xref: /linux/net/ipv4/udp.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 
118 struct udp_table udp_table __read_mostly;
119 EXPORT_SYMBOL(udp_table);
120 
121 long sysctl_udp_mem[3] __read_mostly;
122 EXPORT_SYMBOL(sysctl_udp_mem);
123 
124 int sysctl_udp_rmem_min __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_rmem_min);
126 
127 int sysctl_udp_wmem_min __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_wmem_min);
129 
130 atomic_long_t udp_memory_allocated;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
135 
136 static int udp_lib_lport_inuse(struct net *net, __u16 num,
137 			       const struct udp_hslot *hslot,
138 			       unsigned long *bitmap,
139 			       struct sock *sk,
140 			       int (*saddr_comp)(const struct sock *sk1,
141 						 const struct sock *sk2,
142 						 bool match_wildcard),
143 			       unsigned int log)
144 {
145 	struct sock *sk2;
146 	struct hlist_nulls_node *node;
147 	kuid_t uid = sock_i_uid(sk);
148 
149 	sk_nulls_for_each(sk2, node, &hslot->head) {
150 		if (net_eq(sock_net(sk2), net) &&
151 		    sk2 != sk &&
152 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
157 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
158 		     !uid_eq(uid, sock_i_uid(sk2))) &&
159 		    saddr_comp(sk, sk2, true)) {
160 			if (!bitmap)
161 				return 1;
162 			__set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
163 		}
164 	}
165 	return 0;
166 }
167 
168 /*
169  * Note: we still hold spinlock of primary hash chain, so no other writer
170  * can insert/delete a socket with local_port == num
171  */
172 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
173 				struct udp_hslot *hslot2,
174 				struct sock *sk,
175 				int (*saddr_comp)(const struct sock *sk1,
176 						  const struct sock *sk2,
177 						  bool match_wildcard))
178 {
179 	struct sock *sk2;
180 	struct hlist_nulls_node *node;
181 	kuid_t uid = sock_i_uid(sk);
182 	int res = 0;
183 
184 	spin_lock(&hslot2->lock);
185 	udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
186 		if (net_eq(sock_net(sk2), net) &&
187 		    sk2 != sk &&
188 		    (udp_sk(sk2)->udp_port_hash == num) &&
189 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
190 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
191 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
192 		    (!sk2->sk_reuseport || !sk->sk_reuseport ||
193 		     rcu_access_pointer(sk->sk_reuseport_cb) ||
194 		     !uid_eq(uid, sock_i_uid(sk2))) &&
195 		    saddr_comp(sk, sk2, true)) {
196 			res = 1;
197 			break;
198 		}
199 	}
200 	spin_unlock(&hslot2->lock);
201 	return res;
202 }
203 
204 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot,
205 				  int (*saddr_same)(const struct sock *sk1,
206 						    const struct sock *sk2,
207 						    bool match_wildcard))
208 {
209 	struct net *net = sock_net(sk);
210 	struct hlist_nulls_node *node;
211 	kuid_t uid = sock_i_uid(sk);
212 	struct sock *sk2;
213 
214 	sk_nulls_for_each(sk2, node, &hslot->head) {
215 		if (net_eq(sock_net(sk2), net) &&
216 		    sk2 != sk &&
217 		    sk2->sk_family == sk->sk_family &&
218 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 		    (*saddr_same)(sk, sk2, false)) {
223 			return reuseport_add_sock(sk, sk2);
224 		}
225 	}
226 
227 	/* Initial allocation may have already happened via setsockopt */
228 	if (!rcu_access_pointer(sk->sk_reuseport_cb))
229 		return reuseport_alloc(sk);
230 	return 0;
231 }
232 
233 /**
234  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
235  *
236  *  @sk:          socket struct in question
237  *  @snum:        port number to look up
238  *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
239  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
240  *                   with NULL address
241  */
242 int udp_lib_get_port(struct sock *sk, unsigned short snum,
243 		     int (*saddr_comp)(const struct sock *sk1,
244 				       const struct sock *sk2,
245 				       bool match_wildcard),
246 		     unsigned int hash2_nulladdr)
247 {
248 	struct udp_hslot *hslot, *hslot2;
249 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 	int    error = 1;
251 	struct net *net = sock_net(sk);
252 
253 	if (!snum) {
254 		int low, high, remaining;
255 		unsigned int rand;
256 		unsigned short first, last;
257 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258 
259 		inet_get_local_port_range(net, &low, &high);
260 		remaining = (high - low) + 1;
261 
262 		rand = prandom_u32();
263 		first = reciprocal_scale(rand, remaining) + low;
264 		/*
265 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 		 */
267 		rand = (rand | 1) * (udptable->mask + 1);
268 		last = first + udptable->mask + 1;
269 		do {
270 			hslot = udp_hashslot(udptable, net, first);
271 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 			spin_lock_bh(&hslot->lock);
273 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 					    saddr_comp, udptable->log);
275 
276 			snum = first;
277 			/*
278 			 * Iterate on all possible values of snum for this hash.
279 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 			 * give us randomization and full range coverage.
281 			 */
282 			do {
283 				if (low <= snum && snum <= high &&
284 				    !test_bit(snum >> udptable->log, bitmap) &&
285 				    !inet_is_local_reserved_port(net, snum))
286 					goto found;
287 				snum += rand;
288 			} while (snum != first);
289 			spin_unlock_bh(&hslot->lock);
290 		} while (++first != last);
291 		goto fail;
292 	} else {
293 		hslot = udp_hashslot(udptable, net, snum);
294 		spin_lock_bh(&hslot->lock);
295 		if (hslot->count > 10) {
296 			int exist;
297 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
298 
299 			slot2          &= udptable->mask;
300 			hash2_nulladdr &= udptable->mask;
301 
302 			hslot2 = udp_hashslot2(udptable, slot2);
303 			if (hslot->count < hslot2->count)
304 				goto scan_primary_hash;
305 
306 			exist = udp_lib_lport_inuse2(net, snum, hslot2,
307 						     sk, saddr_comp);
308 			if (!exist && (hash2_nulladdr != slot2)) {
309 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 							     sk, saddr_comp);
312 			}
313 			if (exist)
314 				goto fail_unlock;
315 			else
316 				goto found;
317 		}
318 scan_primary_hash:
319 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
320 					saddr_comp, 0))
321 			goto fail_unlock;
322 	}
323 found:
324 	inet_sk(sk)->inet_num = snum;
325 	udp_sk(sk)->udp_port_hash = snum;
326 	udp_sk(sk)->udp_portaddr_hash ^= snum;
327 	if (sk_unhashed(sk)) {
328 		if (sk->sk_reuseport &&
329 		    udp_reuseport_add_sock(sk, hslot, saddr_comp)) {
330 			inet_sk(sk)->inet_num = 0;
331 			udp_sk(sk)->udp_port_hash = 0;
332 			udp_sk(sk)->udp_portaddr_hash ^= snum;
333 			goto fail_unlock;
334 		}
335 
336 		sk_nulls_add_node_rcu(sk, &hslot->head);
337 		hslot->count++;
338 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
339 
340 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
341 		spin_lock(&hslot2->lock);
342 		hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 					 &hslot2->head);
344 		hslot2->count++;
345 		spin_unlock(&hslot2->lock);
346 	}
347 	error = 0;
348 fail_unlock:
349 	spin_unlock_bh(&hslot->lock);
350 fail:
351 	return error;
352 }
353 EXPORT_SYMBOL(udp_lib_get_port);
354 
355 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
356  * match_wildcard == false: addresses must be exactly the same, i.e.
