1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/gso.h> 107 #include <net/xfrm.h> 108 #include <trace/events/udp.h> 109 #include <linux/static_key.h> 110 #include <linux/btf_ids.h> 111 #include <trace/events/skb.h> 112 #include <net/busy_poll.h> 113 #include "udp_impl.h" 114 #include <net/sock_reuseport.h> 115 #include <net/addrconf.h> 116 #include <net/udp_tunnel.h> 117 #include <net/gro.h> 118 #if IS_ENABLED(CONFIG_IPV6) 119 #include <net/ipv6_stubs.h> 120 #endif 121 122 struct udp_table udp_table __read_mostly; 123 EXPORT_SYMBOL(udp_table); 124 125 long sysctl_udp_mem[3] __read_mostly; 126 EXPORT_SYMBOL(sysctl_udp_mem); 127 128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 129 EXPORT_SYMBOL(udp_memory_allocated); 130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136 static struct udp_table *udp_get_table_prot(struct sock *sk) 137 { 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139 } 140 141 static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145 { 146 struct sock *sk2; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sock_i_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171 } 172 173 /* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180 { 181 struct sock *sk2; 182 kuid_t uid = sock_i_uid(sk); 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sock_i_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206 } 207 208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209 { 210 struct net *net = sock_net(sk); 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif) 370 { 371 int score; 372 struct inet_sock *inet; 373 bool dev_match; 374 375 if (!net_eq(sock_net(sk), net) || 376 udp_sk(sk)->udp_port_hash != hnum || 377 ipv6_only_sock(sk)) 378 return -1; 379 380 if (sk->sk_rcv_saddr != daddr) 381 return -1; 382 383 score = (sk->sk_family == PF_INET) ? 2 : 1; 384 385 inet = inet_sk(sk); 386 if (inet->inet_daddr) { 387 if (inet->inet_daddr != saddr) 388 return -1; 389 score += 4; 390 } 391 392 if (inet->inet_dport) { 393 if (inet->inet_dport != sport) 394 return -1; 395 score += 4; 396 } 397 398 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 399 dif, sdif); 400 if (!dev_match) 401 return -1; 402 if (sk->sk_bound_dev_if) 403 score += 4; 404 405 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 406 score++; 407 return score; 408 } 409 410 INDIRECT_CALLABLE_SCOPE 411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 412 const __be32 faddr, const __be16 fport) 413 { 414 static u32 udp_ehash_secret __read_mostly; 415 416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 417 418 return __inet_ehashfn(laddr, lport, faddr, fport, 419 udp_ehash_secret + net_hash_mix(net)); 420 } 421 422 /* called with rcu_read_lock() */ 423 static struct sock *udp4_lib_lookup2(struct net *net, 424 __be32 saddr, __be16 sport, 425 __be32 daddr, unsigned int hnum, 426 int dif, int sdif, 427 struct udp_hslot *hslot2, 428 struct sk_buff *skb) 429 { 430 struct sock *sk, *result; 431 int score, badness; 432 433 result = NULL; 434 badness = 0; 435 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 436 score = compute_score(sk, net, saddr, sport, 437 daddr, hnum, dif, sdif); 438 if (score > badness) { 439 badness = score; 440 441 if (sk->sk_state == TCP_ESTABLISHED) { 442 result = sk; 443 continue; 444 } 445 446 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 447 saddr, sport, daddr, hnum, udp_ehashfn); 448 if (!result) { 449 result = sk; 450 continue; 451 } 452 453 /* Fall back to scoring if group has connections */ 454 if (!reuseport_has_conns(sk)) 455 return result; 456 457 /* Reuseport logic returned an error, keep original score. */ 458 if (IS_ERR(result)) 459 continue; 460 461 badness = compute_score(result, net, saddr, sport, 462 daddr, hnum, dif, sdif); 463 464 } 465 } 466 return result; 467 } 468 469 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 470 * harder than this. -DaveM 471 */ 472 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 473 __be16 sport, __be32 daddr, __be16 dport, int dif, 474 int sdif, struct udp_table *udptable, struct sk_buff *skb) 475 { 476 unsigned short hnum = ntohs(dport); 477 unsigned int hash2, slot2; 478 struct udp_hslot *hslot2; 479 struct sock *result, *sk; 480 481 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 482 slot2 = hash2 & udptable->mask; 483 hslot2 = &udptable->hash2[slot2]; 484 485 /* Lookup connected or non-wildcard socket */ 486 result = udp4_lib_lookup2(net, saddr, sport, 487 daddr, hnum, dif, sdif, 488 hslot2, skb); 489 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 490 goto done; 491 492 /* Lookup redirect from BPF */ 493 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 494 udptable == net->ipv4.udp_table) { 495 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 496 saddr, sport, daddr, hnum, dif, 497 udp_ehashfn); 498 if (sk) { 499 result = sk; 500 goto done; 501 } 502 } 503 504 /* Got non-wildcard socket or error on first lookup */ 505 if (result) 506 goto done; 507 508 /* Lookup wildcard sockets */ 509 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 510 slot2 = hash2 & udptable->mask; 511 hslot2 = &udptable->hash2[slot2]; 512 513 result = udp4_lib_lookup2(net, saddr, sport, 514 htonl(INADDR_ANY), hnum, dif, sdif, 515 hslot2, skb); 516 done: 517 if (IS_ERR(result)) 518 return NULL; 519 return result; 520 } 521 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 522 523 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 524 __be16 sport, __be16 dport, 525 struct udp_table *udptable) 526 { 527 const struct iphdr *iph = ip_hdr(skb); 528 529 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 530 iph->daddr, dport, inet_iif(skb), 531 inet_sdif(skb), udptable, skb); 532 } 533 534 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 535 __be16 sport, __be16 dport) 536 { 537 const struct iphdr *iph = ip_hdr(skb); 538 struct net *net = dev_net(skb->dev); 539 int iif, sdif; 540 541 inet_get_iif_sdif(skb, &iif, &sdif); 542 543 return __udp4_lib_lookup(net, iph->saddr, sport, 544 iph->daddr, dport, iif, 545 sdif, net->ipv4.udp_table, NULL); 546 } 547 548 /* Must be called under rcu_read_lock(). 549 * Does increment socket refcount. 550 */ 551 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 552 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 553 __be32 daddr, __be16 dport, int dif) 554 { 555 struct sock *sk; 556 557 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 558 dif, 0, net->ipv4.udp_table, NULL); 559 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 560 sk = NULL; 561 return sk; 562 } 563 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 564 #endif 565 566 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 567 __be16 loc_port, __be32 loc_addr, 568 __be16 rmt_port, __be32 rmt_addr, 569 int dif, int sdif, unsigned short hnum) 570 { 571 const struct inet_sock *inet = inet_sk(sk); 572 573 if (!net_eq(sock_net(sk), net) || 574 udp_sk(sk)->udp_port_hash != hnum || 575 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 576 (inet->inet_dport != rmt_port && inet->inet_dport) || 577 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 578 ipv6_only_sock(sk) || 579 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 580 return false; 581 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 582 return false; 583 return true; 584 } 585 586 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 587 void udp_encap_enable(void) 588 { 589 static_branch_inc(&udp_encap_needed_key); 590 } 591 EXPORT_SYMBOL(udp_encap_enable); 592 593 void udp_encap_disable(void) 594 { 595 static_branch_dec(&udp_encap_needed_key); 596 } 597 EXPORT_SYMBOL(udp_encap_disable); 598 599 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 600 * through error handlers in encapsulations looking for a match. 601 */ 602 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 603 { 604 int i; 605 606 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 607 int (*handler)(struct sk_buff *skb, u32 info); 608 const struct ip_tunnel_encap_ops *encap; 609 610 encap = rcu_dereference(iptun_encaps[i]); 611 if (!encap) 612 continue; 613 handler = encap->err_handler; 614 if (handler && !handler(skb, info)) 615 return 0; 616 } 617 618 return -ENOENT; 619 } 620 621 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 622 * reversing source and destination port: this will match tunnels that force the 623 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 624 * lwtunnels might actually break this assumption by being configured with 625 * different destination ports on endpoints, in this case we won't be able to 626 * trace ICMP messages back to them. 627 * 628 * If this doesn't match any socket, probe tunnels with arbitrary destination 629 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 630 * we've sent packets to won't necessarily match the local destination port. 631 * 632 * Then ask the tunnel implementation to match the error against a valid 633 * association. 634 * 635 * Return an error if we can't find a match, the socket if we need further 636 * processing, zero otherwise. 637 */ 638 static struct sock *__udp4_lib_err_encap(struct net *net, 639 const struct iphdr *iph, 640 struct udphdr *uh, 641 struct udp_table *udptable, 642 struct sock *sk, 643 struct sk_buff *skb, u32 info) 644 { 645 int (*lookup)(struct sock *sk, struct sk_buff *skb); 646 int network_offset, transport_offset; 647 struct udp_sock *up; 648 649 network_offset = skb_network_offset(skb); 650 transport_offset = skb_transport_offset(skb); 651 652 /* Network header needs to point to the outer IPv4 header inside ICMP */ 653 skb_reset_network_header(skb); 654 655 /* Transport header needs to point to the UDP header */ 656 skb_set_transport_header(skb, iph->ihl << 2); 657 658 if (sk) { 659 up = udp_sk(sk); 660 661 lookup = READ_ONCE(up->encap_err_lookup); 662 if (lookup && lookup(sk, skb)) 663 sk = NULL; 664 665 goto out; 666 } 667 668 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 669 iph->saddr, uh->dest, skb->dev->ifindex, 0, 670 udptable, NULL); 671 if (sk) { 672 up = udp_sk(sk); 673 674 lookup = READ_ONCE(up->encap_err_lookup); 675 if (!lookup || lookup(sk, skb)) 676 sk = NULL; 677 } 678 679 out: 680 if (!sk) 681 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 682 683 skb_set_transport_header(skb, transport_offset); 684 skb_set_network_header(skb, network_offset); 685 686 return sk; 687 } 688 689 /* 690 * This routine is called by the ICMP module when it gets some 691 * sort of error condition. If err < 0 then the socket should 692 * be closed and the error returned to the user. If err > 0 693 * it's just the icmp type << 8 | icmp code. 694 * Header points to the ip header of the error packet. We move 695 * on past this. Then (as it used to claim before adjustment) 696 * header points to the first 8 bytes of the udp header. We need 697 * to find the appropriate port. 698 */ 699 700 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 701 { 702 struct inet_sock *inet; 703 const struct iphdr *iph = (const struct iphdr *)skb->data; 704 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 705 const int type = icmp_hdr(skb)->type; 706 const int code = icmp_hdr(skb)->code; 707 bool tunnel = false; 708 struct sock *sk; 709 int harderr; 710 int err; 711 struct net *net = dev_net(skb->dev); 712 713 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 714 iph->saddr, uh->source, skb->dev->ifindex, 715 inet_sdif(skb), udptable, NULL); 716 717 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 718 /* No socket for error: try tunnels before discarding */ 719 if (static_branch_unlikely(&udp_encap_needed_key)) { 720 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 721 info); 722 if (!sk) 723 return 0; 724 } else 725 sk = ERR_PTR(-ENOENT); 726 727 if (IS_ERR(sk)) { 728 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 729 return PTR_ERR(sk); 730 } 731 732 tunnel = true; 733 } 734 735 err = 0; 736 harderr = 0; 737 inet = inet_sk(sk); 738 739 switch (type) { 740 default: 741 case ICMP_TIME_EXCEEDED: 742 err = EHOSTUNREACH; 743 break; 744 case ICMP_SOURCE_QUENCH: 745 goto out; 746 case ICMP_PARAMETERPROB: 747 err = EPROTO; 748 harderr = 1; 749 break; 750 case ICMP_DEST_UNREACH: 751 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 752 ipv4_sk_update_pmtu(skb, sk, info); 753 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 754 err = EMSGSIZE; 755 harderr = 1; 756 break; 757 } 758 goto out; 759 } 760 err = EHOSTUNREACH; 761 if (code <= NR_ICMP_UNREACH) { 762 harderr = icmp_err_convert[code].fatal; 763 err = icmp_err_convert[code].errno; 764 } 765 break; 766 case ICMP_REDIRECT: 767 ipv4_sk_redirect(skb, sk); 768 goto out; 769 } 770 771 /* 772 * RFC1122: OK. Passes ICMP errors back to application, as per 773 * 4.1.3.3. 