xref: /linux/net/ipv4/udp.c (revision 1b2965a8cd8d444cbea891e55083b5987d00cc66)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #include <net/inet_dscp.h>
119 #if IS_ENABLED(CONFIG_IPV6)
120 #include <net/ipv6_stubs.h>
121 #endif
122 
123 struct udp_table udp_table __read_mostly;
124 EXPORT_SYMBOL(udp_table);
125 
126 long sysctl_udp_mem[3] __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_mem);
128 
129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136 
137 static struct udp_table *udp_get_table_prot(struct sock *sk)
138 {
139 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_table *udptable = udp_get_table_prot(sk);
244 	struct udp_hslot *hslot, *hslot2;
245 	struct net *net = sock_net(sk);
246 	int error = -EADDRINUSE;
247 
248 	if (!snum) {
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 		unsigned short first, last;
251 		int low, high, remaining;
252 		unsigned int rand;
253 
254 		inet_sk_get_local_port_range(sk, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = get_random_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sock_set_flag(sk, SOCK_RCU_FREE);
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
369 static int compute_score(struct sock *sk, const struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	if (sk->sk_bound_dev_if)
406 		score += 4;
407 
408 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409 		score++;
410 	return score;
411 }
412 
413 INDIRECT_CALLABLE_SCOPE
414 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
415 		const __be32 faddr, const __be16 fport)
416 {
417 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
418 
419 	return __inet_ehashfn(laddr, lport, faddr, fport,
420 			      udp_ehash_secret + net_hash_mix(net));
421 }
422 
423 /* called with rcu_read_lock() */
424 static struct sock *udp4_lib_lookup2(const struct net *net,
425 				     __be32 saddr, __be16 sport,
426 				     __be32 daddr, unsigned int hnum,
427 				     int dif, int sdif,
428 				     struct udp_hslot *hslot2,
429 				     struct sk_buff *skb)
430 {
431 	struct sock *sk, *result;
432 	int score, badness;
433 	bool need_rescore;
434 
435 	result = NULL;
436 	badness = 0;
437 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
438 		need_rescore = false;
439 rescore:
440 		score = compute_score(need_rescore ? result : sk, net, saddr,
441 				      sport, daddr, hnum, dif, sdif);
442 		if (score > badness) {
443 			badness = score;
444 
445 			if (need_rescore)
446 				continue;
447 
448 			if (sk->sk_state == TCP_ESTABLISHED) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
454 						       saddr, sport, daddr, hnum, udp_ehashfn);
455 			if (!result) {
456 				result = sk;
457 				continue;
458 			}
459 
460 			/* Fall back to scoring if group has connections */
461 			if (!reuseport_has_conns(sk))
462 				return result;
463 
464 			/* Reuseport logic returned an error, keep original score. */
465 			if (IS_ERR(result))
466 				continue;
467 
468 			/* compute_score is too long of a function to be
469 			 * inlined, and calling it again here yields
470 			 * measureable overhead for some
471 			 * workloads. Work around it by jumping
472 			 * backwards to rescore 'result'.
473 			 */
474 			need_rescore = true;
475 			goto rescore;
476 		}
477 	}
478 	return result;
479 }
480 
481 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
482  * harder than this. -DaveM
483  */
484 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
485 		__be16 sport, __be32 daddr, __be16 dport, int dif,
486 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
487 {
488 	unsigned short hnum = ntohs(dport);
489 	unsigned int hash2, slot2;
490 	struct udp_hslot *hslot2;
491 	struct sock *result, *sk;
492 
493 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
494 	slot2 = hash2 & udptable->mask;
495 	hslot2 = &udptable->hash2[slot2];
496 
497 	/* Lookup connected or non-wildcard socket */
498 	result = udp4_lib_lookup2(net, saddr, sport,
499 				  daddr, hnum, dif, sdif,
500 				  hslot2, skb);
501 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
502 		goto done;
503 
504 	/* Lookup redirect from BPF */
505 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
506 	    udptable == net->ipv4.udp_table) {
507 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
508 					       saddr, sport, daddr, hnum, dif,
509 					       udp_ehashfn);
510 		if (sk) {
511 			result = sk;
512 			goto done;
513 		}
514 	}
515 
516 	/* Got non-wildcard socket or error on first lookup */
517 	if (result)
518 		goto done;
519 
520 	/* Lookup wildcard sockets */
521 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
522 	slot2 = hash2 & udptable->mask;
523 	hslot2 = &udptable->hash2[slot2];
524 
525 	result = udp4_lib_lookup2(net, saddr, sport,
526 				  htonl(INADDR_ANY), hnum, dif, sdif,
527 				  hslot2, skb);
528 done:
529 	if (IS_ERR(result))
530 		return NULL;
531 	return result;
532 }
533 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
534 
535 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
536 						 __be16 sport, __be16 dport,
537 						 struct udp_table *udptable)
538 {
539 	const struct iphdr *iph = ip_hdr(skb);
540 
541 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
542 				 iph->daddr, dport, inet_iif(skb),
543 				 inet_sdif(skb), udptable, skb);
544 }
545 
546 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
547 				 __be16 sport, __be16 dport)
548 {
549 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
550 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
551 	struct net *net = dev_net(skb->dev);
552 	int iif, sdif;
553 
554 	inet_get_iif_sdif(skb, &iif, &sdif);
555 
556 	return __udp4_lib_lookup(net, iph->saddr, sport,
557 				 iph->daddr, dport, iif,
558 				 sdif, net->ipv4.udp_table, NULL);
559 }
560 
561 /* Must be called under rcu_read_lock().
562  * Does increment socket refcount.
563  */
564 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
565 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
566 			     __be32 daddr, __be16 dport, int dif)
567 {
568 	struct sock *sk;
569 
570 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
571 			       dif, 0, net->ipv4.udp_table, NULL);
572 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
573 		sk = NULL;
574 	return sk;
575 }
576 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
577 #endif
578 
579 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
580 				       __be16 loc_port, __be32 loc_addr,
581 				       __be16 rmt_port, __be32 rmt_addr,
582 				       int dif, int sdif, unsigned short hnum)
583 {
584 	const struct inet_sock *inet = inet_sk(sk);
585 
586 	if (!net_eq(sock_net(sk), net) ||
587 	    udp_sk(sk)->udp_port_hash != hnum ||
588 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
589 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
590 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
591 	    ipv6_only_sock(sk) ||
592 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
593 		return false;
594 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
595 		return false;
596 	return true;
597 }
598 
599 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
600 EXPORT_SYMBOL(udp_encap_needed_key);
601 
602 #if IS_ENABLED(CONFIG_IPV6)
603 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
604 EXPORT_SYMBOL(udpv6_encap_needed_key);
605 #endif
606 
607 void udp_encap_enable(void)
608 {
609 	static_branch_inc(&udp_encap_needed_key);
610 }
611 EXPORT_SYMBOL(udp_encap_enable);
612 
613 void udp_encap_disable(void)
614 {
615 	static_branch_dec(&udp_encap_needed_key);
616 }
617 EXPORT_SYMBOL(udp_encap_disable);
618 
619 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
620  * through error handlers in encapsulations looking for a match.
621  */
622 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
623 {
624 	int i;
625 
626 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
627 		int (*handler)(struct sk_buff *skb, u32 info);
628 		const struct ip_tunnel_encap_ops *encap;
629 
630 		encap = rcu_dereference(iptun_encaps[i]);
631 		if (!encap)
632 			continue;
633 		handler = encap->err_handler;
634 		if (handler && !handler(skb, info))
635 			return 0;
636 	}
637 
638 	return -ENOENT;
639 }
640 
641 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
642  * reversing source and destination port: this will match tunnels that force the
643  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
644  * lwtunnels might actually break this assumption by being configured with
645  * different destination ports on endpoints, in this case we won't be able to
646  * trace ICMP messages back to them.
647  *
648  * If this doesn't match any socket, probe tunnels with arbitrary destination
649  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
650  * we've sent packets to won't necessarily match the local destination port.
651  *
652  * Then ask the tunnel implementation to match the error against a valid
653  * association.
654  *
655  * Return an error if we can't find a match, the socket if we need further
656  * processing, zero otherwise.
657  */
658 static struct sock *__udp4_lib_err_encap(struct net *net,
659 					 const struct iphdr *iph,
660 					 struct udphdr *uh,
661 					 struct udp_table *udptable,
662 					 struct sock *sk,
663 					 struct sk_buff *skb, u32 info)
664 {
665 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
666 	int network_offset, transport_offset;
667 	struct udp_sock *up;
668 
669 	network_offset = skb_network_offset(skb);
670 	transport_offset = skb_transport_offset(skb);
671 
672 	/* Network header needs to point to the outer IPv4 header inside ICMP */
673 	skb_reset_network_header(skb);
674 
675 	/* Transport header needs to point to the UDP header */
676 	skb_set_transport_header(skb, iph->ihl << 2);
677 
678 	if (sk) {
679 		up = udp_sk(sk);
680 
681 		lookup = READ_ONCE(up->encap_err_lookup);
682 		if (lookup && lookup(sk, skb))
683 			sk = NULL;
684 
685 		goto out;
686 	}
687 
688 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
689 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
690 			       udptable, NULL);
691 	if (sk) {
692 		up = udp_sk(sk);
693 
694 		lookup = READ_ONCE(up->encap_err_lookup);
695 		if (!lookup || lookup(sk, skb))
696 			sk = NULL;
697 	}
698 
699 out:
700 	if (!sk)
701 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
702 
703 	skb_set_transport_header(skb, transport_offset);
704 	skb_set_network_header(skb, network_offset);
705 
706 	return sk;
707 }
708 
709 /*
710  * This routine is called by the ICMP module when it gets some
711  * sort of error condition.  If err < 0 then the socket should
712  * be closed and the error returned to the user.  If err > 0
713  * it's just the icmp type << 8 | icmp code.
714  * Header points to the ip header of the error packet. We move
715  * on past this. Then (as it used to claim before adjustment)
716  * header points to the first 8 bytes of the udp header.  We need
717  * to find the appropriate port.
718  */
719 
720 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
721 {
722 	struct inet_sock *inet;
723 	const struct iphdr *iph = (const struct iphdr *)skb->data;
724 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
725 	const int type = icmp_hdr(skb)->type;
726 	const int code = icmp_hdr(skb)->code;
727 	bool tunnel = false;
728 	struct sock *sk;
729 	int harderr;
730 	int err;
731 	struct net *net = dev_net(skb->dev);
732 
733 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
734 			       iph->saddr, uh->source, skb->dev->ifindex,
735 			       inet_sdif(skb), udptable, NULL);
736 
737 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
738 		/* No socket for error: try tunnels before discarding */
739 		if (static_branch_unlikely(&udp_encap_needed_key)) {
740 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
741 						  info);
742 			if (!sk)
743 				return 0;
744 		} else
745 			sk = ERR_PTR(-ENOENT);
746 
747 		if (IS_ERR(sk)) {
748 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
749 			return PTR_ERR(sk);
750 		}
751 
752 		tunnel = true;
753 	}
754 
755 	err = 0;
756 	harderr = 0;
757 	inet = inet_sk(sk);
758 
759 	switch (type) {
760 	default:
761 	case ICMP_TIME_EXCEEDED:
762 		err = EHOSTUNREACH;
763 		break;
764 	case ICMP_SOURCE_QUENCH:
765 		goto out;
766 	case ICMP_PARAMETERPROB:
767 		err = EPROTO;
768 		harderr = 1;
769 		break;
770 	case ICMP_DEST_UNREACH:
771 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
772 			ipv4_sk_update_pmtu(skb, sk, info);
773 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
774 				err = EMSGSIZE;
775 				harderr = 1;
776 				break;
777 			}
778 			goto out;
779 		}
780 		err = EHOSTUNREACH;
781 		if (code <= NR_ICMP_UNREACH) {
782 			harderr = icmp_err_convert[code].fatal;
783 			err = icmp_err_convert[code].errno;
784 		}
785 		break;
786 	case ICMP_REDIRECT:
787 		ipv4_sk_redirect(skb, sk);
788 		goto out;
789 	}
790 
791 	/*
792 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
793 	 *	4.1.3.3.
794 	 */
795 	if (tunnel) {
796 		/* ...not for tunnels though: we don't have a sending socket */
797 		if (udp_sk(sk)->encap_err_rcv)
798 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
799 						  (u8 *)(uh+1));
800 		goto out;
801 	}
802 	if (!inet_test_bit(RECVERR, sk)) {
803 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
804 			goto out;
805 	} else
806 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
807 
808 	sk->sk_err = err;
809 	sk_error_report(sk);
810 out:
811 	return 0;
812 }
813 
814 int udp_err(struct sk_buff *skb, u32 info)
815 {
816 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
817 }
818 
819 /*
820  * Throw away all pending data and cancel the corking. Socket is locked.