357  *                          0.0.0.0 only equals to 0.0.0.0
358  */
359 int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2,
360 			 bool match_wildcard)
361 {
362 	struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
363 
364 	if (!ipv6_only_sock(sk2)) {
365 		if (inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)
366 			return 1;
367 		if (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr)
368 			return match_wildcard;
369 	}
370 	return 0;
371 }
372 
373 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
374 			      unsigned int port)
375 {
376 	return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
377 }
378 
379 int udp_v4_get_port(struct sock *sk, unsigned short snum)
380 {
381 	unsigned int hash2_nulladdr =
382 		udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
383 	unsigned int hash2_partial =
384 		udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
385 
386 	/* precompute partial secondary hash */
387 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
388 	return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
389 }
390 
391 static inline int compute_score(struct sock *sk, struct net *net,
392 				__be32 saddr, unsigned short hnum, __be16 sport,
393 				__be32 daddr, __be16 dport, int dif)
394 {
395 	int score;
396 	struct inet_sock *inet;
397 
398 	if (!net_eq(sock_net(sk), net) ||
399 	    udp_sk(sk)->udp_port_hash != hnum ||
400 	    ipv6_only_sock(sk))
401 		return -1;
402 
403 	score = (sk->sk_family == PF_INET) ? 2 : 1;
404 	inet = inet_sk(sk);
405 
406 	if (inet->inet_rcv_saddr) {
407 		if (inet->inet_rcv_saddr != daddr)
408 			return -1;
409 		score += 4;
410 	}
411 
412 	if (inet->inet_daddr) {
413 		if (inet->inet_daddr != saddr)
414 			return -1;
415 		score += 4;
416 	}
417 
418 	if (inet->inet_dport) {
419 		if (inet->inet_dport != sport)
420 			return -1;
421 		score += 4;
422 	}
423 
424 	if (sk->sk_bound_dev_if) {
425 		if (sk->sk_bound_dev_if != dif)
426 			return -1;
427 		score += 4;
428 	}
429 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
430 		score++;
431 	return score;
432 }
433 
434 /*
435  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
436  */
437 static inline int compute_score2(struct sock *sk, struct net *net,
438 				 __be32 saddr, __be16 sport,
439 				 __be32 daddr, unsigned int hnum, int dif)
440 {
441 	int score;
442 	struct inet_sock *inet;
443 
444 	if (!net_eq(sock_net(sk), net) ||
445 	    ipv6_only_sock(sk))
446 		return -1;
447 
448 	inet = inet_sk(sk);
449 
450 	if (inet->inet_rcv_saddr != daddr ||
451 	    inet->inet_num != hnum)
452 		return -1;
453 
454 	score = (sk->sk_family == PF_INET) ? 2 : 1;
455 
456 	if (inet->inet_daddr) {
457 		if (inet->inet_daddr != saddr)
458 			return -1;
459 		score += 4;
460 	}
461 
462 	if (inet->inet_dport) {
463 		if (inet->inet_dport != sport)
464 			return -1;
465 		score += 4;
466 	}
467 
468 	if (sk->sk_bound_dev_if) {
469 		if (sk->sk_bound_dev_if != dif)
470 			return -1;
471 		score += 4;
472 	}
473 
474 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
475 		score++;
476 
477 	return score;
478 }
479 
480 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
481 		       const __u16 lport, const __be32 faddr,
482 		       const __be16 fport)
483 {
484 	static u32 udp_ehash_secret __read_mostly;
485 
486 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
487 
488 	return __inet_ehashfn(laddr, lport, faddr, fport,
489 			      udp_ehash_secret + net_hash_mix(net));
490 }
491 
492 /* called with read_rcu_lock() */
493 static struct sock *udp4_lib_lookup2(struct net *net,
494 		__be32 saddr, __be16 sport,
495 		__be32 daddr, unsigned int hnum, int dif,
496 		struct udp_hslot *hslot2, unsigned int slot2,
497 		struct sk_buff *skb)
498 {
499 	struct sock *sk, *result;
500 	struct hlist_nulls_node *node;
501 	int score, badness, matches = 0, reuseport = 0;
502 	bool select_ok = true;
503 	u32 hash = 0;
504 
505 begin:
506 	result = NULL;
507 	badness = 0;
508 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
509 		score = compute_score2(sk, net, saddr, sport,
510 				      daddr, hnum, dif);
511 		if (score > badness) {
512 			result = sk;
513 			badness = score;
514 			reuseport = sk->sk_reuseport;
515 			if (reuseport) {
516 				hash = udp_ehashfn(net, daddr, hnum,
517 						   saddr, sport);
518 				if (select_ok) {
519 					struct sock *sk2;
520 
521 					sk2 = reuseport_select_sock(sk, hash, skb,
522 							sizeof(struct udphdr));
523 					if (sk2) {
524 						result = sk2;
525 						select_ok = false;
526 						goto found;
527 					}
528 				}
529 				matches = 1;
530 			}
531 		} else if (score == badness && reuseport) {
532 			matches++;
533 			if (reciprocal_scale(hash, matches) == 0)
534 				result = sk;
535 			hash = next_pseudo_random32(hash);
536 		}
537 	}
538 	/*
539 	 * if the nulls value we got at the end of this lookup is
540 	 * not the expected one, we must restart lookup.
541 	 * We probably met an item that was moved to another chain.
542 	 */
543 	if (get_nulls_value(node) != slot2)
544 		goto begin;
545 	if (result) {
546 found:
547 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
548 			result = NULL;
549 		else if (unlikely(compute_score2(result, net, saddr, sport,
550 				  daddr, hnum, dif) < badness)) {
551 			sock_put(result);
552 			goto begin;
553 		}
554 	}
555 	return result;
556 }
557 
558 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
559  * harder than this. -DaveM
560  */
561 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
562 		__be16 sport, __be32 daddr, __be16 dport,
563 		int dif, struct udp_table *udptable, struct sk_buff *skb)
564 {
565 	struct sock *sk, *result;
566 	struct hlist_nulls_node *node;
567 	unsigned short hnum = ntohs(dport);
568 	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
569 	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
570 	int score, badness, matches = 0, reuseport = 0;
571 	bool select_ok = true;
572 	u32 hash = 0;
573 
574 	rcu_read_lock();
575 	if (hslot->count > 10) {
576 		hash2 = udp4_portaddr_hash(net, daddr, hnum);
577 		slot2 = hash2 & udptable->mask;
578 		hslot2 = &udptable->hash2[slot2];
579 		if (hslot->count < hslot2->count)
580 			goto begin;
581 
582 		result = udp4_lib_lookup2(net, saddr, sport,
583 					  daddr, hnum, dif,
584 					  hslot2, slot2, skb);
585 		if (!result) {
586 			hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
587 			slot2 = hash2 & udptable->mask;
588 			hslot2 = &udptable->hash2[slot2];
589 			if (hslot->count < hslot2->count)
590 				goto begin;
591 
592 			result = udp4_lib_lookup2(net, saddr, sport,
593 						  htonl(INADDR_ANY), hnum, dif,
594 						  hslot2, slot2, skb);
595 		}
596 		rcu_read_unlock();
597 		return result;
598 	}
599 begin:
600 	result = NULL;
601 	badness = 0;
602 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
603 		score = compute_score(sk, net, saddr, hnum, sport,
604 				      daddr, dport, dif);
605 		if (score > badness) {
606 			result = sk;
607 			badness = score;
608 			reuseport = sk->sk_reuseport;
609 			if (reuseport) {
610 				hash = udp_ehashfn(net, daddr, hnum,
611 						   saddr, sport);
612 				if (select_ok) {
613 					struct sock *sk2;
614 
615 					sk2 = reuseport_select_sock(sk, hash, skb,
616 							sizeof(struct udphdr));
617 					if (sk2) {
618 						result = sk2;
619 						select_ok = false;
620 						goto found;
621 					}
622 				}
623 				matches = 1;
624 			}
625 		} else if (score == badness && reuseport) {
626 			matches++;
627 			if (reciprocal_scale(hash, matches) == 0)
628 				result = sk;
629 			hash = next_pseudo_random32(hash);
630 		}
631 	}
632 	/*
633 	 * if the nulls value we got at the end of this lookup is
634 	 * not the expected one, we must restart lookup.
635 	 * We probably met an item that was moved to another chain.
636 	 */
637 	if (get_nulls_value(node) != slot)
638 		goto begin;
639 
640 	if (result) {
641 found:
642 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
643 			result = NULL;
644 		else if (unlikely(compute_score(result, net, saddr, hnum, sport,
645 				  daddr, dport, dif) < badness)) {
646 			sock_put(result);
647 			goto begin;
648 		}
649 	}
650 	rcu_read_unlock();
651 	return result;
652 }
653 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
654 
655 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
656 						 __be16 sport, __be16 dport,
657 						 struct udp_table *udptable)
658 {
659 	const struct iphdr *iph = ip_hdr(skb);
660 
661 	return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
662 				 iph->daddr, dport, inet_iif(skb),
663 				 udptable, skb);
664 }
665 
666 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
667 			     __be32 daddr, __be16 dport, int dif)
668 {
669 	return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif,
670 				 &udp_table, NULL);
671 }
672 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
673 
674 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
675 				       __be16 loc_port, __be32 loc_addr,
676 				       __be16 rmt_port, __be32 rmt_addr,
677 				       int dif, unsigned short hnum)
678 {
679 	struct inet_sock *inet = inet_sk(sk);
680 
681 	if (!net_eq(sock_net(sk), net) ||
682 	    udp_sk(sk)->udp_port_hash != hnum ||
683 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
684 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
685 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
686 	    ipv6_only_sock(sk) ||
687 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
688 		return false;
689 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
690 		return false;
691 	return true;
692 }
693 
694 /*
695  * This routine is called by the ICMP module when it gets some
696  * sort of error condition.  If err < 0 then the socket should
697  * be closed and the error returned to the user.  If err > 0
698  * it's just the icmp type << 8 | icmp code.
699  * Header points to the ip header of the error packet. We move
700  * on past this. Then (as it used to claim before adjustment)
701  * header points to the first 8 bytes of the udp header.  We need
702  * to find the appropriate port.
703  */
704 
705 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
706 {
707 	struct inet_sock *inet;
708 	const struct iphdr *iph = (const struct iphdr *)skb->data;
709 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
710 	const int type = icmp_hdr(skb)->type;
711 	const int code = icmp_hdr(skb)->code;
712 	struct sock *sk;
713 	int harderr;
714 	int err;
715 	struct net *net = dev_net(skb->dev);
716 
717 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
718 			iph->saddr, uh->source, skb->dev->ifindex, udptable,
719 			NULL);
720 	if (!sk) {
721 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
722 		return;	/* No socket for error */
723 	}
724 
725 	err = 0;
726 	harderr = 0;
727 	inet = inet_sk(sk);
728 
729 	switch (type) {
730 	default:
731 	case ICMP_TIME_EXCEEDED:
732 		err = EHOSTUNREACH;
733 		break;
734 	case ICMP_SOURCE_QUENCH:
735 		goto out;
736 	case ICMP_PARAMETERPROB:
737 		err = EPROTO;
738 		harderr = 1;
739 		break;
740 	case ICMP_DEST_UNREACH:
741 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
742 			ipv4_sk_update_pmtu(skb, sk, info);
743 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
744 				err = EMSGSIZE;
745 				harderr = 1;
746 				break;
747 			}
748 			goto out;
749 		}
750 		err = EHOSTUNREACH;
751 		if (code <= NR_ICMP_UNREACH) {
752 			harderr = icmp_err_convert[code].fatal;
753 			err = icmp_err_convert[code].errno;
754 		}
755 		break;
756 	case ICMP_REDIRECT:
757 		ipv4_sk_redirect(skb, sk);
758 		goto out;
759 	}
760 
761 	/*
762 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
763 	 *	4.1.3.3.
764 	 */
765 	if (!inet->recverr) {
766 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
767 			goto out;
768 	} else
769 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
770 
771 	sk->sk_err = err;
772 	sk->sk_error_report(sk);
773 out:
774 	sock_put(sk);
775 }
776 
777 void udp_err(struct sk_buff *skb, u32 info)
778 {
779 	__udp4_lib_err(skb, info, &udp_table);
780 }
781 
782 /*
783  * Throw away all pending data and cancel the corking. Socket is locked.
