1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Version: $Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 13 * Alan Cox, <Alan.Cox@linux.org> 14 * Hirokazu Takahashi, <taka@valinux.co.jp> 15 * 16 * Fixes: 17 * Alan Cox : verify_area() calls 18 * Alan Cox : stopped close while in use off icmp 19 * messages. Not a fix but a botch that 20 * for udp at least is 'valid'. 21 * Alan Cox : Fixed icmp handling properly 22 * Alan Cox : Correct error for oversized datagrams 23 * Alan Cox : Tidied select() semantics. 24 * Alan Cox : udp_err() fixed properly, also now 25 * select and read wake correctly on errors 26 * Alan Cox : udp_send verify_area moved to avoid mem leak 27 * Alan Cox : UDP can count its memory 28 * Alan Cox : send to an unknown connection causes 29 * an ECONNREFUSED off the icmp, but 30 * does NOT close. 31 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 32 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 33 * bug no longer crashes it. 34 * Fred Van Kempen : Net2e support for sk->broadcast. 35 * Alan Cox : Uses skb_free_datagram 36 * Alan Cox : Added get/set sockopt support. 37 * Alan Cox : Broadcasting without option set returns EACCES. 38 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 39 * Alan Cox : Use ip_tos and ip_ttl 40 * Alan Cox : SNMP Mibs 41 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 42 * Matt Dillon : UDP length checks. 43 * Alan Cox : Smarter af_inet used properly. 44 * Alan Cox : Use new kernel side addressing. 45 * Alan Cox : Incorrect return on truncated datagram receive. 46 * Arnt Gulbrandsen : New udp_send and stuff 47 * Alan Cox : Cache last socket 48 * Alan Cox : Route cache 49 * Jon Peatfield : Minor efficiency fix to sendto(). 50 * Mike Shaver : RFC1122 checks. 51 * Alan Cox : Nonblocking error fix. 52 * Willy Konynenberg : Transparent proxying support. 53 * Mike McLagan : Routing by source 54 * David S. Miller : New socket lookup architecture. 55 * Last socket cache retained as it 56 * does have a high hit rate. 57 * Olaf Kirch : Don't linearise iovec on sendmsg. 58 * Andi Kleen : Some cleanups, cache destination entry 59 * for connect. 60 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 61 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 62 * return ENOTCONN for unconnected sockets (POSIX) 63 * Janos Farkas : don't deliver multi/broadcasts to a different 64 * bound-to-device socket 65 * Hirokazu Takahashi : HW checksumming for outgoing UDP 66 * datagrams. 67 * Hirokazu Takahashi : sendfile() on UDP works now. 68 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 69 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 70 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 71 * a single port at the same time. 72 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 73 * 74 * 75 * This program is free software; you can redistribute it and/or 76 * modify it under the terms of the GNU General Public License 77 * as published by the Free Software Foundation; either version 78 * 2 of the License, or (at your option) any later version. 79 */ 80 81 #include <asm/system.h> 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/types.h> 85 #include <linux/fcntl.h> 86 #include <linux/module.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/igmp.h> 90 #include <linux/in.h> 91 #include <linux/errno.h> 92 #include <linux/timer.h> 93 #include <linux/mm.h> 94 #include <linux/inet.h> 95 #include <linux/ipv6.h> 96 #include <linux/netdevice.h> 97 #include <net/snmp.h> 98 #include <net/ip.h> 99 #include <net/tcp_states.h> 100 #include <net/protocol.h> 101 #include <linux/skbuff.h> 102 #include <linux/proc_fs.h> 103 #include <linux/seq_file.h> 104 #include <net/sock.h> 105 #include <net/udp.h> 106 #include <net/icmp.h> 107 #include <net/route.h> 108 #include <net/inet_common.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 112 /* 113 * Snmp MIB for the UDP layer 114 */ 115 116 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly; 117 118 struct hlist_head udp_hash[UDP_HTABLE_SIZE]; 119 DEFINE_RWLOCK(udp_hash_lock); 120 121 /* Shared by v4/v6 udp. */ 122 int udp_port_rover; 123 124 static int udp_v4_get_port(struct sock *sk, unsigned short snum) 125 { 126 struct hlist_node *node; 127 struct sock *sk2; 128 struct inet_sock *inet = inet_sk(sk); 129 130 write_lock_bh(&udp_hash_lock); 131 if (snum == 0) { 132 int best_size_so_far, best, result, i; 133 134 if (udp_port_rover > sysctl_local_port_range[1] || 135 udp_port_rover < sysctl_local_port_range[0]) 136 udp_port_rover = sysctl_local_port_range[0]; 137 best_size_so_far = 32767; 138 best = result = udp_port_rover; 139 for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) { 140 struct hlist_head *list; 141 int size; 142 143 list = &udp_hash[result & (UDP_HTABLE_SIZE - 1)]; 144 if (hlist_empty(list)) { 145 if (result > sysctl_local_port_range[1]) 146 result = sysctl_local_port_range[0] + 147 ((result - sysctl_local_port_range[0]) & 148 (UDP_HTABLE_SIZE - 1)); 149 goto gotit; 150 } 151 size = 0; 152 sk_for_each(sk2, node, list) 153 if (++size >= best_size_so_far) 154 goto next; 155 best_size_so_far = size; 156 best = result; 157 next:; 158 } 159 result = best; 160 for(i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++, result += UDP_HTABLE_SIZE) { 161 if (result > sysctl_local_port_range[1]) 162 result = sysctl_local_port_range[0] 163 + ((result - sysctl_local_port_range[0]) & 164 (UDP_HTABLE_SIZE - 1)); 165 if (!udp_lport_inuse(result)) 166 break; 167 } 168 if (i >= (1 << 16) / UDP_HTABLE_SIZE) 169 goto fail; 170 gotit: 171 udp_port_rover = snum = result; 172 } else { 173 sk_for_each(sk2, node, 174 &udp_hash[snum & (UDP_HTABLE_SIZE - 1)]) { 175 struct inet_sock *inet2 = inet_sk(sk2); 176 177 if (inet2->num == snum && 178 sk2 != sk && 179 !ipv6_only_sock(sk2) && 180 (!sk2->sk_bound_dev_if || 181 !sk->sk_bound_dev_if || 182 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 183 (!inet2->rcv_saddr || 184 !inet->rcv_saddr || 185 inet2->rcv_saddr == inet->rcv_saddr) && 186 (!sk2->sk_reuse || !sk->sk_reuse)) 187 goto fail; 188 } 189 } 190 inet->num = snum; 191 if (sk_unhashed(sk)) { 192 struct hlist_head *h = &udp_hash[snum & (UDP_HTABLE_SIZE - 1)]; 193 194 sk_add_node(sk, h); 195 sock_prot_inc_use(sk->sk_prot); 196 } 197 write_unlock_bh(&udp_hash_lock); 198 return 0; 199 200 fail: 201 write_unlock_bh(&udp_hash_lock); 202 return 1; 203 } 204 205 static void udp_v4_hash(struct sock *sk) 206 { 207 BUG(); 208 } 209 210 static void udp_v4_unhash(struct sock *sk) 211 { 212 write_lock_bh(&udp_hash_lock); 213 if (sk_del_node_init(sk)) { 214 inet_sk(sk)->num = 0; 215 sock_prot_dec_use(sk->sk_prot); 216 } 217 write_unlock_bh(&udp_hash_lock); 218 } 219 220 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 221 * harder than this. -DaveM 222 */ 223 static struct sock *udp_v4_lookup_longway(u32 saddr, u16 sport, 224 u32 daddr, u16 dport, int dif) 225 { 226 struct sock *sk, *result = NULL; 227 struct hlist_node *node; 228 unsigned short hnum = ntohs(dport); 229 int badness = -1; 230 231 sk_for_each(sk, node, &udp_hash[hnum & (UDP_HTABLE_SIZE - 1)]) { 232 struct inet_sock *inet = inet_sk(sk); 233 234 if (inet->num == hnum && !ipv6_only_sock(sk)) { 235 int score = (sk->sk_family == PF_INET ? 1 : 0); 236 if (inet->rcv_saddr) { 237 if (inet->rcv_saddr != daddr) 238 continue; 239 score+=2; 240 } 241 if (inet->daddr) { 242 if (inet->daddr != saddr) 243 continue; 244 score+=2; 245 } 246 if (inet->dport) { 247 if (inet->dport != sport) 248 continue; 249 score+=2; 250 } 251 if (sk->sk_bound_dev_if) { 252 if (sk->sk_bound_dev_if != dif) 253 continue; 254 score+=2; 255 } 256 if(score == 9) { 257 result = sk; 258 break; 259 } else if(score > badness) { 260 result = sk; 261 badness = score; 262 } 263 } 264 } 265 return result; 266 } 267 268 static __inline__ struct sock *udp_v4_lookup(u32 saddr, u16 sport, 269 u32 daddr, u16 dport, int dif) 270 { 271 struct sock *sk; 272 273 read_lock(&udp_hash_lock); 274 sk = udp_v4_lookup_longway(saddr, sport, daddr, dport, dif); 275 if (sk) 276 sock_hold(sk); 277 read_unlock(&udp_hash_lock); 278 return sk; 279 } 280 281 static inline struct sock *udp_v4_mcast_next(struct sock *sk, 282 u16 loc_port, u32 loc_addr, 283 u16 rmt_port, u32 rmt_addr, 284 int dif) 285 { 286 struct hlist_node *node; 287 struct sock *s = sk; 288 unsigned short hnum = ntohs(loc_port); 289 290 sk_for_each_from(s, node) { 291 struct inet_sock *inet = inet_sk(s); 292 293 if (inet->num != hnum || 294 (inet->daddr && inet->daddr != rmt_addr) || 295 (inet->dport != rmt_port && inet->dport) || 296 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) || 297 ipv6_only_sock(s) || 298 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)) 299 continue; 300 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif)) 301 continue; 302 goto found; 303 } 304 s = NULL; 305 found: 306 return s; 307 } 308 309 /* 310 * This routine is called by the ICMP module when it gets some 311 * sort of error condition. If err < 0 then the socket should 312 * be closed and the error returned to the user. If err > 0 313 * it's just the icmp type << 8 | icmp code. 314 * Header points to the ip header of the error packet. We move 315 * on past this. Then (as it used to claim before adjustment) 316 * header points to the first 8 bytes of the udp header. We need 317 * to find the appropriate port. 318 */ 319 320 void udp_err(struct sk_buff *skb, u32 info) 321 { 322 struct inet_sock *inet; 323 struct iphdr *iph = (struct iphdr*)skb->data; 324 struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2)); 325 int type = skb->h.icmph->type; 326 int code = skb->h.icmph->code; 327 struct sock *sk; 328 int harderr; 329 int err; 330 331 sk = udp_v4_lookup(iph->daddr, uh->dest, iph->saddr, uh->source, skb->dev->ifindex); 332 if (sk == NULL) { 333 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 334 return; /* No socket for error */ 335 } 336 337 err = 0; 338 harderr = 0; 339 inet = inet_sk(sk); 340 341 switch (type) { 342 default: 343 case ICMP_TIME_EXCEEDED: 344 err = EHOSTUNREACH; 345 break; 346 case ICMP_SOURCE_QUENCH: 347 goto out; 348 case ICMP_PARAMETERPROB: 349 err = EPROTO; 350 harderr = 1; 351 break; 352 case ICMP_DEST_UNREACH: 353 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 354 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 355 err = EMSGSIZE; 356 harderr = 1; 357 break; 358 } 359 goto out; 360 } 361 err = EHOSTUNREACH; 362 if (code <= NR_ICMP_UNREACH) { 363 harderr = icmp_err_convert[code].fatal; 364 err = icmp_err_convert[code].errno; 365 } 366 break; 367 } 368 369 /* 370 * RFC1122: OK. Passes ICMP errors back to application, as per 371 * 4.1.3.3. 