xref: /linux/net/ipv4/udp.c (revision 15d7b3dfafa98270eade6c77d2336790dde0a40d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <linux/sock_diag.h>
97 #include <net/tcp_states.h>
98 #include <linux/skbuff.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <net/net_namespace.h>
102 #include <net/icmp.h>
103 #include <net/inet_hashtables.h>
104 #include <net/ip.h>
105 #include <net/ip_tunnels.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/gso.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <linux/btf_ids.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 #include <net/udp_tunnel.h>
119 #include <net/gro.h>
120 #if IS_ENABLED(CONFIG_IPV6)
121 #include <net/ipv6_stubs.h>
122 #endif
123 
124 struct udp_table udp_table __read_mostly;
125 
126 long sysctl_udp_mem[3] __read_mostly;
127 EXPORT_IPV6_MOD(sysctl_udp_mem);
128 
129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130 EXPORT_IPV6_MOD(udp_memory_allocated);
131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136 
137 static struct udp_table *udp_get_table_prot(struct sock *sk)
138 {
139 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140 }
141 
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_table *udptable = udp_get_table_prot(sk);
244 	struct udp_hslot *hslot, *hslot2;
245 	struct net *net = sock_net(sk);
246 	int error = -EADDRINUSE;
247 
248 	if (!snum) {
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 		unsigned short first, last;
251 		int low, high, remaining;
252 		unsigned int rand;
253 
254 		inet_sk_get_local_port_range(sk, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = get_random_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sock_set_flag(sk, SOCK_RCU_FREE);
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_IPV6_MOD(udp_lib_get_port);
356 
357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
369 static int compute_score(struct sock *sk, const struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	if (sk->sk_bound_dev_if)
406 		score += 4;
407 
408 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409 		score++;
410 	return score;
411 }
412 
413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414 		const __be32 faddr, const __be16 fport)
415 {
416 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418 	return __inet_ehashfn(laddr, lport, faddr, fport,
419 			      udp_ehash_secret + net_hash_mix(net));
420 }
421 EXPORT_IPV6_MOD(udp_ehashfn);
422 
423 /**
424  * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
425  * @net:	Network namespace
426  * @saddr:	Source address, network order
427  * @sport:	Source port, network order
428  * @daddr:	Destination address, network order
429  * @hnum:	Destination port, host order
430  * @dif:	Destination interface index
431  * @sdif:	Destination bridge port index, if relevant
432  * @udptable:	Set of UDP hash tables
433  *
434  * Simplified lookup to be used as fallback if no sockets are found due to a
435  * potential race between (receive) address change, and lookup happening before
436  * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
437  * result sockets, because if we have one, we don't need the fallback at all.
438  *
439  * Called under rcu_read_lock().
440  *
441  * Return: socket with highest matching score if any, NULL if none
442  */
443 static struct sock *udp4_lib_lookup1(const struct net *net,
444 				     __be32 saddr, __be16 sport,
445 				     __be32 daddr, unsigned int hnum,
446 				     int dif, int sdif,
447 				     const struct udp_table *udptable)
448 {
449 	unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
450 	struct udp_hslot *hslot = &udptable->hash[slot];
451 	struct sock *sk, *result = NULL;
452 	int score, badness = 0;
453 
454 	sk_for_each_rcu(sk, &hslot->head) {
455 		score = compute_score(sk, net,
456 				      saddr, sport, daddr, hnum, dif, sdif);
457 		if (score > badness) {
458 			result = sk;
459 			badness = score;
460 		}
461 	}
462 
463 	return result;
464 }
465 
466 /* called with rcu_read_lock() */
467 static struct sock *udp4_lib_lookup2(const struct net *net,
468 				     __be32 saddr, __be16 sport,
469 				     __be32 daddr, unsigned int hnum,
470 				     int dif, int sdif,
471 				     struct udp_hslot *hslot2,
472 				     struct sk_buff *skb)
473 {
474 	struct sock *sk, *result;
475 	int score, badness;
476 	bool need_rescore;
477 
478 	result = NULL;
479 	badness = 0;
480 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
481 		need_rescore = false;
482 rescore:
483 		score = compute_score(need_rescore ? result : sk, net, saddr,
484 				      sport, daddr, hnum, dif, sdif);
485 		if (score > badness) {
486 			badness = score;
487 
488 			if (need_rescore)
489 				continue;
490 
491 			if (sk->sk_state == TCP_ESTABLISHED) {
492 				result = sk;
493 				continue;
494 			}
495 
496 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
497 						       saddr, sport, daddr, hnum, udp_ehashfn);
498 			if (!result) {
499 				result = sk;
500 				continue;
501 			}
502 
503 			/* Fall back to scoring if group has connections */
504 			if (!reuseport_has_conns(sk))
505 				return result;
506 
507 			/* Reuseport logic returned an error, keep original score. */
508 			if (IS_ERR(result))
509 				continue;
510 
511 			/* compute_score is too long of a function to be
512 			 * inlined, and calling it again here yields
513 			 * measureable overhead for some
514 			 * workloads. Work around it by jumping
515 			 * backwards to rescore 'result'.
516 			 */
517 			need_rescore = true;
518 			goto rescore;
519 		}
520 	}
521 	return result;
522 }
523 
524 #if IS_ENABLED(CONFIG_BASE_SMALL)
525 static struct sock *udp4_lib_lookup4(const struct net *net,
526 				     __be32 saddr, __be16 sport,
527 				     __be32 daddr, unsigned int hnum,
528 				     int dif, int sdif,
529 				     struct udp_table *udptable)
530 {
531 	return NULL;
532 }
533 
534 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
535 			u16 newhash4)
536 {
537 }
538 
539 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
540 {
541 }
542 #else /* !CONFIG_BASE_SMALL */
543 static struct sock *udp4_lib_lookup4(const struct net *net,
544 				     __be32 saddr, __be16 sport,
545 				     __be32 daddr, unsigned int hnum,
546 				     int dif, int sdif,
547 				     struct udp_table *udptable)
548 {
549 	const __portpair ports = INET_COMBINED_PORTS(sport, hnum);
550 	const struct hlist_nulls_node *node;
551 	struct udp_hslot *hslot4;
552 	unsigned int hash4, slot;
553 	struct udp_sock *up;
554 	struct sock *sk;
555 
556 	hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport);
557 	slot = hash4 & udptable->mask;
558 	hslot4 = &udptable->hash4[slot];
559 	INET_ADDR_COOKIE(acookie, saddr, daddr);
560 
561 begin:
562 	/* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */
563 	udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) {
564 		sk = (struct sock *)up;
565 		if (inet_match(net, sk, acookie, ports, dif, sdif))
566 			return sk;
567 	}
568 
569 	/* if the nulls value we got at the end of this lookup is not the
570 	 * expected one, we must restart lookup. We probably met an item that
571 	 * was moved to another chain due to rehash.
572 	 */
573 	if (get_nulls_value(node) != slot)
574 		goto begin;
575 
576 	return NULL;
577 }
578 
579 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */
580 static void udp_rehash4(struct udp_table *udptable, struct sock *sk,
581 			u16 newhash4)
582 {
583 	struct udp_hslot *hslot4, *nhslot4;
584 
585 	hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
586 	nhslot4 = udp_hashslot4(udptable, newhash4);
587 	udp_sk(sk)->udp_lrpa_hash = newhash4;
588 
589 	if (hslot4 != nhslot4) {
590 		spin_lock_bh(&hslot4->lock);
591 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
592 		hslot4->count--;
593 		spin_unlock_bh(&hslot4->lock);
594 
595 		spin_lock_bh(&nhslot4->lock);
596 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
597 					 &nhslot4->nulls_head);
598 		nhslot4->count++;
599 		spin_unlock_bh(&nhslot4->lock);
600 	}
601 }
602 
603 static void udp_unhash4(struct udp_table *udptable, struct sock *sk)
604 {
605 	struct udp_hslot *hslot2, *hslot4;
606 
607 	if (udp_hashed4(sk)) {
608 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
609 		hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash);
610 
611 		spin_lock(&hslot4->lock);
612 		hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node);
613 		hslot4->count--;
614 		spin_unlock(&hslot4->lock);
615 
616 		spin_lock(&hslot2->lock);
617 		udp_hash4_dec(hslot2);
618 		spin_unlock(&hslot2->lock);
619 	}
620 }
621 
622 void udp_lib_hash4(struct sock *sk, u16 hash)
623 {
624 	struct udp_hslot *hslot, *hslot2, *hslot4;
625 	struct net *net = sock_net(sk);
626 	struct udp_table *udptable;
627 
628 	/* Connected udp socket can re-connect to another remote address, which
629 	 * will be handled by rehash. Thus no need to redo hash4 here.
630 	 */
631 	if (udp_hashed4(sk))
632 		return;
633 
634 	udptable = net->ipv4.udp_table;
635 	hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash);
636 	hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
637 	hslot4 = udp_hashslot4(udptable, hash);
638 	udp_sk(sk)->udp_lrpa_hash = hash;
639 
640 	spin_lock_bh(&hslot->lock);
641 	if (rcu_access_pointer(sk->sk_reuseport_cb))
642 		reuseport_detach_sock(sk);
643 
644 	spin_lock(&hslot4->lock);
645 	hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node,
646 				 &hslot4->nulls_head);
647 	hslot4->count++;
648 	spin_unlock(&hslot4->lock);
649 
650 	spin_lock(&hslot2->lock);
651 	udp_hash4_inc(hslot2);
652 	spin_unlock(&hslot2->lock);
653 
654 	spin_unlock_bh(&hslot->lock);
655 }
656 EXPORT_IPV6_MOD(udp_lib_hash4);
657 
658 /* call with sock lock */
659 void udp4_hash4(struct sock *sk)
660 {
661 	struct net *net = sock_net(sk);
662 	unsigned int hash;
663 
664 	if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY))
665 		return;
666 
667 	hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num,
668 			   sk->sk_daddr, sk->sk_dport);
669 
670 	udp_lib_hash4(sk, hash);
671 }
672 EXPORT_IPV6_MOD(udp4_hash4);
673 #endif /* CONFIG_BASE_SMALL */
674 
675 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
676  * harder than this. -DaveM
677  */
678 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
679 		__be16 sport, __be32 daddr, __be16 dport, int dif,
680 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
681 {
682 	unsigned short hnum = ntohs(dport);
683 	struct udp_hslot *hslot2;
684 	struct sock *result, *sk;
685 	unsigned int hash2;
686 
687 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
688 	hslot2 = udp_hashslot2(udptable, hash2);
689 
690 	if (udp_has_hash4(hslot2)) {
691 		result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum,
692 					  dif, sdif, udptable);
693 		if (result) /* udp4_lib_lookup4 return sk or NULL */
694 			return result;
695 	}
696 
697 	/* Lookup connected or non-wildcard socket */
698 	result = udp4_lib_lookup2(net, saddr, sport,
699 				  daddr, hnum, dif, sdif,
700 				  hslot2, skb);
701 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
702 		goto done;
703 
704 	/* Lookup redirect from BPF */
705 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
706 	    udptable == net->ipv4.udp_table) {
707 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
708 					       saddr, sport, daddr, hnum, dif,
709 					       udp_ehashfn);
710 		if (sk) {
711 			result = sk;
712 			goto done;
713 		}
714 	}
715 
716 	/* Got non-wildcard socket or error on first lookup */
717 	if (result)
718 		goto done;
719 
720 	/* Lookup wildcard sockets */
721 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
722 	hslot2 = udp_hashslot2(udptable, hash2);
723 
724 	result = udp4_lib_lookup2(net, saddr, sport,
725 				  htonl(INADDR_ANY), hnum, dif, sdif,
726 				  hslot2, skb);
727 	if (!IS_ERR_OR_NULL(result))
728 		goto done;
729 
730 	/* Primary hash (destination port) lookup as fallback for this race:
731 	 *   1. __ip4_datagram_connect() sets sk_rcv_saddr
732 	 *   2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
733 	 *   3. rehash operation updating _secondary and four-tuple_ hashes
734 	 * The primary hash doesn't need an update after 1., so, thanks to this
735 	 * further step, 1. and 3. don't need to be atomic against the lookup.
736 	 */
737 	result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
738 				  udptable);
739 
740 done:
741 	if (IS_ERR(result))
742 		return NULL;
743 	return result;
744 }
745 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
746 
747 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
748 						 __be16 sport, __be16 dport,
749 						 struct udp_table *udptable)
750 {
751 	const struct iphdr *iph = ip_hdr(skb);
752 
753 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
754 				 iph->daddr, dport, inet_iif(skb),
755 				 inet_sdif(skb), udptable, skb);
756 }
757 
758 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
759 				 __be16 sport, __be16 dport)
760 {
761 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
762 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
763 	struct net *net = dev_net(skb->dev);
764 	int iif, sdif;
765 
766 	inet_get_iif_sdif(skb, &iif, &sdif);
767 
768 	return __udp4_lib_lookup(net, iph->saddr, sport,
769 				 iph->daddr, dport, iif,
770 				 sdif, net->ipv4.udp_table, NULL);
771 }
772 
773 /* Must be called under rcu_read_lock().
774  * Does increment socket refcount.
775  */
776 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
777 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
778 			     __be32 daddr, __be16 dport, int dif)
779 {
780 	struct sock *sk;
781 
782 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
783 			       dif, 0, net->ipv4.udp_table, NULL);
784 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
785 		sk = NULL;
786 	return sk;
787 }
788 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
789 #endif
790 
791 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
792 				       __be16 loc_port, __be32 loc_addr,
793 				       __be16 rmt_port, __be32 rmt_addr,
794 				       int dif, int sdif, unsigned short hnum)
795 {
796 	const struct inet_sock *inet = inet_sk(sk);
797 
798 	if (!net_eq(sock_net(sk), net) ||
799 	    udp_sk(sk)->udp_port_hash != hnum ||
800 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
801 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
802 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
803 	    ipv6_only_sock(sk) ||
804 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
805 		return false;
806 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
807 		return false;
808 	return true;
809 }
810 
811 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
812 EXPORT_IPV6_MOD(udp_encap_needed_key);
813 
814 #if IS_ENABLED(CONFIG_IPV6)
815 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
816 EXPORT_IPV6_MOD(udpv6_encap_needed_key);
817 #endif
818 
819 void udp_encap_enable(void)
820 {
821 	static_branch_inc(&udp_encap_needed_key);
822 }
823 EXPORT_SYMBOL(udp_encap_enable);
824 
825 void udp_encap_disable(void)
826 {
827 	static_branch_dec(&udp_encap_needed_key);
828 }
829 EXPORT_SYMBOL(udp_encap_disable);
830 
831 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
832  * through error handlers in encapsulations looking for a match.
