xref: /linux/net/ipv4/udp.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
108 
109 struct udp_table udp_table __read_mostly;
110 EXPORT_SYMBOL(udp_table);
111 
112 int sysctl_udp_mem[3] __read_mostly;
113 EXPORT_SYMBOL(sysctl_udp_mem);
114 
115 int sysctl_udp_rmem_min __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_rmem_min);
117 
118 int sysctl_udp_wmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_wmem_min);
120 
121 atomic_t udp_memory_allocated;
122 EXPORT_SYMBOL(udp_memory_allocated);
123 
124 #define MAX_UDP_PORTS 65536
125 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
126 
127 static int udp_lib_lport_inuse(struct net *net, __u16 num,
128 			       const struct udp_hslot *hslot,
129 			       unsigned long *bitmap,
130 			       struct sock *sk,
131 			       int (*saddr_comp)(const struct sock *sk1,
132 						 const struct sock *sk2),
133 			       unsigned int log)
134 {
135 	struct sock *sk2;
136 	struct hlist_nulls_node *node;
137 
138 	sk_nulls_for_each(sk2, node, &hslot->head)
139 		if (net_eq(sock_net(sk2), net) &&
140 		    sk2 != sk &&
141 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
142 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
143 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
144 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
145 		    (*saddr_comp)(sk, sk2)) {
146 			if (bitmap)
147 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
148 					  bitmap);
149 			else
150 				return 1;
151 		}
152 	return 0;
153 }
154 
155 /*
156  * Note: we still hold spinlock of primary hash chain, so no other writer
157  * can insert/delete a socket with local_port == num
158  */
159 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
160 			       struct udp_hslot *hslot2,
161 			       struct sock *sk,
162 			       int (*saddr_comp)(const struct sock *sk1,
163 						 const struct sock *sk2))
164 {
165 	struct sock *sk2;
166 	struct hlist_nulls_node *node;
167 	int res = 0;
168 
169 	spin_lock(&hslot2->lock);
170 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
171 		if (net_eq(sock_net(sk2), net) &&
172 		    sk2 != sk &&
173 		    (udp_sk(sk2)->udp_port_hash == num) &&
174 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
175 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
176 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
177 		    (*saddr_comp)(sk, sk2)) {
178 			res = 1;
179 			break;
180 		}
181 	spin_unlock(&hslot2->lock);
182 	return res;
183 }
184 
185 /**
186  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
187  *
188  *  @sk:          socket struct in question
189  *  @snum:        port number to look up
190  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
191  *  @hash2_nulladdr: AF-dependant hash value in secondary hash chains,
192  *                   with NULL address
193  */
194 int udp_lib_get_port(struct sock *sk, unsigned short snum,
195 		       int (*saddr_comp)(const struct sock *sk1,
196 					 const struct sock *sk2),
197 		     unsigned int hash2_nulladdr)
198 {
199 	struct udp_hslot *hslot, *hslot2;
200 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
201 	int    error = 1;
202 	struct net *net = sock_net(sk);
203 
204 	if (!snum) {
205 		int low, high, remaining;
206 		unsigned rand;
207 		unsigned short first, last;
208 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
209 
210 		inet_get_local_port_range(&low, &high);
211 		remaining = (high - low) + 1;
212 
213 		rand = net_random();
214 		first = (((u64)rand * remaining) >> 32) + low;
215 		/*
216 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
217 		 */
218 		rand = (rand | 1) * (udptable->mask + 1);
219 		for (last = first + udptable->mask + 1;
220 		     first != last;
221 		     first++) {
222 			hslot = udp_hashslot(udptable, net, first);
223 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
224 			spin_lock_bh(&hslot->lock);
225 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
226 					    saddr_comp, udptable->log);
227 
228 			snum = first;
229 			/*
230 			 * Iterate on all possible values of snum for this hash.
231 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
232 			 * give us randomization and full range coverage.
233 			 */
234 			do {
235 				if (low <= snum && snum <= high &&
236 				    !test_bit(snum >> udptable->log, bitmap))
237 					goto found;
238 				snum += rand;
239 			} while (snum != first);
240 			spin_unlock_bh(&hslot->lock);
241 		}
242 		goto fail;
243 	} else {
244 		hslot = udp_hashslot(udptable, net, snum);
245 		spin_lock_bh(&hslot->lock);
246 		if (hslot->count > 10) {
247 			int exist;
248 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
249 
250 			slot2          &= udptable->mask;
251 			hash2_nulladdr &= udptable->mask;
252 
253 			hslot2 = udp_hashslot2(udptable, slot2);
254 			if (hslot->count < hslot2->count)
255 				goto scan_primary_hash;
256 
257 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
258 						     sk, saddr_comp);
259 			if (!exist && (hash2_nulladdr != slot2)) {
260 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
261 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
262 							     sk, saddr_comp);
263 			}
264 			if (exist)
265 				goto fail_unlock;
266 			else
267 				goto found;
268 		}
269 scan_primary_hash:
270 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
271 					saddr_comp, 0))
272 			goto fail_unlock;
273 	}
274 found:
275 	inet_sk(sk)->inet_num = snum;
276 	udp_sk(sk)->udp_port_hash = snum;
277 	udp_sk(sk)->udp_portaddr_hash ^= snum;
278 	if (sk_unhashed(sk)) {
279 		sk_nulls_add_node_rcu(sk, &hslot->head);
280 		hslot->count++;
281 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
282 
283 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
284 		spin_lock(&hslot2->lock);
285 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
286 					 &hslot2->head);
287 		hslot2->count++;
288 		spin_unlock(&hslot2->lock);
289 	}
290 	error = 0;
291 fail_unlock:
292 	spin_unlock_bh(&hslot->lock);
293 fail:
294 	return error;
295 }
296 EXPORT_SYMBOL(udp_lib_get_port);
297 
298 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
299 {
300 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
301 
302 	return 	(!ipv6_only_sock(sk2)  &&
303 		 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
304 		   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
305 }
306 
307 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
308 				       unsigned int port)
309 {
310 	return jhash_1word(saddr, net_hash_mix(net)) ^ port;
311 }
312 
313 int udp_v4_get_port(struct sock *sk, unsigned short snum)
314 {
315 	unsigned int hash2_nulladdr =
316 		udp4_portaddr_hash(sock_net(sk), INADDR_ANY, snum);
317 	unsigned int hash2_partial =
318 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
319 
320 	/* precompute partial secondary hash */
321 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
322 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
323 }
324 
325 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
326 			 unsigned short hnum,
327 			 __be16 sport, __be32 daddr, __be16 dport, int dif)
328 {
329 	int score = -1;
330 
331 	if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
332 			!ipv6_only_sock(sk)) {
333 		struct inet_sock *inet = inet_sk(sk);
334 
335 		score = (sk->sk_family == PF_INET ? 1 : 0);
336 		if (inet->inet_rcv_saddr) {
337 			if (inet->inet_rcv_saddr != daddr)
338 				return -1;
339 			score += 2;
340 		}
341 		if (inet->inet_daddr) {
342 			if (inet->inet_daddr != saddr)
343 				return -1;
344 			score += 2;
345 		}
346 		if (inet->inet_dport) {
347 			if (inet->inet_dport != sport)
348 				return -1;
349 			score += 2;
350 		}
351 		if (sk->sk_bound_dev_if) {
352 			if (sk->sk_bound_dev_if != dif)
353 				return -1;
354 			score += 2;
355 		}
356 	}
357 	return score;
358 }
359 
360 /*
361  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
362  */
363 #define SCORE2_MAX (1 + 2 + 2 + 2)
364 static inline int compute_score2(struct sock *sk, struct net *net,
365 				 __be32 saddr, __be16 sport,
366 				 __be32 daddr, unsigned int hnum, int dif)
367 {
368 	int score = -1;
369 
370 	if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
371 		struct inet_sock *inet = inet_sk(sk);
372 
373 		if (inet->inet_rcv_saddr != daddr)
374 			return -1;
375 		if (inet->inet_num != hnum)
376 			return -1;
377 
378 		score = (sk->sk_family == PF_INET ? 1 : 0);
379 		if (inet->inet_daddr) {
380 			if (inet->inet_daddr != saddr)
381 				return -1;
382 			score += 2;
383 		}
384 		if (inet->inet_dport) {
385 			if (inet->inet_dport != sport)
386 				return -1;
387 			score += 2;
388 		}
389 		if (sk->sk_bound_dev_if) {
390 			if (sk->sk_bound_dev_if != dif)
391 				return -1;
392 			score += 2;
393 		}
394 	}
395 	return score;
396 }
397 
398 
399 /* called with read_rcu_lock() */
400 static struct sock *udp4_lib_lookup2(struct net *net,
401 		__be32 saddr, __be16 sport,
402 		__be32 daddr, unsigned int hnum, int dif,
403 		struct udp_hslot *hslot2, unsigned int slot2)
404 {
405 	struct sock *sk, *result;
406 	struct hlist_nulls_node *node;
407 	int score, badness;
408 
409 begin:
410 	result = NULL;
411 	badness = -1;
412 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
413 		score = compute_score2(sk, net, saddr, sport,
414 				      daddr, hnum, dif);
415 		if (score > badness) {
416 			result = sk;
417 			badness = score;
418 			if (score == SCORE2_MAX)
419 				goto exact_match;
420 		}
421 	}
422 	/*
423 	 * if the nulls value we got at the end of this lookup is
424 	 * not the expected one, we must restart lookup.