784  */
785 void udp_flush_pending_frames(struct sock *sk)
786 {
787 	struct udp_sock *up = udp_sk(sk);
788 
789 	if (up->pending) {
790 		up->len = 0;
791 		up->pending = 0;
792 		ip_flush_pending_frames(sk);
793 	}
794 }
795 EXPORT_SYMBOL(udp_flush_pending_frames);
796 
797 /**
798  * 	udp4_hwcsum  -  handle outgoing HW checksumming
799  * 	@skb: 	sk_buff containing the filled-in UDP header
800  * 	        (checksum field must be zeroed out)
801  *	@src:	source IP address
802  *	@dst:	destination IP address
803  */
804 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
805 {
806 	struct udphdr *uh = udp_hdr(skb);
807 	int offset = skb_transport_offset(skb);
808 	int len = skb->len - offset;
809 	int hlen = len;
810 	__wsum csum = 0;
811 
812 	if (!skb_has_frag_list(skb)) {
813 		/*
814 		 * Only one fragment on the socket.
815 		 */
816 		skb->csum_start = skb_transport_header(skb) - skb->head;
817 		skb->csum_offset = offsetof(struct udphdr, check);
818 		uh->check = ~csum_tcpudp_magic(src, dst, len,
819 					       IPPROTO_UDP, 0);
820 	} else {
821 		struct sk_buff *frags;
822 
823 		/*
824 		 * HW-checksum won't work as there are two or more
825 		 * fragments on the socket so that all csums of sk_buffs
826 		 * should be together
827 		 */
828 		skb_walk_frags(skb, frags) {
829 			csum = csum_add(csum, frags->csum);
830 			hlen -= frags->len;
831 		}
832 
833 		csum = skb_checksum(skb, offset, hlen, csum);
834 		skb->ip_summed = CHECKSUM_NONE;
835 
836 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
837 		if (uh->check == 0)
838 			uh->check = CSUM_MANGLED_0;
839 	}
840 }
841 EXPORT_SYMBOL_GPL(udp4_hwcsum);
842 
843 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
844  * for the simple case like when setting the checksum for a UDP tunnel.
845  */
846 void udp_set_csum(bool nocheck, struct sk_buff *skb,
847 		  __be32 saddr, __be32 daddr, int len)
848 {
849 	struct udphdr *uh = udp_hdr(skb);
850 
851 	if (nocheck) {
852 		uh->check = 0;
853 	} else if (skb_is_gso(skb)) {
854 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
855 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
856 		uh->check = 0;
857 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
858 		if (uh->check == 0)
859 			uh->check = CSUM_MANGLED_0;
860 	} else {
861 		skb->ip_summed = CHECKSUM_PARTIAL;
862 		skb->csum_start = skb_transport_header(skb) - skb->head;
863 		skb->csum_offset = offsetof(struct udphdr, check);
864 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
865 	}
866 }
867 EXPORT_SYMBOL(udp_set_csum);
868 
869 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
870 {
871 	struct sock *sk = skb->sk;
872 	struct inet_sock *inet = inet_sk(sk);
873 	struct udphdr *uh;
874 	int err = 0;
875 	int is_udplite = IS_UDPLITE(sk);
876 	int offset = skb_transport_offset(skb);
877 	int len = skb->len - offset;
878 	__wsum csum = 0;
879 
880 	/*
881 	 * Create a UDP header
882 	 */
883 	uh = udp_hdr(skb);
884 	uh->source = inet->inet_sport;
885 	uh->dest = fl4->fl4_dport;
886 	uh->len = htons(len);
887 	uh->check = 0;
888 
889 	if (is_udplite)  				 /*     UDP-Lite      */
890 		csum = udplite_csum(skb);
891 
892 	else if (sk->sk_no_check_tx) {   /* UDP csum disabled */
893 
894 		skb->ip_summed = CHECKSUM_NONE;
895 		goto send;
896 
897 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
898 
899 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
900 		goto send;
901 
902 	} else
903 		csum = udp_csum(skb);
904 
905 	/* add protocol-dependent pseudo-header */
906 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
907 				      sk->sk_protocol, csum);
908 	if (uh->check == 0)
909 		uh->check = CSUM_MANGLED_0;
910 
911 send:
912 	err = ip_send_skb(sock_net(sk), skb);
913 	if (err) {
914 		if (err == -ENOBUFS && !inet->recverr) {
915 			UDP_INC_STATS_USER(sock_net(sk),
916 					   UDP_MIB_SNDBUFERRORS, is_udplite);
917 			err = 0;
918 		}
919 	} else
920 		UDP_INC_STATS_USER(sock_net(sk),
921 				   UDP_MIB_OUTDATAGRAMS, is_udplite);
922 	return err;
923 }
924 
925 /*
926  * Push out all pending data as one UDP datagram. Socket is locked.
927  */
928 int udp_push_pending_frames(struct sock *sk)
929 {
930 	struct udp_sock  *up = udp_sk(sk);
931 	struct inet_sock *inet = inet_sk(sk);
932 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
933 	struct sk_buff *skb;
934 	int err = 0;
935 
936 	skb = ip_finish_skb(sk, fl4);
937 	if (!skb)
938 		goto out;
939 
940 	err = udp_send_skb(skb, fl4);
941 
942 out:
943 	up->len = 0;
944 	up->pending = 0;
945 	return err;
946 }
947 EXPORT_SYMBOL(udp_push_pending_frames);
948 
949 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
950 {
951 	struct inet_sock *inet = inet_sk(sk);
952 	struct udp_sock *up = udp_sk(sk);
953 	struct flowi4 fl4_stack;
954 	struct flowi4 *fl4;
955 	int ulen = len;
956 	struct ipcm_cookie ipc;
957 	struct rtable *rt = NULL;
958 	int free = 0;
959 	int connected = 0;
960 	__be32 daddr, faddr, saddr;
961 	__be16 dport;
962 	u8  tos;
963 	int err, is_udplite = IS_UDPLITE(sk);
964 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
965 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
966 	struct sk_buff *skb;
967 	struct ip_options_data opt_copy;
968 
969 	if (len > 0xFFFF)
970 		return -EMSGSIZE;
971 
972 	/*
973 	 *	Check the flags.
974 	 */
975 
976 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
977 		return -EOPNOTSUPP;
978 
979 	ipc.opt = NULL;
980 	ipc.tx_flags = 0;
981 	ipc.ttl = 0;
982 	ipc.tos = -1;
983 
984 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
985 
986 	fl4 = &inet->cork.fl.u.ip4;
987 	if (up->pending) {
988 		/*
989 		 * There are pending frames.
990 		 * The socket lock must be held while it's corked.
991 		 */
992 		lock_sock(sk);
993 		if (likely(up->pending)) {
994 			if (unlikely(up->pending != AF_INET)) {
995 				release_sock(sk);
996 				return -EINVAL;
997 			}
998 			goto do_append_data;
999 		}
1000 		release_sock(sk);
1001 	}
1002 	ulen += sizeof(struct udphdr);
1003 
1004 	/*
1005 	 *	Get and verify the address.
1006 	 */
1007 	if (msg->msg_name) {
1008 		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1009 		if (msg->msg_namelen < sizeof(*usin))
1010 			return -EINVAL;
1011 		if (usin->sin_family != AF_INET) {
1012 			if (usin->sin_family != AF_UNSPEC)
1013 				return -EAFNOSUPPORT;
1014 		}
1015 
1016 		daddr = usin->sin_addr.s_addr;
1017 		dport = usin->sin_port;
1018 		if (dport == 0)
1019 			return -EINVAL;
1020 	} else {
1021 		if (sk->sk_state != TCP_ESTABLISHED)
1022 			return -EDESTADDRREQ;
1023 		daddr = inet->inet_daddr;
1024 		dport = inet->inet_dport;
1025 		/* Open fast path for connected socket.
1026 		   Route will not be used, if at least one option is set.
1027 		 */
1028 		connected = 1;
1029 	}
1030 	ipc.addr = inet->inet_saddr;
1031 
1032 	ipc.oif = sk->sk_bound_dev_if;
1033 
1034 	sock_tx_timestamp(sk, &ipc.tx_flags);
1035 
1036 	if (msg->msg_controllen) {
1037 		err = ip_cmsg_send(sock_net(sk), msg, &ipc,
1038 				   sk->sk_family == AF_INET6);
1039 		if (unlikely(err)) {
1040 			kfree(ipc.opt);
1041 			return err;
1042 		}
1043 		if (ipc.opt)
1044 			free = 1;
1045 		connected = 0;
1046 	}
1047 	if (!ipc.opt) {
1048 		struct ip_options_rcu *inet_opt;
1049 
1050 		rcu_read_lock();
1051 		inet_opt = rcu_dereference(inet->inet_opt);
1052 		if (inet_opt) {
1053 			memcpy(&opt_copy, inet_opt,
1054 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1055 			ipc.opt = &opt_copy.opt;
1056 		}
1057 		rcu_read_unlock();
1058 	}
1059 
1060 	saddr = ipc.addr;
1061 	ipc.addr = faddr = daddr;
1062 
1063 	if (ipc.opt && ipc.opt->opt.srr) {
1064 		if (!daddr)
1065 			return -EINVAL;
1066 		faddr = ipc.opt->opt.faddr;
1067 		connected = 0;
1068 	}
1069 	tos = get_rttos(&ipc, inet);
1070 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1071 	    (msg->msg_flags & MSG_DONTROUTE) ||
1072 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1073 		tos |= RTO_ONLINK;
1074 		connected = 0;
1075 	}
1076 
1077 	if (ipv4_is_multicast(daddr)) {
1078 		if (!ipc.oif)
1079 			ipc.oif = inet->mc_index;
1080 		if (!saddr)
1081 			saddr = inet->mc_addr;
1082 		connected = 0;
1083 	} else if (!ipc.oif)
1084 		ipc.oif = inet->uc_index;
1085 
1086 	if (connected)
1087 		rt = (struct rtable *)sk_dst_check(sk, 0);
1088 
1089 	if (!rt) {
1090 		struct net *net = sock_net(sk);
1091 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1092 
1093 		fl4 = &fl4_stack;
1094 
1095 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1096 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1097 				   flow_flags,
1098 				   faddr, saddr, dport, inet->inet_sport);
1099 
1100 		if (!saddr && ipc.oif) {
1101 			err = l3mdev_get_saddr(net, ipc.oif, fl4);
1102 			if (err < 0)
1103 				goto out;
1104 		}
1105 
1106 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1107 		rt = ip_route_output_flow(net, fl4, sk);
1108 		if (IS_ERR(rt)) {
1109 			err = PTR_ERR(rt);
1110 			rt = NULL;
1111 			if (err == -ENETUNREACH)
1112 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1113 			goto out;
1114 		}
1115 
1116 		err = -EACCES;
1117 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1118 		    !sock_flag(sk, SOCK_BROADCAST))
1119 			goto out;
1120 		if (connected)
1121 			sk_dst_set(sk, dst_clone(&rt->dst));
1122 	}
1123 
1124 	if (msg->msg_flags&MSG_CONFIRM)
1125 		goto do_confirm;
1126 back_from_confirm:
1127 
1128 	saddr = fl4->saddr;
1129 	if (!ipc.addr)
1130 		daddr = ipc.addr = fl4->daddr;
1131 
1132 	/* Lockless fast path for the non-corking case. */
1133 	if (!corkreq) {
1134 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1135 				  sizeof(struct udphdr), &ipc, &rt,
1136 				  msg->msg_flags);
1137 		err = PTR_ERR(skb);
1138 		if (!IS_ERR_OR_NULL(skb))
1139 			err = udp_send_skb(skb, fl4);
1140 		goto out;
1141 	}
1142 
1143 	lock_sock(sk);
1144 	if (unlikely(up->pending)) {
1145 		/* The socket is already corked while preparing it. */
1146 		/* ... which is an evident application bug. --ANK */
1147 		release_sock(sk);
1148 
1149 		net_dbg_ratelimited("cork app bug 2\n");
1150 		err = -EINVAL;
1151 		goto out;
1152 	}
1153 	/*
1154 	 *	Now cork the socket to pend data.