833  */
834 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
835 {
836 	int i;
837 
838 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
839 		int (*handler)(struct sk_buff *skb, u32 info);
840 		const struct ip_tunnel_encap_ops *encap;
841 
842 		encap = rcu_dereference(iptun_encaps[i]);
843 		if (!encap)
844 			continue;
845 		handler = encap->err_handler;
846 		if (handler && !handler(skb, info))
847 			return 0;
848 	}
849 
850 	return -ENOENT;
851 }
852 
853 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
854  * reversing source and destination port: this will match tunnels that force the
855  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
856  * lwtunnels might actually break this assumption by being configured with
857  * different destination ports on endpoints, in this case we won't be able to
858  * trace ICMP messages back to them.
859  *
860  * If this doesn't match any socket, probe tunnels with arbitrary destination
861  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
862  * we've sent packets to won't necessarily match the local destination port.
863  *
864  * Then ask the tunnel implementation to match the error against a valid
865  * association.
866  *
867  * Return an error if we can't find a match, the socket if we need further
868  * processing, zero otherwise.
869  */
870 static struct sock *__udp4_lib_err_encap(struct net *net,
871 					 const struct iphdr *iph,
872 					 struct udphdr *uh,
873 					 struct udp_table *udptable,
874 					 struct sock *sk,
875 					 struct sk_buff *skb, u32 info)
876 {
877 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
878 	int network_offset, transport_offset;
879 	struct udp_sock *up;
880 
881 	network_offset = skb_network_offset(skb);
882 	transport_offset = skb_transport_offset(skb);
883 
884 	/* Network header needs to point to the outer IPv4 header inside ICMP */
885 	skb_reset_network_header(skb);
886 
887 	/* Transport header needs to point to the UDP header */
888 	skb_set_transport_header(skb, iph->ihl << 2);
889 
890 	if (sk) {
891 		up = udp_sk(sk);
892 
893 		lookup = READ_ONCE(up->encap_err_lookup);
894 		if (lookup && lookup(sk, skb))
895 			sk = NULL;
896 
897 		goto out;
898 	}
899 
900 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
901 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
902 			       udptable, NULL);
903 	if (sk) {
904 		up = udp_sk(sk);
905 
906 		lookup = READ_ONCE(up->encap_err_lookup);
907 		if (!lookup || lookup(sk, skb))
908 			sk = NULL;
909 	}
910 
911 out:
912 	if (!sk)
913 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
914 
915 	skb_set_transport_header(skb, transport_offset);
916 	skb_set_network_header(skb, network_offset);
917 
918 	return sk;
919 }
920 
921 /*
922  * This routine is called by the ICMP module when it gets some
923  * sort of error condition.  If err < 0 then the socket should
924  * be closed and the error returned to the user.  If err > 0
925  * it's just the icmp type << 8 | icmp code.
926  * Header points to the ip header of the error packet. We move
927  * on past this. Then (as it used to claim before adjustment)
928  * header points to the first 8 bytes of the udp header.  We need
929  * to find the appropriate port.
930  */
931 
932 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
933 {
934 	struct inet_sock *inet;
935 	const struct iphdr *iph = (const struct iphdr *)skb->data;
936 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
937 	const int type = icmp_hdr(skb)->type;
938 	const int code = icmp_hdr(skb)->code;
939 	bool tunnel = false;
940 	struct sock *sk;
941 	int harderr;
942 	int err;
943 	struct net *net = dev_net(skb->dev);
944 
945 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
946 			       iph->saddr, uh->source, skb->dev->ifindex,
947 			       inet_sdif(skb), udptable, NULL);
948 
949 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
950 		/* No socket for error: try tunnels before discarding */
951 		if (static_branch_unlikely(&udp_encap_needed_key)) {
952 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
953 						  info);
954 			if (!sk)
955 				return 0;
956 		} else
957 			sk = ERR_PTR(-ENOENT);
958 
959 		if (IS_ERR(sk)) {
960 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
961 			return PTR_ERR(sk);
962 		}
963 
964 		tunnel = true;
965 	}
966 
967 	err = 0;
968 	harderr = 0;
969 	inet = inet_sk(sk);
970 
971 	switch (type) {
972 	default:
973 	case ICMP_TIME_EXCEEDED:
974 		err = EHOSTUNREACH;
975 		break;
976 	case ICMP_SOURCE_QUENCH:
977 		goto out;
978 	case ICMP_PARAMETERPROB:
979 		err = EPROTO;
980 		harderr = 1;
981 		break;
982 	case ICMP_DEST_UNREACH:
983 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
984 			ipv4_sk_update_pmtu(skb, sk, info);
985 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
986 				err = EMSGSIZE;
987 				harderr = 1;
988 				break;
989 			}
990 			goto out;
991 		}
992 		err = EHOSTUNREACH;
993 		if (code <= NR_ICMP_UNREACH) {
994 			harderr = icmp_err_convert[code].fatal;
995 			err = icmp_err_convert[code].errno;
996 		}
997 		break;
998 	case ICMP_REDIRECT:
999 		ipv4_sk_redirect(skb, sk);
1000 		goto out;
1001 	}
1002 
1003 	/*
1004 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
1005 	 *	4.1.3.3.
1006 	 */
1007 	if (tunnel) {
1008 		/* ...not for tunnels though: we don't have a sending socket */
1009 		if (udp_sk(sk)->encap_err_rcv)
1010 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
1011 						  (u8 *)(uh+1));
1012 		goto out;
1013 	}
1014 	if (!inet_test_bit(RECVERR, sk)) {
1015 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
1016 			goto out;
1017 	} else
1018 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
1019 
1020 	sk->sk_err = err;
1021 	sk_error_report(sk);
1022 out:
1023 	return 0;
1024 }
1025 
1026 int udp_err(struct sk_buff *skb, u32 info)
1027 {
1028 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
1029 }
1030 
1031 /*
1032  * Throw away all pending data and cancel the corking. Socket is locked.
1033  */
1034 void udp_flush_pending_frames(struct sock *sk)
1035 {
1036 	struct udp_sock *up = udp_sk(sk);
1037 
1038 	if (up->pending) {
1039 		up->len = 0;
1040 		WRITE_ONCE(up->pending, 0);
1041 		ip_flush_pending_frames(sk);
1042 	}
1043 }
1044 EXPORT_IPV6_MOD(udp_flush_pending_frames);
1045 
1046 /**
1047  * 	udp4_hwcsum  -  handle outgoing HW checksumming
1048  * 	@skb: 	sk_buff containing the filled-in UDP header
1049  * 	        (checksum field must be zeroed out)
1050  *	@src:	source IP address
1051  *	@dst:	destination IP address
1052  */
1053 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
1054 {
1055 	struct udphdr *uh = udp_hdr(skb);
1056 	int offset = skb_transport_offset(skb);
1057 	int len = skb->len - offset;
1058 	int hlen = len;
1059 	__wsum csum = 0;
1060 
1061 	if (!skb_has_frag_list(skb)) {
1062 		/*
1063 		 * Only one fragment on the socket.
1064 		 */
1065 		skb->csum_start = skb_transport_header(skb) - skb->head;
1066 		skb->csum_offset = offsetof(struct udphdr, check);
1067 		uh->check = ~csum_tcpudp_magic(src, dst, len,
1068 					       IPPROTO_UDP, 0);
1069 	} else {
1070 		struct sk_buff *frags;
1071 
1072 		/*
1073 		 * HW-checksum won't work as there are two or more
1074 		 * fragments on the socket so that all csums of sk_buffs
1075 		 * should be together
1076 		 */
1077 		skb_walk_frags(skb, frags) {
1078 			csum = csum_add(csum, frags->csum);
1079 			hlen -= frags->len;
1080 		}
1081 
1082 		csum = skb_checksum(skb, offset, hlen, csum);
1083 		skb->ip_summed = CHECKSUM_NONE;
1084 
1085 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
1086 		if (uh->check == 0)
1087 			uh->check = CSUM_MANGLED_0;
1088 	}
1089 }
1090 EXPORT_SYMBOL_GPL(udp4_hwcsum);
1091 
1092 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
1093  * for the simple case like when setting the checksum for a UDP tunnel.
1094  */
1095 void udp_set_csum(bool nocheck, struct sk_buff *skb,
1096 		  __be32 saddr, __be32 daddr, int len)
1097 {
1098 	struct udphdr *uh = udp_hdr(skb);
1099 
1100 	if (nocheck) {
1101 		uh->check = 0;
1102 	} else if (skb_is_gso(skb)) {
1103 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1104 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1105 		uh->check = 0;
1106 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
1107 		if (uh->check == 0)
1108 			uh->check = CSUM_MANGLED_0;
1109 	} else {
1110 		skb->ip_summed = CHECKSUM_PARTIAL;
1111 		skb->csum_start = skb_transport_header(skb) - skb->head;
1112 		skb->csum_offset = offsetof(struct udphdr, check);
1113 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
1114 	}
1115 }
1116 EXPORT_SYMBOL(udp_set_csum);
1117 
1118 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
1119 			struct inet_cork *cork)
1120 {
1121 	struct sock *sk = skb->sk;
1122 	struct inet_sock *inet = inet_sk(sk);
1123 	struct udphdr *uh;
1124 	int err;
1125 	int is_udplite = IS_UDPLITE(sk);
1126 	int offset = skb_transport_offset(skb);
1127 	int len = skb->len - offset;
1128 	int datalen = len - sizeof(*uh);
1129 	__wsum csum = 0;
1130 
1131 	/*
1132 	 * Create a UDP header
1133 	 */
1134 	uh = udp_hdr(skb);
1135 	uh->source = inet->inet_sport;
1136 	uh->dest = fl4->fl4_dport;
1137 	uh->len = htons(len);
1138 	uh->check = 0;
1139 
1140 	if (cork->gso_size) {
1141 		const int hlen = skb_network_header_len(skb) +
1142 				 sizeof(struct udphdr);
1143 
1144 		if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
1145 			kfree_skb(skb);
1146 			return -EMSGSIZE;
1147 		}
1148 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
1149 			kfree_skb(skb);
1150 			return -EINVAL;
1151 		}
1152 		if (sk->sk_no_check_tx) {
1153 			kfree_skb(skb);
1154 			return -EINVAL;
1155 		}
1156 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1157 			kfree_skb(skb);
1158 			return -EIO;
1159 		}
1160 
1161 		if (datalen > cork->gso_size) {
1162 			skb_shinfo(skb)->gso_size = cork->gso_size;
1163 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1164 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1165 								 cork->gso_size);
1166 
1167 			/* Don't checksum the payload, skb will get segmented */
1168 			goto csum_partial;
1169 		}
1170 	}
1171 
1172 	if (is_udplite)  				 /*     UDP-Lite      */
1173 		csum = udplite_csum(skb);
1174 
1175 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1176 
1177 		skb->ip_summed = CHECKSUM_NONE;
1178 		goto send;
1179 
1180 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1181 csum_partial:
1182 
1183 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1184 		goto send;
1185 
1186 	} else
1187 		csum = udp_csum(skb);
1188 
1189 	/* add protocol-dependent pseudo-header */
1190 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1191 				      sk->sk_protocol, csum);
1192 	if (uh->check == 0)
1193 		uh->check = CSUM_MANGLED_0;
1194 
1195 send:
1196 	err = ip_send_skb(sock_net(sk), skb);
1197 	if (err) {
1198 		if (err == -ENOBUFS &&
1199 		    !inet_test_bit(RECVERR, sk)) {
1200 			UDP_INC_STATS(sock_net(sk),
1201 				      UDP_MIB_SNDBUFERRORS, is_udplite);
1202 			err = 0;
1203 		}
1204 	} else
1205 		UDP_INC_STATS(sock_net(sk),
1206 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1207 	return err;
1208 }
1209 
1210 /*
1211  * Push out all pending data as one UDP datagram. Socket is locked.
1212  */
1213 int udp_push_pending_frames(struct sock *sk)
1214 {
1215 	struct udp_sock  *up = udp_sk(sk);
1216 	struct inet_sock *inet = inet_sk(sk);
1217 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1218 	struct sk_buff *skb;
1219 	int err = 0;
1220 
1221 	skb = ip_finish_skb(sk, fl4);
1222 	if (!skb)
1223 		goto out;
1224 
1225 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1226 
1227 out:
1228 	up->len = 0;
1229 	WRITE_ONCE(up->pending, 0);
1230 	return err;
1231 }
1232 EXPORT_IPV6_MOD(udp_push_pending_frames);
1233 
1234 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1235 {
1236 	switch (cmsg->cmsg_type) {
1237 	case UDP_SEGMENT:
1238 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1239 			return -EINVAL;
1240 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1241 		return 0;
1242 	default:
1243 		return -EINVAL;
1244 	}
1245 }
1246 
1247 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1248 {
1249 	struct cmsghdr *cmsg;
1250 	bool need_ip = false;
1251 	int err;
1252 
1253 	for_each_cmsghdr(cmsg, msg) {
1254 		if (!CMSG_OK(msg, cmsg))
1255 			return -EINVAL;
1256 
1257 		if (cmsg->cmsg_level != SOL_UDP) {
1258 			need_ip = true;
1259 			continue;
1260 		}
1261 
1262 		err = __udp_cmsg_send(cmsg, gso_size);
1263 		if (err)
1264 			return err;
1265 	}
1266 
1267 	return need_ip;
1268 }
1269 EXPORT_IPV6_MOD_GPL(udp_cmsg_send);
1270 
1271 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1272 {
1273 	struct inet_sock *inet = inet_sk(sk);
1274 	struct udp_sock *up = udp_sk(sk);
1275 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1276 	struct flowi4 fl4_stack;
1277 	struct flowi4 *fl4;
1278 	int ulen = len;
1279 	struct ipcm_cookie ipc;
1280 	struct rtable *rt = NULL;
1281 	int free = 0;
1282 	int connected = 0;
1283 	__be32 daddr, faddr, saddr;
1284 	u8 scope;
1285 	__be16 dport;
1286 	int err, is_udplite = IS_UDPLITE(sk);
1287 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1288 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1289 	struct sk_buff *skb;
1290 	struct ip_options_data opt_copy;
1291 	int uc_index;
1292 
1293 	if (len > 0xFFFF)
1294 		return -EMSGSIZE;
1295 
1296 	/*
1297 	 *	Check the flags.
