xref: /linux/net/ipv4/udp.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <trace/events/skb.h>
110 #include <net/busy_poll.h>
111 #include "udp_impl.h"
112 #include <net/sock_reuseport.h>
113 #include <net/addrconf.h>
114 #include <net/udp_tunnel.h>
115 
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118 
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121 
122 atomic_long_t udp_memory_allocated;
123 EXPORT_SYMBOL(udp_memory_allocated);
124 
125 #define MAX_UDP_PORTS 65536
126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 
128 static int udp_lib_lport_inuse(struct net *net, __u16 num,
129 			       const struct udp_hslot *hslot,
130 			       unsigned long *bitmap,
131 			       struct sock *sk, unsigned int log)
132 {
133 	struct sock *sk2;
134 	kuid_t uid = sock_i_uid(sk);
135 
136 	sk_for_each(sk2, &hslot->head) {
137 		if (net_eq(sock_net(sk2), net) &&
138 		    sk2 != sk &&
139 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
140 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
141 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
142 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
143 		    inet_rcv_saddr_equal(sk, sk2, true)) {
144 			if (sk2->sk_reuseport && sk->sk_reuseport &&
145 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
146 			    uid_eq(uid, sock_i_uid(sk2))) {
147 				if (!bitmap)
148 					return 0;
149 			} else {
150 				if (!bitmap)
151 					return 1;
152 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
153 					  bitmap);
154 			}
155 		}
156 	}
157 	return 0;
158 }
159 
160 /*
161  * Note: we still hold spinlock of primary hash chain, so no other writer
162  * can insert/delete a socket with local_port == num
163  */
164 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
165 				struct udp_hslot *hslot2,
166 				struct sock *sk)
167 {
168 	struct sock *sk2;
169 	kuid_t uid = sock_i_uid(sk);
170 	int res = 0;
171 
172 	spin_lock(&hslot2->lock);
173 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
174 		if (net_eq(sock_net(sk2), net) &&
175 		    sk2 != sk &&
176 		    (udp_sk(sk2)->udp_port_hash == num) &&
177 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
178 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
179 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
180 		    inet_rcv_saddr_equal(sk, sk2, true)) {
181 			if (sk2->sk_reuseport && sk->sk_reuseport &&
182 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
183 			    uid_eq(uid, sock_i_uid(sk2))) {
184 				res = 0;
185 			} else {
186 				res = 1;
187 			}
188 			break;
189 		}
190 	}
191 	spin_unlock(&hslot2->lock);
192 	return res;
193 }
194 
195 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
196 {
197 	struct net *net = sock_net(sk);
198 	kuid_t uid = sock_i_uid(sk);
199 	struct sock *sk2;
200 
201 	sk_for_each(sk2, &hslot->head) {
202 		if (net_eq(sock_net(sk2), net) &&
203 		    sk2 != sk &&
204 		    sk2->sk_family == sk->sk_family &&
205 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
206 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
207 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
208 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
209 		    inet_rcv_saddr_equal(sk, sk2, false)) {
210 			return reuseport_add_sock(sk, sk2,
211 						  inet_rcv_saddr_any(sk));
212 		}
213 	}
214 
215 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
216 }
217 
218 /**
219  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
220  *
221  *  @sk:          socket struct in question
222  *  @snum:        port number to look up
223  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
224  *                   with NULL address
225  */
226 int udp_lib_get_port(struct sock *sk, unsigned short snum,
227 		     unsigned int hash2_nulladdr)
228 {
229 	struct udp_hslot *hslot, *hslot2;
230 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
231 	int    error = 1;
232 	struct net *net = sock_net(sk);
233 
234 	if (!snum) {
235 		int low, high, remaining;
236 		unsigned int rand;
237 		unsigned short first, last;
238 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
239 
240 		inet_get_local_port_range(net, &low, &high);
241 		remaining = (high - low) + 1;
242 
243 		rand = prandom_u32();
244 		first = reciprocal_scale(rand, remaining) + low;
245 		/*
246 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
247 		 */
248 		rand = (rand | 1) * (udptable->mask + 1);
249 		last = first + udptable->mask + 1;
250 		do {
251 			hslot = udp_hashslot(udptable, net, first);
252 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
253 			spin_lock_bh(&hslot->lock);
254 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
255 					    udptable->log);
256 
257 			snum = first;
258 			/*
259 			 * Iterate on all possible values of snum for this hash.
260 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
261 			 * give us randomization and full range coverage.
262 			 */
263 			do {
264 				if (low <= snum && snum <= high &&
265 				    !test_bit(snum >> udptable->log, bitmap) &&
266 				    !inet_is_local_reserved_port(net, snum))
267 					goto found;
268 				snum += rand;
269 			} while (snum != first);
270 			spin_unlock_bh(&hslot->lock);
271 			cond_resched();
272 		} while (++first != last);
273 		goto fail;
274 	} else {
275 		hslot = udp_hashslot(udptable, net, snum);
276 		spin_lock_bh(&hslot->lock);
277 		if (hslot->count > 10) {
278 			int exist;
279 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
280 
281 			slot2          &= udptable->mask;
282 			hash2_nulladdr &= udptable->mask;
283 
284 			hslot2 = udp_hashslot2(udptable, slot2);
285 			if (hslot->count < hslot2->count)
286 				goto scan_primary_hash;
287 
288 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
289 			if (!exist && (hash2_nulladdr != slot2)) {
290 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
291 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
292 							     sk);
293 			}
294 			if (exist)
295 				goto fail_unlock;
296 			else
297 				goto found;
298 		}
299 scan_primary_hash:
300 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
301 			goto fail_unlock;
302 	}
303 found:
304 	inet_sk(sk)->inet_num = snum;
305 	udp_sk(sk)->udp_port_hash = snum;
306 	udp_sk(sk)->udp_portaddr_hash ^= snum;
307 	if (sk_unhashed(sk)) {
308 		if (sk->sk_reuseport &&
309 		    udp_reuseport_add_sock(sk, hslot)) {
310 			inet_sk(sk)->inet_num = 0;
311 			udp_sk(sk)->udp_port_hash = 0;
312 			udp_sk(sk)->udp_portaddr_hash ^= snum;
313 			goto fail_unlock;
314 		}
315 
316 		sk_add_node_rcu(sk, &hslot->head);
317 		hslot->count++;
318 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
319 
320 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
321 		spin_lock(&hslot2->lock);
322 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
323 		    sk->sk_family == AF_INET6)
324 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
325 					   &hslot2->head);
326 		else
327 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
328 					   &hslot2->head);
329 		hslot2->count++;
330 		spin_unlock(&hslot2->lock);
331 	}
332 	sock_set_flag(sk, SOCK_RCU_FREE);
333 	error = 0;
334 fail_unlock:
335 	spin_unlock_bh(&hslot->lock);
336 fail:
337 	return error;
338 }
339 EXPORT_SYMBOL(udp_lib_get_port);
340 
341 int udp_v4_get_port(struct sock *sk, unsigned short snum)
342 {
343 	unsigned int hash2_nulladdr =
344 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
345 	unsigned int hash2_partial =
346 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
347 
348 	/* precompute partial secondary hash */
349 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
350 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
351 }
352 
353 static int compute_score(struct sock *sk, struct net *net,
354 			 __be32 saddr, __be16 sport,
355 			 __be32 daddr, unsigned short hnum,
356 			 int dif, int sdif)
357 {
358 	int score;
359 	struct inet_sock *inet;
360 	bool dev_match;
361 
362 	if (!net_eq(sock_net(sk), net) ||
363 	    udp_sk(sk)->udp_port_hash != hnum ||
364 	    ipv6_only_sock(sk))
365 		return -1;
366 
367 	if (sk->sk_rcv_saddr != daddr)
368 		return -1;
369 
370 	score = (sk->sk_family == PF_INET) ? 2 : 1;
371 
372 	inet = inet_sk(sk);
373 	if (inet->inet_daddr) {
374 		if (inet->inet_daddr != saddr)
375 			return -1;
376 		score += 4;
377 	}
378 
379 	if (inet->inet_dport) {
380 		if (inet->inet_dport != sport)
381 			return -1;
382 		score += 4;
383 	}
384 
385 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
386 					dif, sdif);
387 	if (!dev_match)
388 		return -1;
389 	score += 4;
390 
391 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
392 		score++;
393 	return score;
394 }
395 
396 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
397 		       const __u16 lport, const __be32 faddr,
398 		       const __be16 fport)
399 {
400 	static u32 udp_ehash_secret __read_mostly;
401 
402 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
403 
404 	return __inet_ehashfn(laddr, lport, faddr, fport,
405 			      udp_ehash_secret + net_hash_mix(net));
406 }
407 
408 /* called with rcu_read_lock() */
409 static struct sock *udp4_lib_lookup2(struct net *net,
410 				     __be32 saddr, __be16 sport,
411 				     __be32 daddr, unsigned int hnum,
412 				     int dif, int sdif,
413 				     struct udp_hslot *hslot2,
414 				     struct sk_buff *skb)
415 {
416 	struct sock *sk, *result;
417 	int score, badness;
418 	u32 hash = 0;
419 
420 	result = NULL;
421 	badness = 0;
422 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
423 		score = compute_score(sk, net, saddr, sport,
424 				      daddr, hnum, dif, sdif);
425 		if (score > badness) {
426 			if (sk->sk_reuseport &&
427 			    sk->sk_state != TCP_ESTABLISHED) {
428 				hash = udp_ehashfn(net, daddr, hnum,
429 						   saddr, sport);
430 				result = reuseport_select_sock(sk, hash, skb,
431 							sizeof(struct udphdr));
432 				if (result && !reuseport_has_conns(sk, false))
433 					return result;
434 			}
435 			badness = score;
436 			result = sk;
437 		}
438 	}
439 	return result;
440 }
441 
442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
443  * harder than this. -DaveM
444  */
445 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
446 		__be16 sport, __be32 daddr, __be16 dport, int dif,
447 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
448 {
449 	struct sock *result;
450 	unsigned short hnum = ntohs(dport);
451 	unsigned int hash2, slot2;
452 	struct udp_hslot *hslot2;
453 
454 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
455 	slot2 = hash2 & udptable->mask;
456 	hslot2 = &udptable->hash2[slot2];
457 
458 	result = udp4_lib_lookup2(net, saddr, sport,
459 				  daddr, hnum, dif, sdif,
460 				  hslot2, skb);
461 	if (!result) {
462 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
463 		slot2 = hash2 & udptable->mask;
464 		hslot2 = &udptable->hash2[slot2];
465 
466 		result = udp4_lib_lookup2(net, saddr, sport,
467 					  htonl(INADDR_ANY), hnum, dif, sdif,
468 					  hslot2, skb);
469 	}
470 	if (IS_ERR(result))
471 		return NULL;
472 	return result;
473 }
474 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
475 
476 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
477 						 __be16 sport, __be16 dport,
478 						 struct udp_table *udptable)
479 {
480 	const struct iphdr *iph = ip_hdr(skb);
481 
482 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
483 				 iph->daddr, dport, inet_iif(skb),
484 				 inet_sdif(skb), udptable, skb);
485 }
486 
487 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
488 				 __be16 sport, __be16 dport)
489 {
490 	const struct iphdr *iph = ip_hdr(skb);
491 
492 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
493 				 iph->daddr, dport, inet_iif(skb),
494 				 inet_sdif(skb), &udp_table, NULL);
495 }
496 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
497 
498 /* Must be called under rcu_read_lock().