821  */
822 void udp_flush_pending_frames(struct sock *sk)
823 {
824 	struct udp_sock *up = udp_sk(sk);
825 
826 	if (up->pending) {
827 		up->len = 0;
828 		WRITE_ONCE(up->pending, 0);
829 		ip_flush_pending_frames(sk);
830 	}
831 }
832 EXPORT_SYMBOL(udp_flush_pending_frames);
833 
834 /**
835  * 	udp4_hwcsum  -  handle outgoing HW checksumming
836  * 	@skb: 	sk_buff containing the filled-in UDP header
837  * 	        (checksum field must be zeroed out)
838  *	@src:	source IP address
839  *	@dst:	destination IP address
840  */
841 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
842 {
843 	struct udphdr *uh = udp_hdr(skb);
844 	int offset = skb_transport_offset(skb);
845 	int len = skb->len - offset;
846 	int hlen = len;
847 	__wsum csum = 0;
848 
849 	if (!skb_has_frag_list(skb)) {
850 		/*
851 		 * Only one fragment on the socket.
852 		 */
853 		skb->csum_start = skb_transport_header(skb) - skb->head;
854 		skb->csum_offset = offsetof(struct udphdr, check);
855 		uh->check = ~csum_tcpudp_magic(src, dst, len,
856 					       IPPROTO_UDP, 0);
857 	} else {
858 		struct sk_buff *frags;
859 
860 		/*
861 		 * HW-checksum won't work as there are two or more
862 		 * fragments on the socket so that all csums of sk_buffs
863 		 * should be together
864 		 */
865 		skb_walk_frags(skb, frags) {
866 			csum = csum_add(csum, frags->csum);
867 			hlen -= frags->len;
868 		}
869 
870 		csum = skb_checksum(skb, offset, hlen, csum);
871 		skb->ip_summed = CHECKSUM_NONE;
872 
873 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
874 		if (uh->check == 0)
875 			uh->check = CSUM_MANGLED_0;
876 	}
877 }
878 EXPORT_SYMBOL_GPL(udp4_hwcsum);
879 
880 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
881  * for the simple case like when setting the checksum for a UDP tunnel.
882  */
883 void udp_set_csum(bool nocheck, struct sk_buff *skb,
884 		  __be32 saddr, __be32 daddr, int len)
885 {
886 	struct udphdr *uh = udp_hdr(skb);
887 
888 	if (nocheck) {
889 		uh->check = 0;
890 	} else if (skb_is_gso(skb)) {
891 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
892 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
893 		uh->check = 0;
894 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
895 		if (uh->check == 0)
896 			uh->check = CSUM_MANGLED_0;
897 	} else {
898 		skb->ip_summed = CHECKSUM_PARTIAL;
899 		skb->csum_start = skb_transport_header(skb) - skb->head;
900 		skb->csum_offset = offsetof(struct udphdr, check);
901 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
902 	}
903 }
904 EXPORT_SYMBOL(udp_set_csum);
905 
906 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
907 			struct inet_cork *cork)
908 {
909 	struct sock *sk = skb->sk;
910 	struct inet_sock *inet = inet_sk(sk);
911 	struct udphdr *uh;
912 	int err;
913 	int is_udplite = IS_UDPLITE(sk);
914 	int offset = skb_transport_offset(skb);
915 	int len = skb->len - offset;
916 	int datalen = len - sizeof(*uh);
917 	__wsum csum = 0;
918 
919 	/*
920 	 * Create a UDP header
921 	 */
922 	uh = udp_hdr(skb);
923 	uh->source = inet->inet_sport;
924 	uh->dest = fl4->fl4_dport;
925 	uh->len = htons(len);
926 	uh->check = 0;
927 
928 	if (cork->gso_size) {
929 		const int hlen = skb_network_header_len(skb) +
930 				 sizeof(struct udphdr);
931 
932 		if (hlen + cork->gso_size > cork->fragsize) {
933 			kfree_skb(skb);
934 			return -EINVAL;
935 		}
936 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
937 			kfree_skb(skb);
938 			return -EINVAL;
939 		}
940 		if (sk->sk_no_check_tx) {
941 			kfree_skb(skb);
942 			return -EINVAL;
943 		}
944 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
945 			kfree_skb(skb);
946 			return -EIO;
947 		}
948 
949 		if (datalen > cork->gso_size) {
950 			skb_shinfo(skb)->gso_size = cork->gso_size;
951 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
952 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
953 								 cork->gso_size);
954 		}
955 		goto csum_partial;
956 	}
957 
958 	if (is_udplite)  				 /*     UDP-Lite      */
959 		csum = udplite_csum(skb);
960 
961 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
962 
963 		skb->ip_summed = CHECKSUM_NONE;
964 		goto send;
965 
966 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
967 csum_partial:
968 
969 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
970 		goto send;
971 
972 	} else
973 		csum = udp_csum(skb);
974 
975 	/* add protocol-dependent pseudo-header */
976 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
977 				      sk->sk_protocol, csum);
978 	if (uh->check == 0)
979 		uh->check = CSUM_MANGLED_0;
980 
981 send:
982 	err = ip_send_skb(sock_net(sk), skb);
983 	if (err) {
984 		if (err == -ENOBUFS &&
985 		    !inet_test_bit(RECVERR, sk)) {
986 			UDP_INC_STATS(sock_net(sk),
987 				      UDP_MIB_SNDBUFERRORS, is_udplite);
988 			err = 0;
989 		}
990 	} else
991 		UDP_INC_STATS(sock_net(sk),
992 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
993 	return err;
994 }
995 
996 /*
997  * Push out all pending data as one UDP datagram. Socket is locked.
998  */
999 int udp_push_pending_frames(struct sock *sk)
1000 {
1001 	struct udp_sock  *up = udp_sk(sk);
1002 	struct inet_sock *inet = inet_sk(sk);
1003 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1004 	struct sk_buff *skb;
1005 	int err = 0;
1006 
1007 	skb = ip_finish_skb(sk, fl4);
1008 	if (!skb)
1009 		goto out;
1010 
1011 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1012 
1013 out:
1014 	up->len = 0;
1015 	WRITE_ONCE(up->pending, 0);
1016 	return err;
1017 }
1018 EXPORT_SYMBOL(udp_push_pending_frames);
1019 
1020 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1021 {
1022 	switch (cmsg->cmsg_type) {
1023 	case UDP_SEGMENT:
1024 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1025 			return -EINVAL;
1026 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1027 		return 0;
1028 	default:
1029 		return -EINVAL;
1030 	}
1031 }
1032 
1033 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1034 {
1035 	struct cmsghdr *cmsg;
1036 	bool need_ip = false;
1037 	int err;
1038 
1039 	for_each_cmsghdr(cmsg, msg) {
1040 		if (!CMSG_OK(msg, cmsg))
1041 			return -EINVAL;
1042 
1043 		if (cmsg->cmsg_level != SOL_UDP) {
1044 			need_ip = true;
1045 			continue;
1046 		}
1047 
1048 		err = __udp_cmsg_send(cmsg, gso_size);
1049 		if (err)
1050 			return err;
1051 	}
1052 
1053 	return need_ip;
1054 }
1055 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1056 
1057 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1058 {
1059 	struct inet_sock *inet = inet_sk(sk);
1060 	struct udp_sock *up = udp_sk(sk);
1061 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1062 	struct flowi4 fl4_stack;
1063 	struct flowi4 *fl4;
1064 	int ulen = len;
1065 	struct ipcm_cookie ipc;
1066 	struct rtable *rt = NULL;
1067 	int free = 0;
1068 	int connected = 0;
1069 	__be32 daddr, faddr, saddr;
1070 	u8 tos, scope;
1071 	__be16 dport;
1072 	int err, is_udplite = IS_UDPLITE(sk);
1073 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1074 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1075 	struct sk_buff *skb;
1076 	struct ip_options_data opt_copy;
1077 	int uc_index;
1078 
1079 	if (len > 0xFFFF)
1080 		return -EMSGSIZE;
1081 
1082 	/*
1083 	 *	Check the flags.
1084 	 */
1085 
1086 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1087 		return -EOPNOTSUPP;
1088 
1089 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1090 
1091 	fl4 = &inet->cork.fl.u.ip4;
1092 	if (READ_ONCE(up->pending)) {
1093 		/*
1094 		 * There are pending frames.
1095 		 * The socket lock must be held while it's corked.
1096 		 */
1097 		lock_sock(sk);
1098 		if (likely(up->pending)) {
1099 			if (unlikely(up->pending != AF_INET)) {
1100 				release_sock(sk);
1101 				return -EINVAL;
1102 			}
1103 			goto do_append_data;
1104 		}
1105 		release_sock(sk);
1106 	}
1107 	ulen += sizeof(struct udphdr);
1108 
1109 	/*
1110 	 *	Get and verify the address.
1111 	 */
1112 	if (usin) {
1113 		if (msg->msg_namelen < sizeof(*usin))
1114 			return -EINVAL;
1115 		if (usin->sin_family != AF_INET) {
1116 			if (usin->sin_family != AF_UNSPEC)
1117 				return -EAFNOSUPPORT;
1118 		}
1119 
1120 		daddr = usin->sin_addr.s_addr;
1121 		dport = usin->sin_port;
1122 		if (dport == 0)
1123 			return -EINVAL;
1124 	} else {
1125 		if (sk->sk_state != TCP_ESTABLISHED)
1126 			return -EDESTADDRREQ;
1127 		daddr = inet->inet_daddr;
1128 		dport = inet->inet_dport;
1129 		/* Open fast path for connected socket.
1130 		   Route will not be used, if at least one option is set.
1131 		 */
1132 		connected = 1;
1133 	}
1134 
1135 	ipcm_init_sk(&ipc, inet);
1136 	ipc.gso_size = READ_ONCE(up->gso_size);
1137 
1138 	if (msg->msg_controllen) {
1139 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1140 		if (err > 0) {
1141 			err = ip_cmsg_send(sk, msg, &ipc,
1142 					   sk->sk_family == AF_INET6);
1143 			connected = 0;
1144 		}
1145 		if (unlikely(err < 0)) {
1146 			kfree(ipc.opt);
1147 			return err;
1148 		}
1149 		if (ipc.opt)
1150 			free = 1;
1151 	}
1152 	if (!ipc.opt) {
1153 		struct ip_options_rcu *inet_opt;
1154 
1155 		rcu_read_lock();
1156 		inet_opt = rcu_dereference(inet->inet_opt);
1157 		if (inet_opt) {
1158 			memcpy(&opt_copy, inet_opt,
1159 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1160 			ipc.opt = &opt_copy.opt;
1161 		}
1162 		rcu_read_unlock();
1163 	}
1164 
1165 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1166 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1167 					    (struct sockaddr *)usin,
1168 					    &msg->msg_namelen,
1169 					    &ipc.addr);
1170 		if (err)
1171 			goto out_free;
1172 		if (usin) {
1173 			if (usin->sin_port == 0) {
1174 				/* BPF program set invalid port. Reject it. */
1175 				err = -EINVAL;
1176 				goto out_free;
1177 			}
1178 			daddr = usin->sin_addr.s_addr;
1179 			dport = usin->sin_port;
1180 		}
1181 	}
1182 
1183 	saddr = ipc.addr;
1184 	ipc.addr = faddr = daddr;
1185 
1186 	if (ipc.opt && ipc.opt->opt.srr) {
1187 		if (!daddr) {
1188 			err = -EINVAL;
1189 			goto out_free;
1190 		}
1191 		faddr = ipc.opt->opt.faddr;
1192 		connected = 0;
1193 	}
1194 	tos = get_rttos(&ipc, inet);
1195 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1196 	if (scope == RT_SCOPE_LINK)
1197 		connected = 0;
1198 
1199 	uc_index = READ_ONCE(inet->uc_index);
1200 	if (ipv4_is_multicast(daddr)) {
1201 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1202 			ipc.oif = READ_ONCE(inet->mc_index);
1203 		if (!saddr)
1204 			saddr = READ_ONCE(inet->mc_addr);
1205 		connected = 0;
1206 	} else if (!ipc.oif) {
1207 		ipc.oif = uc_index;
1208 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1209 		/* oif is set, packet is to local broadcast and
1210 		 * uc_index is set. oif is most likely set
1211 		 * by sk_bound_dev_if. If uc_index != oif check if the
1212 		 * oif is an L3 master and uc_index is an L3 slave.
1213 		 * If so, we want to allow the send using the uc_index.