425 	 * We probably met an item that was moved to another chain.
426 	 */
427 	if (get_nulls_value(node) != slot2)
428 		goto begin;
429 
430 	if (result) {
431 exact_match:
432 		if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
433 			result = NULL;
434 		else if (unlikely(compute_score2(result, net, saddr, sport,
435 				  daddr, hnum, dif) < badness)) {
436 			sock_put(result);
437 			goto begin;
438 		}
439 	}
440 	return result;
441 }
442 
443 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
444  * harder than this. -DaveM
445  */
446 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
447 		__be16 sport, __be32 daddr, __be16 dport,
448 		int dif, struct udp_table *udptable)
449 {
450 	struct sock *sk, *result;
451 	struct hlist_nulls_node *node;
452 	unsigned short hnum = ntohs(dport);
453 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
454 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
455 	int score, badness;
456 
457 	rcu_read_lock();
458 	if (hslot->count > 10) {
459 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
460 		slot2 = hash2 & udptable->mask;
461 		hslot2 = &udptable->hash2[slot2];
462 		if (hslot->count < hslot2->count)
463 			goto begin;
464 
465 		result = udp4_lib_lookup2(net, saddr, sport,
466 					  daddr, hnum, dif,
467 					  hslot2, slot2);
468 		if (!result) {
469 			hash2 = udp4_portaddr_hash(net, INADDR_ANY, hnum);
470 			slot2 = hash2 & udptable->mask;
471 			hslot2 = &udptable->hash2[slot2];
472 			if (hslot->count < hslot2->count)
473 				goto begin;
474 
475 			result = udp4_lib_lookup2(net, INADDR_ANY, sport,
476 						  daddr, hnum, dif,
477 						  hslot2, slot2);
478 		}
479 		rcu_read_unlock();
480 		return result;
481 	}
482 begin:
483 	result = NULL;
484 	badness = -1;
485 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
486 		score = compute_score(sk, net, saddr, hnum, sport,
487 				      daddr, dport, dif);
488 		if (score > badness) {
489 			result = sk;
490 			badness = score;
491 		}
492 	}
493 	/*
494 	 * if the nulls value we got at the end of this lookup is
495 	 * not the expected one, we must restart lookup.
496 	 * We probably met an item that was moved to another chain.
497 	 */
498 	if (get_nulls_value(node) != slot)
499 		goto begin;
500 
501 	if (result) {
502 		if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
503 			result = NULL;
504 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
505 				  daddr, dport, dif) < badness)) {
506 			sock_put(result);
507 			goto begin;
508 		}
509 	}
510 	rcu_read_unlock();
511 	return result;
512 }
513 
514 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
515 						 __be16 sport, __be16 dport,
516 						 struct udp_table *udptable)
517 {
518 	struct sock *sk;
519 	const struct iphdr *iph = ip_hdr(skb);
520 
521 	if (unlikely(sk = skb_steal_sock(skb)))
522 		return sk;
523 	else
524 		return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
525 					 iph->daddr, dport, inet_iif(skb),
526 					 udptable);
527 }
528 
529 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
530 			     __be32 daddr, __be16 dport, int dif)
531 {
532 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
533 }
534 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
535 
536 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
537 					     __be16 loc_port, __be32 loc_addr,
538 					     __be16 rmt_port, __be32 rmt_addr,
539 					     int dif)
540 {
541 	struct hlist_nulls_node *node;
542 	struct sock *s = sk;
543 	unsigned short hnum = ntohs(loc_port);
544 
545 	sk_nulls_for_each_from(s, node) {
546 		struct inet_sock *inet = inet_sk(s);
547 
548 		if (!net_eq(sock_net(s), net) ||
549 		    udp_sk(s)->udp_port_hash != hnum ||
550 		    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
551 		    (inet->inet_dport != rmt_port && inet->inet_dport) ||
552 		    (inet->inet_rcv_saddr &&
553 		     inet->inet_rcv_saddr != loc_addr) ||
554 		    ipv6_only_sock(s) ||
555 		    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
556 			continue;
557 		if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
558 			continue;
559 		goto found;
560 	}
561 	s = NULL;
562 found:
563 	return s;
564 }
565 
566 /*
567  * This routine is called by the ICMP module when it gets some
568  * sort of error condition.  If err < 0 then the socket should
569  * be closed and the error returned to the user.  If err > 0
570  * it's just the icmp type << 8 | icmp code.
571  * Header points to the ip header of the error packet. We move
572  * on past this. Then (as it used to claim before adjustment)
573  * header points to the first 8 bytes of the udp header.  We need
574  * to find the appropriate port.
575  */
576 
577 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
578 {
579 	struct inet_sock *inet;
580 	struct iphdr *iph = (struct iphdr *)skb->data;
581 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
582 	const int type = icmp_hdr(skb)->type;
583 	const int code = icmp_hdr(skb)->code;
584 	struct sock *sk;
585 	int harderr;
586 	int err;
587 	struct net *net = dev_net(skb->dev);
588 
589 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
590 			iph->saddr, uh->source, skb->dev->ifindex, udptable);
591 	if (sk == NULL) {
592 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
593 		return;	/* No socket for error */
594 	}
595 
596 	err = 0;
597 	harderr = 0;
598 	inet = inet_sk(sk);
599 
600 	switch (type) {
601 	default:
602 	case ICMP_TIME_EXCEEDED:
603 		err = EHOSTUNREACH;
604 		break;
605 	case ICMP_SOURCE_QUENCH:
606 		goto out;
607 	case ICMP_PARAMETERPROB:
608 		err = EPROTO;
609 		harderr = 1;
610 		break;
611 	case ICMP_DEST_UNREACH:
612 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
613 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
614 				err = EMSGSIZE;
615 				harderr = 1;
616 				break;
617 			}
618 			goto out;
619 		}
620 		err = EHOSTUNREACH;
621 		if (code <= NR_ICMP_UNREACH) {
622 			harderr = icmp_err_convert[code].fatal;
623 			err = icmp_err_convert[code].errno;
624 		}
625 		break;
626 	}
627 
628 	/*
629 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
630 	 *	4.1.3.3.
631 	 */
632 	if (!inet->recverr) {
633 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
634 			goto out;
635 	} else {
636 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
637 	}
638 	sk->sk_err = err;
639 	sk->sk_error_report(sk);
640 out:
641 	sock_put(sk);
642 }
643 
644 void udp_err(struct sk_buff *skb, u32 info)
645 {
646 	__udp4_lib_err(skb, info, &udp_table);
647 }
648 
649 /*
650  * Throw away all pending data and cancel the corking. Socket is locked.