499  * Does increment socket refcount.
500  */
501 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
502 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
503 			     __be32 daddr, __be16 dport, int dif)
504 {
505 	struct sock *sk;
506 
507 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
508 			       dif, 0, &udp_table, NULL);
509 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
510 		sk = NULL;
511 	return sk;
512 }
513 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
514 #endif
515 
516 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
517 				       __be16 loc_port, __be32 loc_addr,
518 				       __be16 rmt_port, __be32 rmt_addr,
519 				       int dif, int sdif, unsigned short hnum)
520 {
521 	struct inet_sock *inet = inet_sk(sk);
522 
523 	if (!net_eq(sock_net(sk), net) ||
524 	    udp_sk(sk)->udp_port_hash != hnum ||
525 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
526 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
527 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
528 	    ipv6_only_sock(sk) ||
529 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
530 		return false;
531 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
532 		return false;
533 	return true;
534 }
535 
536 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
537 void udp_encap_enable(void)
538 {
539 	static_branch_inc(&udp_encap_needed_key);
540 }
541 EXPORT_SYMBOL(udp_encap_enable);
542 
543 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
544  * through error handlers in encapsulations looking for a match.
545  */
546 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
547 {
548 	int i;
549 
550 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
551 		int (*handler)(struct sk_buff *skb, u32 info);
552 		const struct ip_tunnel_encap_ops *encap;
553 
554 		encap = rcu_dereference(iptun_encaps[i]);
555 		if (!encap)
556 			continue;
557 		handler = encap->err_handler;
558 		if (handler && !handler(skb, info))
559 			return 0;
560 	}
561 
562 	return -ENOENT;
563 }
564 
565 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
566  * reversing source and destination port: this will match tunnels that force the
567  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
568  * lwtunnels might actually break this assumption by being configured with
569  * different destination ports on endpoints, in this case we won't be able to
570  * trace ICMP messages back to them.
571  *
572  * If this doesn't match any socket, probe tunnels with arbitrary destination
573  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
574  * we've sent packets to won't necessarily match the local destination port.
575  *
576  * Then ask the tunnel implementation to match the error against a valid
577  * association.
578  *
579  * Return an error if we can't find a match, the socket if we need further
580  * processing, zero otherwise.
581  */
582 static struct sock *__udp4_lib_err_encap(struct net *net,
583 					 const struct iphdr *iph,
584 					 struct udphdr *uh,
585 					 struct udp_table *udptable,
586 					 struct sk_buff *skb, u32 info)
587 {
588 	int network_offset, transport_offset;
589 	struct sock *sk;
590 
591 	network_offset = skb_network_offset(skb);
592 	transport_offset = skb_transport_offset(skb);
593 
594 	/* Network header needs to point to the outer IPv4 header inside ICMP */
595 	skb_reset_network_header(skb);
596 
597 	/* Transport header needs to point to the UDP header */
598 	skb_set_transport_header(skb, iph->ihl << 2);
599 
600 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
601 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
602 			       udptable, NULL);
603 	if (sk) {
604 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
605 		struct udp_sock *up = udp_sk(sk);
606 
607 		lookup = READ_ONCE(up->encap_err_lookup);
608 		if (!lookup || lookup(sk, skb))
609 			sk = NULL;
610 	}
611 
612 	if (!sk)
613 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
614 
615 	skb_set_transport_header(skb, transport_offset);
616 	skb_set_network_header(skb, network_offset);
617 
618 	return sk;
619 }
620 
621 /*
622  * This routine is called by the ICMP module when it gets some
623  * sort of error condition.  If err < 0 then the socket should
624  * be closed and the error returned to the user.  If err > 0
625  * it's just the icmp type << 8 | icmp code.
626  * Header points to the ip header of the error packet. We move
627  * on past this. Then (as it used to claim before adjustment)
628  * header points to the first 8 bytes of the udp header.  We need
629  * to find the appropriate port.
630  */
631 
632 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
633 {
634 	struct inet_sock *inet;
635 	const struct iphdr *iph = (const struct iphdr *)skb->data;
636 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
637 	const int type = icmp_hdr(skb)->type;
638 	const int code = icmp_hdr(skb)->code;
639 	bool tunnel = false;
640 	struct sock *sk;
641 	int harderr;
642 	int err;
643 	struct net *net = dev_net(skb->dev);
644 
645 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
646 			       iph->saddr, uh->source, skb->dev->ifindex,
647 			       inet_sdif(skb), udptable, NULL);
648 	if (!sk) {
649 		/* No socket for error: try tunnels before discarding */
650 		sk = ERR_PTR(-ENOENT);
651 		if (static_branch_unlikely(&udp_encap_needed_key)) {
652 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
653 						  info);
654 			if (!sk)
655 				return 0;
656 		}
657 
658 		if (IS_ERR(sk)) {
659 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
660 			return PTR_ERR(sk);
661 		}
662 
663 		tunnel = true;
664 	}
665 
666 	err = 0;
667 	harderr = 0;
668 	inet = inet_sk(sk);
669 
670 	switch (type) {
671 	default:
672 	case ICMP_TIME_EXCEEDED:
673 		err = EHOSTUNREACH;
674 		break;
675 	case ICMP_SOURCE_QUENCH:
676 		goto out;
677 	case ICMP_PARAMETERPROB:
678 		err = EPROTO;
679 		harderr = 1;
680 		break;
681 	case ICMP_DEST_UNREACH:
682 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
683 			ipv4_sk_update_pmtu(skb, sk, info);
684 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
685 				err = EMSGSIZE;
686 				harderr = 1;
687 				break;
688 			}
689 			goto out;
690 		}
691 		err = EHOSTUNREACH;
692 		if (code <= NR_ICMP_UNREACH) {
693 			harderr = icmp_err_convert[code].fatal;
694 			err = icmp_err_convert[code].errno;
695 		}
696 		break;
697 	case ICMP_REDIRECT:
698 		ipv4_sk_redirect(skb, sk);
699 		goto out;
700 	}
701 
702 	/*
703 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
704 	 *	4.1.3.3.
705 	 */
706 	if (tunnel) {
707 		/* ...not for tunnels though: we don't have a sending socket */
708 		goto out;
709 	}
710 	if (!inet->recverr) {
711 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
712 			goto out;
713 	} else
714 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
715 
716 	sk->sk_err = err;
717 	sk->sk_error_report(sk);
718 out:
719 	return 0;
720 }
721 
722 int udp_err(struct sk_buff *skb, u32 info)
723 {
724 	return __udp4_lib_err(skb, info, &udp_table);
725 }
726 
727 /*
728  * Throw away all pending data and cancel the corking. Socket is locked.
729  */
730 void udp_flush_pending_frames(struct sock *sk)
731 {
732 	struct udp_sock *up = udp_sk(sk);
733 
734 	if (up->pending) {
735 		up->len = 0;
736 		up->pending = 0;
737 		ip_flush_pending_frames(sk);
738 	}
739 }
740 EXPORT_SYMBOL(udp_flush_pending_frames);
741 
742 /**
743  * 	udp4_hwcsum  -  handle outgoing HW checksumming
744  * 	@skb: 	sk_buff containing the filled-in UDP header
745  * 	        (checksum field must be zeroed out)
746  *	@src:	source IP address
747  *	@dst:	destination IP address
748  */
749 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
750 {
751 	struct udphdr *uh = udp_hdr(skb);
752 	int offset = skb_transport_offset(skb);
753 	int len = skb->len - offset;
754 	int hlen = len;
755 	__wsum csum = 0;
756 
757 	if (!skb_has_frag_list(skb)) {
758 		/*
759 		 * Only one fragment on the socket.
760 		 */
761 		skb->csum_start = skb_transport_header(skb) - skb->head;
762 		skb->csum_offset = offsetof(struct udphdr, check);
763 		uh->check = ~csum_tcpudp_magic(src, dst, len,
764 					       IPPROTO_UDP, 0);
765 	} else {
766 		struct sk_buff *frags;
767 
768 		/*
769 		 * HW-checksum won't work as there are two or more
770 		 * fragments on the socket so that all csums of sk_buffs
771 		 * should be together
772 		 */
773 		skb_walk_frags(skb, frags) {
774 			csum = csum_add(csum, frags->csum);
775 			hlen -= frags->len;
776 		}
777 
778 		csum = skb_checksum(skb, offset, hlen, csum);
779 		skb->ip_summed = CHECKSUM_NONE;
780 
781 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
782 		if (uh->check == 0)
783 			uh->check = CSUM_MANGLED_0;
784 	}
785 }
786 EXPORT_SYMBOL_GPL(udp4_hwcsum);
787 
788 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
789  * for the simple case like when setting the checksum for a UDP tunnel.
790  */
791 void udp_set_csum(bool nocheck, struct sk_buff *skb,
792 		  __be32 saddr, __be32 daddr, int len)
793 {
794 	struct udphdr *uh = udp_hdr(skb);
795 
796 	if (nocheck) {
797 		uh->check = 0;
798 	} else if (skb_is_gso(skb)) {
799 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
800 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
801 		uh->check = 0;
802 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
803 		if (uh->check == 0)
804 			uh->check = CSUM_MANGLED_0;
805 	} else {
806 		skb->ip_summed = CHECKSUM_PARTIAL;
807 		skb->csum_start = skb_transport_header(skb) - skb->head;
808 		skb->csum_offset = offsetof(struct udphdr, check);
809 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
810 	}
811 }
812 EXPORT_SYMBOL(udp_set_csum);
813 
814 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
815 			struct inet_cork *cork)
816 {
817 	struct sock *sk = skb->sk;
818 	struct inet_sock *inet = inet_sk(sk);
819 	struct udphdr *uh;
820 	int err = 0;
821 	int is_udplite = IS_UDPLITE(sk);
822 	int offset = skb_transport_offset(skb);
823 	int len = skb->len - offset;
824 	int datalen = len - sizeof(*uh);
825 	__wsum csum = 0;
826 
827 	/*
828 	 * Create a UDP header
829 	 */
830 	uh = udp_hdr(skb);
831 	uh->source = inet->inet_sport;
832 	uh->dest = fl4->fl4_dport;
833 	uh->len = htons(len);
834 	uh->check = 0;
835 
836 	if (cork->gso_size) {
837 		const int hlen = skb_network_header_len(skb) +
838 				 sizeof(struct udphdr);
839 
840 		if (hlen + cork->gso_size > cork->fragsize) {
841 			kfree_skb(skb);
842 			return -EINVAL;
843 		}
844 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
845 			kfree_skb(skb);
846 			return -EINVAL;
847 		}
848 		if (sk->sk_no_check_tx) {
849 			kfree_skb(skb);
850 			return -EINVAL;
851 		}
852 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
853 		    dst_xfrm(skb_dst(skb))) {
854 			kfree_skb(skb);
855 			return -EIO;
856 		}
857 
858 		if (datalen > cork->gso_size) {
859 			skb_shinfo(skb)->gso_size = cork->gso_size;
860 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
861 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
862 								 cork->gso_size);
863 		}
864 		goto csum_partial;
865 	}
866 
867 	if (is_udplite)  				 /*     UDP-Lite      */
868 		csum = udplite_csum(skb);
869 
870 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
871 
872 		skb->ip_summed = CHECKSUM_NONE;
873 		goto send;
874 
875 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
876 csum_partial:
877 
878 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
879 		goto send;
880 
881 	} else
882 		csum = udp_csum(skb);
883 
884 	/* add protocol-dependent pseudo-header */
885 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
886 				      sk->sk_protocol, csum);
887 	if (uh->check == 0)
888 		uh->check = CSUM_MANGLED_0;
889 
890 send:
891 	err = ip_send_skb(sock_net(sk), skb);
892 	if (err) {
893 		if (err == -ENOBUFS && !inet->recverr) {
894 			UDP_INC_STATS(sock_net(sk),
895 				      UDP_MIB_SNDBUFERRORS, is_udplite);
896 			err = 0;
897 		}
898 	} else
899 		UDP_INC_STATS(sock_net(sk),
900 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
901 	return err;
902 }
903 
904 /*
905  * Push out all pending data as one UDP datagram. Socket is locked.