1214 		 */
1215 		if (ipc.oif != uc_index &&
1216 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1217 							      uc_index)) {
1218 			ipc.oif = uc_index;
1219 		}
1220 	}
1221 
1222 	if (connected)
1223 		rt = dst_rtable(sk_dst_check(sk, 0));
1224 
1225 	if (!rt) {
1226 		struct net *net = sock_net(sk);
1227 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1228 
1229 		fl4 = &fl4_stack;
1230 
1231 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1232 				   sk->sk_protocol, flow_flags, faddr, saddr,
1233 				   dport, inet->inet_sport, sk->sk_uid);
1234 
1235 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1236 		rt = ip_route_output_flow(net, fl4, sk);
1237 		if (IS_ERR(rt)) {
1238 			err = PTR_ERR(rt);
1239 			rt = NULL;
1240 			if (err == -ENETUNREACH)
1241 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1242 			goto out;
1243 		}
1244 
1245 		err = -EACCES;
1246 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1247 		    !sock_flag(sk, SOCK_BROADCAST))
1248 			goto out;
1249 		if (connected)
1250 			sk_dst_set(sk, dst_clone(&rt->dst));
1251 	}
1252 
1253 	if (msg->msg_flags&MSG_CONFIRM)
1254 		goto do_confirm;
1255 back_from_confirm:
1256 
1257 	saddr = fl4->saddr;
1258 	if (!ipc.addr)
1259 		daddr = ipc.addr = fl4->daddr;
1260 
1261 	/* Lockless fast path for the non-corking case. */
1262 	if (!corkreq) {
1263 		struct inet_cork cork;
1264 
1265 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1266 				  sizeof(struct udphdr), &ipc, &rt,
1267 				  &cork, msg->msg_flags);
1268 		err = PTR_ERR(skb);
1269 		if (!IS_ERR_OR_NULL(skb))
1270 			err = udp_send_skb(skb, fl4, &cork);
1271 		goto out;
1272 	}
1273 
1274 	lock_sock(sk);
1275 	if (unlikely(up->pending)) {
1276 		/* The socket is already corked while preparing it. */
1277 		/* ... which is an evident application bug. --ANK */
1278 		release_sock(sk);
1279 
1280 		net_dbg_ratelimited("socket already corked\n");
1281 		err = -EINVAL;
1282 		goto out;
1283 	}
1284 	/*
1285 	 *	Now cork the socket to pend data.
1286 	 */
1287 	fl4 = &inet->cork.fl.u.ip4;
1288 	fl4->daddr = daddr;
1289 	fl4->saddr = saddr;
1290 	fl4->fl4_dport = dport;
1291 	fl4->fl4_sport = inet->inet_sport;
1292 	WRITE_ONCE(up->pending, AF_INET);
1293 
1294 do_append_data:
1295 	up->len += ulen;
1296 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1297 			     sizeof(struct udphdr), &ipc, &rt,
1298 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1299 	if (err)
1300 		udp_flush_pending_frames(sk);
1301 	else if (!corkreq)
1302 		err = udp_push_pending_frames(sk);
1303 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1304 		WRITE_ONCE(up->pending, 0);
1305 	release_sock(sk);
1306 
1307 out:
1308 	ip_rt_put(rt);
1309 out_free:
1310 	if (free)
1311 		kfree(ipc.opt);
1312 	if (!err)
1313 		return len;
1314 	/*
1315 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1316 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1317 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1318 	 * things).  We could add another new stat but at least for now that
1319 	 * seems like overkill.
1320 	 */
1321 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1322 		UDP_INC_STATS(sock_net(sk),
1323 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1324 	}
1325 	return err;
1326 
1327 do_confirm:
1328 	if (msg->msg_flags & MSG_PROBE)
1329 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1330 	if (!(msg->msg_flags&MSG_PROBE) || len)
1331 		goto back_from_confirm;
1332 	err = 0;
1333 	goto out;
1334 }
1335 EXPORT_SYMBOL(udp_sendmsg);
1336 
1337 void udp_splice_eof(struct socket *sock)
1338 {
1339 	struct sock *sk = sock->sk;
1340 	struct udp_sock *up = udp_sk(sk);
1341 
1342 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1343 		return;
1344 
1345 	lock_sock(sk);
1346 	if (up->pending && !udp_test_bit(CORK, sk))
1347 		udp_push_pending_frames(sk);
1348 	release_sock(sk);
1349 }
1350 EXPORT_SYMBOL_GPL(udp_splice_eof);
1351 
1352 #define UDP_SKB_IS_STATELESS 0x80000000
1353 
1354 /* all head states (dst, sk, nf conntrack) except skb extensions are
1355  * cleared by udp_rcv().
1356  *
1357  * We need to preserve secpath, if present, to eventually process
1358  * IP_CMSG_PASSSEC at recvmsg() time.
1359  *
1360  * Other extensions can be cleared.
1361  */
1362 static bool udp_try_make_stateless(struct sk_buff *skb)
1363 {
1364 	if (!skb_has_extensions(skb))
1365 		return true;
1366 
1367 	if (!secpath_exists(skb)) {
1368 		skb_ext_reset(skb);
1369 		return true;
1370 	}
1371 
1372 	return false;
1373 }
1374 
1375 static void udp_set_dev_scratch(struct sk_buff *skb)
1376 {
1377 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1378 
1379 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1380 	scratch->_tsize_state = skb->truesize;
1381 #if BITS_PER_LONG == 64
1382 	scratch->len = skb->len;
1383 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1384 	scratch->is_linear = !skb_is_nonlinear(skb);
1385 #endif
1386 	if (udp_try_make_stateless(skb))
1387 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1388 }
1389 
1390 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1391 {
1392 	/* We come here after udp_lib_checksum_complete() returned 0.
1393 	 * This means that __skb_checksum_complete() might have
1394 	 * set skb->csum_valid to 1.
1395 	 * On 64bit platforms, we can set csum_unnecessary
1396 	 * to true, but only if the skb is not shared.
1397 	 */
1398 #if BITS_PER_LONG == 64
1399 	if (!skb_shared(skb))
1400 		udp_skb_scratch(skb)->csum_unnecessary = true;
1401 #endif
1402 }
1403 
1404 static int udp_skb_truesize(struct sk_buff *skb)
1405 {
1406 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1407 }
1408 
1409 static bool udp_skb_has_head_state(struct sk_buff *skb)
1410 {
1411 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1412 }
1413 
1414 /* fully reclaim rmem/fwd memory allocated for skb */
1415 static void udp_rmem_release(struct sock *sk, int size, int partial,
1416 			     bool rx_queue_lock_held)
1417 {
1418 	struct udp_sock *up = udp_sk(sk);
1419 	struct sk_buff_head *sk_queue;
1420 	int amt;
1421 
1422 	if (likely(partial)) {
1423 		up->forward_deficit += size;
1424 		size = up->forward_deficit;
1425 		if (size < READ_ONCE(up->forward_threshold) &&
1426 		    !skb_queue_empty(&up->reader_queue))
1427 			return;
1428 	} else {
1429 		size += up->forward_deficit;
1430 	}
1431 	up->forward_deficit = 0;
1432 
1433 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1434 	 * if the called don't held it already
1435 	 */
1436 	sk_queue = &sk->sk_receive_queue;
1437 	if (!rx_queue_lock_held)
1438 		spin_lock(&sk_queue->lock);
1439 
1440 
1441 	sk_forward_alloc_add(sk, size);
1442 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1443 	sk_forward_alloc_add(sk, -amt);
1444 
1445 	if (amt)
1446 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1447 
1448 	atomic_sub(size, &sk->sk_rmem_alloc);
1449 
1450 	/* this can save us from acquiring the rx queue lock on next receive */
1451 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1452 
1453 	if (!rx_queue_lock_held)
1454 		spin_unlock(&sk_queue->lock);
1455 }
1456 
1457 /* Note: called with reader_queue.lock held.
1458  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1459  * This avoids a cache line miss while receive_queue lock is held.
1460  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1461  */
1462 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1463 {
1464 	prefetch(&skb->data);
1465 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1466 }
1467 EXPORT_SYMBOL(udp_skb_destructor);
1468 
1469 /* as above, but the caller held the rx queue lock, too */
1470 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1471 {
1472 	prefetch(&skb->data);
1473 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1474 }
1475 
1476 /* Idea of busylocks is to let producers grab an extra spinlock
1477  * to relieve pressure on the receive_queue spinlock shared by consumer.
1478  * Under flood, this means that only one producer can be in line
1479  * trying to acquire the receive_queue spinlock.
1480  * These busylock can be allocated on a per cpu manner, instead of a
1481  * per socket one (that would consume a cache line per socket)
1482  */
1483 static int udp_busylocks_log __read_mostly;
1484 static spinlock_t *udp_busylocks __read_mostly;
1485 
1486 static spinlock_t *busylock_acquire(void *ptr)
1487 {
1488 	spinlock_t *busy;
1489 
1490 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1491 	spin_lock(busy);
1492 	return busy;
1493 }
1494 
1495 static void busylock_release(spinlock_t *busy)
1496 {
1497 	if (busy)
1498 		spin_unlock(busy);
1499 }
1500 
1501 static int udp_rmem_schedule(struct sock *sk, int size)
1502 {
1503 	int delta;
1504 
1505 	delta = size - sk->sk_forward_alloc;
1506 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1507 		return -ENOBUFS;
1508 
1509 	return 0;
1510 }
1511 
1512 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1513 {
1514 	struct sk_buff_head *list = &sk->sk_receive_queue;
1515 	int rmem, err = -ENOMEM;
1516 	spinlock_t *busy = NULL;
1517 	bool becomes_readable;
1518 	int size, rcvbuf;
1519 
1520 	/* Immediately drop when the receive queue is full.
1521 	 * Always allow at least one packet.
1522 	 */
1523 	rmem = atomic_read(&sk->sk_rmem_alloc);
1524 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1525 	if (rmem > rcvbuf)
1526 		goto drop;
1527 
1528 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1529 	 * having linear skbs :
1530 	 * - Reduce memory overhead and thus increase receive queue capacity
1531 	 * - Less cache line misses at copyout() time
1532 	 * - Less work at consume_skb() (less alien page frag freeing)
1533 	 */
1534 	if (rmem > (rcvbuf >> 1)) {
1535 		skb_condense(skb);
1536 
1537 		busy = busylock_acquire(sk);
1538 	}
1539 	size = skb->truesize;
1540 	udp_set_dev_scratch(skb);
1541 
1542 	atomic_add(size, &sk->sk_rmem_alloc);
1543 
1544 	spin_lock(&list->lock);
1545 	err = udp_rmem_schedule(sk, size);
1546 	if (err) {
1547 		spin_unlock(&list->lock);
1548 		goto uncharge_drop;
1549 	}
1550 
1551 	sk_forward_alloc_add(sk, -size);
1552 
1553 	/* no need to setup a destructor, we will explicitly release the
1554 	 * forward allocated memory on dequeue
1555 	 */
1556 	sock_skb_set_dropcount(sk, skb);
1557 
1558 	becomes_readable = skb_queue_empty(list);
1559 	__skb_queue_tail(list, skb);
1560 	spin_unlock(&list->lock);
1561 
1562 	if (!sock_flag(sk, SOCK_DEAD)) {
1563 		if (becomes_readable ||
1564 		    sk->sk_data_ready != sock_def_readable ||
1565 		    READ_ONCE(sk->sk_peek_off) >= 0)
1566 			INDIRECT_CALL_1(sk->sk_data_ready,
1567 					sock_def_readable, sk);
1568 		else
1569 			sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
1570 	}
1571 	busylock_release(busy);
1572 	return 0;
1573 
1574 uncharge_drop:
1575 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1576 
1577 drop:
1578 	atomic_inc(&sk->sk_drops);
1579 	busylock_release(busy);
1580 	return err;
1581 }
1582 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1583 
1584 void udp_destruct_common(struct sock *sk)
1585 {
1586 	/* reclaim completely the forward allocated memory */
1587 	struct udp_sock *up = udp_sk(sk);
1588 	unsigned int total = 0;
1589 	struct sk_buff *skb;
1590 
1591 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1592 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1593 		total += skb->truesize;
1594 		kfree_skb(skb);
1595 	}
1596 	udp_rmem_release(sk, total, 0, true);
1597 }
1598 EXPORT_SYMBOL_GPL(udp_destruct_common);
1599 
1600 static void udp_destruct_sock(struct sock *sk)
1601 {
1602 	udp_destruct_common(sk);
1603 	inet_sock_destruct(sk);
1604 }
1605 
1606 int udp_init_sock(struct sock *sk)
1607 {
1608 	udp_lib_init_sock(sk);
1609 	sk->sk_destruct = udp_destruct_sock;
1610 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1611 	return 0;
1612 }
1613 
1614 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1615 {
1616 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1617 		sk_peek_offset_bwd(sk, len);
1618 
1619 	if (!skb_unref(skb))
1620 		return;
1621 
1622 	/* In the more common cases we cleared the head states previously,
1623 	 * see __udp_queue_rcv_skb().