651  */
652 void udp_flush_pending_frames(struct sock *sk)
653 {
654 	struct udp_sock *up = udp_sk(sk);
655 
656 	if (up->pending) {
657 		up->len = 0;
658 		up->pending = 0;
659 		ip_flush_pending_frames(sk);
660 	}
661 }
662 EXPORT_SYMBOL(udp_flush_pending_frames);
663 
664 /**
665  * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming
666  * 	@sk: 	socket we are sending on
667  * 	@skb: 	sk_buff containing the filled-in UDP header
668  * 	        (checksum field must be zeroed out)
669  */
670 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
671 				 __be32 src, __be32 dst, int len)
672 {
673 	unsigned int offset;
674 	struct udphdr *uh = udp_hdr(skb);
675 	__wsum csum = 0;
676 
677 	if (skb_queue_len(&sk->sk_write_queue) == 1) {
678 		/*
679 		 * Only one fragment on the socket.
680 		 */
681 		skb->csum_start = skb_transport_header(skb) - skb->head;
682 		skb->csum_offset = offsetof(struct udphdr, check);
683 		uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
684 	} else {
685 		/*
686 		 * HW-checksum won't work as there are two or more
687 		 * fragments on the socket so that all csums of sk_buffs
688 		 * should be together
689 		 */
690 		offset = skb_transport_offset(skb);
691 		skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
692 
693 		skb->ip_summed = CHECKSUM_NONE;
694 
695 		skb_queue_walk(&sk->sk_write_queue, skb) {
696 			csum = csum_add(csum, skb->csum);
697 		}
698 
699 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
700 		if (uh->check == 0)
701 			uh->check = CSUM_MANGLED_0;
702 	}
703 }
704 
705 /*
706  * Push out all pending data as one UDP datagram. Socket is locked.
707  */
708 static int udp_push_pending_frames(struct sock *sk)
709 {
710 	struct udp_sock  *up = udp_sk(sk);
711 	struct inet_sock *inet = inet_sk(sk);
712 	struct flowi *fl = &inet->cork.fl;
713 	struct sk_buff *skb;
714 	struct udphdr *uh;
715 	int err = 0;
716 	int is_udplite = IS_UDPLITE(sk);
717 	__wsum csum = 0;
718 
719 	/* Grab the skbuff where UDP header space exists. */
720 	if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
721 		goto out;
722 
723 	/*
724 	 * Create a UDP header
725 	 */
726 	uh = udp_hdr(skb);
727 	uh->source = fl->fl_ip_sport;
728 	uh->dest = fl->fl_ip_dport;
729 	uh->len = htons(up->len);
730 	uh->check = 0;
731 
732 	if (is_udplite)  				 /*     UDP-Lite      */
733 		csum  = udplite_csum_outgoing(sk, skb);
734 
735 	else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
736 
737 		skb->ip_summed = CHECKSUM_NONE;
738 		goto send;
739 
740 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
741 
742 		udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
743 		goto send;
744 
745 	} else						 /*   `normal' UDP    */
746 		csum = udp_csum_outgoing(sk, skb);
747 
748 	/* add protocol-dependent pseudo-header */
749 	uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
750 				      sk->sk_protocol, csum);
751 	if (uh->check == 0)
752 		uh->check = CSUM_MANGLED_0;
753 
754 send:
755 	err = ip_push_pending_frames(sk);
756 	if (err) {
757 		if (err == -ENOBUFS && !inet->recverr) {
758 			UDP_INC_STATS_USER(sock_net(sk),
759 					   UDP_MIB_SNDBUFERRORS, is_udplite);
760 			err = 0;
761 		}
762 	} else
763 		UDP_INC_STATS_USER(sock_net(sk),
764 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
765 out:
766 	up->len = 0;
767 	up->pending = 0;
768 	return err;
769 }
770 
771 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
772 		size_t len)
773 {
774 	struct inet_sock *inet = inet_sk(sk);
775 	struct udp_sock *up = udp_sk(sk);
776 	int ulen = len;
777 	struct ipcm_cookie ipc;
778 	struct rtable *rt = NULL;
779 	int free = 0;
780 	int connected = 0;
781 	__be32 daddr, faddr, saddr;
782 	__be16 dport;
783 	u8  tos;
784 	int err, is_udplite = IS_UDPLITE(sk);
785 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
786 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
787 
788 	if (len > 0xFFFF)
789 		return -EMSGSIZE;
790 
791 	/*
792 	 *	Check the flags.
793 	 */
794 
795 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
796 		return -EOPNOTSUPP;
797 
798 	ipc.opt = NULL;
799 	ipc.shtx.flags = 0;
800 
801 	if (up->pending) {
802 		/*
803 		 * There are pending frames.
804 		 * The socket lock must be held while it's corked.
805 		 */
806 		lock_sock(sk);
807 		if (likely(up->pending)) {
808 			if (unlikely(up->pending != AF_INET)) {
809 				release_sock(sk);
810 				return -EINVAL;
811 			}
812 			goto do_append_data;
813 		}
814 		release_sock(sk);
815 	}
816 	ulen += sizeof(struct udphdr);
817 
818 	/*
819 	 *	Get and verify the address.
820 	 */
821 	if (msg->msg_name) {
822 		struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
823 		if (msg->msg_namelen < sizeof(*usin))
824 			return -EINVAL;
825 		if (usin->sin_family != AF_INET) {
826 			if (usin->sin_family != AF_UNSPEC)
827 				return -EAFNOSUPPORT;
828 		}
829 
830 		daddr = usin->sin_addr.s_addr;
831 		dport = usin->sin_port;
832 		if (dport == 0)
833 			return -EINVAL;
834 	} else {
835 		if (sk->sk_state != TCP_ESTABLISHED)
836 			return -EDESTADDRREQ;
837 		daddr = inet->inet_daddr;
838 		dport = inet->inet_dport;
839 		/* Open fast path for connected socket.
840 		   Route will not be used, if at least one option is set.
841 		 */
842 		connected = 1;
843 	}
844 	ipc.addr = inet->inet_saddr;
845 
846 	ipc.oif = sk->sk_bound_dev_if;
847 	err = sock_tx_timestamp(msg, sk, &ipc.shtx);
848 	if (err)
849 		return err;
850 	if (msg->msg_controllen) {
851 		err = ip_cmsg_send(sock_net(sk), msg, &ipc);
852 		if (err)
853 			return err;
854 		if (ipc.opt)
855 			free = 1;
856 		connected = 0;
857 	}
858 	if (!ipc.opt)
859 		ipc.opt = inet->opt;
860 
861 	saddr = ipc.addr;
862 	ipc.addr = faddr = daddr;
863 
864 	if (ipc.opt && ipc.opt->srr) {
865 		if (!daddr)
866 			return -EINVAL;
867 		faddr = ipc.opt->faddr;
868 		connected = 0;
869 	}
870 	tos = RT_TOS(inet->tos);
871 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
872 	    (msg->msg_flags & MSG_DONTROUTE) ||
873 	    (ipc.opt && ipc.opt->is_strictroute)) {
874 		tos |= RTO_ONLINK;
875 		connected = 0;
876 	}
877 
878 	if (ipv4_is_multicast(daddr)) {
879 		if (!ipc.oif)
880 			ipc.oif = inet->mc_index;
881 		if (!saddr)
882 			saddr = inet->mc_addr;
883 		connected = 0;
884 	}
885 
886 	if (connected)
887 		rt = (struct rtable *)sk_dst_check(sk, 0);
888 
889 	if (rt == NULL) {
890 		struct flowi fl = { .oif = ipc.oif,
891 				    .mark = sk->sk_mark,
892 				    .nl_u = { .ip4_u =
893 					      { .daddr = faddr,
894 						.saddr = saddr,
895 						.tos = tos } },
896 				    .proto = sk->sk_protocol,
897 				    .flags = inet_sk_flowi_flags(sk),
898 				    .uli_u = { .ports =
899 					       { .sport = inet->inet_sport,
900 						 .dport = dport } } };
901 		struct net *net = sock_net(sk);
902 
903 		security_sk_classify_flow(sk, &fl);
904 		err = ip_route_output_flow(net, &rt, &fl, sk, 1);
905 		if (err) {
906 			if (err == -ENETUNREACH)
907 				IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
908 			goto out;
909 		}
910 
911 		err = -EACCES;
912 		if ((rt->rt_flags & RTCF_BROADCAST) &&
913 		    !sock_flag(sk, SOCK_BROADCAST))
914 			goto out;
915 		if (connected)
916 			sk_dst_set(sk, dst_clone(&rt->u.dst));
917 	}
918 
919 	if (msg->msg_flags&MSG_CONFIRM)
920 		goto do_confirm;
921 back_from_confirm:
922 
923 	saddr = rt->rt_src;
924 	if (!ipc.addr)
925 		daddr = ipc.addr = rt->rt_dst;
926 
927 	lock_sock(sk);
928 	if (unlikely(up->pending)) {
929 		/* The socket is already corked while preparing it. */
930 		/* ... which is an evident application bug. --ANK */
931 		release_sock(sk);
932 
933 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
934 		err = -EINVAL;
935 		goto out;
936 	}
937 	/*
938 	 *	Now cork the socket to pend data.
