 	/* psock ingress_msg queue should not contain any bad checksum frames */
2889 	if (sk_is_readable(sk))
2890 		mask |= EPOLLIN | EPOLLRDNORM;
2891 	return mask;
2892 
2893 }
2894 EXPORT_SYMBOL(udp_poll);
2895 
2896 int udp_abort(struct sock *sk, int err)
2897 {
2898 	if (!has_current_bpf_ctx())
2899 		lock_sock(sk);
2900 
2901 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2902 	 * with close()
2903 	 */
2904 	if (sock_flag(sk, SOCK_DEAD))
2905 		goto out;
2906 
2907 	sk->sk_err = err;
2908 	sk_error_report(sk);
2909 	__udp_disconnect(sk, 0);
2910 
2911 out:
2912 	if (!has_current_bpf_ctx())
2913 		release_sock(sk);
2914 
2915 	return 0;
2916 }
2917 EXPORT_SYMBOL_GPL(udp_abort);
2918 
2919 struct proto udp_prot = {
2920 	.name			= "UDP",
2921 	.owner			= THIS_MODULE,
2922 	.close			= udp_lib_close,
2923 	.pre_connect		= udp_pre_connect,
2924 	.connect		= ip4_datagram_connect,
2925 	.disconnect		= udp_disconnect,
2926 	.ioctl			= udp_ioctl,
2927 	.init			= udp_init_sock,
2928 	.destroy		= udp_destroy_sock,
2929 	.setsockopt		= udp_setsockopt,
2930 	.getsockopt		= udp_getsockopt,
2931 	.sendmsg		= udp_sendmsg,
2932 	.recvmsg		= udp_recvmsg,
2933 	.splice_eof		= udp_splice_eof,
2934 	.release_cb		= ip4_datagram_release_cb,
2935 	.hash			= udp_lib_hash,
2936 	.unhash			= udp_lib_unhash,
2937 	.rehash			= udp_v4_rehash,
2938 	.get_port		= udp_v4_get_port,
2939 	.put_port		= udp_lib_unhash,
2940 #ifdef CONFIG_BPF_SYSCALL
2941 	.psock_update_sk_prot	= udp_bpf_update_proto,
2942 #endif
2943 	.memory_allocated	= &udp_memory_allocated,
2944 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2945 
2946 	.sysctl_mem		= sysctl_udp_mem,
2947 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2948 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2949 	.obj_size		= sizeof(struct udp_sock),
2950 	.h.udp_table		= NULL,
2951 	.diag_destroy		= udp_abort,
2952 };
2953 EXPORT_SYMBOL(udp_prot);
2954 
2955 /* ------------------------------------------------------------------------ */
2956 #ifdef CONFIG_PROC_FS
2957 
2958 static unsigned short seq_file_family(const struct seq_file *seq);
2959 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2960 {
2961 	unsigned short family = seq_file_family(seq);
2962 
2963 	/* AF_UNSPEC is used as a match all */
2964 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2965 		net_eq(sock_net(sk), seq_file_net(seq)));
2966 }
2967 
2968 #ifdef CONFIG_BPF_SYSCALL
2969 static const struct seq_operations bpf_iter_udp_seq_ops;
2970 #endif
2971 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2972 					   struct net *net)
2973 {
2974 	const struct udp_seq_afinfo *afinfo;
2975 
2976 #ifdef CONFIG_BPF_SYSCALL
2977 	if (seq->op == &bpf_iter_udp_seq_ops)
2978 		return net->ipv4.udp_table;
2979 #endif
2980 
2981 	afinfo = pde_data(file_inode(seq->file));
2982 	return afinfo->udp_table ? : net->ipv4.udp_table;
2983 }
2984 
2985 static struct sock *udp_get_first(struct seq_file *seq, int start)
2986 {
2987 	struct udp_iter_state *state = seq->private;
2988 	struct net *net = seq_file_net(seq);
2989 	struct udp_table *udptable;
2990 	struct sock *sk;
2991 
2992 	udptable = udp_get_table_seq(seq, net);
2993 
2994 	for (state->bucket = start; state->bucket <= udptable->mask;
2995 	     ++state->bucket) {
2996 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2997 
2998 		if (hlist_empty(&hslot->head))
2999 			continue;
3000 
3001 		spin_lock_bh(&hslot->lock);
3002 		sk_for_each(sk, &hslot->head) {
3003 			if (seq_sk_match(seq, sk))
3004 				goto found;
3005 		}
3006 		spin_unlock_bh(&hslot->lock);
3007 	}
3008 	sk = NULL;
3009 found:
3010 	return sk;
3011 }
3012 
3013 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3014 {
3015 	struct udp_iter_state *state = seq->private;
3016 	struct net *net = seq_file_net(seq);
3017 	struct udp_table *udptable;
3018 
3019 	do {
3020 		sk = sk_next(sk);
3021 	} while (sk && !seq_sk_match(seq, sk));
3022 
3023 	if (!sk) {
