1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2); 225 } 226 } 227 228 return reuseport_alloc(sk); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_hslot *hslot, *hslot2; 243 struct udp_table *udptable = sk->sk_prot->h.udp_table; 244 int error = 1; 245 struct net *net = sock_net(sk); 246 247 if (!snum) { 248 int low, high, remaining; 249 unsigned int rand; 250 unsigned short first, last; 251 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 252 253 inet_get_local_port_range(net, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = prandom_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif, bool exact_dif) 370 { 371 int score; 372 struct inet_sock *inet; 373 374 if (!net_eq(sock_net(sk), net) || 375 udp_sk(sk)->udp_port_hash != hnum || 376 ipv6_only_sock(sk)) 377 return -1; 378 379 score = (sk->sk_family == PF_INET) ? 2 : 1; 380 inet = inet_sk(sk); 381 382 if (inet->inet_rcv_saddr) { 383 if (inet->inet_rcv_saddr != daddr) 384 return -1; 385 score += 4; 386 } 387 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 if (sk->sk_bound_dev_if || exact_dif) { 401 bool dev_match = (sk->sk_bound_dev_if == dif || 402 sk->sk_bound_dev_if == sdif); 403 404 if (!dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if) 407 score += 4; 408 } 409 410 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 411 score++; 412 return score; 413 } 414 415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 416 const __u16 lport, const __be32 faddr, 417 const __be16 fport) 418 { 419 static u32 udp_ehash_secret __read_mostly; 420 421 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 422 423 return __inet_ehashfn(laddr, lport, faddr, fport, 424 udp_ehash_secret + net_hash_mix(net)); 425 } 426 427 /* called with rcu_read_lock() */ 428 static struct sock *udp4_lib_lookup2(struct net *net, 429 __be32 saddr, __be16 sport, 430 __be32 daddr, unsigned int hnum, 431 int dif, int sdif, bool exact_dif, 432 struct udp_hslot *hslot2, 433 struct sk_buff *skb) 434 { 435 struct sock *sk, *result; 436 int score, badness; 437 u32 hash = 0; 438 439 result = NULL; 440 badness = 0; 441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 442 score = compute_score(sk, net, saddr, sport, 443 daddr, hnum, dif, sdif, exact_dif); 444 if (score > badness) { 445 if (sk->sk_reuseport) { 446 hash = udp_ehashfn(net, daddr, hnum, 447 saddr, sport); 448 result = reuseport_select_sock(sk, hash, skb, 449 sizeof(struct udphdr)); 450 if (result) 451 return result; 452 } 453 badness = score; 454 result = sk; 455 } 456 } 457 return result; 458 } 459 460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 461 * harder than this. -DaveM 462 */ 463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 464 __be16 sport, __be32 daddr, __be16 dport, int dif, 465 int sdif, struct udp_table *udptable, struct sk_buff *skb) 466 { 467 struct sock *sk, *result; 468 unsigned short hnum = ntohs(dport); 469 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 470 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 471 bool exact_dif = udp_lib_exact_dif_match(net, skb); 472 int score, badness; 473 u32 hash = 0; 474 475 if (hslot->count > 10) { 476 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 477 slot2 = hash2 & udptable->mask; 478 hslot2 = &udptable->hash2[slot2]; 479 if (hslot->count < hslot2->count) 480 goto begin; 481 482 result = udp4_lib_lookup2(net, saddr, sport, 483 daddr, hnum, dif, sdif, 484 exact_dif, hslot2, skb); 485 if (!result) { 486 unsigned int old_slot2 = slot2; 487 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 488 slot2 = hash2 & udptable->mask; 489 /* avoid searching the same slot again. */ 490 if (unlikely(slot2 == old_slot2)) 491 return result; 492 493 hslot2 = &udptable->hash2[slot2]; 494 if (hslot->count < hslot2->count) 495 goto begin; 496 497 result = udp4_lib_lookup2(net, saddr, sport, 498 daddr, hnum, dif, sdif, 499 exact_dif, hslot2, skb); 500 } 501 return result; 502 } 503 begin: 504 result = NULL; 505 badness = 0; 506 sk_for_each_rcu(sk, &hslot->head) { 507 score = compute_score(sk, net, saddr, sport, 508 daddr, hnum, dif, sdif, exact_dif); 509 if (score > badness) { 510 if (sk->sk_reuseport) { 511 hash = udp_ehashfn(net, daddr, hnum, 512 saddr, sport); 513 result = reuseport_select_sock(sk, hash, skb, 514 sizeof(struct udphdr)); 515 if (result) 516 return result; 517 } 518 result = sk; 519 badness = score; 520 } 521 } 522 return result; 523 } 524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 525 526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 527 __be16 sport, __be16 dport, 528 struct udp_table *udptable) 529 { 530 const struct iphdr *iph = ip_hdr(skb); 531 532 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 533 iph->daddr, dport, inet_iif(skb), 534 inet_sdif(skb), udptable, skb); 535 } 536 537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 538 __be16 sport, __be16 dport) 539 { 540 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 541 } 542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 543 544 /* Must be called under rcu_read_lock(). 545 * Does increment socket refcount. 546 */ 547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \ 548 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \ 549 IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 551 __be32 daddr, __be16 dport, int dif) 552 { 553 struct sock *sk; 554 555 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 556 dif, 0, &udp_table, NULL); 557 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 558 sk = NULL; 559 return sk; 560 } 561 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 562 #endif 563 564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 565 __be16 loc_port, __be32 loc_addr, 566 __be16 rmt_port, __be32 rmt_addr, 567 int dif, int sdif, unsigned short hnum) 568 { 569 struct inet_sock *inet = inet_sk(sk); 570 571 if (!net_eq(sock_net(sk), net) || 572 udp_sk(sk)->udp_port_hash != hnum || 573 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 574 (inet->inet_dport != rmt_port && inet->inet_dport) || 575 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 576 ipv6_only_sock(sk) || 577 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 578 sk->sk_bound_dev_if != sdif)) 579 return false; 580 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 581 return false; 582 return true; 583 } 584 585 /* 586 * This routine is called by the ICMP module when it gets some 587 * sort of error condition. If err < 0 then the socket should 588 * be closed and the error returned to the user. If err > 0 589 * it's just the icmp type << 8 | icmp code. 590 * Header points to the ip header of the error packet. We move 591 * on past this. Then (as it used to claim before adjustment) 592 * header points to the first 8 bytes of the udp header. We need 593 * to find the appropriate port. 594 */ 595 596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 597 { 598 struct inet_sock *inet; 599 const struct iphdr *iph = (const struct iphdr *)skb->data; 600 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 601 const int type = icmp_hdr(skb)->type; 602 const int code = icmp_hdr(skb)->code; 603 struct sock *sk; 604 int harderr; 605 int err; 606 struct net *net = dev_net(skb->dev); 607 608 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 609 iph->saddr, uh->source, skb->dev->ifindex, 0, 610 udptable, NULL); 611 if (!sk) { 612 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 613 return; /* No socket for error */ 614 } 615 616 err = 0; 617 harderr = 0; 618 inet = inet_sk(sk); 619 620 switch (type) { 621 default: 622 case ICMP_TIME_EXCEEDED: 623 err = EHOSTUNREACH; 624 break; 625 case ICMP_SOURCE_QUENCH: 626 goto out; 627 case ICMP_PARAMETERPROB: 628 err = EPROTO; 629 harderr = 1; 630 break; 631 case ICMP_DEST_UNREACH: 632 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 633 ipv4_sk_update_pmtu(skb, sk, info); 634 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 635 err = EMSGSIZE; 636 harderr = 1; 637 break; 638 } 639 goto out; 640 } 641 err = EHOSTUNREACH; 642 if (code <= NR_ICMP_UNREACH) { 643 harderr = icmp_err_convert[code].fatal; 644 err = icmp_err_convert[code].errno; 645 } 646 break; 647 case ICMP_REDIRECT: 648 ipv4_sk_redirect(skb, sk); 649 goto out; 650 } 651 652 /* 653 * RFC1122: OK. Passes ICMP errors back to application, as per 654 * 4.1.3.3. 655 */ 656 if (!inet->recverr) { 657 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 658 goto out; 659 } else 660 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 661 662 sk->sk_err = err; 663 sk->sk_error_report(sk); 664 out: 665 return; 666 } 667 668 void udp_err(struct sk_buff *skb, u32 info) 669 { 670 __udp4_lib_err(skb, info, &udp_table); 671 } 672 673 /* 674 * Throw away all pending data and cancel the corking. Socket is locked. 