939 	 */
940 	inet->cork.fl.fl4_dst = daddr;
941 	inet->cork.fl.fl_ip_dport = dport;
942 	inet->cork.fl.fl4_src = saddr;
943 	inet->cork.fl.fl_ip_sport = inet->inet_sport;
944 	up->pending = AF_INET;
945 
946 do_append_data:
947 	up->len += ulen;
948 	getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag;
949 	err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
950 			sizeof(struct udphdr), &ipc, &rt,
951 			corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
952 	if (err)
953 		udp_flush_pending_frames(sk);
954 	else if (!corkreq)
955 		err = udp_push_pending_frames(sk);
956 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
957 		up->pending = 0;
958 	release_sock(sk);
959 
960 out:
961 	ip_rt_put(rt);
962 	if (free)
963 		kfree(ipc.opt);
964 	if (!err)
965 		return len;
966 	/*
967 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
968 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
969 	 * we don't have a good statistic (IpOutDiscards but it can be too many
970 	 * things).  We could add another new stat but at least for now that
971 	 * seems like overkill.
972 	 */
973 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
974 		UDP_INC_STATS_USER(sock_net(sk),
975 				UDP_MIB_SNDBUFERRORS, is_udplite);
976 	}
977 	return err;
978 
979 do_confirm:
980 	dst_confirm(&rt->u.dst);
981 	if (!(msg->msg_flags&MSG_PROBE) || len)
982 		goto back_from_confirm;
983 	err = 0;
984 	goto out;
985 }
986 EXPORT_SYMBOL(udp_sendmsg);
987 
988 int udp_sendpage(struct sock *sk, struct page *page, int offset,
989 		 size_t size, int flags)
990 {
991 	struct udp_sock *up = udp_sk(sk);
992 	int ret;
993 
994 	if (!up->pending) {
995 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
996 
997 		/* Call udp_sendmsg to specify destination address which
998 		 * sendpage interface can't pass.
999 		 * This will succeed only when the socket is connected.
1000 		 */
1001 		ret = udp_sendmsg(NULL, sk, &msg, 0);
1002 		if (ret < 0)
1003 			return ret;
1004 	}
1005 
1006 	lock_sock(sk);
1007 
1008 	if (unlikely(!up->pending)) {
1009 		release_sock(sk);
1010 
1011 		LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
1012 		return -EINVAL;
1013 	}
1014 
1015 	ret = ip_append_page(sk, page, offset, size, flags);
1016 	if (ret == -EOPNOTSUPP) {
1017 		release_sock(sk);
1018 		return sock_no_sendpage(sk->sk_socket, page, offset,
1019 					size, flags);
1020 	}
1021 	if (ret < 0) {
1022 		udp_flush_pending_frames(sk);
1023 		goto out;
1024 	}
1025 
1026 	up->len += size;
1027 	if (!(up->corkflag || (flags&MSG_MORE)))
1028 		ret = udp_push_pending_frames(sk);
1029 	if (!ret)
1030 		ret = size;
1031 out:
1032 	release_sock(sk);
1033 	return ret;
1034 }
1035 
1036 
1037 /**
1038  *	first_packet_length	- return length of first packet in receive queue
1039  *	@sk: socket
1040  *
1041  *	Drops all bad checksum frames, until a valid one is found.
1042  *	Returns the length of found skb, or 0 if none is found.
1043  */
1044 static unsigned int first_packet_length(struct sock *sk)
1045 {
1046 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1047 	struct sk_buff *skb;
1048 	unsigned int res;
1049 
1050 	__skb_queue_head_init(&list_kill);
1051 
1052 	spin_lock_bh(&rcvq->lock);
1053 	while ((skb = skb_peek(rcvq)) != NULL &&
1054 		udp_lib_checksum_complete(skb)) {
1055 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1056 				 IS_UDPLITE(sk));
1057 		atomic_inc(&sk->sk_drops);
1058 		__skb_unlink(skb, rcvq);
1059 		__skb_queue_tail(&list_kill, skb);
1060 	}
1061 	res = skb ? skb->len : 0;
1062 	spin_unlock_bh(&rcvq->lock);
1063 
1064 	if (!skb_queue_empty(&list_kill)) {
1065 		lock_sock(sk);
1066 		__skb_queue_purge(&list_kill);
1067 		sk_mem_reclaim_partial(sk);
1068 		release_sock(sk);
1069 	}
1070 	return res;
1071 }
1072 
1073 /*
1074  *	IOCTL requests applicable to the UDP protocol
1075  */
1076 
1077 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1078 {
1079 	switch (cmd) {
1080 	case SIOCOUTQ:
1081 	{
1082 		int amount = sk_wmem_alloc_get(sk);
1083 
1084 		return put_user(amount, (int __user *)arg);
1085 	}
1086 
1087 	case SIOCINQ:
1088 	{
1089 		unsigned int amount = first_packet_length(sk);
1090 
1091 		if (amount)
1092 			/*
1093 			 * We will only return the amount
1094 			 * of this packet since that is all
1095 			 * that will be read.
1096 			 */
1097 			amount -= sizeof(struct udphdr);
1098 
1099 		return put_user(amount, (int __user *)arg);
1100 	}
1101 
1102 	default:
1103 		return -ENOIOCTLCMD;
1104 	}
1105 
1106 	return 0;
1107 }
1108 EXPORT_SYMBOL(udp_ioctl);
1109 
1110 /*
1111  * 	This should be easy, if there is something there we
1112  * 	return it, otherwise we block.
1113  */
1114 
1115 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1116 		size_t len, int noblock, int flags, int *addr_len)
1117 {
1118 	struct inet_sock *inet = inet_sk(sk);
1119 	struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1120 	struct sk_buff *skb;
1121 	unsigned int ulen, copied;
1122 	int peeked;
1123 	int err;
1124 	int is_udplite = IS_UDPLITE(sk);
1125 
1126 	/*
1127 	 *	Check any passed addresses
1128 	 */
1129 	if (addr_len)
1130 		*addr_len = sizeof(*sin);
1131 
1132 	if (flags & MSG_ERRQUEUE)
1133 		return ip_recv_error(sk, msg, len);
1134 
1135 try_again:
1136 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1137 				  &peeked, &err);
1138 	if (!skb)
1139 		goto out;
1140 
1141 	ulen = skb->len - sizeof(struct udphdr);
1142 	copied = len;
1143 	if (copied > ulen)
1144 		copied = ulen;
1145 	else if (copied < ulen)
1146 		msg->msg_flags |= MSG_TRUNC;
1147 
1148 	/*
1149 	 * If checksum is needed at all, try to do it while copying the
1150 	 * data.  If the data is truncated, or if we only want a partial
1151 	 * coverage checksum (UDP-Lite), do it before the copy.
