xref: /linux/net/ipv4/udp.c (revision 1a20a9a0ddef17c0bd67eece34a7439b02a7b0ba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 			       const struct udp_hslot *hslot,
143 			       unsigned long *bitmap,
144 			       struct sock *sk, unsigned int log)
145 {
146 	struct sock *sk2;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_for_each(sk2, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    inet_rcv_saddr_equal(sk, sk2, true)) {
157 			if (sk2->sk_reuseport && sk->sk_reuseport &&
158 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 			    uid_eq(uid, sock_i_uid(sk2))) {
160 				if (!bitmap)
161 					return 0;
162 			} else {
163 				if (!bitmap)
164 					return 1;
165 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 					  bitmap);
167 			}
168 		}
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 				struct udp_hslot *hslot2,
179 				struct sock *sk)
180 {
181 	struct sock *sk2;
182 	kuid_t uid = sock_i_uid(sk);
183 	int res = 0;
184 
185 	spin_lock(&hslot2->lock);
186 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 		if (net_eq(sock_net(sk2), net) &&
188 		    sk2 != sk &&
189 		    (udp_sk(sk2)->udp_port_hash == num) &&
190 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 		    inet_rcv_saddr_equal(sk, sk2, true)) {
194 			if (sk2->sk_reuseport && sk->sk_reuseport &&
195 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 			    uid_eq(uid, sock_i_uid(sk2))) {
197 				res = 0;
198 			} else {
199 				res = 1;
200 			}
201 			break;
202 		}
203 	}
204 	spin_unlock(&hslot2->lock);
205 	return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 	struct net *net = sock_net(sk);
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_for_each(sk2, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    inet_rcv_saddr_equal(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2,
224 						  inet_rcv_saddr_any(sk));
225 		}
226 	}
227 
228 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 		     unsigned int hash2_nulladdr)
241 {
242 	struct udp_table *udptable = udp_get_table_prot(sk);
243 	struct udp_hslot *hslot, *hslot2;
244 	struct net *net = sock_net(sk);
245 	int error = -EADDRINUSE;
246 
247 	if (!snum) {
248 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 		unsigned short first, last;
250 		int low, high, remaining;
251 		unsigned int rand;
252 
253 		inet_sk_get_local_port_range(sk, &low, &high);
254 		remaining = (high - low) + 1;
255 
256 		rand = get_random_u32();
257 		first = reciprocal_scale(rand, remaining) + low;
258 		/*
259 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 		 */
261 		rand = (rand | 1) * (udptable->mask + 1);
262 		last = first + udptable->mask + 1;
263 		do {
264 			hslot = udp_hashslot(udptable, net, first);
265 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 			spin_lock_bh(&hslot->lock);
267 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 					    udptable->log);
269 
270 			snum = first;
271 			/*
272 			 * Iterate on all possible values of snum for this hash.
273 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 			 * give us randomization and full range coverage.
275 			 */
276 			do {
277 				if (low <= snum && snum <= high &&
278 				    !test_bit(snum >> udptable->log, bitmap) &&
279 				    !inet_is_local_reserved_port(net, snum))
280 					goto found;
281 				snum += rand;
282 			} while (snum != first);
283 			spin_unlock_bh(&hslot->lock);
284 			cond_resched();
285 		} while (++first != last);
286 		goto fail;
287 	} else {
288 		hslot = udp_hashslot(udptable, net, snum);
289 		spin_lock_bh(&hslot->lock);
290 		if (hslot->count > 10) {
291 			int exist;
292 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294 			slot2          &= udptable->mask;
295 			hash2_nulladdr &= udptable->mask;
296 
297 			hslot2 = udp_hashslot2(udptable, slot2);
298 			if (hslot->count < hslot2->count)
299 				goto scan_primary_hash;
300 
301 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 			if (!exist && (hash2_nulladdr != slot2)) {
303 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 							     sk);
306 			}
307 			if (exist)
308 				goto fail_unlock;
309 			else
310 				goto found;
311 		}
312 scan_primary_hash:
313 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 			goto fail_unlock;
315 	}
316 found:
317 	inet_sk(sk)->inet_num = snum;
318 	udp_sk(sk)->udp_port_hash = snum;
319 	udp_sk(sk)->udp_portaddr_hash ^= snum;
320 	if (sk_unhashed(sk)) {
321 		if (sk->sk_reuseport &&
322 		    udp_reuseport_add_sock(sk, hslot)) {
323 			inet_sk(sk)->inet_num = 0;
324 			udp_sk(sk)->udp_port_hash = 0;
325 			udp_sk(sk)->udp_portaddr_hash ^= snum;
326 			goto fail_unlock;
327 		}
328 
329 		sk_add_node_rcu(sk, &hslot->head);
330 		hslot->count++;
331 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332 
333 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 		spin_lock(&hslot2->lock);
335 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 		    sk->sk_family == AF_INET6)
337 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338 					   &hslot2->head);
339 		else
340 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		hslot2->count++;
343 		spin_unlock(&hslot2->lock);
344 	}
345 	sock_set_flag(sk, SOCK_RCU_FREE);
346 	error = 0;
347 fail_unlock:
348 	spin_unlock_bh(&hslot->lock);
349 fail:
350 	return error;
351 }
352 EXPORT_SYMBOL(udp_lib_get_port);
353 
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
355 {
356 	unsigned int hash2_nulladdr =
357 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 	unsigned int hash2_partial =
359 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360 
361 	/* precompute partial secondary hash */
362 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364 }
365 
366 static int compute_score(struct sock *sk, struct net *net,
367 			 __be32 saddr, __be16 sport,
368 			 __be32 daddr, unsigned short hnum,
369 			 int dif, int sdif)
370 {
371 	int score;
372 	struct inet_sock *inet;
373 	bool dev_match;
374 
375 	if (!net_eq(sock_net(sk), net) ||
376 	    udp_sk(sk)->udp_port_hash != hnum ||
377 	    ipv6_only_sock(sk))
378 		return -1;
379 
380 	if (sk->sk_rcv_saddr != daddr)
381 		return -1;
382 
383 	score = (sk->sk_family == PF_INET) ? 2 : 1;
384 
385 	inet = inet_sk(sk);
386 	if (inet->inet_daddr) {
387 		if (inet->inet_daddr != saddr)
388 			return -1;
389 		score += 4;
390 	}
391 
392 	if (inet->inet_dport) {
393 		if (inet->inet_dport != sport)
394 			return -1;
395 		score += 4;
396 	}
397 
398 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399 					dif, sdif);
400 	if (!dev_match)
401 		return -1;
402 	if (sk->sk_bound_dev_if)
403 		score += 4;
404 
405 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 		score++;
407 	return score;
408 }
409 
410 INDIRECT_CALLABLE_SCOPE
411 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 		const __be32 faddr, const __be16 fport)
413 {
414 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
415 
416 	return __inet_ehashfn(laddr, lport, faddr, fport,
417 			      udp_ehash_secret + net_hash_mix(net));
418 }
419 
420 /* called with rcu_read_lock() */
421 static struct sock *udp4_lib_lookup2(struct net *net,
422 				     __be32 saddr, __be16 sport,
423 				     __be32 daddr, unsigned int hnum,
424 				     int dif, int sdif,
425 				     struct udp_hslot *hslot2,
426 				     struct sk_buff *skb)
427 {
428 	struct sock *sk, *result;
429 	int score, badness;
430 	bool need_rescore;
431 
432 	result = NULL;
433 	badness = 0;
434 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
435 		need_rescore = false;
436 rescore:
437 		score = compute_score(need_rescore ? result : sk, net, saddr,
438 				      sport, daddr, hnum, dif, sdif);
439 		if (score > badness) {
440 			badness = score;
441 
442 			if (need_rescore)
443 				continue;
444 
445 			if (sk->sk_state == TCP_ESTABLISHED) {
446 				result = sk;
447 				continue;
448 			}
449 
450 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
451 						       saddr, sport, daddr, hnum, udp_ehashfn);
452 			if (!result) {
453 				result = sk;
454 				continue;
455 			}
456 
457 			/* Fall back to scoring if group has connections */
458 			if (!reuseport_has_conns(sk))
459 				return result;
460 
461 			/* Reuseport logic returned an error, keep original score. */
462 			if (IS_ERR(result))
463 				continue;
464 
465 			/* compute_score is too long of a function to be
466 			 * inlined, and calling it again here yields
467 			 * measureable overhead for some
468 			 * workloads. Work around it by jumping
469 			 * backwards to rescore 'result'.
470 			 */
471 			need_rescore = true;
472 			goto rescore;
473 		}
474 	}
475 	return result;
476 }
477 
478 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
479  * harder than this. -DaveM
480  */
481 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
482 		__be16 sport, __be32 daddr, __be16 dport, int dif,
483 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
484 {
485 	unsigned short hnum = ntohs(dport);
486 	unsigned int hash2, slot2;
487 	struct udp_hslot *hslot2;
488 	struct sock *result, *sk;
489 
490 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
491 	slot2 = hash2 & udptable->mask;
492 	hslot2 = &udptable->hash2[slot2];
493 
494 	/* Lookup connected or non-wildcard socket */
495 	result = udp4_lib_lookup2(net, saddr, sport,
496 				  daddr, hnum, dif, sdif,
497 				  hslot2, skb);
498 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
499 		goto done;
500 
501 	/* Lookup redirect from BPF */
502 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
503 	    udptable == net->ipv4.udp_table) {
504 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
505 					       saddr, sport, daddr, hnum, dif,
506 					       udp_ehashfn);
507 		if (sk) {
508 			result = sk;
509 			goto done;
510 		}
511 	}
512 
513 	/* Got non-wildcard socket or error on first lookup */
514 	if (result)
515 		goto done;
516 
517 	/* Lookup wildcard sockets */
518 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
519 	slot2 = hash2 & udptable->mask;
520 	hslot2 = &udptable->hash2[slot2];
521 
522 	result = udp4_lib_lookup2(net, saddr, sport,
523 				  htonl(INADDR_ANY), hnum, dif, sdif,
524 				  hslot2, skb);
525 done:
526 	if (IS_ERR(result))
527 		return NULL;
528 	return result;
529 }
530 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
531 
532 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
533 						 __be16 sport, __be16 dport,
534 						 struct udp_table *udptable)
535 {
536 	const struct iphdr *iph = ip_hdr(skb);
537 
538 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
539 				 iph->daddr, dport, inet_iif(skb),
540 				 inet_sdif(skb), udptable, skb);
541 }
542 
543 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
544 				 __be16 sport, __be16 dport)
545 {
546 	const struct iphdr *iph = ip_hdr(skb);
547 	struct net *net = dev_net(skb->dev);
548 	int iif, sdif;
549 
550 	inet_get_iif_sdif(skb, &iif, &sdif);
551 
552 	return __udp4_lib_lookup(net, iph->saddr, sport,
553 				 iph->daddr, dport, iif,
554 				 sdif, net->ipv4.udp_table, NULL);
555 }
556 
557 /* Must be called under rcu_read_lock().
558  * Does increment socket refcount.
559  */
560 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
561 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
562 			     __be32 daddr, __be16 dport, int dif)
563 {
564 	struct sock *sk;
565 
566 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
567 			       dif, 0, net->ipv4.udp_table, NULL);
568 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
569 		sk = NULL;
570 	return sk;
571 }
572 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
573 #endif
574 
575 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
576 				       __be16 loc_port, __be32 loc_addr,
577 				       __be16 rmt_port, __be32 rmt_addr,
578 				       int dif, int sdif, unsigned short hnum)
579 {
580 	const struct inet_sock *inet = inet_sk(sk);
581 
582 	if (!net_eq(sock_net(sk), net) ||
583 	    udp_sk(sk)->udp_port_hash != hnum ||
584 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
585 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
586 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
587 	    ipv6_only_sock(sk) ||
588 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
589 		return false;
590 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
591 		return false;
592 	return true;
593 }
594 
595 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
596 EXPORT_SYMBOL(udp_encap_needed_key);
597 
598 #if IS_ENABLED(CONFIG_IPV6)
599 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
600 EXPORT_SYMBOL(udpv6_encap_needed_key);
601 #endif
602 
603 void udp_encap_enable(void)
604 {
605 	static_branch_inc(&udp_encap_needed_key);
606 }
607 EXPORT_SYMBOL(udp_encap_enable);
608 
609 void udp_encap_disable(void)
610 {
611 	static_branch_dec(&udp_encap_needed_key);
612 }
613 EXPORT_SYMBOL(udp_encap_disable);
614 
615 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
616  * through error handlers in encapsulations looking for a match.
617  */
618 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
619 {
620 	int i;
621 
622 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
623 		int (*handler)(struct sk_buff *skb, u32 info);
624 		const struct ip_tunnel_encap_ops *encap;
625 
626 		encap = rcu_dereference(iptun_encaps[i]);
627 		if (!encap)
628 			continue;
629 		handler = encap->err_handler;
630 		if (handler && !handler(skb, info))
631 			return 0;
632 	}
633 
634 	return -ENOENT;
635 }
636 
637 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
638  * reversing source and destination port: this will match tunnels that force the
639  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
640  * lwtunnels might actually break this assumption by being configured with
641  * different destination ports on endpoints, in this case we won't be able to
642  * trace ICMP messages back to them.
643  *
644  * If this doesn't match any socket, probe tunnels with arbitrary destination
645  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
646  * we've sent packets to won't necessarily match the local destination port.
647  *
648  * Then ask the tunnel implementation to match the error against a valid
649  * association.