372 */ 373 if (!inet->recverr) { 374 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 375 goto out; 376 } else { 377 ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1)); 378 } 379 sk->sk_err = err; 380 sk->sk_error_report(sk); 381 out: 382 sock_put(sk); 383 } 384 385 /* 386 * Throw away all pending data and cancel the corking. Socket is locked. 387 */ 388 static void udp_flush_pending_frames(struct sock *sk) 389 { 390 struct udp_sock *up = udp_sk(sk); 391 392 if (up->pending) { 393 up->len = 0; 394 up->pending = 0; 395 ip_flush_pending_frames(sk); 396 } 397 } 398 399 /* 400 * Push out all pending data as one UDP datagram. Socket is locked. 401 */ 402 static int udp_push_pending_frames(struct sock *sk, struct udp_sock *up) 403 { 404 struct inet_sock *inet = inet_sk(sk); 405 struct flowi *fl = &inet->cork.fl; 406 struct sk_buff *skb; 407 struct udphdr *uh; 408 int err = 0; 409 410 /* Grab the skbuff where UDP header space exists. */ 411 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL) 412 goto out; 413 414 /* 415 * Create a UDP header 416 */ 417 uh = skb->h.uh; 418 uh->source = fl->fl_ip_sport; 419 uh->dest = fl->fl_ip_dport; 420 uh->len = htons(up->len); 421 uh->check = 0; 422 423 if (sk->sk_no_check == UDP_CSUM_NOXMIT) { 424 skb->ip_summed = CHECKSUM_NONE; 425 goto send; 426 } 427 428 if (skb_queue_len(&sk->sk_write_queue) == 1) { 429 /* 430 * Only one fragment on the socket. 431 */ 432 if (skb->ip_summed == CHECKSUM_HW) { 433 skb->csum = offsetof(struct udphdr, check); 434 uh->check = ~csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, 435 up->len, IPPROTO_UDP, 0); 436 } else { 437 skb->csum = csum_partial((char *)uh, 438 sizeof(struct udphdr), skb->csum); 439 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, 440 up->len, IPPROTO_UDP, skb->csum); 441 if (uh->check == 0) 442 uh->check = -1; 443 } 444 } else { 445 unsigned int csum = 0; 446 /* 447 * HW-checksum won't work as there are two or more 448 * fragments on the socket so that all csums of sk_buffs 449 * should be together. 450 */ 451 if (skb->ip_summed == CHECKSUM_HW) { 452 int offset = (unsigned char *)uh - skb->data; 453 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0); 454 455 skb->ip_summed = CHECKSUM_NONE; 456 } else { 457 skb->csum = csum_partial((char *)uh, 458 sizeof(struct udphdr), skb->csum); 459 } 460 461 skb_queue_walk(&sk->sk_write_queue, skb) { 462 csum = csum_add(csum, skb->csum); 463 } 464 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, 465 up->len, IPPROTO_UDP, csum); 466 if (uh->check == 0) 467 uh->check = -1; 468 } 469 send: 470 err = ip_push_pending_frames(sk); 471 out: 472 up->len = 0; 473 up->pending = 0; 474 return err; 475 } 476 477 478 static unsigned short udp_check(struct udphdr *uh, int len, unsigned long saddr, unsigned long daddr, unsigned long base) 479 { 480 return(csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base)); 481 } 482 483 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 484 size_t len) 485 { 486 struct inet_sock *inet = inet_sk(sk); 487 struct udp_sock *up = udp_sk(sk); 488 int ulen = len; 489 struct ipcm_cookie ipc; 490 struct rtable *rt = NULL; 491 int free = 0; 492 int connected = 0; 493 u32 daddr, faddr, saddr; 494 u16 dport; 495 u8 tos; 496 int err; 497 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 498 499 if (len > 0xFFFF) 500 return -EMSGSIZE; 501 502 /* 503 * Check the flags. 504 */ 505 506 if (msg->msg_flags&MSG_OOB) /* Mirror BSD error message compatibility */ 507 return -EOPNOTSUPP; 508 509 ipc.opt = NULL; 510 511 if (up->pending) { 512 /* 513 * There are pending frames. 514 * The socket lock must be held while it's corked. 515 */ 516 lock_sock(sk); 517 if (likely(up->pending)) { 518 if (unlikely(up->pending != AF_INET)) { 519 release_sock(sk); 520 return -EINVAL; 521 } 522 goto do_append_data; 523 } 524 release_sock(sk); 525 } 526 ulen += sizeof(struct udphdr); 527 528 /* 529 * Get and verify the address. 530 */ 531 if (msg->msg_name) { 532 struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name; 533 if (msg->msg_namelen < sizeof(*usin)) 534 return -EINVAL; 535 if (usin->sin_family != AF_INET) { 536 if (usin->sin_family != AF_UNSPEC) 537 return -EAFNOSUPPORT; 538 } 539 540 daddr = usin->sin_addr.s_addr; 541 dport = usin->sin_port; 542 if (dport == 0) 543 return -EINVAL; 544 } else { 545 if (sk->sk_state != TCP_ESTABLISHED) 546 return -EDESTADDRREQ; 547 daddr = inet->daddr; 548 dport = inet->dport; 549 /* Open fast path for connected socket. 550 Route will not be used, if at least one option is set. 551 */ 552 connected = 1; 553 } 554 ipc.addr = inet->saddr; 555 556 ipc.oif = sk->sk_bound_dev_if; 557 if (msg->msg_controllen) { 558 err = ip_cmsg_send(msg, &ipc); 559 if (err) 560 return err; 561 if (ipc.opt) 562 free = 1; 563 connected = 0; 564 } 565 if (!ipc.opt) 566 ipc.opt = inet->opt; 567 568 saddr = ipc.addr; 569 ipc.addr = faddr = daddr; 570 571 if (ipc.opt && ipc.opt->srr) { 572 if (!daddr) 573 return -EINVAL; 574 faddr = ipc.opt->faddr; 575 connected = 0; 576 } 577 tos = RT_TOS(inet->tos); 578 if (sock_flag(sk, SOCK_LOCALROUTE) || 579 (msg->msg_flags & MSG_DONTROUTE) || 580 (ipc.opt && ipc.opt->is_strictroute)) { 581 tos |= RTO_ONLINK; 582 connected = 0; 583 } 584 585 if (MULTICAST(daddr)) { 586 if (!ipc.oif) 587 ipc.oif = inet->mc_index; 588 if (!saddr) 589 saddr = inet->mc_addr; 590 connected = 0; 591 } 592 593 if (connected) 594 rt = (struct rtable*)sk_dst_check(sk, 0); 595 596 if (rt == NULL) { 597 struct flowi fl = { .oif = ipc.oif, 598 .nl_u = { .ip4_u = 599 { .daddr = faddr, 600 .saddr = saddr, 601 .tos = tos } }, 602 .proto = IPPROTO_UDP, 603 .uli_u = { .ports = 604 { .sport = inet->sport, 605 .dport = dport } } }; 606 err = ip_route_output_flow(&rt, &fl, sk, !