675 */ 676 void udp_flush_pending_frames(struct sock *sk) 677 { 678 struct udp_sock *up = udp_sk(sk); 679 680 if (up->pending) { 681 up->len = 0; 682 up->pending = 0; 683 ip_flush_pending_frames(sk); 684 } 685 } 686 EXPORT_SYMBOL(udp_flush_pending_frames); 687 688 /** 689 * udp4_hwcsum - handle outgoing HW checksumming 690 * @skb: sk_buff containing the filled-in UDP header 691 * (checksum field must be zeroed out) 692 * @src: source IP address 693 * @dst: destination IP address 694 */ 695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 696 { 697 struct udphdr *uh = udp_hdr(skb); 698 int offset = skb_transport_offset(skb); 699 int len = skb->len - offset; 700 int hlen = len; 701 __wsum csum = 0; 702 703 if (!skb_has_frag_list(skb)) { 704 /* 705 * Only one fragment on the socket. 706 */ 707 skb->csum_start = skb_transport_header(skb) - skb->head; 708 skb->csum_offset = offsetof(struct udphdr, check); 709 uh->check = ~csum_tcpudp_magic(src, dst, len, 710 IPPROTO_UDP, 0); 711 } else { 712 struct sk_buff *frags; 713 714 /* 715 * HW-checksum won't work as there are two or more 716 * fragments on the socket so that all csums of sk_buffs 717 * should be together 718 */ 719 skb_walk_frags(skb, frags) { 720 csum = csum_add(csum, frags->csum); 721 hlen -= frags->len; 722 } 723 724 csum = skb_checksum(skb, offset, hlen, csum); 725 skb->ip_summed = CHECKSUM_NONE; 726 727 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 728 if (uh->check == 0) 729 uh->check = CSUM_MANGLED_0; 730 } 731 } 732 EXPORT_SYMBOL_GPL(udp4_hwcsum); 733 734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 735 * for the simple case like when setting the checksum for a UDP tunnel. 736 */ 737 void udp_set_csum(bool nocheck, struct sk_buff *skb, 738 __be32 saddr, __be32 daddr, int len) 739 { 740 struct udphdr *uh = udp_hdr(skb); 741 742 if (nocheck) { 743 uh->check = 0; 744 } else if (skb_is_gso(skb)) { 745 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 746 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 747 uh->check = 0; 748 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 749 if (uh->check == 0) 750 uh->check = CSUM_MANGLED_0; 751 } else { 752 skb->ip_summed = CHECKSUM_PARTIAL; 753 skb->csum_start = skb_transport_header(skb) - skb->head; 754 skb->csum_offset = offsetof(struct udphdr, check); 755 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 756 } 757 } 758 EXPORT_SYMBOL(udp_set_csum); 759 760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 761 struct inet_cork *cork) 762 { 763 struct sock *sk = skb->sk; 764 struct inet_sock *inet = inet_sk(sk); 765 struct udphdr *uh; 766 int err = 0; 767 int is_udplite = IS_UDPLITE(sk); 768 int offset = skb_transport_offset(skb); 769 int len = skb->len - offset; 770 __wsum csum = 0; 771 772 /* 773 * Create a UDP header 774 */ 775 uh = udp_hdr(skb); 776 uh->source = inet->inet_sport; 777 uh->dest = fl4->fl4_dport; 778 uh->len = htons(len); 779 uh->check = 0; 780 781 if (cork->gso_size) { 782 const int hlen = skb_network_header_len(skb) + 783 sizeof(struct udphdr); 784 785 if (hlen + cork->gso_size > cork->fragsize) 786 return -EINVAL; 787 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 788 return -EINVAL; 789 if (sk->sk_no_check_tx) 790 return -EINVAL; 791 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 792 dst_xfrm(skb_dst(skb))) 793 return -EIO; 794 795 skb_shinfo(skb)->gso_size = cork->gso_size; 796 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 797 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 798 cork->gso_size); 799 goto csum_partial; 800 } 801 802 if (is_udplite) /* UDP-Lite */ 803 csum = udplite_csum(skb); 804 805 else if (sk->sk_no_check_tx) { /* UDP csum off */ 806 807 skb->ip_summed = CHECKSUM_NONE; 808 goto send; 809 810 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 811 csum_partial: 812 813 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 814 goto send; 815 816 } else 817 csum = udp_csum(skb); 818 819 /* add protocol-dependent pseudo-header */ 820 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 821 sk->sk_protocol, csum); 822 if (uh->check == 0) 823 uh->check = CSUM_MANGLED_0; 824 825 send: 826 err = ip_send_skb(sock_net(sk), skb); 827 if (err) { 828 if (err == -ENOBUFS && !inet->recverr) { 829 UDP_INC_STATS(sock_net(sk), 830 UDP_MIB_SNDBUFERRORS, is_udplite); 831 err = 0; 832 } 833 } else 834 UDP_INC_STATS(sock_net(sk), 835 UDP_MIB_OUTDATAGRAMS, is_udplite); 836 return err; 837 } 838 839 /* 840 * Push out all pending data as one UDP datagram. Socket is locked. 841 */ 842 int udp_push_pending_frames(struct sock *sk) 843 { 844 struct udp_sock *up = udp_sk(sk); 845 struct inet_sock *inet = inet_sk(sk); 846 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 847 struct sk_buff *skb; 848 int err = 0; 849 850 skb = ip_finish_skb(sk, fl4); 851 if (!skb) 852 goto out; 853 854 err = udp_send_skb(skb, fl4, &inet->cork.base); 855 856 out: 857 up->len = 0; 858 up->pending = 0; 859 return err; 860 } 861 EXPORT_SYMBOL(udp_push_pending_frames); 862 863 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 864 { 865 switch (cmsg->cmsg_type) { 866 case UDP_SEGMENT: 867 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 868 return -EINVAL; 869 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 870 return 0; 871 default: 872 return -EINVAL; 873 } 874 } 875 876 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 877 { 878 struct cmsghdr *cmsg; 879 bool need_ip = false; 880 int err; 881 882 for_each_cmsghdr(cmsg, msg) { 883 if (!CMSG_OK(msg, cmsg)) 884 return -EINVAL; 885 886 if (cmsg->cmsg_level != SOL_UDP) { 887 need_ip = true; 888 continue; 889 } 890 891 err = __udp_cmsg_send(cmsg, gso_size); 892 if (err) 893 return err; 894 } 895 896 return need_ip; 897 } 898 EXPORT_SYMBOL_GPL(udp_cmsg_send); 899 900 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 901 { 902 struct inet_sock *inet = inet_sk(sk); 903 struct udp_sock *up = udp_sk(sk); 904 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 905 struct flowi4 fl4_stack; 906 struct flowi4 *fl4; 907 int ulen = len; 908 struct ipcm_cookie ipc; 909 struct rtable *rt = NULL; 910 int free = 0; 911 int connected = 0; 912 __be32 daddr, faddr, saddr; 913 __be16 dport; 914 u8 tos; 915 int err, is_udplite = IS_UDPLITE(sk); 916 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 917 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 918 struct sk_buff *skb; 919 struct ip_options_data opt_copy; 920 921 if (len > 0xFFFF) 922 return -EMSGSIZE; 923 924 /* 925 * Check the flags. 926 */ 927 928 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 929 return -EOPNOTSUPP; 930 931 ipc.opt = NULL; 932 ipc.tx_flags = 0; 933 ipc.ttl = 0; 934 ipc.tos = -1; 935 936 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 937 938 fl4 = &inet->cork.fl.u.ip4; 939 if (up->pending) { 940 /* 941 * There are pending frames. 942 * The socket lock must be held while it's corked. 943 */ 944 lock_sock(sk); 945 if (likely(up->pending)) { 946 if (unlikely(up->pending != AF_INET)) { 947 release_sock(sk); 948 return -EINVAL; 949 } 950 goto do_append_data; 951 } 952 release_sock(sk); 953 } 954 ulen += sizeof(struct udphdr); 955 956 /* 957 * Get and verify the address. 958 */ 959 if (usin) { 960 if (msg->msg_namelen < sizeof(*usin)) 961 return -EINVAL; 962 if (usin->sin_family != AF_INET) { 963 if (usin->sin_family != AF_UNSPEC) 964 return -EAFNOSUPPORT; 965 } 966 967 daddr = usin->sin_addr.s_addr; 968 dport = usin->sin_port; 969 if (dport == 0) 970 return -EINVAL; 971 } else { 972 if (sk->sk_state != TCP_ESTABLISHED) 973 return -EDESTADDRREQ; 974 daddr = inet->inet_daddr; 975 dport = inet->inet_dport; 976 /* Open fast path for connected socket. 977 Route will not be used, if at least one option is set. 978 */ 979 connected = 1; 980 } 981 982 ipc.sockc.tsflags = sk->sk_tsflags; 983 ipc.addr = inet->inet_saddr; 984 ipc.oif = sk->sk_bound_dev_if; 985 ipc.gso_size = up->gso_size; 986 987 if (msg->msg_controllen) { 988 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 989 if (err > 0) 990 err = ip_cmsg_send(sk, msg, &ipc, 991 sk->sk_family == AF_INET6); 992 if (unlikely(err < 0)) { 993 kfree(ipc.opt); 994 return err; 995 } 996 if (ipc.opt) 997 free = 1; 998 connected = 0; 999 } 1000 if (!ipc.opt) { 1001 struct ip_options_rcu *inet_opt; 1002 1003 rcu_read_lock(); 1004 inet_opt = rcu_dereference(inet->inet_opt); 1005 if (inet_opt) { 1006 memcpy(&opt_copy, inet_opt, 1007 sizeof(*inet_opt) + inet_opt->opt.optlen); 1008 ipc.opt = &opt_copy.opt; 1009 } 1010 rcu_read_unlock(); 1011 } 1012 1013 if (cgroup_bpf_enabled && !connected) { 1014 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1015 (struct sockaddr *)usin, &ipc.addr); 1016 if (err) 1017 goto out_free; 1018 if (usin) { 1019 if (usin->sin_port == 0) { 1020 /* BPF program set invalid port. Reject it. */ 1021 err = -EINVAL; 1022 goto out_free; 1023 } 1024 daddr = usin->sin_addr.s_addr; 1025 dport = usin->sin_port; 1026 } 1027 } 1028 1029 saddr = ipc.addr; 1030 ipc.addr = faddr = daddr; 1031 1032 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 1033 1034 if (ipc.opt && ipc.opt->opt.srr) { 1035 if (!daddr) { 1036 err = -EINVAL; 1037 goto out_free; 1038 } 1039 faddr = ipc.opt->opt.faddr; 1040 connected = 0; 1041 } 1042 tos = get_rttos(&ipc, inet); 1043 if (sock_flag(sk, SOCK_LOCALROUTE) || 1044 (msg->msg_flags & MSG_DONTROUTE) || 1045 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1046 tos |= RTO_ONLINK; 1047 connected = 0; 1048 } 1049 1050 if (ipv4_is_multicast(daddr)) { 1051 if (!ipc.oif) 1052 ipc.oif = inet->mc_index; 1053 if (!saddr) 1054 saddr = inet->mc_addr; 1055 connected = 0; 1056 } else if (!ipc.oif) { 1057 ipc.oif = inet->uc_index; 1058 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1059 /* oif is set, packet is to local broadcast and 1060 * and uc_index is set. oif is most likely set 1061 * by sk_bound_dev_if. If uc_index != oif check if the 1062 * oif is an L3 master and uc_index is an L3 slave. 