1624 	 */
1625 	if (unlikely(udp_skb_has_head_state(skb)))
1626 		skb_release_head_state(skb);
1627 	__consume_stateless_skb(skb);
1628 }
1629 EXPORT_SYMBOL_GPL(skb_consume_udp);
1630 
1631 static struct sk_buff *__first_packet_length(struct sock *sk,
1632 					     struct sk_buff_head *rcvq,
1633 					     int *total)
1634 {
1635 	struct sk_buff *skb;
1636 
1637 	while ((skb = skb_peek(rcvq)) != NULL) {
1638 		if (udp_lib_checksum_complete(skb)) {
1639 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1640 					IS_UDPLITE(sk));
1641 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1642 					IS_UDPLITE(sk));
1643 			atomic_inc(&sk->sk_drops);
1644 			__skb_unlink(skb, rcvq);
1645 			*total += skb->truesize;
1646 			kfree_skb(skb);
1647 		} else {
1648 			udp_skb_csum_unnecessary_set(skb);
1649 			break;
1650 		}
1651 	}
1652 	return skb;
1653 }
1654 
1655 /**
1656  *	first_packet_length	- return length of first packet in receive queue
1657  *	@sk: socket
1658  *
1659  *	Drops all bad checksum frames, until a valid one is found.
1660  *	Returns the length of found skb, or -1 if none is found.
1661  */
1662 static int first_packet_length(struct sock *sk)
1663 {
1664 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1665 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1666 	struct sk_buff *skb;
1667 	int total = 0;
1668 	int res;
1669 
1670 	spin_lock_bh(&rcvq->lock);
1671 	skb = __first_packet_length(sk, rcvq, &total);
1672 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1673 		spin_lock(&sk_queue->lock);
1674 		skb_queue_splice_tail_init(sk_queue, rcvq);
1675 		spin_unlock(&sk_queue->lock);
1676 
1677 		skb = __first_packet_length(sk, rcvq, &total);
1678 	}
1679 	res = skb ? skb->len : -1;
1680 	if (total)
1681 		udp_rmem_release(sk, total, 1, false);
1682 	spin_unlock_bh(&rcvq->lock);
1683 	return res;
1684 }
1685 
1686 /*
1687  *	IOCTL requests applicable to the UDP protocol
1688  */
1689 
1690 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1691 {
1692 	switch (cmd) {
1693 	case SIOCOUTQ:
1694 	{
1695 		*karg = sk_wmem_alloc_get(sk);
1696 		return 0;
1697 	}
1698 
1699 	case SIOCINQ:
1700 	{
1701 		*karg = max_t(int, 0, first_packet_length(sk));
1702 		return 0;
1703 	}
1704 
1705 	default:
1706 		return -ENOIOCTLCMD;
1707 	}
1708 
1709 	return 0;
1710 }
1711 EXPORT_SYMBOL(udp_ioctl);
1712 
1713 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1714 			       int *off, int *err)
1715 {
1716 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1717 	struct sk_buff_head *queue;
1718 	struct sk_buff *last;
1719 	long timeo;
1720 	int error;
1721 
1722 	queue = &udp_sk(sk)->reader_queue;
1723 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1724 	do {
1725 		struct sk_buff *skb;
1726 
1727 		error = sock_error(sk);
1728 		if (error)
1729 			break;
1730 
1731 		error = -EAGAIN;
1732 		do {
1733 			spin_lock_bh(&queue->lock);
1734 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1735 							err, &last);
1736 			if (skb) {
1737 				if (!(flags & MSG_PEEK))
1738 					udp_skb_destructor(sk, skb);
1739 				spin_unlock_bh(&queue->lock);
1740 				return skb;
1741 			}
1742 
1743 			if (skb_queue_empty_lockless(sk_queue)) {
1744 				spin_unlock_bh(&queue->lock);
1745 				goto busy_check;
1746 			}
1747 
1748 			/* refill the reader queue and walk it again
1749 			 * keep both queues locked to avoid re-acquiring
1750 			 * the sk_receive_queue lock if fwd memory scheduling
1751 			 * is needed.
1752 			 */
1753 			spin_lock(&sk_queue->lock);
1754 			skb_queue_splice_tail_init(sk_queue, queue);
1755 
1756 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1757 							err, &last);
1758 			if (skb && !(flags & MSG_PEEK))
1759 				udp_skb_dtor_locked(sk, skb);
1760 			spin_unlock(&sk_queue->lock);
1761 			spin_unlock_bh(&queue->lock);
1762 			if (skb)
1763 				return skb;
1764 
1765 busy_check:
1766 			if (!sk_can_busy_loop(sk))
1767 				break;
1768 
1769 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1770 		} while (!skb_queue_empty_lockless(sk_queue));
1771 
1772 		/* sk_queue is empty, reader_queue may contain peeked packets */
1773 	} while (timeo &&
1774 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1775 					      &error, &timeo,
1776 					      (struct sk_buff *)sk_queue));
1777 
1778 	*err = error;
1779 	return NULL;
1780 }
1781 EXPORT_SYMBOL(__skb_recv_udp);
1782 
1783 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1784 {
1785 	struct sk_buff *skb;
1786 	int err;
1787 
1788 try_again:
1789 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1790 	if (!skb)
1791 		return err;
1792 
1793 	if (udp_lib_checksum_complete(skb)) {
1794 		int is_udplite = IS_UDPLITE(sk);
1795 		struct net *net = sock_net(sk);
1796 
1797 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1798 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1799 		atomic_inc(&sk->sk_drops);
1800 		kfree_skb(skb);
1801 		goto try_again;
1802 	}
1803 
1804 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1805 	return recv_actor(sk, skb);
1806 }
1807 EXPORT_SYMBOL(udp_read_skb);
1808 
1809 /*
1810  * 	This should be easy, if there is something there we
1811  * 	return it, otherwise we block.
1812  */
1813 
1814 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1815 		int *addr_len)
1816 {
1817 	struct inet_sock *inet = inet_sk(sk);
1818 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1819 	struct sk_buff *skb;
1820 	unsigned int ulen, copied;
1821 	int off, err, peeking = flags & MSG_PEEK;
1822 	int is_udplite = IS_UDPLITE(sk);
1823 	bool checksum_valid = false;
1824 
1825 	if (flags & MSG_ERRQUEUE)
1826 		return ip_recv_error(sk, msg, len, addr_len);
1827 
1828 try_again:
1829 	off = sk_peek_offset(sk, flags);
1830 	skb = __skb_recv_udp(sk, flags, &off, &err);
1831 	if (!skb)
1832 		return err;
1833 
1834 	ulen = udp_skb_len(skb);
1835 	copied = len;
1836 	if (copied > ulen - off)
1837 		copied = ulen - off;
1838 	else if (copied < ulen)
1839 		msg->msg_flags |= MSG_TRUNC;
1840 
1841 	/*
1842 	 * If checksum is needed at all, try to do it while copying the
1843 	 * data.  If the data is truncated, or if we only want a partial
1844 	 * coverage checksum (UDP-Lite), do it before the copy.
1845 	 */
1846 
1847 	if (copied < ulen || peeking ||
1848 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1849 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1850 				!__udp_lib_checksum_complete(skb);
1851 		if (!checksum_valid)
1852 			goto csum_copy_err;
1853 	}
1854 
1855 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1856 		if (udp_skb_is_linear(skb))
1857 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1858 		else
1859 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1860 	} else {
1861 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1862 
1863 		if (err == -EINVAL)
1864 			goto csum_copy_err;
1865 	}
1866 
1867 	if (unlikely(err)) {
1868 		if (!peeking) {
1869 			atomic_inc(&sk->sk_drops);
1870 			UDP_INC_STATS(sock_net(sk),
1871 				      UDP_MIB_INERRORS, is_udplite);
1872 		}
1873 		kfree_skb(skb);
1874 		return err;
1875 	}
1876 
1877 	if (!peeking)
1878 		UDP_INC_STATS(sock_net(sk),
1879 			      UDP_MIB_INDATAGRAMS, is_udplite);
1880 
1881 	sock_recv_cmsgs(msg, sk, skb);
1882 
1883 	/* Copy the address. */
1884 	if (sin) {
1885 		sin->sin_family = AF_INET;
1886 		sin->sin_port = udp_hdr(skb)->source;
1887 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1888 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1889 		*addr_len = sizeof(*sin);
1890 
1891 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1892 						      (struct sockaddr *)sin,
1893 						      addr_len);
1894 	}
1895 
1896 	if (udp_test_bit(GRO_ENABLED, sk))
1897 		udp_cmsg_recv(msg, sk, skb);
1898 
1899 	if (inet_cmsg_flags(inet))
1900 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1901 
1902 	err = copied;
1903 	if (flags & MSG_TRUNC)
1904 		err = ulen;
1905 
1906 	skb_consume_udp(sk, skb, peeking ? -err : err);
1907 	return err;
1908 
1909 csum_copy_err:
1910 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1911 				 udp_skb_destructor)) {
1912 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1913 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1914 	}
1915 	kfree_skb(skb);
1916 
1917 	/* starting over for a new packet, but check if we need to yield */
1918 	cond_resched();
1919 	msg->msg_flags &= ~MSG_TRUNC;
1920 	goto try_again;
1921 }
1922 
1923 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1924 {
1925 	/* This check is replicated from __ip4_datagram_connect() and
1926 	 * intended to prevent BPF program called below from accessing bytes
1927 	 * that are out of the bound specified by user in addr_len.
1928 	 */
1929 	if (addr_len < sizeof(struct sockaddr_in))
1930 		return -EINVAL;
1931 
1932 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1933 }
1934 EXPORT_SYMBOL(udp_pre_connect);
1935 
1936 int __udp_disconnect(struct sock *sk, int flags)
1937 {
1938 	struct inet_sock *inet = inet_sk(sk);
1939 	/*
1940 	 *	1003.1g - break association.
1941 	 */
1942 
1943 	sk->sk_state = TCP_CLOSE;
1944 	inet->inet_daddr = 0;
1945 	inet->inet_dport = 0;
1946 	sock_rps_reset_rxhash(sk);
1947 	sk->sk_bound_dev_if = 0;
1948 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1949 		inet_reset_saddr(sk);
1950 		if (sk->sk_prot->rehash &&
1951 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1952 			sk->sk_prot->rehash(sk);
1953 	}
1954 
1955 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1956 		sk->sk_prot->unhash(sk);
1957 		inet->inet_sport = 0;
1958 	}
1959 	sk_dst_reset(sk);
1960 	return 0;
1961 }
1962 EXPORT_SYMBOL(__udp_disconnect);
1963 
1964 int udp_disconnect(struct sock *sk, int flags)
1965 {
1966 	lock_sock(sk);
1967 	__udp_disconnect(sk, flags);
1968 	release_sock(sk);
1969 	return 0;
1970 }
1971 EXPORT_SYMBOL(udp_disconnect);
1972 
1973 void udp_lib_unhash(struct sock *sk)
1974 {
1975 	if (sk_hashed(sk)) {
1976 		struct udp_table *udptable = udp_get_table_prot(sk);
1977 		struct udp_hslot *hslot, *hslot2;
1978 
1979 		hslot  = udp_hashslot(udptable, sock_net(sk),
1980 				      udp_sk(sk)->udp_port_hash);
1981 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1982 
1983 		spin_lock_bh(&hslot->lock);
1984 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1985 			reuseport_detach_sock(sk);
1986 		if (sk_del_node_init_rcu(sk)) {
1987 			hslot->count--;
1988 			inet_sk(sk)->inet_num = 0;
1989 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1990 
1991 			spin_lock(&hslot2->lock);
1992 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1993 			hslot2->count--;
1994 			spin_unlock(&hslot2->lock);
1995 		}
1996 		spin_unlock_bh(&hslot->lock);
1997 	}
1998 }
1999 EXPORT_SYMBOL(udp_lib_unhash);
2000 
2001 /*
2002  * inet_rcv_saddr was changed, we must rehash secondary hash
2003  */
2004 void udp_lib_rehash(struct sock *sk, u16 newhash)
2005 {
2006 	if (sk_hashed(sk)) {
2007 		struct udp_table *udptable = udp_get_table_prot(sk);
2008 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2009 
2010 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2011 		nhslot2 = udp_hashslot2(udptable, newhash);
2012 		udp_sk(sk)->udp_portaddr_hash = newhash;
2013 
2014 		if (hslot2 != nhslot2 ||
2015 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2016 			hslot = udp_hashslot(udptable, sock_net(sk),
2017 					     udp_sk(sk)->udp_port_hash);
2018 			/* we must lock primary chain too */
2019 			spin_lock_bh(&hslot->lock);
2020 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2021 				reuseport_detach_sock(sk);
2022 
2023 			if (hslot2 != nhslot2) {
2024 				spin_lock(&hslot2->lock);
2025 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2026 				hslot2->count--;
2027 				spin_unlock(&hslot2->lock);
2028 
2029 				spin_lock(&nhslot2->lock);
2030 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2031 							 &nhslot2->head);
2032 				nhslot2->count++;
2033 				spin_unlock(&nhslot2->lock);
2034 			}
2035 
2036 			spin_unlock_bh(&hslot->lock);
2037 		}
2038 	}
2039 }
2040 EXPORT_SYMBOL(udp_lib_rehash);
2041 
2042 void udp_v4_rehash(struct sock *sk)
2043 {
2044 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2045 					  inet_sk(sk)->inet_rcv_saddr,
2046 					  inet_sk(sk)->inet_num);
2047 	udp_lib_rehash(sk, new_hash);
2048 }
2049 
2050 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2051 {
2052 	int rc;
2053 
2054 	if (inet_sk(sk)->inet_daddr) {
2055 		sock_rps_save_rxhash(sk, skb);
2056 		sk_mark_napi_id(sk, skb);
2057 		sk_incoming_cpu_update(sk);
2058 	} else {
2059 		sk_mark_napi_id_once(sk, skb);
2060 	}
2061 
2062 	rc = __udp_enqueue_schedule_skb(sk, skb);
2063 	if (rc < 0) {
2064 		int is_udplite = IS_UDPLITE(sk);
2065 		int drop_reason;
2066 
2067 		/* Note that an ENOMEM error is charged twice */
2068 		if (rc == -ENOMEM) {
2069 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2070 					is_udplite);
2071 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2072 		} else {
2073 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2074 				      is_udplite);
2075 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2076 		}
2077 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2078 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2079 		sk_skb_reason_drop(sk, skb, drop_reason);
2080 		return -1;
2081 	}
2082 
2083 	return 0;
2084 }
2085 
2086 /* returns:
2087  *  -1: error
2088  *   0: success
2089  *  >0: "udp encap" protocol resubmission
2090  *
2091  * Note that in the success and error cases, the skb is assumed to
2092  * have either been requeued or freed.