650  *
651  * Return an error if we can't find a match, the socket if we need further
652  * processing, zero otherwise.
653  */
654 static struct sock *__udp4_lib_err_encap(struct net *net,
655 					 const struct iphdr *iph,
656 					 struct udphdr *uh,
657 					 struct udp_table *udptable,
658 					 struct sock *sk,
659 					 struct sk_buff *skb, u32 info)
660 {
661 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
662 	int network_offset, transport_offset;
663 	struct udp_sock *up;
664 
665 	network_offset = skb_network_offset(skb);
666 	transport_offset = skb_transport_offset(skb);
667 
668 	/* Network header needs to point to the outer IPv4 header inside ICMP */
669 	skb_reset_network_header(skb);
670 
671 	/* Transport header needs to point to the UDP header */
672 	skb_set_transport_header(skb, iph->ihl << 2);
673 
674 	if (sk) {
675 		up = udp_sk(sk);
676 
677 		lookup = READ_ONCE(up->encap_err_lookup);
678 		if (lookup && lookup(sk, skb))
679 			sk = NULL;
680 
681 		goto out;
682 	}
683 
684 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
685 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
686 			       udptable, NULL);
687 	if (sk) {
688 		up = udp_sk(sk);
689 
690 		lookup = READ_ONCE(up->encap_err_lookup);
691 		if (!lookup || lookup(sk, skb))
692 			sk = NULL;
693 	}
694 
695 out:
696 	if (!sk)
697 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
698 
699 	skb_set_transport_header(skb, transport_offset);
700 	skb_set_network_header(skb, network_offset);
701 
702 	return sk;
703 }
704 
705 /*
706  * This routine is called by the ICMP module when it gets some
707  * sort of error condition.  If err < 0 then the socket should
708  * be closed and the error returned to the user.  If err > 0
709  * it's just the icmp type << 8 | icmp code.
710  * Header points to the ip header of the error packet. We move
711  * on past this. Then (as it used to claim before adjustment)
712  * header points to the first 8 bytes of the udp header.  We need
713  * to find the appropriate port.
714  */
715 
716 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
717 {
718 	struct inet_sock *inet;
719 	const struct iphdr *iph = (const struct iphdr *)skb->data;
720 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
721 	const int type = icmp_hdr(skb)->type;
722 	const int code = icmp_hdr(skb)->code;
723 	bool tunnel = false;
724 	struct sock *sk;
725 	int harderr;
726 	int err;
727 	struct net *net = dev_net(skb->dev);
728 
729 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
730 			       iph->saddr, uh->source, skb->dev->ifindex,
731 			       inet_sdif(skb), udptable, NULL);
732 
733 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
734 		/* No socket for error: try tunnels before discarding */
735 		if (static_branch_unlikely(&udp_encap_needed_key)) {
736 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
737 						  info);
738 			if (!sk)
739 				return 0;
740 		} else
741 			sk = ERR_PTR(-ENOENT);
742 
743 		if (IS_ERR(sk)) {
744 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
745 			return PTR_ERR(sk);
746 		}
747 
748 		tunnel = true;
749 	}
750 
751 	err = 0;
752 	harderr = 0;
753 	inet = inet_sk(sk);
754 
755 	switch (type) {
756 	default:
757 	case ICMP_TIME_EXCEEDED:
758 		err = EHOSTUNREACH;
759 		break;
760 	case ICMP_SOURCE_QUENCH:
761 		goto out;
762 	case ICMP_PARAMETERPROB:
763 		err = EPROTO;
764 		harderr = 1;
765 		break;
766 	case ICMP_DEST_UNREACH:
767 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
768 			ipv4_sk_update_pmtu(skb, sk, info);
769 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
770 				err = EMSGSIZE;
771 				harderr = 1;
772 				break;
773 			}
774 			goto out;
775 		}
776 		err = EHOSTUNREACH;
777 		if (code <= NR_ICMP_UNREACH) {
778 			harderr = icmp_err_convert[code].fatal;
779 			err = icmp_err_convert[code].errno;
780 		}
781 		break;
782 	case ICMP_REDIRECT:
783 		ipv4_sk_redirect(skb, sk);
784 		goto out;
785 	}
786 
787 	/*
788 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
789 	 *	4.1.3.3.
790 	 */
791 	if (tunnel) {
792 		/* ...not for tunnels though: we don't have a sending socket */
793 		if (udp_sk(sk)->encap_err_rcv)
794 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
795 						  (u8 *)(uh+1));
796 		goto out;
797 	}
798 	if (!inet_test_bit(RECVERR, sk)) {
799 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
800 			goto out;
801 	} else
802 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
803 
804 	sk->sk_err = err;
805 	sk_error_report(sk);
806 out:
807 	return 0;
808 }
809 
810 int udp_err(struct sk_buff *skb, u32 info)
811 {
812 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
813 }
814 
815 /*
816  * Throw away all pending data and cancel the corking. Socket is locked.
817  */
818 void udp_flush_pending_frames(struct sock *sk)
819 {
820 	struct udp_sock *up = udp_sk(sk);
821 
822 	if (up->pending) {
823 		up->len = 0;
824 		WRITE_ONCE(up->pending, 0);
825 		ip_flush_pending_frames(sk);
826 	}
827 }
828 EXPORT_SYMBOL(udp_flush_pending_frames);
829 
830 /**
831  * 	udp4_hwcsum  -  handle outgoing HW checksumming
832  * 	@skb: 	sk_buff containing the filled-in UDP header
833  * 	        (checksum field must be zeroed out)
834  *	@src:	source IP address
835  *	@dst:	destination IP address
836  */
837 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
838 {
839 	struct udphdr *uh = udp_hdr(skb);
840 	int offset = skb_transport_offset(skb);
841 	int len = skb->len - offset;
842 	int hlen = len;
843 	__wsum csum = 0;
844 
845 	if (!skb_has_frag_list(skb)) {
846 		/*
847 		 * Only one fragment on the socket.
848 		 */
849 		skb->csum_start = skb_transport_header(skb) - skb->head;
850 		skb->csum_offset = offsetof(struct udphdr, check);
851 		uh->check = ~csum_tcpudp_magic(src, dst, len,
852 					       IPPROTO_UDP, 0);
853 	} else {
854 		struct sk_buff *frags;
855 
856 		/*
857 		 * HW-checksum won't work as there are two or more
858 		 * fragments on the socket so that all csums of sk_buffs
859 		 * should be together
860 		 */
861 		skb_walk_frags(skb, frags) {
862 			csum = csum_add(csum, frags->csum);
863 			hlen -= frags->len;
864 		}
865 
866 		csum = skb_checksum(skb, offset, hlen, csum);
867 		skb->ip_summed = CHECKSUM_NONE;
868 
869 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
870 		if (uh->check == 0)
871 			uh->check = CSUM_MANGLED_0;
872 	}
873 }
874 EXPORT_SYMBOL_GPL(udp4_hwcsum);
875 
876 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
877  * for the simple case like when setting the checksum for a UDP tunnel.
878  */
879 void udp_set_csum(bool nocheck, struct sk_buff *skb,
880 		  __be32 saddr, __be32 daddr, int len)
881 {
882 	struct udphdr *uh = udp_hdr(skb);
883 
884 	if (nocheck) {
885 		uh->check = 0;
886 	} else if (skb_is_gso(skb)) {
887 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
888 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
889 		uh->check = 0;
890 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
891 		if (uh->check == 0)
892 			uh->check = CSUM_MANGLED_0;
893 	} else {
894 		skb->ip_summed = CHECKSUM_PARTIAL;
895 		skb->csum_start = skb_transport_header(skb) - skb->head;
896 		skb->csum_offset = offsetof(struct udphdr, check);
897 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
898 	}
899 }
900 EXPORT_SYMBOL(udp_set_csum);
901 
902 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
903 			struct inet_cork *cork)
904 {
905 	struct sock *sk = skb->sk;
906 	struct inet_sock *inet = inet_sk(sk);
907 	struct udphdr *uh;
908 	int err;
909 	int is_udplite = IS_UDPLITE(sk);
910 	int offset = skb_transport_offset(skb);
911 	int len = skb->len - offset;
912 	int datalen = len - sizeof(*uh);
913 	__wsum csum = 0;
914 
915 	/*
916 	 * Create a UDP header
917 	 */
918 	uh = udp_hdr(skb);
919 	uh->source = inet->inet_sport;
920 	uh->dest = fl4->fl4_dport;
921 	uh->len = htons(len);
922 	uh->check = 0;
923 
924 	if (cork->gso_size) {
925 		const int hlen = skb_network_header_len(skb) +
926 				 sizeof(struct udphdr);
927 
928 		if (hlen + cork->gso_size > cork->fragsize) {
929 			kfree_skb(skb);
930 			return -EINVAL;
931 		}
932 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
933 			kfree_skb(skb);
934 			return -EINVAL;
935 		}
936 		if (sk->sk_no_check_tx) {
937 			kfree_skb(skb);
938 			return -EINVAL;
939 		}
940 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
941 		    dst_xfrm(skb_dst(skb))) {
942 			kfree_skb(skb);
943 			return -EIO;
944 		}
945 
946 		if (datalen > cork->gso_size) {
947 			skb_shinfo(skb)->gso_size = cork->gso_size;
948 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
949 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
950 								 cork->gso_size);
951 		}
952 		goto csum_partial;
953 	}
954 
955 	if (is_udplite)  				 /*     UDP-Lite      */
956 		csum = udplite_csum(skb);
957 
958 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
959 
960 		skb->ip_summed = CHECKSUM_NONE;
961 		goto send;
962 
963 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
964 csum_partial:
965 
966 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
967 		goto send;
968 
969 	} else
970 		csum = udp_csum(skb);
971 
972 	/* add protocol-dependent pseudo-header */
973 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
974 				      sk->sk_protocol, csum);
975 	if (uh->check == 0)
976 		uh->check = CSUM_MANGLED_0;
977 
978 send:
979 	err = ip_send_skb(sock_net(sk), skb);
980 	if (err) {
981 		if (err == -ENOBUFS &&
982 		    !inet_test_bit(RECVERR, sk)) {
983 			UDP_INC_STATS(sock_net(sk),
984 				      UDP_MIB_SNDBUFERRORS, is_udplite);
985 			err = 0;
986 		}
987 	} else
988 		UDP_INC_STATS(sock_net(sk),
989 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
990 	return err;
991 }
992 
993 /*
994  * Push out all pending data as one UDP datagram. Socket is locked.
995  */
996 int udp_push_pending_frames(struct sock *sk)
997 {
998 	struct udp_sock  *up = udp_sk(sk);
999 	struct inet_sock *inet = inet_sk(sk);
1000 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1001 	struct sk_buff *skb;
1002 	int err = 0;
1003 
1004 	skb = ip_finish_skb(sk, fl4);
1005 	if (!skb)
1006 		goto out;
1007 
1008 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1009 
1010 out:
1011 	up->len = 0;
1012 	WRITE_ONCE(up->pending, 0);
1013 	return err;
1014 }
1015 EXPORT_SYMBOL(udp_push_pending_frames);
1016 
1017 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1018 {
1019 	switch (cmsg->cmsg_type) {
1020 	case UDP_SEGMENT:
1021 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1022 			return -EINVAL;
1023 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1024 		return 0;
1025 	default:
1026 		return -EINVAL;
1027 	}
1028 }
1029 
1030 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1031 {
1032 	struct cmsghdr *cmsg;
1033 	bool need_ip = false;
1034 	int err;
1035 
1036 	for_each_cmsghdr(cmsg, msg) {
1037 		if (!CMSG_OK(msg, cmsg))
1038 			return -EINVAL;
1039 
1040 		if (cmsg->cmsg_level != SOL_UDP) {
1041 			need_ip = true;
1042 			continue;
1043 		}
1044 
1045 		err = __udp_cmsg_send(cmsg, gso_size);
1046 		if (err)
1047 			return err;
1048 	}
1049 
1050 	return need_ip;
1051 }
1052 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1053 
1054 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1055 {
1056 	struct inet_sock *inet = inet_sk(sk);
1057 	struct udp_sock *up = udp_sk(sk);
1058 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1059 	struct flowi4 fl4_stack;
1060 	struct flowi4 *fl4;
1061 	int ulen = len;
1062 	struct ipcm_cookie ipc;
1063 	struct rtable *rt = NULL;
1064 	int free = 0;
1065 	int connected = 0;
1066 	__be32 daddr, faddr, saddr;
1067 	u8 tos, scope;
1068 	__be16 dport;
1069 	int err, is_udplite = IS_UDPLITE(sk);
1070 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1071 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1072 	struct sk_buff *skb;
1073 	struct ip_options_data opt_copy;
1074 	int uc_index;
1075 
1076 	if (len > 0xFFFF)
1077 		return -EMSGSIZE;
1078 
1079 	/*
1080 	 *	Check the flags.
1081 	 */
1082 
1083 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1084 		return -EOPNOTSUPP;
1085 
1086 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1087 
1088 	fl4 = &inet->cork.fl.u.ip4;
1089 	if (READ_ONCE(up->pending)) {
1090 		/*
1091 		 * There are pending frames.
1092 		 * The socket lock must be held while it's corked.
1093 		 */
1094 		lock_sock(sk);
1095 		if (likely(up->pending)) {
1096 			if (unlikely(up->pending != AF_INET)) {
1097 				release_sock(sk);
1098 				return -EINVAL;
1099 			}
1100 			goto do_append_data;
1101 		}
1102 		release_sock(sk);
1103 	}
1104 	ulen += sizeof(struct udphdr);
1105 
1106 	/*
1107 	 *	Get and verify the address.