1298 	 */
1299 
1300 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1301 		return -EOPNOTSUPP;
1302 
1303 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1304 
1305 	fl4 = &inet->cork.fl.u.ip4;
1306 	if (READ_ONCE(up->pending)) {
1307 		/*
1308 		 * There are pending frames.
1309 		 * The socket lock must be held while it's corked.
1310 		 */
1311 		lock_sock(sk);
1312 		if (likely(up->pending)) {
1313 			if (unlikely(up->pending != AF_INET)) {
1314 				release_sock(sk);
1315 				return -EINVAL;
1316 			}
1317 			goto do_append_data;
1318 		}
1319 		release_sock(sk);
1320 	}
1321 	ulen += sizeof(struct udphdr);
1322 
1323 	/*
1324 	 *	Get and verify the address.
1325 	 */
1326 	if (usin) {
1327 		if (msg->msg_namelen < sizeof(*usin))
1328 			return -EINVAL;
1329 		if (usin->sin_family != AF_INET) {
1330 			if (usin->sin_family != AF_UNSPEC)
1331 				return -EAFNOSUPPORT;
1332 		}
1333 
1334 		daddr = usin->sin_addr.s_addr;
1335 		dport = usin->sin_port;
1336 		if (dport == 0)
1337 			return -EINVAL;
1338 	} else {
1339 		if (sk->sk_state != TCP_ESTABLISHED)
1340 			return -EDESTADDRREQ;
1341 		daddr = inet->inet_daddr;
1342 		dport = inet->inet_dport;
1343 		/* Open fast path for connected socket.
1344 		   Route will not be used, if at least one option is set.
1345 		 */
1346 		connected = 1;
1347 	}
1348 
1349 	ipcm_init_sk(&ipc, inet);
1350 	ipc.gso_size = READ_ONCE(up->gso_size);
1351 
1352 	if (msg->msg_controllen) {
1353 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1354 		if (err > 0) {
1355 			err = ip_cmsg_send(sk, msg, &ipc,
1356 					   sk->sk_family == AF_INET6);
1357 			connected = 0;
1358 		}
1359 		if (unlikely(err < 0)) {
1360 			kfree(ipc.opt);
1361 			return err;
1362 		}
1363 		if (ipc.opt)
1364 			free = 1;
1365 	}
1366 	if (!ipc.opt) {
1367 		struct ip_options_rcu *inet_opt;
1368 
1369 		rcu_read_lock();
1370 		inet_opt = rcu_dereference(inet->inet_opt);
1371 		if (inet_opt) {
1372 			memcpy(&opt_copy, inet_opt,
1373 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1374 			ipc.opt = &opt_copy.opt;
1375 		}
1376 		rcu_read_unlock();
1377 	}
1378 
1379 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1380 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1381 					    (struct sockaddr *)usin,
1382 					    &msg->msg_namelen,
1383 					    &ipc.addr);
1384 		if (err)
1385 			goto out_free;
1386 		if (usin) {
1387 			if (usin->sin_port == 0) {
1388 				/* BPF program set invalid port. Reject it. */
1389 				err = -EINVAL;
1390 				goto out_free;
1391 			}
1392 			daddr = usin->sin_addr.s_addr;
1393 			dport = usin->sin_port;
1394 		}
1395 	}
1396 
1397 	saddr = ipc.addr;
1398 	ipc.addr = faddr = daddr;
1399 
1400 	if (ipc.opt && ipc.opt->opt.srr) {
1401 		if (!daddr) {
1402 			err = -EINVAL;
1403 			goto out_free;
1404 		}
1405 		faddr = ipc.opt->opt.faddr;
1406 		connected = 0;
1407 	}
1408 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1409 	if (scope == RT_SCOPE_LINK)
1410 		connected = 0;
1411 
1412 	uc_index = READ_ONCE(inet->uc_index);
1413 	if (ipv4_is_multicast(daddr)) {
1414 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1415 			ipc.oif = READ_ONCE(inet->mc_index);
1416 		if (!saddr)
1417 			saddr = READ_ONCE(inet->mc_addr);
1418 		connected = 0;
1419 	} else if (!ipc.oif) {
1420 		ipc.oif = uc_index;
1421 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1422 		/* oif is set, packet is to local broadcast and
1423 		 * uc_index is set. oif is most likely set
1424 		 * by sk_bound_dev_if. If uc_index != oif check if the
1425 		 * oif is an L3 master and uc_index is an L3 slave.
1426 		 * If so, we want to allow the send using the uc_index.
1427 		 */
1428 		if (ipc.oif != uc_index &&
1429 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1430 							      uc_index)) {
1431 			ipc.oif = uc_index;
1432 		}
1433 	}
1434 
1435 	if (connected)
1436 		rt = dst_rtable(sk_dst_check(sk, 0));
1437 
1438 	if (!rt) {
1439 		struct net *net = sock_net(sk);
1440 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1441 
1442 		fl4 = &fl4_stack;
1443 
1444 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark,
1445 				   ipc.tos & INET_DSCP_MASK, scope,
1446 				   sk->sk_protocol, flow_flags, faddr, saddr,
1447 				   dport, inet->inet_sport, sk->sk_uid);
1448 
1449 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1450 		rt = ip_route_output_flow(net, fl4, sk);
1451 		if (IS_ERR(rt)) {
1452 			err = PTR_ERR(rt);
1453 			rt = NULL;
1454 			if (err == -ENETUNREACH)
1455 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1456 			goto out;
1457 		}
1458 
1459 		err = -EACCES;
1460 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1461 		    !sock_flag(sk, SOCK_BROADCAST))
1462 			goto out;
1463 		if (connected)
1464 			sk_dst_set(sk, dst_clone(&rt->dst));
1465 	}
1466 
1467 	if (msg->msg_flags&MSG_CONFIRM)
1468 		goto do_confirm;
1469 back_from_confirm:
1470 
1471 	saddr = fl4->saddr;
1472 	if (!ipc.addr)
1473 		daddr = ipc.addr = fl4->daddr;
1474 
1475 	/* Lockless fast path for the non-corking case. */
1476 	if (!corkreq) {
1477 		struct inet_cork cork;
1478 
1479 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1480 				  sizeof(struct udphdr), &ipc, &rt,
1481 				  &cork, msg->msg_flags);
1482 		err = PTR_ERR(skb);
1483 		if (!IS_ERR_OR_NULL(skb))
1484 			err = udp_send_skb(skb, fl4, &cork);
1485 		goto out;
1486 	}
1487 
1488 	lock_sock(sk);
1489 	if (unlikely(up->pending)) {
1490 		/* The socket is already corked while preparing it. */
1491 		/* ... which is an evident application bug. --ANK */
1492 		release_sock(sk);
1493 
1494 		net_dbg_ratelimited("socket already corked\n");
1495 		err = -EINVAL;
1496 		goto out;
1497 	}
1498 	/*
1499 	 *	Now cork the socket to pend data.
1500 	 */
1501 	fl4 = &inet->cork.fl.u.ip4;
1502 	fl4->daddr = daddr;
1503 	fl4->saddr = saddr;
1504 	fl4->fl4_dport = dport;
1505 	fl4->fl4_sport = inet->inet_sport;
1506 	WRITE_ONCE(up->pending, AF_INET);
1507 
1508 do_append_data:
1509 	up->len += ulen;
1510 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1511 			     sizeof(struct udphdr), &ipc, &rt,
1512 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1513 	if (err)
1514 		udp_flush_pending_frames(sk);
1515 	else if (!corkreq)
1516 		err = udp_push_pending_frames(sk);
1517 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1518 		WRITE_ONCE(up->pending, 0);
1519 	release_sock(sk);
1520 
1521 out:
1522 	ip_rt_put(rt);
1523 out_free:
1524 	if (free)
1525 		kfree(ipc.opt);
1526 	if (!err)
1527 		return len;
1528 	/*
1529 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1530 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1531 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1532 	 * things).  We could add another new stat but at least for now that
1533 	 * seems like overkill.
1534 	 */
1535 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1536 		UDP_INC_STATS(sock_net(sk),
1537 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1538 	}
1539 	return err;
1540 
1541 do_confirm:
1542 	if (msg->msg_flags & MSG_PROBE)
1543 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1544 	if (!(msg->msg_flags&MSG_PROBE) || len)
1545 		goto back_from_confirm;
1546 	err = 0;
1547 	goto out;
1548 }
1549 EXPORT_SYMBOL(udp_sendmsg);
1550 
1551 void udp_splice_eof(struct socket *sock)
1552 {
1553 	struct sock *sk = sock->sk;
1554 	struct udp_sock *up = udp_sk(sk);
1555 
1556 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1557 		return;
1558 
1559 	lock_sock(sk);
1560 	if (up->pending && !udp_test_bit(CORK, sk))
1561 		udp_push_pending_frames(sk);
1562 	release_sock(sk);
1563 }
1564 EXPORT_IPV6_MOD_GPL(udp_splice_eof);
1565 
1566 #define UDP_SKB_IS_STATELESS 0x80000000
1567 
1568 /* all head states (dst, sk, nf conntrack) except skb extensions are
1569  * cleared by udp_rcv().
1570  *
1571  * We need to preserve secpath, if present, to eventually process
1572  * IP_CMSG_PASSSEC at recvmsg() time.
1573  *
1574  * Other extensions can be cleared.
1575  */
1576 static bool udp_try_make_stateless(struct sk_buff *skb)
1577 {
1578 	if (!skb_has_extensions(skb))
1579 		return true;
1580 
1581 	if (!secpath_exists(skb)) {
1582 		skb_ext_reset(skb);
1583 		return true;
1584 	}
1585 
1586 	return false;
1587 }
1588 
1589 static void udp_set_dev_scratch(struct sk_buff *skb)
1590 {
1591 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1592 
1593 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1594 	scratch->_tsize_state = skb->truesize;
1595 #if BITS_PER_LONG == 64
1596 	scratch->len = skb->len;
1597 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1598 	scratch->is_linear = !skb_is_nonlinear(skb);
1599 #endif
1600 	if (udp_try_make_stateless(skb))
1601 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1602 }
1603 
1604 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1605 {
1606 	/* We come here after udp_lib_checksum_complete() returned 0.
1607 	 * This means that __skb_checksum_complete() might have
1608 	 * set skb->csum_valid to 1.
1609 	 * On 64bit platforms, we can set csum_unnecessary
1610 	 * to true, but only if the skb is not shared.
1611 	 */
1612 #if BITS_PER_LONG == 64
1613 	if (!skb_shared(skb))
1614 		udp_skb_scratch(skb)->csum_unnecessary = true;
1615 #endif
1616 }
1617 
1618 static int udp_skb_truesize(struct sk_buff *skb)
1619 {
1620 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1621 }
1622 
1623 static bool udp_skb_has_head_state(struct sk_buff *skb)
1624 {
1625 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1626 }
1627 
1628 /* fully reclaim rmem/fwd memory allocated for skb */
1629 static void udp_rmem_release(struct sock *sk, unsigned int size,
1630 			     int partial, bool rx_queue_lock_held)
1631 {
1632 	struct udp_sock *up = udp_sk(sk);
1633 	struct sk_buff_head *sk_queue;
1634 	unsigned int amt;
1635 
1636 	if (likely(partial)) {
1637 		up->forward_deficit += size;
1638 		size = up->forward_deficit;
1639 		if (size < READ_ONCE(up->forward_threshold) &&
1640 		    !skb_queue_empty(&up->reader_queue))
1641 			return;
1642 	} else {
1643 		size += up->forward_deficit;
1644 	}
1645 	up->forward_deficit = 0;
1646 
1647 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1648 	 * if the called don't held it already
1649 	 */
1650 	sk_queue = &sk->sk_receive_queue;
1651 	if (!rx_queue_lock_held)
1652 		spin_lock(&sk_queue->lock);
1653 
1654 	amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1655 	sk_forward_alloc_add(sk, size - amt);
1656 
1657 	if (amt)
1658 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1659 
1660 	atomic_sub(size, &sk->sk_rmem_alloc);
1661 
1662 	/* this can save us from acquiring the rx queue lock on next receive */
1663 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1664 
1665 	if (!rx_queue_lock_held)
1666 		spin_unlock(&sk_queue->lock);
1667 }
1668 
1669 /* Note: called with reader_queue.lock held.
1670  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1671  * This avoids a cache line miss while receive_queue lock is held.
1672  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1673  */
1674 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1675 {
1676 	prefetch(&skb->data);
1677 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1678 }
1679 EXPORT_IPV6_MOD(udp_skb_destructor);
1680 
1681 /* as above, but the caller held the rx queue lock, too */
1682 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1683 {
1684 	prefetch(&skb->data);
1685 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1686 }
1687 
1688 /* Idea of busylocks is to let producers grab an extra spinlock
1689  * to relieve pressure on the receive_queue spinlock shared by consumer.
1690  * Under flood, this means that only one producer can be in line
1691  * trying to acquire the receive_queue spinlock.
1692  * These busylock can be allocated on a per cpu manner, instead of a
1693  * per socket one (that would consume a cache line per socket)
1694  */
1695 static int udp_busylocks_log __read_mostly;
1696 static spinlock_t *udp_busylocks __read_mostly;
1697 
1698 static spinlock_t *busylock_acquire(void *ptr)
1699 {
1700 	spinlock_t *busy;
1701 
1702 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1703 	spin_lock(busy);
1704 	return busy;
1705 }
1706 
1707 static void busylock_release(spinlock_t *busy)
1708 {
1709 	if (busy)
1710 		spin_unlock(busy);
1711 }
1712 
1713 static int udp_rmem_schedule(struct sock *sk, int size)
1714 {
1715 	int delta;
1716 
1717 	delta = size - sk->sk_forward_alloc;
1718 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1719 		return -ENOBUFS;
1720 
1721 	return 0;
1722 }
1723 
1724 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1725 {
1726 	struct sk_buff_head *list = &sk->sk_receive_queue;
1727 	unsigned int rmem, rcvbuf;
1728 	spinlock_t *busy = NULL;
1729 	int size, err = -ENOMEM;
1730 
1731 	rmem = atomic_read(&sk->sk_rmem_alloc);
1732 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1733 	size = skb->truesize;
1734 
1735 	/* Immediately drop when the receive queue is full.
1736 	 * Cast to unsigned int performs the boundary check for INT_MAX.