(msg->msg_flags&MSG_DONTWAIT)); 607 if (err) 608 goto out; 609 610 err = -EACCES; 611 if ((rt->rt_flags & RTCF_BROADCAST) && 612 !sock_flag(sk, SOCK_BROADCAST)) 613 goto out; 614 if (connected) 615 sk_dst_set(sk, dst_clone(&rt->u.dst)); 616 } 617 618 if (msg->msg_flags&MSG_CONFIRM) 619 goto do_confirm; 620 back_from_confirm: 621 622 saddr = rt->rt_src; 623 if (!ipc.addr) 624 daddr = ipc.addr = rt->rt_dst; 625 626 lock_sock(sk); 627 if (unlikely(up->pending)) { 628 /* The socket is already corked while preparing it. */ 629 /* ... which is an evident application bug. --ANK */ 630 release_sock(sk); 631 632 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n"); 633 err = -EINVAL; 634 goto out; 635 } 636 /* 637 * Now cork the socket to pend data. 638 */ 639 inet->cork.fl.fl4_dst = daddr; 640 inet->cork.fl.fl_ip_dport = dport; 641 inet->cork.fl.fl4_src = saddr; 642 inet->cork.fl.fl_ip_sport = inet->sport; 643 up->pending = AF_INET; 644 645 do_append_data: 646 up->len += ulen; 647 err = ip_append_data(sk, ip_generic_getfrag, msg->msg_iov, ulen, 648 sizeof(struct udphdr), &ipc, rt, 649 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 650 if (err) 651 udp_flush_pending_frames(sk); 652 else if (!corkreq) 653 err = udp_push_pending_frames(sk, up); 654 release_sock(sk); 655 656 out: 657 ip_rt_put(rt); 658 if (free) 659 kfree(ipc.opt); 660 if (!err) { 661 UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS); 662 return len; 663 } 664 return err; 665 666 do_confirm: 667 dst_confirm(&rt->u.dst); 668 if (!(msg->msg_flags&MSG_PROBE) || len) 669 goto back_from_confirm; 670 err = 0; 671 goto out; 672 } 673 674 static int udp_sendpage(struct sock *sk, struct page *page, int offset, 675 size_t size, int flags) 676 { 677 struct udp_sock *up = udp_sk(sk); 678 int ret; 679 680 if (!up->pending) { 681 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 682 683 /* Call udp_sendmsg to specify destination address which 684 * sendpage interface can't pass. 685 * This will succeed only when the socket is connected. 686 */ 687 ret = udp_sendmsg(NULL, sk, &msg, 0); 688 if (ret < 0) 689 return ret; 690 } 691 692 lock_sock(sk); 693 694 if (unlikely(!up->pending)) { 695 release_sock(sk); 696 697 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n"); 698 return -EINVAL; 699 } 700 701 ret = ip_append_page(sk, page, offset, size, flags); 702 if (ret == -EOPNOTSUPP) { 703 release_sock(sk); 704 return sock_no_sendpage(sk->sk_socket, page, offset, 705 size, flags); 706 } 707 if (ret < 0) { 708 udp_flush_pending_frames(sk); 709 goto out; 710 } 711 712 up->len += size; 713 if (!(up->corkflag || (flags&MSG_MORE))) 714 ret = udp_push_pending_frames(sk, up); 715 if (!ret) 716 ret = size; 717 out: 718 release_sock(sk); 719 return ret; 720 } 721 722 /* 723 * IOCTL requests applicable to the UDP protocol 724 */ 725 726 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 727 { 728 switch(cmd) 729 { 730 case SIOCOUTQ: 731 { 732 int amount = atomic_read(&sk->sk_wmem_alloc); 733 return put_user(amount, (int __user *)arg); 734 } 735 736 case SIOCINQ: 737 { 738 struct sk_buff *skb; 739 unsigned long amount; 740 741 amount = 0; 742 spin_lock_bh(&sk->sk_receive_queue.lock); 743 skb = skb_peek(&sk->sk_receive_queue); 744 if (skb != NULL) { 745 /* 746 * We will only return the amount 747 * of this packet since that is all 748 * that will be read. 749 */ 750 amount = skb->len - sizeof(struct udphdr); 751 } 752 spin_unlock_bh(&sk->sk_receive_queue.lock); 753 return put_user(amount, (int __user *)arg); 754 } 755 756 default: 757 return -ENOIOCTLCMD; 758 } 759 return(0); 760 } 761 762 static __inline__ int __udp_checksum_complete(struct sk_buff *skb) 763 { 764 return __skb_checksum_complete(skb); 765 } 766 767 static __inline__ int udp_checksum_complete(struct sk_buff *skb) 768 { 769 return skb->ip_summed != CHECKSUM_UNNECESSARY && 770 __udp_checksum_complete(skb); 771 } 772 773 /* 774 * This should be easy, if there is something there we 775 * return it, otherwise we block. 776 */ 777 778 static int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 779 size_t len, int noblock, int flags, int *addr_len) 780 { 781 struct inet_sock *inet = inet_sk(sk); 782 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name; 783 struct sk_buff *skb; 784 int copied, err; 785 786 /* 787 * Check any passed addresses 788 */ 789 if (addr_len) 790 *addr_len=sizeof(*sin); 791 792 if (flags & MSG_ERRQUEUE) 793 return ip_recv_error(sk, msg, len); 794 795 try_again: 796 skb = skb_recv_datagram(sk, flags, noblock, &err); 797 if (!skb) 798 goto out; 799 800 copied = skb->len - sizeof(struct udphdr); 801 if (copied > len) { 802 copied = len; 803 msg->msg_flags |= MSG_TRUNC; 804 } 805 806 if (skb->ip_summed==CHECKSUM_UNNECESSARY) { 807 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov, 