774 */ 775 if (tunnel) { 776 /* ...not for tunnels though: we don't have a sending socket */ 777 if (udp_sk(sk)->encap_err_rcv) 778 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 779 (u8 *)(uh+1)); 780 goto out; 781 } 782 if (!inet_test_bit(RECVERR, sk)) { 783 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 784 goto out; 785 } else 786 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 787 788 sk->sk_err = err; 789 sk_error_report(sk); 790 out: 791 return 0; 792 } 793 794 int udp_err(struct sk_buff *skb, u32 info) 795 { 796 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 797 } 798 799 /* 800 * Throw away all pending data and cancel the corking. Socket is locked. 801 */ 802 void udp_flush_pending_frames(struct sock *sk) 803 { 804 struct udp_sock *up = udp_sk(sk); 805 806 if (up->pending) { 807 up->len = 0; 808 up->pending = 0; 809 ip_flush_pending_frames(sk); 810 } 811 } 812 EXPORT_SYMBOL(udp_flush_pending_frames); 813 814 /** 815 * udp4_hwcsum - handle outgoing HW checksumming 816 * @skb: sk_buff containing the filled-in UDP header 817 * (checksum field must be zeroed out) 818 * @src: source IP address 819 * @dst: destination IP address 820 */ 821 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 822 { 823 struct udphdr *uh = udp_hdr(skb); 824 int offset = skb_transport_offset(skb); 825 int len = skb->len - offset; 826 int hlen = len; 827 __wsum csum = 0; 828 829 if (!skb_has_frag_list(skb)) { 830 /* 831 * Only one fragment on the socket. 832 */ 833 skb->csum_start = skb_transport_header(skb) - skb->head; 834 skb->csum_offset = offsetof(struct udphdr, check); 835 uh->check = ~csum_tcpudp_magic(src, dst, len, 836 IPPROTO_UDP, 0); 837 } else { 838 struct sk_buff *frags; 839 840 /* 841 * HW-checksum won't work as there are two or more 842 * fragments on the socket so that all csums of sk_buffs 843 * should be together 844 */ 845 skb_walk_frags(skb, frags) { 846 csum = csum_add(csum, frags->csum); 847 hlen -= frags->len; 848 } 849 850 csum = skb_checksum(skb, offset, hlen, csum); 851 skb->ip_summed = CHECKSUM_NONE; 852 853 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 854 if (uh->check == 0) 855 uh->check = CSUM_MANGLED_0; 856 } 857 } 858 EXPORT_SYMBOL_GPL(udp4_hwcsum); 859 860 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 861 * for the simple case like when setting the checksum for a UDP tunnel. 862 */ 863 void udp_set_csum(bool nocheck, struct sk_buff *skb, 864 __be32 saddr, __be32 daddr, int len) 865 { 866 struct udphdr *uh = udp_hdr(skb); 867 868 if (nocheck) { 869 uh->check = 0; 870 } else if (skb_is_gso(skb)) { 871 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 872 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 873 uh->check = 0; 874 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 875 if (uh->check == 0) 876 uh->check = CSUM_MANGLED_0; 877 } else { 878 skb->ip_summed = CHECKSUM_PARTIAL; 879 skb->csum_start = skb_transport_header(skb) - skb->head; 880 skb->csum_offset = offsetof(struct udphdr, check); 881 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 882 } 883 } 884 EXPORT_SYMBOL(udp_set_csum); 885 886 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 887 struct inet_cork *cork) 888 { 889 struct sock *sk = skb->sk; 890 struct inet_sock *inet = inet_sk(sk); 891 struct udphdr *uh; 892 int err; 893 int is_udplite = IS_UDPLITE(sk); 894 int offset = skb_transport_offset(skb); 895 int len = skb->len - offset; 896 int datalen = len - sizeof(*uh); 897 __wsum csum = 0; 898 899 /* 900 * Create a UDP header 901 */ 902 uh = udp_hdr(skb); 903 uh->source = inet->inet_sport; 904 uh->dest = fl4->fl4_dport; 905 uh->len = htons(len); 906 uh->check = 0; 907 908 if (cork->gso_size) { 909 const int hlen = skb_network_header_len(skb) + 910 sizeof(struct udphdr); 911 912 if (hlen + cork->gso_size > cork->fragsize) { 913 kfree_skb(skb); 914 return -EINVAL; 915 } 916 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 917 kfree_skb(skb); 918 return -EINVAL; 919 } 920 if (sk->sk_no_check_tx) { 921 kfree_skb(skb); 922 return -EINVAL; 923 } 924 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 925 dst_xfrm(skb_dst(skb))) { 926 kfree_skb(skb); 927 return -EIO; 928 } 929 930 if (datalen > cork->gso_size) { 931 skb_shinfo(skb)->gso_size = cork->gso_size; 932 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 933 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 934 cork->gso_size); 935 } 936 goto csum_partial; 937 } 938 939 if (is_udplite) /* UDP-Lite */ 940 csum = udplite_csum(skb); 941 942 else if (sk->sk_no_check_tx) { /* UDP csum off */ 943 944 skb->ip_summed = CHECKSUM_NONE; 945 goto send; 946 947 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 948 csum_partial: 949 950 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 951 goto send; 952 953 } else 954 csum = udp_csum(skb); 955 956 /* add protocol-dependent pseudo-header */ 957 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 958 sk->sk_protocol, csum); 959 if (uh->check == 0) 960 uh->check = CSUM_MANGLED_0; 961 962 send: 963 err = ip_send_skb(sock_net(sk), skb); 964 if (err) { 965 if (err == -ENOBUFS && 966 !inet_test_bit(RECVERR, sk)) { 967 UDP_INC_STATS(sock_net(sk), 968 UDP_MIB_SNDBUFERRORS, is_udplite); 969 err = 0; 970 } 971 } else 972 UDP_INC_STATS(sock_net(sk), 973 UDP_MIB_OUTDATAGRAMS, is_udplite); 974 return err; 975 } 976 977 /* 978 * Push out all pending data as one UDP datagram. Socket is locked. 979 */ 980 int udp_push_pending_frames(struct sock *sk) 981 { 982 struct udp_sock *up = udp_sk(sk); 983 struct inet_sock *inet = inet_sk(sk); 984 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 985 struct sk_buff *skb; 986 int err = 0; 987 988 skb = ip_finish_skb(sk, fl4); 989 if (!skb) 990 goto out; 991 992 err = udp_send_skb(skb, fl4, &inet->cork.base); 993 994 out: 995 up->len = 0; 996 up->pending = 0; 997 return err; 998 } 999 EXPORT_SYMBOL(udp_push_pending_frames); 1000 1001 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1002 { 1003 switch (cmsg->cmsg_type) { 1004 case UDP_SEGMENT: 1005 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1006 return -EINVAL; 1007 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1008 return 0; 1009 default: 1010 return -EINVAL; 1011 } 1012 } 1013 1014 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1015 { 1016 struct cmsghdr *cmsg; 1017 bool need_ip = false; 1018 int err; 1019 1020 for_each_cmsghdr(cmsg, msg) { 1021 if (!CMSG_OK(msg, cmsg)) 1022 return -EINVAL; 1023 1024 if (cmsg->cmsg_level != SOL_UDP) { 1025 need_ip = true; 1026 continue; 1027 } 1028 1029 err = __udp_cmsg_send(cmsg, gso_size); 1030 if (err) 1031 return err; 1032 } 1033 1034 return need_ip; 1035 } 1036 EXPORT_SYMBOL_GPL(udp_cmsg_send); 1037 1038 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1039 { 1040 struct inet_sock *inet = inet_sk(sk); 1041 struct udp_sock *up = udp_sk(sk); 1042 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1043 struct flowi4 fl4_stack; 1044 struct flowi4 *fl4; 1045 int ulen = len; 1046 struct ipcm_cookie ipc; 1047 struct rtable *rt = NULL; 1048 int free = 0; 1049 int connected = 0; 1050 __be32 daddr, faddr, saddr; 1051 u8 tos, scope; 1052 __be16 dport; 1053 int err, is_udplite = IS_UDPLITE(sk); 1054 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1055 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1056 struct sk_buff *skb; 1057 struct ip_options_data opt_copy; 1058 int uc_index; 1059 1060 if (len > 0xFFFF) 1061 return -EMSGSIZE; 1062 1063 /* 1064 * Check the flags. 1065 */ 1066 1067 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1068 return -EOPNOTSUPP; 1069 1070 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1071 1072 fl4 = &inet->cork.fl.u.ip4; 1073 if (up->pending) { 1074 /* 1075 * There are pending frames. 1076 * The socket lock must be held while it's corked. 1077 */ 1078 lock_sock(sk); 1079 if (likely(up->pending)) { 1080 if (unlikely(up->pending != AF_INET)) { 1081 release_sock(sk); 1082 return -EINVAL; 1083 } 1084 goto do_append_data; 1085 } 1086 release_sock(sk); 1087 } 1088 ulen += sizeof(struct udphdr); 1089 1090 /* 1091 * Get and verify the address. 1092 */ 1093 if (usin) { 1094 if (msg->msg_namelen < sizeof(*usin)) 1095 return -EINVAL; 1096 if (usin->sin_family != AF_INET) { 1097 if (usin->sin_family != AF_UNSPEC) 1098 return -EAFNOSUPPORT; 1099 } 1100 1101 daddr = usin->sin_addr.s_addr; 1102 dport = usin->sin_port; 1103 if (dport == 0) 1104 return -EINVAL; 1105 } else { 1106 if (sk->sk_state != TCP_ESTABLISHED) 1107 return -EDESTADDRREQ; 1108 daddr = inet->inet_daddr; 1109 dport = inet->inet_dport; 1110 /* Open fast path for connected socket. 1111 Route will not be used, if at least one option is set. 1112 */ 1113 connected = 1; 1114 } 1115 1116 ipcm_init_sk(&ipc, inet); 1117 ipc.gso_size = READ_ONCE(up->gso_size); 1118 1119 if (msg->msg_controllen) { 1120 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1121 if (err > 0) 1122 err = ip_cmsg_send(sk, msg, &ipc, 1123 sk->sk_family == AF_INET6); 1124 if (unlikely(err < 0)) { 1125 kfree(ipc.opt); 1126 return err; 1127 } 1128 if (ipc.opt) 1129 free = 1; 1130 connected = 0; 1131 } 1132 if (!ipc.opt) { 1133 struct ip_options_rcu *inet_opt; 1134 1135 rcu_read_lock(); 1136 inet_opt = rcu_dereference(inet->inet_opt); 1137 if (inet_opt) { 1138 memcpy(&opt_copy, inet_opt, 1139 sizeof(*inet_opt) + inet_opt->opt.optlen); 1140 ipc.opt = &opt_copy.opt; 1141 } 1142 rcu_read_unlock(); 1143 } 1144 1145 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1146 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1147 (struct sockaddr *)usin, 1148 &msg->msg_namelen, 1149 &ipc.addr); 1150 if (err) 1151 goto out_free; 1152 if (usin) { 1153 if (usin->sin_port == 0) { 1154 /* BPF program set invalid port. Reject it. */ 1155 err = -EINVAL; 1156 goto out_free; 1157 } 1158 daddr = usin->sin_addr.s_addr; 1159 dport = usin->sin_port; 1160 } 1161 } 1162 1163 saddr = ipc.addr; 1164 ipc.addr = faddr = daddr; 1165 1166 if (ipc.opt && ipc.opt->opt.srr) { 1167 if (!daddr) { 1168 err = -EINVAL; 1169 goto out_free; 1170 } 1171 faddr = ipc.opt->opt.faddr; 1172 connected = 0; 1173 } 1174 tos = get_rttos(&ipc, inet); 1175 scope = ip_sendmsg_scope(inet, &ipc, msg); 1176 if (scope == RT_SCOPE_LINK) 1177 connected = 0; 1178 1179 uc_index = READ_ONCE(inet->uc_index); 1180 if (ipv4_is_multicast(daddr)) { 1181 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1182 ipc.oif = READ_ONCE(inet->mc_index); 1183 if (!saddr) 1184 saddr = READ_ONCE(inet->mc_addr); 1185 connected = 0; 1186 } else if (!ipc.oif) { 1187 ipc.oif = uc_index; 1188 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1189 /* oif is set, packet is to local broadcast and 1190 * uc_index is set. oif is most likely set 1191 * by sk_bound_dev_if. If uc_index != oif check if the 1192 * oif is an L3 master and uc_index is an L3 slave. 