1737 	 */
1738 	if (rmem + size > rcvbuf) {
1739 		if (rcvbuf > INT_MAX >> 1)
1740 			goto drop;
1741 
1742 		/* Always allow at least one packet for small buffer. */
1743 		if (rmem > rcvbuf)
1744 			goto drop;
1745 	}
1746 
1747 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1748 	 * having linear skbs :
1749 	 * - Reduce memory overhead and thus increase receive queue capacity
1750 	 * - Less cache line misses at copyout() time
1751 	 * - Less work at consume_skb() (less alien page frag freeing)
1752 	 */
1753 	if (rmem > (rcvbuf >> 1)) {
1754 		skb_condense(skb);
1755 		size = skb->truesize;
1756 		busy = busylock_acquire(sk);
1757 	}
1758 
1759 	udp_set_dev_scratch(skb);
1760 
1761 	atomic_add(size, &sk->sk_rmem_alloc);
1762 
1763 	spin_lock(&list->lock);
1764 	err = udp_rmem_schedule(sk, size);
1765 	if (err) {
1766 		spin_unlock(&list->lock);
1767 		goto uncharge_drop;
1768 	}
1769 
1770 	sk_forward_alloc_add(sk, -size);
1771 
1772 	/* no need to setup a destructor, we will explicitly release the
1773 	 * forward allocated memory on dequeue
1774 	 */
1775 	sock_skb_set_dropcount(sk, skb);
1776 
1777 	__skb_queue_tail(list, skb);
1778 	spin_unlock(&list->lock);
1779 
1780 	if (!sock_flag(sk, SOCK_DEAD))
1781 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1782 
1783 	busylock_release(busy);
1784 	return 0;
1785 
1786 uncharge_drop:
1787 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1788 
1789 drop:
1790 	atomic_inc(&sk->sk_drops);
1791 	busylock_release(busy);
1792 	return err;
1793 }
1794 EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb);
1795 
1796 void udp_destruct_common(struct sock *sk)
1797 {
1798 	/* reclaim completely the forward allocated memory */
1799 	struct udp_sock *up = udp_sk(sk);
1800 	unsigned int total = 0;
1801 	struct sk_buff *skb;
1802 
1803 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1804 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1805 		total += skb->truesize;
1806 		kfree_skb(skb);
1807 	}
1808 	udp_rmem_release(sk, total, 0, true);
1809 }
1810 EXPORT_IPV6_MOD_GPL(udp_destruct_common);
1811 
1812 static void udp_destruct_sock(struct sock *sk)
1813 {
1814 	udp_destruct_common(sk);
1815 	inet_sock_destruct(sk);
1816 }
1817 
1818 int udp_init_sock(struct sock *sk)
1819 {
1820 	udp_lib_init_sock(sk);
1821 	sk->sk_destruct = udp_destruct_sock;
1822 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1823 	return 0;
1824 }
1825 
1826 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1827 {
1828 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1829 		sk_peek_offset_bwd(sk, len);
1830 
1831 	if (!skb_unref(skb))
1832 		return;
1833 
1834 	/* In the more common cases we cleared the head states previously,
1835 	 * see __udp_queue_rcv_skb().
1836 	 */
1837 	if (unlikely(udp_skb_has_head_state(skb)))
1838 		skb_release_head_state(skb);
1839 	__consume_stateless_skb(skb);
1840 }
1841 EXPORT_IPV6_MOD_GPL(skb_consume_udp);
1842 
1843 static struct sk_buff *__first_packet_length(struct sock *sk,
1844 					     struct sk_buff_head *rcvq,
1845 					     unsigned int *total)
1846 {
1847 	struct sk_buff *skb;
1848 
1849 	while ((skb = skb_peek(rcvq)) != NULL) {
1850 		if (udp_lib_checksum_complete(skb)) {
1851 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1852 					IS_UDPLITE(sk));
1853 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1854 					IS_UDPLITE(sk));
1855 			atomic_inc(&sk->sk_drops);
1856 			__skb_unlink(skb, rcvq);
1857 			*total += skb->truesize;
1858 			kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
1859 		} else {
1860 			udp_skb_csum_unnecessary_set(skb);
1861 			break;
1862 		}
1863 	}
1864 	return skb;
1865 }
1866 
1867 /**
1868  *	first_packet_length	- return length of first packet in receive queue
1869  *	@sk: socket
1870  *
1871  *	Drops all bad checksum frames, until a valid one is found.
1872  *	Returns the length of found skb, or -1 if none is found.
1873  */
1874 static int first_packet_length(struct sock *sk)
1875 {
1876 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1877 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1878 	unsigned int total = 0;
1879 	struct sk_buff *skb;
1880 	int res;
1881 
1882 	spin_lock_bh(&rcvq->lock);
1883 	skb = __first_packet_length(sk, rcvq, &total);
1884 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1885 		spin_lock(&sk_queue->lock);
1886 		skb_queue_splice_tail_init(sk_queue, rcvq);
1887 		spin_unlock(&sk_queue->lock);
1888 
1889 		skb = __first_packet_length(sk, rcvq, &total);
1890 	}
1891 	res = skb ? skb->len : -1;
1892 	if (total)
1893 		udp_rmem_release(sk, total, 1, false);
1894 	spin_unlock_bh(&rcvq->lock);
1895 	return res;
1896 }
1897 
1898 /*
1899  *	IOCTL requests applicable to the UDP protocol
1900  */
1901 
1902 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1903 {
1904 	switch (cmd) {
1905 	case SIOCOUTQ:
1906 	{
1907 		*karg = sk_wmem_alloc_get(sk);
1908 		return 0;
1909 	}
1910 
1911 	case SIOCINQ:
1912 	{
1913 		*karg = max_t(int, 0, first_packet_length(sk));
1914 		return 0;
1915 	}
1916 
1917 	default:
1918 		return -ENOIOCTLCMD;
1919 	}
1920 
1921 	return 0;
1922 }
1923 EXPORT_IPV6_MOD(udp_ioctl);
1924 
1925 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1926 			       int *off, int *err)
1927 {
1928 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1929 	struct sk_buff_head *queue;
1930 	struct sk_buff *last;
1931 	long timeo;
1932 	int error;
1933 
1934 	queue = &udp_sk(sk)->reader_queue;
1935 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1936 	do {
1937 		struct sk_buff *skb;
1938 
1939 		error = sock_error(sk);
1940 		if (error)
1941 			break;
1942 
1943 		error = -EAGAIN;
1944 		do {
1945 			spin_lock_bh(&queue->lock);
1946 			skb = __skb_try_recv_from_queue(queue, flags, off, err,
1947 							&last);
1948 			if (skb) {
1949 				if (!(flags & MSG_PEEK))
1950 					udp_skb_destructor(sk, skb);
1951 				spin_unlock_bh(&queue->lock);
1952 				return skb;
1953 			}
1954 
1955 			if (skb_queue_empty_lockless(sk_queue)) {
1956 				spin_unlock_bh(&queue->lock);
1957 				goto busy_check;
1958 			}
1959 
1960 			/* refill the reader queue and walk it again
1961 			 * keep both queues locked to avoid re-acquiring
1962 			 * the sk_receive_queue lock if fwd memory scheduling
1963 			 * is needed.
1964 			 */
1965 			spin_lock(&sk_queue->lock);
1966 			skb_queue_splice_tail_init(sk_queue, queue);
1967 
1968 			skb = __skb_try_recv_from_queue(queue, flags, off, err,
1969 							&last);
1970 			if (skb && !(flags & MSG_PEEK))
1971 				udp_skb_dtor_locked(sk, skb);
1972 			spin_unlock(&sk_queue->lock);
1973 			spin_unlock_bh(&queue->lock);
1974 			if (skb)
1975 				return skb;
1976 
1977 busy_check:
1978 			if (!sk_can_busy_loop(sk))
1979 				break;
1980 
1981 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1982 		} while (!skb_queue_empty_lockless(sk_queue));
1983 
1984 		/* sk_queue is empty, reader_queue may contain peeked packets */
1985 	} while (timeo &&
1986 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1987 					      &error, &timeo,
1988 					      (struct sk_buff *)sk_queue));
1989 
1990 	*err = error;
1991 	return NULL;
1992 }
1993 EXPORT_SYMBOL(__skb_recv_udp);
1994 
1995 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1996 {
1997 	struct sk_buff *skb;
1998 	int err;
1999 
2000 try_again:
2001 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
2002 	if (!skb)
2003 		return err;
2004 
2005 	if (udp_lib_checksum_complete(skb)) {
2006 		int is_udplite = IS_UDPLITE(sk);
2007 		struct net *net = sock_net(sk);
2008 
2009 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
2010 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
2011 		atomic_inc(&sk->sk_drops);
2012 		kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2013 		goto try_again;
2014 	}
2015 
2016 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
2017 	return recv_actor(sk, skb);
2018 }
2019 EXPORT_IPV6_MOD(udp_read_skb);
2020 
2021 /*
2022  * 	This should be easy, if there is something there we
2023  * 	return it, otherwise we block.
2024  */
2025 
2026 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2027 		int *addr_len)
2028 {
2029 	struct inet_sock *inet = inet_sk(sk);
2030 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
2031 	struct sk_buff *skb;
2032 	unsigned int ulen, copied;
2033 	int off, err, peeking = flags & MSG_PEEK;
2034 	int is_udplite = IS_UDPLITE(sk);
2035 	bool checksum_valid = false;
2036 
2037 	if (flags & MSG_ERRQUEUE)
2038 		return ip_recv_error(sk, msg, len, addr_len);
2039 
2040 try_again:
2041 	off = sk_peek_offset(sk, flags);
2042 	skb = __skb_recv_udp(sk, flags, &off, &err);
2043 	if (!skb)
2044 		return err;
2045 
2046 	ulen = udp_skb_len(skb);
2047 	copied = len;
2048 	if (copied > ulen - off)
2049 		copied = ulen - off;
2050 	else if (copied < ulen)
2051 		msg->msg_flags |= MSG_TRUNC;
2052 
2053 	/*
2054 	 * If checksum is needed at all, try to do it while copying the
2055 	 * data.  If the data is truncated, or if we only want a partial
2056 	 * coverage checksum (UDP-Lite), do it before the copy.
2057 	 */
2058 
2059 	if (copied < ulen || peeking ||
2060 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
2061 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
2062 				!__udp_lib_checksum_complete(skb);
2063 		if (!checksum_valid)
2064 			goto csum_copy_err;
2065 	}
2066 
2067 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
2068 		if (udp_skb_is_linear(skb))
2069 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
2070 		else
2071 			err = skb_copy_datagram_msg(skb, off, msg, copied);
2072 	} else {
2073 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
2074 
2075 		if (err == -EINVAL)
2076 			goto csum_copy_err;
2077 	}
2078 
2079 	if (unlikely(err)) {
2080 		if (!peeking) {
2081 			atomic_inc(&sk->sk_drops);
2082 			UDP_INC_STATS(sock_net(sk),
2083 				      UDP_MIB_INERRORS, is_udplite);
2084 		}
2085 		kfree_skb(skb);
2086 		return err;
2087 	}
2088 
2089 	if (!peeking)
2090 		UDP_INC_STATS(sock_net(sk),
2091 			      UDP_MIB_INDATAGRAMS, is_udplite);
2092 
2093 	sock_recv_cmsgs(msg, sk, skb);
2094 
2095 	/* Copy the address. */
2096 	if (sin) {
2097 		sin->sin_family = AF_INET;
2098 		sin->sin_port = udp_hdr(skb)->source;
2099 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
2100 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2101 		*addr_len = sizeof(*sin);
2102 
2103 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
2104 						      (struct sockaddr *)sin,
2105 						      addr_len);
2106 	}
2107 
2108 	if (udp_test_bit(GRO_ENABLED, sk))
2109 		udp_cmsg_recv(msg, sk, skb);
2110 
2111 	if (inet_cmsg_flags(inet))
2112 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
2113 
2114 	err = copied;
2115 	if (flags & MSG_TRUNC)
2116 		err = ulen;
2117 
2118 	skb_consume_udp(sk, skb, peeking ? -err : err);
2119 	return err;
2120 
2121 csum_copy_err:
2122 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
2123 				 udp_skb_destructor)) {
2124 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2125 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2126 	}
2127 	kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM);
2128 
2129 	/* starting over for a new packet, but check if we need to yield */
2130 	cond_resched();
2131 	msg->msg_flags &= ~MSG_TRUNC;
2132 	goto try_again;
2133 }
2134 
2135 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2136 {
2137 	/* This check is replicated from __ip4_datagram_connect() and
2138 	 * intended to prevent BPF program called below from accessing bytes
2139 	 * that are out of the bound specified by user in addr_len.
2140 	 */
2141 	if (addr_len < sizeof(struct sockaddr_in))
2142 		return -EINVAL;
2143 
2144 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2145 }
2146 EXPORT_IPV6_MOD(udp_pre_connect);
2147 
2148 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
2149 {
2150 	int res;
2151 
2152 	lock_sock(sk);
2153 	res = __ip4_datagram_connect(sk, uaddr, addr_len);
2154 	if (!res)
2155 		udp4_hash4(sk);
2156 	release_sock(sk);
2157 	return res;
2158 }
2159 
2160 int __udp_disconnect(struct sock *sk, int flags)
2161 {
2162 	struct inet_sock *inet = inet_sk(sk);
2163 	/*
2164 	 *	1003.1g - break association.