3024 		udptable = udp_get_table_seq(seq, net);
3025 
3026 		if (state->bucket <= udptable->mask)
3027 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3028 
3029 		return udp_get_first(seq, state->bucket + 1);
3030 	}
3031 	return sk;
3032 }
3033 
3034 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3035 {
3036 	struct sock *sk = udp_get_first(seq, 0);
3037 
3038 	if (sk)
3039 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3040 			--pos;
3041 	return pos ? NULL : sk;
3042 }
3043 
3044 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3045 {
3046 	struct udp_iter_state *state = seq->private;
3047 	state->bucket = MAX_UDP_PORTS;
3048 
3049 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3050 }
3051 EXPORT_SYMBOL(udp_seq_start);
3052 
3053 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3054 {
3055 	struct sock *sk;
3056 
3057 	if (v == SEQ_START_TOKEN)
3058 		sk = udp_get_idx(seq, 0);
3059 	else
3060 		sk = udp_get_next(seq, v);
3061 
3062 	++*pos;
3063 	return sk;
3064 }
3065 EXPORT_SYMBOL(udp_seq_next);
3066 
3067 void udp_seq_stop(struct seq_file *seq, void *v)
3068 {
3069 	struct udp_iter_state *state = seq->private;
3070 	struct udp_table *udptable;
3071 
3072 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3073 
3074 	if (state->bucket <= udptable->mask)
3075 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3076 }
3077 EXPORT_SYMBOL(udp_seq_stop);
3078 
3079 /* ------------------------------------------------------------------------ */
3080 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3081 		int bucket)
3082 {
3083 	struct inet_sock *inet = inet_sk(sp);
3084 	__be32 dest = inet->inet_daddr;
3085 	__be32 src  = inet->inet_rcv_saddr;
3086 	__u16 destp	  = ntohs(inet->inet_dport);
3087 	__u16 srcp	  = ntohs(inet->inet_sport);
3088 
3089 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3090 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3091 		bucket, src, srcp, dest, destp, sp->sk_state,
3092 		sk_wmem_alloc_get(sp),
3093 		udp_rqueue_get(sp),
3094 		0, 0L, 0,
3095 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3096 		0, sock_i_ino(sp),
3097 		refcount_read(&sp->sk_refcnt), sp,
3098 		atomic_read(&sp->sk_drops));
3099 }
3100 
3101 int udp4_seq_show(struct seq_file *seq, void *v)
3102 {
3103 	seq_setwidth(seq, 127);
3104 	if (v == SEQ_START_TOKEN)
3105 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3106 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3107 			   "inode ref pointer drops");
3108 	else {
3109 		struct udp_iter_state *state = seq->private;
3110 
3111 		udp4_format_sock(v, seq, state->bucket);
3112 	}
3113 	seq_pad(seq, '\n');
3114 	return 0;
3115 }
3116 
3117 #ifdef CONFIG_BPF_SYSCALL
3118 struct bpf_iter__udp {
3119 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3120 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3121 	uid_t uid __aligned(8);
3122 	int bucket __aligned(8);
3123 };
3124 
3125 struct bpf_udp_iter_state {
3126 	struct udp_iter_state state;
3127 	unsigned int cur_sk;
3128 	unsigned int end_sk;
3129 	unsigned int max_sk;
3130 	int offset;
3131 	struct sock **batch;
3132 	bool st_bucket_done;
3133 };
3134 
3135 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3136 				      unsigned int new_batch_sz);
3137 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3138 {
3139 	struct bpf_udp_iter_state *iter = seq->private;
3140 	struct udp_iter_state *state = &iter->state;
3141 	struct net *net = seq_file_net(seq);
3142 	int resume_bucket, resume_offset;
3143 	struct udp_table *udptable;
3144 	unsigned int batch_sks = 0;
3145 	bool resized = false;
3146 	struct sock *sk;
3147 
3148 	resume_bucket = state->bucket;
3149 	resume_offset = iter->offset;
3150 
3151 	/* The current batch is done, so advance the bucket. */
3152 	if (iter->st_bucket_done)
3153 		state->bucket++;
3154 
3155 	udptable = udp_get_table_seq(seq, net);
3156 
3157 again:
3158 	/* New batch for the next bucket.