1193 * If so, we want to allow the send using the uc_index. 1194 */ 1195 if (ipc.oif != uc_index && 1196 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1197 uc_index)) { 1198 ipc.oif = uc_index; 1199 } 1200 } 1201 1202 if (connected) 1203 rt = (struct rtable *)sk_dst_check(sk, 0); 1204 1205 if (!rt) { 1206 struct net *net = sock_net(sk); 1207 __u8 flow_flags = inet_sk_flowi_flags(sk); 1208 1209 fl4 = &fl4_stack; 1210 1211 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope, 1212 sk->sk_protocol, flow_flags, faddr, saddr, 1213 dport, inet->inet_sport, sk->sk_uid); 1214 1215 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1216 rt = ip_route_output_flow(net, fl4, sk); 1217 if (IS_ERR(rt)) { 1218 err = PTR_ERR(rt); 1219 rt = NULL; 1220 if (err == -ENETUNREACH) 1221 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1222 goto out; 1223 } 1224 1225 err = -EACCES; 1226 if ((rt->rt_flags & RTCF_BROADCAST) && 1227 !sock_flag(sk, SOCK_BROADCAST)) 1228 goto out; 1229 if (connected) 1230 sk_dst_set(sk, dst_clone(&rt->dst)); 1231 } 1232 1233 if (msg->msg_flags&MSG_CONFIRM) 1234 goto do_confirm; 1235 back_from_confirm: 1236 1237 saddr = fl4->saddr; 1238 if (!ipc.addr) 1239 daddr = ipc.addr = fl4->daddr; 1240 1241 /* Lockless fast path for the non-corking case. */ 1242 if (!corkreq) { 1243 struct inet_cork cork; 1244 1245 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1246 sizeof(struct udphdr), &ipc, &rt, 1247 &cork, msg->msg_flags); 1248 err = PTR_ERR(skb); 1249 if (!IS_ERR_OR_NULL(skb)) 1250 err = udp_send_skb(skb, fl4, &cork); 1251 goto out; 1252 } 1253 1254 lock_sock(sk); 1255 if (unlikely(up->pending)) { 1256 /* The socket is already corked while preparing it. */ 1257 /* ... which is an evident application bug. --ANK */ 1258 release_sock(sk); 1259 1260 net_dbg_ratelimited("socket already corked\n"); 1261 err = -EINVAL; 1262 goto out; 1263 } 1264 /* 1265 * Now cork the socket to pend data. 1266 */ 1267 fl4 = &inet->cork.fl.u.ip4; 1268 fl4->daddr = daddr; 1269 fl4->saddr = saddr; 1270 fl4->fl4_dport = dport; 1271 fl4->fl4_sport = inet->inet_sport; 1272 up->pending = AF_INET; 1273 1274 do_append_data: 1275 up->len += ulen; 1276 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1277 sizeof(struct udphdr), &ipc, &rt, 1278 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1279 if (err) 1280 udp_flush_pending_frames(sk); 1281 else if (!corkreq) 1282 err = udp_push_pending_frames(sk); 1283 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1284 up->pending = 0; 1285 release_sock(sk); 1286 1287 out: 1288 ip_rt_put(rt); 1289 out_free: 1290 if (free) 1291 kfree(ipc.opt); 1292 if (!err) 1293 return len; 1294 /* 1295 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1296 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1297 * we don't have a good statistic (IpOutDiscards but it can be too many 1298 * things). We could add another new stat but at least for now that 1299 * seems like overkill. 1300 */ 1301 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1302 UDP_INC_STATS(sock_net(sk), 1303 UDP_MIB_SNDBUFERRORS, is_udplite); 1304 } 1305 return err; 1306 1307 do_confirm: 1308 if (msg->msg_flags & MSG_PROBE) 1309 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1310 if (!(msg->msg_flags&MSG_PROBE) || len) 1311 goto back_from_confirm; 1312 err = 0; 1313 goto out; 1314 } 1315 EXPORT_SYMBOL(udp_sendmsg); 1316 1317 void udp_splice_eof(struct socket *sock) 1318 { 1319 struct sock *sk = sock->sk; 1320 struct udp_sock *up = udp_sk(sk); 1321 1322 if (!up->pending || udp_test_bit(CORK, sk)) 1323 return; 1324 1325 lock_sock(sk); 1326 if (up->pending && !udp_test_bit(CORK, sk)) 1327 udp_push_pending_frames(sk); 1328 release_sock(sk); 1329 } 1330 EXPORT_SYMBOL_GPL(udp_splice_eof); 1331 1332 #define UDP_SKB_IS_STATELESS 0x80000000 1333 1334 /* all head states (dst, sk, nf conntrack) except skb extensions are 1335 * cleared by udp_rcv(). 1336 * 1337 * We need to preserve secpath, if present, to eventually process 1338 * IP_CMSG_PASSSEC at recvmsg() time. 1339 * 1340 * Other extensions can be cleared. 1341 */ 1342 static bool udp_try_make_stateless(struct sk_buff *skb) 1343 { 1344 if (!skb_has_extensions(skb)) 1345 return true; 1346 1347 if (!secpath_exists(skb)) { 1348 skb_ext_reset(skb); 1349 return true; 1350 } 1351 1352 return false; 1353 } 1354 1355 static void udp_set_dev_scratch(struct sk_buff *skb) 1356 { 1357 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1358 1359 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1360 scratch->_tsize_state = skb->truesize; 1361 #if BITS_PER_LONG == 64 1362 scratch->len = skb->len; 1363 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1364 scratch->is_linear = !skb_is_nonlinear(skb); 1365 #endif 1366 if (udp_try_make_stateless(skb)) 1367 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1368 } 1369 1370 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1371 { 1372 /* We come here after udp_lib_checksum_complete() returned 0. 1373 * This means that __skb_checksum_complete() might have 1374 * set skb->csum_valid to 1. 1375 * On 64bit platforms, we can set csum_unnecessary 1376 * to true, but only if the skb is not shared. 1377 */ 1378 #if BITS_PER_LONG == 64 1379 if (!skb_shared(skb)) 1380 udp_skb_scratch(skb)->csum_unnecessary = true; 1381 #endif 1382 } 1383 1384 static int udp_skb_truesize(struct sk_buff *skb) 1385 { 1386 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1387 } 1388 1389 static bool udp_skb_has_head_state(struct sk_buff *skb) 1390 { 1391 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1392 } 1393 1394 /* fully reclaim rmem/fwd memory allocated for skb */ 1395 static void udp_rmem_release(struct sock *sk, int size, int partial, 1396 bool rx_queue_lock_held) 1397 { 1398 struct udp_sock *up = udp_sk(sk); 1399 struct sk_buff_head *sk_queue; 1400 int amt; 1401 1402 if (likely(partial)) { 1403 up->forward_deficit += size; 1404 size = up->forward_deficit; 1405 if (size < READ_ONCE(up->forward_threshold) && 1406 !skb_queue_empty(&up->reader_queue)) 1407 return; 1408 } else { 1409 size += up->forward_deficit; 1410 } 1411 up->forward_deficit = 0; 1412 1413 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1414 * if the called don't held it already 1415 */ 1416 sk_queue = &sk->sk_receive_queue; 1417 if (!rx_queue_lock_held) 1418 spin_lock(&sk_queue->lock); 1419 1420 1421 sk_forward_alloc_add(sk, size); 1422 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1423 sk_forward_alloc_add(sk, -amt); 1424 1425 if (amt) 1426 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1427 1428 atomic_sub(size, &sk->sk_rmem_alloc); 1429 1430 /* this can save us from acquiring the rx queue lock on next receive */ 1431 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1432 1433 if (!rx_queue_lock_held) 1434 spin_unlock(&sk_queue->lock); 1435 } 1436 1437 /* Note: called with reader_queue.lock held. 1438 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1439 * This avoids a cache line miss while receive_queue lock is held. 1440 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1441 */ 1442 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1443 { 1444 prefetch(&skb->data); 1445 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1446 } 1447 EXPORT_SYMBOL(udp_skb_destructor); 1448 1449 /* as above, but the caller held the rx queue lock, too */ 1450 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1451 { 1452 prefetch(&skb->data); 1453 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1454 } 1455 1456 /* Idea of busylocks is to let producers grab an extra spinlock 1457 * to relieve pressure on the receive_queue spinlock shared by consumer. 1458 * Under flood, this means that only one producer can be in line 1459 * trying to acquire the receive_queue spinlock. 1460 * These busylock can be allocated on a per cpu manner, instead of a 1461 * per socket one (that would consume a cache line per socket) 1462 */ 1463 static int udp_busylocks_log __read_mostly; 1464 static spinlock_t *udp_busylocks __read_mostly; 1465 1466 static spinlock_t *busylock_acquire(void *ptr) 1467 { 1468 spinlock_t *busy; 1469 1470 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1471 spin_lock(busy); 1472 return busy; 1473 } 1474 1475 static void busylock_release(spinlock_t *busy) 1476 { 1477 if (busy) 1478 spin_unlock(busy); 1479 } 1480 1481 static int udp_rmem_schedule(struct sock *sk, int size) 1482 { 1483 int delta; 1484 1485 delta = size - sk->sk_forward_alloc; 1486 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1487 return -ENOBUFS; 1488 1489 return 0; 1490 } 1491 1492 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1493 { 1494 struct sk_buff_head *list = &sk->sk_receive_queue; 1495 int rmem, err = -ENOMEM; 1496 spinlock_t *busy = NULL; 1497 int size; 1498 1499 /* try to avoid the costly atomic add/sub pair when the receive 1500 * queue is full; always allow at least a packet 1501 */ 1502 rmem = atomic_read(&sk->sk_rmem_alloc); 1503 if (rmem > sk->sk_rcvbuf) 1504 goto drop; 1505 1506 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1507 * having linear skbs : 1508 * - Reduce memory overhead and thus increase receive queue capacity 1509 * - Less cache line misses at copyout() time 1510 * - Less work at consume_skb() (less alien page frag freeing) 1511 */ 1512 if (rmem > (sk->sk_rcvbuf >> 1)) { 1513 skb_condense(skb); 1514 1515 busy = busylock_acquire(sk); 1516 } 1517 size = skb->truesize; 1518 udp_set_dev_scratch(skb); 1519 1520 /* we drop only if the receive buf is full and the receive 1521 * queue contains some other skb 1522 */ 1523 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1524 if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) 1525 goto uncharge_drop; 1526 1527 spin_lock(&list->lock); 1528 err = udp_rmem_schedule(sk, size); 1529 if (err) { 1530 spin_unlock(&list->lock); 1531 goto uncharge_drop; 1532 } 1533 1534 sk_forward_alloc_add(sk, -size); 1535 1536 /* no need to setup a destructor, we will explicitly release the 1537 * forward allocated memory on dequeue 1538 */ 1539 sock_skb_set_dropcount(sk, skb); 1540 1541 __skb_queue_tail(list, skb); 1542 spin_unlock(&list->lock); 1543 1544 if (!sock_flag(sk, SOCK_DEAD)) 1545 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1546 1547 busylock_release(busy); 1548 return 0; 1549 1550 uncharge_drop: 1551 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1552 1553 drop: 1554 atomic_inc(&sk->sk_drops); 1555 busylock_release(busy); 1556 return err; 1557 } 1558 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1559 1560 void udp_destruct_common(struct sock *sk) 1561 { 1562 /* reclaim completely the forward allocated memory */ 1563 struct udp_sock *up = udp_sk(sk); 1564 unsigned int total = 0; 1565 struct sk_buff *skb; 1566 1567 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1568 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1569 total += skb->truesize; 1570 kfree_skb(skb); 1571 } 1572 udp_rmem_release(sk, total, 0, true); 1573 } 1574 EXPORT_SYMBOL_GPL(udp_destruct_common); 1575 1576 static void udp_destruct_sock(struct sock *sk) 1577 { 1578 udp_destruct_common(sk); 1579 inet_sock_destruct(sk); 1580 } 1581 1582 int udp_init_sock(struct sock *sk) 1583 { 1584 udp_lib_init_sock(sk); 1585 sk->sk_destruct = udp_destruct_sock; 1586 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1587 return 0; 1588 } 1589 1590 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1591 { 1592 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1593 bool slow = lock_sock_fast(sk); 1594 1595 sk_peek_offset_bwd(sk, len); 1596 unlock_sock_fast(sk, slow); 1597 } 1598 1599 if (!skb_unref(skb)) 1600 return; 1601 1602 /* In the more common cases we cleared the head states previously, 1603 * see __udp_queue_rcv_skb(). 