1152 	 */
1153 
1154 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1155 		if (udp_lib_checksum_complete(skb))
1156 			goto csum_copy_err;
1157 	}
1158 
1159 	if (skb_csum_unnecessary(skb))
1160 		err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1161 					      msg->msg_iov, copied);
1162 	else {
1163 		err = skb_copy_and_csum_datagram_iovec(skb,
1164 						       sizeof(struct udphdr),
1165 						       msg->msg_iov);
1166 
1167 		if (err == -EINVAL)
1168 			goto csum_copy_err;
1169 	}
1170 
1171 	if (err)
1172 		goto out_free;
1173 
1174 	if (!peeked)
1175 		UDP_INC_STATS_USER(sock_net(sk),
1176 				UDP_MIB_INDATAGRAMS, is_udplite);
1177 
1178 	sock_recv_ts_and_drops(msg, sk, skb);
1179 
1180 	/* Copy the address. */
1181 	if (sin) {
1182 		sin->sin_family = AF_INET;
1183 		sin->sin_port = udp_hdr(skb)->source;
1184 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1185 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1186 	}
1187 	if (inet->cmsg_flags)
1188 		ip_cmsg_recv(msg, skb);
1189 
1190 	err = copied;
1191 	if (flags & MSG_TRUNC)
1192 		err = ulen;
1193 
1194 out_free:
1195 	skb_free_datagram_locked(sk, skb);
1196 out:
1197 	return err;
1198 
1199 csum_copy_err:
1200 	lock_sock(sk);
1201 	if (!skb_kill_datagram(sk, skb, flags))
1202 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1203 	release_sock(sk);
1204 
1205 	if (noblock)
1206 		return -EAGAIN;
1207 	goto try_again;
1208 }
1209 
1210 
1211 int udp_disconnect(struct sock *sk, int flags)
1212 {
1213 	struct inet_sock *inet = inet_sk(sk);
1214 	/*
1215 	 *	1003.1g - break association.
1216 	 */
1217 
1218 	sk->sk_state = TCP_CLOSE;
1219 	inet->inet_daddr = 0;
1220 	inet->inet_dport = 0;
1221 	sk->sk_bound_dev_if = 0;
1222 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1223 		inet_reset_saddr(sk);
1224 
1225 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1226 		sk->sk_prot->unhash(sk);
1227 		inet->inet_sport = 0;
1228 	}
1229 	sk_dst_reset(sk);
1230 	return 0;
1231 }
1232 EXPORT_SYMBOL(udp_disconnect);
1233 
1234 void udp_lib_unhash(struct sock *sk)
1235 {
1236 	if (sk_hashed(sk)) {
1237 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1238 		struct udp_hslot *hslot, *hslot2;
1239 
1240 		hslot  = udp_hashslot(udptable, sock_net(sk),
1241 				      udp_sk(sk)->udp_port_hash);
1242 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1243 
1244 		spin_lock_bh(&hslot->lock);
1245 		if (sk_nulls_del_node_init_rcu(sk)) {
1246 			hslot->count--;
1247 			inet_sk(sk)->inet_num = 0;
1248 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1249 
1250 			spin_lock(&hslot2->lock);
1251 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1252 			hslot2->count--;
1253 			spin_unlock(&hslot2->lock);
1254 		}
1255 		spin_unlock_bh(&hslot->lock);
1256 	}
1257 }
1258 EXPORT_SYMBOL(udp_lib_unhash);
1259 
1260 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1261 {
1262 	int rc = sock_queue_rcv_skb(sk, skb);
1263 
1264 	if (rc < 0) {
1265 		int is_udplite = IS_UDPLITE(sk);
1266 
1267 		/* Note that an ENOMEM error is charged twice */
1268 		if (rc == -ENOMEM)
1269 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1270 					 is_udplite);
1271 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1272 		kfree_skb(skb);
1273 		return -1;
1274 	}
1275 
1276 	return 0;
1277 
1278 }
1279 
1280 /* returns:
1281  *  -1: error
1282  *   0: success
1283  *  >0: "udp encap" protocol resubmission
1284  *
1285  * Note that in the success and error cases, the skb is assumed to
1286  * have either been requeued or freed.
1287  */
1288 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1289 {
1290 	struct udp_sock *up = udp_sk(sk);
1291 	int rc;
1292 	int is_udplite = IS_UDPLITE(sk);
1293 
1294 	/*
1295 	 *	Charge it to the socket, dropping if the queue is full.
1296 	 */
1297 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1298 		goto drop;
1299 	nf_reset(skb);
1300 
1301 	if (up->encap_type) {
1302 		/*
1303 		 * This is an encapsulation socket so pass the skb to
1304 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1305 		 * fall through and pass this up the UDP socket.
1306 		 * up->encap_rcv() returns the following value:
1307 		 * =0 if skb was successfully passed to the encap
1308 		 *    handler or was discarded by it.
1309 		 * >0 if skb should be passed on to UDP.
1310 		 * <0 if skb should be resubmitted as proto -N
1311 		 */
1312 
1313 		/* if we're overly short, let UDP handle it */
1314 		if (skb->len > sizeof(struct udphdr) &&
1315 		    up->encap_rcv != NULL) {
1316 			int ret;
1317 
1318 			ret = (*up->encap_rcv)(sk, skb);
1319 			if (ret <= 0) {
1320 				UDP_INC_STATS_BH(sock_net(sk),
1321 						 UDP_MIB_INDATAGRAMS,
1322 						 is_udplite);
1323 				return -ret;
1324 			}
1325 		}
1326 
1327 		/* FALLTHROUGH -- it's a UDP Packet */
1328 	}
1329 
1330 	/*
1331 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1332 	 */
1333 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1334 
1335 		/*
1336 		 * MIB statistics other than incrementing the error count are
1337 		 * disabled for the following two types of errors: these depend
1338 		 * on the application settings, not on the functioning of the
1339 		 * protocol stack as such.
1340 		 *
1341 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1342 		 * way ... to ... at least let the receiving application block
1343 		 * delivery of packets with coverage values less than a value
1344 		 * provided by the application."
1345 		 */
1346 		if (up->pcrlen == 0) {          /* full coverage was set  */
1347 			LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1348 				"%d while full coverage %d requested\n",
1349 				UDP_SKB_CB(skb)->cscov, skb->len);
1350 			goto drop;
1351 		}
1352 		/* The next case involves violating the min. coverage requested
1353 		 * by the receiver. This is subtle: if receiver wants x and x is
1354 		 * greater than the buffersize/MTU then receiver will complain
1355 		 * that it wants x while sender emits packets of smaller size y.
1356 		 * Therefore the above ...()->partial_cov statement is essential.
1357 		 */
1358 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1359 			LIMIT_NETDEBUG(KERN_WARNING
1360 				"UDPLITE: coverage %d too small, need min %d\n",
1361 				UDP_SKB_CB(skb)->cscov, up->pcrlen);
1362 			goto drop;
1363 		}
1364 	}
1365 
1366 	if (sk->sk_filter) {
1367 		if (udp_lib_checksum_complete(skb))
1368 			goto drop;
1369 	}
1370 
1371 	rc = 0;
1372 
1373 	bh_lock_sock(sk);
1374 	if (!sock_owned_by_user(sk))
1375 		rc = __udp_queue_rcv_skb(sk, skb);
1376 	else
1377 		sk_add_backlog(sk, skb);
1378 	bh_unlock_sock(sk);
1379 
1380 	return rc;
1381 
1382 drop:
1383 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1384 	atomic_inc(&sk->sk_drops);
1385 	kfree_skb(skb);
1386 	return -1;
1387 }
1388 
1389 
1390 static void flush_stack(struct sock **stack, unsigned int count,
1391 			struct sk_buff *skb, unsigned int final)
1392 {
1393 	unsigned int i;
1394 	struct sk_buff *skb1 = NULL;
1395 	struct sock *sk;
1396 
1397 	for (i = 0; i < count; i++) {
1398 		sk = stack[i];
1399 		if (likely(skb1 == NULL))
1400 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1401 
1402 		if (!skb1) {
1403 			atomic_inc(&sk->sk_drops);
1404 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1405 					 IS_UDPLITE(sk));
1406 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1407 					 IS_UDPLITE(sk));
1408 		}
1409 
1410 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1411 			skb1 = NULL;
1412 	}
1413 	if (unlikely(skb1))
1414 		kfree_skb(skb1);
1415 }
1416 
1417 /*
1418  *	Multicasts and broadcasts go to each listener.
1419  *
1420  *	Note: called only from the BH handler context.