3159 	 * Iterate over the hash table to find a bucket with sockets matching
3160 	 * the iterator attributes, and return the first matching socket from
3161 	 * the bucket. The remaining matched sockets from the bucket are batched
3162 	 * before releasing the bucket lock. This allows BPF programs that are
3163 	 * called in seq_show to acquire the bucket lock if needed.
3164 	 */
3165 	iter->cur_sk = 0;
3166 	iter->end_sk = 0;
3167 	iter->st_bucket_done = false;
3168 	batch_sks = 0;
3169 
3170 	for (; state->bucket <= udptable->mask; state->bucket++) {
3171 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3172 
3173 		if (hlist_empty(&hslot2->head))
3174 			continue;
3175 
3176 		iter->offset = 0;
3177 		spin_lock_bh(&hslot2->lock);
3178 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3179 			if (seq_sk_match(seq, sk)) {
3180 				/* Resume from the last iterated socket at the
3181 				 * offset in the bucket before iterator was stopped.
3182 				 */
3183 				if (state->bucket == resume_bucket &&
3184 				    iter->offset < resume_offset) {
3185 					++iter->offset;
3186 					continue;
3187 				}
3188 				if (iter->end_sk < iter->max_sk) {
3189 					sock_hold(sk);
3190 					iter->batch[iter->end_sk++] = sk;
3191 				}
3192 				batch_sks++;
3193 			}
3194 		}
3195 		spin_unlock_bh(&hslot2->lock);
3196 
3197 		if (iter->end_sk)
3198 			break;
3199 	}
3200 
3201 	/* All done: no batch made. */
3202 	if (!iter->end_sk)
3203 		return NULL;
3204 
3205 	if (iter->end_sk == batch_sks) {
3206 		/* Batching is done for the current bucket; return the first
3207 		 * socket to be iterated from the batch.
3208 		 */
3209 		iter->st_bucket_done = true;
3210 		goto done;
3211 	}
3212 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3213 		resized = true;
3214 		/* After allocating a larger batch, retry one more time to grab
3215 		 * the whole bucket.
3216 		 */
3217 		goto again;
3218 	}
3219 done:
3220 	return iter->batch[0];
3221 }
3222 
3223 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3224 {
3225 	struct bpf_udp_iter_state *iter = seq->private;
3226 	struct sock *sk;
3227 
3228 	/* Whenever seq_next() is called, the iter->cur_sk is
3229 	 * done with seq_show(), so unref the iter->cur_sk.
3230 	 */
3231 	if (iter->cur_sk < iter->end_sk) {
3232 		sock_put(iter->batch[iter->cur_sk++]);
3233 		++iter->offset;
3234 	}
3235 
3236 	/* After updating iter->cur_sk, check if there are more sockets
3237 	 * available in the current bucket batch.
3238 	 */
3239 	if (iter->cur_sk < iter->end_sk)
3240 		sk = iter->batch[iter->cur_sk];
3241 	else
3242 		/* Prepare a new batch. */
3243 		sk = bpf_iter_udp_batch(seq);
3244 
3245 	++*pos;
3246 	return sk;
3247 }
3248 
3249 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3250 {
3251 	/* bpf iter does not support lseek, so it always
3252 	 * continue from where it was stop()-ped.