1108 	 */
1109 	if (usin) {
1110 		if (msg->msg_namelen < sizeof(*usin))
1111 			return -EINVAL;
1112 		if (usin->sin_family != AF_INET) {
1113 			if (usin->sin_family != AF_UNSPEC)
1114 				return -EAFNOSUPPORT;
1115 		}
1116 
1117 		daddr = usin->sin_addr.s_addr;
1118 		dport = usin->sin_port;
1119 		if (dport == 0)
1120 			return -EINVAL;
1121 	} else {
1122 		if (sk->sk_state != TCP_ESTABLISHED)
1123 			return -EDESTADDRREQ;
1124 		daddr = inet->inet_daddr;
1125 		dport = inet->inet_dport;
1126 		/* Open fast path for connected socket.
1127 		   Route will not be used, if at least one option is set.
1128 		 */
1129 		connected = 1;
1130 	}
1131 
1132 	ipcm_init_sk(&ipc, inet);
1133 	ipc.gso_size = READ_ONCE(up->gso_size);
1134 
1135 	if (msg->msg_controllen) {
1136 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1137 		if (err > 0)
1138 			err = ip_cmsg_send(sk, msg, &ipc,
1139 					   sk->sk_family == AF_INET6);
1140 		if (unlikely(err < 0)) {
1141 			kfree(ipc.opt);
1142 			return err;
1143 		}
1144 		if (ipc.opt)
1145 			free = 1;
1146 		connected = 0;
1147 	}
1148 	if (!ipc.opt) {
1149 		struct ip_options_rcu *inet_opt;
1150 
1151 		rcu_read_lock();
1152 		inet_opt = rcu_dereference(inet->inet_opt);
1153 		if (inet_opt) {
1154 			memcpy(&opt_copy, inet_opt,
1155 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1156 			ipc.opt = &opt_copy.opt;
1157 		}
1158 		rcu_read_unlock();
1159 	}
1160 
1161 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1162 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1163 					    (struct sockaddr *)usin,
1164 					    &msg->msg_namelen,
1165 					    &ipc.addr);
1166 		if (err)
1167 			goto out_free;
1168 		if (usin) {
1169 			if (usin->sin_port == 0) {
1170 				/* BPF program set invalid port. Reject it. */
1171 				err = -EINVAL;
1172 				goto out_free;
1173 			}
1174 			daddr = usin->sin_addr.s_addr;
1175 			dport = usin->sin_port;
1176 		}
1177 	}
1178 
1179 	saddr = ipc.addr;
1180 	ipc.addr = faddr = daddr;
1181 
1182 	if (ipc.opt && ipc.opt->opt.srr) {
1183 		if (!daddr) {
1184 			err = -EINVAL;
1185 			goto out_free;
1186 		}
1187 		faddr = ipc.opt->opt.faddr;
1188 		connected = 0;
1189 	}
1190 	tos = get_rttos(&ipc, inet);
1191 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1192 	if (scope == RT_SCOPE_LINK)
1193 		connected = 0;
1194 
1195 	uc_index = READ_ONCE(inet->uc_index);
1196 	if (ipv4_is_multicast(daddr)) {
1197 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1198 			ipc.oif = READ_ONCE(inet->mc_index);
1199 		if (!saddr)
1200 			saddr = READ_ONCE(inet->mc_addr);
1201 		connected = 0;
1202 	} else if (!ipc.oif) {
1203 		ipc.oif = uc_index;
1204 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1205 		/* oif is set, packet is to local broadcast and
1206 		 * uc_index is set. oif is most likely set
1207 		 * by sk_bound_dev_if. If uc_index != oif check if the
1208 		 * oif is an L3 master and uc_index is an L3 slave.
1209 		 * If so, we want to allow the send using the uc_index.
1210 		 */
1211 		if (ipc.oif != uc_index &&
1212 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1213 							      uc_index)) {
1214 			ipc.oif = uc_index;
1215 		}
1216 	}
1217 
1218 	if (connected)
1219 		rt = (struct rtable *)sk_dst_check(sk, 0);
1220 
1221 	if (!rt) {
1222 		struct net *net = sock_net(sk);
1223 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1224 
1225 		fl4 = &fl4_stack;
1226 
1227 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1228 				   sk->sk_protocol, flow_flags, faddr, saddr,
1229 				   dport, inet->inet_sport, sk->sk_uid);
1230 
1231 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1232 		rt = ip_route_output_flow(net, fl4, sk);
1233 		if (IS_ERR(rt)) {
1234 			err = PTR_ERR(rt);
1235 			rt = NULL;
1236 			if (err == -ENETUNREACH)
1237 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1238 			goto out;
1239 		}
1240 
1241 		err = -EACCES;
1242 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1243 		    !sock_flag(sk, SOCK_BROADCAST))
1244 			goto out;
1245 		if (connected)
1246 			sk_dst_set(sk, dst_clone(&rt->dst));
1247 	}
1248 
1249 	if (msg->msg_flags&MSG_CONFIRM)
1250 		goto do_confirm;
1251 back_from_confirm:
1252 
1253 	saddr = fl4->saddr;
1254 	if (!ipc.addr)
1255 		daddr = ipc.addr = fl4->daddr;
1256 
1257 	/* Lockless fast path for the non-corking case. */
1258 	if (!corkreq) {
1259 		struct inet_cork cork;
1260 
1261 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1262 				  sizeof(struct udphdr), &ipc, &rt,
1263 				  &cork, msg->msg_flags);
1264 		err = PTR_ERR(skb);
1265 		if (!IS_ERR_OR_NULL(skb))
1266 			err = udp_send_skb(skb, fl4, &cork);
1267 		goto out;
1268 	}
1269 
1270 	lock_sock(sk);
1271 	if (unlikely(up->pending)) {
1272 		/* The socket is already corked while preparing it. */
1273 		/* ... which is an evident application bug. --ANK */
1274 		release_sock(sk);
1275 
1276 		net_dbg_ratelimited("socket already corked\n");
1277 		err = -EINVAL;
1278 		goto out;
1279 	}
1280 	/*
1281 	 *	Now cork the socket to pend data.
1282 	 */
1283 	fl4 = &inet->cork.fl.u.ip4;
1284 	fl4->daddr = daddr;
1285 	fl4->saddr = saddr;
1286 	fl4->fl4_dport = dport;
1287 	fl4->fl4_sport = inet->inet_sport;
1288 	WRITE_ONCE(up->pending, AF_INET);
1289 
1290 do_append_data:
1291 	up->len += ulen;
1292 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1293 			     sizeof(struct udphdr), &ipc, &rt,
1294 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1295 	if (err)
1296 		udp_flush_pending_frames(sk);
1297 	else if (!corkreq)
1298 		err = udp_push_pending_frames(sk);
1299 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1300 		WRITE_ONCE(up->pending, 0);
1301 	release_sock(sk);
1302 
1303 out:
1304 	ip_rt_put(rt);
1305 out_free:
1306 	if (free)
1307 		kfree(ipc.opt);
1308 	if (!err)
1309 		return len;
1310 	/*
1311 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1312 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1313 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1314 	 * things).  We could add another new stat but at least for now that
1315 	 * seems like overkill.
1316 	 */
1317 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1318 		UDP_INC_STATS(sock_net(sk),
1319 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1320 	}
1321 	return err;
1322 
1323 do_confirm:
1324 	if (msg->msg_flags & MSG_PROBE)
1325 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1326 	if (!(msg->msg_flags&MSG_PROBE) || len)
1327 		goto back_from_confirm;
1328 	err = 0;
1329 	goto out;
1330 }
1331 EXPORT_SYMBOL(udp_sendmsg);
1332 
1333 void udp_splice_eof(struct socket *sock)
1334 {
1335 	struct sock *sk = sock->sk;
1336 	struct udp_sock *up = udp_sk(sk);
1337 
1338 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1339 		return;
1340 
1341 	lock_sock(sk);
1342 	if (up->pending && !udp_test_bit(CORK, sk))
1343 		udp_push_pending_frames(sk);
1344 	release_sock(sk);
1345 }
1346 EXPORT_SYMBOL_GPL(udp_splice_eof);
1347 
1348 #define UDP_SKB_IS_STATELESS 0x80000000
1349 
1350 /* all head states (dst, sk, nf conntrack) except skb extensions are
1351  * cleared by udp_rcv().
1352  *
1353  * We need to preserve secpath, if present, to eventually process
1354  * IP_CMSG_PASSSEC at recvmsg() time.
1355  *
1356  * Other extensions can be cleared.
1357  */
1358 static bool udp_try_make_stateless(struct sk_buff *skb)
1359 {
1360 	if (!skb_has_extensions(skb))
1361 		return true;
1362 
1363 	if (!secpath_exists(skb)) {
1364 		skb_ext_reset(skb);
1365 		return true;
1366 	}
1367 
1368 	return false;
1369 }
1370 
1371 static void udp_set_dev_scratch(struct sk_buff *skb)
1372 {
1373 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1374 
1375 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1376 	scratch->_tsize_state = skb->truesize;
1377 #if BITS_PER_LONG == 64
1378 	scratch->len = skb->len;
1379 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1380 	scratch->is_linear = !skb_is_nonlinear(skb);
1381 #endif
1382 	if (udp_try_make_stateless(skb))
1383 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1384 }
1385 
1386 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1387 {
1388 	/* We come here after udp_lib_checksum_complete() returned 0.
1389 	 * This means that __skb_checksum_complete() might have
1390 	 * set skb->csum_valid to 1.
1391 	 * On 64bit platforms, we can set csum_unnecessary
1392 	 * to true, but only if the skb is not shared.
1393 	 */
1394 #if BITS_PER_LONG == 64
1395 	if (!skb_shared(skb))
1396 		udp_skb_scratch(skb)->csum_unnecessary = true;
1397 #endif
1398 }
1399 
1400 static int udp_skb_truesize(struct sk_buff *skb)
1401 {
1402 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1403 }
1404 
1405 static bool udp_skb_has_head_state(struct sk_buff *skb)
1406 {
1407 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1408 }
1409 
1410 /* fully reclaim rmem/fwd memory allocated for skb */
1411 static void udp_rmem_release(struct sock *sk, int size, int partial,
1412 			     bool rx_queue_lock_held)
1413 {
1414 	struct udp_sock *up = udp_sk(sk);
1415 	struct sk_buff_head *sk_queue;
1416 	int amt;
1417 
1418 	if (likely(partial)) {
1419 		up->forward_deficit += size;
1420 		size = up->forward_deficit;
1421 		if (size < READ_ONCE(up->forward_threshold) &&
1422 		    !skb_queue_empty(&up->reader_queue))
1423 			return;
1424 	} else {
1425 		size += up->forward_deficit;
1426 	}
1427 	up->forward_deficit = 0;
1428 
1429 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1430 	 * if the called don't held it already
1431 	 */
1432 	sk_queue = &sk->sk_receive_queue;
1433 	if (!rx_queue_lock_held)
1434 		spin_lock(&sk_queue->lock);
1435 
1436 
1437 	sk_forward_alloc_add(sk, size);
1438 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1439 	sk_forward_alloc_add(sk, -amt);
1440 
1441 	if (amt)
1442 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1443 
1444 	atomic_sub(size, &sk->sk_rmem_alloc);
1445 
1446 	/* this can save us from acquiring the rx queue lock on next receive */
1447 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1448 
1449 	if (!rx_queue_lock_held)
1450 		spin_unlock(&sk_queue->lock);
1451 }
1452 
1453 /* Note: called with reader_queue.lock held.
1454  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1455  * This avoids a cache line miss while receive_queue lock is held.
1456  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1457  */
1458 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1459 {
1460 	prefetch(&skb->data);
1461 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1462 }
1463 EXPORT_SYMBOL(udp_skb_destructor);
1464 
1465 /* as above, but the caller held the rx queue lock, too */
1466 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1467 {
1468 	prefetch(&skb->data);
1469 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1470 }
1471 
1472 /* Idea of busylocks is to let producers grab an extra spinlock
1473  * to relieve pressure on the receive_queue spinlock shared by consumer.
1474  * Under flood, this means that only one producer can be in line
1475  * trying to acquire the receive_queue spinlock.
1476  * These busylock can be allocated on a per cpu manner, instead of a
1477  * per socket one (that would consume a cache line per socket)
1478  */
1479 static int udp_busylocks_log __read_mostly;
1480 static spinlock_t *udp_busylocks __read_mostly;
1481 
1482 static spinlock_t *busylock_acquire(void *ptr)
1483 {
1484 	spinlock_t *busy;
1485 
1486 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1487 	spin_lock(busy);
1488 	return busy;
1489 }
1490 
1491 static void busylock_release(spinlock_t *busy)
1492 {
1493 	if (busy)
1494 		spin_unlock(busy);
1495 }
1496 
1497 static int udp_rmem_schedule(struct sock *sk, int size)
1498 {
1499 	int delta;
1500 
1501 	delta = size - sk->sk_forward_alloc;
1502 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1503 		return -ENOBUFS;
1504 
1505 	return 0;
1506 }
1507 
1508 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1509 {
1510 	struct sk_buff_head *list = &sk->sk_receive_queue;
1511 	int rmem, err = -ENOMEM;
1512 	spinlock_t *busy = NULL;
1513 	bool becomes_readable;
1514 	int size, rcvbuf;
1515 
1516 	/* Immediately drop when the receive queue is full.