1604 */ 1605 if (unlikely(udp_skb_has_head_state(skb))) 1606 skb_release_head_state(skb); 1607 __consume_stateless_skb(skb); 1608 } 1609 EXPORT_SYMBOL_GPL(skb_consume_udp); 1610 1611 static struct sk_buff *__first_packet_length(struct sock *sk, 1612 struct sk_buff_head *rcvq, 1613 int *total) 1614 { 1615 struct sk_buff *skb; 1616 1617 while ((skb = skb_peek(rcvq)) != NULL) { 1618 if (udp_lib_checksum_complete(skb)) { 1619 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1620 IS_UDPLITE(sk)); 1621 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1622 IS_UDPLITE(sk)); 1623 atomic_inc(&sk->sk_drops); 1624 __skb_unlink(skb, rcvq); 1625 *total += skb->truesize; 1626 kfree_skb(skb); 1627 } else { 1628 udp_skb_csum_unnecessary_set(skb); 1629 break; 1630 } 1631 } 1632 return skb; 1633 } 1634 1635 /** 1636 * first_packet_length - return length of first packet in receive queue 1637 * @sk: socket 1638 * 1639 * Drops all bad checksum frames, until a valid one is found. 1640 * Returns the length of found skb, or -1 if none is found. 1641 */ 1642 static int first_packet_length(struct sock *sk) 1643 { 1644 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1645 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1646 struct sk_buff *skb; 1647 int total = 0; 1648 int res; 1649 1650 spin_lock_bh(&rcvq->lock); 1651 skb = __first_packet_length(sk, rcvq, &total); 1652 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1653 spin_lock(&sk_queue->lock); 1654 skb_queue_splice_tail_init(sk_queue, rcvq); 1655 spin_unlock(&sk_queue->lock); 1656 1657 skb = __first_packet_length(sk, rcvq, &total); 1658 } 1659 res = skb ? skb->len : -1; 1660 if (total) 1661 udp_rmem_release(sk, total, 1, false); 1662 spin_unlock_bh(&rcvq->lock); 1663 return res; 1664 } 1665 1666 /* 1667 * IOCTL requests applicable to the UDP protocol 1668 */ 1669 1670 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1671 { 1672 switch (cmd) { 1673 case SIOCOUTQ: 1674 { 1675 *karg = sk_wmem_alloc_get(sk); 1676 return 0; 1677 } 1678 1679 case SIOCINQ: 1680 { 1681 *karg = max_t(int, 0, first_packet_length(sk)); 1682 return 0; 1683 } 1684 1685 default: 1686 return -ENOIOCTLCMD; 1687 } 1688 1689 return 0; 1690 } 1691 EXPORT_SYMBOL(udp_ioctl); 1692 1693 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1694 int *off, int *err) 1695 { 1696 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1697 struct sk_buff_head *queue; 1698 struct sk_buff *last; 1699 long timeo; 1700 int error; 1701 1702 queue = &udp_sk(sk)->reader_queue; 1703 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1704 do { 1705 struct sk_buff *skb; 1706 1707 error = sock_error(sk); 1708 if (error) 1709 break; 1710 1711 error = -EAGAIN; 1712 do { 1713 spin_lock_bh(&queue->lock); 1714 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1715 err, &last); 1716 if (skb) { 1717 if (!(flags & MSG_PEEK)) 1718 udp_skb_destructor(sk, skb); 1719 spin_unlock_bh(&queue->lock); 1720 return skb; 1721 } 1722 1723 if (skb_queue_empty_lockless(sk_queue)) { 1724 spin_unlock_bh(&queue->lock); 1725 goto busy_check; 1726 } 1727 1728 /* refill the reader queue and walk it again 1729 * keep both queues locked to avoid re-acquiring 1730 * the sk_receive_queue lock if fwd memory scheduling 1731 * is needed. 1732 */ 1733 spin_lock(&sk_queue->lock); 1734 skb_queue_splice_tail_init(sk_queue, queue); 1735 1736 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1737 err, &last); 1738 if (skb && !(flags & MSG_PEEK)) 1739 udp_skb_dtor_locked(sk, skb); 1740 spin_unlock(&sk_queue->lock); 1741 spin_unlock_bh(&queue->lock); 1742 if (skb) 1743 return skb; 1744 1745 busy_check: 1746 if (!sk_can_busy_loop(sk)) 1747 break; 1748 1749 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1750 } while (!skb_queue_empty_lockless(sk_queue)); 1751 1752 /* sk_queue is empty, reader_queue may contain peeked packets */ 1753 } while (timeo && 1754 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1755 &error, &timeo, 1756 (struct sk_buff *)sk_queue)); 1757 1758 *err = error; 1759 return NULL; 1760 } 1761 EXPORT_SYMBOL(__skb_recv_udp); 1762 1763 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1764 { 1765 struct sk_buff *skb; 1766 int err; 1767 1768 try_again: 1769 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1770 if (!skb) 1771 return err; 1772 1773 if (udp_lib_checksum_complete(skb)) { 1774 int is_udplite = IS_UDPLITE(sk); 1775 struct net *net = sock_net(sk); 1776 1777 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 1778 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 1779 atomic_inc(&sk->sk_drops); 1780 kfree_skb(skb); 1781 goto try_again; 1782 } 1783 1784 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1785 return recv_actor(sk, skb); 1786 } 1787 EXPORT_SYMBOL(udp_read_skb); 1788 1789 /* 1790 * This should be easy, if there is something there we 1791 * return it, otherwise we block. 1792 */ 1793 1794 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 1795 int *addr_len) 1796 { 1797 struct inet_sock *inet = inet_sk(sk); 1798 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1799 struct sk_buff *skb; 1800 unsigned int ulen, copied; 1801 int off, err, peeking = flags & MSG_PEEK; 1802 int is_udplite = IS_UDPLITE(sk); 1803 bool checksum_valid = false; 1804 1805 if (flags & MSG_ERRQUEUE) 1806 return ip_recv_error(sk, msg, len, addr_len); 1807 1808 try_again: 1809 off = sk_peek_offset(sk, flags); 1810 skb = __skb_recv_udp(sk, flags, &off, &err); 1811 if (!skb) 1812 return err; 1813 1814 ulen = udp_skb_len(skb); 1815 copied = len; 1816 if (copied > ulen - off) 1817 copied = ulen - off; 1818 else if (copied < ulen) 1819 msg->msg_flags |= MSG_TRUNC; 1820 1821 /* 1822 * If checksum is needed at all, try to do it while copying the 1823 * data. If the data is truncated, or if we only want a partial 1824 * coverage checksum (UDP-Lite), do it before the copy. 1825 */ 1826 1827 if (copied < ulen || peeking || 1828 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1829 checksum_valid = udp_skb_csum_unnecessary(skb) || 1830 !__udp_lib_checksum_complete(skb); 1831 if (!checksum_valid) 1832 goto csum_copy_err; 1833 } 1834 1835 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1836 if (udp_skb_is_linear(skb)) 1837 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1838 else 1839 err = skb_copy_datagram_msg(skb, off, msg, copied); 1840 } else { 1841 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1842 1843 if (err == -EINVAL) 1844 goto csum_copy_err; 1845 } 1846 1847 if (unlikely(err)) { 1848 if (!peeking) { 1849 atomic_inc(&sk->sk_drops); 1850 UDP_INC_STATS(sock_net(sk), 1851 UDP_MIB_INERRORS, is_udplite); 1852 } 1853 kfree_skb(skb); 1854 return err; 1855 } 1856 1857 if (!peeking) 1858 UDP_INC_STATS(sock_net(sk), 1859 UDP_MIB_INDATAGRAMS, is_udplite); 1860 1861 sock_recv_cmsgs(msg, sk, skb); 1862 1863 /* Copy the address. */ 1864 if (sin) { 1865 sin->sin_family = AF_INET; 1866 sin->sin_port = udp_hdr(skb)->source; 1867 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1868 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1869 *addr_len = sizeof(*sin); 1870 1871 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1872 (struct sockaddr *)sin, 1873 addr_len); 1874 } 1875 1876 if (udp_test_bit(GRO_ENABLED, sk)) 1877 udp_cmsg_recv(msg, sk, skb); 1878 1879 if (inet_cmsg_flags(inet)) 1880 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1881 1882 err = copied; 1883 if (flags & MSG_TRUNC) 1884 err = ulen; 1885 1886 skb_consume_udp(sk, skb, peeking ? -err : err); 1887 return err; 1888 1889 csum_copy_err: 1890 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1891 udp_skb_destructor)) { 1892 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1893 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1894 } 1895 kfree_skb(skb); 1896 1897 /* starting over for a new packet, but check if we need to yield */ 1898 cond_resched(); 1899 msg->msg_flags &= ~MSG_TRUNC; 1900 goto try_again; 1901 } 1902 1903 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1904 { 1905 /* This check is replicated from __ip4_datagram_connect() and 1906 * intended to prevent BPF program called below from accessing bytes 1907 * that are out of the bound specified by user in addr_len. 1908 */ 1909 if (addr_len < sizeof(struct sockaddr_in)) 1910 return -EINVAL; 1911 1912 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 1913 } 1914 EXPORT_SYMBOL(udp_pre_connect); 1915 1916 int __udp_disconnect(struct sock *sk, int flags) 1917 { 1918 struct inet_sock *inet = inet_sk(sk); 1919 /* 1920 * 1003.1g - break association. 1921 */ 1922 1923 sk->sk_state = TCP_CLOSE; 1924 inet->inet_daddr = 0; 1925 inet->inet_dport = 0; 1926 sock_rps_reset_rxhash(sk); 1927 sk->sk_bound_dev_if = 0; 1928 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 1929 inet_reset_saddr(sk); 1930 if (sk->sk_prot->rehash && 1931 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1932 sk->sk_prot->rehash(sk); 1933 } 1934 1935 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1936 sk->sk_prot->unhash(sk); 1937 inet->inet_sport = 0; 1938 } 1939 sk_dst_reset(sk); 1940 return 0; 1941 } 1942 EXPORT_SYMBOL(__udp_disconnect); 1943 1944 int udp_disconnect(struct sock *sk, int flags) 1945 { 1946 lock_sock(sk); 1947 __udp_disconnect(sk, flags); 1948 release_sock(sk); 1949 return 0; 1950 } 1951 EXPORT_SYMBOL(udp_disconnect); 1952 1953 void udp_lib_unhash(struct sock *sk) 1954 { 1955 if (sk_hashed(sk)) { 1956 struct udp_table *udptable = udp_get_table_prot(sk); 1957 struct udp_hslot *hslot, *hslot2; 1958 1959 hslot = udp_hashslot(udptable, sock_net(sk), 1960 udp_sk(sk)->udp_port_hash); 1961 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1962 1963 spin_lock_bh(&hslot->lock); 1964 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1965 reuseport_detach_sock(sk); 1966 if (sk_del_node_init_rcu(sk)) { 1967 hslot->count--; 1968 inet_sk(sk)->inet_num = 0; 1969 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1970 1971 spin_lock(&hslot2->lock); 1972 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1973 hslot2->count--; 1974 spin_unlock(&hslot2->lock); 1975 } 1976 spin_unlock_bh(&hslot->lock); 1977 } 1978 } 1979 EXPORT_SYMBOL(udp_lib_unhash); 1980 1981 /* 1982 * inet_rcv_saddr was changed, we must rehash secondary hash 1983 */ 1984 void udp_lib_rehash(struct sock *sk, u16 newhash) 1985 { 1986 if (sk_hashed(sk)) { 1987 struct udp_table *udptable = udp_get_table_prot(sk); 1988 struct udp_hslot *hslot, *hslot2, *nhslot2; 1989 1990 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1991 