808 copied); 809 } else if (msg->msg_flags&MSG_TRUNC) { 810 if (__udp_checksum_complete(skb)) 811 goto csum_copy_err; 812 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov, 813 copied); 814 } else { 815 err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov); 816 817 if (err == -EINVAL) 818 goto csum_copy_err; 819 } 820 821 if (err) 822 goto out_free; 823 824 sock_recv_timestamp(msg, sk, skb); 825 826 /* Copy the address. */ 827 if (sin) 828 { 829 sin->sin_family = AF_INET; 830 sin->sin_port = skb->h.uh->source; 831 sin->sin_addr.s_addr = skb->nh.iph->saddr; 832 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 833 } 834 if (inet->cmsg_flags) 835 ip_cmsg_recv(msg, skb); 836 837 err = copied; 838 if (flags & MSG_TRUNC) 839 err = skb->len - sizeof(struct udphdr); 840 841 out_free: 842 skb_free_datagram(sk, skb); 843 out: 844 return err; 845 846 csum_copy_err: 847 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 848 849 skb_kill_datagram(sk, skb, flags); 850 851 if (noblock) 852 return -EAGAIN; 853 goto try_again; 854 } 855 856 857 int udp_disconnect(struct sock *sk, int flags) 858 { 859 struct inet_sock *inet = inet_sk(sk); 860 /* 861 * 1003.1g - break association. 862 */ 863 864 sk->sk_state = TCP_CLOSE; 865 inet->daddr = 0; 866 inet->dport = 0; 867 sk->sk_bound_dev_if = 0; 868 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 869 inet_reset_saddr(sk); 870 871 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 872 sk->sk_prot->unhash(sk); 873 inet->sport = 0; 874 } 875 sk_dst_reset(sk); 876 return 0; 877 } 878 879 static void udp_close(struct sock *sk, long timeout) 880 { 881 sk_common_release(sk); 882 } 883 884 /* return: 885 * 1 if the the UDP system should process it 886 * 0 if we should drop this packet 887 * -1 if it should get processed by xfrm4_rcv_encap 888 */ 889 static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb) 890 { 891 #ifndef CONFIG_XFRM 892 return 1; 893 #else 894 struct udp_sock *up = udp_sk(sk); 895 struct udphdr *uh = skb->h.uh; 896 struct iphdr *iph; 897 int iphlen, len; 898 899 __u8 *udpdata = (__u8 *)uh + sizeof(struct udphdr); 900 __u32 *udpdata32 = (__u32 *)udpdata; 901 __u16 encap_type = up->encap_type; 902 903 /* if we're overly short, let UDP handle it */ 904 if (udpdata > skb->tail) 905 return 1; 906 907 /* if this is not encapsulated socket, then just return now */ 908 if (!encap_type) 909 return 1; 910 911 len = skb->tail - udpdata; 912 913 switch (encap_type) { 914 default: 915 case UDP_ENCAP_ESPINUDP: 916 /* Check if this is a keepalive packet. If so, eat it. */ 917 if (len == 1 && udpdata[0] == 0xff) { 918 return 0; 919 } else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0 ) { 920 /* ESP Packet without Non-ESP header */ 921 len = sizeof(struct udphdr); 922 } else 923 /* Must be an IKE packet.. pass it through */ 924 return 1; 925 break; 926 case UDP_ENCAP_ESPINUDP_NON_IKE: 927 /* Check if this is a keepalive packet. If so, eat it. */ 928 if (len == 1 && udpdata[0] == 0xff) { 929 return 0; 930 } else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) && 931 udpdata32[0] == 0 && udpdata32[1] == 0) { 932 933 /* ESP Packet with Non-IKE marker */ 934 len = sizeof(struct udphdr) + 2 * sizeof(u32); 935 } else 936 /* Must be an IKE packet.. pass it through */ 937 return 1; 938 break; 939 } 940 941 /* At this point we are sure that this is an ESPinUDP packet, 942 * so we need to remove 'len' bytes from the packet (the UDP 943 * header and optional ESP marker bytes) and then modify the 944 * protocol to ESP, and then call into the transform receiver. 945 */ 946 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 947 return 0; 948 949 /* Now we can update and verify the packet length... */ 950 iph = skb->nh.iph; 951 iphlen = iph->ihl << 2; 952 iph->tot_len = htons(ntohs(iph->tot_len) - len); 953 if (skb->len < iphlen + len) { 954 /* packet is too small!?! */ 955 return 0; 956 } 957 958 /* pull the data buffer up to the ESP header and set the 959 * transport header to point to ESP. Keep UDP on the stack 960 * for later. 961 */ 962 skb->h.raw = skb_pull(skb, len); 963 964 /* modify the protocol (it's ESP!) */ 965 iph->protocol = IPPROTO_ESP; 966 967 /* and let the caller know to send this into the ESP processor... */ 968 return -1; 969 #endif 970 } 971 972 /* returns: 973 * -1: error 974 * 0: success 975 * >0: "udp encap" protocol resubmission 976 * 977 * Note that in the success and error cases, the skb is assumed to 978 * have either been requeued or freed. 979 */ 980 static int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb) 981 { 982 struct udp_sock *up = udp_sk(sk); 983 984 /* 985 * Charge it to the socket, dropping if the queue is full. 986 */ 987 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 988 kfree_skb(skb); 989 return -1; 990 } 991 nf_reset(skb); 992 993 if (up->encap_type) { 994 /* 995 * This is an encapsulation socket, so let's see if this is 996 * an encapsulated packet. 997 * If it's a keepalive packet, then just eat it. 998 * If it's an encapsulateed packet, then pass it to the 999 * IPsec xfrm input and return the response 1000 * appropriately. Otherwise, just fall through and 1001 * pass this up the UDP socket. 