1517 	 * Always allow at least one packet.
1518 	 */
1519 	rmem = atomic_read(&sk->sk_rmem_alloc);
1520 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1521 	if (rmem > rcvbuf)
1522 		goto drop;
1523 
1524 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1525 	 * having linear skbs :
1526 	 * - Reduce memory overhead and thus increase receive queue capacity
1527 	 * - Less cache line misses at copyout() time
1528 	 * - Less work at consume_skb() (less alien page frag freeing)
1529 	 */
1530 	if (rmem > (rcvbuf >> 1)) {
1531 		skb_condense(skb);
1532 
1533 		busy = busylock_acquire(sk);
1534 	}
1535 	size = skb->truesize;
1536 	udp_set_dev_scratch(skb);
1537 
1538 	atomic_add(size, &sk->sk_rmem_alloc);
1539 
1540 	spin_lock(&list->lock);
1541 	err = udp_rmem_schedule(sk, size);
1542 	if (err) {
1543 		spin_unlock(&list->lock);
1544 		goto uncharge_drop;
1545 	}
1546 
1547 	sk_forward_alloc_add(sk, -size);
1548 
1549 	/* no need to setup a destructor, we will explicitly release the
1550 	 * forward allocated memory on dequeue
1551 	 */
1552 	sock_skb_set_dropcount(sk, skb);
1553 
1554 	becomes_readable = skb_queue_empty(list);
1555 	__skb_queue_tail(list, skb);
1556 	spin_unlock(&list->lock);
1557 
1558 	if (!sock_flag(sk, SOCK_DEAD)) {
1559 		if (becomes_readable ||
1560 		    sk->sk_data_ready != sock_def_readable ||
1561 		    READ_ONCE(sk->sk_peek_off) >= 0)
1562 			INDIRECT_CALL_1(sk->sk_data_ready,
1563 					sock_def_readable, sk);
1564 		else
1565 			sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
1566 	}
1567 	busylock_release(busy);
1568 	return 0;
1569 
1570 uncharge_drop:
1571 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1572 
1573 drop:
1574 	atomic_inc(&sk->sk_drops);
1575 	busylock_release(busy);
1576 	return err;
1577 }
1578 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1579 
1580 void udp_destruct_common(struct sock *sk)
1581 {
1582 	/* reclaim completely the forward allocated memory */
1583 	struct udp_sock *up = udp_sk(sk);
1584 	unsigned int total = 0;
1585 	struct sk_buff *skb;
1586 
1587 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1588 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1589 		total += skb->truesize;
1590 		kfree_skb(skb);
1591 	}
1592 	udp_rmem_release(sk, total, 0, true);
1593 }
1594 EXPORT_SYMBOL_GPL(udp_destruct_common);
1595 
1596 static void udp_destruct_sock(struct sock *sk)
1597 {
1598 	udp_destruct_common(sk);
1599 	inet_sock_destruct(sk);
1600 }
1601 
1602 int udp_init_sock(struct sock *sk)
1603 {
1604 	udp_lib_init_sock(sk);
1605 	sk->sk_destruct = udp_destruct_sock;
1606 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1607 	return 0;
1608 }
1609 
1610 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1611 {
1612 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1613 		sk_peek_offset_bwd(sk, len);
1614 
1615 	if (!skb_unref(skb))
1616 		return;
1617 
1618 	/* In the more common cases we cleared the head states previously,
1619 	 * see __udp_queue_rcv_skb().
1620 	 */
1621 	if (unlikely(udp_skb_has_head_state(skb)))
1622 		skb_release_head_state(skb);
1623 	__consume_stateless_skb(skb);
1624 }
1625 EXPORT_SYMBOL_GPL(skb_consume_udp);
1626 
1627 static struct sk_buff *__first_packet_length(struct sock *sk,
1628 					     struct sk_buff_head *rcvq,
1629 					     int *total)
1630 {
1631 	struct sk_buff *skb;
1632 
1633 	while ((skb = skb_peek(rcvq)) != NULL) {
1634 		if (udp_lib_checksum_complete(skb)) {
1635 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1636 					IS_UDPLITE(sk));
1637 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1638 					IS_UDPLITE(sk));
1639 			atomic_inc(&sk->sk_drops);
1640 			__skb_unlink(skb, rcvq);
1641 			*total += skb->truesize;
1642 			kfree_skb(skb);
1643 		} else {
1644 			udp_skb_csum_unnecessary_set(skb);
1645 			break;
1646 		}
1647 	}
1648 	return skb;
1649 }
1650 
1651 /**
1652  *	first_packet_length	- return length of first packet in receive queue
1653  *	@sk: socket
1654  *
1655  *	Drops all bad checksum frames, until a valid one is found.
1656  *	Returns the length of found skb, or -1 if none is found.
1657  */
1658 static int first_packet_length(struct sock *sk)
1659 {
1660 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1661 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1662 	struct sk_buff *skb;
1663 	int total = 0;
1664 	int res;
1665 
1666 	spin_lock_bh(&rcvq->lock);
1667 	skb = __first_packet_length(sk, rcvq, &total);
1668 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1669 		spin_lock(&sk_queue->lock);
1670 		skb_queue_splice_tail_init(sk_queue, rcvq);
1671 		spin_unlock(&sk_queue->lock);
1672 
1673 		skb = __first_packet_length(sk, rcvq, &total);
1674 	}
1675 	res = skb ? skb->len : -1;
1676 	if (total)
1677 		udp_rmem_release(sk, total, 1, false);
1678 	spin_unlock_bh(&rcvq->lock);
1679 	return res;
1680 }
1681 
1682 /*
1683  *	IOCTL requests applicable to the UDP protocol
1684  */
1685 
1686 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1687 {
1688 	switch (cmd) {
1689 	case SIOCOUTQ:
1690 	{
1691 		*karg = sk_wmem_alloc_get(sk);
1692 		return 0;
1693 	}
1694 
1695 	case SIOCINQ:
1696 	{
1697 		*karg = max_t(int, 0, first_packet_length(sk));
1698 		return 0;
1699 	}
1700 
1701 	default:
1702 		return -ENOIOCTLCMD;
1703 	}
1704 
1705 	return 0;
1706 }
1707 EXPORT_SYMBOL(udp_ioctl);
1708 
1709 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1710 			       int *off, int *err)
1711 {
1712 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1713 	struct sk_buff_head *queue;
1714 	struct sk_buff *last;
1715 	long timeo;
1716 	int error;
1717 
1718 	queue = &udp_sk(sk)->reader_queue;
1719 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1720 	do {
1721 		struct sk_buff *skb;
1722 
1723 		error = sock_error(sk);
1724 		if (error)
1725 			break;
1726 
1727 		error = -EAGAIN;
1728 		do {
1729 			spin_lock_bh(&queue->lock);
1730 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1731 							err, &last);
1732 			if (skb) {
1733 				if (!(flags & MSG_PEEK))
1734 					udp_skb_destructor(sk, skb);
1735 				spin_unlock_bh(&queue->lock);
1736 				return skb;
1737 			}
1738 
1739 			if (skb_queue_empty_lockless(sk_queue)) {
1740 				spin_unlock_bh(&queue->lock);
1741 				goto busy_check;
1742 			}
1743 
1744 			/* refill the reader queue and walk it again
1745 			 * keep both queues locked to avoid re-acquiring
1746 			 * the sk_receive_queue lock if fwd memory scheduling
1747 			 * is needed.
1748 			 */
1749 			spin_lock(&sk_queue->lock);
1750 			skb_queue_splice_tail_init(sk_queue, queue);
1751 
1752 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1753 							err, &last);
1754 			if (skb && !(flags & MSG_PEEK))
1755 				udp_skb_dtor_locked(sk, skb);
1756 			spin_unlock(&sk_queue->lock);
1757 			spin_unlock_bh(&queue->lock);
1758 			if (skb)
1759 				return skb;
1760 
1761 busy_check:
1762 			if (!sk_can_busy_loop(sk))
1763 				break;
1764 
1765 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1766 		} while (!skb_queue_empty_lockless(sk_queue));
1767 
1768 		/* sk_queue is empty, reader_queue may contain peeked packets */
1769 	} while (timeo &&
1770 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1771 					      &error, &timeo,
1772 					      (struct sk_buff *)sk_queue));
1773 
1774 	*err = error;
1775 	return NULL;
1776 }
1777 EXPORT_SYMBOL(__skb_recv_udp);
1778 
1779 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1780 {
1781 	struct sk_buff *skb;
1782 	int err;
1783 
1784 try_again:
1785 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1786 	if (!skb)
1787 		return err;
1788 
1789 	if (udp_lib_checksum_complete(skb)) {
1790 		int is_udplite = IS_UDPLITE(sk);
1791 		struct net *net = sock_net(sk);
1792 
1793 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1794 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1795 		atomic_inc(&sk->sk_drops);
1796 		kfree_skb(skb);
1797 		goto try_again;
1798 	}
1799 
1800 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1801 	return recv_actor(sk, skb);
1802 }
1803 EXPORT_SYMBOL(udp_read_skb);
1804 
1805 /*
1806  * 	This should be easy, if there is something there we
1807  * 	return it, otherwise we block.
1808  */
1809 
1810 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1811 		int *addr_len)
1812 {
1813 	struct inet_sock *inet = inet_sk(sk);
1814 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1815 	struct sk_buff *skb;
1816 	unsigned int ulen, copied;
1817 	int off, err, peeking = flags & MSG_PEEK;
1818 	int is_udplite = IS_UDPLITE(sk);
1819 	bool checksum_valid = false;
1820 
1821 	if (flags & MSG_ERRQUEUE)
1822 		return ip_recv_error(sk, msg, len, addr_len);
1823 
1824 try_again:
1825 	off = sk_peek_offset(sk, flags);
1826 	skb = __skb_recv_udp(sk, flags, &off, &err);
1827 	if (!skb)
1828 		return err;
1829 
1830 	ulen = udp_skb_len(skb);
1831 	copied = len;
1832 	if (copied > ulen - off)
1833 		copied = ulen - off;
1834 	else if (copied < ulen)
1835 		msg->msg_flags |= MSG_TRUNC;
1836 
1837 	/*
1838 	 * If checksum is needed at all, try to do it while copying the
1839 	 * data.  If the data is truncated, or if we only want a partial
1840 	 * coverage checksum (UDP-Lite), do it before the copy.
1841 	 */
1842 
1843 	if (copied < ulen || peeking ||
1844 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1845 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1846 				!__udp_lib_checksum_complete(skb);
1847 		if (!checksum_valid)
1848 			goto csum_copy_err;
1849 	}
1850 
1851 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1852 		if (udp_skb_is_linear(skb))
1853 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1854 		else
1855 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1856 	} else {
1857 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1858 
1859 		if (err == -EINVAL)
1860 			goto csum_copy_err;
1861 	}
1862 
1863 	if (unlikely(err)) {
1864 		if (!peeking) {
1865 			atomic_inc(&sk->sk_drops);
1866 			UDP_INC_STATS(sock_net(sk),
1867 				      UDP_MIB_INERRORS, is_udplite);
1868 		}
1869 		kfree_skb(skb);
1870 		return err;
1871 	}
1872 
1873 	if (!peeking)
1874 		UDP_INC_STATS(sock_net(sk),
1875 			      UDP_MIB_INDATAGRAMS, is_udplite);
1876 
1877 	sock_recv_cmsgs(msg, sk, skb);
1878 
1879 	/* Copy the address. */
1880 	if (sin) {
1881 		sin->sin_family = AF_INET;
1882 		sin->sin_port = udp_hdr(skb)->source;
1883 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1884 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1885 		*addr_len = sizeof(*sin);
1886 
1887 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1888 						      (struct sockaddr *)sin,
1889 						      addr_len);
1890 	}
1891 
1892 	if (udp_test_bit(GRO_ENABLED, sk))
1893 		udp_cmsg_recv(msg, sk, skb);
1894 
1895 	if (inet_cmsg_flags(inet))
1896 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1897 
1898 	err = copied;
1899 	if (flags & MSG_TRUNC)
1900 		err = ulen;
1901 
1902 	skb_consume_udp(sk, skb, peeking ? -err : err);
1903 	return err;
1904 
1905 csum_copy_err:
1906 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1907 				 udp_skb_destructor)) {
1908 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1909 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1910 	}
1911 	kfree_skb(skb);
1912 
1913 	/* starting over for a new packet, but check if we need to yield */
1914 	cond_resched();
1915 	msg->msg_flags &= ~MSG_TRUNC;
1916 	goto try_again;
1917 }
1918 
1919 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1920 {
1921 	/* This check is replicated from __ip4_datagram_connect() and
1922 	 * intended to prevent BPF program called below from accessing bytes
1923 	 * that are out of the bound specified by user in addr_len.
1924 	 */
1925 	if (addr_len < sizeof(struct sockaddr_in))
1926 		return -EINVAL;
1927 
1928 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1929 }
1930 EXPORT_SYMBOL(udp_pre_connect);
1931 
1932 int __udp_disconnect(struct sock *sk, int flags)
1933 {
1934 	struct inet_sock *inet = inet_sk(sk);
1935 	/*
1936 	 *	1003.1g - break association.