906  */
907 int udp_push_pending_frames(struct sock *sk)
908 {
909 	struct udp_sock  *up = udp_sk(sk);
910 	struct inet_sock *inet = inet_sk(sk);
911 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
912 	struct sk_buff *skb;
913 	int err = 0;
914 
915 	skb = ip_finish_skb(sk, fl4);
916 	if (!skb)
917 		goto out;
918 
919 	err = udp_send_skb(skb, fl4, &inet->cork.base);
920 
921 out:
922 	up->len = 0;
923 	up->pending = 0;
924 	return err;
925 }
926 EXPORT_SYMBOL(udp_push_pending_frames);
927 
928 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
929 {
930 	switch (cmsg->cmsg_type) {
931 	case UDP_SEGMENT:
932 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
933 			return -EINVAL;
934 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
935 		return 0;
936 	default:
937 		return -EINVAL;
938 	}
939 }
940 
941 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
942 {
943 	struct cmsghdr *cmsg;
944 	bool need_ip = false;
945 	int err;
946 
947 	for_each_cmsghdr(cmsg, msg) {
948 		if (!CMSG_OK(msg, cmsg))
949 			return -EINVAL;
950 
951 		if (cmsg->cmsg_level != SOL_UDP) {
952 			need_ip = true;
953 			continue;
954 		}
955 
956 		err = __udp_cmsg_send(cmsg, gso_size);
957 		if (err)
958 			return err;
959 	}
960 
961 	return need_ip;
962 }
963 EXPORT_SYMBOL_GPL(udp_cmsg_send);
964 
965 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
966 {
967 	struct inet_sock *inet = inet_sk(sk);
968 	struct udp_sock *up = udp_sk(sk);
969 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
970 	struct flowi4 fl4_stack;
971 	struct flowi4 *fl4;
972 	int ulen = len;
973 	struct ipcm_cookie ipc;
974 	struct rtable *rt = NULL;
975 	int free = 0;
976 	int connected = 0;
977 	__be32 daddr, faddr, saddr;
978 	__be16 dport;
979 	u8  tos;
980 	int err, is_udplite = IS_UDPLITE(sk);
981 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
982 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
983 	struct sk_buff *skb;
984 	struct ip_options_data opt_copy;
985 
986 	if (len > 0xFFFF)
987 		return -EMSGSIZE;
988 
989 	/*
990 	 *	Check the flags.
991 	 */
992 
993 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
994 		return -EOPNOTSUPP;
995 
996 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
997 
998 	fl4 = &inet->cork.fl.u.ip4;
999 	if (up->pending) {
1000 		/*
1001 		 * There are pending frames.
1002 		 * The socket lock must be held while it's corked.
1003 		 */
1004 		lock_sock(sk);
1005 		if (likely(up->pending)) {
1006 			if (unlikely(up->pending != AF_INET)) {
1007 				release_sock(sk);
1008 				return -EINVAL;
1009 			}
1010 			goto do_append_data;
1011 		}
1012 		release_sock(sk);
1013 	}
1014 	ulen += sizeof(struct udphdr);
1015 
1016 	/*
1017 	 *	Get and verify the address.
1018 	 */
1019 	if (usin) {
1020 		if (msg->msg_namelen < sizeof(*usin))
1021 			return -EINVAL;
1022 		if (usin->sin_family != AF_INET) {
1023 			if (usin->sin_family != AF_UNSPEC)
1024 				return -EAFNOSUPPORT;
1025 		}
1026 
1027 		daddr = usin->sin_addr.s_addr;
1028 		dport = usin->sin_port;
1029 		if (dport == 0)
1030 			return -EINVAL;
1031 	} else {
1032 		if (sk->sk_state != TCP_ESTABLISHED)
1033 			return -EDESTADDRREQ;
1034 		daddr = inet->inet_daddr;
1035 		dport = inet->inet_dport;
1036 		/* Open fast path for connected socket.
1037 		   Route will not be used, if at least one option is set.
1038 		 */
1039 		connected = 1;
1040 	}
1041 
1042 	ipcm_init_sk(&ipc, inet);
1043 	ipc.gso_size = up->gso_size;
1044 
1045 	if (msg->msg_controllen) {
1046 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1047 		if (err > 0)
1048 			err = ip_cmsg_send(sk, msg, &ipc,
1049 					   sk->sk_family == AF_INET6);
1050 		if (unlikely(err < 0)) {
1051 			kfree(ipc.opt);
1052 			return err;
1053 		}
1054 		if (ipc.opt)
1055 			free = 1;
1056 		connected = 0;
1057 	}
1058 	if (!ipc.opt) {
1059 		struct ip_options_rcu *inet_opt;
1060 
1061 		rcu_read_lock();
1062 		inet_opt = rcu_dereference(inet->inet_opt);
1063 		if (inet_opt) {
1064 			memcpy(&opt_copy, inet_opt,
1065 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1066 			ipc.opt = &opt_copy.opt;
1067 		}
1068 		rcu_read_unlock();
1069 	}
1070 
1071 	if (cgroup_bpf_enabled && !connected) {
1072 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1073 					    (struct sockaddr *)usin, &ipc.addr);
1074 		if (err)
1075 			goto out_free;
1076 		if (usin) {
1077 			if (usin->sin_port == 0) {
1078 				/* BPF program set invalid port. Reject it. */
1079 				err = -EINVAL;
1080 				goto out_free;
1081 			}
1082 			daddr = usin->sin_addr.s_addr;
1083 			dport = usin->sin_port;
1084 		}
1085 	}
1086 
1087 	saddr = ipc.addr;
1088 	ipc.addr = faddr = daddr;
1089 
1090 	if (ipc.opt && ipc.opt->opt.srr) {
1091 		if (!daddr) {
1092 			err = -EINVAL;
1093 			goto out_free;
1094 		}
1095 		faddr = ipc.opt->opt.faddr;
1096 		connected = 0;
1097 	}
1098 	tos = get_rttos(&ipc, inet);
1099 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1100 	    (msg->msg_flags & MSG_DONTROUTE) ||
1101 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1102 		tos |= RTO_ONLINK;
1103 		connected = 0;
1104 	}
1105 
1106 	if (ipv4_is_multicast(daddr)) {
1107 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1108 			ipc.oif = inet->mc_index;
1109 		if (!saddr)
1110 			saddr = inet->mc_addr;
1111 		connected = 0;
1112 	} else if (!ipc.oif) {
1113 		ipc.oif = inet->uc_index;
1114 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1115 		/* oif is set, packet is to local broadcast and
1116 		 * and uc_index is set. oif is most likely set
1117 		 * by sk_bound_dev_if. If uc_index != oif check if the
1118 		 * oif is an L3 master and uc_index is an L3 slave.
1119 		 * If so, we want to allow the send using the uc_index.
1120 		 */
1121 		if (ipc.oif != inet->uc_index &&
1122 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1123 							      inet->uc_index)) {
1124 			ipc.oif = inet->uc_index;
1125 		}
1126 	}
1127 
1128 	if (connected)
1129 		rt = (struct rtable *)sk_dst_check(sk, 0);
1130 
1131 	if (!rt) {
1132 		struct net *net = sock_net(sk);
1133 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1134 
1135 		fl4 = &fl4_stack;
1136 
1137 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1138 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1139 				   flow_flags,
1140 				   faddr, saddr, dport, inet->inet_sport,
1141 				   sk->sk_uid);
1142 
1143 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1144 		rt = ip_route_output_flow(net, fl4, sk);
1145 		if (IS_ERR(rt)) {
1146 			err = PTR_ERR(rt);
1147 			rt = NULL;
1148 			if (err == -ENETUNREACH)
1149 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1150 			goto out;
1151 		}
1152 
1153 		err = -EACCES;
1154 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1155 		    !sock_flag(sk, SOCK_BROADCAST))
1156 			goto out;
1157 		if (connected)
1158 			sk_dst_set(sk, dst_clone(&rt->dst));
1159 	}
1160 
1161 	if (msg->msg_flags&MSG_CONFIRM)
1162 		goto do_confirm;
1163 back_from_confirm:
1164 
1165 	saddr = fl4->saddr;
1166 	if (!ipc.addr)
1167 		daddr = ipc.addr = fl4->daddr;
1168 
1169 	/* Lockless fast path for the non-corking case. */
1170 	if (!corkreq) {
1171 		struct inet_cork cork;
1172 
1173 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1174 				  sizeof(struct udphdr), &ipc, &rt,
1175 				  &cork, msg->msg_flags);
1176 		err = PTR_ERR(skb);
1177 		if (!IS_ERR_OR_NULL(skb))
1178 			err = udp_send_skb(skb, fl4, &cork);
1179 		goto out;
1180 	}
1181 
1182 	lock_sock(sk);
1183 	if (unlikely(up->pending)) {
1184 		/* The socket is already corked while preparing it. */
1185 		/* ... which is an evident application bug. --ANK */
1186 		release_sock(sk);
1187 
1188 		net_dbg_ratelimited("socket already corked\n");
1189 		err = -EINVAL;
1190 		goto out;
1191 	}
1192 	/*
1193 	 *	Now cork the socket to pend data.
1194 	 */
1195 	fl4 = &inet->cork.fl.u.ip4;
1196 	fl4->daddr = daddr;
1197 	fl4->saddr = saddr;
1198 	fl4->fl4_dport = dport;
1199 	fl4->fl4_sport = inet->inet_sport;
1200 	up->pending = AF_INET;
1201 
1202 do_append_data:
1203 	up->len += ulen;
1204 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1205 			     sizeof(struct udphdr), &ipc, &rt,
1206 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1207 	if (err)
1208 		udp_flush_pending_frames(sk);
1209 	else if (!corkreq)
1210 		err = udp_push_pending_frames(sk);
1211 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1212 		up->pending = 0;
1213 	release_sock(sk);
1214 
1215 out:
1216 	ip_rt_put(rt);
1217 out_free:
1218 	if (free)
1219 		kfree(ipc.opt);
1220 	if (!err)
1221 		return len;
1222 	/*
1223 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1224 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1225 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1226 	 * things).  We could add another new stat but at least for now that
1227 	 * seems like overkill.