3253 	 */
3254 	if (*pos)
3255 		return bpf_iter_udp_batch(seq);
3256 
3257 	return SEQ_START_TOKEN;
3258 }
3259 
3260 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3261 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3262 {
3263 	struct bpf_iter__udp ctx;
3264 
3265 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3266 	ctx.meta = meta;
3267 	ctx.udp_sk = udp_sk;
3268 	ctx.uid = uid;
3269 	ctx.bucket = bucket;
3270 	return bpf_iter_run_prog(prog, &ctx);
3271 }
3272 
3273 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3274 {
3275 	struct udp_iter_state *state = seq->private;
3276 	struct bpf_iter_meta meta;
3277 	struct bpf_prog *prog;
3278 	struct sock *sk = v;
3279 	uid_t uid;
3280 	int ret;
3281 
3282 	if (v == SEQ_START_TOKEN)
3283 		return 0;
3284 
3285 	lock_sock(sk);
3286 
3287 	if (unlikely(sk_unhashed(sk))) {
3288 		ret = SEQ_SKIP;
3289 		goto unlock;
3290 	}
3291 
3292 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3293 	meta.seq = seq;
3294 	prog = bpf_iter_get_info(&meta, false);
3295 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3296 
3297 unlock:
3298 	release_sock(sk);
3299 	return ret;
3300 }
3301 
3302 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3303 {
3304 	while (iter->cur_sk < iter->end_sk)
3305 		sock_put(iter->batch[iter->cur_sk++]);
3306 }
3307 
3308 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3309 {
3310 	struct bpf_udp_iter_state *iter = seq->private;
3311 	struct bpf_iter_meta meta;
3312 	struct bpf_prog *prog;
3313 
3314 	if (!v) {
3315 		meta.seq = seq;
3316 		prog = bpf_iter_get_info(&meta, true);
3317 		if (prog)
3318 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3319 	}
3320 
3321 	if (iter->cur_sk < iter->end_sk) {
3322 		bpf_iter_udp_put_batch(iter);
3323 		iter->st_bucket_done = false;
3324 	}
3325 }
3326 
3327 static const struct seq_operations bpf_iter_udp_seq_ops = {
3328 	.start		= bpf_iter_udp_seq_start,
3329 	.next		= bpf_iter_udp_seq_next,
3330 	.stop		= bpf_iter_udp_seq_stop,
3331 	.show		= bpf_iter_udp_seq_show,
3332 };
3333 #endif
3334 
3335 static unsigned short seq_file_family(const struct seq_file *seq)
3336 {
3337 	const struct udp_seq_afinfo *afinfo;
3338 
3339 #ifdef CONFIG_BPF_SYSCALL
3340 	/* BPF iterator: bpf programs to filter sockets. */
3341 	if (seq->op == &bpf_iter_udp_seq_ops)
3342 		return AF_UNSPEC;
3343 #endif
3344 
3345 	/* Proc fs iterator */
3346 	afinfo = pde_data(file_inode(seq->file));
3347 	return afinfo->family;
3348 }
3349 
3350 const struct seq_operations udp_seq_ops = {
3351 	.start		= udp_seq_start,
3352 	.next		= udp_seq_next,
3353 	.stop		= udp_seq_stop,
3354 	.show		= udp4_seq_show,
3355 };
3356 EXPORT_SYMBOL(udp_seq_ops);
3357 
3358 static struct udp_seq_afinfo udp4_seq_afinfo = {
3359 	.family		= AF_INET,
3360 	.udp_table	= NULL,
3361 };
3362 
3363 static int __net_init udp4_proc_init_net(struct net *net)
3364 {
3365 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3366 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3367 		return -ENOMEM;
3368 	return 0;
3369 }
3370 
3371 static void __net_exit udp4_proc_exit_net(struct net *net)
3372 {
3373 	remove_proc_entry("udp", net->proc_net);
3374 }
3375 
3376 static struct pernet_operations udp4_net_ops = {
3377 	.init = udp4_proc_init_net,
3378 	.exit = udp4_proc_exit_net,
3379 };
3380 
3381 int __init udp4_proc_init(void)
3382 {
3383 	return register_pernet_subsys(&udp4_net_ops);
3384 }
3385 
3386 void udp4_proc_exit(void)
3387 {
3388 	unregister_pernet_subsys(&udp4_net_ops);
3389 }
3390 #endif /* CONFIG_PROC_FS */
3391 
3392 static __initdata unsigned long uhash_entries;
3393 static int __init set_uhash_entries(char *str)