1063 * If so, we want to allow the send using the uc_index. 1064 */ 1065 if (ipc.oif != inet->uc_index && 1066 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1067 inet->uc_index)) { 1068 ipc.oif = inet->uc_index; 1069 } 1070 } 1071 1072 if (connected) 1073 rt = (struct rtable *)sk_dst_check(sk, 0); 1074 1075 if (!rt) { 1076 struct net *net = sock_net(sk); 1077 __u8 flow_flags = inet_sk_flowi_flags(sk); 1078 1079 fl4 = &fl4_stack; 1080 1081 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1082 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1083 flow_flags, 1084 faddr, saddr, dport, inet->inet_sport, 1085 sk->sk_uid); 1086 1087 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1088 rt = ip_route_output_flow(net, fl4, sk); 1089 if (IS_ERR(rt)) { 1090 err = PTR_ERR(rt); 1091 rt = NULL; 1092 if (err == -ENETUNREACH) 1093 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1094 goto out; 1095 } 1096 1097 err = -EACCES; 1098 if ((rt->rt_flags & RTCF_BROADCAST) && 1099 !sock_flag(sk, SOCK_BROADCAST)) 1100 goto out; 1101 if (connected) 1102 sk_dst_set(sk, dst_clone(&rt->dst)); 1103 } 1104 1105 if (msg->msg_flags&MSG_CONFIRM) 1106 goto do_confirm; 1107 back_from_confirm: 1108 1109 saddr = fl4->saddr; 1110 if (!ipc.addr) 1111 daddr = ipc.addr = fl4->daddr; 1112 1113 /* Lockless fast path for the non-corking case. */ 1114 if (!corkreq) { 1115 struct inet_cork cork; 1116 1117 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1118 sizeof(struct udphdr), &ipc, &rt, 1119 &cork, msg->msg_flags); 1120 err = PTR_ERR(skb); 1121 if (!IS_ERR_OR_NULL(skb)) 1122 err = udp_send_skb(skb, fl4, &cork); 1123 goto out; 1124 } 1125 1126 lock_sock(sk); 1127 if (unlikely(up->pending)) { 1128 /* The socket is already corked while preparing it. */ 1129 /* ... which is an evident application bug. --ANK */ 1130 release_sock(sk); 1131 1132 net_dbg_ratelimited("socket already corked\n"); 1133 err = -EINVAL; 1134 goto out; 1135 } 1136 /* 1137 * Now cork the socket to pend data. 1138 */ 1139 fl4 = &inet->cork.fl.u.ip4; 1140 fl4->daddr = daddr; 1141 fl4->saddr = saddr; 1142 fl4->fl4_dport = dport; 1143 fl4->fl4_sport = inet->inet_sport; 1144 up->pending = AF_INET; 1145 1146 do_append_data: 1147 up->len += ulen; 1148 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1149 sizeof(struct udphdr), &ipc, &rt, 1150 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1151 if (err) 1152 udp_flush_pending_frames(sk); 1153 else if (!corkreq) 1154 err = udp_push_pending_frames(sk); 1155 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1156 up->pending = 0; 1157 release_sock(sk); 1158 1159 out: 1160 ip_rt_put(rt); 1161 out_free: 1162 if (free) 1163 kfree(ipc.opt); 1164 if (!err) 1165 return len; 1166 /* 1167 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1168 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1169 * we don't have a good statistic (IpOutDiscards but it can be too many 1170 * things). We could add another new stat but at least for now that 1171 * seems like overkill. 1172 */ 1173 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1174 UDP_INC_STATS(sock_net(sk), 1175 UDP_MIB_SNDBUFERRORS, is_udplite); 1176 } 1177 return err; 1178 1179 do_confirm: 1180 if (msg->msg_flags & MSG_PROBE) 1181 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1182 if (!(msg->msg_flags&MSG_PROBE) || len) 1183 goto back_from_confirm; 1184 err = 0; 1185 goto out; 1186 } 1187 EXPORT_SYMBOL(udp_sendmsg); 1188 1189 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1190 size_t size, int flags) 1191 { 1192 struct inet_sock *inet = inet_sk(sk); 1193 struct udp_sock *up = udp_sk(sk); 1194 int ret; 1195 1196 if (flags & MSG_SENDPAGE_NOTLAST) 1197 flags |= MSG_MORE; 1198 1199 if (!up->pending) { 1200 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1201 1202 /* Call udp_sendmsg to specify destination address which 1203 * sendpage interface can't pass. 1204 * This will succeed only when the socket is connected. 1205 */ 1206 ret = udp_sendmsg(sk, &msg, 0); 1207 if (ret < 0) 1208 return ret; 1209 } 1210 1211 lock_sock(sk); 1212 1213 if (unlikely(!up->pending)) { 1214 release_sock(sk); 1215 1216 net_dbg_ratelimited("cork failed\n"); 1217 return -EINVAL; 1218 } 1219 1220 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1221 page, offset, size, flags); 1222 if (ret == -EOPNOTSUPP) { 1223 release_sock(sk); 1224 return sock_no_sendpage(sk->sk_socket, page, offset, 1225 size, flags); 1226 } 1227 if (ret < 0) { 1228 udp_flush_pending_frames(sk); 1229 goto out; 1230 } 1231 1232 up->len += size; 1233 if (!(up->corkflag || (flags&MSG_MORE))) 1234 ret = udp_push_pending_frames(sk); 1235 if (!ret) 1236 ret = size; 1237 out: 1238 release_sock(sk); 1239 return ret; 1240 } 1241 1242 #define UDP_SKB_IS_STATELESS 0x80000000 1243 1244 static void udp_set_dev_scratch(struct sk_buff *skb) 1245 { 1246 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1247 1248 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1249 scratch->_tsize_state = skb->truesize; 1250 #if BITS_PER_LONG == 64 1251 scratch->len = skb->len; 1252 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1253 scratch->is_linear = !skb_is_nonlinear(skb); 1254 #endif 1255 /* all head states execept sp (dst, sk, nf) are always cleared by 1256 * udp_rcv() and we need to preserve secpath, if present, to eventually 1257 * process IP_CMSG_PASSSEC at recvmsg() time 1258 */ 1259 if (likely(!skb_sec_path(skb))) 1260 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1261 } 1262 1263 static int udp_skb_truesize(struct sk_buff *skb) 1264 { 1265 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1266 } 1267 1268 static bool udp_skb_has_head_state(struct sk_buff *skb) 1269 { 1270 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1271 } 1272 1273 /* fully reclaim rmem/fwd memory allocated for skb */ 1274 static void udp_rmem_release(struct sock *sk, int size, int partial, 1275 bool rx_queue_lock_held) 1276 { 1277 struct udp_sock *up = udp_sk(sk); 1278 struct sk_buff_head *sk_queue; 1279 int amt; 1280 1281 if (likely(partial)) { 1282 up->forward_deficit += size; 1283 size = up->forward_deficit; 1284 if (size < (sk->sk_rcvbuf >> 2)) 1285 return; 1286 } else { 1287 size += up->forward_deficit; 1288 } 1289 up->forward_deficit = 0; 1290 1291 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1292 * if the called don't held it already 1293 */ 1294 sk_queue = &sk->sk_receive_queue; 1295 if (!rx_queue_lock_held) 1296 spin_lock(&sk_queue->lock); 1297 1298 1299 sk->sk_forward_alloc += size; 1300 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1301 sk->sk_forward_alloc -= amt; 1302 1303 if (amt) 1304 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1305 1306 atomic_sub(size, &sk->sk_rmem_alloc); 1307 1308 /* this can save us from acquiring the rx queue lock on next receive */ 1309 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1310 1311 if (!rx_queue_lock_held) 1312 spin_unlock(&sk_queue->lock); 1313 } 1314 1315 /* Note: called with reader_queue.lock held. 1316 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1317 * This avoids a cache line miss while receive_queue lock is held. 1318 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1319 */ 1320 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1321 { 1322 prefetch(&skb->data); 1323 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1324 } 1325 EXPORT_SYMBOL(udp_skb_destructor); 1326 1327 /* as above, but the caller held the rx queue lock, too */ 1328 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1329 { 1330 prefetch(&skb->data); 1331 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1332 } 1333 1334 /* Idea of busylocks is to let producers grab an extra spinlock 1335 * to relieve pressure on the receive_queue spinlock shared by consumer. 1336 * Under flood, this means that only one producer can be in line 1337 * trying to acquire the receive_queue spinlock. 