2093  */
2094 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2095 {
2096 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2097 	struct udp_sock *up = udp_sk(sk);
2098 	int is_udplite = IS_UDPLITE(sk);
2099 
2100 	/*
2101 	 *	Charge it to the socket, dropping if the queue is full.
2102 	 */
2103 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2104 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2105 		goto drop;
2106 	}
2107 	nf_reset_ct(skb);
2108 
2109 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2110 	    READ_ONCE(up->encap_type)) {
2111 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2112 
2113 		/*
2114 		 * This is an encapsulation socket so pass the skb to
2115 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2116 		 * fall through and pass this up the UDP socket.
2117 		 * up->encap_rcv() returns the following value:
2118 		 * =0 if skb was successfully passed to the encap
2119 		 *    handler or was discarded by it.
2120 		 * >0 if skb should be passed on to UDP.
2121 		 * <0 if skb should be resubmitted as proto -N
2122 		 */
2123 
2124 		/* if we're overly short, let UDP handle it */
2125 		encap_rcv = READ_ONCE(up->encap_rcv);
2126 		if (encap_rcv) {
2127 			int ret;
2128 
2129 			/* Verify checksum before giving to encap */
2130 			if (udp_lib_checksum_complete(skb))
2131 				goto csum_error;
2132 
2133 			ret = encap_rcv(sk, skb);
2134 			if (ret <= 0) {
2135 				__UDP_INC_STATS(sock_net(sk),
2136 						UDP_MIB_INDATAGRAMS,
2137 						is_udplite);
2138 				return -ret;
2139 			}
2140 		}
2141 
2142 		/* FALLTHROUGH -- it's a UDP Packet */
2143 	}
2144 
2145 	/*
2146 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2147 	 */
2148 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2149 		u16 pcrlen = READ_ONCE(up->pcrlen);
2150 
2151 		/*
2152 		 * MIB statistics other than incrementing the error count are
2153 		 * disabled for the following two types of errors: these depend
2154 		 * on the application settings, not on the functioning of the
2155 		 * protocol stack as such.
2156 		 *
2157 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2158 		 * way ... to ... at least let the receiving application block
2159 		 * delivery of packets with coverage values less than a value
2160 		 * provided by the application."
2161 		 */
2162 		if (pcrlen == 0) {          /* full coverage was set  */
2163 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2164 					    UDP_SKB_CB(skb)->cscov, skb->len);
2165 			goto drop;
2166 		}
2167 		/* The next case involves violating the min. coverage requested
2168 		 * by the receiver. This is subtle: if receiver wants x and x is
2169 		 * greater than the buffersize/MTU then receiver will complain
2170 		 * that it wants x while sender emits packets of smaller size y.
2171 		 * Therefore the above ...()->partial_cov statement is essential.
2172 		 */
2173 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2174 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2175 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2176 			goto drop;
2177 		}
2178 	}
2179 
2180 	prefetch(&sk->sk_rmem_alloc);
2181 	if (rcu_access_pointer(sk->sk_filter) &&
2182 	    udp_lib_checksum_complete(skb))
2183 			goto csum_error;
2184 
2185 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2186 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2187 		goto drop;
2188 	}
2189 
2190 	udp_csum_pull_header(skb);
2191 
2192 	ipv4_pktinfo_prepare(sk, skb, true);
2193 	return __udp_queue_rcv_skb(sk, skb);
2194 
2195 csum_error:
2196 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2197 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2198 drop:
2199 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2200 	atomic_inc(&sk->sk_drops);
2201 	sk_skb_reason_drop(sk, skb, drop_reason);
2202 	return -1;
2203 }
2204 
2205 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2206 {
2207 	struct sk_buff *next, *segs;
2208 	int ret;
2209 
2210 	if (likely(!udp_unexpected_gso(sk, skb)))
2211 		return udp_queue_rcv_one_skb(sk, skb);
2212 
2213 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2214 	__skb_push(skb, -skb_mac_offset(skb));
2215 	segs = udp_rcv_segment(sk, skb, true);
2216 	skb_list_walk_safe(segs, skb, next) {
2217 		__skb_pull(skb, skb_transport_offset(skb));
2218 
2219 		udp_post_segment_fix_csum(skb);
2220 		ret = udp_queue_rcv_one_skb(sk, skb);
2221 		if (ret > 0)
2222 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2223 	}
2224 	return 0;
2225 }
2226 
2227 /* For TCP sockets, sk_rx_dst is protected by socket lock
2228  * For UDP, we use xchg() to guard against concurrent changes.
2229  */
2230 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2231 {
2232 	struct dst_entry *old;
2233 
2234 	if (dst_hold_safe(dst)) {
2235 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2236 		dst_release(old);
2237 		return old != dst;
2238 	}
2239 	return false;
2240 }
2241 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2242 
2243 /*
2244  *	Multicasts and broadcasts go to each listener.
2245  *
2246  *	Note: called only from the BH handler context.
2247  */
2248 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2249 				    struct udphdr  *uh,
2250 				    __be32 saddr, __be32 daddr,
2251 				    struct udp_table *udptable,
2252 				    int proto)
2253 {
2254 	struct sock *sk, *first = NULL;
2255 	unsigned short hnum = ntohs(uh->dest);
2256 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2257 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2258 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2259 	int dif = skb->dev->ifindex;
2260 	int sdif = inet_sdif(skb);
2261 	struct hlist_node *node;
2262 	struct sk_buff *nskb;
2263 
2264 	if (use_hash2) {
2265 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2266 			    udptable->mask;
2267 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2268 start_lookup:
2269 		hslot = &udptable->hash2[hash2];
2270 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2271 	}
2272 
2273 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2274 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2275 					 uh->source, saddr, dif, sdif, hnum))
2276 			continue;
2277 
2278 		if (!first) {
2279 			first = sk;
2280 			continue;
2281 		}
2282 		nskb = skb_clone(skb, GFP_ATOMIC);
2283 
2284 		if (unlikely(!nskb)) {
2285 			atomic_inc(&sk->sk_drops);
2286 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2287 					IS_UDPLITE(sk));
2288 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2289 					IS_UDPLITE(sk));
2290 			continue;
2291 		}
2292 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2293 			consume_skb(nskb);
2294 	}
2295 
2296 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2297 	if (use_hash2 && hash2 != hash2_any) {
2298 		hash2 = hash2_any;
2299 		goto start_lookup;
2300 	}
2301 
2302 	if (first) {
2303 		if (udp_queue_rcv_skb(first, skb) > 0)
2304 			consume_skb(skb);
2305 	} else {
2306 		kfree_skb(skb);
2307 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2308 				proto == IPPROTO_UDPLITE);
2309 	}
2310 	return 0;
2311 }
2312 
2313 /* Initialize UDP checksum. If exited with zero value (success),
2314  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2315  * Otherwise, csum completion requires checksumming packet body,
2316  * including udp header and folding it to skb->csum.
2317  */
2318 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2319 				 int proto)
2320 {
2321 	int err;
2322 
2323 	UDP_SKB_CB(skb)->partial_cov = 0;
2324 	UDP_SKB_CB(skb)->cscov = skb->len;
2325 
2326 	if (proto == IPPROTO_UDPLITE) {
2327 		err = udplite_checksum_init(skb, uh);
2328 		if (err)
2329 			return err;
2330 
2331 		if (UDP_SKB_CB(skb)->partial_cov) {
2332 			skb->csum = inet_compute_pseudo(skb, proto);
2333 			return 0;
2334 		}
2335 	}
2336 
2337 	/* Note, we are only interested in != 0 or == 0, thus the
2338 	 * force to int.
2339 	 */
2340 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2341 							inet_compute_pseudo);
2342 	if (err)
2343 		return err;
2344 
2345 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2346 		/* If SW calculated the value, we know it's bad */
2347 		if (skb->csum_complete_sw)
2348 			return 1;
2349 
2350 		/* HW says the value is bad. Let's validate that.
2351 		 * skb->csum is no longer the full packet checksum,
2352 		 * so don't treat it as such.
2353 		 */
2354 		skb_checksum_complete_unset(skb);
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2361  * return code conversion for ip layer consumption
2362  */
2363 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2364 			       struct udphdr *uh)
2365 {
2366 	int ret;
2367 
2368 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2369 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2370 
2371 	ret = udp_queue_rcv_skb(sk, skb);
2372 
2373 	/* a return value > 0 means to resubmit the input, but
2374 	 * it wants the return to be -protocol, or 0
2375 	 */
2376 	if (ret > 0)
2377 		return -ret;
2378 	return 0;
2379 }
2380 
2381 /*
2382  *	All we need to do is get the socket, and then do a checksum.
2383  */
2384 
2385 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2386 		   int proto)
2387 {
2388 	struct sock *sk = NULL;
2389 	struct udphdr *uh;
2390 	unsigned short ulen;
2391 	struct rtable *rt = skb_rtable(skb);
2392 	__be32 saddr, daddr;
2393 	struct net *net = dev_net(skb->dev);
2394 	bool refcounted;
2395 	int drop_reason;
2396 
2397 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2398 
2399 	/*
2400 	 *  Validate the packet.
2401 	 */
2402 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2403 		goto drop;		/* No space for header. */
2404 
2405 	uh   = udp_hdr(skb);
2406 	ulen = ntohs(uh->len);
2407 	saddr = ip_hdr(skb)->saddr;
2408 	daddr = ip_hdr(skb)->daddr;
2409 
2410 	if (ulen > skb->len)
2411 		goto short_packet;
2412 
2413 	if (proto == IPPROTO_UDP) {
2414 		/* UDP validates ulen. */
2415 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2416 			goto short_packet;
2417 		uh = udp_hdr(skb);
2418 	}
2419 
2420 	if (udp4_csum_init(skb, uh, proto))
2421 		goto csum_error;
2422 
2423 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2424 			     &refcounted, udp_ehashfn);
2425 	if (IS_ERR(sk))
2426 		goto no_sk;
2427 
2428 	if (sk) {
2429 		struct dst_entry *dst = skb_dst(skb);
2430 		int ret;
2431 
2432 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2433 			udp_sk_rx_dst_set(sk, dst);
2434 
2435 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2436 		if (refcounted)
2437 			sock_put(sk);
2438 		return ret;
2439 	}
2440 
2441 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2442 		return __udp4_lib_mcast_deliver(net, skb, uh,
2443 						saddr, daddr, udptable, proto);
2444 
2445 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2446 	if (sk)
2447 		return udp_unicast_rcv_skb(sk, skb, uh);
2448 no_sk:
2449 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2450 		goto drop;
2451 	nf_reset_ct(skb);
2452 
2453 	/* No socket. Drop packet silently, if checksum is wrong */
2454 	if (udp_lib_checksum_complete(skb))
2455 		goto csum_error;
2456 
2457 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2458 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2459 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2460 
2461 	/*
2462 	 * Hmm.  We got an UDP packet to a port to which we
2463 	 * don't wanna listen.  Ignore it.