1228 	 */
1229 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1230 		UDP_INC_STATS(sock_net(sk),
1231 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1232 	}
1233 	return err;
1234 
1235 do_confirm:
1236 	if (msg->msg_flags & MSG_PROBE)
1237 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1238 	if (!(msg->msg_flags&MSG_PROBE) || len)
1239 		goto back_from_confirm;
1240 	err = 0;
1241 	goto out;
1242 }
1243 EXPORT_SYMBOL(udp_sendmsg);
1244 
1245 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1246 		 size_t size, int flags)
1247 {
1248 	struct inet_sock *inet = inet_sk(sk);
1249 	struct udp_sock *up = udp_sk(sk);
1250 	int ret;
1251 
1252 	if (flags & MSG_SENDPAGE_NOTLAST)
1253 		flags |= MSG_MORE;
1254 
1255 	if (!up->pending) {
1256 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1257 
1258 		/* Call udp_sendmsg to specify destination address which
1259 		 * sendpage interface can't pass.
1260 		 * This will succeed only when the socket is connected.
1261 		 */
1262 		ret = udp_sendmsg(sk, &msg, 0);
1263 		if (ret < 0)
1264 			return ret;
1265 	}
1266 
1267 	lock_sock(sk);
1268 
1269 	if (unlikely(!up->pending)) {
1270 		release_sock(sk);
1271 
1272 		net_dbg_ratelimited("cork failed\n");
1273 		return -EINVAL;
1274 	}
1275 
1276 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1277 			     page, offset, size, flags);
1278 	if (ret == -EOPNOTSUPP) {
1279 		release_sock(sk);
1280 		return sock_no_sendpage(sk->sk_socket, page, offset,
1281 					size, flags);
1282 	}
1283 	if (ret < 0) {
1284 		udp_flush_pending_frames(sk);
1285 		goto out;
1286 	}
1287 
1288 	up->len += size;
1289 	if (!(up->corkflag || (flags&MSG_MORE)))
1290 		ret = udp_push_pending_frames(sk);
1291 	if (!ret)
1292 		ret = size;
1293 out:
1294 	release_sock(sk);
1295 	return ret;
1296 }
1297 
1298 #define UDP_SKB_IS_STATELESS 0x80000000
1299 
1300 static void udp_set_dev_scratch(struct sk_buff *skb)
1301 {
1302 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1303 
1304 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1305 	scratch->_tsize_state = skb->truesize;
1306 #if BITS_PER_LONG == 64
1307 	scratch->len = skb->len;
1308 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1309 	scratch->is_linear = !skb_is_nonlinear(skb);
1310 #endif
1311 	/* all head states execept sp (dst, sk, nf) are always cleared by
1312 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1313 	 * process IP_CMSG_PASSSEC at recvmsg() time
1314 	 */
1315 	if (likely(!skb_sec_path(skb)))
1316 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1317 }
1318 
1319 static int udp_skb_truesize(struct sk_buff *skb)
1320 {
1321 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1322 }
1323 
1324 static bool udp_skb_has_head_state(struct sk_buff *skb)
1325 {
1326 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1327 }
1328 
1329 /* fully reclaim rmem/fwd memory allocated for skb */
1330 static void udp_rmem_release(struct sock *sk, int size, int partial,
1331 			     bool rx_queue_lock_held)
1332 {
1333 	struct udp_sock *up = udp_sk(sk);
1334 	struct sk_buff_head *sk_queue;
1335 	int amt;
1336 
1337 	if (likely(partial)) {
1338 		up->forward_deficit += size;
1339 		size = up->forward_deficit;
1340 		if (size < (sk->sk_rcvbuf >> 2))
1341 			return;
1342 	} else {
1343 		size += up->forward_deficit;
1344 	}
1345 	up->forward_deficit = 0;
1346 
1347 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1348 	 * if the called don't held it already
1349 	 */
1350 	sk_queue = &sk->sk_receive_queue;
1351 	if (!rx_queue_lock_held)
1352 		spin_lock(&sk_queue->lock);
1353 
1354 
1355 	sk->sk_forward_alloc += size;
1356 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1357 	sk->sk_forward_alloc -= amt;
1358 
1359 	if (amt)
1360 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1361 
1362 	atomic_sub(size, &sk->sk_rmem_alloc);
1363 
1364 	/* this can save us from acquiring the rx queue lock on next receive */
1365 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1366 
1367 	if (!rx_queue_lock_held)
1368 		spin_unlock(&sk_queue->lock);
1369 }
1370 
1371 /* Note: called with reader_queue.lock held.
1372  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1373  * This avoids a cache line miss while receive_queue lock is held.
1374  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1375  */
1376 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1377 {
1378 	prefetch(&skb->data);
1379 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1380 }
1381 EXPORT_SYMBOL(udp_skb_destructor);
1382 
1383 /* as above, but the caller held the rx queue lock, too */
1384 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1385 {
1386 	prefetch(&skb->data);
1387 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1388 }
1389 
1390 /* Idea of busylocks is to let producers grab an extra spinlock
1391  * to relieve pressure on the receive_queue spinlock shared by consumer.
1392  * Under flood, this means that only one producer can be in line
1393  * trying to acquire the receive_queue spinlock.
1394  * These busylock can be allocated on a per cpu manner, instead of a
1395  * per socket one (that would consume a cache line per socket)
1396  */
1397 static int udp_busylocks_log __read_mostly;
1398 static spinlock_t *udp_busylocks __read_mostly;
1399 
1400 static spinlock_t *busylock_acquire(void *ptr)
1401 {
1402 	spinlock_t *busy;
1403 
1404 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1405 	spin_lock(busy);
1406 	return busy;
1407 }
1408 
1409 static void busylock_release(spinlock_t *busy)
1410 {
1411 	if (busy)
1412 		spin_unlock(busy);
1413 }
1414 
1415 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1416 {
1417 	struct sk_buff_head *list = &sk->sk_receive_queue;
1418 	int rmem, delta, amt, err = -ENOMEM;
1419 	spinlock_t *busy = NULL;
1420 	int size;
1421 
1422 	/* try to avoid the costly atomic add/sub pair when the receive
1423 	 * queue is full; always allow at least a packet
1424 	 */
1425 	rmem = atomic_read(&sk->sk_rmem_alloc);
1426 	if (rmem > sk->sk_rcvbuf)
1427 		goto drop;
1428 
1429 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1430 	 * having linear skbs :
1431 	 * - Reduce memory overhead and thus increase receive queue capacity
1432 	 * - Less cache line misses at copyout() time
1433 	 * - Less work at consume_skb() (less alien page frag freeing)
1434 	 */
1435 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1436 		skb_condense(skb);
1437 
1438 		busy = busylock_acquire(sk);
1439 	}
1440 	size = skb->truesize;
1441 	udp_set_dev_scratch(skb);
1442 
1443 	/* we drop only if the receive buf is full and the receive
1444 	 * queue contains some other skb
1445 	 */
1446 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1447 	if (rmem > (size + sk->sk_rcvbuf))
1448 		goto uncharge_drop;
1449 
1450 	spin_lock(&list->lock);
1451 	if (size >= sk->sk_forward_alloc) {
1452 		amt = sk_mem_pages(size);
1453 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1454 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1455 			err = -ENOBUFS;
1456 			spin_unlock(&list->lock);
1457 			goto uncharge_drop;
1458 		}
1459 
1460 		sk->sk_forward_alloc += delta;
1461 	}
1462 
1463 	sk->sk_forward_alloc -= size;
1464 
1465 	/* no need to setup a destructor, we will explicitly release the
1466 	 * forward allocated memory on dequeue
1467 	 */
1468 	sock_skb_set_dropcount(sk, skb);
1469 
1470 	__skb_queue_tail(list, skb);
1471 	spin_unlock(&list->lock);
1472 
1473 	if (!sock_flag(sk, SOCK_DEAD))
1474 		sk->sk_data_ready(sk);
1475 
1476 	busylock_release(busy);
1477 	return 0;
1478 
1479 uncharge_drop:
1480 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1481 
1482 drop:
1483 	atomic_inc(&sk->sk_drops);
1484 	busylock_release(busy);
1485 	return err;
1486 }
1487 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1488 
1489 void udp_destruct_sock(struct sock *sk)
1490 {
1491 	/* reclaim completely the forward allocated memory */
1492 	struct udp_sock *up = udp_sk(sk);
1493 	unsigned int total = 0;
1494 	struct sk_buff *skb;
1495 
1496 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1497 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1498 		total += skb->truesize;
1499 		kfree_skb(skb);
1500 	}
1501 	udp_rmem_release(sk, total, 0, true);
1502 
1503 	inet_sock_destruct(sk);
1504 }
1505 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1506 
1507 int udp_init_sock(struct sock *sk)
1508 {
1509 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1510 	sk->sk_destruct = udp_destruct_sock;
1511 	return 0;
1512 }
1513 EXPORT_SYMBOL_GPL(udp_init_sock);
1514 
1515 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1516 {
1517 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1518 		bool slow = lock_sock_fast(sk);
1519 
1520 		sk_peek_offset_bwd(sk, len);
1521 		unlock_sock_fast(sk, slow);
1522 	}
1523 
1524 	if (!skb_unref(skb))
1525 		return;
1526 
1527 	/* In the more common cases we cleared the head states previously,
1528 	 * see __udp_queue_rcv_skb().
1529 	 */
1530 	if (unlikely(udp_skb_has_head_state(skb)))
1531 		skb_release_head_state(skb);
1532 	__consume_stateless_skb(skb);
1533 }
1534 EXPORT_SYMBOL_GPL(skb_consume_udp);
1535 
1536 static struct sk_buff *__first_packet_length(struct sock *sk,
1537 					     struct sk_buff_head *rcvq,
1538 					     int *total)
1539 {
1540 	struct sk_buff *skb;
1541 
1542 	while ((skb = skb_peek(rcvq)) != NULL) {
1543 		if (udp_lib_checksum_complete(skb)) {
1544 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1545 					IS_UDPLITE(sk));
1546 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1547 					IS_UDPLITE(sk));
1548 			atomic_inc(&sk->sk_drops);
1549 			__skb_unlink(skb, rcvq);
1550 			*total += skb->truesize;
1551 			kfree_skb(skb);
1552 		} else {
1553 			/* the csum related bits could be changed, refresh
1554 			 * the scratch area
1555 			 */
1556 			udp_set_dev_scratch(skb);
1557 			break;
1558 		}
1559 	}
1560 	return skb;
1561 }
1562 
1563 /**
1564  *	first_packet_length	- return length of first packet in receive queue
1565  *	@sk: socket
1566  *
1567  *	Drops all bad checksum frames, until a valid one is found.
1568  *	Returns the length of found skb, or -1 if none is found.