1338 * These busylock can be allocated on a per cpu manner, instead of a 1339 * per socket one (that would consume a cache line per socket) 1340 */ 1341 static int udp_busylocks_log __read_mostly; 1342 static spinlock_t *udp_busylocks __read_mostly; 1343 1344 static spinlock_t *busylock_acquire(void *ptr) 1345 { 1346 spinlock_t *busy; 1347 1348 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1349 spin_lock(busy); 1350 return busy; 1351 } 1352 1353 static void busylock_release(spinlock_t *busy) 1354 { 1355 if (busy) 1356 spin_unlock(busy); 1357 } 1358 1359 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1360 { 1361 struct sk_buff_head *list = &sk->sk_receive_queue; 1362 int rmem, delta, amt, err = -ENOMEM; 1363 spinlock_t *busy = NULL; 1364 int size; 1365 1366 /* try to avoid the costly atomic add/sub pair when the receive 1367 * queue is full; always allow at least a packet 1368 */ 1369 rmem = atomic_read(&sk->sk_rmem_alloc); 1370 if (rmem > sk->sk_rcvbuf) 1371 goto drop; 1372 1373 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1374 * having linear skbs : 1375 * - Reduce memory overhead and thus increase receive queue capacity 1376 * - Less cache line misses at copyout() time 1377 * - Less work at consume_skb() (less alien page frag freeing) 1378 */ 1379 if (rmem > (sk->sk_rcvbuf >> 1)) { 1380 skb_condense(skb); 1381 1382 busy = busylock_acquire(sk); 1383 } 1384 size = skb->truesize; 1385 udp_set_dev_scratch(skb); 1386 1387 /* we drop only if the receive buf is full and the receive 1388 * queue contains some other skb 1389 */ 1390 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1391 if (rmem > (size + sk->sk_rcvbuf)) 1392 goto uncharge_drop; 1393 1394 spin_lock(&list->lock); 1395 if (size >= sk->sk_forward_alloc) { 1396 amt = sk_mem_pages(size); 1397 delta = amt << SK_MEM_QUANTUM_SHIFT; 1398 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1399 err = -ENOBUFS; 1400 spin_unlock(&list->lock); 1401 goto uncharge_drop; 1402 } 1403 1404 sk->sk_forward_alloc += delta; 1405 } 1406 1407 sk->sk_forward_alloc -= size; 1408 1409 /* no need to setup a destructor, we will explicitly release the 1410 * forward allocated memory on dequeue 1411 */ 1412 sock_skb_set_dropcount(sk, skb); 1413 1414 __skb_queue_tail(list, skb); 1415 spin_unlock(&list->lock); 1416 1417 if (!sock_flag(sk, SOCK_DEAD)) 1418 sk->sk_data_ready(sk); 1419 1420 busylock_release(busy); 1421 return 0; 1422 1423 uncharge_drop: 1424 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1425 1426 drop: 1427 atomic_inc(&sk->sk_drops); 1428 busylock_release(busy); 1429 return err; 1430 } 1431 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1432 1433 void udp_destruct_sock(struct sock *sk) 1434 { 1435 /* reclaim completely the forward allocated memory */ 1436 struct udp_sock *up = udp_sk(sk); 1437 unsigned int total = 0; 1438 struct sk_buff *skb; 1439 1440 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1441 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1442 total += skb->truesize; 1443 kfree_skb(skb); 1444 } 1445 udp_rmem_release(sk, total, 0, true); 1446 1447 inet_sock_destruct(sk); 1448 } 1449 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1450 1451 int udp_init_sock(struct sock *sk) 1452 { 1453 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1454 sk->sk_destruct = udp_destruct_sock; 1455 return 0; 1456 } 1457 EXPORT_SYMBOL_GPL(udp_init_sock); 1458 1459 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1460 { 1461 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1462 bool slow = lock_sock_fast(sk); 1463 1464 sk_peek_offset_bwd(sk, len); 1465 unlock_sock_fast(sk, slow); 1466 } 1467 1468 if (!skb_unref(skb)) 1469 return; 1470 1471 /* In the more common cases we cleared the head states previously, 1472 * see __udp_queue_rcv_skb(). 1473 */ 1474 if (unlikely(udp_skb_has_head_state(skb))) 1475 skb_release_head_state(skb); 1476 __consume_stateless_skb(skb); 1477 } 1478 EXPORT_SYMBOL_GPL(skb_consume_udp); 1479 1480 static struct sk_buff *__first_packet_length(struct sock *sk, 1481 struct sk_buff_head *rcvq, 1482 int *total) 1483 { 1484 struct sk_buff *skb; 1485 1486 while ((skb = skb_peek(rcvq)) != NULL) { 1487 if (udp_lib_checksum_complete(skb)) { 1488 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1489 IS_UDPLITE(sk)); 1490 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1491 IS_UDPLITE(sk)); 1492 atomic_inc(&sk->sk_drops); 1493 __skb_unlink(skb, rcvq); 1494 *total += skb->truesize; 1495 kfree_skb(skb); 1496 } else { 1497 /* the csum related bits could be changed, refresh 1498 * the scratch area 1499 */ 1500 udp_set_dev_scratch(skb); 1501 break; 1502 } 1503 } 1504 return skb; 1505 } 1506 1507 /** 1508 * first_packet_length - return length of first packet in receive queue 1509 * @sk: socket 1510 * 1511 * Drops all bad checksum frames, until a valid one is found. 1512 * Returns the length of found skb, or -1 if none is found. 1513 */ 1514 static int first_packet_length(struct sock *sk) 1515 { 1516 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1517 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1518 struct sk_buff *skb; 1519 int total = 0; 1520 int res; 1521 1522 spin_lock_bh(&rcvq->lock); 1523 skb = __first_packet_length(sk, rcvq, &total); 1524 if (!skb && !skb_queue_empty(sk_queue)) { 1525 spin_lock(&sk_queue->lock); 1526 skb_queue_splice_tail_init(sk_queue, rcvq); 1527 spin_unlock(&sk_queue->lock); 1528 1529 skb = __first_packet_length(sk, rcvq, &total); 1530 } 1531 res = skb ? skb->len : -1; 1532 if (total) 1533 udp_rmem_release(sk, total, 1, false); 1534 spin_unlock_bh(&rcvq->lock); 1535 return res; 1536 } 1537 1538 /* 1539 * IOCTL requests applicable to the UDP protocol 1540 */ 1541 1542 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1543 { 1544 switch (cmd) { 1545 case SIOCOUTQ: 1546 { 1547 int amount = sk_wmem_alloc_get(sk); 1548 1549 return put_user(amount, (int __user *)arg); 1550 } 1551 1552 case SIOCINQ: 1553 { 1554 int amount = max_t(int, 0, first_packet_length(sk)); 1555 1556 return put_user(amount, (int __user *)arg); 1557 } 1558 1559 default: 1560 return -ENOIOCTLCMD; 1561 } 1562 1563 return 0; 1564 } 1565 EXPORT_SYMBOL(udp_ioctl); 1566 1567 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1568 int noblock, int *peeked, int *off, int *err) 1569 { 1570 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1571 struct sk_buff_head *queue; 1572 struct sk_buff *last; 1573 long timeo; 1574 int error; 1575 1576 queue = &udp_sk(sk)->reader_queue; 1577 flags |= noblock ? MSG_DONTWAIT : 0; 1578 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1579 do { 1580 struct sk_buff *skb; 1581 1582 error = sock_error(sk); 1583 if (error) 1584 break; 1585 1586 error = -EAGAIN; 1587 *peeked = 0; 1588 do { 1589 spin_lock_bh(&queue->lock); 1590 skb = __skb_try_recv_from_queue(sk, queue, flags, 1591 udp_skb_destructor, 1592 peeked, off, err, 1593 &last); 1594 if (skb) { 1595 spin_unlock_bh(&queue->lock); 1596 return skb; 1597 } 1598 1599 if (skb_queue_empty(sk_queue)) { 1600 spin_unlock_bh(&queue->lock); 1601 goto busy_check; 1602 } 1603 1604 /* refill the reader queue and walk it again 1605 * keep both queues locked to avoid re-acquiring 1606 * the sk_receive_queue lock if fwd memory scheduling 1607 * is needed. 1608 */ 1609 spin_lock(&sk_queue->lock); 1610 skb_queue_splice_tail_init(sk_queue, queue); 1611 1612 skb = __skb_try_recv_from_queue(sk, queue, flags, 1613 udp_skb_dtor_locked, 1614 peeked, off, err, 1615 &last); 1616 spin_unlock(&sk_queue->lock); 1617 spin_unlock_bh(&queue->lock); 1618 if (skb) 1619 return skb; 1620 1621 busy_check: 1622 if (!sk_can_busy_loop(sk)) 1623 break; 1624 1625 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1626 } while (!skb_queue_empty(sk_queue)); 1627 1628 /* sk_queue is empty, reader_queue may contain peeked packets */ 1629 } while (timeo && 1630 !__skb_wait_for_more_packets(sk, &error, &timeo, 1631 (struct sk_buff *)sk_queue)); 1632 1633 *err = error; 1634 return NULL; 1635 } 1636 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1637 1638 /* 1639 * This should be easy, if there is something there we 1640 * return it, otherwise we block. 1641 */ 1642 1643 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1644 int flags, int *addr_len) 1645 { 1646 struct inet_sock *inet = inet_sk(sk); 1647 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1648 struct sk_buff *skb; 1649 unsigned int ulen, copied; 1650 int peeked, peeking, off; 1651 int err; 1652 int is_udplite = IS_UDPLITE(sk); 1653 bool checksum_valid = false; 1654 1655 if (flags & MSG_ERRQUEUE) 1656 return ip_recv_error(sk, msg, len, addr_len); 1657 1658 try_again: 1659 peeking = flags & MSG_PEEK; 1660 off = sk_peek_offset(sk, flags); 1661 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1662 if (!skb) 1663 return err; 1664 1665 ulen = udp_skb_len(skb); 1666 copied = len; 1667 if (copied > ulen - off) 1668 copied = ulen - off; 1669 else if (copied < ulen) 1670 msg->msg_flags |= MSG_TRUNC; 1671 1672 /* 1673 * If checksum is needed at all, try to do it while copying the 1674 * data. If the data is truncated, or if we only want a partial 1675 * coverage checksum (UDP-Lite), do it before the copy. 1676 */ 1677 1678 if (copied < ulen || peeking || 1679 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1680 checksum_valid = udp_skb_csum_unnecessary(skb) || 1681 !