nhslot2 = udp_hashslot2(udptable, newhash); 1992 udp_sk(sk)->udp_portaddr_hash = newhash; 1993 1994 if (hslot2 != nhslot2 || 1995 rcu_access_pointer(sk->sk_reuseport_cb)) { 1996 hslot = udp_hashslot(udptable, sock_net(sk), 1997 udp_sk(sk)->udp_port_hash); 1998 /* we must lock primary chain too */ 1999 spin_lock_bh(&hslot->lock); 2000 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2001 reuseport_detach_sock(sk); 2002 2003 if (hslot2 != nhslot2) { 2004 spin_lock(&hslot2->lock); 2005 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2006 hslot2->count--; 2007 spin_unlock(&hslot2->lock); 2008 2009 spin_lock(&nhslot2->lock); 2010 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2011 &nhslot2->head); 2012 nhslot2->count++; 2013 spin_unlock(&nhslot2->lock); 2014 } 2015 2016 spin_unlock_bh(&hslot->lock); 2017 } 2018 } 2019 } 2020 EXPORT_SYMBOL(udp_lib_rehash); 2021 2022 void udp_v4_rehash(struct sock *sk) 2023 { 2024 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2025 inet_sk(sk)->inet_rcv_saddr, 2026 inet_sk(sk)->inet_num); 2027 udp_lib_rehash(sk, new_hash); 2028 } 2029 2030 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2031 { 2032 int rc; 2033 2034 if (inet_sk(sk)->inet_daddr) { 2035 sock_rps_save_rxhash(sk, skb); 2036 sk_mark_napi_id(sk, skb); 2037 sk_incoming_cpu_update(sk); 2038 } else { 2039 sk_mark_napi_id_once(sk, skb); 2040 } 2041 2042 rc = __udp_enqueue_schedule_skb(sk, skb); 2043 if (rc < 0) { 2044 int is_udplite = IS_UDPLITE(sk); 2045 int drop_reason; 2046 2047 /* Note that an ENOMEM error is charged twice */ 2048 if (rc == -ENOMEM) { 2049 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2050 is_udplite); 2051 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2052 } else { 2053 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2054 is_udplite); 2055 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2056 } 2057 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2058 kfree_skb_reason(skb, drop_reason); 2059 trace_udp_fail_queue_rcv_skb(rc, sk); 2060 return -1; 2061 } 2062 2063 return 0; 2064 } 2065 2066 /* returns: 2067 * -1: error 2068 * 0: success 2069 * >0: "udp encap" protocol resubmission 2070 * 2071 * Note that in the success and error cases, the skb is assumed to 2072 * have either been requeued or freed. 2073 */ 2074 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2075 { 2076 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2077 struct udp_sock *up = udp_sk(sk); 2078 int is_udplite = IS_UDPLITE(sk); 2079 2080 /* 2081 * Charge it to the socket, dropping if the queue is full. 2082 */ 2083 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2084 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2085 goto drop; 2086 } 2087 nf_reset_ct(skb); 2088 2089 if (static_branch_unlikely(&udp_encap_needed_key) && 2090 READ_ONCE(up->encap_type)) { 2091 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2092 2093 /* 2094 * This is an encapsulation socket so pass the skb to 2095 * the socket's udp_encap_rcv() hook. Otherwise, just 2096 * fall through and pass this up the UDP socket. 2097 * up->encap_rcv() returns the following value: 2098 * =0 if skb was successfully passed to the encap 2099 * handler or was discarded by it. 2100 * >0 if skb should be passed on to UDP. 2101 * <0 if skb should be resubmitted as proto -N 2102 */ 2103 2104 /* if we're overly short, let UDP handle it */ 2105 encap_rcv = READ_ONCE(up->encap_rcv); 2106 if (encap_rcv) { 2107 int ret; 2108 2109 /* Verify checksum before giving to encap */ 2110 if (udp_lib_checksum_complete(skb)) 2111 goto csum_error; 2112 2113 ret = encap_rcv(sk, skb); 2114 if (ret <= 0) { 2115 __UDP_INC_STATS(sock_net(sk), 2116 UDP_MIB_INDATAGRAMS, 2117 is_udplite); 2118 return -ret; 2119 } 2120 } 2121 2122 /* FALLTHROUGH -- it's a UDP Packet */ 2123 } 2124 2125 /* 2126 * UDP-Lite specific tests, ignored on UDP sockets 2127 */ 2128 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2129 u16 pcrlen = READ_ONCE(up->pcrlen); 2130 2131 /* 2132 * MIB statistics other than incrementing the error count are 2133 * disabled for the following two types of errors: these depend 2134 * on the application settings, not on the functioning of the 2135 * protocol stack as such. 2136 * 2137 * RFC 3828 here recommends (sec 3.3): "There should also be a 2138 * way ... to ... at least let the receiving application block 2139 * delivery of packets with coverage values less than a value 2140 * provided by the application." 2141 */ 2142 if (pcrlen == 0) { /* full coverage was set */ 2143 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2144 UDP_SKB_CB(skb)->cscov, skb->len); 2145 goto drop; 2146 } 2147 /* The next case involves violating the min. coverage requested 2148 * by the receiver. This is subtle: if receiver wants x and x is 2149 * greater than the buffersize/MTU then receiver will complain 2150 * that it wants x while sender emits packets of smaller size y. 2151 * Therefore the above ...()->partial_cov statement is essential. 2152 */ 2153 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2154 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2155 UDP_SKB_CB(skb)->cscov, pcrlen); 2156 goto drop; 2157 } 2158 } 2159 2160 prefetch(&sk->sk_rmem_alloc); 2161 if (rcu_access_pointer(sk->sk_filter) && 2162 udp_lib_checksum_complete(skb)) 2163 goto csum_error; 2164 2165 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2166 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2167 goto drop; 2168 } 2169 2170 udp_csum_pull_header(skb); 2171 2172 ipv4_pktinfo_prepare(sk, skb); 2173 return __udp_queue_rcv_skb(sk, skb); 2174 2175 csum_error: 2176 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2177 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2178 drop: 2179 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2180 atomic_inc(&sk->sk_drops); 2181 kfree_skb_reason(skb, drop_reason); 2182 return -1; 2183 } 2184 2185 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2186 { 2187 struct sk_buff *next, *segs; 2188 int ret; 2189 2190 if (likely(!udp_unexpected_gso(sk, skb))) 2191 return udp_queue_rcv_one_skb(sk, skb); 2192 2193 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2194 __skb_push(skb, -skb_mac_offset(skb)); 2195 segs = udp_rcv_segment(sk, skb, true); 2196 skb_list_walk_safe(segs, skb, next) { 2197 __skb_pull(skb, skb_transport_offset(skb)); 2198 2199 udp_post_segment_fix_csum(skb); 2200 ret = udp_queue_rcv_one_skb(sk, skb); 2201 if (ret > 0) 2202 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2203 } 2204 return 0; 2205 } 2206 2207 /* For TCP sockets, sk_rx_dst is protected by socket lock 2208 * For UDP, we use xchg() to guard against concurrent changes. 2209 */ 2210 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2211 { 2212 struct dst_entry *old; 2213 2214 if (dst_hold_safe(dst)) { 2215 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); 2216 dst_release(old); 2217 return old != dst; 2218 } 2219 return false; 2220 } 2221 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2222 2223 /* 2224 * Multicasts and broadcasts go to each listener. 2225 * 2226 * Note: called only from the BH handler context. 2227 */ 2228 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2229 struct udphdr *uh, 2230 __be32 saddr, __be32 daddr, 2231 struct udp_table *udptable, 2232 int proto) 2233 { 2234 struct sock *sk, *first = NULL; 2235 unsigned short hnum = ntohs(uh->dest); 2236 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2237 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2238 unsigned int offset = offsetof(typeof(*sk), sk_node); 2239 int dif = skb->dev->ifindex; 2240 int sdif = inet_sdif(skb); 2241 struct hlist_node *node; 2242 struct sk_buff *nskb; 2243 2244 if (use_hash2) { 2245 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2246 udptable->mask; 2247 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2248 start_lookup: 2249 hslot = &udptable->hash2[hash2]; 2250 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2251 } 2252 2253 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2254 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2255 uh->source, saddr, dif, sdif, hnum)) 2256 continue; 2257 2258 if (!first) { 2259 first = sk; 2260 continue; 2261 } 2262 nskb = skb_clone(skb, GFP_ATOMIC); 2263 2264 if (unlikely(!nskb)) { 2265 atomic_inc(&sk->sk_drops); 2266 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2267 IS_UDPLITE(sk)); 2268 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2269 IS_UDPLITE(sk)); 2270 continue; 2271 } 2272 if (udp_queue_rcv_skb(sk, nskb) > 0) 2273 consume_skb(nskb); 2274 } 2275 2276 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2277 if (use_hash2 && hash2 != hash2_any) { 2278 hash2 = hash2_any; 2279 goto start_lookup; 2280 } 2281 2282 if (first) { 2283 if (udp_queue_rcv_skb(first, skb) > 0) 2284 consume_skb(skb); 2285 } else { 2286 kfree_skb(skb); 2287 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2288 proto == IPPROTO_UDPLITE); 2289 } 2290 return 0; 2291 } 2292 2293 /* Initialize UDP checksum. If exited with zero value (success), 2294 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2295 * Otherwise, csum completion requires checksumming packet body, 2296 * including udp header and folding it to skb->csum. 2297 */ 2298 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2299 int proto) 2300 { 2301 int err; 2302 2303 UDP_SKB_CB(skb)->partial_cov = 0; 2304 UDP_SKB_CB(skb)->cscov = skb->len; 2305 2306 if (proto == IPPROTO_UDPLITE) { 2307 err = udplite_checksum_init(skb, uh); 2308 if (err) 2309 return err; 2310 2311 if (UDP_SKB_CB(skb)->partial_cov) { 2312 skb->csum = inet_compute_pseudo(skb, proto); 2313 return 0; 2314 } 2315 } 2316 2317 /* Note, we are only interested in != 0 or == 0, thus the 2318 * force to int. 2319 */ 2320 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2321 inet_compute_pseudo); 2322 if (err) 2323 return err; 2324 2325 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2326 /* If SW calculated the value, we know it's bad */ 2327 if (skb->csum_complete_sw) 2328 return 1; 2329 2330 /* HW says the value is bad. Let's validate that. 2331 * skb->csum is no longer the full packet checksum, 2332 * so don't treat it as such. 2333 */ 2334 skb_checksum_complete_unset(skb); 2335 } 2336 2337 return 0; 2338 } 2339 2340 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2341 * return code conversion for ip layer consumption 2342 */ 2343 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2344 struct udphdr *uh) 2345 { 2346 int ret; 2347 2348 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2349 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2350 2351 ret = udp_queue_rcv_skb(sk, skb); 2352 2353 /* a return value > 0 means to resubmit the input, but 2354 * it wants the return to be -protocol, or 0 2355 */ 2356 if (ret > 0) 2357 return -ret; 2358 return 0; 2359 } 2360 2361 /* 2362 * All we need to do is get the socket, and then do a checksum. 2363 */ 2364 2365 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2366 int proto) 2367 { 2368 struct sock *sk; 2369 struct udphdr *uh; 2370 unsigned short ulen; 2371 struct rtable *rt = skb_rtable(skb); 2372 __be32 saddr, daddr; 2373 struct net *net = dev_net(skb->dev); 2374 bool refcounted; 2375 int drop_reason; 2376 2377 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2378 2379 /* 2380 * Validate the packet. 