1569  */
1570 static int first_packet_length(struct sock *sk)
1571 {
1572 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1573 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1574 	struct sk_buff *skb;
1575 	int total = 0;
1576 	int res;
1577 
1578 	spin_lock_bh(&rcvq->lock);
1579 	skb = __first_packet_length(sk, rcvq, &total);
1580 	if (!skb && !skb_queue_empty(sk_queue)) {
1581 		spin_lock(&sk_queue->lock);
1582 		skb_queue_splice_tail_init(sk_queue, rcvq);
1583 		spin_unlock(&sk_queue->lock);
1584 
1585 		skb = __first_packet_length(sk, rcvq, &total);
1586 	}
1587 	res = skb ? skb->len : -1;
1588 	if (total)
1589 		udp_rmem_release(sk, total, 1, false);
1590 	spin_unlock_bh(&rcvq->lock);
1591 	return res;
1592 }
1593 
1594 /*
1595  *	IOCTL requests applicable to the UDP protocol
1596  */
1597 
1598 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1599 {
1600 	switch (cmd) {
1601 	case SIOCOUTQ:
1602 	{
1603 		int amount = sk_wmem_alloc_get(sk);
1604 
1605 		return put_user(amount, (int __user *)arg);
1606 	}
1607 
1608 	case SIOCINQ:
1609 	{
1610 		int amount = max_t(int, 0, first_packet_length(sk));
1611 
1612 		return put_user(amount, (int __user *)arg);
1613 	}
1614 
1615 	default:
1616 		return -ENOIOCTLCMD;
1617 	}
1618 
1619 	return 0;
1620 }
1621 EXPORT_SYMBOL(udp_ioctl);
1622 
1623 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1624 			       int noblock, int *off, int *err)
1625 {
1626 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1627 	struct sk_buff_head *queue;
1628 	struct sk_buff *last;
1629 	long timeo;
1630 	int error;
1631 
1632 	queue = &udp_sk(sk)->reader_queue;
1633 	flags |= noblock ? MSG_DONTWAIT : 0;
1634 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1635 	do {
1636 		struct sk_buff *skb;
1637 
1638 		error = sock_error(sk);
1639 		if (error)
1640 			break;
1641 
1642 		error = -EAGAIN;
1643 		do {
1644 			spin_lock_bh(&queue->lock);
1645 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1646 							udp_skb_destructor,
1647 							off, err, &last);
1648 			if (skb) {
1649 				spin_unlock_bh(&queue->lock);
1650 				return skb;
1651 			}
1652 
1653 			if (skb_queue_empty(sk_queue)) {
1654 				spin_unlock_bh(&queue->lock);
1655 				goto busy_check;
1656 			}
1657 
1658 			/* refill the reader queue and walk it again
1659 			 * keep both queues locked to avoid re-acquiring
1660 			 * the sk_receive_queue lock if fwd memory scheduling
1661 			 * is needed.
1662 			 */
1663 			spin_lock(&sk_queue->lock);
1664 			skb_queue_splice_tail_init(sk_queue, queue);
1665 
1666 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1667 							udp_skb_dtor_locked,
1668 							off, err, &last);
1669 			spin_unlock(&sk_queue->lock);
1670 			spin_unlock_bh(&queue->lock);
1671 			if (skb)
1672 				return skb;
1673 
1674 busy_check:
1675 			if (!sk_can_busy_loop(sk))
1676 				break;
1677 
1678 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1679 		} while (!skb_queue_empty(sk_queue));
1680 
1681 		/* sk_queue is empty, reader_queue may contain peeked packets */
1682 	} while (timeo &&
1683 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1684 					      (struct sk_buff *)sk_queue));
1685 
1686 	*err = error;
1687 	return NULL;
1688 }
1689 EXPORT_SYMBOL(__skb_recv_udp);
1690 
1691 /*
1692  * 	This should be easy, if there is something there we
1693  * 	return it, otherwise we block.
1694  */
1695 
1696 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1697 		int flags, int *addr_len)
1698 {
1699 	struct inet_sock *inet = inet_sk(sk);
1700 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1701 	struct sk_buff *skb;
1702 	unsigned int ulen, copied;
1703 	int off, err, peeking = flags & MSG_PEEK;
1704 	int is_udplite = IS_UDPLITE(sk);
1705 	bool checksum_valid = false;
1706 
1707 	if (flags & MSG_ERRQUEUE)
1708 		return ip_recv_error(sk, msg, len, addr_len);
1709 
1710 try_again:
1711 	off = sk_peek_offset(sk, flags);
1712 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1713 	if (!skb)
1714 		return err;
1715 
1716 	ulen = udp_skb_len(skb);
1717 	copied = len;
1718 	if (copied > ulen - off)
1719 		copied = ulen - off;
1720 	else if (copied < ulen)
1721 		msg->msg_flags |= MSG_TRUNC;
1722 
1723 	/*
1724 	 * If checksum is needed at all, try to do it while copying the
1725 	 * data.  If the data is truncated, or if we only want a partial
1726 	 * coverage checksum (UDP-Lite), do it before the copy.
1727 	 */
1728 
1729 	if (copied < ulen || peeking ||
1730 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1731 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1732 				!__udp_lib_checksum_complete(skb);
1733 		if (!checksum_valid)
1734 			goto csum_copy_err;
1735 	}
1736 
1737 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1738 		if (udp_skb_is_linear(skb))
1739 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1740 		else
1741 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1742 	} else {
1743 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1744 
1745 		if (err == -EINVAL)
1746 			goto csum_copy_err;
1747 	}
1748 
1749 	if (unlikely(err)) {
1750 		if (!peeking) {
1751 			atomic_inc(&sk->sk_drops);
1752 			UDP_INC_STATS(sock_net(sk),
1753 				      UDP_MIB_INERRORS, is_udplite);
1754 		}
1755 		kfree_skb(skb);
1756 		return err;
1757 	}
1758 
1759 	if (!peeking)
1760 		UDP_INC_STATS(sock_net(sk),
1761 			      UDP_MIB_INDATAGRAMS, is_udplite);
1762 
1763 	sock_recv_ts_and_drops(msg, sk, skb);
1764 
1765 	/* Copy the address. */
1766 	if (sin) {
1767 		sin->sin_family = AF_INET;
1768 		sin->sin_port = udp_hdr(skb)->source;
1769 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1770 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1771 		*addr_len = sizeof(*sin);
1772 
1773 		if (cgroup_bpf_enabled)
1774 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1775 							(struct sockaddr *)sin);
1776 	}
1777 
1778 	if (udp_sk(sk)->gro_enabled)
1779 		udp_cmsg_recv(msg, sk, skb);
1780 
1781 	if (inet->cmsg_flags)
1782 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1783 
1784 	err = copied;
1785 	if (flags & MSG_TRUNC)
1786 		err = ulen;
1787 
1788 	skb_consume_udp(sk, skb, peeking ? -err : err);
1789 	return err;
1790 
1791 csum_copy_err:
1792 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1793 				 udp_skb_destructor)) {
1794 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1795 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1796 	}
1797 	kfree_skb(skb);
1798 
1799 	/* starting over for a new packet, but check if we need to yield */
1800 	cond_resched();
1801 	msg->msg_flags &= ~MSG_TRUNC;
1802 	goto try_again;
1803 }
1804 
1805 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1806 {
1807 	/* This check is replicated from __ip4_datagram_connect() and
1808 	 * intended to prevent BPF program called below from accessing bytes
1809 	 * that are out of the bound specified by user in addr_len.
1810 	 */
1811 	if (addr_len < sizeof(struct sockaddr_in))
1812 		return -EINVAL;
1813 
1814 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1815 }
1816 EXPORT_SYMBOL(udp_pre_connect);
1817 
1818 int __udp_disconnect(struct sock *sk, int flags)
1819 {
1820 	struct inet_sock *inet = inet_sk(sk);
1821 	/*
1822 	 *	1003.1g - break association.
1823 	 */
1824 
1825 	sk->sk_state = TCP_CLOSE;
1826 	inet->inet_daddr = 0;
1827 	inet->inet_dport = 0;
1828 	sock_rps_reset_rxhash(sk);
1829 	sk->sk_bound_dev_if = 0;
1830 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1831 		inet_reset_saddr(sk);
1832 
1833 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1834 		sk->sk_prot->unhash(sk);
1835 		inet->inet_sport = 0;
1836 	}
1837 	sk_dst_reset(sk);
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL(__udp_disconnect);
1841 
1842 int udp_disconnect(struct sock *sk, int flags)
1843 {
1844 	lock_sock(sk);
1845 	__udp_disconnect(sk, flags);
1846 	release_sock(sk);
1847 	return 0;
1848 }
1849 EXPORT_SYMBOL(udp_disconnect);
1850 
1851 void udp_lib_unhash(struct sock *sk)
1852 {
1853 	if (sk_hashed(sk)) {
1854 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1855 		struct udp_hslot *hslot, *hslot2;
1856 
1857 		hslot  = udp_hashslot(udptable, sock_net(sk),
1858 				      udp_sk(sk)->udp_port_hash);
1859 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1860 
1861 		spin_lock_bh(&hslot->lock);
1862 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1863 			reuseport_detach_sock(sk);
1864 		if (sk_del_node_init_rcu(sk)) {
1865 			hslot->count--;
1866 			inet_sk(sk)->inet_num = 0;
1867 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1868 
1869 			spin_lock(&hslot2->lock);
1870 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1871 			hslot2->count--;
1872 			spin_unlock(&hslot2->lock);
1873 		}
1874 		spin_unlock_bh(&hslot->lock);
1875 	}
1876 }
1877 EXPORT_SYMBOL(udp_lib_unhash);
1878 
1879 /*
1880  * inet_rcv_saddr was changed, we must rehash secondary hash
1881  */
1882 void udp_lib_rehash(struct sock *sk, u16 newhash)
1883 {
1884 	if (sk_hashed(sk)) {
1885 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1886 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1887 
1888 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1889 		nhslot2 = udp_hashslot2(udptable, newhash);
1890 		udp_sk(sk)->udp_portaddr_hash = newhash;
1891 
1892 		if (hslot2 != nhslot2 ||
1893 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1894 			hslot = udp_hashslot(udptable, sock_net(sk),
1895 					     udp_sk(sk)->udp_port_hash);
1896 			/* we must lock primary chain too */
1897 			spin_lock_bh(&hslot->lock);
1898 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1899 				reuseport_detach_sock(sk);
1900 
1901 			if (hslot2 != nhslot2) {
1902 				spin_lock(&hslot2->lock);
1903 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1904 				hslot2->count--;
1905 				spin_unlock(&hslot2->lock);
1906 
1907 				spin_lock(&nhslot2->lock);
1908 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1909 							 &nhslot2->head);
1910 				nhslot2->count++;
1911 				spin_unlock(&nhslot2->lock);
1912 			}
1913 
1914 			spin_unlock_bh(&hslot->lock);
1915 		}
1916 	}
1917 }
1918 EXPORT_SYMBOL(udp_lib_rehash);
1919 
1920 void udp_v4_rehash(struct sock *sk)
1921 {
1922 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1923 					  inet_sk(sk)->inet_rcv_saddr,
1924 					  inet_sk(sk)->inet_num);
1925 	udp_lib_rehash(sk, new_hash);
1926 }
1927 
1928 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1929 {
1930 	int rc;
1931 
1932 	if (inet_sk(sk)->inet_daddr) {
1933 		sock_rps_save_rxhash(sk, skb);
1934 		sk_mark_napi_id(sk, skb);
1935 		sk_incoming_cpu_update(sk);
1936 	} else {
1937 		sk_mark_napi_id_once(sk, skb);
1938 	}
1939 
1940 	rc = __udp_enqueue_schedule_skb(sk, skb);
1941 	if (rc < 0) {
1942 		int is_udplite = IS_UDPLITE(sk);
1943 
1944 		/* Note that an ENOMEM error is charged twice */
1945 		if (rc == -ENOMEM)
1946 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1947 					is_udplite);
1948 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1949 		kfree_skb(skb);
1950 		trace_udp_fail_queue_rcv_skb(rc, sk);
1951 		return -1;
1952 	}
1953 
1954 	return 0;
1955 }
1956 
1957 /* returns:
1958  *  -1: error
1959  *   0: success
1960  *  >0: "udp encap" protocol resubmission
1961  *
1962  * Note that in the success and error cases, the skb is assumed to
1963  * have either been requeued or freed.