__udp_lib_checksum_complete(skb); 1682 if (!checksum_valid) 1683 goto csum_copy_err; 1684 } 1685 1686 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1687 if (udp_skb_is_linear(skb)) 1688 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1689 else 1690 err = skb_copy_datagram_msg(skb, off, msg, copied); 1691 } else { 1692 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1693 1694 if (err == -EINVAL) 1695 goto csum_copy_err; 1696 } 1697 1698 if (unlikely(err)) { 1699 if (!peeked) { 1700 atomic_inc(&sk->sk_drops); 1701 UDP_INC_STATS(sock_net(sk), 1702 UDP_MIB_INERRORS, is_udplite); 1703 } 1704 kfree_skb(skb); 1705 return err; 1706 } 1707 1708 if (!peeked) 1709 UDP_INC_STATS(sock_net(sk), 1710 UDP_MIB_INDATAGRAMS, is_udplite); 1711 1712 sock_recv_ts_and_drops(msg, sk, skb); 1713 1714 /* Copy the address. */ 1715 if (sin) { 1716 sin->sin_family = AF_INET; 1717 sin->sin_port = udp_hdr(skb)->source; 1718 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1719 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1720 *addr_len = sizeof(*sin); 1721 } 1722 if (inet->cmsg_flags) 1723 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1724 1725 err = copied; 1726 if (flags & MSG_TRUNC) 1727 err = ulen; 1728 1729 skb_consume_udp(sk, skb, peeking ? -err : err); 1730 return err; 1731 1732 csum_copy_err: 1733 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1734 udp_skb_destructor)) { 1735 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1736 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1737 } 1738 kfree_skb(skb); 1739 1740 /* starting over for a new packet, but check if we need to yield */ 1741 cond_resched(); 1742 msg->msg_flags &= ~MSG_TRUNC; 1743 goto try_again; 1744 } 1745 1746 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1747 { 1748 /* This check is replicated from __ip4_datagram_connect() and 1749 * intended to prevent BPF program called below from accessing bytes 1750 * that are out of the bound specified by user in addr_len. 1751 */ 1752 if (addr_len < sizeof(struct sockaddr_in)) 1753 return -EINVAL; 1754 1755 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1756 } 1757 EXPORT_SYMBOL(udp_pre_connect); 1758 1759 int __udp_disconnect(struct sock *sk, int flags) 1760 { 1761 struct inet_sock *inet = inet_sk(sk); 1762 /* 1763 * 1003.1g - break association. 1764 */ 1765 1766 sk->sk_state = TCP_CLOSE; 1767 inet->inet_daddr = 0; 1768 inet->inet_dport = 0; 1769 sock_rps_reset_rxhash(sk); 1770 sk->sk_bound_dev_if = 0; 1771 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1772 inet_reset_saddr(sk); 1773 1774 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1775 sk->sk_prot->unhash(sk); 1776 inet->inet_sport = 0; 1777 } 1778 sk_dst_reset(sk); 1779 return 0; 1780 } 1781 EXPORT_SYMBOL(__udp_disconnect); 1782 1783 int udp_disconnect(struct sock *sk, int flags) 1784 { 1785 lock_sock(sk); 1786 __udp_disconnect(sk, flags); 1787 release_sock(sk); 1788 return 0; 1789 } 1790 EXPORT_SYMBOL(udp_disconnect); 1791 1792 void udp_lib_unhash(struct sock *sk) 1793 { 1794 if (sk_hashed(sk)) { 1795 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1796 struct udp_hslot *hslot, *hslot2; 1797 1798 hslot = udp_hashslot(udptable, sock_net(sk), 1799 udp_sk(sk)->udp_port_hash); 1800 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1801 1802 spin_lock_bh(&hslot->lock); 1803 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1804 reuseport_detach_sock(sk); 1805 if (sk_del_node_init_rcu(sk)) { 1806 hslot->count--; 1807 inet_sk(sk)->inet_num = 0; 1808 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1809 1810 spin_lock(&hslot2->lock); 1811 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1812 hslot2->count--; 1813 spin_unlock(&hslot2->lock); 1814 } 1815 spin_unlock_bh(&hslot->lock); 1816 } 1817 } 1818 EXPORT_SYMBOL(udp_lib_unhash); 1819 1820 /* 1821 * inet_rcv_saddr was changed, we must rehash secondary hash 1822 */ 1823 void udp_lib_rehash(struct sock *sk, u16 newhash) 1824 { 1825 if (sk_hashed(sk)) { 1826 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1827 struct udp_hslot *hslot, *hslot2, *nhslot2; 1828 1829 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1830 nhslot2 = udp_hashslot2(udptable, newhash); 1831 udp_sk(sk)->udp_portaddr_hash = newhash; 1832 1833 if (hslot2 != nhslot2 || 1834 rcu_access_pointer(sk->sk_reuseport_cb)) { 1835 hslot = udp_hashslot(udptable, sock_net(sk), 1836 udp_sk(sk)->udp_port_hash); 1837 /* we must lock primary chain too */ 1838 spin_lock_bh(&hslot->lock); 1839 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1840 reuseport_detach_sock(sk); 1841 1842 if (hslot2 != nhslot2) { 1843 spin_lock(&hslot2->lock); 1844 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1845 hslot2->count--; 1846 spin_unlock(&hslot2->lock); 1847 1848 spin_lock(&nhslot2->lock); 1849 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1850 &nhslot2->head); 1851 nhslot2->count++; 1852 spin_unlock(&nhslot2->lock); 1853 } 1854 1855 spin_unlock_bh(&hslot->lock); 1856 } 1857 } 1858 } 1859 EXPORT_SYMBOL(udp_lib_rehash); 1860 1861 static void udp_v4_rehash(struct sock *sk) 1862 { 1863 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1864 inet_sk(sk)->inet_rcv_saddr, 1865 inet_sk(sk)->inet_num); 1866 udp_lib_rehash(sk, new_hash); 1867 } 1868 1869 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1870 { 1871 int rc; 1872 1873 if (inet_sk(sk)->inet_daddr) { 1874 sock_rps_save_rxhash(sk, skb); 1875 sk_mark_napi_id(sk, skb); 1876 sk_incoming_cpu_update(sk); 1877 } else { 1878 sk_mark_napi_id_once(sk, skb); 1879 } 1880 1881 rc = __udp_enqueue_schedule_skb(sk, skb); 1882 if (rc < 0) { 1883 int is_udplite = IS_UDPLITE(sk); 1884 1885 /* Note that an ENOMEM error is charged twice */ 1886 if (rc == -ENOMEM) 1887 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1888 is_udplite); 1889 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1890 kfree_skb(skb); 1891 trace_udp_fail_queue_rcv_skb(rc, sk); 1892 return -1; 1893 } 1894 1895 return 0; 1896 } 1897 1898 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 1899 void udp_encap_enable(void) 1900 { 1901 static_branch_enable(&udp_encap_needed_key); 1902 } 1903 EXPORT_SYMBOL(udp_encap_enable); 1904 1905 /* returns: 1906 * -1: error 1907 * 0: success 1908 * >0: "udp encap" protocol resubmission 1909 * 1910 * Note that in the success and error cases, the skb is assumed to 1911 * have either been requeued or freed. 1912 */ 1913 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1914 { 1915 struct udp_sock *up = udp_sk(sk); 1916 int is_udplite = IS_UDPLITE(sk); 1917 1918 /* 1919 * Charge it to the socket, dropping if the queue is full. 1920 */ 1921 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1922 goto drop; 1923 nf_reset(skb); 1924 1925 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1926 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1927 1928 /* 1929 * This is an encapsulation socket so pass the skb to 1930 * the socket's udp_encap_rcv() hook. Otherwise, just 1931 * fall through and pass this up the UDP socket. 1932 * up->encap_rcv() returns the following value: 1933 * =0 if skb was successfully passed to the encap 1934 * handler or was discarded by it. 1935 * >0 if skb should be passed on to UDP. 1936 * <0 if skb should be resubmitted as proto -N 1937 */ 1938 1939 /* if we're overly short, let UDP handle it */ 1940 encap_rcv = READ_ONCE(up->encap_rcv); 1941 if (encap_rcv) { 1942 int ret; 1943 1944 /* Verify checksum before giving to encap */ 1945 if (udp_lib_checksum_complete(skb)) 1946 goto csum_error; 1947 1948 ret = encap_rcv(sk, skb); 1949 if (ret <= 0) { 1950 __UDP_INC_STATS(sock_net(sk), 1951 UDP_MIB_INDATAGRAMS, 1952 is_udplite); 1953 return -ret; 1954 } 1955 } 1956 1957 /* FALLTHROUGH -- it's a UDP Packet */ 1958 } 1959 1960 /* 1961 * UDP-Lite specific tests, ignored on UDP sockets 1962 */ 1963 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1964 1965 /* 1966 * MIB statistics other than incrementing the error count are 1967 * disabled for the following two types of errors: these depend 1968 * on the application settings, not on the functioning of the 1969 * protocol stack as such. 1970 * 1971 * RFC 3828 here recommends (sec 3.3): "There should also be a 1972 * way ... to ... at least let the receiving application block 1973 * delivery of packets with coverage values less than a value 1974 * provided by the application." 1975 */ 1976 if (up->pcrlen == 0) { /* full coverage was set */ 1977 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1978 UDP_SKB_CB(skb)->cscov, skb->len); 1979 goto drop; 1980 } 1981 /* The next case involves violating the min. coverage requested 1982 * by the receiver. This is subtle: if receiver wants x and x is 1983 * greater than the buffersize/MTU then receiver will complain 1984 * that it wants x while sender emits packets of smaller size y. 1985 * Therefore the above ...()->partial_cov statement is essential. 