1421  */
1422 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1423 				    struct udphdr  *uh,
1424 				    __be32 saddr, __be32 daddr,
1425 				    struct udp_table *udptable)
1426 {
1427 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1428 	struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1429 	int dif;
1430 	unsigned int i, count = 0;
1431 
1432 	spin_lock(&hslot->lock);
1433 	sk = sk_nulls_head(&hslot->head);
1434 	dif = skb->dev->ifindex;
1435 	sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1436 	while (sk) {
1437 		stack[count++] = sk;
1438 		sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1439 				       daddr, uh->source, saddr, dif);
1440 		if (unlikely(count == ARRAY_SIZE(stack))) {
1441 			if (!sk)
1442 				break;
1443 			flush_stack(stack, count, skb, ~0);
1444 			count = 0;
1445 		}
1446 	}
1447 	/*
1448 	 * before releasing chain lock, we must take a reference on sockets
1449 	 */
1450 	for (i = 0; i < count; i++)
1451 		sock_hold(stack[i]);
1452 
1453 	spin_unlock(&hslot->lock);
1454 
1455 	/*
1456 	 * do the slow work with no lock held
1457 	 */
1458 	if (count) {
1459 		flush_stack(stack, count, skb, count - 1);
1460 
1461 		for (i = 0; i < count; i++)
1462 			sock_put(stack[i]);
1463 	} else {
1464 		kfree_skb(skb);
1465 	}
1466 	return 0;
1467 }
1468 
1469 /* Initialize UDP checksum. If exited with zero value (success),
1470  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1471  * Otherwise, csum completion requires chacksumming packet body,
1472  * including udp header and folding it to skb->csum.
1473  */
1474 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1475 				 int proto)
1476 {
1477 	const struct iphdr *iph;
1478 	int err;
1479 
1480 	UDP_SKB_CB(skb)->partial_cov = 0;
1481 	UDP_SKB_CB(skb)->cscov = skb->len;
1482 
1483 	if (proto == IPPROTO_UDPLITE) {
1484 		err = udplite_checksum_init(skb, uh);
1485 		if (err)
1486 			return err;
1487 	}
1488 
1489 	iph = ip_hdr(skb);
1490 	if (uh->check == 0) {
1491 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1492 	} else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1493 		if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1494 				      proto, skb->csum))
1495 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1496 	}
1497 	if (!skb_csum_unnecessary(skb))
1498 		skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1499 					       skb->len, proto, 0);
1500 	/* Probably, we should checksum udp header (it should be in cache
1501 	 * in any case) and data in tiny packets (< rx copybreak).
1502 	 */
1503 
1504 	return 0;
1505 }
1506 
1507 /*
1508  *	All we need to do is get the socket, and then do a checksum.
1509  */
1510 
1511 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1512 		   int proto)
1513 {
1514 	struct sock *sk;
1515 	struct udphdr *uh;
1516 	unsigned short ulen;
1517 	struct rtable *rt = skb_rtable(skb);
1518 	__be32 saddr, daddr;
1519 	struct net *net = dev_net(skb->dev);
1520 
1521 	/*
1522 	 *  Validate the packet.
1523 	 */
1524 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1525 		goto drop;		/* No space for header. */
1526 
1527 	uh   = udp_hdr(skb);
1528 	ulen = ntohs(uh->len);
1529 	if (ulen > skb->len)
1530 		goto short_packet;
1531 
1532 	if (proto == IPPROTO_UDP) {
1533 		/* UDP validates ulen. */
1534 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1535 			goto short_packet;
1536 		uh = udp_hdr(skb);
1537 	}
1538 
1539 	if (udp4_csum_init(skb, uh, proto))
1540 		goto csum_error;
1541 
1542 	saddr = ip_hdr(skb)->saddr;
1543 	daddr = ip_hdr(skb)->daddr;
1544 
1545 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1546 		return __udp4_lib_mcast_deliver(net, skb, uh,
1547 				saddr, daddr, udptable);
1548 
1549 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1550 
1551 	if (sk != NULL) {
1552 		int ret = udp_queue_rcv_skb(sk, skb);
1553 		sock_put(sk);
1554 
1555 		/* a return value > 0 means to resubmit the input, but
1556 		 * it wants the return to be -protocol, or 0
1557 		 */
1558 		if (ret > 0)
1559 			return -ret;
1560 		return 0;
1561 	}
1562 
1563 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1564 		goto drop;
1565 	nf_reset(skb);
1566 
1567 	/* No socket. Drop packet silently, if checksum is wrong */
1568 	if (udp_lib_checksum_complete(skb))
1569 		goto csum_error;
1570 
1571 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1572 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1573 
1574 	/*
1575 	 * Hmm.  We got an UDP packet to a port to which we
1576 	 * don't wanna listen.  Ignore it.
1577 	 */
1578 	kfree_skb(skb);
1579 	return 0;
1580 
1581 short_packet:
1582 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1583 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1584 		       &saddr,
1585 		       ntohs(uh->source),
1586 		       ulen,
1587 		       skb->len,
1588 		       &daddr,
1589 		       ntohs(uh->dest));
1590 	goto drop;
1591 
1592 csum_error:
1593 	/*
1594 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1595 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1596 	 */
1597 	LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1598 		       proto == IPPROTO_UDPLITE ? "-Lite" : "",
1599 		       &saddr,
1600 		       ntohs(uh->source),
1601 		       &daddr,
1602 		       ntohs(uh->dest),
1603 		       ulen);
1604 drop:
1605 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1606 	kfree_skb(skb);
1607 	return 0;
1608 }
1609 
1610 int udp_rcv(struct sk_buff *skb)
1611 {
1612 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1613 }
1614 
1615 void udp_destroy_sock(struct sock *sk)
1616 {
1617 	lock_sock(sk);
1618 	udp_flush_pending_frames(sk);
1619 	release_sock(sk);
1620 }
1621 
1622 /*
1623  *	Socket option code for UDP
1624  */
1625 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1626 		       char __user *optval, unsigned int optlen,
1627 		       int (*push_pending_frames)(struct sock *))
1628 {
1629 	struct udp_sock *up = udp_sk(sk);
1630 	int val;
1631 	int err = 0;
1632 	int is_udplite = IS_UDPLITE(sk);
1633 
1634 	if (optlen < sizeof(int))
1635 		return -EINVAL;
1636 
1637 	if (get_user(val, (int __user *)optval))
1638 		return -EFAULT;
1639 
1640 	switch (optname) {
1641 	case UDP_CORK:
1642 		if (val != 0) {
1643 			up->corkflag = 1;
1644 		} else {
1645 			up->corkflag = 0;
1646 			lock_sock(sk);
1647 			(*push_pending_frames)(sk);
1648 			release_sock(sk);
1649 		}
1650 		break;
1651 
1652 	case UDP_ENCAP:
1653 		switch (val) {
1654 		case 0:
1655 		case UDP_ENCAP_ESPINUDP:
1656 		case UDP_ENCAP_ESPINUDP_NON_IKE:
1657 			up->encap_rcv = xfrm4_udp_encap_rcv;
1658 			/* FALLTHROUGH */
1659 		case UDP_ENCAP_L2TPINUDP:
1660 			up->encap_type = val;
1661 			break;
1662 		default:
1663 			err = -ENOPROTOOPT;
1664 			break;
1665 		}
1666 		break;
1667 
1668 	/*
1669 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
1670 	 */
1671 	/* The sender sets actual checksum coverage length via this option.