1155 	 */
1156 	fl4 = &inet->cork.fl.u.ip4;
1157 	fl4->daddr = daddr;
1158 	fl4->saddr = saddr;
1159 	fl4->fl4_dport = dport;
1160 	fl4->fl4_sport = inet->inet_sport;
1161 	up->pending = AF_INET;
1162 
1163 do_append_data:
1164 	up->len += ulen;
1165 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1166 			     sizeof(struct udphdr), &ipc, &rt,
1167 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1168 	if (err)
1169 		udp_flush_pending_frames(sk);
1170 	else if (!corkreq)
1171 		err = udp_push_pending_frames(sk);
1172 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1173 		up->pending = 0;
1174 	release_sock(sk);
1175 
1176 out:
1177 	ip_rt_put(rt);
1178 	if (free)
1179 		kfree(ipc.opt);
1180 	if (!err)
1181 		return len;
1182 	/*
1183 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1184 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1185 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1186 	 * things).  We could add another new stat but at least for now that
1187 	 * seems like overkill.
1188 	 */
1189 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1190 		UDP_INC_STATS_USER(sock_net(sk),
1191 				UDP_MIB_SNDBUFERRORS, is_udplite);
1192 	}
1193 	return err;
1194 
1195 do_confirm:
1196 	dst_confirm(&rt->dst);
1197 	if (!(msg->msg_flags&MSG_PROBE) || len)
1198 		goto back_from_confirm;
1199 	err = 0;
1200 	goto out;
1201 }
1202 EXPORT_SYMBOL(udp_sendmsg);
1203 
1204 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1205 		 size_t size, int flags)
1206 {
1207 	struct inet_sock *inet = inet_sk(sk);
1208 	struct udp_sock *up = udp_sk(sk);
1209 	int ret;
1210 
1211 	if (flags & MSG_SENDPAGE_NOTLAST)
1212 		flags |= MSG_MORE;
1213 
1214 	if (!up->pending) {
1215 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1216 
1217 		/* Call udp_sendmsg to specify destination address which
1218 		 * sendpage interface can't pass.
1219 		 * This will succeed only when the socket is connected.
1220 		 */
1221 		ret = udp_sendmsg(sk, &msg, 0);
1222 		if (ret < 0)
1223 			return ret;
1224 	}
1225 
1226 	lock_sock(sk);
1227 
1228 	if (unlikely(!up->pending)) {
1229 		release_sock(sk);
1230 
1231 		net_dbg_ratelimited("udp cork app bug 3\n");
1232 		return -EINVAL;
1233 	}
1234 
1235 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1236 			     page, offset, size, flags);
1237 	if (ret == -EOPNOTSUPP) {
1238 		release_sock(sk);
1239 		return sock_no_sendpage(sk->sk_socket, page, offset,
1240 					size, flags);
1241 	}
1242 	if (ret < 0) {
1243 		udp_flush_pending_frames(sk);
1244 		goto out;
1245 	}
1246 
1247 	up->len += size;
1248 	if (!(up->corkflag || (flags&MSG_MORE)))
1249 		ret = udp_push_pending_frames(sk);
1250 	if (!ret)
1251 		ret = size;
1252 out:
1253 	release_sock(sk);
1254 	return ret;
1255 }
1256 
1257 /**
1258  *	first_packet_length	- return length of first packet in receive queue
1259  *	@sk: socket
1260  *
1261  *	Drops all bad checksum frames, until a valid one is found.
1262  *	Returns the length of found skb, or 0 if none is found.
1263  */
1264 static unsigned int first_packet_length(struct sock *sk)
1265 {
1266 	struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1267 	struct sk_buff *skb;
1268 	unsigned int res;
1269 
1270 	__skb_queue_head_init(&list_kill);
1271 
1272 	spin_lock_bh(&rcvq->lock);
1273 	while ((skb = skb_peek(rcvq)) != NULL &&
1274 		udp_lib_checksum_complete(skb)) {
1275 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1276 				 IS_UDPLITE(sk));
1277 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1278 				 IS_UDPLITE(sk));
1279 		atomic_inc(&sk->sk_drops);
1280 		__skb_unlink(skb, rcvq);
1281 		__skb_queue_tail(&list_kill, skb);
1282 	}
1283 	res = skb ? skb->len : 0;
1284 	spin_unlock_bh(&rcvq->lock);
1285 
1286 	if (!skb_queue_empty(&list_kill)) {
1287 		bool slow = lock_sock_fast(sk);
1288 
1289 		__skb_queue_purge(&list_kill);
1290 		sk_mem_reclaim_partial(sk);
1291 		unlock_sock_fast(sk, slow);
1292 	}
1293 	return res;
1294 }
1295 
1296 /*
1297  *	IOCTL requests applicable to the UDP protocol
1298  */
1299 
1300 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1301 {
1302 	switch (cmd) {
1303 	case SIOCOUTQ:
1304 	{
1305 		int amount = sk_wmem_alloc_get(sk);
1306 
1307 		return put_user(amount, (int __user *)arg);
1308 	}
1309 
1310 	case SIOCINQ:
1311 	{
1312 		unsigned int amount = first_packet_length(sk);
1313 
1314 		if (amount)
1315 			/*
1316 			 * We will only return the amount
1317 			 * of this packet since that is all
1318 			 * that will be read.
1319 			 */
1320 			amount -= sizeof(struct udphdr);
1321 
1322 		return put_user(amount, (int __user *)arg);
1323 	}
1324 
1325 	default:
1326 		return -ENOIOCTLCMD;
1327 	}
1328 
1329 	return 0;
1330 }
1331 EXPORT_SYMBOL(udp_ioctl);
1332 
1333 /*
1334  * 	This should be easy, if there is something there we
1335  * 	return it, otherwise we block.
1336  */
1337 
1338 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1339 		int flags, int *addr_len)
1340 {
1341 	struct inet_sock *inet = inet_sk(sk);
1342 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1343 	struct sk_buff *skb;
1344 	unsigned int ulen, copied;
1345 	int peeked, off = 0;
1346 	int err;
1347 	int is_udplite = IS_UDPLITE(sk);
1348 	bool checksum_valid = false;
1349 	bool slow;
1350 
1351 	if (flags & MSG_ERRQUEUE)
1352 		return ip_recv_error(sk, msg, len, addr_len);
1353 
1354 try_again:
1355 	skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1356 				  &peeked, &off, &err);
1357 	if (!skb)
1358 		goto out;
1359 
1360 	ulen = skb->len - sizeof(struct udphdr);
1361 	copied = len;
1362 	if (copied > ulen)
1363 		copied = ulen;
1364 	else if (copied < ulen)
1365 		msg->msg_flags |= MSG_TRUNC;
1366 
1367 	/*
1368 	 * If checksum is needed at all, try to do it while copying the
1369 	 * data.  If the data is truncated, or if we only want a partial
1370 	 * coverage checksum (UDP-Lite), do it before the copy.
1371 	 */
1372 
1373 	if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1374 		checksum_valid = !udp_lib_checksum_complete(skb);
1375 		if (!checksum_valid)
1376 			goto csum_copy_err;
1377 	}
1378 
1379 	if (checksum_valid || skb_csum_unnecessary(skb))
1380 		err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1381 					    msg, copied);
1382 	else {
1383 		err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1384 						     msg);
1385 
1386 		if (err == -EINVAL)
1387 			goto csum_copy_err;
1388 	}
1389 
1390 	if (unlikely(err)) {
1391 		trace_kfree_skb(skb, udp_recvmsg);
1392 		if (!peeked) {
1393 			atomic_inc(&sk->sk_drops);
1394 			UDP_INC_STATS_USER(sock_net(sk),
1395 					   UDP_MIB_INERRORS, is_udplite);
1396 		}
1397 		goto out_free;
1398 	}
1399 
1400 	if (!peeked)
1401 		UDP_INC_STATS_USER(sock_net(sk),
1402 				UDP_MIB_INDATAGRAMS, is_udplite);
1403 
1404 	sock_recv_ts_and_drops(msg, sk, skb);
1405 
1406 	/* Copy the address. */
1407 	if (sin) {
1408 		sin->sin_family = AF_INET;
1409 		sin->sin_port = udp_hdr(skb)->source;
1410 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1411 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1412 		*addr_len = sizeof(*sin);
1413 	}
1414 	if (inet->cmsg_flags)
1415 		ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr));
1416 
1417 	err = copied;
1418 	if (flags & MSG_TRUNC)
1419 		err = ulen;
1420 
1421 out_free:
1422 	skb_free_datagram_locked(sk, skb);
1423 out:
1424 	return err;
1425 
1426 csum_copy_err:
1427 	slow = lock_sock_fast(sk);
1428 	if (!skb_kill_datagram(sk, skb, flags)) {
1429 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1430 		UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1431 	}
1432 	unlock_sock_fast(sk, slow);
1433 
1434 	/* starting over for a new packet, but check if we need to yield */
1435 	cond_resched();
1436 	msg->msg_flags &= ~MSG_TRUNC;
1437 	goto try_again;
1438 }
1439 
1440 int udp_disconnect(struct sock *sk, int flags)
1441 {
1442 	struct inet_sock *inet = inet_sk(sk);
1443 	/*
1444 	 *	1003.1g - break association.