1002 */ 1003 int ret; 1004 1005 ret = udp_encap_rcv(sk, skb); 1006 if (ret == 0) { 1007 /* Eat the packet .. */ 1008 kfree_skb(skb); 1009 return 0; 1010 } 1011 if (ret < 0) { 1012 /* process the ESP packet */ 1013 ret = xfrm4_rcv_encap(skb, up->encap_type); 1014 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS); 1015 return -ret; 1016 } 1017 /* FALLTHROUGH -- it's a UDP Packet */ 1018 } 1019 1020 if (sk->sk_filter && skb->ip_summed != CHECKSUM_UNNECESSARY) { 1021 if (__udp_checksum_complete(skb)) { 1022 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1023 kfree_skb(skb); 1024 return -1; 1025 } 1026 skb->ip_summed = CHECKSUM_UNNECESSARY; 1027 } 1028 1029 if (sock_queue_rcv_skb(sk,skb)<0) { 1030 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1031 kfree_skb(skb); 1032 return -1; 1033 } 1034 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS); 1035 return 0; 1036 } 1037 1038 /* 1039 * Multicasts and broadcasts go to each listener. 1040 * 1041 * Note: called only from the BH handler context, 1042 * so we don't need to lock the hashes. 1043 */ 1044 static int udp_v4_mcast_deliver(struct sk_buff *skb, struct udphdr *uh, 1045 u32 saddr, u32 daddr) 1046 { 1047 struct sock *sk; 1048 int dif; 1049 1050 read_lock(&udp_hash_lock); 1051 sk = sk_head(&udp_hash[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]); 1052 dif = skb->dev->ifindex; 1053 sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif); 1054 if (sk) { 1055 struct sock *sknext = NULL; 1056 1057 do { 1058 struct sk_buff *skb1 = skb; 1059 1060 sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr, 1061 uh->source, saddr, dif); 1062 if(sknext) 1063 skb1 = skb_clone(skb, GFP_ATOMIC); 1064 1065 if(skb1) { 1066 int ret = udp_queue_rcv_skb(sk, skb1); 1067 if (ret > 0) 1068 /* we should probably re-process instead 1069 * of dropping packets here. */ 1070 kfree_skb(skb1); 1071 } 1072 sk = sknext; 1073 } while(sknext); 1074 } else 1075 kfree_skb(skb); 1076 read_unlock(&udp_hash_lock); 1077 return 0; 1078 } 1079 1080 /* Initialize UDP checksum. If exited with zero value (success), 1081 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1082 * Otherwise, csum completion requires chacksumming packet body, 1083 * including udp header and folding it to skb->csum. 1084 */ 1085 static void udp_checksum_init(struct sk_buff *skb, struct udphdr *uh, 1086 unsigned short ulen, u32 saddr, u32 daddr) 1087 { 1088 if (uh->check == 0) { 1089 skb->ip_summed = CHECKSUM_UNNECESSARY; 1090 } else if (skb->ip_summed == CHECKSUM_HW) { 1091 if (!udp_check(uh, ulen, saddr, daddr, skb->csum)) 1092 skb->ip_summed = CHECKSUM_UNNECESSARY; 1093 } 1094 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 1095 skb->csum = csum_tcpudp_nofold(saddr, daddr, ulen, IPPROTO_UDP, 0); 1096 /* Probably, we should checksum udp header (it should be in cache 1097 * in any case) and data in tiny packets (< rx copybreak). 1098 */ 1099 } 1100 1101 /* 1102 * All we need to do is get the socket, and then do a checksum. 1103 */ 1104 1105 int udp_rcv(struct sk_buff *skb) 1106 { 1107 struct sock *sk; 1108 struct udphdr *uh; 1109 unsigned short ulen; 1110 struct rtable *rt = (struct rtable*)skb->dst; 1111 u32 saddr = skb->nh.iph->saddr; 1112 u32 daddr = skb->nh.iph->daddr; 1113 int len = skb->len; 1114 1115 /* 1116 * Validate the packet and the UDP length. 1117 */ 1118 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1119 goto no_header; 1120 1121 uh = skb->h.uh; 1122 1123 ulen = ntohs(uh->len); 1124 1125 if (ulen > len || ulen < sizeof(*uh)) 1126 goto short_packet; 1127 1128 if (pskb_trim_rcsum(skb, ulen)) 1129 goto short_packet; 1130 1131 udp_checksum_init(skb, uh, ulen, saddr, daddr); 1132 1133 if(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1134 return udp_v4_mcast_deliver(skb, uh, saddr, daddr); 1135 1136 sk = udp_v4_lookup(saddr, uh->source, daddr, uh->dest, skb->dev->ifindex); 1137 1138 if (sk != NULL) { 1139 int ret = udp_queue_rcv_skb(sk, skb); 1140 sock_put(sk); 1141 1142 /* a return value > 0 means to resubmit the input, but 1143 * it it wants the return to be -protocol, or 0 1144 */ 1145 if (ret > 0) 1146 return -ret; 1147 return 0; 1148 } 1149 1150 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1151 goto drop; 1152 nf_reset(skb); 1153 1154 /* No socket. Drop packet silently, if checksum is wrong */ 1155 if (udp_checksum_complete(skb)) 1156 goto csum_error; 1157 1158 UDP_INC_STATS_BH(UDP_MIB_NOPORTS); 1159 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1160 1161 /* 1162 * Hmm. We got an UDP packet to a port to which we 1163 * don't wanna listen. Ignore it. 1164 */ 1165 kfree_skb(skb); 1166 return(0); 1167 1168 short_packet: 1169 LIMIT_NETDEBUG(KERN_DEBUG "UDP: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n", 1170 NIPQUAD(saddr), 1171 ntohs(uh->source), 1172 ulen, 1173 len, 1174 NIPQUAD(daddr), 1175 ntohs(uh->dest)); 1176 no_header: 1177 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1178 kfree_skb(skb); 1179 return(0); 1180 1181 csum_error: 1182 /* 1183 * RFC1122: OK. Discards the bad packet silently (as far as 1184 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1185 */ 1186 LIMIT_NETDEBUG(KERN_DEBUG "UDP: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n", 1187 NIPQUAD(saddr), 1188 ntohs(uh->source), 1189 NIPQUAD(daddr), 1190 ntohs(uh->dest), 1191 ulen); 1192 drop: 1193 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1194 