1672 	 * The case coverage > packet length is handled by send module. */
1673 	case UDPLITE_SEND_CSCOV:
1674 		if (!is_udplite)         /* Disable the option on UDP sockets */
1675 			return -ENOPROTOOPT;
1676 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1677 			val = 8;
1678 		else if (val > USHORT_MAX)
1679 			val = USHORT_MAX;
1680 		up->pcslen = val;
1681 		up->pcflag |= UDPLITE_SEND_CC;
1682 		break;
1683 
1684 	/* The receiver specifies a minimum checksum coverage value. To make
1685 	 * sense, this should be set to at least 8 (as done below). If zero is
1686 	 * used, this again means full checksum coverage.                     */
1687 	case UDPLITE_RECV_CSCOV:
1688 		if (!is_udplite)         /* Disable the option on UDP sockets */
1689 			return -ENOPROTOOPT;
1690 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1691 			val = 8;
1692 		else if (val > USHORT_MAX)
1693 			val = USHORT_MAX;
1694 		up->pcrlen = val;
1695 		up->pcflag |= UDPLITE_RECV_CC;
1696 		break;
1697 
1698 	default:
1699 		err = -ENOPROTOOPT;
1700 		break;
1701 	}
1702 
1703 	return err;
1704 }
1705 EXPORT_SYMBOL(udp_lib_setsockopt);
1706 
1707 int udp_setsockopt(struct sock *sk, int level, int optname,
1708 		   char __user *optval, unsigned int optlen)
1709 {
1710 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1711 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1712 					  udp_push_pending_frames);
1713 	return ip_setsockopt(sk, level, optname, optval, optlen);
1714 }
1715 
1716 #ifdef CONFIG_COMPAT
1717 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1718 			  char __user *optval, unsigned int optlen)
1719 {
1720 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1721 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1722 					  udp_push_pending_frames);
1723 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1724 }
1725 #endif
1726 
1727 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1728 		       char __user *optval, int __user *optlen)
1729 {
1730 	struct udp_sock *up = udp_sk(sk);
1731 	int val, len;
1732 
1733 	if (get_user(len, optlen))
1734 		return -EFAULT;
1735 
1736 	len = min_t(unsigned int, len, sizeof(int));
1737 
1738 	if (len < 0)
1739 		return -EINVAL;
1740 
1741 	switch (optname) {
1742 	case UDP_CORK:
1743 		val = up->corkflag;
1744 		break;
1745 
1746 	case UDP_ENCAP:
1747 		val = up->encap_type;
1748 		break;
1749 
1750 	/* The following two cannot be changed on UDP sockets, the return is
1751 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
1752 	case UDPLITE_SEND_CSCOV:
1753 		val = up->pcslen;
1754 		break;
1755 
1756 	case UDPLITE_RECV_CSCOV:
1757 		val = up->pcrlen;
1758 		break;
1759 
1760 	default:
1761 		return -ENOPROTOOPT;
1762 	}
1763 
1764 	if (put_user(len, optlen))
1765 		return -EFAULT;
1766 	if (copy_to_user(optval, &val, len))
1767 		return -EFAULT;
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL(udp_lib_getsockopt);
1771 
1772 int udp_getsockopt(struct sock *sk, int level, int optname,
1773 		   char __user *optval, int __user *optlen)
1774 {
1775 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1776 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1777 	return ip_getsockopt(sk, level, optname, optval, optlen);
1778 }
1779 
1780 #ifdef CONFIG_COMPAT
1781 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1782 				 char __user *optval, int __user *optlen)
1783 {
1784 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1785 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1786 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1787 }
1788 #endif
1789 /**
1790  * 	udp_poll - wait for a UDP event.
1791  *	@file - file struct
1792  *	@sock - socket
1793  *	@wait - poll table
1794  *
1795  *	This is same as datagram poll, except for the special case of
1796  *	blocking sockets. If application is using a blocking fd
1797  *	and a packet with checksum error is in the queue;
1798  *	then it could get return from select indicating data available
1799  *	but then block when reading it. Add special case code
1800  *	to work around these arguably broken applications.
1801  */
1802 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1803 {
1804 	unsigned int mask = datagram_poll(file, sock, wait);
1805 	struct sock *sk = sock->sk;
1806 
1807 	/* Check for false positives due to checksum errors */
1808 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1809 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1810 		mask &= ~(POLLIN | POLLRDNORM);
1811 
1812 	return mask;
1813 
1814 }
1815 EXPORT_SYMBOL(udp_poll);
1816 
1817 struct proto udp_prot = {
1818 	.name		   = "UDP",
1819 	.owner		   = THIS_MODULE,
1820 	.close		   = udp_lib_close,
1821 	.connect	   = ip4_datagram_connect,
1822 	.disconnect	   = udp_disconnect,
1823 	.ioctl		   = udp_ioctl,
1824 	.destroy	   = udp_destroy_sock,
1825 	.setsockopt	   = udp_setsockopt,
1826 	.getsockopt	   = udp_getsockopt,
1827 	.sendmsg	   = udp_sendmsg,
1828 	.recvmsg	   = udp_recvmsg,
1829 	.sendpage	   = udp_sendpage,
1830 	.backlog_rcv	   = __udp_queue_rcv_skb,
1831 	.hash		   = udp_lib_hash,
1832 	.unhash		   = udp_lib_unhash,
1833 	.get_port	   = udp_v4_get_port,
1834 	.memory_allocated  = &udp_memory_allocated,
1835 	.sysctl_mem	   = sysctl_udp_mem,
1836 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
1837 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
1838 	.obj_size	   = sizeof(struct udp_sock),
1839 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
1840 	.h.udp_table	   = &udp_table,
1841 #ifdef CONFIG_COMPAT
1842 	.compat_setsockopt = compat_udp_setsockopt,
1843 	.compat_getsockopt = compat_udp_getsockopt,
1844 #endif
1845 };
1846 EXPORT_SYMBOL(udp_prot);
1847 
1848 /* ------------------------------------------------------------------------ */
1849 #ifdef CONFIG_PROC_FS
1850 
1851 static struct sock *udp_get_first(struct seq_file *seq, int start)
1852 {
1853 	struct sock *sk;
1854 	struct udp_iter_state *state = seq->private;
1855 	struct net *net = seq_file_net(seq);
1856 
1857 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
1858 	     ++state->bucket) {
1859 		struct hlist_nulls_node *node;
1860 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1861 
1862 		if (hlist_nulls_empty(&hslot->head))
1863 			continue;
1864 
1865 		spin_lock_bh(&hslot->lock);
1866 		sk_nulls_for_each(sk, node, &hslot->head) {
1867 			if (!net_eq(sock_net(sk), net))
1868 				continue;
1869 			if (sk->sk_family == state->family)
1870 				goto found;
1871 		}
1872 		spin_unlock_bh(&hslot->lock);
1873 	}
1874 	sk = NULL;
1875 found:
1876 	return sk;
1877 }
1878 
1879 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1880 {
1881 	struct udp_iter_state *state = seq->private;
1882 	struct net *net = seq_file_net(seq);
1883 
1884 	do {
1885 		sk = sk_nulls_next(sk);
1886 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1887 
1888 	if (!sk) {
1889 		if (state->bucket <= state->udp_table->mask)
1890 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1891 		return udp_get_first(seq, state->bucket + 1);
1892 	}
1893 	return sk;
1894 }
1895 
1896 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1897 {
1898 	struct sock *sk = udp_get_first(seq, 0);
1899 
1900 	if (sk)
1901 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1902 			--pos;
1903 	return pos ? NULL : sk;
1904 }
1905 
1906 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1907 {
1908 	struct udp_iter_state *state = seq->private;
1909 	state->bucket = MAX_UDP_PORTS;
1910 
1911 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1912 }
1913 
1914 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1915 {
1916 	struct sock *sk;
1917 
1918 	if (v == SEQ_START_TOKEN)
1919 		sk = udp_get_idx(seq, 0);
1920 	else
1921 		sk = udp_get_next(seq, v);
1922 
1923 	++*pos;
1924 	return sk;
1925 }
1926 
1927 static void udp_seq_stop(struct seq_file *seq, void *v)
1928 {
1929 	struct udp_iter_state *state = seq->private;
1930 