1445 	 */
1446 
1447 	sk->sk_state = TCP_CLOSE;
1448 	inet->inet_daddr = 0;
1449 	inet->inet_dport = 0;
1450 	sock_rps_reset_rxhash(sk);
1451 	sk->sk_bound_dev_if = 0;
1452 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1453 		inet_reset_saddr(sk);
1454 
1455 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1456 		sk->sk_prot->unhash(sk);
1457 		inet->inet_sport = 0;
1458 	}
1459 	sk_dst_reset(sk);
1460 	return 0;
1461 }
1462 EXPORT_SYMBOL(udp_disconnect);
1463 
1464 void udp_lib_unhash(struct sock *sk)
1465 {
1466 	if (sk_hashed(sk)) {
1467 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1468 		struct udp_hslot *hslot, *hslot2;
1469 
1470 		hslot  = udp_hashslot(udptable, sock_net(sk),
1471 				      udp_sk(sk)->udp_port_hash);
1472 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1473 
1474 		spin_lock_bh(&hslot->lock);
1475 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1476 			reuseport_detach_sock(sk);
1477 		if (sk_nulls_del_node_init_rcu(sk)) {
1478 			hslot->count--;
1479 			inet_sk(sk)->inet_num = 0;
1480 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1481 
1482 			spin_lock(&hslot2->lock);
1483 			hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1484 			hslot2->count--;
1485 			spin_unlock(&hslot2->lock);
1486 		}
1487 		spin_unlock_bh(&hslot->lock);
1488 	}
1489 }
1490 EXPORT_SYMBOL(udp_lib_unhash);
1491 
1492 /*
1493  * inet_rcv_saddr was changed, we must rehash secondary hash
1494  */
1495 void udp_lib_rehash(struct sock *sk, u16 newhash)
1496 {
1497 	if (sk_hashed(sk)) {
1498 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1499 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1500 
1501 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1502 		nhslot2 = udp_hashslot2(udptable, newhash);
1503 		udp_sk(sk)->udp_portaddr_hash = newhash;
1504 
1505 		if (hslot2 != nhslot2 ||
1506 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1507 			hslot = udp_hashslot(udptable, sock_net(sk),
1508 					     udp_sk(sk)->udp_port_hash);
1509 			/* we must lock primary chain too */
1510 			spin_lock_bh(&hslot->lock);
1511 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1512 				reuseport_detach_sock(sk);
1513 
1514 			if (hslot2 != nhslot2) {
1515 				spin_lock(&hslot2->lock);
1516 				hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1517 				hslot2->count--;
1518 				spin_unlock(&hslot2->lock);
1519 
1520 				spin_lock(&nhslot2->lock);
1521 				hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1522 							 &nhslot2->head);
1523 				nhslot2->count++;
1524 				spin_unlock(&nhslot2->lock);
1525 			}
1526 
1527 			spin_unlock_bh(&hslot->lock);
1528 		}
1529 	}
1530 }
1531 EXPORT_SYMBOL(udp_lib_rehash);
1532 
1533 static void udp_v4_rehash(struct sock *sk)
1534 {
1535 	u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1536 					  inet_sk(sk)->inet_rcv_saddr,
1537 					  inet_sk(sk)->inet_num);
1538 	udp_lib_rehash(sk, new_hash);
1539 }
1540 
1541 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1542 {
1543 	int rc;
1544 
1545 	if (inet_sk(sk)->inet_daddr) {
1546 		sock_rps_save_rxhash(sk, skb);
1547 		sk_mark_napi_id(sk, skb);
1548 		sk_incoming_cpu_update(sk);
1549 	}
1550 
1551 	rc = sock_queue_rcv_skb(sk, skb);
1552 	if (rc < 0) {
1553 		int is_udplite = IS_UDPLITE(sk);
1554 
1555 		/* Note that an ENOMEM error is charged twice */
1556 		if (rc == -ENOMEM)
1557 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1558 					 is_udplite);
1559 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1560 		kfree_skb(skb);
1561 		trace_udp_fail_queue_rcv_skb(rc, sk);
1562 		return -1;
1563 	}
1564 
1565 	return 0;
1566 
1567 }
1568 
1569 static struct static_key udp_encap_needed __read_mostly;
1570 void udp_encap_enable(void)
1571 {
1572 	if (!static_key_enabled(&udp_encap_needed))
1573 		static_key_slow_inc(&udp_encap_needed);
1574 }
1575 EXPORT_SYMBOL(udp_encap_enable);
1576 
1577 /* returns:
1578  *  -1: error
1579  *   0: success
1580  *  >0: "udp encap" protocol resubmission
1581  *
1582  * Note that in the success and error cases, the skb is assumed to
1583  * have either been requeued or freed.
1584  */
1585 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1586 {
1587 	struct udp_sock *up = udp_sk(sk);
1588 	int rc;
1589 	int is_udplite = IS_UDPLITE(sk);
1590 
1591 	/*
1592 	 *	Charge it to the socket, dropping if the queue is full.
1593 	 */
1594 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1595 		goto drop;
1596 	nf_reset(skb);
1597 
1598 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
1599 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1600 
1601 		/*
1602 		 * This is an encapsulation socket so pass the skb to
1603 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1604 		 * fall through and pass this up the UDP socket.
1605 		 * up->encap_rcv() returns the following value:
1606 		 * =0 if skb was successfully passed to the encap
1607 		 *    handler or was discarded by it.
1608 		 * >0 if skb should be passed on to UDP.
1609 		 * <0 if skb should be resubmitted as proto -N
1610 		 */
1611 
1612 		/* if we're overly short, let UDP handle it */
1613 		encap_rcv = ACCESS_ONCE(up->encap_rcv);
1614 		if (skb->len > sizeof(struct udphdr) && encap_rcv) {
1615 			int ret;
1616 
1617 			/* Verify checksum before giving to encap */
1618 			if (udp_lib_checksum_complete(skb))
1619 				goto csum_error;
1620 
1621 			ret = encap_rcv(sk, skb);
1622 			if (ret <= 0) {
1623 				UDP_INC_STATS_BH(sock_net(sk),
1624 						 UDP_MIB_INDATAGRAMS,
1625 						 is_udplite);
1626 				return -ret;
1627 			}
1628 		}
1629 
1630 		/* FALLTHROUGH -- it's a UDP Packet */
1631 	}
1632 
1633 	/*
1634 	 * 	UDP-Lite specific tests, ignored on UDP sockets
1635 	 */
1636 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1637 
1638 		/*
1639 		 * MIB statistics other than incrementing the error count are
1640 		 * disabled for the following two types of errors: these depend
1641 		 * on the application settings, not on the functioning of the
1642 		 * protocol stack as such.
1643 		 *
1644 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1645 		 * way ... to ... at least let the receiving application block
1646 		 * delivery of packets with coverage values less than a value
1647 		 * provided by the application."
1648 		 */
1649 		if (up->pcrlen == 0) {          /* full coverage was set  */
1650 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1651 					    UDP_SKB_CB(skb)->cscov, skb->len);
1652 			goto drop;
1653 		}
1654 		/* The next case involves violating the min. coverage requested
1655 		 * by the receiver. This is subtle: if receiver wants x and x is
1656 		 * greater than the buffersize/MTU then receiver will complain
1657 		 * that it wants x while sender emits packets of smaller size y.
1658 		 * Therefore the above ...()->partial_cov statement is essential.
1659 		 */
1660 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1661 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1662 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1663 			goto drop;
1664 		}
1665 	}
1666 
1667 	if (rcu_access_pointer(sk->sk_filter) &&
1668 	    udp_lib_checksum_complete(skb))
1669 		goto csum_error;
1670 
1671 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1672 		UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1673 				 is_udplite);
1674 		goto drop;
1675 	}
1676 
1677 	rc = 0;
1678 
1679 	ipv4_pktinfo_prepare(sk, skb);
1680 	bh_lock_sock(sk);
1681 	if (!sock_owned_by_user(sk))
1682 		rc = __udp_queue_rcv_skb(sk, skb);
1683 	else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1684 		bh_unlock_sock(sk);
1685 		goto drop;
1686 	}
1687 	bh_unlock_sock(sk);
1688 
1689 	return rc;
1690 
1691 csum_error:
1692 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1693 drop:
1694 	UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1695 	atomic_inc(&sk->sk_drops);
1696 	kfree_skb(skb);
1697 	return -1;
1698 }
1699 
1700 static void flush_stack(struct sock **stack, unsigned int count,
1701 			struct sk_buff *skb, unsigned int final)
1702 {
1703 	unsigned int i;
1704 	struct sk_buff *skb1 = NULL;
1705 	struct sock *sk;
1706 
1707 	for (i = 0; i < count; i++) {
1708 		sk = stack[i];
1709 		if (likely(!skb1))
1710 			skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1711 
1712 		if (!skb1) {
1713 			atomic_inc(&sk->sk_drops);
1714 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1715 					 IS_UDPLITE(sk));
1716 			UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1717 					 IS_UDPLITE(sk));
1718 		}
1719 
1720 		if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1721 			skb1 = NULL;
1722 
1723 		sock_put(sk);
1724 	}
1725 	if (unlikely(skb1))
1726 		kfree_skb(skb1);
1727 }
1728 
1729 /* For TCP sockets, sk_rx_dst is protected by socket lock
1730  * For UDP, we use xchg() to guard against concurrent changes.