2165 	 */
2166 
2167 	sk->sk_state = TCP_CLOSE;
2168 	inet->inet_daddr = 0;
2169 	inet->inet_dport = 0;
2170 	sock_rps_reset_rxhash(sk);
2171 	sk->sk_bound_dev_if = 0;
2172 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2173 		inet_reset_saddr(sk);
2174 		if (sk->sk_prot->rehash &&
2175 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2176 			sk->sk_prot->rehash(sk);
2177 	}
2178 
2179 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2180 		sk->sk_prot->unhash(sk);
2181 		inet->inet_sport = 0;
2182 	}
2183 	sk_dst_reset(sk);
2184 	return 0;
2185 }
2186 EXPORT_SYMBOL(__udp_disconnect);
2187 
2188 int udp_disconnect(struct sock *sk, int flags)
2189 {
2190 	lock_sock(sk);
2191 	__udp_disconnect(sk, flags);
2192 	release_sock(sk);
2193 	return 0;
2194 }
2195 EXPORT_IPV6_MOD(udp_disconnect);
2196 
2197 void udp_lib_unhash(struct sock *sk)
2198 {
2199 	if (sk_hashed(sk)) {
2200 		struct udp_table *udptable = udp_get_table_prot(sk);
2201 		struct udp_hslot *hslot, *hslot2;
2202 
2203 		hslot  = udp_hashslot(udptable, sock_net(sk),
2204 				      udp_sk(sk)->udp_port_hash);
2205 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2206 
2207 		spin_lock_bh(&hslot->lock);
2208 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2209 			reuseport_detach_sock(sk);
2210 		if (sk_del_node_init_rcu(sk)) {
2211 			hslot->count--;
2212 			inet_sk(sk)->inet_num = 0;
2213 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2214 
2215 			spin_lock(&hslot2->lock);
2216 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2217 			hslot2->count--;
2218 			spin_unlock(&hslot2->lock);
2219 
2220 			udp_unhash4(udptable, sk);
2221 		}
2222 		spin_unlock_bh(&hslot->lock);
2223 	}
2224 }
2225 EXPORT_IPV6_MOD(udp_lib_unhash);
2226 
2227 /*
2228  * inet_rcv_saddr was changed, we must rehash secondary hash
2229  */
2230 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4)
2231 {
2232 	if (sk_hashed(sk)) {
2233 		struct udp_table *udptable = udp_get_table_prot(sk);
2234 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2235 
2236 		hslot = udp_hashslot(udptable, sock_net(sk),
2237 				     udp_sk(sk)->udp_port_hash);
2238 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2239 		nhslot2 = udp_hashslot2(udptable, newhash);
2240 		udp_sk(sk)->udp_portaddr_hash = newhash;
2241 
2242 		if (hslot2 != nhslot2 ||
2243 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2244 			/* we must lock primary chain too */
2245 			spin_lock_bh(&hslot->lock);
2246 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2247 				reuseport_detach_sock(sk);
2248 
2249 			if (hslot2 != nhslot2) {
2250 				spin_lock(&hslot2->lock);
2251 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2252 				hslot2->count--;
2253 				spin_unlock(&hslot2->lock);
2254 
2255 				spin_lock(&nhslot2->lock);
2256 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2257 							 &nhslot2->head);
2258 				nhslot2->count++;
2259 				spin_unlock(&nhslot2->lock);
2260 			}
2261 
2262 			spin_unlock_bh(&hslot->lock);
2263 		}
2264 
2265 		/* Now process hash4 if necessary:
2266 		 * (1) update hslot4;
2267 		 * (2) update hslot2->hash4_cnt.
2268 		 * Note that hslot2/hslot4 should be checked separately, as
2269 		 * either of them may change with the other unchanged.
2270 		 */
2271 		if (udp_hashed4(sk)) {
2272 			spin_lock_bh(&hslot->lock);
2273 
2274 			udp_rehash4(udptable, sk, newhash4);
2275 			if (hslot2 != nhslot2) {
2276 				spin_lock(&hslot2->lock);
2277 				udp_hash4_dec(hslot2);
2278 				spin_unlock(&hslot2->lock);
2279 
2280 				spin_lock(&nhslot2->lock);
2281 				udp_hash4_inc(nhslot2);
2282 				spin_unlock(&nhslot2->lock);
2283 			}
2284 
2285 			spin_unlock_bh(&hslot->lock);
2286 		}
2287 	}
2288 }
2289 EXPORT_IPV6_MOD(udp_lib_rehash);
2290 
2291 void udp_v4_rehash(struct sock *sk)
2292 {
2293 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2294 					  inet_sk(sk)->inet_rcv_saddr,
2295 					  inet_sk(sk)->inet_num);
2296 	u16 new_hash4 = udp_ehashfn(sock_net(sk),
2297 				    sk->sk_rcv_saddr, sk->sk_num,
2298 				    sk->sk_daddr, sk->sk_dport);
2299 
2300 	udp_lib_rehash(sk, new_hash, new_hash4);
2301 }
2302 
2303 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2304 {
2305 	int rc;
2306 
2307 	if (inet_sk(sk)->inet_daddr) {
2308 		sock_rps_save_rxhash(sk, skb);
2309 		sk_mark_napi_id(sk, skb);
2310 		sk_incoming_cpu_update(sk);
2311 	} else {
2312 		sk_mark_napi_id_once(sk, skb);
2313 	}
2314 
2315 	rc = __udp_enqueue_schedule_skb(sk, skb);
2316 	if (rc < 0) {
2317 		int is_udplite = IS_UDPLITE(sk);
2318 		int drop_reason;
2319 
2320 		/* Note that an ENOMEM error is charged twice */
2321 		if (rc == -ENOMEM) {
2322 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2323 					is_udplite);
2324 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2325 		} else {
2326 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2327 				      is_udplite);
2328 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2329 		}
2330 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2331 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2332 		sk_skb_reason_drop(sk, skb, drop_reason);
2333 		return -1;
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 /* returns:
2340  *  -1: error
2341  *   0: success
2342  *  >0: "udp encap" protocol resubmission
2343  *
2344  * Note that in the success and error cases, the skb is assumed to
2345  * have either been requeued or freed.
2346  */
2347 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2348 {
2349 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2350 	struct udp_sock *up = udp_sk(sk);
2351 	int is_udplite = IS_UDPLITE(sk);
2352 
2353 	/*
2354 	 *	Charge it to the socket, dropping if the queue is full.
2355 	 */
2356 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2357 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2358 		goto drop;
2359 	}
2360 	nf_reset_ct(skb);
2361 
2362 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2363 	    READ_ONCE(up->encap_type)) {
2364 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2365 
2366 		/*
2367 		 * This is an encapsulation socket so pass the skb to
2368 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2369 		 * fall through and pass this up the UDP socket.
2370 		 * up->encap_rcv() returns the following value:
2371 		 * =0 if skb was successfully passed to the encap
2372 		 *    handler or was discarded by it.
2373 		 * >0 if skb should be passed on to UDP.
2374 		 * <0 if skb should be resubmitted as proto -N
2375 		 */
2376 
2377 		/* if we're overly short, let UDP handle it */
2378 		encap_rcv = READ_ONCE(up->encap_rcv);
2379 		if (encap_rcv) {
2380 			int ret;
2381 
2382 			/* Verify checksum before giving to encap */
2383 			if (udp_lib_checksum_complete(skb))
2384 				goto csum_error;
2385 
2386 			ret = encap_rcv(sk, skb);
2387 			if (ret <= 0) {
2388 				__UDP_INC_STATS(sock_net(sk),
2389 						UDP_MIB_INDATAGRAMS,
2390 						is_udplite);
2391 				return -ret;
2392 			}
2393 		}
2394 
2395 		/* FALLTHROUGH -- it's a UDP Packet */
2396 	}
2397 
2398 	/*
2399 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2400 	 */
2401 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2402 		u16 pcrlen = READ_ONCE(up->pcrlen);
2403 
2404 		/*
2405 		 * MIB statistics other than incrementing the error count are
2406 		 * disabled for the following two types of errors: these depend
2407 		 * on the application settings, not on the functioning of the
2408 		 * protocol stack as such.
2409 		 *
2410 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2411 		 * way ... to ... at least let the receiving application block
2412 		 * delivery of packets with coverage values less than a value
2413 		 * provided by the application."
2414 		 */
2415 		if (pcrlen == 0) {          /* full coverage was set  */
2416 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2417 					    UDP_SKB_CB(skb)->cscov, skb->len);
2418 			goto drop;
2419 		}
2420 		/* The next case involves violating the min. coverage requested
2421 		 * by the receiver. This is subtle: if receiver wants x and x is
2422 		 * greater than the buffersize/MTU then receiver will complain
2423 		 * that it wants x while sender emits packets of smaller size y.
2424 		 * Therefore the above ...()->partial_cov statement is essential.
2425 		 */
2426 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2427 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2428 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2429 			goto drop;
2430 		}
2431 	}
2432 
2433 	prefetch(&sk->sk_rmem_alloc);
2434 	if (rcu_access_pointer(sk->sk_filter) &&
2435 	    udp_lib_checksum_complete(skb))
2436 			goto csum_error;
2437 
2438 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2439 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2440 		goto drop;
2441 	}
2442 
2443 	udp_csum_pull_header(skb);
2444 
2445 	ipv4_pktinfo_prepare(sk, skb, true);
2446 	return __udp_queue_rcv_skb(sk, skb);
2447 
2448 csum_error:
2449 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2450 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2451 drop:
2452 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2453 	atomic_inc(&sk->sk_drops);
2454 	sk_skb_reason_drop(sk, skb, drop_reason);
2455 	return -1;
2456 }
2457 
2458 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2459 {
2460 	struct sk_buff *next, *segs;
2461 	int ret;
2462 
2463 	if (likely(!udp_unexpected_gso(sk, skb)))
2464 		return udp_queue_rcv_one_skb(sk, skb);
2465 
2466 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2467 	__skb_push(skb, -skb_mac_offset(skb));
2468 	segs = udp_rcv_segment(sk, skb, true);
2469 	skb_list_walk_safe(segs, skb, next) {
2470 		__skb_pull(skb, skb_transport_offset(skb));
2471 
2472 		udp_post_segment_fix_csum(skb);
2473 		ret = udp_queue_rcv_one_skb(sk, skb);
2474 		if (ret > 0)
2475 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2476 	}
2477 	return 0;
2478 }
2479 
2480 /* For TCP sockets, sk_rx_dst is protected by socket lock
2481  * For UDP, we use xchg() to guard against concurrent changes.
2482  */
2483 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2484 {
2485 	struct dst_entry *old;
2486 
2487 	if (dst_hold_safe(dst)) {
2488 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2489 		dst_release(old);
2490 		return old != dst;
2491 	}
2492 	return false;
2493 }
2494 EXPORT_IPV6_MOD(udp_sk_rx_dst_set);
2495 
2496 /*
2497  *	Multicasts and broadcasts go to each listener.
2498  *
2499  *	Note: called only from the BH handler context.
2500  */
2501 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2502 				    struct udphdr  *uh,
2503 				    __be32 saddr, __be32 daddr,
2504 				    struct udp_table *udptable,
2505 				    int proto)
2506 {
2507 	struct sock *sk, *first = NULL;
2508 	unsigned short hnum = ntohs(uh->dest);
2509 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2510 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2511 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2512 	int dif = skb->dev->ifindex;
2513 	int sdif = inet_sdif(skb);
2514 	struct hlist_node *node;
2515 	struct sk_buff *nskb;
2516 
2517 	if (use_hash2) {
2518 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2519 			    udptable->mask;
2520 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2521 start_lookup:
2522 		hslot = &udptable->hash2[hash2].hslot;
2523 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2524 	}
2525 
2526 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2527 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2528 					 uh->source, saddr, dif, sdif, hnum))
2529 			continue;
2530 
2531 		if (!first) {
2532 			first = sk;
2533 			continue;
2534 		}
2535 		nskb = skb_clone(skb, GFP_ATOMIC);
2536 
2537 		if (unlikely(!nskb)) {
2538 			atomic_inc(&sk->sk_drops);
2539 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2540 					IS_UDPLITE(sk));
2541 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2542 					IS_UDPLITE(sk));
2543 			continue;
2544 		}
2545 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2546 			consume_skb(nskb);
2547 	}
2548 
2549 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2550 	if (use_hash2 && hash2 != hash2_any) {
2551 		hash2 = hash2_any;
2552 		goto start_lookup;
2553 	}
2554 
2555 	if (first) {
2556 		if (udp_queue_rcv_skb(first, skb) > 0)
2557 			consume_skb(skb);
2558 	} else {
2559 		kfree_skb(skb);
2560 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2561 				proto == IPPROTO_UDPLITE);
2562 	}
2563 	return 0;
2564 }
2565 
2566 /* Initialize UDP checksum. If exited with zero value (success),
2567  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2568  * Otherwise, csum completion requires checksumming packet body,
2569  * including udp header and folding it to skb->csum.
2570  */
2571 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2572 				 int proto)
2573 {
2574 	int err;
2575 
2576 	UDP_SKB_CB(skb)->partial_cov = 0;
2577 	UDP_SKB_CB(skb)->cscov = skb->len;
2578 
2579 	if (proto == IPPROTO_UDPLITE) {
2580 		err = udplite_checksum_init(skb, uh);
2581 		if (err)
2582 			return err;
2583 
2584 		if (UDP_SKB_CB(skb)->partial_cov) {
2585 			skb->csum = inet_compute_pseudo(skb, proto);
2586 			return 0;
2587 		}
2588 	}
2589 
2590 	/* Note, we are only interested in != 0 or == 0, thus the
2591 	 * force to int.
2592 	 */
2593 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2594 							inet_compute_pseudo);
2595 	if (err)
2596 		return err;
2597 
2598 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2599 		/* If SW calculated the value, we know it's bad */
2600 		if (skb->csum_complete_sw)
2601 			return 1;
2602 
2603 		/* HW says the value is bad. Let's validate that.
2604 		 * skb->csum is no longer the full packet checksum,
2605 		 * so don't treat it as such.
2606 		 */
2607 		skb_checksum_complete_unset(skb);
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2614  * return code conversion for ip layer consumption
2615  */
2616 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2617 			       struct udphdr *uh)
2618 {
2619 	int ret;
2620 
2621 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2622 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2623 
2624 	ret = udp_queue_rcv_skb(sk, skb);
2625 
2626 	/* a return value > 0 means to resubmit the input, but
2627 	 * it wants the return to be -protocol, or 0
2628 	 */
2629 	if (ret > 0)
2630 		return -ret;
2631 	return 0;
2632 }
2633 
2634 /*
2635  *	All we need to do is get the socket, and then do a checksum.
2636  */
2637 
2638 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2639 		   int proto)
2640 {
2641 	struct sock *sk = NULL;
2642 	struct udphdr *uh;
2643 	unsigned short ulen;
2644 	struct rtable *rt = skb_rtable(skb);
2645 	__be32 saddr, daddr;
2646 	struct net *net = dev_net(skb->dev);
2647 	bool refcounted;
2648 	int drop_reason;
2649 
2650 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2651 
2652 	/*
2653 	 *  Validate the packet.