kfree_skb(skb); 1195 return(0); 1196 } 1197 1198 static int udp_destroy_sock(struct sock *sk) 1199 { 1200 lock_sock(sk); 1201 udp_flush_pending_frames(sk); 1202 release_sock(sk); 1203 return 0; 1204 } 1205 1206 /* 1207 * Socket option code for UDP 1208 */ 1209 static int do_udp_setsockopt(struct sock *sk, int level, int optname, 1210 char __user *optval, int optlen) 1211 { 1212 struct udp_sock *up = udp_sk(sk); 1213 int val; 1214 int err = 0; 1215 1216 if(optlen<sizeof(int)) 1217 return -EINVAL; 1218 1219 if (get_user(val, (int __user *)optval)) 1220 return -EFAULT; 1221 1222 switch(optname) { 1223 case UDP_CORK: 1224 if (val != 0) { 1225 up->corkflag = 1; 1226 } else { 1227 up->corkflag = 0; 1228 lock_sock(sk); 1229 udp_push_pending_frames(sk, up); 1230 release_sock(sk); 1231 } 1232 break; 1233 1234 case UDP_ENCAP: 1235 switch (val) { 1236 case 0: 1237 case UDP_ENCAP_ESPINUDP: 1238 case UDP_ENCAP_ESPINUDP_NON_IKE: 1239 up->encap_type = val; 1240 break; 1241 default: 1242 err = -ENOPROTOOPT; 1243 break; 1244 } 1245 break; 1246 1247 default: 1248 err = -ENOPROTOOPT; 1249 break; 1250 }; 1251 1252 return err; 1253 } 1254 1255 static int udp_setsockopt(struct sock *sk, int level, int optname, 1256 char __user *optval, int optlen) 1257 { 1258 if (level != SOL_UDP) 1259 return ip_setsockopt(sk, level, optname, optval, optlen); 1260 return do_udp_setsockopt(sk, level, optname, optval, optlen); 1261 } 1262 1263 #ifdef CONFIG_COMPAT 1264 static int compat_udp_setsockopt(struct sock *sk, int level, int optname, 1265 char __user *optval, int optlen) 1266 { 1267 if (level != SOL_UDP) 1268 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 1269 return do_udp_setsockopt(sk, level, optname, optval, optlen); 1270 } 1271 #endif 1272 1273 static int do_udp_getsockopt(struct sock *sk, int level, int optname, 1274 char __user *optval, int __user *optlen) 1275 { 1276 struct udp_sock *up = udp_sk(sk); 1277 int val, len; 1278 1279 if(get_user(len,optlen)) 1280 return -EFAULT; 1281 1282 len = min_t(unsigned int, len, sizeof(int)); 1283 1284 if(len < 0) 1285 return -EINVAL; 1286 1287 switch(optname) { 1288 case UDP_CORK: 1289 val = up->corkflag; 1290 break; 1291 1292 case UDP_ENCAP: 1293 val = up->encap_type; 1294 break; 1295 1296 default: 1297 return -ENOPROTOOPT; 1298 }; 1299 1300 if(put_user(len, optlen)) 1301 return -EFAULT; 1302 if(copy_to_user(optval, &val,len)) 1303 return -EFAULT; 1304 return 0; 1305 } 1306 1307 static int udp_getsockopt(struct sock *sk, int level, int optname, 1308 char __user *optval, int __user *optlen) 1309 { 1310 if (level != SOL_UDP) 1311 return ip_getsockopt(sk, level, optname, optval, optlen); 1312 return do_udp_getsockopt(sk, level, optname, optval, optlen); 1313 } 1314 1315 #ifdef CONFIG_COMPAT 1316 static int compat_udp_getsockopt(struct sock *sk, int level, int optname, 1317 char __user *optval, int __user *optlen) 1318 { 1319 if (level != SOL_UDP) 1320 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 1321 return do_udp_getsockopt(sk, level, optname, optval, optlen); 1322 } 1323 #endif 1324 /** 1325 * udp_poll - wait for a UDP event. 1326 * @file - file struct 1327 * @sock - socket 1328 * @wait - poll table 1329 * 1330 * This is same as datagram poll, except for the special case of 1331 * blocking sockets. If application is using a blocking fd 1332 * and a packet with checksum error is in the queue; 1333 * then it could get return from select indicating data available 1334 * but then block when reading it. Add special case code 1335 * to work around these arguably broken applications. 1336 */ 1337 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 1338 { 1339 unsigned int mask = datagram_poll(file, sock, wait); 1340 struct sock *sk = sock->sk; 1341 1342 /* Check for false positives due to checksum errors */ 1343 if ( (mask & POLLRDNORM) && 1344 !(file->f_flags & O_NONBLOCK) && 1345 !(sk->sk_shutdown & RCV_SHUTDOWN)){ 1346 struct sk_buff_head *rcvq = &sk->sk_receive_queue; 1347 struct sk_buff *skb; 1348 1349 spin_lock_bh(&rcvq->lock); 1350 while ((skb = skb_peek(rcvq)) != NULL) { 1351 if (udp_checksum_complete(skb)) { 1352 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1353 __skb_unlink(skb, rcvq); 1354 kfree_skb(skb); 1355 } else { 1356 skb->ip_summed = CHECKSUM_UNNECESSARY; 1357 break; 1358 } 1359 } 1360 spin_unlock_bh(&rcvq->lock); 1361 1362 /* nothing to see, move along */ 1363 if (skb == NULL) 1364 mask &= ~(POLLIN | POLLRDNORM); 1365 } 1366 1367 return mask; 1368 1369 } 1370 1371 struct proto udp_prot = { 1372 .name = "UDP", 1373 .owner = THIS_MODULE, 1374 .close = udp_close, 1375 .connect = ip4_datagram_connect, 1376 .disconnect = udp_disconnect, 1377 .ioctl = udp_ioctl, 1378 .destroy = udp_destroy_sock, 1379 .setsockopt = udp_setsockopt, 1380 .getsockopt = udp_getsockopt, 1381 .sendmsg = udp_sendmsg, 1382 .recvmsg = udp_recvmsg, 1383 .sendpage = udp_sendpage, 1384 .backlog_rcv = udp_queue_rcv_skb, 1385 .hash = udp_v4_hash, 1386 .unhash = udp_v4_unhash, 1387 .get_port = udp_v4_get_port, 1388 .obj_size = sizeof(struct udp_sock), 1389 #ifdef CONFIG_COMPAT 1390 .compat_setsockopt = compat_udp_setsockopt, 1391 .compat_getsockopt = compat_udp_getsockopt, 1392 #endif 1393 }; 1394 1395 /* ------------------------------------------------------------------------ */ 