1731  */
1732 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1733 {
1734 	struct dst_entry *old;
1735 
1736 	dst_hold(dst);
1737 	old = xchg(&sk->sk_rx_dst, dst);
1738 	dst_release(old);
1739 }
1740 
1741 /*
1742  *	Multicasts and broadcasts go to each listener.
1743  *
1744  *	Note: called only from the BH handler context.
1745  */
1746 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1747 				    struct udphdr  *uh,
1748 				    __be32 saddr, __be32 daddr,
1749 				    struct udp_table *udptable,
1750 				    int proto)
1751 {
1752 	struct sock *sk, *stack[256 / sizeof(struct sock *)];
1753 	struct hlist_nulls_node *node;
1754 	unsigned short hnum = ntohs(uh->dest);
1755 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1756 	int dif = skb->dev->ifindex;
1757 	unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1758 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1759 	bool inner_flushed = false;
1760 
1761 	if (use_hash2) {
1762 		hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1763 			    udp_table.mask;
1764 		hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1765 start_lookup:
1766 		hslot = &udp_table.hash2[hash2];
1767 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1768 	}
1769 
1770 	spin_lock(&hslot->lock);
1771 	sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1772 		if (__udp_is_mcast_sock(net, sk,
1773 					uh->dest, daddr,
1774 					uh->source, saddr,
1775 					dif, hnum)) {
1776 			if (unlikely(count == ARRAY_SIZE(stack))) {
1777 				flush_stack(stack, count, skb, ~0);
1778 				inner_flushed = true;
1779 				count = 0;
1780 			}
1781 			stack[count++] = sk;
1782 			sock_hold(sk);
1783 		}
1784 	}
1785 
1786 	spin_unlock(&hslot->lock);
1787 
1788 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
1789 	if (use_hash2 && hash2 != hash2_any) {
1790 		hash2 = hash2_any;
1791 		goto start_lookup;
1792 	}
1793 
1794 	/*
1795 	 * do the slow work with no lock held
1796 	 */
1797 	if (count) {
1798 		flush_stack(stack, count, skb, count - 1);
1799 	} else {
1800 		if (!inner_flushed)
1801 			UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1802 					 proto == IPPROTO_UDPLITE);
1803 		consume_skb(skb);
1804 	}
1805 	return 0;
1806 }
1807 
1808 /* Initialize UDP checksum. If exited with zero value (success),
1809  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1810  * Otherwise, csum completion requires chacksumming packet body,
1811  * including udp header and folding it to skb->csum.
1812  */
1813 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1814 				 int proto)
1815 {
1816 	int err;
1817 
1818 	UDP_SKB_CB(skb)->partial_cov = 0;
1819 	UDP_SKB_CB(skb)->cscov = skb->len;
1820 
1821 	if (proto == IPPROTO_UDPLITE) {
1822 		err = udplite_checksum_init(skb, uh);
1823 		if (err)
1824 			return err;
1825 	}
1826 
1827 	return skb_checksum_init_zero_check(skb, proto, uh->check,
1828 					    inet_compute_pseudo);
1829 }
1830 
1831 /*
1832  *	All we need to do is get the socket, and then do a checksum.
1833  */
1834 
1835 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1836 		   int proto)
1837 {
1838 	struct sock *sk;
1839 	struct udphdr *uh;
1840 	unsigned short ulen;
1841 	struct rtable *rt = skb_rtable(skb);
1842 	__be32 saddr, daddr;
1843 	struct net *net = dev_net(skb->dev);
1844 
1845 	/*
1846 	 *  Validate the packet.
1847 	 */
1848 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1849 		goto drop;		/* No space for header. */
1850 
1851 	uh   = udp_hdr(skb);
1852 	ulen = ntohs(uh->len);
1853 	saddr = ip_hdr(skb)->saddr;
1854 	daddr = ip_hdr(skb)->daddr;
1855 
1856 	if (ulen > skb->len)
1857 		goto short_packet;
1858 
1859 	if (proto == IPPROTO_UDP) {
1860 		/* UDP validates ulen. */
1861 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1862 			goto short_packet;
1863 		uh = udp_hdr(skb);
1864 	}
1865 
1866 	if (udp4_csum_init(skb, uh, proto))
1867 		goto csum_error;
1868 
1869 	sk = skb_steal_sock(skb);
1870 	if (sk) {
1871 		struct dst_entry *dst = skb_dst(skb);
1872 		int ret;
1873 
1874 		if (unlikely(sk->sk_rx_dst != dst))
1875 			udp_sk_rx_dst_set(sk, dst);
1876 
1877 		ret = udp_queue_rcv_skb(sk, skb);
1878 		sock_put(sk);
1879 		/* a return value > 0 means to resubmit the input, but
1880 		 * it wants the return to be -protocol, or 0
1881 		 */
1882 		if (ret > 0)
1883 			return -ret;
1884 		return 0;
1885 	}
1886 
1887 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1888 		return __udp4_lib_mcast_deliver(net, skb, uh,
1889 						saddr, daddr, udptable, proto);
1890 
1891 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1892 	if (sk) {
1893 		int ret;
1894 
1895 		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1896 			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1897 						 inet_compute_pseudo);
1898 
1899 		ret = udp_queue_rcv_skb(sk, skb);
1900 		sock_put(sk);
1901 
1902 		/* a return value > 0 means to resubmit the input, but
1903 		 * it wants the return to be -protocol, or 0
1904 		 */
1905 		if (ret > 0)
1906 			return -ret;
1907 		return 0;
1908 	}
1909 
1910 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1911 		goto drop;
1912 	nf_reset(skb);
1913 
1914 	/* No socket. Drop packet silently, if checksum is wrong */
1915 	if (udp_lib_checksum_complete(skb))
1916 		goto csum_error;
1917 
1918 	UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1919 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1920 
1921 	/*
1922 	 * Hmm.  We got an UDP packet to a port to which we
1923 	 * don't wanna listen.  Ignore it.
1924 	 */
1925 	kfree_skb(skb);
1926 	return 0;
1927 
1928 short_packet:
1929 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1930 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1931 			    &saddr, ntohs(uh->source),
1932 			    ulen, skb->len,
1933 			    &daddr, ntohs(uh->dest));
1934 	goto drop;
1935 
1936 csum_error:
1937 	/*
1938 	 * RFC1122: OK.  Discards the bad packet silently (as far as
1939 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1940 	 */
1941 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1942 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
1943 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1944 			    ulen);
1945 	UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1946 drop:
1947 	UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1948 	kfree_skb(skb);
1949 	return 0;
1950 }
1951 
1952 /* We can only early demux multicast if there is a single matching socket.
1953  * If more than one socket found returns NULL
1954  */
1955 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1956 						  __be16 loc_port, __be32 loc_addr,
1957 						  __be16 rmt_port, __be32 rmt_addr,
1958 						  int dif)
1959 {
1960 	struct sock *sk, *result;
1961 	struct hlist_nulls_node *node;
1962 	unsigned short hnum = ntohs(loc_port);
1963 	unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1964 	struct udp_hslot *hslot = &udp_table.hash[slot];
1965 
1966 	/* Do not bother scanning a too big list */
1967 	if (hslot->count > 10)
1968 		return NULL;
1969 
1970 	rcu_read_lock();
1971 begin:
1972 	count = 0;
1973 	result = NULL;
1974 	sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1975 		if (__udp_is_mcast_sock(net, sk,
1976 					loc_port, loc_addr,
1977 					rmt_port, rmt_addr,
1978 					dif, hnum)) {
1979 			result = sk;
1980 			++count;
1981 		}
1982 	}
1983 	/*
1984 	 * if the nulls value we got at the end of this lookup is
1985 	 * not the expected one, we must restart lookup.
1986 	 * We probably met an item that was moved to another chain.
1987 	 */
1988 	if (get_nulls_value(node) != slot)
1989 		goto begin;
1990 
1991 	if (result) {
1992 		if (count != 1 ||
1993 		    unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1994 			result = NULL;
1995 		else if (unlikely(!__udp_is_mcast_sock(net, result,
1996 						       loc_port, loc_addr,
1997 						       rmt_port, rmt_addr,
1998 						       dif, hnum))) {
1999 			sock_put(result);
2000 			result = NULL;
2001 		}
2002 	}
2003 	rcu_read_unlock();
2004 	return result;
2005 }
2006 
2007 /* For unicast we should only early demux connected sockets or we can
2008  * break forwarding setups.  The chains here can be long so only check
2009  * if the first socket is an exact match and if not move on.