1937 	 */
1938 
1939 	sk->sk_state = TCP_CLOSE;
1940 	inet->inet_daddr = 0;
1941 	inet->inet_dport = 0;
1942 	sock_rps_reset_rxhash(sk);
1943 	sk->sk_bound_dev_if = 0;
1944 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1945 		inet_reset_saddr(sk);
1946 		if (sk->sk_prot->rehash &&
1947 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1948 			sk->sk_prot->rehash(sk);
1949 	}
1950 
1951 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1952 		sk->sk_prot->unhash(sk);
1953 		inet->inet_sport = 0;
1954 	}
1955 	sk_dst_reset(sk);
1956 	return 0;
1957 }
1958 EXPORT_SYMBOL(__udp_disconnect);
1959 
1960 int udp_disconnect(struct sock *sk, int flags)
1961 {
1962 	lock_sock(sk);
1963 	__udp_disconnect(sk, flags);
1964 	release_sock(sk);
1965 	return 0;
1966 }
1967 EXPORT_SYMBOL(udp_disconnect);
1968 
1969 void udp_lib_unhash(struct sock *sk)
1970 {
1971 	if (sk_hashed(sk)) {
1972 		struct udp_table *udptable = udp_get_table_prot(sk);
1973 		struct udp_hslot *hslot, *hslot2;
1974 
1975 		hslot  = udp_hashslot(udptable, sock_net(sk),
1976 				      udp_sk(sk)->udp_port_hash);
1977 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1978 
1979 		spin_lock_bh(&hslot->lock);
1980 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1981 			reuseport_detach_sock(sk);
1982 		if (sk_del_node_init_rcu(sk)) {
1983 			hslot->count--;
1984 			inet_sk(sk)->inet_num = 0;
1985 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1986 
1987 			spin_lock(&hslot2->lock);
1988 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1989 			hslot2->count--;
1990 			spin_unlock(&hslot2->lock);
1991 		}
1992 		spin_unlock_bh(&hslot->lock);
1993 	}
1994 }
1995 EXPORT_SYMBOL(udp_lib_unhash);
1996 
1997 /*
1998  * inet_rcv_saddr was changed, we must rehash secondary hash
1999  */
2000 void udp_lib_rehash(struct sock *sk, u16 newhash)
2001 {
2002 	if (sk_hashed(sk)) {
2003 		struct udp_table *udptable = udp_get_table_prot(sk);
2004 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2005 
2006 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2007 		nhslot2 = udp_hashslot2(udptable, newhash);
2008 		udp_sk(sk)->udp_portaddr_hash = newhash;
2009 
2010 		if (hslot2 != nhslot2 ||
2011 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2012 			hslot = udp_hashslot(udptable, sock_net(sk),
2013 					     udp_sk(sk)->udp_port_hash);
2014 			/* we must lock primary chain too */
2015 			spin_lock_bh(&hslot->lock);
2016 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2017 				reuseport_detach_sock(sk);
2018 
2019 			if (hslot2 != nhslot2) {
2020 				spin_lock(&hslot2->lock);
2021 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2022 				hslot2->count--;
2023 				spin_unlock(&hslot2->lock);
2024 
2025 				spin_lock(&nhslot2->lock);
2026 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2027 							 &nhslot2->head);
2028 				nhslot2->count++;
2029 				spin_unlock(&nhslot2->lock);
2030 			}
2031 
2032 			spin_unlock_bh(&hslot->lock);
2033 		}
2034 	}
2035 }
2036 EXPORT_SYMBOL(udp_lib_rehash);
2037 
2038 void udp_v4_rehash(struct sock *sk)
2039 {
2040 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2041 					  inet_sk(sk)->inet_rcv_saddr,
2042 					  inet_sk(sk)->inet_num);
2043 	udp_lib_rehash(sk, new_hash);
2044 }
2045 
2046 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2047 {
2048 	int rc;
2049 
2050 	if (inet_sk(sk)->inet_daddr) {
2051 		sock_rps_save_rxhash(sk, skb);
2052 		sk_mark_napi_id(sk, skb);
2053 		sk_incoming_cpu_update(sk);
2054 	} else {
2055 		sk_mark_napi_id_once(sk, skb);
2056 	}
2057 
2058 	rc = __udp_enqueue_schedule_skb(sk, skb);
2059 	if (rc < 0) {
2060 		int is_udplite = IS_UDPLITE(sk);
2061 		int drop_reason;
2062 
2063 		/* Note that an ENOMEM error is charged twice */
2064 		if (rc == -ENOMEM) {
2065 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2066 					is_udplite);
2067 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2068 		} else {
2069 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2070 				      is_udplite);
2071 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2072 		}
2073 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2074 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2075 		kfree_skb_reason(skb, drop_reason);
2076 		return -1;
2077 	}
2078 
2079 	return 0;
2080 }
2081 
2082 /* returns:
2083  *  -1: error
2084  *   0: success
2085  *  >0: "udp encap" protocol resubmission
2086  *
2087  * Note that in the success and error cases, the skb is assumed to
2088  * have either been requeued or freed.
2089  */
2090 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2091 {
2092 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2093 	struct udp_sock *up = udp_sk(sk);
2094 	int is_udplite = IS_UDPLITE(sk);
2095 
2096 	/*
2097 	 *	Charge it to the socket, dropping if the queue is full.
2098 	 */
2099 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2100 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2101 		goto drop;
2102 	}
2103 	nf_reset_ct(skb);
2104 
2105 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2106 	    READ_ONCE(up->encap_type)) {
2107 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2108 
2109 		/*
2110 		 * This is an encapsulation socket so pass the skb to
2111 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2112 		 * fall through and pass this up the UDP socket.
2113 		 * up->encap_rcv() returns the following value:
2114 		 * =0 if skb was successfully passed to the encap
2115 		 *    handler or was discarded by it.
2116 		 * >0 if skb should be passed on to UDP.
2117 		 * <0 if skb should be resubmitted as proto -N
2118 		 */
2119 
2120 		/* if we're overly short, let UDP handle it */
2121 		encap_rcv = READ_ONCE(up->encap_rcv);
2122 		if (encap_rcv) {
2123 			int ret;
2124 
2125 			/* Verify checksum before giving to encap */
2126 			if (udp_lib_checksum_complete(skb))
2127 				goto csum_error;
2128 
2129 			ret = encap_rcv(sk, skb);
2130 			if (ret <= 0) {
2131 				__UDP_INC_STATS(sock_net(sk),
2132 						UDP_MIB_INDATAGRAMS,
2133 						is_udplite);
2134 				return -ret;
2135 			}
2136 		}
2137 
2138 		/* FALLTHROUGH -- it's a UDP Packet */
2139 	}
2140 
2141 	/*
2142 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2143 	 */
2144 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2145 		u16 pcrlen = READ_ONCE(up->pcrlen);
2146 
2147 		/*
2148 		 * MIB statistics other than incrementing the error count are
2149 		 * disabled for the following two types of errors: these depend
2150 		 * on the application settings, not on the functioning of the
2151 		 * protocol stack as such.
2152 		 *
2153 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2154 		 * way ... to ... at least let the receiving application block
2155 		 * delivery of packets with coverage values less than a value
2156 		 * provided by the application."
2157 		 */
2158 		if (pcrlen == 0) {          /* full coverage was set  */
2159 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2160 					    UDP_SKB_CB(skb)->cscov, skb->len);
2161 			goto drop;
2162 		}
2163 		/* The next case involves violating the min. coverage requested
2164 		 * by the receiver. This is subtle: if receiver wants x and x is
2165 		 * greater than the buffersize/MTU then receiver will complain
2166 		 * that it wants x while sender emits packets of smaller size y.
2167 		 * Therefore the above ...()->partial_cov statement is essential.
2168 		 */
2169 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2170 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2171 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2172 			goto drop;
2173 		}
2174 	}
2175 
2176 	prefetch(&sk->sk_rmem_alloc);
2177 	if (rcu_access_pointer(sk->sk_filter) &&
2178 	    udp_lib_checksum_complete(skb))
2179 			goto csum_error;
2180 
2181 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2182 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2183 		goto drop;
2184 	}
2185 
2186 	udp_csum_pull_header(skb);
2187 
2188 	ipv4_pktinfo_prepare(sk, skb, true);
2189 	return __udp_queue_rcv_skb(sk, skb);
2190 
2191 csum_error:
2192 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2193 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2194 drop:
2195 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2196 	atomic_inc(&sk->sk_drops);
2197 	kfree_skb_reason(skb, drop_reason);
2198 	return -1;
2199 }
2200 
2201 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2202 {
2203 	struct sk_buff *next, *segs;
2204 	int ret;
2205 
2206 	if (likely(!udp_unexpected_gso(sk, skb)))
2207 		return udp_queue_rcv_one_skb(sk, skb);
2208 
2209 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2210 	__skb_push(skb, -skb_mac_offset(skb));
2211 	segs = udp_rcv_segment(sk, skb, true);
2212 	skb_list_walk_safe(segs, skb, next) {
2213 		__skb_pull(skb, skb_transport_offset(skb));
2214 
2215 		udp_post_segment_fix_csum(skb);
2216 		ret = udp_queue_rcv_one_skb(sk, skb);
2217 		if (ret > 0)
2218 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2219 	}
2220 	return 0;
2221 }
2222 
2223 /* For TCP sockets, sk_rx_dst is protected by socket lock
2224  * For UDP, we use xchg() to guard against concurrent changes.
2225  */
2226 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2227 {
2228 	struct dst_entry *old;
2229 
2230 	if (dst_hold_safe(dst)) {
2231 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2232 		dst_release(old);
2233 		return old != dst;
2234 	}
2235 	return false;
2236 }
2237 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2238 
2239 /*
2240  *	Multicasts and broadcasts go to each listener.
2241  *
2242  *	Note: called only from the BH handler context.
2243  */
2244 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2245 				    struct udphdr  *uh,
2246 				    __be32 saddr, __be32 daddr,
2247 				    struct udp_table *udptable,
2248 				    int proto)
2249 {
2250 	struct sock *sk, *first = NULL;
2251 	unsigned short hnum = ntohs(uh->dest);
2252 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2253 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2254 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2255 	int dif = skb->dev->ifindex;
2256 	int sdif = inet_sdif(skb);
2257 	struct hlist_node *node;
2258 	struct sk_buff *nskb;
2259 
2260 	if (use_hash2) {
2261 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2262 			    udptable->mask;
2263 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2264 start_lookup:
2265 		hslot = &udptable->hash2[hash2];
2266 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2267 	}
2268 
2269 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2270 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2271 					 uh->source, saddr, dif, sdif, hnum))
2272 			continue;
2273 
2274 		if (!first) {
2275 			first = sk;
2276 			continue;
2277 		}
2278 		nskb = skb_clone(skb, GFP_ATOMIC);
2279 
2280 		if (unlikely(!nskb)) {
2281 			atomic_inc(&sk->sk_drops);
2282 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2283 					IS_UDPLITE(sk));
2284 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2285 					IS_UDPLITE(sk));
2286 			continue;
2287 		}
2288 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2289 			consume_skb(nskb);
2290 	}
2291 
2292 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2293 	if (use_hash2 && hash2 != hash2_any) {
2294 		hash2 = hash2_any;
2295 		goto start_lookup;
2296 	}
2297 
2298 	if (first) {
2299 		if (udp_queue_rcv_skb(first, skb) > 0)
2300 			consume_skb(skb);
2301 	} else {
2302 		kfree_skb(skb);
2303 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2304 				proto == IPPROTO_UDPLITE);
2305 	}
2306 	return 0;
2307 }
2308 
2309 /* Initialize UDP checksum. If exited with zero value (success),
2310  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2311  * Otherwise, csum completion requires checksumming packet body,
2312  * including udp header and folding it to skb->csum.
2313  */
2314 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2315 				 int proto)
2316 {
2317 	int err;
2318 
2319 	UDP_SKB_CB(skb)->partial_cov = 0;
2320 	UDP_SKB_CB(skb)->cscov = skb->len;
2321 
2322 	if (proto == IPPROTO_UDPLITE) {
2323 		err = udplite_checksum_init(skb, uh);
2324 		if (err)
2325 			return err;
2326 
2327 		if (UDP_SKB_CB(skb)->partial_cov) {
2328 			skb->csum = inet_compute_pseudo(skb, proto);
2329 			return 0;
2330 		}
2331 	}
2332 
2333 	/* Note, we are only interested in != 0 or == 0, thus the
2334 	 * force to int.
2335 	 */
2336 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2337 							inet_compute_pseudo);
2338 	if (err)
2339 		return err;
2340 
2341 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2342 		/* If SW calculated the value, we know it's bad */
2343 		if (skb->csum_complete_sw)
2344 			return 1;
2345 
2346 		/* HW says the value is bad. Let's validate that.
2347 		 * skb->csum is no longer the full packet checksum,
2348 		 * so don't treat it as such.
2349 		 */
2350 		skb_checksum_complete_unset(skb);
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2357  * return code conversion for ip layer consumption
2358  */
2359 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2360 			       struct udphdr *uh)
2361 {
2362 	int ret;
2363 
2364 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2365 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2366 
2367 	ret = udp_queue_rcv_skb(sk, skb);
2368 
2369 	/* a return value > 0 means to resubmit the input, but
2370 	 * it wants the return to be -protocol, or 0
2371 	 */
2372 	if (ret > 0)
2373 		return -ret;
2374 	return 0;
2375 }
2376 
2377 /*
2378  *	All we need to do is get the socket, and then do a checksum.