2654 	 */
2655 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2656 		goto drop;		/* No space for header. */
2657 
2658 	uh   = udp_hdr(skb);
2659 	ulen = ntohs(uh->len);
2660 	saddr = ip_hdr(skb)->saddr;
2661 	daddr = ip_hdr(skb)->daddr;
2662 
2663 	if (ulen > skb->len)
2664 		goto short_packet;
2665 
2666 	if (proto == IPPROTO_UDP) {
2667 		/* UDP validates ulen. */
2668 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2669 			goto short_packet;
2670 		uh = udp_hdr(skb);
2671 	}
2672 
2673 	if (udp4_csum_init(skb, uh, proto))
2674 		goto csum_error;
2675 
2676 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2677 			     &refcounted, udp_ehashfn);
2678 	if (IS_ERR(sk))
2679 		goto no_sk;
2680 
2681 	if (sk) {
2682 		struct dst_entry *dst = skb_dst(skb);
2683 		int ret;
2684 
2685 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2686 			udp_sk_rx_dst_set(sk, dst);
2687 
2688 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2689 		if (refcounted)
2690 			sock_put(sk);
2691 		return ret;
2692 	}
2693 
2694 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2695 		return __udp4_lib_mcast_deliver(net, skb, uh,
2696 						saddr, daddr, udptable, proto);
2697 
2698 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2699 	if (sk)
2700 		return udp_unicast_rcv_skb(sk, skb, uh);
2701 no_sk:
2702 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2703 		goto drop;
2704 	nf_reset_ct(skb);
2705 
2706 	/* No socket. Drop packet silently, if checksum is wrong */
2707 	if (udp_lib_checksum_complete(skb))
2708 		goto csum_error;
2709 
2710 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2711 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2712 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2713 
2714 	/*
2715 	 * Hmm.  We got an UDP packet to a port to which we
2716 	 * don't wanna listen.  Ignore it.
2717 	 */
2718 	sk_skb_reason_drop(sk, skb, drop_reason);
2719 	return 0;
2720 
2721 short_packet:
2722 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2723 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2724 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2725 			    &saddr, ntohs(uh->source),
2726 			    ulen, skb->len,
2727 			    &daddr, ntohs(uh->dest));
2728 	goto drop;
2729 
2730 csum_error:
2731 	/*
2732 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2733 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2734 	 */
2735 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2736 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2737 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2738 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2739 			    ulen);
2740 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2741 drop:
2742 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2743 	sk_skb_reason_drop(sk, skb, drop_reason);
2744 	return 0;
2745 }
2746 
2747 /* We can only early demux multicast if there is a single matching socket.
2748  * If more than one socket found returns NULL
2749  */
2750 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2751 						  __be16 loc_port, __be32 loc_addr,
2752 						  __be16 rmt_port, __be32 rmt_addr,
2753 						  int dif, int sdif)
2754 {
2755 	struct udp_table *udptable = net->ipv4.udp_table;
2756 	unsigned short hnum = ntohs(loc_port);
2757 	struct sock *sk, *result;
2758 	struct udp_hslot *hslot;
2759 	unsigned int slot;
2760 
2761 	slot = udp_hashfn(net, hnum, udptable->mask);
2762 	hslot = &udptable->hash[slot];
2763 
2764 	/* Do not bother scanning a too big list */
2765 	if (hslot->count > 10)
2766 		return NULL;
2767 
2768 	result = NULL;
2769 	sk_for_each_rcu(sk, &hslot->head) {
2770 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2771 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2772 			if (result)
2773 				return NULL;
2774 			result = sk;
2775 		}
2776 	}
2777 
2778 	return result;
2779 }
2780 
2781 /* For unicast we should only early demux connected sockets or we can
2782  * break forwarding setups.  The chains here can be long so only check
2783  * if the first socket is an exact match and if not move on.
2784  */
2785 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2786 					    __be16 loc_port, __be32 loc_addr,
2787 					    __be16 rmt_port, __be32 rmt_addr,
2788 					    int dif, int sdif)
2789 {
2790 	struct udp_table *udptable = net->ipv4.udp_table;
2791 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2792 	unsigned short hnum = ntohs(loc_port);
2793 	struct udp_hslot *hslot2;
2794 	unsigned int hash2;
2795 	__portpair ports;
2796 	struct sock *sk;
2797 
2798 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2799 	hslot2 = udp_hashslot2(udptable, hash2);
2800 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2801 
2802 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2803 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2804 			return sk;
2805 		/* Only check first socket in chain */
2806 		break;
2807 	}
2808 	return NULL;
2809 }
2810 
2811 int udp_v4_early_demux(struct sk_buff *skb)
2812 {
2813 	struct net *net = dev_net(skb->dev);
2814 	struct in_device *in_dev = NULL;
2815 	const struct iphdr *iph;
2816 	const struct udphdr *uh;
2817 	struct sock *sk = NULL;
2818 	struct dst_entry *dst;
2819 	int dif = skb->dev->ifindex;
2820 	int sdif = inet_sdif(skb);
2821 	int ours;
2822 
2823 	/* validate the packet */
2824 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2825 		return 0;
2826 
2827 	iph = ip_hdr(skb);
2828 	uh = udp_hdr(skb);
2829 
2830 	if (skb->pkt_type == PACKET_MULTICAST) {
2831 		in_dev = __in_dev_get_rcu(skb->dev);
2832 
2833 		if (!in_dev)
2834 			return 0;
2835 
2836 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2837 				       iph->protocol);
2838 		if (!ours)
2839 			return 0;
2840 
2841 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2842 						   uh->source, iph->saddr,
2843 						   dif, sdif);
2844 	} else if (skb->pkt_type == PACKET_HOST) {
2845 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2846 					     uh->source, iph->saddr, dif, sdif);
2847 	}
2848 
2849 	if (!sk)
2850 		return 0;
2851 
2852 	skb->sk = sk;
2853 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2854 	skb->destructor = sock_pfree;
2855 	dst = rcu_dereference(sk->sk_rx_dst);
2856 
2857 	if (dst)
2858 		dst = dst_check(dst, 0);
2859 	if (dst) {
2860 		u32 itag = 0;
2861 
2862 		/* set noref for now.
2863 		 * any place which wants to hold dst has to call
2864 		 * dst_hold_safe()
2865 		 */
2866 		skb_dst_set_noref(skb, dst);
2867 
2868 		/* for unconnected multicast sockets we need to validate
2869 		 * the source on each packet
2870 		 */
2871 		if (!inet_sk(sk)->inet_daddr && in_dev)
2872 			return ip_mc_validate_source(skb, iph->daddr,
2873 						     iph->saddr,
2874 						     ip4h_dscp(iph),
2875 						     skb->dev, in_dev, &itag);
2876 	}
2877 	return 0;
2878 }
2879 
2880 int udp_rcv(struct sk_buff *skb)
2881 {
2882 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2883 }
2884 
2885 void udp_destroy_sock(struct sock *sk)
2886 {
2887 	struct udp_sock *up = udp_sk(sk);
2888 	bool slow = lock_sock_fast(sk);
2889 
2890 	/* protects from races with udp_abort() */
2891 	sock_set_flag(sk, SOCK_DEAD);
2892 	udp_flush_pending_frames(sk);
2893 	unlock_sock_fast(sk, slow);
2894 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2895 		if (up->encap_type) {
2896 			void (*encap_destroy)(struct sock *sk);
2897 			encap_destroy = READ_ONCE(up->encap_destroy);
2898 			if (encap_destroy)
2899 				encap_destroy(sk);
2900 		}
2901 		if (udp_test_bit(ENCAP_ENABLED, sk)) {
2902 			static_branch_dec(&udp_encap_needed_key);
2903 			udp_tunnel_cleanup_gro(sk);
2904 		}
2905 	}
2906 }
2907 
2908 typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk,
2909 					     struct list_head *head,
2910 					     struct sk_buff *skb);
2911 
2912 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2913 				       struct sock *sk)
2914 {
2915 #ifdef CONFIG_XFRM
2916 	udp_gro_receive_t new_gro_receive;
2917 
2918 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2919 		if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2920 			new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv;
2921 		else
2922 			new_gro_receive = xfrm4_gro_udp_encap_rcv;
2923 
2924 		if (udp_sk(sk)->gro_receive != new_gro_receive) {
2925 			/*
2926 			 * With IPV6_ADDRFORM the gro callback could change
2927 			 * after being set, unregister the old one, if valid.
2928 			 */
2929 			if (udp_sk(sk)->gro_receive)
2930 				udp_tunnel_update_gro_rcv(sk, false);
2931 
2932 			WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive);
2933 			udp_tunnel_update_gro_rcv(sk, true);
2934 		}
2935 	}
2936 #endif
2937 }
2938 
2939 /*
2940  *	Socket option code for UDP
2941  */
2942 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2943 		       sockptr_t optval, unsigned int optlen,
2944 		       int (*push_pending_frames)(struct sock *))
2945 {
2946 	struct udp_sock *up = udp_sk(sk);
2947 	int val, valbool;
2948 	int err = 0;
2949 	int is_udplite = IS_UDPLITE(sk);
2950 
2951 	if (level == SOL_SOCKET) {
2952 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2953 
2954 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2955 			sockopt_lock_sock(sk);
2956 			/* paired with READ_ONCE in udp_rmem_release() */
2957 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2958 			sockopt_release_sock(sk);
2959 		}
2960 		return err;
2961 	}
2962 
2963 	if (optlen < sizeof(int))
2964 		return -EINVAL;
2965 
2966 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2967 		return -EFAULT;
2968 
2969 	valbool = val ? 1 : 0;
2970 
2971 	switch (optname) {
2972 	case UDP_CORK:
2973 		if (val != 0) {
2974 			udp_set_bit(CORK, sk);
2975 		} else {
2976 			udp_clear_bit(CORK, sk);
2977 			lock_sock(sk);
2978 			push_pending_frames(sk);
2979 			release_sock(sk);
2980 		}
2981 		break;
2982 
2983 	case UDP_ENCAP:
2984 		sockopt_lock_sock(sk);
2985 		switch (val) {
2986 		case 0:
2987 #ifdef CONFIG_XFRM
2988 		case UDP_ENCAP_ESPINUDP:
2989 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2990 #if IS_ENABLED(CONFIG_IPV6)
2991 			if (sk->sk_family == AF_INET6)
2992 				WRITE_ONCE(up->encap_rcv,
2993 					   ipv6_stub->xfrm6_udp_encap_rcv);
2994 			else
2995 #endif
2996 				WRITE_ONCE(up->encap_rcv,
2997 					   xfrm4_udp_encap_rcv);
2998 #endif
2999 			fallthrough;
3000 		case UDP_ENCAP_L2TPINUDP:
3001 			WRITE_ONCE(up->encap_type, val);
3002 			udp_tunnel_encap_enable(sk);
3003 			break;
3004 		default:
3005 			err = -ENOPROTOOPT;
3006 			break;
3007 		}
3008 		sockopt_release_sock(sk);
3009 		break;
3010 
3011 	case UDP_NO_CHECK6_TX:
3012 		udp_set_no_check6_tx(sk, valbool);
3013 		break;
3014 
3015 	case UDP_NO_CHECK6_RX:
3016 		udp_set_no_check6_rx(sk, valbool);
3017 		break;
3018 
3019 	case UDP_SEGMENT:
3020 		if (val < 0 || val > USHRT_MAX)
3021 			return -EINVAL;
3022 		WRITE_ONCE(up->gso_size, val);
3023 		break;
3024 
3025 	case UDP_GRO:
3026 		sockopt_lock_sock(sk);
3027 		/* when enabling GRO, accept the related GSO packet type */
3028 		if (valbool)
3029 			udp_tunnel_encap_enable(sk);
3030 		udp_assign_bit(GRO_ENABLED, sk, valbool);
3031 		udp_assign_bit(ACCEPT_L4, sk, valbool);
3032 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
3033 		sockopt_release_sock(sk);
3034 		break;
3035 
3036 	/*
3037 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
3038 	 */
3039 	/* The sender sets actual checksum coverage length via this option.
3040 	 * The case coverage > packet length is handled by send module. */
3041 	case UDPLITE_SEND_CSCOV:
3042 		if (!is_udplite)         /* Disable the option on UDP sockets */
3043 			return -ENOPROTOOPT;
3044 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
3045 			val = 8;
3046 		else if (val > USHRT_MAX)
3047 			val = USHRT_MAX;
3048 		WRITE_ONCE(up->pcslen, val);
3049 		udp_set_bit(UDPLITE_SEND_CC, sk);
3050 		break;
3051 
3052 	/* The receiver specifies a minimum checksum coverage value. To make
3053 	 * sense, this should be set to at least 8 (as done below). If zero is
3054 	 * used, this again means full checksum coverage.                     */
3055 	case UDPLITE_RECV_CSCOV:
3056 		if (!is_udplite)         /* Disable the option on UDP sockets */
3057 			return -ENOPROTOOPT;
3058 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
3059 			val = 8;
3060 		else if (val > USHRT_MAX)
3061 			val = USHRT_MAX;
3062 		WRITE_ONCE(up->pcrlen, val);
3063 		udp_set_bit(UDPLITE_RECV_CC, sk);
3064 		break;
3065 
3066 	default:
3067 		err = -ENOPROTOOPT;
3068 		break;
3069 	}
3070 
3071 	return err;
3072 }
3073 EXPORT_IPV6_MOD(udp_lib_setsockopt);
3074 
3075 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3076 		   unsigned int optlen)
3077 {
3078 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
3079 		return udp_lib_setsockopt(sk, level, optname,
3080 					  optval, optlen,
3081 					  udp_push_pending_frames);
3082 	return ip_setsockopt(sk, level, optname, optval, optlen);
3083 }
3084 
3085 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
3086 		       char __user *optval, int __user *optlen)
3087 {
3088 	struct udp_sock *up = udp_sk(sk);
3089 	int val, len;
3090 
3091 	if (get_user(len, optlen))
3092 		return -EFAULT;
3093 
3094 	if (len < 0)
3095 		return -EINVAL;
3096 
3097 	len = min_t(unsigned int, len, sizeof(int));
3098 
3099 	switch (optname) {
3100 	case UDP_CORK:
3101 		val = udp_test_bit(CORK, sk);
3102 		break;
3103 
3104 	case UDP_ENCAP:
3105 		val = READ_ONCE(up->encap_type);
3106 		break;
3107 
3108 	case UDP_NO_CHECK6_TX:
3109 		val = udp_get_no_check6_tx(sk);
3110 		break;
3111 
3112 	case UDP_NO_CHECK6_RX:
3113 		val = udp_get_no_check6_rx(sk);
3114 		break;
3115 
3116 	case UDP_SEGMENT:
3117 		val = READ_ONCE(up->gso_size);
3118 		break;
3119 
3120 	case UDP_GRO:
3121 		val = udp_test_bit(GRO_ENABLED, sk);
3122 		break;
3123 
3124 	/* The following two cannot be changed on UDP sockets, the return is
3125 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
3126 	case UDPLITE_SEND_CSCOV:
3127 		val = READ_ONCE(up->pcslen);
3128 		break;
3129 
3130 	case UDPLITE_RECV_CSCOV:
3131 		val = READ_ONCE(up->pcrlen);
3132 		break;
3133 
3134 	default:
3135 		return -ENOPROTOOPT;
3136 	}
3137 
3138 	if (put_user(len, optlen))
3139 		return -EFAULT;
3140 	if (copy_to_user(optval, &val, len))
3141 		return -EFAULT;
3142 	return 0;
3143 }
3144 EXPORT_IPV6_MOD(udp_lib_getsockopt);
3145 
3146 int udp_getsockopt(struct sock *sk, int level, int optname,
3147 		   char __user *optval, int __user *optlen)
3148 {
3149 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
3150 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
3151 	return ip_getsockopt(sk, level, optname, optval, optlen);
3152 }
3153 
3154 /**
3155  * 	udp_poll - wait for a UDP event.