1986 */ 1987 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1988 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1989 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1990 goto drop; 1991 } 1992 } 1993 1994 prefetch(&sk->sk_rmem_alloc); 1995 if (rcu_access_pointer(sk->sk_filter) && 1996 udp_lib_checksum_complete(skb)) 1997 goto csum_error; 1998 1999 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2000 goto drop; 2001 2002 udp_csum_pull_header(skb); 2003 2004 ipv4_pktinfo_prepare(sk, skb); 2005 return __udp_queue_rcv_skb(sk, skb); 2006 2007 csum_error: 2008 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2009 drop: 2010 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2011 atomic_inc(&sk->sk_drops); 2012 kfree_skb(skb); 2013 return -1; 2014 } 2015 2016 /* For TCP sockets, sk_rx_dst is protected by socket lock 2017 * For UDP, we use xchg() to guard against concurrent changes. 2018 */ 2019 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2020 { 2021 struct dst_entry *old; 2022 2023 if (dst_hold_safe(dst)) { 2024 old = xchg(&sk->sk_rx_dst, dst); 2025 dst_release(old); 2026 return old != dst; 2027 } 2028 return false; 2029 } 2030 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2031 2032 /* 2033 * Multicasts and broadcasts go to each listener. 2034 * 2035 * Note: called only from the BH handler context. 2036 */ 2037 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2038 struct udphdr *uh, 2039 __be32 saddr, __be32 daddr, 2040 struct udp_table *udptable, 2041 int proto) 2042 { 2043 struct sock *sk, *first = NULL; 2044 unsigned short hnum = ntohs(uh->dest); 2045 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2046 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2047 unsigned int offset = offsetof(typeof(*sk), sk_node); 2048 int dif = skb->dev->ifindex; 2049 int sdif = inet_sdif(skb); 2050 struct hlist_node *node; 2051 struct sk_buff *nskb; 2052 2053 if (use_hash2) { 2054 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2055 udptable->mask; 2056 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2057 start_lookup: 2058 hslot = &udptable->hash2[hash2]; 2059 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2060 } 2061 2062 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2063 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2064 uh->source, saddr, dif, sdif, hnum)) 2065 continue; 2066 2067 if (!first) { 2068 first = sk; 2069 continue; 2070 } 2071 nskb = skb_clone(skb, GFP_ATOMIC); 2072 2073 if (unlikely(!nskb)) { 2074 atomic_inc(&sk->sk_drops); 2075 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2076 IS_UDPLITE(sk)); 2077 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2078 IS_UDPLITE(sk)); 2079 continue; 2080 } 2081 if (udp_queue_rcv_skb(sk, nskb) > 0) 2082 consume_skb(nskb); 2083 } 2084 2085 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2086 if (use_hash2 && hash2 != hash2_any) { 2087 hash2 = hash2_any; 2088 goto start_lookup; 2089 } 2090 2091 if (first) { 2092 if (udp_queue_rcv_skb(first, skb) > 0) 2093 consume_skb(skb); 2094 } else { 2095 kfree_skb(skb); 2096 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2097 proto == IPPROTO_UDPLITE); 2098 } 2099 return 0; 2100 } 2101 2102 /* Initialize UDP checksum. If exited with zero value (success), 2103 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2104 * Otherwise, csum completion requires chacksumming packet body, 2105 * including udp header and folding it to skb->csum. 2106 */ 2107 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2108 int proto) 2109 { 2110 int err; 2111 2112 UDP_SKB_CB(skb)->partial_cov = 0; 2113 UDP_SKB_CB(skb)->cscov = skb->len; 2114 2115 if (proto == IPPROTO_UDPLITE) { 2116 err = udplite_checksum_init(skb, uh); 2117 if (err) 2118 return err; 2119 2120 if (UDP_SKB_CB(skb)->partial_cov) { 2121 skb->csum = inet_compute_pseudo(skb, proto); 2122 return 0; 2123 } 2124 } 2125 2126 /* Note, we are only interested in != 0 or == 0, thus the 2127 * force to int. 2128 */ 2129 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2130 inet_compute_pseudo); 2131 } 2132 2133 /* 2134 * All we need to do is get the socket, and then do a checksum. 2135 */ 2136 2137 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2138 int proto) 2139 { 2140 struct sock *sk; 2141 struct udphdr *uh; 2142 unsigned short ulen; 2143 struct rtable *rt = skb_rtable(skb); 2144 __be32 saddr, daddr; 2145 struct net *net = dev_net(skb->dev); 2146 2147 /* 2148 * Validate the packet. 2149 */ 2150 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2151 goto drop; /* No space for header. */ 2152 2153 uh = udp_hdr(skb); 2154 ulen = ntohs(uh->len); 2155 saddr = ip_hdr(skb)->saddr; 2156 daddr = ip_hdr(skb)->daddr; 2157 2158 if (ulen > skb->len) 2159 goto short_packet; 2160 2161 if (proto == IPPROTO_UDP) { 2162 /* UDP validates ulen. */ 2163 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2164 goto short_packet; 2165 uh = udp_hdr(skb); 2166 } 2167 2168 if (udp4_csum_init(skb, uh, proto)) 2169 goto csum_error; 2170 2171 sk = skb_steal_sock(skb); 2172 if (sk) { 2173 struct dst_entry *dst = skb_dst(skb); 2174 int ret; 2175 2176 if (unlikely(sk->sk_rx_dst != dst)) 2177 udp_sk_rx_dst_set(sk, dst); 2178 2179 ret = udp_queue_rcv_skb(sk, skb); 2180 sock_put(sk); 2181 /* a return value > 0 means to resubmit the input, but 2182 * it wants the return to be -protocol, or 0 2183 */ 2184 if (ret > 0) 2185 return -ret; 2186 return 0; 2187 } 2188 2189 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2190 return __udp4_lib_mcast_deliver(net, skb, uh, 2191 saddr, daddr, udptable, proto); 2192 2193 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2194 if (sk) { 2195 int ret; 2196 2197 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2198 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2199 inet_compute_pseudo); 2200 2201 ret = udp_queue_rcv_skb(sk, skb); 2202 2203 /* a return value > 0 means to resubmit the input, but 2204 * it wants the return to be -protocol, or 0 2205 */ 2206 if (ret > 0) 2207 return -ret; 2208 return 0; 2209 } 2210 2211 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2212 goto drop; 2213 nf_reset(skb); 2214 2215 /* No socket. Drop packet silently, if checksum is wrong */ 2216 if (udp_lib_checksum_complete(skb)) 2217 goto csum_error; 2218 2219 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2220 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2221 2222 /* 2223 * Hmm. We got an UDP packet to a port to which we 2224 * don't wanna listen. Ignore it. 2225 */ 2226 kfree_skb(skb); 2227 return 0; 2228 2229 short_packet: 2230 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2231 proto == IPPROTO_UDPLITE ? "Lite" : "", 2232 &saddr, ntohs(uh->source), 2233 ulen, skb->len, 2234 &daddr, ntohs(uh->dest)); 2235 goto drop; 2236 2237 csum_error: 2238 /* 2239 * RFC1122: OK. Discards the bad packet silently (as far as 2240 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2241 */ 2242 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2243 proto == IPPROTO_UDPLITE ? "Lite" : "", 2244 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2245 ulen); 2246 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2247 drop: 2248 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2249 kfree_skb(skb); 2250 return 0; 2251 } 2252 2253 /* We can only early demux multicast if there is a single matching socket. 2254 * If more than one socket found returns NULL 2255 */ 2256 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2257 __be16 loc_port, __be32 loc_addr, 2258 __be16 rmt_port, __be32 rmt_addr, 2259 int dif, int sdif) 2260 { 2261 struct sock *sk, *result; 2262 unsigned short hnum = ntohs(loc_port); 2263 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2264 struct udp_hslot *hslot = &udp_table.hash[slot]; 2265 2266 /* Do not bother scanning a too big list */ 2267 if (hslot->count > 10) 2268 return NULL; 2269 2270 result = NULL; 2271 sk_for_each_rcu(sk, &hslot->head) { 2272 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2273 rmt_port, rmt_addr, dif, sdif, hnum)) { 2274 if (result) 2275 return NULL; 2276 result = sk; 2277 } 2278 } 2279 2280 return result; 2281 } 2282 2283 /* For unicast we should only early demux connected sockets or we can 2284 * break forwarding setups. The chains here can be long so only check 2285 * if the first socket is an exact match and if not move on. 2286 */ 2287 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2288 __be16 loc_port, __be32 loc_addr, 2289 __be16 rmt_port, __be32 rmt_addr, 2290 int dif, int sdif) 2291 { 2292 unsigned short hnum = ntohs(loc_port); 2293 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2294 unsigned int slot2 = hash2 & udp_table.mask; 2295 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2296 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2297 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2298 struct sock *sk; 2299 2300 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2301 if (INET_MATCH(sk, net, acookie, rmt_addr, 2302 loc_addr, ports, dif, sdif)) 2303 return sk; 2304 /* Only check first socket in chain */ 2305 break; 2306 } 2307 return NULL; 2308 } 2309 2310 int udp_v4_early_demux(struct sk_buff *skb) 2311 { 2312 struct net *net = dev_net(skb->dev); 2313 struct in_device *in_dev = NULL; 2314 const struct iphdr *iph; 2315 const struct udphdr *uh; 2316 struct sock *sk = NULL; 2317 struct dst_entry *dst; 2318 int dif = skb->dev->ifindex; 2319 int sdif = inet_sdif(skb); 2320 int ours; 2321 2322 /* validate the packet */ 2323 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2324 return 0; 2325 2326 iph = ip_hdr(skb); 2327 uh = udp_hdr(skb); 2328 2329 if (skb->pkt_type == PACKET_MULTICAST) { 2330 in_dev = __in_dev_get_rcu(skb->dev); 2331 2332 if (!in_dev) 2333 return 0; 2334 2335 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2336 iph->protocol); 2337 if (!ours) 2338 return 0; 2339 2340 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2341 uh->source, iph->saddr, 2342 dif, sdif); 2343 } else if (skb->pkt_type == PACKET_HOST) { 2344 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2345 uh->source, iph->saddr, dif, sdif); 2346 } 2347 2348 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2349 return 0; 2350 2351 skb->sk = sk; 2352 skb->destructor = sock_efree; 2353 dst = READ_ONCE(sk->sk_rx_dst); 2354 2355 if (dst) 2356 dst = dst_check(dst, 0); 2357 if (dst) { 2358 u32 itag = 0; 2359 2360 /* set noref for now. 2361 * any place which wants to hold dst has to call 2362 * dst_hold_safe() 2363 */ 2364 skb_dst_set_noref(skb, dst); 2365 2366 /* for unconnected multicast sockets we need to validate 2367 * the source on each packet 2368 */ 2369 if (!inet_sk(sk)->inet_daddr && in_dev) 2370 return ip_mc_validate_source(skb, iph->daddr, 2371 iph->saddr, iph->tos, 2372 skb->dev, in_dev, &itag); 2373 } 2374 return 0; 2375 } 2376 2377 int udp_rcv(struct sk_buff *skb) 2378 { 2379 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2380 } 2381 2382 void udp_destroy_sock(struct sock *sk) 2383 { 2384 struct udp_sock *up = udp_sk(sk); 2385 bool slow = lock_sock_fast(sk); 2386 udp_flush_pending_frames(sk); 2387 unlock_sock_fast(sk, slow); 2388 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2389 void (*encap_destroy)(struct sock *sk); 2390 encap_destroy = READ_ONCE(up->encap_destroy); 2391 if (encap_destroy) 2392 encap_destroy(sk); 2393 } 2394 } 2395 2396 /* 2397 * Socket option code for UDP 2398 */ 2399 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2400 char __user *optval, unsigned int optlen, 2401 int (*push_pending_frames)(struct sock *)) 2402 { 2403 struct udp_sock *up = udp_sk(sk); 2404 int val, valbool; 2405 int err = 0; 2406 int is_udplite = IS_UDPLITE(sk); 2407 2408 if (optlen < sizeof(int)) 2409 return -EINVAL; 2410 2411 if (get_user(val, (int __user *)optval)) 2412 return -EFAULT; 2413 2414 valbool = val ? 1 : 0; 2415 2416 switch (optname) { 2417 case UDP_CORK: 2418 if (val != 0) { 2419 up->corkflag = 1; 2420 } else { 2421 up->corkflag = 0; 2422 lock_sock(sk); 2423 push_pending_frames(sk); 2424 release_sock(sk); 2425 } 2426 break; 2427 2428 case UDP_ENCAP: 2429 switch (val) { 2430 case 0: 2431 case UDP_ENCAP_ESPINUDP: 2432 case UDP_ENCAP_ESPINUDP_NON_IKE: 2433 up->encap_rcv = xfrm4_udp_encap_rcv; 2434 /* FALLTHROUGH */ 2435 case UDP_ENCAP_L2TPINUDP: 2436 up->encap_type = val; 2437 udp_encap_enable(); 2438 break; 2439 default: 2440 err = -ENOPROTOOPT; 2441 break; 2442 } 2443 break; 2444 2445 case UDP_NO_CHECK6_TX: 2446 up->no_check6_tx = valbool; 2447 break; 2448 2449 case UDP_NO_CHECK6_RX: 2450 up->no_check6_rx = valbool; 2451 break; 2452 2453 case UDP_SEGMENT: 2454 if (val < 0 || val > USHRT_MAX) 2455 return -EINVAL; 2456 up->gso_size = val; 2457 break; 2458 2459 /* 2460 * UDP-Lite's partial checksum coverage (RFC 3828). 2461 */ 2462 /* The sender sets actual checksum coverage length via this option. 2463 * The case coverage > packet length is handled by send module. */ 2464 case UDPLITE_SEND_CSCOV: 2465 if (!is_udplite) /* Disable the option on UDP sockets */ 2466 return -ENOPROTOOPT; 2467 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2468 val = 8; 2469 else if (val > USHRT_MAX) 2470 val = USHRT_MAX; 2471 up->pcslen = val; 2472 up->pcflag |= UDPLITE_SEND_CC; 2473 break; 2474 2475 /* The receiver specifies a minimum checksum coverage value. To make 2476 * sense, this should be set to at least 8 (as done below). If zero is 2477 * used, this again means full checksum coverage. */ 2478 case UDPLITE_RECV_CSCOV: 2479 if (!is_udplite) /* Disable the option on UDP sockets */ 2480 return -ENOPROTOOPT; 2481 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2482 val = 8; 2483 else if (val > USHRT_MAX) 2484 val = USHRT_MAX; 2485 up->pcrlen = val; 2486 up->pcflag |= UDPLITE_RECV_CC; 2487 break; 2488 2489 default: 2490 err = -ENOPROTOOPT; 2491 break; 2492 } 2493 2494 return err; 2495 } 2496 EXPORT_SYMBOL(udp_lib_setsockopt); 2497 2498 int udp_setsockopt(struct sock *sk, int level, int optname, 2499 char __user *optval, unsigned int optlen) 2500 { 2501 if (level == SOL_UDP || level == SOL_UDPLITE) 2502 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2503 udp_push_pending_frames); 2504 return ip_setsockopt(sk, level, optname, optval, optlen); 2505 } 2506 2507 #ifdef CONFIG_COMPAT 2508 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2509 char __user *optval, unsigned int optlen) 2510 { 2511 if (level == SOL_UDP || level == SOL_UDPLITE) 2512 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2513 udp_push_pending_frames); 2514 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2515 } 2516 #endif 2517 2518 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2519 char __user *optval, int __user *optlen) 2520 { 2521 struct udp_sock *up = udp_sk(sk); 2522 int val, len; 2523 2524 if (get_user(len, optlen)) 2525 return -EFAULT; 2526 2527 len = min_t(unsigned int, len, sizeof(int)); 2528 2529 if (len < 0) 2530 return -EINVAL; 2531 2532 switch (optname) { 2533 case UDP_CORK: 2534 val = up->corkflag; 2535 break; 2536 2537 case UDP_ENCAP: 2538 val = up->encap_type; 2539 break; 2540 2541 case UDP_NO_CHECK6_TX: 2542 val = up->no_check6_tx; 2543 break; 2544 2545 case UDP_NO_CHECK6_RX: 2546 val = up->no_check6_rx; 2547 break; 2548 2549 case UDP_SEGMENT: 2550 val = up->gso_size; 2551 break; 2552 2553 /* The following two cannot be changed on UDP sockets, the return is 2554 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2555 case UDPLITE_SEND_CSCOV: 2556 val = up->pcslen; 2557 break; 2558 2559 case UDPLITE_RECV_CSCOV: 2560 val = up->pcrlen; 2561 break; 2562 2563 default: 2564 return -ENOPROTOOPT; 2565 } 2566 2567 if (put_user(len, optlen)) 2568 return -EFAULT; 2569 if (copy_to_user(optval, &val, len)) 2570 return -EFAULT; 2571 return 0; 2572 } 2573 EXPORT_SYMBOL(udp_lib_getsockopt); 2574 2575 int udp_getsockopt(struct sock *sk, int level, int optname, 2576 char __user *optval, int __user *optlen) 2577 { 2578 if (level == SOL_UDP || level == SOL_UDPLITE) 2579 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2580 return ip_getsockopt(sk, level, optname, optval, optlen); 2581 } 2582 2583 #ifdef CONFIG_COMPAT 2584 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2585 char __user *optval, int __user *optlen) 2586 { 2587 if (level == SOL_UDP || level == SOL_UDPLITE) 2588 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2589 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2590 } 2591 #endif 2592 /** 2593 * udp_poll - wait for a UDP event. 2594 * @file - file struct 2595 * @sock - socket 2596 * @wait - poll table 2597 * 2598 * This is same as datagram poll, except for the special case of 2599 * blocking sockets. If application is using a blocking fd 2600 * and a packet with checksum error is in the queue; 2601 * then it could get return from select indicating data available 2602 * but then block when reading it. Add special case code 2603 * to work around these arguably broken applications. 2604 */ 2605 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2606 { 2607 __poll_t mask = datagram_poll(file, sock, wait); 2608 struct sock *sk = sock->sk; 2609 2610 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2611 mask |= EPOLLIN | EPOLLRDNORM; 2612 2613 /* Check for false positives due to checksum errors */ 2614 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2615 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2616 mask &= ~(EPOLLIN | EPOLLRDNORM); 2617 2618 return mask; 2619 2620 } 2621 EXPORT_SYMBOL(udp_poll); 2622 2623 int udp_abort(struct sock *sk, int err) 2624 { 2625 lock_sock(sk); 2626 2627 sk->sk_err = err; 2628 sk->sk_error_report(sk); 2629 __udp_disconnect(sk, 0); 2630 2631 release_sock(sk); 2632 2633 return 0; 2634 } 2635 EXPORT_SYMBOL_GPL(udp_abort); 2636 2637 struct proto udp_prot = { 2638 .name = "UDP", 2639 .owner = THIS_MODULE, 2640 .close = udp_lib_close, 2641 .pre_connect = udp_pre_connect, 2642 .connect = ip4_datagram_connect, 2643 .disconnect = udp_disconnect, 2644 .ioctl = udp_ioctl, 2645 .init = udp_init_sock, 2646 .destroy = udp_destroy_sock, 2647 .setsockopt = udp_setsockopt, 2648 .getsockopt = udp_getsockopt, 2649 .sendmsg = udp_sendmsg, 2650 .recvmsg = udp_recvmsg, 2651 .sendpage = udp_sendpage, 2652 .release_cb = ip4_datagram_release_cb, 2653 .hash = udp_lib_hash, 2654 .unhash = udp_lib_unhash, 2655 .rehash = udp_v4_rehash, 2656 .get_port = udp_v4_get_port, 2657 .memory_allocated = &udp_memory_allocated, 2658 .sysctl_mem = sysctl_udp_mem, 2659 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2660 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2661 .obj_size = sizeof(struct udp_sock), 2662 .h.udp_table = &udp_table, 2663 #ifdef CONFIG_COMPAT 2664 .compat_setsockopt = compat_udp_setsockopt, 2665 .compat_getsockopt = compat_udp_getsockopt, 2666 #endif 2667 .diag_destroy = udp_abort, 2668 }; 2669 EXPORT_SYMBOL(udp_prot); 2670 2671 /* ------------------------------------------------------------------------ */ 2672 #ifdef CONFIG_PROC_FS 2673 2674 static struct sock *udp_get_first(struct seq_file *seq, int start) 2675 { 2676 struct sock *sk; 2677 struct udp_iter_state *state = seq->private; 2678 struct net *net = seq_file_net(seq); 2679 2680 for (state->bucket = start; state->bucket <= state->udp_table->mask; 2681 ++state->bucket) { 2682 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; 2683 2684 if (hlist_empty(&hslot->head)) 2685 continue; 2686 2687 spin_lock_bh(&hslot->lock); 2688 sk_for_each(sk, &hslot->head) { 2689 if (!net_eq(sock_net(sk), net)) 2690 continue; 2691 if (sk->sk_family == state->family) 2692 goto found; 2693 } 2694 spin_unlock_bh(&hslot->lock); 2695 } 2696 sk = NULL; 2697 found: 2698 return sk; 2699 } 2700 2701 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2702 { 2703 struct udp_iter_state *state = seq->private; 2704 struct net *net = seq_file_net(seq); 2705 2706 do { 2707 sk = sk_next(sk); 2708 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); 2709 2710 if (!sk) { 2711 if (state->bucket <= state->udp_table->mask) 2712 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2713 return udp_get_first(seq, state->bucket + 1); 2714 } 2715 return sk; 2716 } 2717 2718 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2719 { 2720 struct sock *sk = udp_get_first(seq, 0); 2721 2722 if (sk) 2723 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2724 --pos; 2725 return pos ? NULL : sk; 2726 } 2727 2728 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2729 { 2730 struct udp_iter_state *state = seq->private; 2731 state->bucket = MAX_UDP_PORTS; 2732 2733 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2734 } 2735 2736 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2737 { 2738 struct sock *sk; 2739 2740 if (v == SEQ_START_TOKEN) 2741 sk = udp_get_idx(seq, 0); 2742 else 2743 sk = udp_get_next(seq, v); 2744 2745 ++*pos; 2746 return sk; 2747 } 2748 2749 static void udp_seq_stop(struct seq_file *seq, void *v) 2750 { 2751 struct udp_iter_state *state = seq->private; 2752 2753 if (state->bucket <= state->udp_table->mask) 2754 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); 2755 } 2756 2757 int udp_seq_open(struct inode *inode, struct file *file) 2758 { 2759 struct udp_seq_afinfo *afinfo = PDE_DATA(inode); 2760 struct udp_iter_state *s; 2761 int err; 2762 2763 err = seq_open_net(inode, file, &afinfo->seq_ops, 2764 sizeof(struct udp_iter_state)); 2765 if (err < 0) 2766 return err; 2767 2768 s = ((struct seq_file *)file->private_data)->private; 2769 s->family = afinfo->family; 2770 s->udp_table = afinfo->udp_table; 2771 return err; 2772 } 2773 EXPORT_SYMBOL(udp_seq_open); 2774 2775 /* ------------------------------------------------------------------------ */ 2776 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) 2777 { 2778 struct proc_dir_entry *p; 2779 int rc = 0; 2780 2781 afinfo->seq_ops.start = udp_seq_start; 2782 afinfo->seq_ops.next = udp_seq_next; 2783 afinfo->seq_ops.stop = udp_seq_stop; 2784 2785 p = proc_create_data(afinfo->name, 0444, net->proc_net, 2786 afinfo->seq_fops, afinfo); 2787 if (!p) 2788 rc = -ENOMEM; 2789 return rc; 2790 } 2791 EXPORT_SYMBOL(udp_proc_register); 2792 2793 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) 2794 { 2795 remove_proc_entry(afinfo->name, net->proc_net); 2796 } 2797 EXPORT_SYMBOL(udp_proc_unregister); 2798 2799 /* ------------------------------------------------------------------------ */ 2800 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2801 int bucket) 2802 { 2803 struct inet_sock *inet = inet_sk(sp); 2804 __be32 dest = inet->inet_daddr; 2805 __be32 src = inet->inet_rcv_saddr; 2806 __u16 destp = ntohs(inet->inet_dport); 2807 __u16 srcp = ntohs(inet->inet_sport); 2808 2809 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2810 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2811 bucket, src, srcp, dest, destp, sp->sk_state, 2812 sk_wmem_alloc_get(sp), 2813 sk_rmem_alloc_get(sp), 2814 0, 0L, 0, 2815 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2816 0, sock_i_ino(sp), 2817 refcount_read(&sp->sk_refcnt), sp, 2818 atomic_read(&sp->sk_drops)); 2819 } 2820 2821 int udp4_seq_show(struct seq_file *seq, void *v) 2822 { 2823 seq_setwidth(seq, 127); 2824 if (v == SEQ_START_TOKEN) 2825 seq_puts(seq, " sl local_address rem_address st tx_queue " 2826 "rx_queue tr tm->when retrnsmt uid timeout " 2827 "inode ref pointer drops"); 2828 else { 2829 struct udp_iter_state *state = seq->private; 2830 2831 udp4_format_sock(v, seq, state->bucket); 2832 } 2833 seq_pad(seq, '\n'); 2834 return 0; 2835 } 2836 2837 static const struct file_operations udp_afinfo_seq_fops = { 2838 .open = udp_seq_open, 2839 .read = seq_read, 2840 .llseek = seq_lseek, 2841 .release = seq_release_net 2842 }; 2843 2844 /* ------------------------------------------------------------------------ */ 2845 static struct udp_seq_afinfo udp4_seq_afinfo = { 2846 .name = "udp", 2847 .family = AF_INET, 2848 .udp_table = &udp_table, 2849 .seq_fops = &udp_afinfo_seq_fops, 2850 .seq_ops = { 2851 .show = udp4_seq_show, 2852 }, 2853 }; 2854 2855 static int __net_init udp4_proc_init_net(struct net *net) 2856 { 2857 return udp_proc_register(net, &udp4_seq_afinfo); 2858 } 2859 2860 static void __net_exit udp4_proc_exit_net(struct net *net) 2861 { 2862 udp_proc_unregister(net, &udp4_seq_afinfo); 2863 } 2864 2865 static struct pernet_operations udp4_net_ops = { 2866 .init = udp4_proc_init_net, 2867 .exit = udp4_proc_exit_net, 2868 }; 2869 2870 int __init udp4_proc_init(void) 2871 { 2872 return register_pernet_subsys(&udp4_net_ops); 2873 } 2874 2875 void udp4_proc_exit(void) 2876 { 2877 unregister_pernet_subsys(&udp4_net_ops); 2878 } 2879 #endif /* CONFIG_PROC_FS */ 2880 2881 static __initdata unsigned long uhash_entries; 2882 static int __init set_uhash_entries(char *str) 2883 { 2884 ssize_t ret; 2885 2886 if (!str) 2887 return 0; 2888 2889 ret = kstrtoul(str, 0, &uhash_entries); 2890 if (ret) 2891 return 0; 2892 2893 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2894 uhash_entries = UDP_HTABLE_SIZE_MIN; 2895 return 1; 2896 } 2897 __setup("uhash_entries=", set_uhash_entries); 2898 2899 void __init udp_table_init(struct udp_table *table, const char *name) 2900 { 2901 unsigned int i; 2902 2903 table->hash = alloc_large_system_hash(name, 2904 2 * sizeof(struct udp_hslot), 2905 uhash_entries, 2906 21, /* one slot per 2 MB */ 2907 0, 2908 &table->log, 2909 &table->mask, 2910 UDP_HTABLE_SIZE_MIN, 2911 64 * 1024); 2912 2913 table->hash2 = table->hash + (table->mask + 1); 2914 for (i = 0; i <= table->mask; i++) { 2915 INIT_HLIST_HEAD(&table->hash[i].head); 2916 table->hash[i].count = 0; 2917 spin_lock_init(&table->hash[i].lock); 2918 } 2919 for (i = 0; i <= table->mask; i++) { 2920 INIT_HLIST_HEAD(&table->hash2[i].head); 2921 table->hash2[i].count = 0; 2922 spin_lock_init(&table->hash2[i].lock); 2923 } 2924 } 2925 2926 u32 udp_flow_hashrnd(void) 2927 { 2928 static u32 hashrnd __read_mostly; 2929 2930 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2931 2932 return hashrnd; 2933 } 2934 EXPORT_SYMBOL(udp_flow_hashrnd); 2935 2936 static void __udp_sysctl_init(struct net *net) 2937 { 2938 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2939 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2940 2941 #ifdef CONFIG_NET_L3_MASTER_DEV 2942 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2943 #endif 2944 } 2945 2946 static int __net_init udp_sysctl_init(struct net *net) 2947 { 2948 __udp_sysctl_init(net); 2949 return 0; 2950 } 2951 2952 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2953 .init = udp_sysctl_init, 2954 }; 2955 2956 void __init udp_init(void) 2957 { 2958 unsigned long limit; 2959 unsigned int i; 2960 2961 udp_table_init(&udp_table, "UDP"); 2962 limit = nr_free_buffer_pages() / 8; 2963 limit = max(limit, 128UL); 2964 sysctl_udp_mem[0] = limit / 4 * 3; 2965 sysctl_udp_mem[1] = limit; 2966 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2967 2968 __udp_sysctl_init(&init_net); 2969 2970 /* 16 spinlocks per cpu */ 2971 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2972 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2973 GFP_KERNEL); 2974 if (!udp_busylocks) 2975 panic("UDP: failed to alloc udp_busylocks\n"); 2976 for (i = 0; i < (1U << udp_busylocks_log); i++) 2977 spin_lock_init(udp_busylocks + i); 2978 2979 if (register_pernet_subsys(&udp_sysctl_ops)) 2980 panic("UDP: failed to init sysctl parameters.\n"); 2981 } 2982