2379  */
2380 
2381 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2382 		   int proto)
2383 {
2384 	struct sock *sk;
2385 	struct udphdr *uh;
2386 	unsigned short ulen;
2387 	struct rtable *rt = skb_rtable(skb);
2388 	__be32 saddr, daddr;
2389 	struct net *net = dev_net(skb->dev);
2390 	bool refcounted;
2391 	int drop_reason;
2392 
2393 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2394 
2395 	/*
2396 	 *  Validate the packet.
2397 	 */
2398 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2399 		goto drop;		/* No space for header. */
2400 
2401 	uh   = udp_hdr(skb);
2402 	ulen = ntohs(uh->len);
2403 	saddr = ip_hdr(skb)->saddr;
2404 	daddr = ip_hdr(skb)->daddr;
2405 
2406 	if (ulen > skb->len)
2407 		goto short_packet;
2408 
2409 	if (proto == IPPROTO_UDP) {
2410 		/* UDP validates ulen. */
2411 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2412 			goto short_packet;
2413 		uh = udp_hdr(skb);
2414 	}
2415 
2416 	if (udp4_csum_init(skb, uh, proto))
2417 		goto csum_error;
2418 
2419 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2420 			     &refcounted, udp_ehashfn);
2421 	if (IS_ERR(sk))
2422 		goto no_sk;
2423 
2424 	if (sk) {
2425 		struct dst_entry *dst = skb_dst(skb);
2426 		int ret;
2427 
2428 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2429 			udp_sk_rx_dst_set(sk, dst);
2430 
2431 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2432 		if (refcounted)
2433 			sock_put(sk);
2434 		return ret;
2435 	}
2436 
2437 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2438 		return __udp4_lib_mcast_deliver(net, skb, uh,
2439 						saddr, daddr, udptable, proto);
2440 
2441 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2442 	if (sk)
2443 		return udp_unicast_rcv_skb(sk, skb, uh);
2444 no_sk:
2445 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2446 		goto drop;
2447 	nf_reset_ct(skb);
2448 
2449 	/* No socket. Drop packet silently, if checksum is wrong */
2450 	if (udp_lib_checksum_complete(skb))
2451 		goto csum_error;
2452 
2453 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2454 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2455 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2456 
2457 	/*
2458 	 * Hmm.  We got an UDP packet to a port to which we
2459 	 * don't wanna listen.  Ignore it.
2460 	 */
2461 	kfree_skb_reason(skb, drop_reason);
2462 	return 0;
2463 
2464 short_packet:
2465 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2466 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2467 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2468 			    &saddr, ntohs(uh->source),
2469 			    ulen, skb->len,
2470 			    &daddr, ntohs(uh->dest));
2471 	goto drop;
2472 
2473 csum_error:
2474 	/*
2475 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2476 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2477 	 */
2478 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2479 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2480 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2481 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2482 			    ulen);
2483 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2484 drop:
2485 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2486 	kfree_skb_reason(skb, drop_reason);
2487 	return 0;
2488 }
2489 
2490 /* We can only early demux multicast if there is a single matching socket.
2491  * If more than one socket found returns NULL
2492  */
2493 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2494 						  __be16 loc_port, __be32 loc_addr,
2495 						  __be16 rmt_port, __be32 rmt_addr,
2496 						  int dif, int sdif)
2497 {
2498 	struct udp_table *udptable = net->ipv4.udp_table;
2499 	unsigned short hnum = ntohs(loc_port);
2500 	struct sock *sk, *result;
2501 	struct udp_hslot *hslot;
2502 	unsigned int slot;
2503 
2504 	slot = udp_hashfn(net, hnum, udptable->mask);
2505 	hslot = &udptable->hash[slot];
2506 
2507 	/* Do not bother scanning a too big list */
2508 	if (hslot->count > 10)
2509 		return NULL;
2510 
2511 	result = NULL;
2512 	sk_for_each_rcu(sk, &hslot->head) {
2513 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2514 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2515 			if (result)
2516 				return NULL;
2517 			result = sk;
2518 		}
2519 	}
2520 
2521 	return result;
2522 }
2523 
2524 /* For unicast we should only early demux connected sockets or we can
2525  * break forwarding setups.  The chains here can be long so only check
2526  * if the first socket is an exact match and if not move on.
2527  */
2528 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2529 					    __be16 loc_port, __be32 loc_addr,
2530 					    __be16 rmt_port, __be32 rmt_addr,
2531 					    int dif, int sdif)
2532 {
2533 	struct udp_table *udptable = net->ipv4.udp_table;
2534 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2535 	unsigned short hnum = ntohs(loc_port);
2536 	unsigned int hash2, slot2;
2537 	struct udp_hslot *hslot2;
2538 	__portpair ports;
2539 	struct sock *sk;
2540 
2541 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2542 	slot2 = hash2 & udptable->mask;
2543 	hslot2 = &udptable->hash2[slot2];
2544 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2545 
2546 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2547 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2548 			return sk;
2549 		/* Only check first socket in chain */
2550 		break;
2551 	}
2552 	return NULL;
2553 }
2554 
2555 int udp_v4_early_demux(struct sk_buff *skb)
2556 {
2557 	struct net *net = dev_net(skb->dev);
2558 	struct in_device *in_dev = NULL;
2559 	const struct iphdr *iph;
2560 	const struct udphdr *uh;
2561 	struct sock *sk = NULL;
2562 	struct dst_entry *dst;
2563 	int dif = skb->dev->ifindex;
2564 	int sdif = inet_sdif(skb);
2565 	int ours;
2566 
2567 	/* validate the packet */
2568 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2569 		return 0;
2570 
2571 	iph = ip_hdr(skb);
2572 	uh = udp_hdr(skb);
2573 
2574 	if (skb->pkt_type == PACKET_MULTICAST) {
2575 		in_dev = __in_dev_get_rcu(skb->dev);
2576 
2577 		if (!in_dev)
2578 			return 0;
2579 
2580 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2581 				       iph->protocol);
2582 		if (!ours)
2583 			return 0;
2584 
2585 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2586 						   uh->source, iph->saddr,
2587 						   dif, sdif);
2588 	} else if (skb->pkt_type == PACKET_HOST) {
2589 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2590 					     uh->source, iph->saddr, dif, sdif);
2591 	}
2592 
2593 	if (!sk)
2594 		return 0;
2595 
2596 	skb->sk = sk;
2597 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2598 	skb->destructor = sock_pfree;
2599 	dst = rcu_dereference(sk->sk_rx_dst);
2600 
2601 	if (dst)
2602 		dst = dst_check(dst, 0);
2603 	if (dst) {
2604 		u32 itag = 0;
2605 
2606 		/* set noref for now.
2607 		 * any place which wants to hold dst has to call
2608 		 * dst_hold_safe()
2609 		 */
2610 		skb_dst_set_noref(skb, dst);
2611 
2612 		/* for unconnected multicast sockets we need to validate
2613 		 * the source on each packet
2614 		 */
2615 		if (!inet_sk(sk)->inet_daddr && in_dev)
2616 			return ip_mc_validate_source(skb, iph->daddr,
2617 						     iph->saddr,
2618 						     iph->tos & IPTOS_RT_MASK,
2619 						     skb->dev, in_dev, &itag);
2620 	}
2621 	return 0;
2622 }
2623 
2624 int udp_rcv(struct sk_buff *skb)
2625 {
2626 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2627 }
2628 
2629 void udp_destroy_sock(struct sock *sk)
2630 {
2631 	struct udp_sock *up = udp_sk(sk);
2632 	bool slow = lock_sock_fast(sk);
2633 
2634 	/* protects from races with udp_abort() */
2635 	sock_set_flag(sk, SOCK_DEAD);
2636 	udp_flush_pending_frames(sk);
2637 	unlock_sock_fast(sk, slow);
2638 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2639 		if (up->encap_type) {
2640 			void (*encap_destroy)(struct sock *sk);
2641 			encap_destroy = READ_ONCE(up->encap_destroy);
2642 			if (encap_destroy)
2643 				encap_destroy(sk);
2644 		}
2645 		if (udp_test_bit(ENCAP_ENABLED, sk))
2646 			static_branch_dec(&udp_encap_needed_key);
2647 	}
2648 }
2649 
2650 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2651 				       struct sock *sk)
2652 {
2653 #ifdef CONFIG_XFRM
2654 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2655 		if (family == AF_INET)
2656 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2657 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2658 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2659 	}
2660 #endif
2661 }
2662 
2663 /*
2664  *	Socket option code for UDP
2665  */
2666 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2667 		       sockptr_t optval, unsigned int optlen,
2668 		       int (*push_pending_frames)(struct sock *))
2669 {
2670 	struct udp_sock *up = udp_sk(sk);
2671 	int val, valbool;
2672 	int err = 0;
2673 	int is_udplite = IS_UDPLITE(sk);
2674 
2675 	if (level == SOL_SOCKET) {
2676 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2677 
2678 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2679 			sockopt_lock_sock(sk);
2680 			/* paired with READ_ONCE in udp_rmem_release() */
2681 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2682 			sockopt_release_sock(sk);
2683 		}
2684 		return err;
2685 	}
2686 
2687 	if (optlen < sizeof(int))
2688 		return -EINVAL;
2689 
2690 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2691 		return -EFAULT;
2692 
2693 	valbool = val ? 1 : 0;
2694 
2695 	switch (optname) {
2696 	case UDP_CORK:
2697 		if (val != 0) {
2698 			udp_set_bit(CORK, sk);
2699 		} else {
2700 			udp_clear_bit(CORK, sk);
2701 			lock_sock(sk);
2702 			push_pending_frames(sk);
2703 			release_sock(sk);
2704 		}
2705 		break;
2706 
2707 	case UDP_ENCAP:
2708 		switch (val) {
2709 		case 0:
2710 #ifdef CONFIG_XFRM
2711 		case UDP_ENCAP_ESPINUDP:
2712 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2713 			fallthrough;
2714 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2715 #if IS_ENABLED(CONFIG_IPV6)
2716 			if (sk->sk_family == AF_INET6)
2717 				WRITE_ONCE(up->encap_rcv,
2718 					   ipv6_stub->xfrm6_udp_encap_rcv);
2719 			else
2720 #endif
2721 				WRITE_ONCE(up->encap_rcv,
2722 					   xfrm4_udp_encap_rcv);
2723 #endif
2724 			fallthrough;
2725 		case UDP_ENCAP_L2TPINUDP:
2726 			WRITE_ONCE(up->encap_type, val);
2727 			udp_tunnel_encap_enable(sk);
2728 			break;
2729 		default:
2730 			err = -ENOPROTOOPT;
2731 			break;
2732 		}
2733 		break;
2734 
2735 	case UDP_NO_CHECK6_TX:
2736 		udp_set_no_check6_tx(sk, valbool);
2737 		break;
2738 
2739 	case UDP_NO_CHECK6_RX:
2740 		udp_set_no_check6_rx(sk, valbool);
2741 		break;
2742 
2743 	case UDP_SEGMENT:
2744 		if (val < 0 || val > USHRT_MAX)
2745 			return -EINVAL;
2746 		WRITE_ONCE(up->gso_size, val);
2747 		break;
2748 
2749 	case UDP_GRO:
2750 
2751 		/* when enabling GRO, accept the related GSO packet type */
2752 		if (valbool)
2753 			udp_tunnel_encap_enable(sk);
2754 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2755 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2756 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2757 		break;
2758 
2759 	/*
2760 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2761 	 */
2762 	/* The sender sets actual checksum coverage length via this option.
2763 	 * The case coverage > packet length is handled by send module. */
2764 	case UDPLITE_SEND_CSCOV:
2765 		if (!is_udplite)         /* Disable the option on UDP sockets */
2766 			return -ENOPROTOOPT;
2767 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2768 			val = 8;
2769 		else if (val > USHRT_MAX)
2770 			val = USHRT_MAX;
2771 		WRITE_ONCE(up->pcslen, val);
2772 		udp_set_bit(UDPLITE_SEND_CC, sk);
2773 		break;
2774 
2775 	/* The receiver specifies a minimum checksum coverage value. To make
2776 	 * sense, this should be set to at least 8 (as done below). If zero is
2777 	 * used, this again means full checksum coverage.                     */
2778 	case UDPLITE_RECV_CSCOV:
2779 		if (!is_udplite)         /* Disable the option on UDP sockets */
2780 			return -ENOPROTOOPT;
2781 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2782 			val = 8;
2783 		else if (val > USHRT_MAX)
2784 			val = USHRT_MAX;
2785 		WRITE_ONCE(up->pcrlen, val);
2786 		udp_set_bit(UDPLITE_RECV_CC, sk);
2787 		break;
2788 
2789 	default:
2790 		err = -ENOPROTOOPT;
2791 		break;
2792 	}
2793 
2794 	return err;
2795 }
2796 EXPORT_SYMBOL(udp_lib_setsockopt);
2797 
2798 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2799 		   unsigned int optlen)
2800 {
2801 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2802 		return udp_lib_setsockopt(sk, level, optname,
2803 					  optval, optlen,
2804 					  udp_push_pending_frames);
2805 	return ip_setsockopt(sk, level, optname, optval, optlen);
2806 }
2807 
2808 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2809 		       char __user *optval, int __user *optlen)
2810 {
2811 	struct udp_sock *up = udp_sk(sk);
2812 	int val, len;
2813 
2814 	if (get_user(len, optlen))
2815 		return -EFAULT;
2816 
2817 	if (len < 0)
2818 		return -EINVAL;
2819 
2820 	len = min_t(unsigned int, len, sizeof(int));
2821 
2822 	switch (optname) {
2823 	case UDP_CORK:
2824 		val = udp_test_bit(CORK, sk);
2825 		break;
2826 
2827 	case UDP_ENCAP:
2828 		val = READ_ONCE(up->encap_type);
2829 		break;
2830 
2831 	case UDP_NO_CHECK6_TX:
2832 		val = udp_get_no_check6_tx(sk);
2833 		break;
2834 
2835 	case UDP_NO_CHECK6_RX:
2836 		val = udp_get_no_check6_rx(sk);
2837 		break;
2838 
2839 	case UDP_SEGMENT:
2840 		val = READ_ONCE(up->gso_size);
2841 		break;
2842 
2843 	case UDP_GRO:
2844 		val = udp_test_bit(GRO_ENABLED, sk);
2845 		break;
2846 
2847 	/* The following two cannot be changed on UDP sockets, the return is
2848 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2849 	case UDPLITE_SEND_CSCOV:
2850 		val = READ_ONCE(up->pcslen);
2851 		break;
2852 
2853 	case UDPLITE_RECV_CSCOV:
2854 		val = READ_ONCE(up->pcrlen);
2855 		break;
2856 
2857 	default:
2858 		return -ENOPROTOOPT;
2859 	}
2860 
2861 	if (put_user(len, optlen))
2862 		return -EFAULT;
2863 	if (copy_to_user(optval, &val, len))
2864 		return -EFAULT;
2865 	return 0;
2866 }
2867 EXPORT_SYMBOL(udp_lib_getsockopt);
2868 
2869 int udp_getsockopt(struct sock *sk, int level, int optname,
2870 		   char __user *optval, int __user *optlen)
2871 {
2872 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2873 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2874 	return ip_getsockopt(sk, level, optname, optval, optlen);
2875 }
2876 
2877 /**
2878  * 	udp_poll - wait for a UDP event.