1964  */
1965 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1966 {
1967 	struct udp_sock *up = udp_sk(sk);
1968 	int is_udplite = IS_UDPLITE(sk);
1969 
1970 	/*
1971 	 *	Charge it to the socket, dropping if the queue is full.
1972 	 */
1973 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1974 		goto drop;
1975 	nf_reset_ct(skb);
1976 
1977 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1978 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1979 
1980 		/*
1981 		 * This is an encapsulation socket so pass the skb to
1982 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1983 		 * fall through and pass this up the UDP socket.
1984 		 * up->encap_rcv() returns the following value:
1985 		 * =0 if skb was successfully passed to the encap
1986 		 *    handler or was discarded by it.
1987 		 * >0 if skb should be passed on to UDP.
1988 		 * <0 if skb should be resubmitted as proto -N
1989 		 */
1990 
1991 		/* if we're overly short, let UDP handle it */
1992 		encap_rcv = READ_ONCE(up->encap_rcv);
1993 		if (encap_rcv) {
1994 			int ret;
1995 
1996 			/* Verify checksum before giving to encap */
1997 			if (udp_lib_checksum_complete(skb))
1998 				goto csum_error;
1999 
2000 			ret = encap_rcv(sk, skb);
2001 			if (ret <= 0) {
2002 				__UDP_INC_STATS(sock_net(sk),
2003 						UDP_MIB_INDATAGRAMS,
2004 						is_udplite);
2005 				return -ret;
2006 			}
2007 		}
2008 
2009 		/* FALLTHROUGH -- it's a UDP Packet */
2010 	}
2011 
2012 	/*
2013 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2014 	 */
2015 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2016 
2017 		/*
2018 		 * MIB statistics other than incrementing the error count are
2019 		 * disabled for the following two types of errors: these depend
2020 		 * on the application settings, not on the functioning of the
2021 		 * protocol stack as such.
2022 		 *
2023 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2024 		 * way ... to ... at least let the receiving application block
2025 		 * delivery of packets with coverage values less than a value
2026 		 * provided by the application."
2027 		 */
2028 		if (up->pcrlen == 0) {          /* full coverage was set  */
2029 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2030 					    UDP_SKB_CB(skb)->cscov, skb->len);
2031 			goto drop;
2032 		}
2033 		/* The next case involves violating the min. coverage requested
2034 		 * by the receiver. This is subtle: if receiver wants x and x is
2035 		 * greater than the buffersize/MTU then receiver will complain
2036 		 * that it wants x while sender emits packets of smaller size y.
2037 		 * Therefore the above ...()->partial_cov statement is essential.
2038 		 */
2039 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2040 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2041 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2042 			goto drop;
2043 		}
2044 	}
2045 
2046 	prefetch(&sk->sk_rmem_alloc);
2047 	if (rcu_access_pointer(sk->sk_filter) &&
2048 	    udp_lib_checksum_complete(skb))
2049 			goto csum_error;
2050 
2051 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2052 		goto drop;
2053 
2054 	udp_csum_pull_header(skb);
2055 
2056 	ipv4_pktinfo_prepare(sk, skb);
2057 	return __udp_queue_rcv_skb(sk, skb);
2058 
2059 csum_error:
2060 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2061 drop:
2062 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2063 	atomic_inc(&sk->sk_drops);
2064 	kfree_skb(skb);
2065 	return -1;
2066 }
2067 
2068 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2069 {
2070 	struct sk_buff *next, *segs;
2071 	int ret;
2072 
2073 	if (likely(!udp_unexpected_gso(sk, skb)))
2074 		return udp_queue_rcv_one_skb(sk, skb);
2075 
2076 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2077 	__skb_push(skb, -skb_mac_offset(skb));
2078 	segs = udp_rcv_segment(sk, skb, true);
2079 	for (skb = segs; skb; skb = next) {
2080 		next = skb->next;
2081 		__skb_pull(skb, skb_transport_offset(skb));
2082 		ret = udp_queue_rcv_one_skb(sk, skb);
2083 		if (ret > 0)
2084 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2085 	}
2086 	return 0;
2087 }
2088 
2089 /* For TCP sockets, sk_rx_dst is protected by socket lock
2090  * For UDP, we use xchg() to guard against concurrent changes.
2091  */
2092 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2093 {
2094 	struct dst_entry *old;
2095 
2096 	if (dst_hold_safe(dst)) {
2097 		old = xchg(&sk->sk_rx_dst, dst);
2098 		dst_release(old);
2099 		return old != dst;
2100 	}
2101 	return false;
2102 }
2103 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2104 
2105 /*
2106  *	Multicasts and broadcasts go to each listener.
2107  *
2108  *	Note: called only from the BH handler context.
2109  */
2110 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2111 				    struct udphdr  *uh,
2112 				    __be32 saddr, __be32 daddr,
2113 				    struct udp_table *udptable,
2114 				    int proto)
2115 {
2116 	struct sock *sk, *first = NULL;
2117 	unsigned short hnum = ntohs(uh->dest);
2118 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2119 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2120 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2121 	int dif = skb->dev->ifindex;
2122 	int sdif = inet_sdif(skb);
2123 	struct hlist_node *node;
2124 	struct sk_buff *nskb;
2125 
2126 	if (use_hash2) {
2127 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2128 			    udptable->mask;
2129 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2130 start_lookup:
2131 		hslot = &udptable->hash2[hash2];
2132 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2133 	}
2134 
2135 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2136 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2137 					 uh->source, saddr, dif, sdif, hnum))
2138 			continue;
2139 
2140 		if (!first) {
2141 			first = sk;
2142 			continue;
2143 		}
2144 		nskb = skb_clone(skb, GFP_ATOMIC);
2145 
2146 		if (unlikely(!nskb)) {
2147 			atomic_inc(&sk->sk_drops);
2148 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2149 					IS_UDPLITE(sk));
2150 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2151 					IS_UDPLITE(sk));
2152 			continue;
2153 		}
2154 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2155 			consume_skb(nskb);
2156 	}
2157 
2158 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2159 	if (use_hash2 && hash2 != hash2_any) {
2160 		hash2 = hash2_any;
2161 		goto start_lookup;
2162 	}
2163 
2164 	if (first) {
2165 		if (udp_queue_rcv_skb(first, skb) > 0)
2166 			consume_skb(skb);
2167 	} else {
2168 		kfree_skb(skb);
2169 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2170 				proto == IPPROTO_UDPLITE);
2171 	}
2172 	return 0;
2173 }
2174 
2175 /* Initialize UDP checksum. If exited with zero value (success),
2176  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2177  * Otherwise, csum completion requires checksumming packet body,
2178  * including udp header and folding it to skb->csum.
2179  */
2180 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2181 				 int proto)
2182 {
2183 	int err;
2184 
2185 	UDP_SKB_CB(skb)->partial_cov = 0;
2186 	UDP_SKB_CB(skb)->cscov = skb->len;
2187 
2188 	if (proto == IPPROTO_UDPLITE) {
2189 		err = udplite_checksum_init(skb, uh);
2190 		if (err)
2191 			return err;
2192 
2193 		if (UDP_SKB_CB(skb)->partial_cov) {
2194 			skb->csum = inet_compute_pseudo(skb, proto);
2195 			return 0;
2196 		}
2197 	}
2198 
2199 	/* Note, we are only interested in != 0 or == 0, thus the
2200 	 * force to int.
2201 	 */
2202 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2203 							inet_compute_pseudo);
2204 	if (err)
2205 		return err;
2206 
2207 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2208 		/* If SW calculated the value, we know it's bad */
2209 		if (skb->csum_complete_sw)
2210 			return 1;
2211 
2212 		/* HW says the value is bad. Let's validate that.
2213 		 * skb->csum is no longer the full packet checksum,
2214 		 * so don't treat it as such.
2215 		 */
2216 		skb_checksum_complete_unset(skb);
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2223  * return code conversion for ip layer consumption
2224  */
2225 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2226 			       struct udphdr *uh)
2227 {
2228 	int ret;
2229 
2230 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2231 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2232 
2233 	ret = udp_queue_rcv_skb(sk, skb);
2234 
2235 	/* a return value > 0 means to resubmit the input, but
2236 	 * it wants the return to be -protocol, or 0
2237 	 */
2238 	if (ret > 0)
2239 		return -ret;
2240 	return 0;
2241 }
2242 
2243 /*
2244  *	All we need to do is get the socket, and then do a checksum.
2245  */
2246 
2247 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2248 		   int proto)
2249 {
2250 	struct sock *sk;
2251 	struct udphdr *uh;
2252 	unsigned short ulen;
2253 	struct rtable *rt = skb_rtable(skb);
2254 	__be32 saddr, daddr;
2255 	struct net *net = dev_net(skb->dev);
2256 
2257 	/*
2258 	 *  Validate the packet.
2259 	 */
2260 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2261 		goto drop;		/* No space for header. */
2262 
2263 	uh   = udp_hdr(skb);
2264 	ulen = ntohs(uh->len);
2265 	saddr = ip_hdr(skb)->saddr;
2266 	daddr = ip_hdr(skb)->daddr;
2267 
2268 	if (ulen > skb->len)
2269 		goto short_packet;
2270 
2271 	if (proto == IPPROTO_UDP) {
2272 		/* UDP validates ulen. */
2273 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2274 			goto short_packet;
2275 		uh = udp_hdr(skb);
2276 	}
2277 
2278 	if (udp4_csum_init(skb, uh, proto))
2279 		goto csum_error;
2280 
2281 	sk = skb_steal_sock(skb);
2282 	if (sk) {
2283 		struct dst_entry *dst = skb_dst(skb);
2284 		int ret;
2285 
2286 		if (unlikely(sk->sk_rx_dst != dst))
2287 			udp_sk_rx_dst_set(sk, dst);
2288 
2289 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2290 		sock_put(sk);
2291 		return ret;
2292 	}
2293 
2294 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2295 		return __udp4_lib_mcast_deliver(net, skb, uh,
2296 						saddr, daddr, udptable, proto);
2297 
2298 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2299 	if (sk)
2300 		return udp_unicast_rcv_skb(sk, skb, uh);
2301 
2302 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2303 		goto drop;
2304 	nf_reset_ct(skb);
2305 
2306 	/* No socket. Drop packet silently, if checksum is wrong */
2307 	if (udp_lib_checksum_complete(skb))
2308 		goto csum_error;
2309 
2310 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2311 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2312 
2313 	/*
2314 	 * Hmm.  We got an UDP packet to a port to which we
2315 	 * don't wanna listen.  Ignore it.
2316 	 */
2317 	kfree_skb(skb);
2318 	return 0;
2319 
2320 short_packet:
2321 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2322 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2323 			    &saddr, ntohs(uh->source),
2324 			    ulen, skb->len,
2325 			    &daddr, ntohs(uh->dest));
2326 	goto drop;
2327 
2328 csum_error:
2329 	/*
2330 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2331 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2332 	 */
2333 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2334 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2335 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2336 			    ulen);
2337 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2338 drop:
2339 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2340 	kfree_skb(skb);
2341 	return 0;
2342 }
2343 
2344 /* We can only early demux multicast if there is a single matching socket.