2464 	 */
2465 	sk_skb_reason_drop(sk, skb, drop_reason);
2466 	return 0;
2467 
2468 short_packet:
2469 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2470 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2471 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2472 			    &saddr, ntohs(uh->source),
2473 			    ulen, skb->len,
2474 			    &daddr, ntohs(uh->dest));
2475 	goto drop;
2476 
2477 csum_error:
2478 	/*
2479 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2480 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2481 	 */
2482 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2483 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2484 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2485 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2486 			    ulen);
2487 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2488 drop:
2489 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2490 	sk_skb_reason_drop(sk, skb, drop_reason);
2491 	return 0;
2492 }
2493 
2494 /* We can only early demux multicast if there is a single matching socket.
2495  * If more than one socket found returns NULL
2496  */
2497 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2498 						  __be16 loc_port, __be32 loc_addr,
2499 						  __be16 rmt_port, __be32 rmt_addr,
2500 						  int dif, int sdif)
2501 {
2502 	struct udp_table *udptable = net->ipv4.udp_table;
2503 	unsigned short hnum = ntohs(loc_port);
2504 	struct sock *sk, *result;
2505 	struct udp_hslot *hslot;
2506 	unsigned int slot;
2507 
2508 	slot = udp_hashfn(net, hnum, udptable->mask);
2509 	hslot = &udptable->hash[slot];
2510 
2511 	/* Do not bother scanning a too big list */
2512 	if (hslot->count > 10)
2513 		return NULL;
2514 
2515 	result = NULL;
2516 	sk_for_each_rcu(sk, &hslot->head) {
2517 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2518 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2519 			if (result)
2520 				return NULL;
2521 			result = sk;
2522 		}
2523 	}
2524 
2525 	return result;
2526 }
2527 
2528 /* For unicast we should only early demux connected sockets or we can
2529  * break forwarding setups.  The chains here can be long so only check
2530  * if the first socket is an exact match and if not move on.
2531  */
2532 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2533 					    __be16 loc_port, __be32 loc_addr,
2534 					    __be16 rmt_port, __be32 rmt_addr,
2535 					    int dif, int sdif)
2536 {
2537 	struct udp_table *udptable = net->ipv4.udp_table;
2538 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2539 	unsigned short hnum = ntohs(loc_port);
2540 	unsigned int hash2, slot2;
2541 	struct udp_hslot *hslot2;
2542 	__portpair ports;
2543 	struct sock *sk;
2544 
2545 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2546 	slot2 = hash2 & udptable->mask;
2547 	hslot2 = &udptable->hash2[slot2];
2548 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2549 
2550 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2551 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2552 			return sk;
2553 		/* Only check first socket in chain */
2554 		break;
2555 	}
2556 	return NULL;
2557 }
2558 
2559 int udp_v4_early_demux(struct sk_buff *skb)
2560 {
2561 	struct net *net = dev_net(skb->dev);
2562 	struct in_device *in_dev = NULL;
2563 	const struct iphdr *iph;
2564 	const struct udphdr *uh;
2565 	struct sock *sk = NULL;
2566 	struct dst_entry *dst;
2567 	int dif = skb->dev->ifindex;
2568 	int sdif = inet_sdif(skb);
2569 	int ours;
2570 
2571 	/* validate the packet */
2572 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2573 		return 0;
2574 
2575 	iph = ip_hdr(skb);
2576 	uh = udp_hdr(skb);
2577 
2578 	if (skb->pkt_type == PACKET_MULTICAST) {
2579 		in_dev = __in_dev_get_rcu(skb->dev);
2580 
2581 		if (!in_dev)
2582 			return 0;
2583 
2584 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2585 				       iph->protocol);
2586 		if (!ours)
2587 			return 0;
2588 
2589 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2590 						   uh->source, iph->saddr,
2591 						   dif, sdif);
2592 	} else if (skb->pkt_type == PACKET_HOST) {
2593 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2594 					     uh->source, iph->saddr, dif, sdif);
2595 	}
2596 
2597 	if (!sk)
2598 		return 0;
2599 
2600 	skb->sk = sk;
2601 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2602 	skb->destructor = sock_pfree;
2603 	dst = rcu_dereference(sk->sk_rx_dst);
2604 
2605 	if (dst)
2606 		dst = dst_check(dst, 0);
2607 	if (dst) {
2608 		u32 itag = 0;
2609 
2610 		/* set noref for now.
2611 		 * any place which wants to hold dst has to call
2612 		 * dst_hold_safe()
2613 		 */
2614 		skb_dst_set_noref(skb, dst);
2615 
2616 		/* for unconnected multicast sockets we need to validate
2617 		 * the source on each packet
2618 		 */
2619 		if (!inet_sk(sk)->inet_daddr && in_dev)
2620 			return ip_mc_validate_source(skb, iph->daddr,
2621 						     iph->saddr,
2622 						     iph->tos & INET_DSCP_MASK,
2623 						     skb->dev, in_dev, &itag);
2624 	}
2625 	return 0;
2626 }
2627 
2628 int udp_rcv(struct sk_buff *skb)
2629 {
2630 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2631 }
2632 
2633 void udp_destroy_sock(struct sock *sk)
2634 {
2635 	struct udp_sock *up = udp_sk(sk);
2636 	bool slow = lock_sock_fast(sk);
2637 
2638 	/* protects from races with udp_abort() */
2639 	sock_set_flag(sk, SOCK_DEAD);
2640 	udp_flush_pending_frames(sk);
2641 	unlock_sock_fast(sk, slow);
2642 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2643 		if (up->encap_type) {
2644 			void (*encap_destroy)(struct sock *sk);
2645 			encap_destroy = READ_ONCE(up->encap_destroy);
2646 			if (encap_destroy)
2647 				encap_destroy(sk);
2648 		}
2649 		if (udp_test_bit(ENCAP_ENABLED, sk))
2650 			static_branch_dec(&udp_encap_needed_key);
2651 	}
2652 }
2653 
2654 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2655 				       struct sock *sk)
2656 {
2657 #ifdef CONFIG_XFRM
2658 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2659 		if (family == AF_INET)
2660 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2661 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2662 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2663 	}
2664 #endif
2665 }
2666 
2667 /*
2668  *	Socket option code for UDP
2669  */
2670 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2671 		       sockptr_t optval, unsigned int optlen,
2672 		       int (*push_pending_frames)(struct sock *))
2673 {
2674 	struct udp_sock *up = udp_sk(sk);
2675 	int val, valbool;
2676 	int err = 0;
2677 	int is_udplite = IS_UDPLITE(sk);
2678 
2679 	if (level == SOL_SOCKET) {
2680 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2681 
2682 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2683 			sockopt_lock_sock(sk);
2684 			/* paired with READ_ONCE in udp_rmem_release() */
2685 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2686 			sockopt_release_sock(sk);
2687 		}
2688 		return err;
2689 	}
2690 
2691 	if (optlen < sizeof(int))
2692 		return -EINVAL;
2693 
2694 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2695 		return -EFAULT;
2696 
2697 	valbool = val ? 1 : 0;
2698 
2699 	switch (optname) {
2700 	case UDP_CORK:
2701 		if (val != 0) {
2702 			udp_set_bit(CORK, sk);
2703 		} else {
2704 			udp_clear_bit(CORK, sk);
2705 			lock_sock(sk);
2706 			push_pending_frames(sk);
2707 			release_sock(sk);
2708 		}
2709 		break;
2710 
2711 	case UDP_ENCAP:
2712 		switch (val) {
2713 		case 0:
2714 #ifdef CONFIG_XFRM
2715 		case UDP_ENCAP_ESPINUDP:
2716 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2717 #if IS_ENABLED(CONFIG_IPV6)
2718 			if (sk->sk_family == AF_INET6)
2719 				WRITE_ONCE(up->encap_rcv,
2720 					   ipv6_stub->xfrm6_udp_encap_rcv);
2721 			else
2722 #endif
2723 				WRITE_ONCE(up->encap_rcv,
2724 					   xfrm4_udp_encap_rcv);
2725 #endif
2726 			fallthrough;
2727 		case UDP_ENCAP_L2TPINUDP:
2728 			WRITE_ONCE(up->encap_type, val);
2729 			udp_tunnel_encap_enable(sk);
2730 			break;
2731 		default:
2732 			err = -ENOPROTOOPT;
2733 			break;
2734 		}
2735 		break;
2736 
2737 	case UDP_NO_CHECK6_TX:
2738 		udp_set_no_check6_tx(sk, valbool);
2739 		break;
2740 
2741 	case UDP_NO_CHECK6_RX:
2742 		udp_set_no_check6_rx(sk, valbool);
2743 		break;
2744 
2745 	case UDP_SEGMENT:
2746 		if (val < 0 || val > USHRT_MAX)
2747 			return -EINVAL;
2748 		WRITE_ONCE(up->gso_size, val);
2749 		break;
2750 
2751 	case UDP_GRO:
2752 
2753 		/* when enabling GRO, accept the related GSO packet type */
2754 		if (valbool)
2755 			udp_tunnel_encap_enable(sk);
2756 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2757 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2758 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2759 		break;
2760 
2761 	/*
2762 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2763 	 */
2764 	/* The sender sets actual checksum coverage length via this option.
2765 	 * The case coverage > packet length is handled by send module. */
2766 	case UDPLITE_SEND_CSCOV:
2767 		if (!is_udplite)         /* Disable the option on UDP sockets */
2768 			return -ENOPROTOOPT;
2769 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2770 			val = 8;
2771 		else if (val > USHRT_MAX)
2772 			val = USHRT_MAX;
2773 		WRITE_ONCE(up->pcslen, val);
2774 		udp_set_bit(UDPLITE_SEND_CC, sk);
2775 		break;
2776 
2777 	/* The receiver specifies a minimum checksum coverage value. To make
2778 	 * sense, this should be set to at least 8 (as done below). If zero is
2779 	 * used, this again means full checksum coverage.                     */
2780 	case UDPLITE_RECV_CSCOV:
2781 		if (!is_udplite)         /* Disable the option on UDP sockets */
2782 			return -ENOPROTOOPT;
2783 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2784 			val = 8;
2785 		else if (val > USHRT_MAX)
2786 			val = USHRT_MAX;
2787 		WRITE_ONCE(up->pcrlen, val);
2788 		udp_set_bit(UDPLITE_RECV_CC, sk);
2789 		break;
2790 
2791 	default:
2792 		err = -ENOPROTOOPT;
2793 		break;
2794 	}
2795 
2796 	return err;
2797 }
2798 EXPORT_SYMBOL(udp_lib_setsockopt);
2799 
2800 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2801 		   unsigned int optlen)
2802 {
2803 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2804 		return udp_lib_setsockopt(sk, level, optname,
2805 					  optval, optlen,
2806 					  udp_push_pending_frames);
2807 	return ip_setsockopt(sk, level, optname, optval, optlen);
2808 }
2809 
2810 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2811 		       char __user *optval, int __user *optlen)
2812 {
2813 	struct udp_sock *up = udp_sk(sk);
2814 	int val, len;
2815 
2816 	if (get_user(len, optlen))
2817 		return -EFAULT;
2818 
2819 	if (len < 0)
2820 		return -EINVAL;
2821 
2822 	len = min_t(unsigned int, len, sizeof(int));
2823 
2824 	switch (optname) {
2825 	case UDP_CORK:
2826 		val = udp_test_bit(CORK, sk);
2827 		break;
2828 
2829 	case UDP_ENCAP:
2830 		val = READ_ONCE(up->encap_type);
2831 		break;
2832 
2833 	case UDP_NO_CHECK6_TX:
2834 		val = udp_get_no_check6_tx(sk);
2835 		break;
2836 
2837 	case UDP_NO_CHECK6_RX:
2838 		val = udp_get_no_check6_rx(sk);
2839 		break;
2840 
2841 	case UDP_SEGMENT:
2842 		val = READ_ONCE(up->gso_size);
2843 		break;
2844 
2845 	case UDP_GRO:
2846 		val = udp_test_bit(GRO_ENABLED, sk);
2847 		break;
2848 
2849 	/* The following two cannot be changed on UDP sockets, the return is
2850 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2851 	case UDPLITE_SEND_CSCOV:
2852 		val = READ_ONCE(up->pcslen);
2853 		break;
2854 
2855 	case UDPLITE_RECV_CSCOV:
2856 		val = READ_ONCE(up->pcrlen);
2857 		break;
2858 
2859 	default:
2860 		return -ENOPROTOOPT;
2861 	}
2862 
2863 	if (put_user(len, optlen))
2864 		return -EFAULT;
2865 	if (copy_to_user(optval, &val, len))
2866 		return -EFAULT;
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(udp_lib_getsockopt);
2870 
2871 int udp_getsockopt(struct sock *sk, int level, int optname,
2872 		   char __user *optval, int __user *optlen)
2873 {
2874 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2875 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2876 	return ip_getsockopt(sk, level, optname, optval, optlen);
2877 }
2878 
2879 /**
2880  * 	udp_poll - wait for a UDP event.