3394 {
3395 	ssize_t ret;
3396 
3397 	if (!str)
3398 		return 0;
3399 
3400 	ret = kstrtoul(str, 0, &uhash_entries);
3401 	if (ret)
3402 		return 0;
3403 
3404 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3405 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3406 	return 1;
3407 }
3408 __setup("uhash_entries=", set_uhash_entries);
3409 
3410 void __init udp_table_init(struct udp_table *table, const char *name)
3411 {
3412 	unsigned int i;
3413 
3414 	table->hash = alloc_large_system_hash(name,
3415 					      2 * sizeof(struct udp_hslot),
3416 					      uhash_entries,
3417 					      21, /* one slot per 2 MB */
3418 					      0,
3419 					      &table->log,
3420 					      &table->mask,
3421 					      UDP_HTABLE_SIZE_MIN,
3422 					      UDP_HTABLE_SIZE_MAX);
3423 
3424 	table->hash2 = table->hash + (table->mask + 1);
3425 	for (i = 0; i <= table->mask; i++) {
3426 		INIT_HLIST_HEAD(&table->hash[i].head);
3427 		table->hash[i].count = 0;
3428 		spin_lock_init(&table->hash[i].lock);
3429 	}
3430 	for (i = 0; i <= table->mask; i++) {
3431 		INIT_HLIST_HEAD(&table->hash2[i].head);
3432 		table->hash2[i].count = 0;
3433 		spin_lock_init(&table->hash2[i].lock);
3434 	}
3435 }
3436 
3437 u32 udp_flow_hashrnd(void)
3438 {
3439 	static u32 hashrnd __read_mostly;
3440 
3441 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3442 
3443 	return hashrnd;
3444 }
3445 EXPORT_SYMBOL(udp_flow_hashrnd);
3446 
3447 static void __net_init udp_sysctl_init(struct net *net)
3448 {
3449 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3450 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3451 
3452 #ifdef CONFIG_NET_L3_MASTER_DEV
3453 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3454 #endif
3455 }
3456 
3457 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3458 {
3459 	struct udp_table *udptable;
3460 	int i;
3461 
3462 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3463 	if (!udptable)
3464 		goto out;
3465 
3466 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3467 				      GFP_KERNEL_ACCOUNT);
3468 	if (!udptable->hash)
3469 		goto free_table;
3470 
3471 	udptable->hash2 = udptable->hash + hash_entries;
3472 	udptable->mask = hash_entries - 1;
3473 	udptable->log = ilog2(hash_entries);
3474 
3475 	for (i = 0; i < hash_entries; i++) {
3476 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3477 		udptable->hash[i].count = 0;
3478 		spin_lock_init(&udptable->hash[i].lock);
3479 
3480 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3481 		udptable->hash2[i].count = 0;
3482 		spin_lock_init(&udptable->hash2[i].lock);
3483 	}
3484 
3485 	return udptable;
3486 
3487 free_table:
3488 	kfree(udptable);
3489 out:
3490 	return NULL;
3491 }
3492 
3493 static void __net_exit udp_pernet_table_free(struct net *net)
3494 {
3495 	struct udp_table *udptable = net->ipv4.udp_table;
3496 
3497 	if (udptable == &udp_table)
3498 		return;
3499 
3500 	kvfree(udptable->hash);
3501 	kfree(udptable);
3502 }
3503 
3504 static void __net_init udp_set_table(struct net *net)
3505 {
3506 	struct udp_table *udptable;
3507 	unsigned int hash_entries;
3508 	struct net *old_net;
3509 
3510 	if (net_eq(net, &init_net))
3511 		goto fallback;
3512 
3513 	old_net = current->nsproxy->net_ns;
3514 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3515 	if (!hash_entries)
3516 		goto fallback;
3517 
3518 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3519 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3520 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3521 	else
3522 		hash_entries = roundup_pow_of_two(hash_entries);
3523 
3524 	udptable = udp_pernet_table_alloc(hash_entries);