2010  */
2011 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2012 					    __be16 loc_port, __be32 loc_addr,
2013 					    __be16 rmt_port, __be32 rmt_addr,
2014 					    int dif)
2015 {
2016 	struct sock *sk, *result;
2017 	struct hlist_nulls_node *node;
2018 	unsigned short hnum = ntohs(loc_port);
2019 	unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2020 	unsigned int slot2 = hash2 & udp_table.mask;
2021 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2022 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2023 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2024 
2025 	rcu_read_lock();
2026 	result = NULL;
2027 	udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
2028 		if (INET_MATCH(sk, net, acookie,
2029 			       rmt_addr, loc_addr, ports, dif))
2030 			result = sk;
2031 		/* Only check first socket in chain */
2032 		break;
2033 	}
2034 
2035 	if (result) {
2036 		if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
2037 			result = NULL;
2038 		else if (unlikely(!INET_MATCH(sk, net, acookie,
2039 					      rmt_addr, loc_addr,
2040 					      ports, dif))) {
2041 			sock_put(result);
2042 			result = NULL;
2043 		}
2044 	}
2045 	rcu_read_unlock();
2046 	return result;
2047 }
2048 
2049 void udp_v4_early_demux(struct sk_buff *skb)
2050 {
2051 	struct net *net = dev_net(skb->dev);
2052 	const struct iphdr *iph;
2053 	const struct udphdr *uh;
2054 	struct sock *sk;
2055 	struct dst_entry *dst;
2056 	int dif = skb->dev->ifindex;
2057 	int ours;
2058 
2059 	/* validate the packet */
2060 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2061 		return;
2062 
2063 	iph = ip_hdr(skb);
2064 	uh = udp_hdr(skb);
2065 
2066 	if (skb->pkt_type == PACKET_BROADCAST ||
2067 	    skb->pkt_type == PACKET_MULTICAST) {
2068 		struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
2069 
2070 		if (!in_dev)
2071 			return;
2072 
2073 		/* we are supposed to accept bcast packets */
2074 		if (skb->pkt_type == PACKET_MULTICAST) {
2075 			ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2076 					       iph->protocol);
2077 			if (!ours)
2078 				return;
2079 		}
2080 
2081 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2082 						   uh->source, iph->saddr, dif);
2083 	} else if (skb->pkt_type == PACKET_HOST) {
2084 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2085 					     uh->source, iph->saddr, dif);
2086 	} else {
2087 		return;
2088 	}
2089 
2090 	if (!sk)
2091 		return;
2092 
2093 	skb->sk = sk;
2094 	skb->destructor = sock_efree;
2095 	dst = READ_ONCE(sk->sk_rx_dst);
2096 
2097 	if (dst)
2098 		dst = dst_check(dst, 0);
2099 	if (dst) {
2100 		/* DST_NOCACHE can not be used without taking a reference */
2101 		if (dst->flags & DST_NOCACHE) {
2102 			if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2103 				skb_dst_set(skb, dst);
2104 		} else {
2105 			skb_dst_set_noref(skb, dst);
2106 		}
2107 	}
2108 }
2109 
2110 int udp_rcv(struct sk_buff *skb)
2111 {
2112 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2113 }
2114 
2115 void udp_destroy_sock(struct sock *sk)
2116 {
2117 	struct udp_sock *up = udp_sk(sk);
2118 	bool slow = lock_sock_fast(sk);
2119 	udp_flush_pending_frames(sk);
2120 	unlock_sock_fast(sk, slow);
2121 	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2122 		void (*encap_destroy)(struct sock *sk);
2123 		encap_destroy = ACCESS_ONCE(up->encap_destroy);
2124 		if (encap_destroy)
2125 			encap_destroy(sk);
2126 	}
2127 }
2128 
2129 /*
2130  *	Socket option code for UDP
2131  */
2132 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2133 		       char __user *optval, unsigned int optlen,
2134 		       int (*push_pending_frames)(struct sock *))
2135 {
2136 	struct udp_sock *up = udp_sk(sk);
2137 	int val, valbool;
2138 	int err = 0;
2139 	int is_udplite = IS_UDPLITE(sk);
2140 
2141 	if (optlen < sizeof(int))
2142 		return -EINVAL;
2143 
2144 	if (get_user(val, (int __user *)optval))
2145 		return -EFAULT;
2146 
2147 	valbool = val ? 1 : 0;
2148 
2149 	switch (optname) {
2150 	case UDP_CORK:
2151 		if (val != 0) {
2152 			up->corkflag = 1;
2153 		} else {
2154 			up->corkflag = 0;
2155 			lock_sock(sk);
2156 			push_pending_frames(sk);
2157 			release_sock(sk);
2158 		}
2159 		break;
2160 
2161 	case UDP_ENCAP:
2162 		switch (val) {
2163 		case 0:
2164 		case UDP_ENCAP_ESPINUDP:
2165 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2166 			up->encap_rcv = xfrm4_udp_encap_rcv;
2167 			/* FALLTHROUGH */
2168 		case UDP_ENCAP_L2TPINUDP:
2169 			up->encap_type = val;
2170 			udp_encap_enable();
2171 			break;
2172 		default:
2173 			err = -ENOPROTOOPT;
2174 			break;
2175 		}
2176 		break;
2177 
2178 	case UDP_NO_CHECK6_TX:
2179 		up->no_check6_tx = valbool;
2180 		break;
2181 
2182 	case UDP_NO_CHECK6_RX:
2183 		up->no_check6_rx = valbool;
2184 		break;
2185 
2186 	/*
2187 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2188 	 */
2189 	/* The sender sets actual checksum coverage length via this option.
2190 	 * The case coverage > packet length is handled by send module. */
2191 	case UDPLITE_SEND_CSCOV:
2192 		if (!is_udplite)         /* Disable the option on UDP sockets */
2193 			return -ENOPROTOOPT;
2194 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2195 			val = 8;
2196 		else if (val > USHRT_MAX)
2197 			val = USHRT_MAX;
2198 		up->pcslen = val;
2199 		up->pcflag |= UDPLITE_SEND_CC;
2200 		break;
2201 
2202 	/* The receiver specifies a minimum checksum coverage value. To make
2203 	 * sense, this should be set to at least 8 (as done below). If zero is
2204 	 * used, this again means full checksum coverage.                     */
2205 	case UDPLITE_RECV_CSCOV:
2206 		if (!is_udplite)         /* Disable the option on UDP sockets */
2207 			return -ENOPROTOOPT;
2208 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2209 			val = 8;
2210 		else if (val > USHRT_MAX)
2211 			val = USHRT_MAX;
2212 		up->pcrlen = val;
2213 		up->pcflag |= UDPLITE_RECV_CC;
2214 		break;
2215 
2216 	default:
2217 		err = -ENOPROTOOPT;
2218 		break;
2219 	}
2220 
2221 	return err;
2222 }
2223 EXPORT_SYMBOL(udp_lib_setsockopt);
2224 
2225 int udp_setsockopt(struct sock *sk, int level, int optname,
2226 		   char __user *optval, unsigned int optlen)
2227 {
2228 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2229 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2230 					  udp_push_pending_frames);
2231 	return ip_setsockopt(sk, level, optname, optval, optlen);
2232 }
2233 
2234 #ifdef CONFIG_COMPAT
2235 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2236 			  char __user *optval, unsigned int optlen)
2237 {
2238 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2239 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2240 					  udp_push_pending_frames);
2241 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2242 }
2243 #endif
2244 
2245 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2246 		       char __user *optval, int __user *optlen)
2247 {
2248 	struct udp_sock *up = udp_sk(sk);
2249 	int val, len;
2250 
2251 	if (get_user(len, optlen))
2252 		return -EFAULT;
2253 
2254 	len = min_t(unsigned int, len, sizeof(int));
2255 
2256 	if (len < 0)
2257 		return -EINVAL;
2258 
2259 	switch (optname) {
2260 	case UDP_CORK:
2261 		val = up->corkflag;
2262 		break;
2263 
2264 	case UDP_ENCAP:
2265 		val = up->encap_type;
2266 		break;
2267 
2268 	case UDP_NO_CHECK6_TX:
2269 		val = up->no_check6_tx;
2270 		break;
2271 
2272 	case UDP_NO_CHECK6_RX:
2273 		val = up->no_check6_rx;
2274 		break;
2275 
2276 	/* The following two cannot be changed on UDP sockets, the return is
2277 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2278 	case UDPLITE_SEND_CSCOV:
2279 		val = up->pcslen;
2280 		break;
2281 
2282 	case UDPLITE_RECV_CSCOV:
2283 		val = up->pcrlen;
2284 		break;
2285 
2286 	default:
2287 		return -ENOPROTOOPT;
2288 	}
2289 
2290 	if (put_user(len, optlen))
2291 		return -EFAULT;
2292 	if (copy_to_user(optval, &val, len))
2293 		return -EFAULT;
2294 	return 0;
2295 }
2296 EXPORT_SYMBOL(udp_lib_getsockopt);
2297 
2298 int udp_getsockopt(struct sock *sk, int level, int optname,
2299 		   char __user *optval, int __user *optlen)
2300 {
2301 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2302 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2303 	return ip_getsockopt(sk, level, optname, optval, optlen);
2304 }
2305 
2306 #ifdef CONFIG_COMPAT
2307 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2308 				 char __user *optval, int __user *optlen)
2309 {
2310 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2311 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2312 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2313 }
2314 #endif
2315 /**
2316  * 	udp_poll - wait for a UDP event.
2317  *	@file - file struct
2318  *	@sock - socket
2319  *	@wait - poll table
2320  *
2321  *	This is same as datagram poll, except for the special case of
2322  *	blocking sockets. If application is using a blocking fd
2323  *	and a packet with checksum error is in the queue;
2324  *	then it could get return from select indicating data available
2325  *	but then block when reading it. Add special case code
2326  *	to work around these arguably broken applications.