2381 */ 2382 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2383 goto drop; /* No space for header. */ 2384 2385 uh = udp_hdr(skb); 2386 ulen = ntohs(uh->len); 2387 saddr = ip_hdr(skb)->saddr; 2388 daddr = ip_hdr(skb)->daddr; 2389 2390 if (ulen > skb->len) 2391 goto short_packet; 2392 2393 if (proto == IPPROTO_UDP) { 2394 /* UDP validates ulen. */ 2395 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2396 goto short_packet; 2397 uh = udp_hdr(skb); 2398 } 2399 2400 if (udp4_csum_init(skb, uh, proto)) 2401 goto csum_error; 2402 2403 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2404 &refcounted, udp_ehashfn); 2405 if (IS_ERR(sk)) 2406 goto no_sk; 2407 2408 if (sk) { 2409 struct dst_entry *dst = skb_dst(skb); 2410 int ret; 2411 2412 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2413 udp_sk_rx_dst_set(sk, dst); 2414 2415 ret = udp_unicast_rcv_skb(sk, skb, uh); 2416 if (refcounted) 2417 sock_put(sk); 2418 return ret; 2419 } 2420 2421 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2422 return __udp4_lib_mcast_deliver(net, skb, uh, 2423 saddr, daddr, udptable, proto); 2424 2425 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2426 if (sk) 2427 return udp_unicast_rcv_skb(sk, skb, uh); 2428 no_sk: 2429 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2430 goto drop; 2431 nf_reset_ct(skb); 2432 2433 /* No socket. Drop packet silently, if checksum is wrong */ 2434 if (udp_lib_checksum_complete(skb)) 2435 goto csum_error; 2436 2437 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2438 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2439 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2440 2441 /* 2442 * Hmm. We got an UDP packet to a port to which we 2443 * don't wanna listen. Ignore it. 2444 */ 2445 kfree_skb_reason(skb, drop_reason); 2446 return 0; 2447 2448 short_packet: 2449 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2450 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2451 proto == IPPROTO_UDPLITE ? "Lite" : "", 2452 &saddr, ntohs(uh->source), 2453 ulen, skb->len, 2454 &daddr, ntohs(uh->dest)); 2455 goto drop; 2456 2457 csum_error: 2458 /* 2459 * RFC1122: OK. Discards the bad packet silently (as far as 2460 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2461 */ 2462 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2463 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2464 proto == IPPROTO_UDPLITE ? "Lite" : "", 2465 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2466 ulen); 2467 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2468 drop: 2469 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2470 kfree_skb_reason(skb, drop_reason); 2471 return 0; 2472 } 2473 2474 /* We can only early demux multicast if there is a single matching socket. 2475 * If more than one socket found returns NULL 2476 */ 2477 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2478 __be16 loc_port, __be32 loc_addr, 2479 __be16 rmt_port, __be32 rmt_addr, 2480 int dif, int sdif) 2481 { 2482 struct udp_table *udptable = net->ipv4.udp_table; 2483 unsigned short hnum = ntohs(loc_port); 2484 struct sock *sk, *result; 2485 struct udp_hslot *hslot; 2486 unsigned int slot; 2487 2488 slot = udp_hashfn(net, hnum, udptable->mask); 2489 hslot = &udptable->hash[slot]; 2490 2491 /* Do not bother scanning a too big list */ 2492 if (hslot->count > 10) 2493 return NULL; 2494 2495 result = NULL; 2496 sk_for_each_rcu(sk, &hslot->head) { 2497 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2498 rmt_port, rmt_addr, dif, sdif, hnum)) { 2499 if (result) 2500 return NULL; 2501 result = sk; 2502 } 2503 } 2504 2505 return result; 2506 } 2507 2508 /* For unicast we should only early demux connected sockets or we can 2509 * break forwarding setups. The chains here can be long so only check 2510 * if the first socket is an exact match and if not move on. 2511 */ 2512 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2513 __be16 loc_port, __be32 loc_addr, 2514 __be16 rmt_port, __be32 rmt_addr, 2515 int dif, int sdif) 2516 { 2517 struct udp_table *udptable = net->ipv4.udp_table; 2518 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2519 unsigned short hnum = ntohs(loc_port); 2520 unsigned int hash2, slot2; 2521 struct udp_hslot *hslot2; 2522 __portpair ports; 2523 struct sock *sk; 2524 2525 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2526 slot2 = hash2 & udptable->mask; 2527 hslot2 = &udptable->hash2[slot2]; 2528 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2529 2530 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2531 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2532 return sk; 2533 /* Only check first socket in chain */ 2534 break; 2535 } 2536 return NULL; 2537 } 2538 2539 int udp_v4_early_demux(struct sk_buff *skb) 2540 { 2541 struct net *net = dev_net(skb->dev); 2542 struct in_device *in_dev = NULL; 2543 const struct iphdr *iph; 2544 const struct udphdr *uh; 2545 struct sock *sk = NULL; 2546 struct dst_entry *dst; 2547 int dif = skb->dev->ifindex; 2548 int sdif = inet_sdif(skb); 2549 int ours; 2550 2551 /* validate the packet */ 2552 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2553 return 0; 2554 2555 iph = ip_hdr(skb); 2556 uh = udp_hdr(skb); 2557 2558 if (skb->pkt_type == PACKET_MULTICAST) { 2559 in_dev = __in_dev_get_rcu(skb->dev); 2560 2561 if (!in_dev) 2562 return 0; 2563 2564 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2565 iph->protocol); 2566 if (!ours) 2567 return 0; 2568 2569 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2570 uh->source, iph->saddr, 2571 dif, sdif); 2572 } else if (skb->pkt_type == PACKET_HOST) { 2573 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2574 uh->source, iph->saddr, dif, sdif); 2575 } 2576 2577 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2578 return 0; 2579 2580 skb->sk = sk; 2581 skb->destructor = sock_efree; 2582 dst = rcu_dereference(sk->sk_rx_dst); 2583 2584 if (dst) 2585 dst = dst_check(dst, 0); 2586 if (dst) { 2587 u32 itag = 0; 2588 2589 /* set noref for now. 2590 * any place which wants to hold dst has to call 2591 * dst_hold_safe() 2592 */ 2593 skb_dst_set_noref(skb, dst); 2594 2595 /* for unconnected multicast sockets we need to validate 2596 * the source on each packet 2597 */ 2598 if (!inet_sk(sk)->inet_daddr && in_dev) 2599 return ip_mc_validate_source(skb, iph->daddr, 2600 iph->saddr, 2601 iph->tos & IPTOS_RT_MASK, 2602 skb->dev, in_dev, &itag); 2603 } 2604 return 0; 2605 } 2606 2607 int udp_rcv(struct sk_buff *skb) 2608 { 2609 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2610 } 2611 2612 void udp_destroy_sock(struct sock *sk) 2613 { 2614 struct udp_sock *up = udp_sk(sk); 2615 bool slow = lock_sock_fast(sk); 2616 2617 /* protects from races with udp_abort() */ 2618 sock_set_flag(sk, SOCK_DEAD); 2619 udp_flush_pending_frames(sk); 2620 unlock_sock_fast(sk, slow); 2621 if (static_branch_unlikely(&udp_encap_needed_key)) { 2622 if (up->encap_type) { 2623 void (*encap_destroy)(struct sock *sk); 2624 encap_destroy = READ_ONCE(up->encap_destroy); 2625 if (encap_destroy) 2626 encap_destroy(sk); 2627 } 2628 if (udp_test_bit(ENCAP_ENABLED, sk)) 2629 static_branch_dec(&udp_encap_needed_key); 2630 } 2631 } 2632 2633 /* 2634 * Socket option code for UDP 2635 */ 2636 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2637 sockptr_t optval, unsigned int optlen, 2638 int (*push_pending_frames)(struct sock *)) 2639 { 2640 struct udp_sock *up = udp_sk(sk); 2641 int val, valbool; 2642 int err = 0; 2643 int is_udplite = IS_UDPLITE(sk); 2644 2645 if (level == SOL_SOCKET) { 2646 err = sk_setsockopt(sk, level, optname, optval, optlen); 2647 2648 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2649 sockopt_lock_sock(sk); 2650 /* paired with READ_ONCE in udp_rmem_release() */ 2651 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2652 sockopt_release_sock(sk); 2653 } 2654 return err; 2655 } 2656 2657 if (optlen < sizeof(int)) 2658 return -EINVAL; 2659 2660 if (copy_from_sockptr(&val, optval, sizeof(val))) 2661 return -EFAULT; 2662 2663 valbool = val ? 1 : 0; 2664 2665 switch (optname) { 2666 case UDP_CORK: 2667 if (val != 0) { 2668 udp_set_bit(CORK, sk); 2669 } else { 2670 udp_clear_bit(CORK, sk); 2671 lock_sock(sk); 2672 push_pending_frames(sk); 2673 release_sock(sk); 2674 } 2675 break; 2676 2677 case UDP_ENCAP: 2678 switch (val) { 2679 case 0: 2680 #ifdef CONFIG_XFRM 2681 case UDP_ENCAP_ESPINUDP: 2682 case UDP_ENCAP_ESPINUDP_NON_IKE: 2683 #if IS_ENABLED(CONFIG_IPV6) 2684 if (sk->sk_family == AF_INET6) 2685 WRITE_ONCE(up->encap_rcv, 2686 ipv6_stub->xfrm6_udp_encap_rcv); 2687 else 2688 #endif 2689 WRITE_ONCE(up->encap_rcv, 2690 xfrm4_udp_encap_rcv); 2691 #endif 2692 fallthrough; 2693 case UDP_ENCAP_L2TPINUDP: 2694 WRITE_ONCE(up->encap_type, val); 2695 udp_tunnel_encap_enable(sk); 2696 break; 2697 default: 2698 err = -ENOPROTOOPT; 2699 break; 2700 } 2701 break; 2702 2703 case UDP_NO_CHECK6_TX: 2704 udp_set_no_check6_tx(sk, valbool); 2705 break; 2706 2707 case UDP_NO_CHECK6_RX: 2708 udp_set_no_check6_rx(sk, valbool); 2709 break; 2710 2711 case UDP_SEGMENT: 2712 if (val < 0 || val > USHRT_MAX) 2713 return -EINVAL; 2714 WRITE_ONCE(up->gso_size, val); 2715 break; 2716 2717 case UDP_GRO: 2718 2719 /* when enabling GRO, accept the related GSO packet type */ 2720 if (valbool) 2721 udp_tunnel_encap_enable(sk); 2722 udp_assign_bit(GRO_ENABLED, sk, valbool); 2723 udp_assign_bit(ACCEPT_L4, sk, valbool); 2724 break; 2725 2726 /* 2727 * UDP-Lite's partial checksum coverage (RFC 3828). 2728 */ 2729 /* The sender sets actual checksum coverage length via this option. 2730 * The case coverage > packet length is handled by send module. */ 2731 case UDPLITE_SEND_CSCOV: 2732 if (!is_udplite) /* Disable the option on UDP sockets */ 2733 return -ENOPROTOOPT; 2734 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2735 val = 8; 2736 else if (val > USHRT_MAX) 2737 val = USHRT_MAX; 2738 WRITE_ONCE(up->pcslen, val); 2739 udp_set_bit(UDPLITE_SEND_CC, sk); 2740 break; 2741 2742 /* The receiver specifies a minimum checksum coverage value. To make 2743 * sense, this should be set to at least 8 (as done below). If zero is 2744 * used, this again means full checksum coverage. */ 2745 case UDPLITE_RECV_CSCOV: 2746 if (!is_udplite) /* Disable the option on UDP sockets */ 2747 return -ENOPROTOOPT; 2748 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2749 val = 8; 2750 else if (val > USHRT_MAX) 2751 val = USHRT_MAX; 2752 WRITE_ONCE(up->pcrlen, val); 2753 udp_set_bit(UDPLITE_RECV_CC, sk); 2754 break; 2755 2756 default: 2757 err = -ENOPROTOOPT; 2758 break; 2759 } 2760 2761 return err; 2762 } 2763 EXPORT_SYMBOL(udp_lib_setsockopt); 2764 2765 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 2766 unsigned int optlen) 2767 { 2768 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 2769 return udp_lib_setsockopt(sk, level, optname, 2770 optval, optlen, 2771 udp_push_pending_frames); 2772 return ip_setsockopt(sk, level, optname, optval, optlen); 2773 } 2774 2775 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2776 char __user *optval, int __user *optlen) 2777 { 2778 struct udp_sock *up = udp_sk(sk); 2779 int val, len; 2780 2781 if (get_user(len, optlen)) 2782 return -EFAULT; 2783 2784 len = min_t(unsigned int, len, sizeof(int)); 2785 2786 if (len < 0) 2787 return -EINVAL; 2788 2789 switch (optname) { 2790 case UDP_CORK: 2791 val = udp_test_bit(CORK, sk); 2792 break; 2793 2794 case UDP_ENCAP: 2795 val = READ_ONCE(up->encap_type); 2796 break; 2797 2798 case UDP_NO_CHECK6_TX: 2799 val = udp_get_no_check6_tx(sk); 2800 break; 2801 2802 case UDP_NO_CHECK6_RX: 2803 val = udp_get_no_check6_rx(sk); 2804 break; 2805 2806 case UDP_SEGMENT: 2807 val = READ_ONCE(up->gso_size); 2808 break; 2809 2810 case UDP_GRO: 2811 val = udp_test_bit(GRO_ENABLED, sk); 2812 break; 2813 2814 /* The following two cannot be changed on UDP sockets, the return is 2815 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2816 case UDPLITE_SEND_CSCOV: 2817 val = READ_ONCE(up->pcslen); 2818 break; 2819 2820 case UDPLITE_RECV_CSCOV: 2821 val = READ_ONCE(up->pcrlen); 2822 break; 2823 2824 default: 2825 return -ENOPROTOOPT; 2826 } 2827 2828 if (put_user(len, optlen)) 2829 return -EFAULT; 2830 if (copy_to_user(optval, &val, len)) 2831 return -EFAULT; 2832 return 0; 2833 } 2834 EXPORT_SYMBOL(udp_lib_getsockopt); 2835 2836 int udp_getsockopt(struct sock *sk, int level, int optname, 2837 char __user *optval, int __user *optlen) 2838 { 2839 if (level == SOL_UDP || level == SOL_UDPLITE) 2840 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2841 return ip_getsockopt(sk, level, optname, optval, optlen); 2842 } 2843 2844 /** 2845 * udp_poll - wait for a UDP event. 