1931 	if (state->bucket <= state->udp_table->mask)
1932 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1933 }
1934 
1935 static int udp_seq_open(struct inode *inode, struct file *file)
1936 {
1937 	struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1938 	struct udp_iter_state *s;
1939 	int err;
1940 
1941 	err = seq_open_net(inode, file, &afinfo->seq_ops,
1942 			   sizeof(struct udp_iter_state));
1943 	if (err < 0)
1944 		return err;
1945 
1946 	s = ((struct seq_file *)file->private_data)->private;
1947 	s->family		= afinfo->family;
1948 	s->udp_table		= afinfo->udp_table;
1949 	return err;
1950 }
1951 
1952 /* ------------------------------------------------------------------------ */
1953 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1954 {
1955 	struct proc_dir_entry *p;
1956 	int rc = 0;
1957 
1958 	afinfo->seq_fops.open		= udp_seq_open;
1959 	afinfo->seq_fops.read		= seq_read;
1960 	afinfo->seq_fops.llseek		= seq_lseek;
1961 	afinfo->seq_fops.release	= seq_release_net;
1962 
1963 	afinfo->seq_ops.start		= udp_seq_start;
1964 	afinfo->seq_ops.next		= udp_seq_next;
1965 	afinfo->seq_ops.stop		= udp_seq_stop;
1966 
1967 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1968 			     &afinfo->seq_fops, afinfo);
1969 	if (!p)
1970 		rc = -ENOMEM;
1971 	return rc;
1972 }
1973 EXPORT_SYMBOL(udp_proc_register);
1974 
1975 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1976 {
1977 	proc_net_remove(net, afinfo->name);
1978 }
1979 EXPORT_SYMBOL(udp_proc_unregister);
1980 
1981 /* ------------------------------------------------------------------------ */
1982 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1983 		int bucket, int *len)
1984 {
1985 	struct inet_sock *inet = inet_sk(sp);
1986 	__be32 dest = inet->inet_daddr;
1987 	__be32 src  = inet->inet_rcv_saddr;
1988 	__u16 destp	  = ntohs(inet->inet_dport);
1989 	__u16 srcp	  = ntohs(inet->inet_sport);
1990 
1991 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
1992 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1993 		bucket, src, srcp, dest, destp, sp->sk_state,
1994 		sk_wmem_alloc_get(sp),
1995 		sk_rmem_alloc_get(sp),
1996 		0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1997 		atomic_read(&sp->sk_refcnt), sp,
1998 		atomic_read(&sp->sk_drops), len);
1999 }
2000 
2001 int udp4_seq_show(struct seq_file *seq, void *v)
2002 {
2003 	if (v == SEQ_START_TOKEN)
2004 		seq_printf(seq, "%-127s\n",
2005 			   "  sl  local_address rem_address   st tx_queue "
2006 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2007 			   "inode ref pointer drops");
2008 	else {
2009 		struct udp_iter_state *state = seq->private;
2010 		int len;
2011 
2012 		udp4_format_sock(v, seq, state->bucket, &len);
2013 		seq_printf(seq, "%*s\n", 127 - len, "");
2014 	}
2015 	return 0;
2016 }
2017 
2018 /* ------------------------------------------------------------------------ */
2019 static struct udp_seq_afinfo udp4_seq_afinfo = {
2020 	.name		= "udp",
2021 	.family		= AF_INET,
2022 	.udp_table	= &udp_table,
2023 	.seq_fops	= {
2024 		.owner	=	THIS_MODULE,
2025 	},
2026 	.seq_ops	= {
2027 		.show		= udp4_seq_show,
2028 	},
2029 };
2030 
2031 static int udp4_proc_init_net(struct net *net)
2032 {
2033 	return udp_proc_register(net, &udp4_seq_afinfo);
2034 }
2035 
2036 static void udp4_proc_exit_net(struct net *net)
2037 {
2038 	udp_proc_unregister(net, &udp4_seq_afinfo);
2039 }
2040 
2041 static struct pernet_operations udp4_net_ops = {
2042 	.init = udp4_proc_init_net,
2043 	.exit = udp4_proc_exit_net,
2044 };
2045 
2046 int __init udp4_proc_init(void)
2047 {
2048 	return register_pernet_subsys(&udp4_net_ops);
2049 }
2050 
2051 void udp4_proc_exit(void)
2052 {
2053 	unregister_pernet_subsys(&udp4_net_ops);
2054 }
2055 #endif /* CONFIG_PROC_FS */
2056 
2057 static __initdata unsigned long uhash_entries;
2058 static int __init set_uhash_entries(char *str)
2059 {
2060 	if (!str)
2061 		return 0;
2062 	uhash_entries = simple_strtoul(str, &str, 0);
2063 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2064 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2065 	return 1;
2066 }
2067 __setup("uhash_entries=", set_uhash_entries);
2068 
2069 void __init udp_table_init(struct udp_table *table, const char *name)
2070 {
2071 	unsigned int i;
2072 
2073 	if (!CONFIG_BASE_SMALL)
2074 		table->hash = alloc_large_system_hash(name,
2075 			2 * sizeof(struct udp_hslot),
2076 			uhash_entries,
2077 			21, /* one slot per 2 MB */
2078 			0,
2079 			&table->log,
2080 			&table->mask,
2081 			64 * 1024);
2082 	/*
2083 	 * Make sure hash table has the minimum size
2084 	 */
2085 	if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) {
2086 		table->hash = kmalloc(UDP_HTABLE_SIZE_MIN *
2087 				      2 * sizeof(struct udp_hslot), GFP_KERNEL);
2088 		if (!table->hash)
2089 			panic(name);
2090 		table->log = ilog2(UDP_HTABLE_SIZE_MIN);
2091 		table->mask = UDP_HTABLE_SIZE_MIN - 1;
2092 	}
2093 	table->hash2 = table->hash + (table->mask + 1);
2094 	for (i = 0; i <= table->mask; i++) {
2095 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2096 		table->hash[i].count = 0;
2097 		spin_lock_init(&table->hash[i].lock);
2098 	}
2099 	for (i = 0; i <= table->mask; i++) {
2100 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2101 		table->hash2[i].count = 0;
2102 		spin_lock_init(&table->hash2[i].lock);
2103 	}
2104 }
2105 
2106 void __init udp_init(void)
2107 {
2108 	unsigned long nr_pages, limit;
2109 
2110 	udp_table_init(&udp_table, "UDP");
2111 	/* Set the pressure threshold up by the same strategy of TCP. It is a
2112 	 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
2113 	 * toward zero with the amount of memory, with a floor of 128 pages.
2114 	 */
2115 	nr_pages = totalram_pages - totalhigh_pages;
2116 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2117 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2118 	limit = max(limit, 128UL);
2119 	sysctl_udp_mem[0] = limit / 4 * 3;
2120 	sysctl_udp_mem[1] = limit;
2121 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2122 
2123 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2124 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2125 }
2126 
2127 int udp4_ufo_send_check(struct sk_buff *skb)
2128 {
2129 	const struct iphdr *iph;
2130 	struct udphdr *uh;
2131 
2132 	if (!pskb_may_pull(skb, sizeof(*uh)))
2133 		return -EINVAL;
2134 
2135 	iph = ip_hdr(skb);
2136 	uh = udp_hdr(skb);
2137 
2138 	uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2139 				       IPPROTO_UDP, 0);
2140 	skb->csum_start = skb_transport_header(skb) - skb->head;
2141 	skb->csum_offset = offsetof(struct udphdr, check);
2142 	skb->ip_summed = CHECKSUM_PARTIAL;
2143 	return 0;
2144 }
2145 
2146 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
2147 {
2148 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2149 	unsigned int mss;
2150 	int offset;
2151 	__wsum csum;
2152 
2153 	mss = skb_shinfo(skb)->gso_size;
2154 	if (unlikely(skb->len <= mss))
2155 		goto out;
2156 
2157 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2158 		/* Packet is from an untrusted source, reset gso_segs. */
2159 		int type = skb_shinfo(skb)->gso_type;
2160 
2161 		if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2162 			     !(type & (SKB_GSO_UDP))))
2163 			goto out;
2164 
2165 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2166 
2167 		segs = NULL;
2168 		goto out;
2169 	}
2170 
2171 	/* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2172 	 * do checksum of UDP packets sent as multiple IP fragments.
2173 	 */
2174 	offset = skb->csum_start - skb_headroom(skb);
2175 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2176 	offset += skb->csum_offset;
2177 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2178 	skb->ip_summed = CHECKSUM_NONE;
2179 
2180 	/* Fragment the skb. IP headers of the fragments are updated in
2181 	 * inet_gso_segment()
2182 	 */
2183 	segs = skb_segment(skb, features);
2184 out:
2185 	return segs;
2186 }
2187 
2188