2879  *	@file: - file struct
2880  *	@sock: - socket
2881  *	@wait: - poll table
2882  *
2883  *	This is same as datagram poll, except for the special case of
2884  *	blocking sockets. If application is using a blocking fd
2885  *	and a packet with checksum error is in the queue;
2886  *	then it could get return from select indicating data available
2887  *	but then block when reading it. Add special case code
2888  *	to work around these arguably broken applications.
2889  */
2890 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2891 {
2892 	__poll_t mask = datagram_poll(file, sock, wait);
2893 	struct sock *sk = sock->sk;
2894 
2895 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2896 		mask |= EPOLLIN | EPOLLRDNORM;
2897 
2898 	/* Check for false positives due to checksum errors */
2899 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2900 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2901 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2902 
2903 	/* psock ingress_msg queue should not contain any bad checksum frames */
2904 	if (sk_is_readable(sk))
2905 		mask |= EPOLLIN | EPOLLRDNORM;
2906 	return mask;
2907 
2908 }
2909 EXPORT_SYMBOL(udp_poll);
2910 
2911 int udp_abort(struct sock *sk, int err)
2912 {
2913 	if (!has_current_bpf_ctx())
2914 		lock_sock(sk);
2915 
2916 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2917 	 * with close()
2918 	 */
2919 	if (sock_flag(sk, SOCK_DEAD))
2920 		goto out;
2921 
2922 	sk->sk_err = err;
2923 	sk_error_report(sk);
2924 	__udp_disconnect(sk, 0);
2925 
2926 out:
2927 	if (!has_current_bpf_ctx())
2928 		release_sock(sk);
2929 
2930 	return 0;
2931 }
2932 EXPORT_SYMBOL_GPL(udp_abort);
2933 
2934 struct proto udp_prot = {
2935 	.name			= "UDP",
2936 	.owner			= THIS_MODULE,
2937 	.close			= udp_lib_close,
2938 	.pre_connect		= udp_pre_connect,
2939 	.connect		= ip4_datagram_connect,
2940 	.disconnect		= udp_disconnect,
2941 	.ioctl			= udp_ioctl,
2942 	.init			= udp_init_sock,
2943 	.destroy		= udp_destroy_sock,
2944 	.setsockopt		= udp_setsockopt,
2945 	.getsockopt		= udp_getsockopt,
2946 	.sendmsg		= udp_sendmsg,
2947 	.recvmsg		= udp_recvmsg,
2948 	.splice_eof		= udp_splice_eof,
2949 	.release_cb		= ip4_datagram_release_cb,
2950 	.hash			= udp_lib_hash,
2951 	.unhash			= udp_lib_unhash,
2952 	.rehash			= udp_v4_rehash,
2953 	.get_port		= udp_v4_get_port,
2954 	.put_port		= udp_lib_unhash,
2955 #ifdef CONFIG_BPF_SYSCALL
2956 	.psock_update_sk_prot	= udp_bpf_update_proto,
2957 #endif
2958 	.memory_allocated	= &udp_memory_allocated,
2959 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2960 
2961 	.sysctl_mem		= sysctl_udp_mem,
2962 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2963 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2964 	.obj_size		= sizeof(struct udp_sock),
2965 	.h.udp_table		= NULL,
2966 	.diag_destroy		= udp_abort,
2967 };
2968 EXPORT_SYMBOL(udp_prot);
2969 
2970 /* ------------------------------------------------------------------------ */
2971 #ifdef CONFIG_PROC_FS
2972 
2973 static unsigned short seq_file_family(const struct seq_file *seq);
2974 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2975 {
2976 	unsigned short family = seq_file_family(seq);
2977 
2978 	/* AF_UNSPEC is used as a match all */
2979 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2980 		net_eq(sock_net(sk), seq_file_net(seq)));
2981 }
2982 
2983 #ifdef CONFIG_BPF_SYSCALL
2984 static const struct seq_operations bpf_iter_udp_seq_ops;
2985 #endif
2986 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2987 					   struct net *net)
2988 {
2989 	const struct udp_seq_afinfo *afinfo;
2990 
2991 #ifdef CONFIG_BPF_SYSCALL
2992 	if (seq->op == &bpf_iter_udp_seq_ops)
2993 		return net->ipv4.udp_table;
2994 #endif
2995 
2996 	afinfo = pde_data(file_inode(seq->file));
2997 	return afinfo->udp_table ? : net->ipv4.udp_table;
2998 }
2999 
3000 static struct sock *udp_get_first(struct seq_file *seq, int start)
3001 {
3002 	struct udp_iter_state *state = seq->private;
3003 	struct net *net = seq_file_net(seq);
3004 	struct udp_table *udptable;
3005 	struct sock *sk;
3006 
3007 	udptable = udp_get_table_seq(seq, net);
3008 
3009 	for (state->bucket = start; state->bucket <= udptable->mask;
3010 	     ++state->bucket) {
3011 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3012 
3013 		if (hlist_empty(&hslot->head))
3014 			continue;
3015 
3016 		spin_lock_bh(&hslot->lock);
3017 		sk_for_each(sk, &hslot->head) {
3018 			if (seq_sk_match(seq, sk))
3019 				goto found;
3020 		}
3021 		spin_unlock_bh(&hslot->lock);
3022 	}
3023 	sk = NULL;
3024 found:
3025 	return sk;
3026 }
3027 
3028 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3029 {
3030 	struct udp_iter_state *state = seq->private;
3031 	struct net *net = seq_file_net(seq);
3032 	struct udp_table *udptable;
3033 
3034 	do {
3035 		sk = sk_next(sk);
3036 	} while (sk && !seq_sk_match(seq, sk));
3037 
3038 	if (!sk) {
3039 		udptable = udp_get_table_seq(seq, net);
3040 
3041 		if (state->bucket <= udptable->mask)
3042 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3043 
3044 		return udp_get_first(seq, state->bucket + 1);
3045 	}
3046 	return sk;
3047 }
3048 
3049 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3050 {
3051 	struct sock *sk = udp_get_first(seq, 0);
3052 
3053 	if (sk)
3054 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3055 			--pos;
3056 	return pos ? NULL : sk;
3057 }
3058 
3059 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3060 {
3061 	struct udp_iter_state *state = seq->private;
3062 	state->bucket = MAX_UDP_PORTS;
3063 
3064 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3065 }
3066 EXPORT_SYMBOL(udp_seq_start);
3067 
3068 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3069 {
3070 	struct sock *sk;
3071 
3072 	if (v == SEQ_START_TOKEN)
3073 		sk = udp_get_idx(seq, 0);
3074 	else
3075 		sk = udp_get_next(seq, v);
3076 
3077 	++*pos;
3078 	return sk;
3079 }
3080 EXPORT_SYMBOL(udp_seq_next);
3081 
3082 void udp_seq_stop(struct seq_file *seq, void *v)
3083 {
3084 	struct udp_iter_state *state = seq->private;
3085 	struct udp_table *udptable;
3086 
3087 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3088 
3089 	if (state->bucket <= udptable->mask)
3090 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3091 }
3092 EXPORT_SYMBOL(udp_seq_stop);
3093 
3094 /* ------------------------------------------------------------------------ */
3095 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3096 		int bucket)
3097 {
3098 	struct inet_sock *inet = inet_sk(sp);
3099 	__be32 dest = inet->inet_daddr;
3100 	__be32 src  = inet->inet_rcv_saddr;
3101 	__u16 destp	  = ntohs(inet->inet_dport);
3102 	__u16 srcp	  = ntohs(inet->inet_sport);
3103 
3104 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3105 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3106 		bucket, src, srcp, dest, destp, sp->sk_state,
3107 		sk_wmem_alloc_get(sp),
3108 		udp_rqueue_get(sp),
3109 		0, 0L, 0,
3110 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3111 		0, sock_i_ino(sp),
3112 		refcount_read(&sp->sk_refcnt), sp,
3113 		atomic_read(&sp->sk_drops));
3114 }
3115 
3116 int udp4_seq_show(struct seq_file *seq, void *v)
3117 {
3118 	seq_setwidth(seq, 127);
3119 	if (v == SEQ_START_TOKEN)
3120 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3121 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3122 			   "inode ref pointer drops");
3123 	else {
3124 		struct udp_iter_state *state = seq->private;
3125 
3126 		udp4_format_sock(v, seq, state->bucket);
3127 	}
3128 	seq_pad(seq, '\n');
3129 	return 0;
3130 }
3131 
3132 #ifdef CONFIG_BPF_SYSCALL
3133 struct bpf_iter__udp {
3134 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3135 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3136 	uid_t uid __aligned(8);
3137 	int bucket __aligned(8);
3138 };
3139 
3140 struct bpf_udp_iter_state {
3141 	struct udp_iter_state state;
3142 	unsigned int cur_sk;
3143 	unsigned int end_sk;
3144 	unsigned int max_sk;
3145 	int offset;
3146 	struct sock **batch;
3147 	bool st_bucket_done;
3148 };
3149 
3150 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3151 				      unsigned int new_batch_sz);
3152 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3153 {
3154 	struct bpf_udp_iter_state *iter = seq->private;
3155 	struct udp_iter_state *state = &iter->state;
3156 	struct net *net = seq_file_net(seq);
3157 	int resume_bucket, resume_offset;
3158 	struct udp_table *udptable;
3159 	unsigned int batch_sks = 0;
3160 	bool resized = false;
3161 	struct sock *sk;
3162 
3163 	resume_bucket = state->bucket;
3164 	resume_offset = iter->offset;
3165 
3166 	/* The current batch is done, so advance the bucket. */
3167 	if (iter->st_bucket_done)
3168 		state->bucket++;
3169 
3170 	udptable = udp_get_table_seq(seq, net);
3171 
3172 again:
3173 	/* New batch for the next bucket.
3174 	 * Iterate over the hash table to find a bucket with sockets matching
3175 	 * the iterator attributes, and return the first matching socket from
3176 	 * the bucket. The remaining matched sockets from the bucket are batched
3177 	 * before releasing the bucket lock. This allows BPF programs that are
3178 	 * called in seq_show to acquire the bucket lock if needed.
3179 	 */
3180 	iter->cur_sk = 0;
3181 	iter->end_sk = 0;
3182 	iter->st_bucket_done = false;
3183 	batch_sks = 0;
3184 
3185 	for (; state->bucket <= udptable->mask; state->bucket++) {
3186 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3187 
3188 		if (hlist_empty(&hslot2->head))
3189 			continue;
3190 
3191 		iter->offset = 0;
3192 		spin_lock_bh(&hslot2->lock);
3193 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3194 			if (seq_sk_match(seq, sk)) {
3195 				/* Resume from the last iterated socket at the
3196 				 * offset in the bucket before iterator was stopped.
3197 				 */
3198 				if (state->bucket == resume_bucket &&
3199 				    iter->offset < resume_offset) {
3200 					++iter->offset;
3201 					continue;
3202 				}
3203 				if (iter->end_sk < iter->max_sk) {
3204 					sock_hold(sk);
3205 					iter->batch[iter->end_sk++] = sk;
3206 				}
3207 				batch_sks++;
3208 			}
3209 		}
3210 		spin_unlock_bh(&hslot2->lock);
3211 
3212 		if (iter->end_sk)
3213 			break;
3214 	}
3215 
3216 	/* All done: no batch made. */
3217 	if (!iter->end_sk)
3218 		return NULL;
3219 
3220 	if (iter->end_sk == batch_sks) {
3221 		/* Batching is done for the current bucket; return the first
3222 		 * socket to be iterated from the batch.