2327  */
2328 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2329 {
2330 	unsigned int mask = datagram_poll(file, sock, wait);
2331 	struct sock *sk = sock->sk;
2332 
2333 	sock_rps_record_flow(sk);
2334 
2335 	/* Check for false positives due to checksum errors */
2336 	if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2337 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2338 		mask &= ~(POLLIN | POLLRDNORM);
2339 
2340 	return mask;
2341 
2342 }
2343 EXPORT_SYMBOL(udp_poll);
2344 
2345 struct proto udp_prot = {
2346 	.name		   = "UDP",
2347 	.owner		   = THIS_MODULE,
2348 	.close		   = udp_lib_close,
2349 	.connect	   = ip4_datagram_connect,
2350 	.disconnect	   = udp_disconnect,
2351 	.ioctl		   = udp_ioctl,
2352 	.destroy	   = udp_destroy_sock,
2353 	.setsockopt	   = udp_setsockopt,
2354 	.getsockopt	   = udp_getsockopt,
2355 	.sendmsg	   = udp_sendmsg,
2356 	.recvmsg	   = udp_recvmsg,
2357 	.sendpage	   = udp_sendpage,
2358 	.backlog_rcv	   = __udp_queue_rcv_skb,
2359 	.release_cb	   = ip4_datagram_release_cb,
2360 	.hash		   = udp_lib_hash,
2361 	.unhash		   = udp_lib_unhash,
2362 	.rehash		   = udp_v4_rehash,
2363 	.get_port	   = udp_v4_get_port,
2364 	.memory_allocated  = &udp_memory_allocated,
2365 	.sysctl_mem	   = sysctl_udp_mem,
2366 	.sysctl_wmem	   = &sysctl_udp_wmem_min,
2367 	.sysctl_rmem	   = &sysctl_udp_rmem_min,
2368 	.obj_size	   = sizeof(struct udp_sock),
2369 	.slab_flags	   = SLAB_DESTROY_BY_RCU,
2370 	.h.udp_table	   = &udp_table,
2371 #ifdef CONFIG_COMPAT
2372 	.compat_setsockopt = compat_udp_setsockopt,
2373 	.compat_getsockopt = compat_udp_getsockopt,
2374 #endif
2375 	.clear_sk	   = sk_prot_clear_portaddr_nulls,
2376 };
2377 EXPORT_SYMBOL(udp_prot);
2378 
2379 /* ------------------------------------------------------------------------ */
2380 #ifdef CONFIG_PROC_FS
2381 
2382 static struct sock *udp_get_first(struct seq_file *seq, int start)
2383 {
2384 	struct sock *sk;
2385 	struct udp_iter_state *state = seq->private;
2386 	struct net *net = seq_file_net(seq);
2387 
2388 	for (state->bucket = start; state->bucket <= state->udp_table->mask;
2389 	     ++state->bucket) {
2390 		struct hlist_nulls_node *node;
2391 		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2392 
2393 		if (hlist_nulls_empty(&hslot->head))
2394 			continue;
2395 
2396 		spin_lock_bh(&hslot->lock);
2397 		sk_nulls_for_each(sk, node, &hslot->head) {
2398 			if (!net_eq(sock_net(sk), net))
2399 				continue;
2400 			if (sk->sk_family == state->family)
2401 				goto found;
2402 		}
2403 		spin_unlock_bh(&hslot->lock);
2404 	}
2405 	sk = NULL;
2406 found:
2407 	return sk;
2408 }
2409 
2410 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2411 {
2412 	struct udp_iter_state *state = seq->private;
2413 	struct net *net = seq_file_net(seq);
2414 
2415 	do {
2416 		sk = sk_nulls_next(sk);
2417 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2418 
2419 	if (!sk) {
2420 		if (state->bucket <= state->udp_table->mask)
2421 			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2422 		return udp_get_first(seq, state->bucket + 1);
2423 	}
2424 	return sk;
2425 }
2426 
2427 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2428 {
2429 	struct sock *sk = udp_get_first(seq, 0);
2430 
2431 	if (sk)
2432 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2433 			--pos;
2434 	return pos ? NULL : sk;
2435 }
2436 
2437 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2438 {
2439 	struct udp_iter_state *state = seq->private;
2440 	state->bucket = MAX_UDP_PORTS;
2441 
2442 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2443 }
2444 
2445 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2446 {
2447 	struct sock *sk;
2448 
2449 	if (v == SEQ_START_TOKEN)
2450 		sk = udp_get_idx(seq, 0);
2451 	else
2452 		sk = udp_get_next(seq, v);
2453 
2454 	++*pos;
2455 	return sk;
2456 }
2457 
2458 static void udp_seq_stop(struct seq_file *seq, void *v)
2459 {
2460 	struct udp_iter_state *state = seq->private;
2461 
2462 	if (state->bucket <= state->udp_table->mask)
2463 		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2464 }
2465 
2466 int udp_seq_open(struct inode *inode, struct file *file)
2467 {
2468 	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2469 	struct udp_iter_state *s;
2470 	int err;
2471 
2472 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2473 			   sizeof(struct udp_iter_state));
2474 	if (err < 0)
2475 		return err;
2476 
2477 	s = ((struct seq_file *)file->private_data)->private;
2478 	s->family		= afinfo->family;
2479 	s->udp_table		= afinfo->udp_table;
2480 	return err;
2481 }
2482 EXPORT_SYMBOL(udp_seq_open);
2483 
2484 /* ------------------------------------------------------------------------ */
2485 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2486 {
2487 	struct proc_dir_entry *p;
2488 	int rc = 0;
2489 
2490 	afinfo->seq_ops.start		= udp_seq_start;
2491 	afinfo->seq_ops.next		= udp_seq_next;
2492 	afinfo->seq_ops.stop		= udp_seq_stop;
2493 
2494 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2495 			     afinfo->seq_fops, afinfo);
2496 	if (!p)
2497 		rc = -ENOMEM;
2498 	return rc;
2499 }
2500 EXPORT_SYMBOL(udp_proc_register);
2501 
2502 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2503 {
2504 	remove_proc_entry(afinfo->name, net->proc_net);
2505 }
2506 EXPORT_SYMBOL(udp_proc_unregister);
2507 
2508 /* ------------------------------------------------------------------------ */
2509 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2510 		int bucket)
2511 {
2512 	struct inet_sock *inet = inet_sk(sp);
2513 	__be32 dest = inet->inet_daddr;
2514 	__be32 src  = inet->inet_rcv_saddr;
2515 	__u16 destp	  = ntohs(inet->inet_dport);
2516 	__u16 srcp	  = ntohs(inet->inet_sport);
2517 
2518 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2519 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2520 		bucket, src, srcp, dest, destp, sp->sk_state,
2521 		sk_wmem_alloc_get(sp),
2522 		sk_rmem_alloc_get(sp),
2523 		0, 0L, 0,
2524 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2525 		0, sock_i_ino(sp),
2526 		atomic_read(&sp->sk_refcnt), sp,
2527 		atomic_read(&sp->sk_drops));
2528 }
2529 
2530 int udp4_seq_show(struct seq_file *seq, void *v)
2531 {
2532 	seq_setwidth(seq, 127);
2533 	if (v == SEQ_START_TOKEN)
2534 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2535 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2536 			   "inode ref pointer drops");
2537 	else {
2538 		struct udp_iter_state *state = seq->private;
2539 
2540 		udp4_format_sock(v, seq, state->bucket);
2541 	}
2542 	seq_pad(seq, '\n');
2543 	return 0;
2544 }
2545 
2546 static const struct file_operations udp_afinfo_seq_fops = {
2547 	.owner    = THIS_MODULE,
2548 	.open     = udp_seq_open,
2549 	.read     = seq_read,
2550 	.llseek   = seq_lseek,
2551 	.release  = seq_release_net
2552 };
2553 
2554 /* ------------------------------------------------------------------------ */
2555 static struct udp_seq_afinfo udp4_seq_afinfo = {
2556 	.name		= "udp",
2557 	.family		= AF_INET,
2558 	.udp_table	= &udp_table,
2559 	.seq_fops	= &udp_afinfo_seq_fops,
2560 	.seq_ops	= {
2561 		.show		= udp4_seq_show,
2562 	},
2563 };
2564 
2565 static int __net_init udp4_proc_init_net(struct net *net)
2566 {
2567 	return udp_proc_register(net, &udp4_seq_afinfo);
2568 }
2569 
2570 static void __net_exit udp4_proc_exit_net(struct net *net)
2571 {
2572 	udp_proc_unregister(net, &udp4_seq_afinfo);
2573 }
2574 
2575 static struct pernet_operations udp4_net_ops = {
2576 	.init = udp4_proc_init_net,
2577 	.exit = udp4_proc_exit_net,
2578 };
2579 
2580 int __init udp4_proc_init(void)
2581 {
2582 	return register_pernet_subsys(&udp4_net_ops);
2583 }
2584 
2585 void udp4_proc_exit(void)
2586 {
2587 	unregister_pernet_subsys(&udp4_net_ops);
2588 }
2589 #endif /* CONFIG_PROC_FS */
2590 
2591 static __initdata unsigned long uhash_entries;
2592 static int __init set_uhash_entries(char *str)
2593 {
2594 	ssize_t ret;
2595 
2596 	if (!str)
2597 		return 0;
2598 
2599 	ret = kstrtoul(str, 0, &uhash_entries);
2600 	if (ret)
2601 		return 0;
2602 
2603 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2604 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2605 	return 1;
2606 }
2607 __setup("uhash_entries=", set_uhash_entries);
2608 
2609 void __init udp_table_init(struct udp_table *table, const char *name)
2610 {
2611 	unsigned int i;
2612 
2613 	table->hash = alloc_large_system_hash(name,
2614 					      2 * sizeof(struct udp_hslot),
2615 					      uhash_entries,
2616 					      21, /* one slot per 2 MB */
2617 					      0,
2618 					      &table->log,
2619 					      &table->mask,
2620 					      UDP_HTABLE_SIZE_MIN,
2621 					      64 * 1024);
2622 
2623 	table->hash2 = table->hash + (table->mask + 1);
2624 	for (i = 0; i <= table->mask; i++) {
2625 		INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2626 		table->hash[i].count = 0;
2627 		spin_lock_init(&table->hash[i].lock);
2628 	}
2629 	for (i = 0; i <= table->mask; i++) {
2630 		INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2631 		table->hash2[i].count = 0;
2632 		spin_lock_init(&table->hash2[i].lock);
2633 	}
2634 }
2635 
2636 u32 udp_flow_hashrnd(void)
2637 {
2638 	static u32 hashrnd __read_mostly;
2639 
2640 	net_get_random_once(&hashrnd, sizeof(hashrnd));
2641 
2642 	return hashrnd;
2643 }
2644 EXPORT_SYMBOL(udp_flow_hashrnd);
2645 
2646 void __init udp_init(void)
2647 {
2648 	unsigned long limit;
2649 
2650 	udp_table_init(&udp_table, "UDP");
2651 	limit = nr_free_buffer_pages() / 8;
2652 	limit = max(limit, 128UL);
2653 	sysctl_udp_mem[0] = limit / 4 * 3;
2654 	sysctl_udp_mem[1] = limit;
2655 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2656 
2657 	sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2658 	sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2659 }
2660