3156  *	@file: - file struct
3157  *	@sock: - socket
3158  *	@wait: - poll table
3159  *
3160  *	This is same as datagram poll, except for the special case of
3161  *	blocking sockets. If application is using a blocking fd
3162  *	and a packet with checksum error is in the queue;
3163  *	then it could get return from select indicating data available
3164  *	but then block when reading it. Add special case code
3165  *	to work around these arguably broken applications.
3166  */
3167 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
3168 {
3169 	__poll_t mask = datagram_poll(file, sock, wait);
3170 	struct sock *sk = sock->sk;
3171 
3172 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
3173 		mask |= EPOLLIN | EPOLLRDNORM;
3174 
3175 	/* Check for false positives due to checksum errors */
3176 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
3177 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
3178 		mask &= ~(EPOLLIN | EPOLLRDNORM);
3179 
3180 	/* psock ingress_msg queue should not contain any bad checksum frames */
3181 	if (sk_is_readable(sk))
3182 		mask |= EPOLLIN | EPOLLRDNORM;
3183 	return mask;
3184 
3185 }
3186 EXPORT_IPV6_MOD(udp_poll);
3187 
3188 int udp_abort(struct sock *sk, int err)
3189 {
3190 	if (!has_current_bpf_ctx())
3191 		lock_sock(sk);
3192 
3193 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
3194 	 * with close()
3195 	 */
3196 	if (sock_flag(sk, SOCK_DEAD))
3197 		goto out;
3198 
3199 	sk->sk_err = err;
3200 	sk_error_report(sk);
3201 	__udp_disconnect(sk, 0);
3202 
3203 out:
3204 	if (!has_current_bpf_ctx())
3205 		release_sock(sk);
3206 
3207 	return 0;
3208 }
3209 EXPORT_IPV6_MOD_GPL(udp_abort);
3210 
3211 struct proto udp_prot = {
3212 	.name			= "UDP",
3213 	.owner			= THIS_MODULE,
3214 	.close			= udp_lib_close,
3215 	.pre_connect		= udp_pre_connect,
3216 	.connect		= udp_connect,
3217 	.disconnect		= udp_disconnect,
3218 	.ioctl			= udp_ioctl,
3219 	.init			= udp_init_sock,
3220 	.destroy		= udp_destroy_sock,
3221 	.setsockopt		= udp_setsockopt,
3222 	.getsockopt		= udp_getsockopt,
3223 	.sendmsg		= udp_sendmsg,
3224 	.recvmsg		= udp_recvmsg,
3225 	.splice_eof		= udp_splice_eof,
3226 	.release_cb		= ip4_datagram_release_cb,
3227 	.hash			= udp_lib_hash,
3228 	.unhash			= udp_lib_unhash,
3229 	.rehash			= udp_v4_rehash,
3230 	.get_port		= udp_v4_get_port,
3231 	.put_port		= udp_lib_unhash,
3232 #ifdef CONFIG_BPF_SYSCALL
3233 	.psock_update_sk_prot	= udp_bpf_update_proto,
3234 #endif
3235 	.memory_allocated	= &udp_memory_allocated,
3236 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3237 
3238 	.sysctl_mem		= sysctl_udp_mem,
3239 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3240 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3241 	.obj_size		= sizeof(struct udp_sock),
3242 	.h.udp_table		= NULL,
3243 	.diag_destroy		= udp_abort,
3244 };
3245 EXPORT_SYMBOL(udp_prot);
3246 
3247 /* ------------------------------------------------------------------------ */
3248 #ifdef CONFIG_PROC_FS
3249 
3250 static unsigned short seq_file_family(const struct seq_file *seq);
3251 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3252 {
3253 	unsigned short family = seq_file_family(seq);
3254 
3255 	/* AF_UNSPEC is used as a match all */
3256 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3257 		net_eq(sock_net(sk), seq_file_net(seq)));
3258 }
3259 
3260 #ifdef CONFIG_BPF_SYSCALL
3261 static const struct seq_operations bpf_iter_udp_seq_ops;
3262 #endif
3263 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3264 					   struct net *net)
3265 {
3266 	const struct udp_seq_afinfo *afinfo;
3267 
3268 #ifdef CONFIG_BPF_SYSCALL
3269 	if (seq->op == &bpf_iter_udp_seq_ops)
3270 		return net->ipv4.udp_table;
3271 #endif
3272 
3273 	afinfo = pde_data(file_inode(seq->file));
3274 	return afinfo->udp_table ? : net->ipv4.udp_table;
3275 }
3276 
3277 static struct sock *udp_get_first(struct seq_file *seq, int start)
3278 {
3279 	struct udp_iter_state *state = seq->private;
3280 	struct net *net = seq_file_net(seq);
3281 	struct udp_table *udptable;
3282 	struct sock *sk;
3283 
3284 	udptable = udp_get_table_seq(seq, net);
3285 
3286 	for (state->bucket = start; state->bucket <= udptable->mask;
3287 	     ++state->bucket) {
3288 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3289 
3290 		if (hlist_empty(&hslot->head))
3291 			continue;
3292 
3293 		spin_lock_bh(&hslot->lock);
3294 		sk_for_each(sk, &hslot->head) {
3295 			if (seq_sk_match(seq, sk))
3296 				goto found;
3297 		}
3298 		spin_unlock_bh(&hslot->lock);
3299 	}
3300 	sk = NULL;
3301 found:
3302 	return sk;
3303 }
3304 
3305 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3306 {
3307 	struct udp_iter_state *state = seq->private;
3308 	struct net *net = seq_file_net(seq);
3309 	struct udp_table *udptable;
3310 
3311 	do {
3312 		sk = sk_next(sk);
3313 	} while (sk && !seq_sk_match(seq, sk));
3314 
3315 	if (!sk) {
3316 		udptable = udp_get_table_seq(seq, net);
3317 
3318 		if (state->bucket <= udptable->mask)
3319 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3320 
3321 		return udp_get_first(seq, state->bucket + 1);
3322 	}
3323 	return sk;
3324 }
3325 
3326 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3327 {
3328 	struct sock *sk = udp_get_first(seq, 0);
3329 
3330 	if (sk)
3331 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3332 			--pos;
3333 	return pos ? NULL : sk;
3334 }
3335 
3336 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3337 {
3338 	struct udp_iter_state *state = seq->private;
3339 	state->bucket = MAX_UDP_PORTS;
3340 
3341 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3342 }
3343 EXPORT_IPV6_MOD(udp_seq_start);
3344 
3345 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3346 {
3347 	struct sock *sk;
3348 
3349 	if (v == SEQ_START_TOKEN)
3350 		sk = udp_get_idx(seq, 0);
3351 	else
3352 		sk = udp_get_next(seq, v);
3353 
3354 	++*pos;
3355 	return sk;
3356 }
3357 EXPORT_IPV6_MOD(udp_seq_next);
3358 
3359 void udp_seq_stop(struct seq_file *seq, void *v)
3360 {
3361 	struct udp_iter_state *state = seq->private;
3362 	struct udp_table *udptable;
3363 
3364 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3365 
3366 	if (state->bucket <= udptable->mask)
3367 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3368 }
3369 EXPORT_IPV6_MOD(udp_seq_stop);
3370 
3371 /* ------------------------------------------------------------------------ */
3372 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3373 		int bucket)
3374 {
3375 	struct inet_sock *inet = inet_sk(sp);
3376 	__be32 dest = inet->inet_daddr;
3377 	__be32 src  = inet->inet_rcv_saddr;
3378 	__u16 destp	  = ntohs(inet->inet_dport);
3379 	__u16 srcp	  = ntohs(inet->inet_sport);
3380 
3381 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3382 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3383 		bucket, src, srcp, dest, destp, sp->sk_state,
3384 		sk_wmem_alloc_get(sp),
3385 		udp_rqueue_get(sp),
3386 		0, 0L, 0,
3387 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3388 		0, sock_i_ino(sp),
3389 		refcount_read(&sp->sk_refcnt), sp,
3390 		atomic_read(&sp->sk_drops));
3391 }
3392 
3393 int udp4_seq_show(struct seq_file *seq, void *v)
3394 {
3395 	seq_setwidth(seq, 127);
3396 	if (v == SEQ_START_TOKEN)
3397 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3398 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3399 			   "inode ref pointer drops");
3400 	else {
3401 		struct udp_iter_state *state = seq->private;
3402 
3403 		udp4_format_sock(v, seq, state->bucket);
3404 	}
3405 	seq_pad(seq, '\n');
3406 	return 0;
3407 }
3408 
3409 #ifdef CONFIG_BPF_SYSCALL
3410 struct bpf_iter__udp {
3411 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3412 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3413 	uid_t uid __aligned(8);
3414 	int bucket __aligned(8);
3415 };
3416 
3417 union bpf_udp_iter_batch_item {
3418 	struct sock *sk;
3419 	__u64 cookie;
3420 };
3421 
3422 struct bpf_udp_iter_state {
3423 	struct udp_iter_state state;
3424 	unsigned int cur_sk;
3425 	unsigned int end_sk;
3426 	unsigned int max_sk;
3427 	union bpf_udp_iter_batch_item *batch;
3428 };
3429 
3430 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3431 				      unsigned int new_batch_sz, gfp_t flags);
3432 static struct sock *bpf_iter_udp_resume(struct sock *first_sk,
3433 					union bpf_udp_iter_batch_item *cookies,
3434 					int n_cookies)
3435 {
3436 	struct sock *sk = NULL;
3437 	int i;
3438 
3439 	for (i = 0; i < n_cookies; i++) {
3440 		sk = first_sk;
3441 		udp_portaddr_for_each_entry_from(sk)
3442 			if (cookies[i].cookie == atomic64_read(&sk->sk_cookie))
3443 				goto done;
3444 	}
3445 done:
3446 	return sk;
3447 }
3448 
3449 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3450 {
3451 	struct bpf_udp_iter_state *iter = seq->private;
3452 	struct udp_iter_state *state = &iter->state;
3453 	unsigned int find_cookie, end_cookie;
3454 	struct net *net = seq_file_net(seq);
3455 	struct udp_table *udptable;
3456 	unsigned int batch_sks = 0;
3457 	int resume_bucket;
3458 	int resizes = 0;
3459 	struct sock *sk;
3460 	int err = 0;
3461 
3462 	resume_bucket = state->bucket;
3463 
3464 	/* The current batch is done, so advance the bucket. */
3465 	if (iter->cur_sk == iter->end_sk)
3466 		state->bucket++;
3467 
3468 	udptable = udp_get_table_seq(seq, net);
3469 
3470 again:
3471 	/* New batch for the next bucket.
3472 	 * Iterate over the hash table to find a bucket with sockets matching
3473 	 * the iterator attributes, and return the first matching socket from
3474 	 * the bucket. The remaining matched sockets from the bucket are batched
3475 	 * before releasing the bucket lock. This allows BPF programs that are
3476 	 * called in seq_show to acquire the bucket lock if needed.
3477 	 */
3478 	find_cookie = iter->cur_sk;
3479 	end_cookie = iter->end_sk;
3480 	iter->cur_sk = 0;
3481 	iter->end_sk = 0;
3482 	batch_sks = 0;
3483 
3484 	for (; state->bucket <= udptable->mask; state->bucket++) {
3485 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot;
3486 
3487 		if (hlist_empty(&hslot2->head))
3488 			goto next_bucket;
3489 
3490 		spin_lock_bh(&hslot2->lock);
3491 		sk = hlist_entry_safe(hslot2->head.first, struct sock,
3492 				      __sk_common.skc_portaddr_node);
3493 		/* Resume from the first (in iteration order) unseen socket from
3494 		 * the last batch that still exists in resume_bucket. Most of
3495 		 * the time this will just be where the last iteration left off
3496 		 * in resume_bucket unless that socket disappeared between
3497 		 * reads.
3498 		 */
3499 		if (state->bucket == resume_bucket)
3500 			sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie],
3501 						 end_cookie - find_cookie);
3502 fill_batch:
3503 		udp_portaddr_for_each_entry_from(sk) {
3504 			if (seq_sk_match(seq, sk)) {
3505 				if (iter->end_sk < iter->max_sk) {
3506 					sock_hold(sk);
3507 					iter->batch[iter->end_sk++].sk = sk;
3508 				}
3509 				batch_sks++;
3510 			}
3511 		}
3512 
3513 		/* Allocate a larger batch and try again. */
3514 		if (unlikely(resizes <= 1 && iter->end_sk &&
3515 			     iter->end_sk != batch_sks)) {
3516 			resizes++;
3517 
3518 			/* First, try with GFP_USER to maximize the chances of
3519 			 * grabbing more memory.
3520 			 */
3521 			if (resizes == 1) {
3522 				spin_unlock_bh(&hslot2->lock);
3523 				err = bpf_iter_udp_realloc_batch(iter,
3524 								 batch_sks * 3 / 2,
3525 								 GFP_USER);
3526 				if (err)
3527 					return ERR_PTR(err);
3528 				/* Start over. */
3529 				goto again;
3530 			}
3531 
3532 			/* Next, hold onto the lock, so the bucket doesn't
3533 			 * change while we get the rest of the sockets.
3534 			 */
3535 			err = bpf_iter_udp_realloc_batch(iter, batch_sks,
3536 							 GFP_NOWAIT);
3537 			if (err) {
3538 				spin_unlock_bh(&hslot2->lock);
3539 				return ERR_PTR(err);
3540 			}
3541 
3542 			/* Pick up where we left off. */
3543 			sk = iter->batch[iter->end_sk - 1].sk;
3544 			sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next,
3545 					      struct sock,
3546 					      __sk_common.skc_portaddr_node);
3547 			batch_sks = iter->end_sk;
3548 			goto fill_batch;
3549 		}
3550 
3551 		spin_unlock_bh(&hslot2->lock);
3552 
3553 		if (iter->end_sk)
3554 			break;
3555 next_bucket:
3556 		resizes = 0;
3557 	}
3558 
3559 	WARN_ON_ONCE(iter->end_sk != batch_sks);
3560 	return iter->end_sk ? iter->batch[0].sk : NULL;
3561 }
3562 
3563 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3564 {
3565 	struct bpf_udp_iter_state *iter = seq->private;
3566 	struct sock *sk;
3567 
3568 	/* Whenever seq_next() is called, the iter->cur_sk is
3569 	 * done with seq_show(), so unref the iter->cur_sk.