2846 * @file: - file struct 2847 * @sock: - socket 2848 * @wait: - poll table 2849 * 2850 * This is same as datagram poll, except for the special case of 2851 * blocking sockets. If application is using a blocking fd 2852 * and a packet with checksum error is in the queue; 2853 * then it could get return from select indicating data available 2854 * but then block when reading it. Add special case code 2855 * to work around these arguably broken applications. 2856 */ 2857 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2858 { 2859 __poll_t mask = datagram_poll(file, sock, wait); 2860 struct sock *sk = sock->sk; 2861 2862 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 2863 mask |= EPOLLIN | EPOLLRDNORM; 2864 2865 /* Check for false positives due to checksum errors */ 2866 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2867 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2868 mask &= ~(EPOLLIN | EPOLLRDNORM); 2869 2870 /* psock ingress_msg queue should not contain any bad checksum frames */ 2871 if (sk_is_readable(sk)) 2872 mask |= EPOLLIN | EPOLLRDNORM; 2873 return mask; 2874 2875 } 2876 EXPORT_SYMBOL(udp_poll); 2877 2878 int udp_abort(struct sock *sk, int err) 2879 { 2880 if (!has_current_bpf_ctx()) 2881 lock_sock(sk); 2882 2883 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 2884 * with close() 2885 */ 2886 if (sock_flag(sk, SOCK_DEAD)) 2887 goto out; 2888 2889 sk->sk_err = err; 2890 sk_error_report(sk); 2891 __udp_disconnect(sk, 0); 2892 2893 out: 2894 if (!has_current_bpf_ctx()) 2895 release_sock(sk); 2896 2897 return 0; 2898 } 2899 EXPORT_SYMBOL_GPL(udp_abort); 2900 2901 struct proto udp_prot = { 2902 .name = "UDP", 2903 .owner = THIS_MODULE, 2904 .close = udp_lib_close, 2905 .pre_connect = udp_pre_connect, 2906 .connect = ip4_datagram_connect, 2907 .disconnect = udp_disconnect, 2908 .ioctl = udp_ioctl, 2909 .init = udp_init_sock, 2910 .destroy = udp_destroy_sock, 2911 .setsockopt = udp_setsockopt, 2912 .getsockopt = udp_getsockopt, 2913 .sendmsg = udp_sendmsg, 2914 .recvmsg = udp_recvmsg, 2915 .splice_eof = udp_splice_eof, 2916 .release_cb = ip4_datagram_release_cb, 2917 .hash = udp_lib_hash, 2918 .unhash = udp_lib_unhash, 2919 .rehash = udp_v4_rehash, 2920 .get_port = udp_v4_get_port, 2921 .put_port = udp_lib_unhash, 2922 #ifdef CONFIG_BPF_SYSCALL 2923 .psock_update_sk_prot = udp_bpf_update_proto, 2924 #endif 2925 .memory_allocated = &udp_memory_allocated, 2926 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 2927 2928 .sysctl_mem = sysctl_udp_mem, 2929 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2930 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2931 .obj_size = sizeof(struct udp_sock), 2932 .h.udp_table = NULL, 2933 .diag_destroy = udp_abort, 2934 }; 2935 EXPORT_SYMBOL(udp_prot); 2936 2937 /* ------------------------------------------------------------------------ */ 2938 #ifdef CONFIG_PROC_FS 2939 2940 static unsigned short seq_file_family(const struct seq_file *seq); 2941 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2942 { 2943 unsigned short family = seq_file_family(seq); 2944 2945 /* AF_UNSPEC is used as a match all */ 2946 return ((family == AF_UNSPEC || family == sk->sk_family) && 2947 net_eq(sock_net(sk), seq_file_net(seq))); 2948 } 2949 2950 #ifdef CONFIG_BPF_SYSCALL 2951 static const struct seq_operations bpf_iter_udp_seq_ops; 2952 #endif 2953 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 2954 struct net *net) 2955 { 2956 const struct udp_seq_afinfo *afinfo; 2957 2958 #ifdef CONFIG_BPF_SYSCALL 2959 if (seq->op == &bpf_iter_udp_seq_ops) 2960 return net->ipv4.udp_table; 2961 #endif 2962 2963 afinfo = pde_data(file_inode(seq->file)); 2964 return afinfo->udp_table ? : net->ipv4.udp_table; 2965 } 2966 2967 static struct sock *udp_get_first(struct seq_file *seq, int start) 2968 { 2969 struct udp_iter_state *state = seq->private; 2970 struct net *net = seq_file_net(seq); 2971 struct udp_table *udptable; 2972 struct sock *sk; 2973 2974 udptable = udp_get_table_seq(seq, net); 2975 2976 for (state->bucket = start; state->bucket <= udptable->mask; 2977 ++state->bucket) { 2978 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 2979 2980 if (hlist_empty(&hslot->head)) 2981 continue; 2982 2983 spin_lock_bh(&hslot->lock); 2984 sk_for_each(sk, &hslot->head) { 2985 if (seq_sk_match(seq, sk)) 2986 goto found; 2987 } 2988 spin_unlock_bh(&hslot->lock); 2989 } 2990 sk = NULL; 2991 found: 2992 return sk; 2993 } 2994 2995 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2996 { 2997 struct udp_iter_state *state = seq->private; 2998 struct net *net = seq_file_net(seq); 2999 struct udp_table *udptable; 3000 3001 do { 3002 sk = sk_next(sk); 3003 } while (sk && !seq_sk_match(seq, sk)); 3004 3005 if (!sk) { 3006 udptable = udp_get_table_seq(seq, net); 3007 3008 if (state->bucket <= udptable->mask) 3009 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3010 3011 return udp_get_first(seq, state->bucket + 1); 3012 } 3013 return sk; 3014 } 3015 3016 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3017 { 3018 struct sock *sk = udp_get_first(seq, 0); 3019 3020 if (sk) 3021 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3022 --pos; 3023 return pos ? NULL : sk; 3024 } 3025 3026 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3027 { 3028 struct udp_iter_state *state = seq->private; 3029 state->bucket = MAX_UDP_PORTS; 3030 3031 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3032 } 3033 EXPORT_SYMBOL(udp_seq_start); 3034 3035 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3036 { 3037 struct sock *sk; 3038 3039 if (v == SEQ_START_TOKEN) 3040 sk = udp_get_idx(seq, 0); 3041 else 3042 sk = udp_get_next(seq, v); 3043 3044 ++*pos; 3045 return sk; 3046 } 3047 EXPORT_SYMBOL(udp_seq_next); 3048 3049 void udp_seq_stop(struct seq_file *seq, void *v) 3050 { 3051 struct udp_iter_state *state = seq->private; 3052 struct udp_table *udptable; 3053 3054 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3055 3056 if (state->bucket <= udptable->mask) 3057 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3058 } 3059 EXPORT_SYMBOL(udp_seq_stop); 3060 3061 /* ------------------------------------------------------------------------ */ 3062 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3063 int bucket) 3064 { 3065 struct inet_sock *inet = inet_sk(sp); 3066 __be32 dest = inet->inet_daddr; 3067 __be32 src = inet->inet_rcv_saddr; 3068 __u16 destp = ntohs(inet->inet_dport); 3069 __u16 srcp = ntohs(inet->inet_sport); 3070 3071 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3072 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3073 bucket, src, srcp, dest, destp, sp->sk_state, 3074 sk_wmem_alloc_get(sp), 3075 udp_rqueue_get(sp), 3076 0, 0L, 0, 3077 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3078 0, sock_i_ino(sp), 3079 refcount_read(&sp->sk_refcnt), sp, 3080 atomic_read(&sp->sk_drops)); 3081 } 3082 3083 int udp4_seq_show(struct seq_file *seq, void *v) 3084 { 3085 seq_setwidth(seq, 127); 3086 if (v == SEQ_START_TOKEN) 3087 seq_puts(seq, " sl local_address rem_address st tx_queue " 3088 "rx_queue tr tm->when retrnsmt uid timeout " 3089 "inode ref pointer drops"); 3090 else { 3091 struct udp_iter_state *state = seq->private; 3092 3093 udp4_format_sock(v, seq, state->bucket); 3094 } 3095 seq_pad(seq, '\n'); 3096 return 0; 3097 } 3098 3099 #ifdef CONFIG_BPF_SYSCALL 3100 struct bpf_iter__udp { 3101 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3102 __bpf_md_ptr(struct udp_sock *, udp_sk); 3103 uid_t uid __aligned(8); 3104 int bucket __aligned(8); 3105 }; 3106 3107 struct bpf_udp_iter_state { 3108 struct udp_iter_state state; 3109 unsigned int cur_sk; 3110 unsigned int end_sk; 3111 unsigned int max_sk; 3112 int offset; 3113 struct sock **batch; 3114 bool st_bucket_done; 3115 }; 3116 3117 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3118 unsigned int new_batch_sz); 3119 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3120 { 3121 struct bpf_udp_iter_state *iter = seq->private; 3122 struct udp_iter_state *state = &iter->state; 3123 struct net *net = seq_file_net(seq); 3124 struct udp_table *udptable; 3125 unsigned int batch_sks = 0; 3126 bool resized = false; 3127 struct sock *sk; 3128 3129 /* The current batch is done, so advance the bucket. */ 3130 if (iter->st_bucket_done) { 3131 state->bucket++; 3132 iter->offset = 0; 3133 } 3134 3135 udptable = udp_get_table_seq(seq, net); 3136 3137 again: 3138 /* New batch for the next bucket. 3139 * Iterate over the hash table to find a bucket with sockets matching 3140 * the iterator attributes, and return the first matching socket from 3141 * the bucket. The remaining matched sockets from the bucket are batched 3142 * before releasing the bucket lock. This allows BPF programs that are 3143 * called in seq_show to acquire the bucket lock if needed. 3144 */ 3145 iter->cur_sk = 0; 3146 iter->end_sk = 0; 3147 iter->st_bucket_done = false; 3148 batch_sks = 0; 3149 3150 for (; state->bucket <= udptable->mask; state->bucket++) { 3151 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; 3152 3153 if (hlist_empty(&hslot2->head)) { 3154 iter->offset = 0; 3155 continue; 3156 } 3157 3158 spin_lock_bh(&hslot2->lock); 3159 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3160 if (seq_sk_match(seq, sk)) { 3161 /* Resume from the last iterated socket at the 3162 * offset in the bucket before iterator was stopped. 3163 */ 3164 if (iter->offset) { 3165 --iter->offset; 3166 continue; 3167 } 3168 if (iter->end_sk < iter->max_sk) { 3169 sock_hold(sk); 3170 iter->batch[iter->end_sk++] = sk; 3171 } 3172 batch_sks++; 3173 } 3174 } 3175 spin_unlock_bh(&hslot2->lock); 3176 3177 if (iter->end_sk) 3178 break; 3179 3180 /* Reset the current bucket's offset before moving to the next bucket. */ 3181 iter->offset = 0; 3182 } 3183 3184 /* All done: no batch made. */ 3185 if (!iter->end_sk) 3186 return NULL; 3187 3188 if (iter->end_sk == batch_sks) { 3189 /* Batching is done for the current bucket; return the first 3190 * socket to be iterated from the batch. 3191 */ 3192 iter->st_bucket_done = true; 3193 goto done; 3194 } 3195 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3196 resized = true; 3197 /* After allocating a larger batch, retry one more time to grab 3198 * the whole bucket. 