2881  *	@file: - file struct
2882  *	@sock: - socket
2883  *	@wait: - poll table
2884  *
2885  *	This is same as datagram poll, except for the special case of
2886  *	blocking sockets. If application is using a blocking fd
2887  *	and a packet with checksum error is in the queue;
2888  *	then it could get return from select indicating data available
2889  *	but then block when reading it. Add special case code
2890  *	to work around these arguably broken applications.
2891  */
2892 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2893 {
2894 	__poll_t mask = datagram_poll(file, sock, wait);
2895 	struct sock *sk = sock->sk;
2896 
2897 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2898 		mask |= EPOLLIN | EPOLLRDNORM;
2899 
2900 	/* Check for false positives due to checksum errors */
2901 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2902 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2903 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2904 
2905 	/* psock ingress_msg queue should not contain any bad checksum frames */
2906 	if (sk_is_readable(sk))
2907 		mask |= EPOLLIN | EPOLLRDNORM;
2908 	return mask;
2909 
2910 }
2911 EXPORT_SYMBOL(udp_poll);
2912 
2913 int udp_abort(struct sock *sk, int err)
2914 {
2915 	if (!has_current_bpf_ctx())
2916 		lock_sock(sk);
2917 
2918 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2919 	 * with close()
2920 	 */
2921 	if (sock_flag(sk, SOCK_DEAD))
2922 		goto out;
2923 
2924 	sk->sk_err = err;
2925 	sk_error_report(sk);
2926 	__udp_disconnect(sk, 0);
2927 
2928 out:
2929 	if (!has_current_bpf_ctx())
2930 		release_sock(sk);
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(udp_abort);
2935 
2936 struct proto udp_prot = {
2937 	.name			= "UDP",
2938 	.owner			= THIS_MODULE,
2939 	.close			= udp_lib_close,
2940 	.pre_connect		= udp_pre_connect,
2941 	.connect		= ip4_datagram_connect,
2942 	.disconnect		= udp_disconnect,
2943 	.ioctl			= udp_ioctl,
2944 	.init			= udp_init_sock,
2945 	.destroy		= udp_destroy_sock,
2946 	.setsockopt		= udp_setsockopt,
2947 	.getsockopt		= udp_getsockopt,
2948 	.sendmsg		= udp_sendmsg,
2949 	.recvmsg		= udp_recvmsg,
2950 	.splice_eof		= udp_splice_eof,
2951 	.release_cb		= ip4_datagram_release_cb,
2952 	.hash			= udp_lib_hash,
2953 	.unhash			= udp_lib_unhash,
2954 	.rehash			= udp_v4_rehash,
2955 	.get_port		= udp_v4_get_port,
2956 	.put_port		= udp_lib_unhash,
2957 #ifdef CONFIG_BPF_SYSCALL
2958 	.psock_update_sk_prot	= udp_bpf_update_proto,
2959 #endif
2960 	.memory_allocated	= &udp_memory_allocated,
2961 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2962 
2963 	.sysctl_mem		= sysctl_udp_mem,
2964 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2965 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2966 	.obj_size		= sizeof(struct udp_sock),
2967 	.h.udp_table		= NULL,
2968 	.diag_destroy		= udp_abort,
2969 };
2970 EXPORT_SYMBOL(udp_prot);
2971 
2972 /* ------------------------------------------------------------------------ */
2973 #ifdef CONFIG_PROC_FS
2974 
2975 static unsigned short seq_file_family(const struct seq_file *seq);
2976 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2977 {
2978 	unsigned short family = seq_file_family(seq);
2979 
2980 	/* AF_UNSPEC is used as a match all */
2981 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2982 		net_eq(sock_net(sk), seq_file_net(seq)));
2983 }
2984 
2985 #ifdef CONFIG_BPF_SYSCALL
2986 static const struct seq_operations bpf_iter_udp_seq_ops;
2987 #endif
2988 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2989 					   struct net *net)
2990 {
2991 	const struct udp_seq_afinfo *afinfo;
2992 
2993 #ifdef CONFIG_BPF_SYSCALL
2994 	if (seq->op == &bpf_iter_udp_seq_ops)
2995 		return net->ipv4.udp_table;
2996 #endif
2997 
2998 	afinfo = pde_data(file_inode(seq->file));
2999 	return afinfo->udp_table ? : net->ipv4.udp_table;
3000 }
3001 
3002 static struct sock *udp_get_first(struct seq_file *seq, int start)
3003 {
3004 	struct udp_iter_state *state = seq->private;
3005 	struct net *net = seq_file_net(seq);
3006 	struct udp_table *udptable;
3007 	struct sock *sk;
3008 
3009 	udptable = udp_get_table_seq(seq, net);
3010 
3011 	for (state->bucket = start; state->bucket <= udptable->mask;
3012 	     ++state->bucket) {
3013 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3014 
3015 		if (hlist_empty(&hslot->head))
3016 			continue;
3017 
3018 		spin_lock_bh(&hslot->lock);
3019 		sk_for_each(sk, &hslot->head) {
3020 			if (seq_sk_match(seq, sk))
3021 				goto found;
3022 		}
3023 		spin_unlock_bh(&hslot->lock);
3024 	}
3025 	sk = NULL;
3026 found:
3027 	return sk;
3028 }
3029 
3030 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3031 {
3032 	struct udp_iter_state *state = seq->private;
3033 	struct net *net = seq_file_net(seq);
3034 	struct udp_table *udptable;
3035 
3036 	do {
3037 		sk = sk_next(sk);
3038 	} while (sk && !seq_sk_match(seq, sk));
3039 
3040 	if (!sk) {
3041 		udptable = udp_get_table_seq(seq, net);
3042 
3043 		if (state->bucket <= udptable->mask)
3044 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3045 
3046 		return udp_get_first(seq, state->bucket + 1);
3047 	}
3048 	return sk;
3049 }
3050 
3051 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3052 {
3053 	struct sock *sk = udp_get_first(seq, 0);
3054 
3055 	if (sk)
3056 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3057 			--pos;
3058 	return pos ? NULL : sk;
3059 }
3060 
3061 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3062 {
3063 	struct udp_iter_state *state = seq->private;
3064 	state->bucket = MAX_UDP_PORTS;
3065 
3066 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3067 }
3068 EXPORT_SYMBOL(udp_seq_start);
3069 
3070 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3071 {
3072 	struct sock *sk;
3073 
3074 	if (v == SEQ_START_TOKEN)
3075 		sk = udp_get_idx(seq, 0);
3076 	else
3077 		sk = udp_get_next(seq, v);
3078 
3079 	++*pos;
3080 	return sk;
3081 }
3082 EXPORT_SYMBOL(udp_seq_next);
3083 
3084 void udp_seq_stop(struct seq_file *seq, void *v)
3085 {
3086 	struct udp_iter_state *state = seq->private;
3087 	struct udp_table *udptable;
3088 
3089 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3090 
3091 	if (state->bucket <= udptable->mask)
3092 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3093 }
3094 EXPORT_SYMBOL(udp_seq_stop);
3095 
3096 /* ------------------------------------------------------------------------ */
3097 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3098 		int bucket)
3099 {
3100 	struct inet_sock *inet = inet_sk(sp);
3101 	__be32 dest = inet->inet_daddr;
3102 	__be32 src  = inet->inet_rcv_saddr;
3103 	__u16 destp	  = ntohs(inet->inet_dport);
3104 	__u16 srcp	  = ntohs(inet->inet_sport);
3105 
3106 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3107 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3108 		bucket, src, srcp, dest, destp, sp->sk_state,
3109 		sk_wmem_alloc_get(sp),
3110 		udp_rqueue_get(sp),
3111 		0, 0L, 0,
3112 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3113 		0, sock_i_ino(sp),
3114 		refcount_read(&sp->sk_refcnt), sp,
3115 		atomic_read(&sp->sk_drops));
3116 }
3117 
3118 int udp4_seq_show(struct seq_file *seq, void *v)
3119 {
3120 	seq_setwidth(seq, 127);
3121 	if (v == SEQ_START_TOKEN)
3122 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3123 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3124 			   "inode ref pointer drops");
3125 	else {
3126 		struct udp_iter_state *state = seq->private;
3127 
3128 		udp4_format_sock(v, seq, state->bucket);
3129 	}
3130 	seq_pad(seq, '\n');
3131 	return 0;
3132 }
3133 
3134 #ifdef CONFIG_BPF_SYSCALL
3135 struct bpf_iter__udp {
3136 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3137 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3138 	uid_t uid __aligned(8);
3139 	int bucket __aligned(8);
3140 };
3141 
3142 struct bpf_udp_iter_state {
3143 	struct udp_iter_state state;
3144 	unsigned int cur_sk;
3145 	unsigned int end_sk;
3146 	unsigned int max_sk;
3147 	int offset;
3148 	struct sock **batch;
3149 	bool st_bucket_done;
3150 };
3151 
3152 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3153 				      unsigned int new_batch_sz);
3154 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3155 {
3156 	struct bpf_udp_iter_state *iter = seq->private;
3157 	struct udp_iter_state *state = &iter->state;
3158 	struct net *net = seq_file_net(seq);
3159 	int resume_bucket, resume_offset;
3160 	struct udp_table *udptable;
3161 	unsigned int batch_sks = 0;
3162 	bool resized = false;
3163 	struct sock *sk;
3164 
3165 	resume_bucket = state->bucket;
3166 	resume_offset = iter->offset;
3167 
3168 	/* The current batch is done, so advance the bucket. */
3169 	if (iter->st_bucket_done)
3170 		state->bucket++;
3171 
3172 	udptable = udp_get_table_seq(seq, net);
3173 
3174 again:
3175 	/* New batch for the next bucket.
3176 	 * Iterate over the hash table to find a bucket with sockets matching
3177 	 * the iterator attributes, and return the first matching socket from
3178 	 * the bucket. The remaining matched sockets from the bucket are batched
3179 	 * before releasing the bucket lock. This allows BPF programs that are
3180 	 * called in seq_show to acquire the bucket lock if needed.
3181 	 */
3182 	iter->cur_sk = 0;
3183 	iter->end_sk = 0;
3184 	iter->st_bucket_done = false;
3185 	batch_sks = 0;
3186 
3187 	for (; state->bucket <= udptable->mask; state->bucket++) {
3188 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3189 
3190 		if (hlist_empty(&hslot2->head))
3191 			continue;
3192 
3193 		iter->offset = 0;
3194 		spin_lock_bh(&hslot2->lock);
3195 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3196 			if (seq_sk_match(seq, sk)) {
3197 				/* Resume from the last iterated socket at the
3198 				 * offset in the bucket before iterator was stopped.
3199 				 */
3200 				if (state->bucket == resume_bucket &&
3201 				    iter->offset < resume_offset) {
3202 					++iter->offset;
3203 					continue;
3204 				}
3205 				if (iter->end_sk < iter->max_sk) {
3206 					sock_hold(sk);
3207 					iter->batch[iter->end_sk++] = sk;
3208 				}
3209 				batch_sks++;
3210 			}
3211 		}
3212 		spin_unlock_bh(&hslot2->lock);
3213 
3214 		if (iter->end_sk)
3215 			break;
3216 	}
3217 
3218 	/* All done: no batch made. */
3219 	if (!iter->end_sk)
3220 		return NULL;
3221 
3222 	if (iter->end_sk == batch_sks) {
3223 		/* Batching is done for the current bucket; return the first
3224 		 * socket to be iterated from the batch.
3225 		 */
3226 		iter->st_bucket_done = true;
3227 		goto done;
3228 	}
3229 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3230 		resized = true;
3231 		/* After allocating a larger batch, retry one more time to grab
3232 		 * the whole bucket.
3233 		 */
3234 		goto again;
3235 	}
3236 done:
3237 	return iter->batch[0];
3238 }
3239 
3240 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3241 {
3242 	struct bpf_udp_iter_state *iter = seq->private;
3243 	struct sock *sk;
3244 
3245 	/* Whenever seq_next() is called, the iter->cur_sk is
3246 	 * done with seq_show(), so unref the iter->cur_sk.
3247 	 */
3248 	if (iter->cur_sk < iter->end_sk) {
3249 		sock_put(iter->batch[iter->cur_sk++]);
3250 		++iter->offset;
3251 	}
3252 
3253 	/* After updating iter->cur_sk, check if there are more sockets
3254 	 * available in the current bucket batch.