1396 #ifdef CONFIG_PROC_FS 1397 1398 static struct sock *udp_get_first(struct seq_file *seq) 1399 { 1400 struct sock *sk; 1401 struct udp_iter_state *state = seq->private; 1402 1403 for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) { 1404 struct hlist_node *node; 1405 sk_for_each(sk, node, &udp_hash[state->bucket]) { 1406 if (sk->sk_family == state->family) 1407 goto found; 1408 } 1409 } 1410 sk = NULL; 1411 found: 1412 return sk; 1413 } 1414 1415 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 1416 { 1417 struct udp_iter_state *state = seq->private; 1418 1419 do { 1420 sk = sk_next(sk); 1421 try_again: 1422 ; 1423 } while (sk && sk->sk_family != state->family); 1424 1425 if (!sk && ++state->bucket < UDP_HTABLE_SIZE) { 1426 sk = sk_head(&udp_hash[state->bucket]); 1427 goto try_again; 1428 } 1429 return sk; 1430 } 1431 1432 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 1433 { 1434 struct sock *sk = udp_get_first(seq); 1435 1436 if (sk) 1437 while(pos && (sk = udp_get_next(seq, sk)) != NULL) 1438 --pos; 1439 return pos ? NULL : sk; 1440 } 1441 1442 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 1443 { 1444 read_lock(&udp_hash_lock); 1445 return *pos ? udp_get_idx(seq, *pos-1) : (void *)1; 1446 } 1447 1448 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1449 { 1450 struct sock *sk; 1451 1452 if (v == (void *)1) 1453 sk = udp_get_idx(seq, 0); 1454 else 1455 sk = udp_get_next(seq, v); 1456 1457 ++*pos; 1458 return sk; 1459 } 1460 1461 static void udp_seq_stop(struct seq_file *seq, void *v) 1462 { 1463 read_unlock(&udp_hash_lock); 1464 } 1465 1466 static int udp_seq_open(struct inode *inode, struct file *file) 1467 { 1468 struct udp_seq_afinfo *afinfo = PDE(inode)->data; 1469 struct seq_file *seq; 1470 int rc = -ENOMEM; 1471 struct udp_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL); 1472 1473 if (!s) 1474 goto out; 1475 memset(s, 0, sizeof(*s)); 1476 s->family = afinfo->family; 1477 s->seq_ops.start = udp_seq_start; 1478 s->seq_ops.next = udp_seq_next; 1479 s->seq_ops.show = afinfo->seq_show; 1480 s->seq_ops.stop = udp_seq_stop; 1481 1482 rc = seq_open(file, &s->seq_ops); 1483 if (rc) 1484 goto out_kfree; 1485 1486 seq = file->private_data; 1487 seq->private = s; 1488 out: 1489 return rc; 1490 out_kfree: 1491 kfree(s); 1492 goto out; 1493 } 1494 1495 /* ------------------------------------------------------------------------ */ 1496 int udp_proc_register(struct udp_seq_afinfo *afinfo) 1497 { 1498 struct proc_dir_entry *p; 1499 int rc = 0; 1500 1501 if (!afinfo) 1502 return -EINVAL; 1503 afinfo->seq_fops->owner = afinfo->owner; 1504 afinfo->seq_fops->open = udp_seq_open; 1505 afinfo->seq_fops->read = seq_read; 1506 afinfo->seq_fops->llseek = seq_lseek; 1507 afinfo->seq_fops->release = seq_release_private; 1508 1509 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops); 1510 if (p) 1511 p->data = afinfo; 1512 else 1513 rc = -ENOMEM; 1514 return rc; 1515 } 1516 1517 void udp_proc_unregister(struct udp_seq_afinfo *afinfo) 1518 { 1519 if (!afinfo) 1520 return; 1521 proc_net_remove(afinfo->name); 1522 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops)); 1523 } 1524 1525 /* ------------------------------------------------------------------------ */ 1526 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket) 1527 { 1528 struct inet_sock *inet = inet_sk(sp); 1529 unsigned int dest = inet->daddr; 1530 unsigned int src = inet->rcv_saddr; 1531 __u16 destp = ntohs(inet->dport); 1532 __u16 srcp = ntohs(inet->sport); 1533 1534 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X" 1535 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p", 1536 bucket, src, srcp, dest, destp, sp->sk_state, 1537 atomic_read(&sp->sk_wmem_alloc), 1538 atomic_read(&sp->sk_rmem_alloc), 1539 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp), 1540 atomic_read(&sp->sk_refcnt), sp); 1541 } 1542 1543 static int udp4_seq_show(struct seq_file *seq, void *v) 1544 { 1545 if (v == SEQ_START_TOKEN) 1546 seq_printf(seq, "%-127s\n", 1547 " sl local_address rem_address st tx_queue " 1548 "rx_queue tr tm->when retrnsmt uid timeout " 1549 "inode"); 1550 else { 1551 char tmpbuf[129]; 1552 struct udp_iter_state *state = seq->private; 1553 1554 udp4_format_sock(v, tmpbuf, state->bucket); 1555 seq_printf(seq, "%-127s\n", tmpbuf); 1556 } 1557 return 0; 1558 } 1559 1560 /* ------------------------------------------------------------------------ */ 1561 static struct file_operations udp4_seq_fops; 1562 static struct udp_seq_afinfo udp4_seq_afinfo = { 1563 .owner = THIS_MODULE, 1564 .name = "udp", 1565 .family = AF_INET, 1566 .seq_show = udp4_seq_show, 1567 .seq_fops = &udp4_seq_fops, 1568 }; 1569 1570 int __init udp4_proc_init(void) 1571 { 1572 return udp_proc_register(&udp4_seq_afinfo); 1573 } 1574 1575 void udp4_proc_exit(void) 1576 { 1577 udp_proc_unregister(&udp4_seq_afinfo); 1578 } 1579 #endif /* CONFIG_PROC_FS */ 1580 1581 EXPORT_SYMBOL(udp_disconnect); 1582 EXPORT_SYMBOL(udp_hash); 1583 EXPORT_SYMBOL(udp_hash_lock); 1584 EXPORT_SYMBOL(udp_ioctl); 1585 EXPORT_SYMBOL(udp_port_rover); 1586 EXPORT_SYMBOL(udp_prot); 1587 EXPORT_SYMBOL(udp_sendmsg); 1588 EXPORT_SYMBOL(udp_poll); 1589 1590 #ifdef CONFIG_PROC_FS 1591 EXPORT_SYMBOL(udp_proc_register); 1592 EXPORT_SYMBOL(udp_proc_unregister); 1593 #endif 1594