2345  * If more than one socket found returns NULL
2346  */
2347 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2348 						  __be16 loc_port, __be32 loc_addr,
2349 						  __be16 rmt_port, __be32 rmt_addr,
2350 						  int dif, int sdif)
2351 {
2352 	struct sock *sk, *result;
2353 	unsigned short hnum = ntohs(loc_port);
2354 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2355 	struct udp_hslot *hslot = &udp_table.hash[slot];
2356 
2357 	/* Do not bother scanning a too big list */
2358 	if (hslot->count > 10)
2359 		return NULL;
2360 
2361 	result = NULL;
2362 	sk_for_each_rcu(sk, &hslot->head) {
2363 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2364 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2365 			if (result)
2366 				return NULL;
2367 			result = sk;
2368 		}
2369 	}
2370 
2371 	return result;
2372 }
2373 
2374 /* For unicast we should only early demux connected sockets or we can
2375  * break forwarding setups.  The chains here can be long so only check
2376  * if the first socket is an exact match and if not move on.
2377  */
2378 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2379 					    __be16 loc_port, __be32 loc_addr,
2380 					    __be16 rmt_port, __be32 rmt_addr,
2381 					    int dif, int sdif)
2382 {
2383 	unsigned short hnum = ntohs(loc_port);
2384 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2385 	unsigned int slot2 = hash2 & udp_table.mask;
2386 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2387 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2388 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2389 	struct sock *sk;
2390 
2391 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2392 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2393 			       loc_addr, ports, dif, sdif))
2394 			return sk;
2395 		/* Only check first socket in chain */
2396 		break;
2397 	}
2398 	return NULL;
2399 }
2400 
2401 int udp_v4_early_demux(struct sk_buff *skb)
2402 {
2403 	struct net *net = dev_net(skb->dev);
2404 	struct in_device *in_dev = NULL;
2405 	const struct iphdr *iph;
2406 	const struct udphdr *uh;
2407 	struct sock *sk = NULL;
2408 	struct dst_entry *dst;
2409 	int dif = skb->dev->ifindex;
2410 	int sdif = inet_sdif(skb);
2411 	int ours;
2412 
2413 	/* validate the packet */
2414 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2415 		return 0;
2416 
2417 	iph = ip_hdr(skb);
2418 	uh = udp_hdr(skb);
2419 
2420 	if (skb->pkt_type == PACKET_MULTICAST) {
2421 		in_dev = __in_dev_get_rcu(skb->dev);
2422 
2423 		if (!in_dev)
2424 			return 0;
2425 
2426 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2427 				       iph->protocol);
2428 		if (!ours)
2429 			return 0;
2430 
2431 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2432 						   uh->source, iph->saddr,
2433 						   dif, sdif);
2434 	} else if (skb->pkt_type == PACKET_HOST) {
2435 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2436 					     uh->source, iph->saddr, dif, sdif);
2437 	}
2438 
2439 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2440 		return 0;
2441 
2442 	skb->sk = sk;
2443 	skb->destructor = sock_efree;
2444 	dst = READ_ONCE(sk->sk_rx_dst);
2445 
2446 	if (dst)
2447 		dst = dst_check(dst, 0);
2448 	if (dst) {
2449 		u32 itag = 0;
2450 
2451 		/* set noref for now.
2452 		 * any place which wants to hold dst has to call
2453 		 * dst_hold_safe()
2454 		 */
2455 		skb_dst_set_noref(skb, dst);
2456 
2457 		/* for unconnected multicast sockets we need to validate
2458 		 * the source on each packet
2459 		 */
2460 		if (!inet_sk(sk)->inet_daddr && in_dev)
2461 			return ip_mc_validate_source(skb, iph->daddr,
2462 						     iph->saddr, iph->tos,
2463 						     skb->dev, in_dev, &itag);
2464 	}
2465 	return 0;
2466 }
2467 
2468 int udp_rcv(struct sk_buff *skb)
2469 {
2470 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2471 }
2472 
2473 void udp_destroy_sock(struct sock *sk)
2474 {
2475 	struct udp_sock *up = udp_sk(sk);
2476 	bool slow = lock_sock_fast(sk);
2477 	udp_flush_pending_frames(sk);
2478 	unlock_sock_fast(sk, slow);
2479 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2480 		if (up->encap_type) {
2481 			void (*encap_destroy)(struct sock *sk);
2482 			encap_destroy = READ_ONCE(up->encap_destroy);
2483 			if (encap_destroy)
2484 				encap_destroy(sk);
2485 		}
2486 		if (up->encap_enabled)
2487 			static_branch_dec(&udp_encap_needed_key);
2488 	}
2489 }
2490 
2491 /*
2492  *	Socket option code for UDP
2493  */
2494 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2495 		       char __user *optval, unsigned int optlen,
2496 		       int (*push_pending_frames)(struct sock *))
2497 {
2498 	struct udp_sock *up = udp_sk(sk);
2499 	int val, valbool;
2500 	int err = 0;
2501 	int is_udplite = IS_UDPLITE(sk);
2502 
2503 	if (optlen < sizeof(int))
2504 		return -EINVAL;
2505 
2506 	if (get_user(val, (int __user *)optval))
2507 		return -EFAULT;
2508 
2509 	valbool = val ? 1 : 0;
2510 
2511 	switch (optname) {
2512 	case UDP_CORK:
2513 		if (val != 0) {
2514 			up->corkflag = 1;
2515 		} else {
2516 			up->corkflag = 0;
2517 			lock_sock(sk);
2518 			push_pending_frames(sk);
2519 			release_sock(sk);
2520 		}
2521 		break;
2522 
2523 	case UDP_ENCAP:
2524 		switch (val) {
2525 		case 0:
2526 		case UDP_ENCAP_ESPINUDP:
2527 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2528 			up->encap_rcv = xfrm4_udp_encap_rcv;
2529 			/* FALLTHROUGH */
2530 		case UDP_ENCAP_L2TPINUDP:
2531 			up->encap_type = val;
2532 			lock_sock(sk);
2533 			udp_tunnel_encap_enable(sk->sk_socket);
2534 			release_sock(sk);
2535 			break;
2536 		default:
2537 			err = -ENOPROTOOPT;
2538 			break;
2539 		}
2540 		break;
2541 
2542 	case UDP_NO_CHECK6_TX:
2543 		up->no_check6_tx = valbool;
2544 		break;
2545 
2546 	case UDP_NO_CHECK6_RX:
2547 		up->no_check6_rx = valbool;
2548 		break;
2549 
2550 	case UDP_SEGMENT:
2551 		if (val < 0 || val > USHRT_MAX)
2552 			return -EINVAL;
2553 		up->gso_size = val;
2554 		break;
2555 
2556 	case UDP_GRO:
2557 		lock_sock(sk);
2558 		if (valbool)
2559 			udp_tunnel_encap_enable(sk->sk_socket);
2560 		up->gro_enabled = valbool;
2561 		release_sock(sk);
2562 		break;
2563 
2564 	/*
2565 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2566 	 */
2567 	/* The sender sets actual checksum coverage length via this option.
2568 	 * The case coverage > packet length is handled by send module. */
2569 	case UDPLITE_SEND_CSCOV:
2570 		if (!is_udplite)         /* Disable the option on UDP sockets */
2571 			return -ENOPROTOOPT;
2572 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2573 			val = 8;
2574 		else if (val > USHRT_MAX)
2575 			val = USHRT_MAX;
2576 		up->pcslen = val;
2577 		up->pcflag |= UDPLITE_SEND_CC;
2578 		break;
2579 
2580 	/* The receiver specifies a minimum checksum coverage value. To make
2581 	 * sense, this should be set to at least 8 (as done below). If zero is
2582 	 * used, this again means full checksum coverage.                     */
2583 	case UDPLITE_RECV_CSCOV:
2584 		if (!is_udplite)         /* Disable the option on UDP sockets */
2585 			return -ENOPROTOOPT;
2586 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2587 			val = 8;
2588 		else if (val > USHRT_MAX)
2589 			val = USHRT_MAX;
2590 		up->pcrlen = val;
2591 		up->pcflag |= UDPLITE_RECV_CC;
2592 		break;
2593 
2594 	default:
2595 		err = -ENOPROTOOPT;
2596 		break;
2597 	}
2598 
2599 	return err;
2600 }
2601 EXPORT_SYMBOL(udp_lib_setsockopt);
2602 
2603 int udp_setsockopt(struct sock *sk, int level, int optname,
2604 		   char __user *optval, unsigned int optlen)
2605 {
2606 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2607 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2608 					  udp_push_pending_frames);
2609 	return ip_setsockopt(sk, level, optname, optval, optlen);
2610 }
2611 
2612 #ifdef CONFIG_COMPAT
2613 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2614 			  char __user *optval, unsigned int optlen)
2615 {
2616 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2617 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2618 					  udp_push_pending_frames);
2619 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2620 }
2621 #endif
2622 
2623 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2624 		       char __user *optval, int __user *optlen)
2625 {
2626 	struct udp_sock *up = udp_sk(sk);
2627 	int val, len;
2628 
2629 	if (get_user(len, optlen))
2630 		return -EFAULT;
2631 
2632 	len = min_t(unsigned int, len, sizeof(int));
2633 
2634 	if (len < 0)
2635 		return -EINVAL;
2636 
2637 	switch (optname) {
2638 	case UDP_CORK:
2639 		val = up->corkflag;
2640 		break;
2641 
2642 	case UDP_ENCAP:
2643 		val = up->encap_type;
2644 		break;
2645 
2646 	case UDP_NO_CHECK6_TX:
2647 		val = up->no_check6_tx;
2648 		break;
2649 
2650 	case UDP_NO_CHECK6_RX:
2651 		val = up->no_check6_rx;
2652 		break;
2653 
2654 	case UDP_SEGMENT:
2655 		val = up->gso_size;
2656 		break;
2657 
2658 	/* The following two cannot be changed on UDP sockets, the return is
2659 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2660 	case UDPLITE_SEND_CSCOV:
2661 		val = up->pcslen;
2662 		break;
2663 
2664 	case UDPLITE_RECV_CSCOV:
2665 		val = up->pcrlen;
2666 		break;
2667 
2668 	default:
2669 		return -ENOPROTOOPT;
2670 	}
2671 
2672 	if (put_user(len, optlen))
2673 		return -EFAULT;
2674 	if (copy_to_user(optval, &val, len))
2675 		return -EFAULT;
2676 	return 0;
2677 }
2678 EXPORT_SYMBOL(udp_lib_getsockopt);
2679 
2680 int udp_getsockopt(struct sock *sk, int level, int optname,
2681 		   char __user *optval, int __user *optlen)
2682 {
2683 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2684 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2685 	return ip_getsockopt(sk, level, optname, optval, optlen);
2686 }
2687 
2688 #ifdef CONFIG_COMPAT
2689 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2690 				 char __user *optval, int __user *optlen)
2691 {
2692 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2693 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2694 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2695 }
2696 #endif
2697 /**
2698  * 	udp_poll - wait for a UDP event.