3223 		 */
3224 		iter->st_bucket_done = true;
3225 		goto done;
3226 	}
3227 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3228 		resized = true;
3229 		/* After allocating a larger batch, retry one more time to grab
3230 		 * the whole bucket.
3231 		 */
3232 		goto again;
3233 	}
3234 done:
3235 	return iter->batch[0];
3236 }
3237 
3238 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3239 {
3240 	struct bpf_udp_iter_state *iter = seq->private;
3241 	struct sock *sk;
3242 
3243 	/* Whenever seq_next() is called, the iter->cur_sk is
3244 	 * done with seq_show(), so unref the iter->cur_sk.
3245 	 */
3246 	if (iter->cur_sk < iter->end_sk) {
3247 		sock_put(iter->batch[iter->cur_sk++]);
3248 		++iter->offset;
3249 	}
3250 
3251 	/* After updating iter->cur_sk, check if there are more sockets
3252 	 * available in the current bucket batch.
3253 	 */
3254 	if (iter->cur_sk < iter->end_sk)
3255 		sk = iter->batch[iter->cur_sk];
3256 	else
3257 		/* Prepare a new batch. */
3258 		sk = bpf_iter_udp_batch(seq);
3259 
3260 	++*pos;
3261 	return sk;
3262 }
3263 
3264 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3265 {
3266 	/* bpf iter does not support lseek, so it always
3267 	 * continue from where it was stop()-ped.
3268 	 */
3269 	if (*pos)
3270 		return bpf_iter_udp_batch(seq);
3271 
3272 	return SEQ_START_TOKEN;
3273 }
3274 
3275 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3276 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3277 {
3278 	struct bpf_iter__udp ctx;
3279 
3280 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3281 	ctx.meta = meta;
3282 	ctx.udp_sk = udp_sk;
3283 	ctx.uid = uid;
3284 	ctx.bucket = bucket;
3285 	return bpf_iter_run_prog(prog, &ctx);
3286 }
3287 
3288 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3289 {
3290 	struct udp_iter_state *state = seq->private;
3291 	struct bpf_iter_meta meta;
3292 	struct bpf_prog *prog;
3293 	struct sock *sk = v;
3294 	uid_t uid;
3295 	int ret;
3296 
3297 	if (v == SEQ_START_TOKEN)
3298 		return 0;
3299 
3300 	lock_sock(sk);
3301 
3302 	if (unlikely(sk_unhashed(sk))) {
3303 		ret = SEQ_SKIP;
3304 		goto unlock;
3305 	}
3306 
3307 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3308 	meta.seq = seq;
3309 	prog = bpf_iter_get_info(&meta, false);
3310 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3311 
3312 unlock:
3313 	release_sock(sk);
3314 	return ret;
3315 }
3316 
3317 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3318 {
3319 	while (iter->cur_sk < iter->end_sk)
3320 		sock_put(iter->batch[iter->cur_sk++]);
3321 }
3322 
3323 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3324 {
3325 	struct bpf_udp_iter_state *iter = seq->private;
3326 	struct bpf_iter_meta meta;
3327 	struct bpf_prog *prog;
3328 
3329 	if (!v) {
3330 		meta.seq = seq;
3331 		prog = bpf_iter_get_info(&meta, true);
3332 		if (prog)
3333 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3334 	}
3335 
3336 	if (iter->cur_sk < iter->end_sk) {
3337 		bpf_iter_udp_put_batch(iter);
3338 		iter->st_bucket_done = false;
3339 	}
3340 }
3341 
3342 static const struct seq_operations bpf_iter_udp_seq_ops = {
3343 	.start		= bpf_iter_udp_seq_start,
3344 	.next		= bpf_iter_udp_seq_next,
3345 	.stop		= bpf_iter_udp_seq_stop,
3346 	.show		= bpf_iter_udp_seq_show,
3347 };
3348 #endif
3349 
3350 static unsigned short seq_file_family(const struct seq_file *seq)
3351 {
3352 	const struct udp_seq_afinfo *afinfo;
3353 
3354 #ifdef CONFIG_BPF_SYSCALL
3355 	/* BPF iterator: bpf programs to filter sockets. */
3356 	if (seq->op == &bpf_iter_udp_seq_ops)
3357 		return AF_UNSPEC;
3358 #endif
3359 
3360 	/* Proc fs iterator */
3361 	afinfo = pde_data(file_inode(seq->file));
3362 	return afinfo->family;
3363 }
3364 
3365 const struct seq_operations udp_seq_ops = {
3366 	.start		= udp_seq_start,
3367 	.next		= udp_seq_next,
3368 	.stop		= udp_seq_stop,
3369 	.show		= udp4_seq_show,
3370 };
3371 EXPORT_SYMBOL(udp_seq_ops);
3372 
3373 static struct udp_seq_afinfo udp4_seq_afinfo = {
3374 	.family		= AF_INET,
3375 	.udp_table	= NULL,
3376 };
3377 
3378 static int __net_init udp4_proc_init_net(struct net *net)
3379 {
3380 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3381 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3382 		return -ENOMEM;
3383 	return 0;
3384 }
3385 
3386 static void __net_exit udp4_proc_exit_net(struct net *net)
3387 {
3388 	remove_proc_entry("udp", net->proc_net);
3389 }
3390 
3391 static struct pernet_operations udp4_net_ops = {
3392 	.init = udp4_proc_init_net,
3393 	.exit = udp4_proc_exit_net,
3394 };
3395 
3396 int __init udp4_proc_init(void)
3397 {
3398 	return register_pernet_subsys(&udp4_net_ops);
3399 }
3400 
3401 void udp4_proc_exit(void)
3402 {
3403 	unregister_pernet_subsys(&udp4_net_ops);
3404 }
3405 #endif /* CONFIG_PROC_FS */
3406 
3407 static __initdata unsigned long uhash_entries;
3408 static int __init set_uhash_entries(char *str)
3409 {
3410 	ssize_t ret;
3411 
3412 	if (!str)
3413 		return 0;
3414 
3415 	ret = kstrtoul(str, 0, &uhash_entries);
3416 	if (ret)
3417 		return 0;
3418 
3419 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3420 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3421 	return 1;
3422 }
3423 __setup("uhash_entries=", set_uhash_entries);
3424 
3425 void __init udp_table_init(struct udp_table *table, const char *name)
3426 {
3427 	unsigned int i;
3428 
3429 	table->hash = alloc_large_system_hash(name,
3430 					      2 * sizeof(struct udp_hslot),
3431 					      uhash_entries,
3432 					      21, /* one slot per 2 MB */
3433 					      0,
3434 					      &table->log,
3435 					      &table->mask,
3436 					      UDP_HTABLE_SIZE_MIN,
3437 					      UDP_HTABLE_SIZE_MAX);
3438 
3439 	table->hash2 = table->hash + (table->mask + 1);
3440 	for (i = 0; i <= table->mask; i++) {
3441 		INIT_HLIST_HEAD(&table->hash[i].head);
3442 		table->hash[i].count = 0;
3443 		spin_lock_init(&table->hash[i].lock);
3444 	}
3445 	for (i = 0; i <= table->mask; i++) {
3446 		INIT_HLIST_HEAD(&table->hash2[i].head);
3447 		table->hash2[i].count = 0;
3448 		spin_lock_init(&table->hash2[i].lock);
3449 	}
3450 }
3451 
3452 u32 udp_flow_hashrnd(void)
3453 {
3454 	static u32 hashrnd __read_mostly;
3455 
3456 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3457 
3458 	return hashrnd;
3459 }
3460 EXPORT_SYMBOL(udp_flow_hashrnd);
3461 
3462 static void __net_init udp_sysctl_init(struct net *net)
3463 {
3464 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3465 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3466 
3467 #ifdef CONFIG_NET_L3_MASTER_DEV
3468 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3469 #endif
3470 }
3471 
3472 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3473 {
3474 	struct udp_table *udptable;
3475 	int i;
3476 
3477 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3478 	if (!udptable)
3479 		goto out;
3480 
3481 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3482 				      GFP_KERNEL_ACCOUNT);
3483 	if (!udptable->hash)
3484 		goto free_table;
3485 
3486 	udptable->hash2 = udptable->hash + hash_entries;
3487 	udptable->mask = hash_entries - 1;
3488 	udptable->log = ilog2(hash_entries);
3489 
3490 	for (i = 0; i < hash_entries; i++) {
3491 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3492 		udptable->hash[i].count = 0;
3493 		spin_lock_init(&udptable->hash[i].lock);
3494 
3495 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3496 		udptable->hash2[i].count = 0;
3497 		spin_lock_init(&udptable->hash2[i].lock);
3498 	}
3499 
3500 	return udptable;
3501 
3502 free_table:
3503 	kfree(udptable);
3504 out:
3505 	return NULL;
3506 }
3507 
3508 static void __net_exit udp_pernet_table_free(struct net *net)
3509 {
3510 	struct udp_table *udptable = net->ipv4.udp_table;
3511 
3512 	if (udptable == &udp_table)
3513 		return;
3514 
3515 	kvfree(udptable->hash);
3516 	kfree(udptable);
3517 }
3518 
3519 static void __net_init udp_set_table(struct net *net)
3520 {
3521 	struct udp_table *udptable;
3522 	unsigned int hash_entries;
3523 	struct net *old_net;
3524 
3525 	if (net_eq(net, &init_net))
3526 		goto fallback;
3527 
3528 	old_net = current->nsproxy->net_ns;
3529 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3530 	if (!hash_entries)
3531 		goto fallback;
3532 
3533 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3534 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3535 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3536 	else
3537 		hash_entries = roundup_pow_of_two(hash_entries);
3538 
3539 	udptable = udp_pernet_table_alloc(hash_entries);
3540 	if (udptable) {
3541 		net->ipv4.udp_table = udptable;
3542 	} else {
3543 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3544 			"for a netns, fallback to the global one\n",
3545 			hash_entries);
3546 fallback:
3547 		net->ipv4.udp_table = &udp_table;
3548 	}
3549 }
3550 
3551 static int __net_init udp_pernet_init(struct net *net)
3552 {
3553 	udp_sysctl_init(net);
3554 	udp_set_table(net);
3555 
3556 	return 0;
3557 }
3558 
3559 static void __net_exit udp_pernet_exit(struct net *net)
3560 {
3561 	udp_pernet_table_free(net);
3562 }
3563 
3564 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3565 	.init	= udp_pernet_init,
3566 	.exit	= udp_pernet_exit,
3567 };
3568 
3569 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3570 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3571 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3572 
3573 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3574 				      unsigned int new_batch_sz)
3575 {
3576 	struct sock **new_batch;
3577 
3578 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3579 				   GFP_USER | __GFP_NOWARN);
3580 	if (!new_batch)
3581 		return -ENOMEM;
3582 
3583 	bpf_iter_udp_put_batch(iter);
3584 	kvfree(iter->batch);
3585 	iter->batch = new_batch;
3586 	iter->max_sk = new_batch_sz;
3587 
3588 	return 0;
3589 }
3590 
3591 #define INIT_BATCH_SZ 16
3592 
3593 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3594 {
3595 	struct bpf_udp_iter_state *iter = priv_data;
3596 	int ret;
3597 
3598 	ret = bpf_iter_init_seq_net(priv_data, aux);
3599 	if (ret)
3600 		return ret;
3601 
3602 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3603 	if (ret)
3604 		bpf_iter_fini_seq_net(priv_data);
3605 
3606 	return ret;
3607 }
3608 
3609 static void bpf_iter_fini_udp(void *priv_data)
3610 {
3611 	struct bpf_udp_iter_state *iter = priv_data;
3612 
3613 	bpf_iter_fini_seq_net(priv_data);
3614 	kvfree(iter->batch);
3615 }
3616 
3617 static const struct bpf_iter_seq_info udp_seq_info = {
3618 	.seq_ops		= &bpf_iter_udp_seq_ops,
3619 	.init_seq_private	= bpf_iter_init_udp,
3620 	.fini_seq_private	= bpf_iter_fini_udp,
3621 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3622 };
3623 
3624 static struct bpf_iter_reg udp_reg_info = {
3625 	.target			= "udp",
3626 	.ctx_arg_info_size	= 1,
3627 	.ctx_arg_info		= {
3628 		{ offsetof(struct bpf_iter__udp, udp_sk),
3629 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3630 	},
3631 	.seq_info		= &udp_seq_info,
3632 };
3633 
3634 static void __init bpf_iter_register(void)
3635 {
3636 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3637 	if (bpf_iter_reg_target(&udp_reg_info))
3638 		pr_warn("Warning: could not register bpf iterator udp\n");
3639 }
3640 #endif
3641 
3642 void __init udp_init(void)
3643 {
3644 	unsigned long limit;
3645 	unsigned int i;
3646 
3647 	udp_table_init(&udp_table, "UDP");
3648 	limit = nr_free_buffer_pages() / 8;
3649 	limit = max(limit, 128UL);
3650 	sysctl_udp_mem[0] = limit / 4 * 3;
3651 	sysctl_udp_mem[1] = limit;
3652 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3653 
3654 	/* 16 spinlocks per cpu */
3655 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3656 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3657 				GFP_KERNEL);
3658 	if (!udp_busylocks)
3659 		panic("UDP: failed to alloc udp_busylocks\n");
3660 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3661 		spin_lock_init(udp_busylocks + i);
3662 
3663 	if (register_pernet_subsys(&udp_sysctl_ops))
3664 		panic("UDP: failed to init sysctl parameters.\n");
3665 
3666 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3667 	bpf_iter_register();
3668 #endif
3669 }
3670