3525 	if (udptable) {
3526 		net->ipv4.udp_table = udptable;
3527 	} else {
3528 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3529 			"for a netns, fallback to the global one\n",
3530 			hash_entries);
3531 fallback:
3532 		net->ipv4.udp_table = &udp_table;
3533 	}
3534 }
3535 
3536 static int __net_init udp_pernet_init(struct net *net)
3537 {
3538 	udp_sysctl_init(net);
3539 	udp_set_table(net);
3540 
3541 	return 0;
3542 }
3543 
3544 static void __net_exit udp_pernet_exit(struct net *net)
3545 {
3546 	udp_pernet_table_free(net);
3547 }
3548 
3549 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3550 	.init	= udp_pernet_init,
3551 	.exit	= udp_pernet_exit,
3552 };
3553 
3554 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3555 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3556 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3557 
3558 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3559 				      unsigned int new_batch_sz)
3560 {
3561 	struct sock **new_batch;
3562 
3563 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3564 				   GFP_USER | __GFP_NOWARN);
3565 	if (!new_batch)
3566 		return -ENOMEM;
3567 
3568 	bpf_iter_udp_put_batch(iter);
3569 	kvfree(iter->batch);
3570 	iter->batch = new_batch;
3571 	iter->max_sk = new_batch_sz;
3572 
3573 	return 0;
3574 }
3575 
3576 #define INIT_BATCH_SZ 16
3577 
3578 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3579 {
3580 	struct bpf_udp_iter_state *iter = priv_data;
3581 	int ret;
3582 
3583 	ret = bpf_iter_init_seq_net(priv_data, aux);
3584 	if (ret)
3585 		return ret;
3586 
3587 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3588 	if (ret)
3589 		bpf_iter_fini_seq_net(priv_data);
3590 
3591 	return ret;
3592 }
3593 
3594 static void bpf_iter_fini_udp(void *priv_data)
3595 {
3596 	struct bpf_udp_iter_state *iter = priv_data;
3597 
3598 	bpf_iter_fini_seq_net(priv_data);
3599 	kvfree(iter->batch);
3600 }
3601 
3602 static const struct bpf_iter_seq_info udp_seq_info = {
3603 	.seq_ops		= &bpf_iter_udp_seq_ops,
3604 	.init_seq_private	= bpf_iter_init_udp,
3605 	.fini_seq_private	= bpf_iter_fini_udp,
3606 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3607 };
3608 
3609 static struct bpf_iter_reg udp_reg_info = {
3610 	.target			= "udp",
3611 	.ctx_arg_info_size	= 1,
3612 	.ctx_arg_info		= {
3613 		{ offsetof(struct bpf_iter__udp, udp_sk),
3614 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3615 	},
3616 	.seq_info		= &udp_seq_info,
3617 };
3618 
3619 static void __init bpf_iter_register(void)
3620 {
3621 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3622 	if (bpf_iter_reg_target(&udp_reg_info))
3623 		pr_warn("Warning: could not register bpf iterator udp\n");
3624 }
3625 #endif
3626 
3627 void __init udp_init(void)
3628 {
3629 	unsigned long limit;
3630 	unsigned int i;
3631 
3632 	udp_table_init(&udp_table, "UDP");
3633 	limit = nr_free_buffer_pages() / 8;
3634 	limit = max(limit, 128UL);
3635 	sysctl_udp_mem[0] = limit / 4 * 3;
3636 	sysctl_udp_mem[1] = limit;
3637 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3638 
3639 	/* 16 spinlocks per cpu */
3640 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3641 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3642 				GFP_KERNEL);
3643 	if (!udp_busylocks)
3644 		panic("UDP: failed to alloc udp_busylocks\n");
3645 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3646 		spin_lock_init(udp_busylocks + i);
3647 
3648 	if (register_pernet_subsys(&udp_sysctl_ops))
3649 		panic("UDP: failed to init sysctl parameters.\n");
3650 
3651 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3652 	bpf_iter_register();
3653 #endif
3654 }
3655