2699  *	@file - file struct
2700  *	@sock - socket
2701  *	@wait - poll table
2702  *
2703  *	This is same as datagram poll, except for the special case of
2704  *	blocking sockets. If application is using a blocking fd
2705  *	and a packet with checksum error is in the queue;
2706  *	then it could get return from select indicating data available
2707  *	but then block when reading it. Add special case code
2708  *	to work around these arguably broken applications.
2709  */
2710 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2711 {
2712 	__poll_t mask = datagram_poll(file, sock, wait);
2713 	struct sock *sk = sock->sk;
2714 
2715 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2716 		mask |= EPOLLIN | EPOLLRDNORM;
2717 
2718 	/* Check for false positives due to checksum errors */
2719 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2720 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2721 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2722 
2723 	return mask;
2724 
2725 }
2726 EXPORT_SYMBOL(udp_poll);
2727 
2728 int udp_abort(struct sock *sk, int err)
2729 {
2730 	lock_sock(sk);
2731 
2732 	sk->sk_err = err;
2733 	sk->sk_error_report(sk);
2734 	__udp_disconnect(sk, 0);
2735 
2736 	release_sock(sk);
2737 
2738 	return 0;
2739 }
2740 EXPORT_SYMBOL_GPL(udp_abort);
2741 
2742 struct proto udp_prot = {
2743 	.name			= "UDP",
2744 	.owner			= THIS_MODULE,
2745 	.close			= udp_lib_close,
2746 	.pre_connect		= udp_pre_connect,
2747 	.connect		= ip4_datagram_connect,
2748 	.disconnect		= udp_disconnect,
2749 	.ioctl			= udp_ioctl,
2750 	.init			= udp_init_sock,
2751 	.destroy		= udp_destroy_sock,
2752 	.setsockopt		= udp_setsockopt,
2753 	.getsockopt		= udp_getsockopt,
2754 	.sendmsg		= udp_sendmsg,
2755 	.recvmsg		= udp_recvmsg,
2756 	.sendpage		= udp_sendpage,
2757 	.release_cb		= ip4_datagram_release_cb,
2758 	.hash			= udp_lib_hash,
2759 	.unhash			= udp_lib_unhash,
2760 	.rehash			= udp_v4_rehash,
2761 	.get_port		= udp_v4_get_port,
2762 	.memory_allocated	= &udp_memory_allocated,
2763 	.sysctl_mem		= sysctl_udp_mem,
2764 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2765 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2766 	.obj_size		= sizeof(struct udp_sock),
2767 	.h.udp_table		= &udp_table,
2768 #ifdef CONFIG_COMPAT
2769 	.compat_setsockopt	= compat_udp_setsockopt,
2770 	.compat_getsockopt	= compat_udp_getsockopt,
2771 #endif
2772 	.diag_destroy		= udp_abort,
2773 };
2774 EXPORT_SYMBOL(udp_prot);
2775 
2776 /* ------------------------------------------------------------------------ */
2777 #ifdef CONFIG_PROC_FS
2778 
2779 static struct sock *udp_get_first(struct seq_file *seq, int start)
2780 {
2781 	struct sock *sk;
2782 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2783 	struct udp_iter_state *state = seq->private;
2784 	struct net *net = seq_file_net(seq);
2785 
2786 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2787 	     ++state->bucket) {
2788 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2789 
2790 		if (hlist_empty(&hslot->head))
2791 			continue;
2792 
2793 		spin_lock_bh(&hslot->lock);
2794 		sk_for_each(sk, &hslot->head) {
2795 			if (!net_eq(sock_net(sk), net))
2796 				continue;
2797 			if (sk->sk_family == afinfo->family)
2798 				goto found;
2799 		}
2800 		spin_unlock_bh(&hslot->lock);
2801 	}
2802 	sk = NULL;
2803 found:
2804 	return sk;
2805 }
2806 
2807 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2808 {
2809 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2810 	struct udp_iter_state *state = seq->private;
2811 	struct net *net = seq_file_net(seq);
2812 
2813 	do {
2814 		sk = sk_next(sk);
2815 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2816 
2817 	if (!sk) {
2818 		if (state->bucket <= afinfo->udp_table->mask)
2819 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2820 		return udp_get_first(seq, state->bucket + 1);
2821 	}
2822 	return sk;
2823 }
2824 
2825 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2826 {
2827 	struct sock *sk = udp_get_first(seq, 0);
2828 
2829 	if (sk)
2830 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2831 			--pos;
2832 	return pos ? NULL : sk;
2833 }
2834 
2835 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2836 {
2837 	struct udp_iter_state *state = seq->private;
2838 	state->bucket = MAX_UDP_PORTS;
2839 
2840 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2841 }
2842 EXPORT_SYMBOL(udp_seq_start);
2843 
2844 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2845 {
2846 	struct sock *sk;
2847 
2848 	if (v == SEQ_START_TOKEN)
2849 		sk = udp_get_idx(seq, 0);
2850 	else
2851 		sk = udp_get_next(seq, v);
2852 
2853 	++*pos;
2854 	return sk;
2855 }
2856 EXPORT_SYMBOL(udp_seq_next);
2857 
2858 void udp_seq_stop(struct seq_file *seq, void *v)
2859 {
2860 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2861 	struct udp_iter_state *state = seq->private;
2862 
2863 	if (state->bucket <= afinfo->udp_table->mask)
2864 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2865 }
2866 EXPORT_SYMBOL(udp_seq_stop);
2867 
2868 /* ------------------------------------------------------------------------ */
2869 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2870 		int bucket)
2871 {
2872 	struct inet_sock *inet = inet_sk(sp);
2873 	__be32 dest = inet->inet_daddr;
2874 	__be32 src  = inet->inet_rcv_saddr;
2875 	__u16 destp	  = ntohs(inet->inet_dport);
2876 	__u16 srcp	  = ntohs(inet->inet_sport);
2877 
2878 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2879 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2880 		bucket, src, srcp, dest, destp, sp->sk_state,
2881 		sk_wmem_alloc_get(sp),
2882 		udp_rqueue_get(sp),
2883 		0, 0L, 0,
2884 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2885 		0, sock_i_ino(sp),
2886 		refcount_read(&sp->sk_refcnt), sp,
2887 		atomic_read(&sp->sk_drops));
2888 }
2889 
2890 int udp4_seq_show(struct seq_file *seq, void *v)
2891 {
2892 	seq_setwidth(seq, 127);
2893 	if (v == SEQ_START_TOKEN)
2894 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2895 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2896 			   "inode ref pointer drops");
2897 	else {
2898 		struct udp_iter_state *state = seq->private;
2899 
2900 		udp4_format_sock(v, seq, state->bucket);
2901 	}
2902 	seq_pad(seq, '\n');
2903 	return 0;
2904 }
2905 
2906 const struct seq_operations udp_seq_ops = {
2907 	.start		= udp_seq_start,
2908 	.next		= udp_seq_next,
2909 	.stop		= udp_seq_stop,
2910 	.show		= udp4_seq_show,
2911 };
2912 EXPORT_SYMBOL(udp_seq_ops);
2913 
2914 static struct udp_seq_afinfo udp4_seq_afinfo = {
2915 	.family		= AF_INET,
2916 	.udp_table	= &udp_table,
2917 };
2918 
2919 static int __net_init udp4_proc_init_net(struct net *net)
2920 {
2921 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2922 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2923 		return -ENOMEM;
2924 	return 0;
2925 }
2926 
2927 static void __net_exit udp4_proc_exit_net(struct net *net)
2928 {
2929 	remove_proc_entry("udp", net->proc_net);
2930 }
2931 
2932 static struct pernet_operations udp4_net_ops = {
2933 	.init = udp4_proc_init_net,
2934 	.exit = udp4_proc_exit_net,
2935 };
2936 
2937 int __init udp4_proc_init(void)
2938 {
2939 	return register_pernet_subsys(&udp4_net_ops);
2940 }
2941 
2942 void udp4_proc_exit(void)
2943 {
2944 	unregister_pernet_subsys(&udp4_net_ops);
2945 }
2946 #endif /* CONFIG_PROC_FS */
2947 
2948 static __initdata unsigned long uhash_entries;
2949 static int __init set_uhash_entries(char *str)
2950 {
2951 	ssize_t ret;
2952 
2953 	if (!str)
2954 		return 0;
2955 
2956 	ret = kstrtoul(str, 0, &uhash_entries);
2957 	if (ret)
2958 		return 0;
2959 
2960 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2961 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2962 	return 1;
2963 }
2964 __setup("uhash_entries=", set_uhash_entries);
2965 
2966 void __init udp_table_init(struct udp_table *table, const char *name)
2967 {
2968 	unsigned int i;
2969 
2970 	table->hash = alloc_large_system_hash(name,
2971 					      2 * sizeof(struct udp_hslot),
2972 					      uhash_entries,
2973 					      21, /* one slot per 2 MB */
2974 					      0,
2975 					      &table->log,
2976 					      &table->mask,
2977 					      UDP_HTABLE_SIZE_MIN,
2978 					      64 * 1024);
2979 
2980 	table->hash2 = table->hash + (table->mask + 1);
2981 	for (i = 0; i <= table->mask; i++) {
2982 		INIT_HLIST_HEAD(&table->hash[i].head);
2983 		table->hash[i].count = 0;
2984 		spin_lock_init(&table->hash[i].lock);
2985 	}
2986 	for (i = 0; i <= table->mask; i++) {
2987 		INIT_HLIST_HEAD(&table->hash2[i].head);
2988 		table->hash2[i].count = 0;
2989 		spin_lock_init(&table->hash2[i].lock);
2990 	}
2991 }
2992 
2993 u32 udp_flow_hashrnd(void)
2994 {
2995 	static u32 hashrnd __read_mostly;
2996 
2997 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2998 
2999 	return hashrnd;
3000 }
3001 EXPORT_SYMBOL(udp_flow_hashrnd);
3002 
3003 static void __udp_sysctl_init(struct net *net)
3004 {
3005 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3006 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3007 
3008 #ifdef CONFIG_NET_L3_MASTER_DEV
3009 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3010 #endif
3011 }
3012 
3013 static int __net_init udp_sysctl_init(struct net *net)
3014 {
3015 	__udp_sysctl_init(net);
3016 	return 0;
3017 }
3018 
3019 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3020 	.init	= udp_sysctl_init,
3021 };
3022 
3023 void __init udp_init(void)
3024 {
3025 	unsigned long limit;
3026 	unsigned int i;
3027 
3028 	udp_table_init(&udp_table, "UDP");
3029 	limit = nr_free_buffer_pages() / 8;
3030 	limit = max(limit, 128UL);
3031 	sysctl_udp_mem[0] = limit / 4 * 3;
3032 	sysctl_udp_mem[1] = limit;
3033 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3034 
3035 	__udp_sysctl_init(&init_net);
3036 
3037 	/* 16 spinlocks per cpu */
3038 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3039 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3040 				GFP_KERNEL);
3041 	if (!udp_busylocks)
3042 		panic("UDP: failed to alloc udp_busylocks\n");
3043 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3044 		spin_lock_init(udp_busylocks + i);
3045 
3046 	if (register_pernet_subsys(&udp_sysctl_ops))
3047 		panic("UDP: failed to init sysctl parameters.\n");
3048 }
3049