3255 	 */
3256 	if (iter->cur_sk < iter->end_sk)
3257 		sk = iter->batch[iter->cur_sk];
3258 	else
3259 		/* Prepare a new batch. */
3260 		sk = bpf_iter_udp_batch(seq);
3261 
3262 	++*pos;
3263 	return sk;
3264 }
3265 
3266 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3267 {
3268 	/* bpf iter does not support lseek, so it always
3269 	 * continue from where it was stop()-ped.
3270 	 */
3271 	if (*pos)
3272 		return bpf_iter_udp_batch(seq);
3273 
3274 	return SEQ_START_TOKEN;
3275 }
3276 
3277 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3278 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3279 {
3280 	struct bpf_iter__udp ctx;
3281 
3282 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3283 	ctx.meta = meta;
3284 	ctx.udp_sk = udp_sk;
3285 	ctx.uid = uid;
3286 	ctx.bucket = bucket;
3287 	return bpf_iter_run_prog(prog, &ctx);
3288 }
3289 
3290 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3291 {
3292 	struct udp_iter_state *state = seq->private;
3293 	struct bpf_iter_meta meta;
3294 	struct bpf_prog *prog;
3295 	struct sock *sk = v;
3296 	uid_t uid;
3297 	int ret;
3298 
3299 	if (v == SEQ_START_TOKEN)
3300 		return 0;
3301 
3302 	lock_sock(sk);
3303 
3304 	if (unlikely(sk_unhashed(sk))) {
3305 		ret = SEQ_SKIP;
3306 		goto unlock;
3307 	}
3308 
3309 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3310 	meta.seq = seq;
3311 	prog = bpf_iter_get_info(&meta, false);
3312 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3313 
3314 unlock:
3315 	release_sock(sk);
3316 	return ret;
3317 }
3318 
3319 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3320 {
3321 	while (iter->cur_sk < iter->end_sk)
3322 		sock_put(iter->batch[iter->cur_sk++]);
3323 }
3324 
3325 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3326 {
3327 	struct bpf_udp_iter_state *iter = seq->private;
3328 	struct bpf_iter_meta meta;
3329 	struct bpf_prog *prog;
3330 
3331 	if (!v) {
3332 		meta.seq = seq;
3333 		prog = bpf_iter_get_info(&meta, true);
3334 		if (prog)
3335 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3336 	}
3337 
3338 	if (iter->cur_sk < iter->end_sk) {
3339 		bpf_iter_udp_put_batch(iter);
3340 		iter->st_bucket_done = false;
3341 	}
3342 }
3343 
3344 static const struct seq_operations bpf_iter_udp_seq_ops = {
3345 	.start		= bpf_iter_udp_seq_start,
3346 	.next		= bpf_iter_udp_seq_next,
3347 	.stop		= bpf_iter_udp_seq_stop,
3348 	.show		= bpf_iter_udp_seq_show,
3349 };
3350 #endif
3351 
3352 static unsigned short seq_file_family(const struct seq_file *seq)
3353 {
3354 	const struct udp_seq_afinfo *afinfo;
3355 
3356 #ifdef CONFIG_BPF_SYSCALL
3357 	/* BPF iterator: bpf programs to filter sockets. */
3358 	if (seq->op == &bpf_iter_udp_seq_ops)
3359 		return AF_UNSPEC;
3360 #endif
3361 
3362 	/* Proc fs iterator */
3363 	afinfo = pde_data(file_inode(seq->file));
3364 	return afinfo->family;
3365 }
3366 
3367 const struct seq_operations udp_seq_ops = {
3368 	.start		= udp_seq_start,
3369 	.next		= udp_seq_next,
3370 	.stop		= udp_seq_stop,
3371 	.show		= udp4_seq_show,
3372 };
3373 EXPORT_SYMBOL(udp_seq_ops);
3374 
3375 static struct udp_seq_afinfo udp4_seq_afinfo = {
3376 	.family		= AF_INET,
3377 	.udp_table	= NULL,
3378 };
3379 
3380 static int __net_init udp4_proc_init_net(struct net *net)
3381 {
3382 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3383 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3384 		return -ENOMEM;
3385 	return 0;
3386 }
3387 
3388 static void __net_exit udp4_proc_exit_net(struct net *net)
3389 {
3390 	remove_proc_entry("udp", net->proc_net);
3391 }
3392 
3393 static struct pernet_operations udp4_net_ops = {
3394 	.init = udp4_proc_init_net,
3395 	.exit = udp4_proc_exit_net,
3396 };
3397 
3398 int __init udp4_proc_init(void)
3399 {
3400 	return register_pernet_subsys(&udp4_net_ops);
3401 }
3402 
3403 void udp4_proc_exit(void)
3404 {
3405 	unregister_pernet_subsys(&udp4_net_ops);
3406 }
3407 #endif /* CONFIG_PROC_FS */
3408 
3409 static __initdata unsigned long uhash_entries;
3410 static int __init set_uhash_entries(char *str)
3411 {
3412 	ssize_t ret;
3413 
3414 	if (!str)
3415 		return 0;
3416 
3417 	ret = kstrtoul(str, 0, &uhash_entries);
3418 	if (ret)
3419 		return 0;
3420 
3421 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3422 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3423 	return 1;
3424 }
3425 __setup("uhash_entries=", set_uhash_entries);
3426 
3427 void __init udp_table_init(struct udp_table *table, const char *name)
3428 {
3429 	unsigned int i;
3430 
3431 	table->hash = alloc_large_system_hash(name,
3432 					      2 * sizeof(struct udp_hslot),
3433 					      uhash_entries,
3434 					      21, /* one slot per 2 MB */
3435 					      0,
3436 					      &table->log,
3437 					      &table->mask,
3438 					      UDP_HTABLE_SIZE_MIN,
3439 					      UDP_HTABLE_SIZE_MAX);
3440 
3441 	table->hash2 = table->hash + (table->mask + 1);
3442 	for (i = 0; i <= table->mask; i++) {
3443 		INIT_HLIST_HEAD(&table->hash[i].head);
3444 		table->hash[i].count = 0;
3445 		spin_lock_init(&table->hash[i].lock);
3446 	}
3447 	for (i = 0; i <= table->mask; i++) {
3448 		INIT_HLIST_HEAD(&table->hash2[i].head);
3449 		table->hash2[i].count = 0;
3450 		spin_lock_init(&table->hash2[i].lock);
3451 	}
3452 }
3453 
3454 u32 udp_flow_hashrnd(void)
3455 {
3456 	static u32 hashrnd __read_mostly;
3457 
3458 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3459 
3460 	return hashrnd;
3461 }
3462 EXPORT_SYMBOL(udp_flow_hashrnd);
3463 
3464 static void __net_init udp_sysctl_init(struct net *net)
3465 {
3466 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3467 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3468 
3469 #ifdef CONFIG_NET_L3_MASTER_DEV
3470 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3471 #endif
3472 }
3473 
3474 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3475 {
3476 	struct udp_table *udptable;
3477 	int i;
3478 
3479 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3480 	if (!udptable)
3481 		goto out;
3482 
3483 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3484 				      GFP_KERNEL_ACCOUNT);
3485 	if (!udptable->hash)
3486 		goto free_table;
3487 
3488 	udptable->hash2 = udptable->hash + hash_entries;
3489 	udptable->mask = hash_entries - 1;
3490 	udptable->log = ilog2(hash_entries);
3491 
3492 	for (i = 0; i < hash_entries; i++) {
3493 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3494 		udptable->hash[i].count = 0;
3495 		spin_lock_init(&udptable->hash[i].lock);
3496 
3497 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3498 		udptable->hash2[i].count = 0;
3499 		spin_lock_init(&udptable->hash2[i].lock);
3500 	}
3501 
3502 	return udptable;
3503 
3504 free_table:
3505 	kfree(udptable);
3506 out:
3507 	return NULL;
3508 }
3509 
3510 static void __net_exit udp_pernet_table_free(struct net *net)
3511 {
3512 	struct udp_table *udptable = net->ipv4.udp_table;
3513 
3514 	if (udptable == &udp_table)
3515 		return;
3516 
3517 	kvfree(udptable->hash);
3518 	kfree(udptable);
3519 }
3520 
3521 static void __net_init udp_set_table(struct net *net)
3522 {
3523 	struct udp_table *udptable;
3524 	unsigned int hash_entries;
3525 	struct net *old_net;
3526 
3527 	if (net_eq(net, &init_net))
3528 		goto fallback;
3529 
3530 	old_net = current->nsproxy->net_ns;
3531 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3532 	if (!hash_entries)
3533 		goto fallback;
3534 
3535 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3536 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3537 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3538 	else
3539 		hash_entries = roundup_pow_of_two(hash_entries);
3540 
3541 	udptable = udp_pernet_table_alloc(hash_entries);
3542 	if (udptable) {
3543 		net->ipv4.udp_table = udptable;
3544 	} else {
3545 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3546 			"for a netns, fallback to the global one\n",
3547 			hash_entries);
3548 fallback:
3549 		net->ipv4.udp_table = &udp_table;
3550 	}
3551 }
3552 
3553 static int __net_init udp_pernet_init(struct net *net)
3554 {
3555 	udp_sysctl_init(net);
3556 	udp_set_table(net);
3557 
3558 	return 0;
3559 }
3560 
3561 static void __net_exit udp_pernet_exit(struct net *net)
3562 {
3563 	udp_pernet_table_free(net);
3564 }
3565 
3566 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3567 	.init	= udp_pernet_init,
3568 	.exit	= udp_pernet_exit,
3569 };
3570 
3571 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3572 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3573 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3574 
3575 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3576 				      unsigned int new_batch_sz)
3577 {
3578 	struct sock **new_batch;
3579 
3580 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3581 				   GFP_USER | __GFP_NOWARN);
3582 	if (!new_batch)
3583 		return -ENOMEM;
3584 
3585 	bpf_iter_udp_put_batch(iter);
3586 	kvfree(iter->batch);
3587 	iter->batch = new_batch;
3588 	iter->max_sk = new_batch_sz;
3589 
3590 	return 0;
3591 }
3592 
3593 #define INIT_BATCH_SZ 16
3594 
3595 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3596 {
3597 	struct bpf_udp_iter_state *iter = priv_data;
3598 	int ret;
3599 
3600 	ret = bpf_iter_init_seq_net(priv_data, aux);
3601 	if (ret)
3602 		return ret;
3603 
3604 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3605 	if (ret)
3606 		bpf_iter_fini_seq_net(priv_data);
3607 
3608 	return ret;
3609 }
3610 
3611 static void bpf_iter_fini_udp(void *priv_data)
3612 {
3613 	struct bpf_udp_iter_state *iter = priv_data;
3614 
3615 	bpf_iter_fini_seq_net(priv_data);
3616 	kvfree(iter->batch);
3617 }
3618 
3619 static const struct bpf_iter_seq_info udp_seq_info = {
3620 	.seq_ops		= &bpf_iter_udp_seq_ops,
3621 	.init_seq_private	= bpf_iter_init_udp,
3622 	.fini_seq_private	= bpf_iter_fini_udp,
3623 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3624 };
3625 
3626 static struct bpf_iter_reg udp_reg_info = {
3627 	.target			= "udp",
3628 	.ctx_arg_info_size	= 1,
3629 	.ctx_arg_info		= {
3630 		{ offsetof(struct bpf_iter__udp, udp_sk),
3631 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3632 	},
3633 	.seq_info		= &udp_seq_info,
3634 };
3635 
3636 static void __init bpf_iter_register(void)
3637 {
3638 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3639 	if (bpf_iter_reg_target(&udp_reg_info))
3640 		pr_warn("Warning: could not register bpf iterator udp\n");
3641 }
3642 #endif
3643 
3644 void __init udp_init(void)
3645 {
3646 	unsigned long limit;
3647 	unsigned int i;
3648 
3649 	udp_table_init(&udp_table, "UDP");
3650 	limit = nr_free_buffer_pages() / 8;
3651 	limit = max(limit, 128UL);
3652 	sysctl_udp_mem[0] = limit / 4 * 3;
3653 	sysctl_udp_mem[1] = limit;
3654 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3655 
3656 	/* 16 spinlocks per cpu */
3657 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3658 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3659 				GFP_KERNEL);
3660 	if (!udp_busylocks)
3661 		panic("UDP: failed to alloc udp_busylocks\n");
3662 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3663 		spin_lock_init(udp_busylocks + i);
3664 
3665 	if (register_pernet_subsys(&udp_sysctl_ops))
3666 		panic("UDP: failed to init sysctl parameters.\n");
3667 
3668 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3669 	bpf_iter_register();
3670 #endif
3671 }
3672