3570 	 */
3571 	if (iter->cur_sk < iter->end_sk)
3572 		sock_put(iter->batch[iter->cur_sk++].sk);
3573 
3574 	/* After updating iter->cur_sk, check if there are more sockets
3575 	 * available in the current bucket batch.
3576 	 */
3577 	if (iter->cur_sk < iter->end_sk)
3578 		sk = iter->batch[iter->cur_sk].sk;
3579 	else
3580 		/* Prepare a new batch. */
3581 		sk = bpf_iter_udp_batch(seq);
3582 
3583 	++*pos;
3584 	return sk;
3585 }
3586 
3587 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3588 {
3589 	/* bpf iter does not support lseek, so it always
3590 	 * continue from where it was stop()-ped.
3591 	 */
3592 	if (*pos)
3593 		return bpf_iter_udp_batch(seq);
3594 
3595 	return SEQ_START_TOKEN;
3596 }
3597 
3598 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3599 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3600 {
3601 	struct bpf_iter__udp ctx;
3602 
3603 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3604 	ctx.meta = meta;
3605 	ctx.udp_sk = udp_sk;
3606 	ctx.uid = uid;
3607 	ctx.bucket = bucket;
3608 	return bpf_iter_run_prog(prog, &ctx);
3609 }
3610 
3611 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3612 {
3613 	struct udp_iter_state *state = seq->private;
3614 	struct bpf_iter_meta meta;
3615 	struct bpf_prog *prog;
3616 	struct sock *sk = v;
3617 	uid_t uid;
3618 	int ret;
3619 
3620 	if (v == SEQ_START_TOKEN)
3621 		return 0;
3622 
3623 	lock_sock(sk);
3624 
3625 	if (unlikely(sk_unhashed(sk))) {
3626 		ret = SEQ_SKIP;
3627 		goto unlock;
3628 	}
3629 
3630 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3631 	meta.seq = seq;
3632 	prog = bpf_iter_get_info(&meta, false);
3633 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3634 
3635 unlock:
3636 	release_sock(sk);
3637 	return ret;
3638 }
3639 
3640 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3641 {
3642 	union bpf_udp_iter_batch_item *item;
3643 	unsigned int cur_sk = iter->cur_sk;
3644 	__u64 cookie;
3645 
3646 	/* Remember the cookies of the sockets we haven't seen yet, so we can
3647 	 * pick up where we left off next time around.
3648 	 */
3649 	while (cur_sk < iter->end_sk) {
3650 		item = &iter->batch[cur_sk++];
3651 		cookie = sock_gen_cookie(item->sk);
3652 		sock_put(item->sk);
3653 		item->cookie = cookie;
3654 	}
3655 }
3656 
3657 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3658 {
3659 	struct bpf_udp_iter_state *iter = seq->private;
3660 	struct bpf_iter_meta meta;
3661 	struct bpf_prog *prog;
3662 
3663 	if (!v) {
3664 		meta.seq = seq;
3665 		prog = bpf_iter_get_info(&meta, true);
3666 		if (prog)
3667 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3668 	}
3669 
3670 	if (iter->cur_sk < iter->end_sk)
3671 		bpf_iter_udp_put_batch(iter);
3672 }
3673 
3674 static const struct seq_operations bpf_iter_udp_seq_ops = {
3675 	.start		= bpf_iter_udp_seq_start,
3676 	.next		= bpf_iter_udp_seq_next,
3677 	.stop		= bpf_iter_udp_seq_stop,
3678 	.show		= bpf_iter_udp_seq_show,
3679 };
3680 #endif
3681 
3682 static unsigned short seq_file_family(const struct seq_file *seq)
3683 {
3684 	const struct udp_seq_afinfo *afinfo;
3685 
3686 #ifdef CONFIG_BPF_SYSCALL
3687 	/* BPF iterator: bpf programs to filter sockets. */
3688 	if (seq->op == &bpf_iter_udp_seq_ops)
3689 		return AF_UNSPEC;
3690 #endif
3691 
3692 	/* Proc fs iterator */
3693 	afinfo = pde_data(file_inode(seq->file));
3694 	return afinfo->family;
3695 }
3696 
3697 const struct seq_operations udp_seq_ops = {
3698 	.start		= udp_seq_start,
3699 	.next		= udp_seq_next,
3700 	.stop		= udp_seq_stop,
3701 	.show		= udp4_seq_show,
3702 };
3703 EXPORT_IPV6_MOD(udp_seq_ops);
3704 
3705 static struct udp_seq_afinfo udp4_seq_afinfo = {
3706 	.family		= AF_INET,
3707 	.udp_table	= NULL,
3708 };
3709 
3710 static int __net_init udp4_proc_init_net(struct net *net)
3711 {
3712 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3713 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3714 		return -ENOMEM;
3715 	return 0;
3716 }
3717 
3718 static void __net_exit udp4_proc_exit_net(struct net *net)
3719 {
3720 	remove_proc_entry("udp", net->proc_net);
3721 }
3722 
3723 static struct pernet_operations udp4_net_ops = {
3724 	.init = udp4_proc_init_net,
3725 	.exit = udp4_proc_exit_net,
3726 };
3727 
3728 int __init udp4_proc_init(void)
3729 {
3730 	return register_pernet_subsys(&udp4_net_ops);
3731 }
3732 
3733 void udp4_proc_exit(void)
3734 {
3735 	unregister_pernet_subsys(&udp4_net_ops);
3736 }
3737 #endif /* CONFIG_PROC_FS */
3738 
3739 static __initdata unsigned long uhash_entries;
3740 static int __init set_uhash_entries(char *str)
3741 {
3742 	ssize_t ret;
3743 
3744 	if (!str)
3745 		return 0;
3746 
3747 	ret = kstrtoul(str, 0, &uhash_entries);
3748 	if (ret)
3749 		return 0;
3750 
3751 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3752 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3753 	return 1;
3754 }
3755 __setup("uhash_entries=", set_uhash_entries);
3756 
3757 void __init udp_table_init(struct udp_table *table, const char *name)
3758 {
3759 	unsigned int i, slot_size;
3760 
3761 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3762 		    udp_hash4_slot_size();
3763 	table->hash = alloc_large_system_hash(name,
3764 					      slot_size,
3765 					      uhash_entries,
3766 					      21, /* one slot per 2 MB */
3767 					      0,
3768 					      &table->log,
3769 					      &table->mask,
3770 					      UDP_HTABLE_SIZE_MIN,
3771 					      UDP_HTABLE_SIZE_MAX);
3772 
3773 	table->hash2 = (void *)(table->hash + (table->mask + 1));
3774 	for (i = 0; i <= table->mask; i++) {
3775 		INIT_HLIST_HEAD(&table->hash[i].head);
3776 		table->hash[i].count = 0;
3777 		spin_lock_init(&table->hash[i].lock);
3778 	}
3779 	for (i = 0; i <= table->mask; i++) {
3780 		INIT_HLIST_HEAD(&table->hash2[i].hslot.head);
3781 		table->hash2[i].hslot.count = 0;
3782 		spin_lock_init(&table->hash2[i].hslot.lock);
3783 	}
3784 	udp_table_hash4_init(table);
3785 }
3786 
3787 u32 udp_flow_hashrnd(void)
3788 {
3789 	static u32 hashrnd __read_mostly;
3790 
3791 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3792 
3793 	return hashrnd;
3794 }
3795 EXPORT_SYMBOL(udp_flow_hashrnd);
3796 
3797 static void __net_init udp_sysctl_init(struct net *net)
3798 {
3799 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3800 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3801 
3802 #ifdef CONFIG_NET_L3_MASTER_DEV
3803 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3804 #endif
3805 }
3806 
3807 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3808 {
3809 	struct udp_table *udptable;
3810 	unsigned int slot_size;
3811 	int i;
3812 
3813 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3814 	if (!udptable)
3815 		goto out;
3816 
3817 	slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) +
3818 		    udp_hash4_slot_size();
3819 	udptable->hash = vmalloc_huge(hash_entries * slot_size,
3820 				      GFP_KERNEL_ACCOUNT);
3821 	if (!udptable->hash)
3822 		goto free_table;
3823 
3824 	udptable->hash2 = (void *)(udptable->hash + hash_entries);
3825 	udptable->mask = hash_entries - 1;
3826 	udptable->log = ilog2(hash_entries);
3827 
3828 	for (i = 0; i < hash_entries; i++) {
3829 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3830 		udptable->hash[i].count = 0;
3831 		spin_lock_init(&udptable->hash[i].lock);
3832 
3833 		INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head);
3834 		udptable->hash2[i].hslot.count = 0;
3835 		spin_lock_init(&udptable->hash2[i].hslot.lock);
3836 	}
3837 	udp_table_hash4_init(udptable);
3838 
3839 	return udptable;
3840 
3841 free_table:
3842 	kfree(udptable);
3843 out:
3844 	return NULL;
3845 }
3846 
3847 static void __net_exit udp_pernet_table_free(struct net *net)
3848 {
3849 	struct udp_table *udptable = net->ipv4.udp_table;
3850 
3851 	if (udptable == &udp_table)
3852 		return;
3853 
3854 	kvfree(udptable->hash);
3855 	kfree(udptable);
3856 }
3857 
3858 static void __net_init udp_set_table(struct net *net)
3859 {
3860 	struct udp_table *udptable;
3861 	unsigned int hash_entries;
3862 	struct net *old_net;
3863 
3864 	if (net_eq(net, &init_net))
3865 		goto fallback;
3866 
3867 	old_net = current->nsproxy->net_ns;
3868 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3869 	if (!hash_entries)
3870 		goto fallback;
3871 
3872 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3873 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3874 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3875 	else
3876 		hash_entries = roundup_pow_of_two(hash_entries);
3877 
3878 	udptable = udp_pernet_table_alloc(hash_entries);
3879 	if (udptable) {
3880 		net->ipv4.udp_table = udptable;
3881 	} else {
3882 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3883 			"for a netns, fallback to the global one\n",
3884 			hash_entries);
3885 fallback:
3886 		net->ipv4.udp_table = &udp_table;
3887 	}
3888 }
3889 
3890 static int __net_init udp_pernet_init(struct net *net)
3891 {
3892 #if IS_ENABLED(CONFIG_NET_UDP_TUNNEL)
3893 	int i;
3894 
3895 	/* No tunnel is configured */
3896 	for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) {
3897 		INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list);
3898 		RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL);
3899 	}
3900 #endif
3901 	udp_sysctl_init(net);
3902 	udp_set_table(net);
3903 
3904 	return 0;
3905 }
3906 
3907 static void __net_exit udp_pernet_exit(struct net *net)
3908 {
3909 	udp_pernet_table_free(net);
3910 }
3911 
3912 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3913 	.init	= udp_pernet_init,
3914 	.exit	= udp_pernet_exit,
3915 };
3916 
3917 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3918 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3919 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3920 
3921 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3922 				      unsigned int new_batch_sz, gfp_t flags)
3923 {
3924 	union bpf_udp_iter_batch_item *new_batch;
3925 
3926 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3927 				   flags | __GFP_NOWARN);
3928 	if (!new_batch)
3929 		return -ENOMEM;
3930 
3931 	if (flags != GFP_NOWAIT)
3932 		bpf_iter_udp_put_batch(iter);
3933 
3934 	memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk);
3935 	kvfree(iter->batch);
3936 	iter->batch = new_batch;
3937 	iter->max_sk = new_batch_sz;
3938 
3939 	return 0;
3940 }
3941 
3942 #define INIT_BATCH_SZ 16
3943 
3944 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3945 {
3946 	struct bpf_udp_iter_state *iter = priv_data;
3947 	int ret;
3948 
3949 	ret = bpf_iter_init_seq_net(priv_data, aux);
3950 	if (ret)
3951 		return ret;
3952 
3953 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER);
3954 	if (ret)
3955 		bpf_iter_fini_seq_net(priv_data);
3956 
3957 	iter->state.bucket = -1;
3958 
3959 	return ret;
3960 }
3961 
3962 static void bpf_iter_fini_udp(void *priv_data)
3963 {
3964 	struct bpf_udp_iter_state *iter = priv_data;
3965 
3966 	bpf_iter_fini_seq_net(priv_data);
3967 	kvfree(iter->batch);
3968 }
3969 
3970 static const struct bpf_iter_seq_info udp_seq_info = {
3971 	.seq_ops		= &bpf_iter_udp_seq_ops,
3972 	.init_seq_private	= bpf_iter_init_udp,
3973 	.fini_seq_private	= bpf_iter_fini_udp,
3974 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3975 };
3976 
3977 static struct bpf_iter_reg udp_reg_info = {
3978 	.target			= "udp",
3979 	.ctx_arg_info_size	= 1,
3980 	.ctx_arg_info		= {
3981 		{ offsetof(struct bpf_iter__udp, udp_sk),
3982 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3983 	},
3984 	.seq_info		= &udp_seq_info,
3985 };
3986 
3987 static void __init bpf_iter_register(void)
3988 {
3989 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3990 	if (bpf_iter_reg_target(&udp_reg_info))
3991 		pr_warn("Warning: could not register bpf iterator udp\n");
3992 }
3993 #endif
3994 
3995 void __init udp_init(void)
3996 {
3997 	unsigned long limit;
3998 	unsigned int i;
3999 
4000 	udp_table_init(&udp_table, "UDP");
4001 	limit = nr_free_buffer_pages() / 8;
4002 	limit = max(limit, 128UL);
4003 	sysctl_udp_mem[0] = limit / 4 * 3;
4004 	sysctl_udp_mem[1] = limit;
4005 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
4006 
4007 	/* 16 spinlocks per cpu */
4008 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
4009 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
4010 				GFP_KERNEL);
4011 	if (!udp_busylocks)
4012 		panic("UDP: failed to alloc udp_busylocks\n");
4013 	for (i = 0; i < (1U << udp_busylocks_log); i++)
4014 		spin_lock_init(udp_busylocks + i);
4015 
4016 	if (register_pernet_subsys(&udp_sysctl_ops))
4017 		panic("UDP: failed to init sysctl parameters.\n");
4018 
4019 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
4020 	bpf_iter_register();
4021 #endif
4022 }
4023