3199 */ 3200 state->bucket--; 3201 goto again; 3202 } 3203 done: 3204 return iter->batch[0]; 3205 } 3206 3207 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3208 { 3209 struct bpf_udp_iter_state *iter = seq->private; 3210 struct sock *sk; 3211 3212 /* Whenever seq_next() is called, the iter->cur_sk is 3213 * done with seq_show(), so unref the iter->cur_sk. 3214 */ 3215 if (iter->cur_sk < iter->end_sk) { 3216 sock_put(iter->batch[iter->cur_sk++]); 3217 ++iter->offset; 3218 } 3219 3220 /* After updating iter->cur_sk, check if there are more sockets 3221 * available in the current bucket batch. 3222 */ 3223 if (iter->cur_sk < iter->end_sk) 3224 sk = iter->batch[iter->cur_sk]; 3225 else 3226 /* Prepare a new batch. */ 3227 sk = bpf_iter_udp_batch(seq); 3228 3229 ++*pos; 3230 return sk; 3231 } 3232 3233 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3234 { 3235 /* bpf iter does not support lseek, so it always 3236 * continue from where it was stop()-ped. 3237 */ 3238 if (*pos) 3239 return bpf_iter_udp_batch(seq); 3240 3241 return SEQ_START_TOKEN; 3242 } 3243 3244 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3245 struct udp_sock *udp_sk, uid_t uid, int bucket) 3246 { 3247 struct bpf_iter__udp ctx; 3248 3249 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3250 ctx.meta = meta; 3251 ctx.udp_sk = udp_sk; 3252 ctx.uid = uid; 3253 ctx.bucket = bucket; 3254 return bpf_iter_run_prog(prog, &ctx); 3255 } 3256 3257 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3258 { 3259 struct udp_iter_state *state = seq->private; 3260 struct bpf_iter_meta meta; 3261 struct bpf_prog *prog; 3262 struct sock *sk = v; 3263 uid_t uid; 3264 int ret; 3265 3266 if (v == SEQ_START_TOKEN) 3267 return 0; 3268 3269 lock_sock(sk); 3270 3271 if (unlikely(sk_unhashed(sk))) { 3272 ret = SEQ_SKIP; 3273 goto unlock; 3274 } 3275 3276 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3277 meta.seq = seq; 3278 prog = bpf_iter_get_info(&meta, false); 3279 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3280 3281 unlock: 3282 release_sock(sk); 3283 return ret; 3284 } 3285 3286 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3287 { 3288 while (iter->cur_sk < iter->end_sk) 3289 sock_put(iter->batch[iter->cur_sk++]); 3290 } 3291 3292 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3293 { 3294 struct bpf_udp_iter_state *iter = seq->private; 3295 struct bpf_iter_meta meta; 3296 struct bpf_prog *prog; 3297 3298 if (!v) { 3299 meta.seq = seq; 3300 prog = bpf_iter_get_info(&meta, true); 3301 if (prog) 3302 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3303 } 3304 3305 if (iter->cur_sk < iter->end_sk) { 3306 bpf_iter_udp_put_batch(iter); 3307 iter->st_bucket_done = false; 3308 } 3309 } 3310 3311 static const struct seq_operations bpf_iter_udp_seq_ops = { 3312 .start = bpf_iter_udp_seq_start, 3313 .next = bpf_iter_udp_seq_next, 3314 .stop = bpf_iter_udp_seq_stop, 3315 .show = bpf_iter_udp_seq_show, 3316 }; 3317 #endif 3318 3319 static unsigned short seq_file_family(const struct seq_file *seq) 3320 { 3321 const struct udp_seq_afinfo *afinfo; 3322 3323 #ifdef CONFIG_BPF_SYSCALL 3324 /* BPF iterator: bpf programs to filter sockets. */ 3325 if (seq->op == &bpf_iter_udp_seq_ops) 3326 return AF_UNSPEC; 3327 #endif 3328 3329 /* Proc fs iterator */ 3330 afinfo = pde_data(file_inode(seq->file)); 3331 return afinfo->family; 3332 } 3333 3334 const struct seq_operations udp_seq_ops = { 3335 .start = udp_seq_start, 3336 .next = udp_seq_next, 3337 .stop = udp_seq_stop, 3338 .show = udp4_seq_show, 3339 }; 3340 EXPORT_SYMBOL(udp_seq_ops); 3341 3342 static struct udp_seq_afinfo udp4_seq_afinfo = { 3343 .family = AF_INET, 3344 .udp_table = NULL, 3345 }; 3346 3347 static int __net_init udp4_proc_init_net(struct net *net) 3348 { 3349 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3350 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3351 return -ENOMEM; 3352 return 0; 3353 } 3354 3355 static void __net_exit udp4_proc_exit_net(struct net *net) 3356 { 3357 remove_proc_entry("udp", net->proc_net); 3358 } 3359 3360 static struct pernet_operations udp4_net_ops = { 3361 .init = udp4_proc_init_net, 3362 .exit = udp4_proc_exit_net, 3363 }; 3364 3365 int __init udp4_proc_init(void) 3366 { 3367 return register_pernet_subsys(&udp4_net_ops); 3368 } 3369 3370 void udp4_proc_exit(void) 3371 { 3372 unregister_pernet_subsys(&udp4_net_ops); 3373 } 3374 #endif /* CONFIG_PROC_FS */ 3375 3376 static __initdata unsigned long uhash_entries; 3377 static int __init set_uhash_entries(char *str) 3378 { 3379 ssize_t ret; 3380 3381 if (!str) 3382 return 0; 3383 3384 ret = kstrtoul(str, 0, &uhash_entries); 3385 if (ret) 3386 return 0; 3387 3388 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3389 uhash_entries = UDP_HTABLE_SIZE_MIN; 3390 return 1; 3391 } 3392 __setup("uhash_entries=", set_uhash_entries); 3393 3394 void __init udp_table_init(struct udp_table *table, const char *name) 3395 { 3396 unsigned int i; 3397 3398 table->hash = alloc_large_system_hash(name, 3399 2 * sizeof(struct udp_hslot), 3400 uhash_entries, 3401 21, /* one slot per 2 MB */ 3402 0, 3403 &table->log, 3404 &table->mask, 3405 UDP_HTABLE_SIZE_MIN, 3406 UDP_HTABLE_SIZE_MAX); 3407 3408 table->hash2 = table->hash + (table->mask + 1); 3409 for (i = 0; i <= table->mask; i++) { 3410 INIT_HLIST_HEAD(&table->hash[i].head); 3411 table->hash[i].count = 0; 3412 spin_lock_init(&table->hash[i].lock); 3413 } 3414 for (i = 0; i <= table->mask; i++) { 3415 INIT_HLIST_HEAD(&table->hash2[i].head); 3416 table->hash2[i].count = 0; 3417 spin_lock_init(&table->hash2[i].lock); 3418 } 3419 } 3420 3421 u32 udp_flow_hashrnd(void) 3422 { 3423 static u32 hashrnd __read_mostly; 3424 3425 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3426 3427 return hashrnd; 3428 } 3429 EXPORT_SYMBOL(udp_flow_hashrnd); 3430 3431 static void __net_init udp_sysctl_init(struct net *net) 3432 { 3433 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3434 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3435 3436 #ifdef CONFIG_NET_L3_MASTER_DEV 3437 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3438 #endif 3439 } 3440 3441 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3442 { 3443 struct udp_table *udptable; 3444 int i; 3445 3446 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3447 if (!udptable) 3448 goto out; 3449 3450 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot), 3451 GFP_KERNEL_ACCOUNT); 3452 if (!udptable->hash) 3453 goto free_table; 3454 3455 udptable->hash2 = udptable->hash + hash_entries; 3456 udptable->mask = hash_entries - 1; 3457 udptable->log = ilog2(hash_entries); 3458 3459 for (i = 0; i < hash_entries; i++) { 3460 INIT_HLIST_HEAD(&udptable->hash[i].head); 3461 udptable->hash[i].count = 0; 3462 spin_lock_init(&udptable->hash[i].lock); 3463 3464 INIT_HLIST_HEAD(&udptable->hash2[i].head); 3465 udptable->hash2[i].count = 0; 3466 spin_lock_init(&udptable->hash2[i].lock); 3467 } 3468 3469 return udptable; 3470 3471 free_table: 3472 kfree(udptable); 3473 out: 3474 return NULL; 3475 } 3476 3477 static void __net_exit udp_pernet_table_free(struct net *net) 3478 { 3479 struct udp_table *udptable = net->ipv4.udp_table; 3480 3481 if (udptable == &udp_table) 3482 return; 3483 3484 kvfree(udptable->hash); 3485 kfree(udptable); 3486 } 3487 3488 static void __net_init udp_set_table(struct net *net) 3489 { 3490 struct udp_table *udptable; 3491 unsigned int hash_entries; 3492 struct net *old_net; 3493 3494 if (net_eq(net, &init_net)) 3495 goto fallback; 3496 3497 old_net = current->nsproxy->net_ns; 3498 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3499 if (!hash_entries) 3500 goto fallback; 3501 3502 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3503 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3504 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3505 else 3506 hash_entries = roundup_pow_of_two(hash_entries); 3507 3508 udptable = udp_pernet_table_alloc(hash_entries); 3509 if (udptable) { 3510 net->ipv4.udp_table = udptable; 3511 } else { 3512 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3513 "for a netns, fallback to the global one\n", 3514 hash_entries); 3515 fallback: 3516 net->ipv4.udp_table = &udp_table; 3517 } 3518 } 3519 3520 static int __net_init udp_pernet_init(struct net *net) 3521 { 3522 udp_sysctl_init(net); 3523 udp_set_table(net); 3524 3525 return 0; 3526 } 3527 3528 static void __net_exit udp_pernet_exit(struct net *net) 3529 { 3530 udp_pernet_table_free(net); 3531 } 3532 3533 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3534 .init = udp_pernet_init, 3535 .exit = udp_pernet_exit, 3536 }; 3537 3538 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3539 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3540 struct udp_sock *udp_sk, uid_t uid, int bucket) 3541 3542 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3543 unsigned int new_batch_sz) 3544 { 3545 struct sock **new_batch; 3546 3547 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3548 GFP_USER | __GFP_NOWARN); 3549 if (!new_batch) 3550 return -ENOMEM; 3551 3552 bpf_iter_udp_put_batch(iter); 3553 kvfree(iter->batch); 3554 iter->batch = new_batch; 3555 iter->max_sk = new_batch_sz; 3556 3557 return 0; 3558 } 3559 3560 #define INIT_BATCH_SZ 16 3561 3562 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3563 { 3564 struct bpf_udp_iter_state *iter = priv_data; 3565 int ret; 3566 3567 ret = bpf_iter_init_seq_net(priv_data, aux); 3568 if (ret) 3569 return ret; 3570 3571 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3572 if (ret) 3573 bpf_iter_fini_seq_net(priv_data); 3574 3575 return ret; 3576 } 3577 3578 static void bpf_iter_fini_udp(void *priv_data) 3579 { 3580 struct bpf_udp_iter_state *iter = priv_data; 3581 3582 bpf_iter_fini_seq_net(priv_data); 3583 kvfree(iter->batch); 3584 } 3585 3586 static const struct bpf_iter_seq_info udp_seq_info = { 3587 .seq_ops = &bpf_iter_udp_seq_ops, 3588 .init_seq_private = bpf_iter_init_udp, 3589 .fini_seq_private = bpf_iter_fini_udp, 3590 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3591 }; 3592 3593 static struct bpf_iter_reg udp_reg_info = { 3594 .target = "udp", 3595 .ctx_arg_info_size = 1, 3596 .ctx_arg_info = { 3597 { offsetof(struct bpf_iter__udp, udp_sk), 3598 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3599 }, 3600 .seq_info = &udp_seq_info, 3601 }; 3602 3603 static void __init bpf_iter_register(void) 3604 { 3605 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3606 if (bpf_iter_reg_target(&udp_reg_info)) 3607 pr_warn("Warning: could not register bpf iterator udp\n"); 3608 } 3609 #endif 3610 3611 void __init udp_init(void) 3612 { 3613 unsigned long limit; 3614 unsigned int i; 3615 3616 udp_table_init(&udp_table, "UDP"); 3617 limit = nr_free_buffer_pages() / 8; 3618 limit = max(limit, 128UL); 3619 sysctl_udp_mem[0] = limit / 4 * 3; 3620 sysctl_udp_mem[1] = limit; 3621 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3622 3623 /* 16 spinlocks per cpu */ 3624 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3625 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3626 GFP_KERNEL); 3627 if (!udp_busylocks) 3628 panic("UDP: failed to alloc udp_busylocks\n"); 3629 for (i = 0; i < (1U << udp_busylocks_log); i++) 3630 spin_lock_init(udp_busylocks + i); 3631 3632 if (register_pernet_subsys(&udp_sysctl_ops)) 3633 panic("UDP: failed to init sysctl parameters.\n"); 3634 3635 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3636 bpf_iter_register(); 3637 #endif 3638 } 3639