1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/uaccess.h> 78 #include <asm/ioctls.h> 79 #include <linux/memblock.h> 80 #include <linux/highmem.h> 81 #include <linux/swap.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip_tunnels.h> 104 #include <net/route.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <trace/events/udp.h> 108 #include <linux/static_key.h> 109 #include <trace/events/skb.h> 110 #include <net/busy_poll.h> 111 #include "udp_impl.h" 112 #include <net/sock_reuseport.h> 113 #include <net/addrconf.h> 114 #include <net/udp_tunnel.h> 115 116 struct udp_table udp_table __read_mostly; 117 EXPORT_SYMBOL(udp_table); 118 119 long sysctl_udp_mem[3] __read_mostly; 120 EXPORT_SYMBOL(sysctl_udp_mem); 121 122 atomic_long_t udp_memory_allocated; 123 EXPORT_SYMBOL(udp_memory_allocated); 124 125 #define MAX_UDP_PORTS 65536 126 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 127 128 static int udp_lib_lport_inuse(struct net *net, __u16 num, 129 const struct udp_hslot *hslot, 130 unsigned long *bitmap, 131 struct sock *sk, unsigned int log) 132 { 133 struct sock *sk2; 134 kuid_t uid = sock_i_uid(sk); 135 136 sk_for_each(sk2, &hslot->head) { 137 if (net_eq(sock_net(sk2), net) && 138 sk2 != sk && 139 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 140 (!sk2->sk_reuse || !sk->sk_reuse) && 141 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 142 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 143 inet_rcv_saddr_equal(sk, sk2, true)) { 144 if (sk2->sk_reuseport && sk->sk_reuseport && 145 !rcu_access_pointer(sk->sk_reuseport_cb) && 146 uid_eq(uid, sock_i_uid(sk2))) { 147 if (!bitmap) 148 return 0; 149 } else { 150 if (!bitmap) 151 return 1; 152 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 153 bitmap); 154 } 155 } 156 } 157 return 0; 158 } 159 160 /* 161 * Note: we still hold spinlock of primary hash chain, so no other writer 162 * can insert/delete a socket with local_port == num 163 */ 164 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 165 struct udp_hslot *hslot2, 166 struct sock *sk) 167 { 168 struct sock *sk2; 169 kuid_t uid = sock_i_uid(sk); 170 int res = 0; 171 172 spin_lock(&hslot2->lock); 173 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 174 if (net_eq(sock_net(sk2), net) && 175 sk2 != sk && 176 (udp_sk(sk2)->udp_port_hash == num) && 177 (!sk2->sk_reuse || !sk->sk_reuse) && 178 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 179 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 180 inet_rcv_saddr_equal(sk, sk2, true)) { 181 if (sk2->sk_reuseport && sk->sk_reuseport && 182 !rcu_access_pointer(sk->sk_reuseport_cb) && 183 uid_eq(uid, sock_i_uid(sk2))) { 184 res = 0; 185 } else { 186 res = 1; 187 } 188 break; 189 } 190 } 191 spin_unlock(&hslot2->lock); 192 return res; 193 } 194 195 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 196 { 197 struct net *net = sock_net(sk); 198 kuid_t uid = sock_i_uid(sk); 199 struct sock *sk2; 200 201 sk_for_each(sk2, &hslot->head) { 202 if (net_eq(sock_net(sk2), net) && 203 sk2 != sk && 204 sk2->sk_family == sk->sk_family && 205 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 206 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 207 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 208 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 209 inet_rcv_saddr_equal(sk, sk2, false)) { 210 return reuseport_add_sock(sk, sk2, 211 inet_rcv_saddr_any(sk)); 212 } 213 } 214 215 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 216 } 217 218 /** 219 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 220 * 221 * @sk: socket struct in question 222 * @snum: port number to look up 223 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 224 * with NULL address 225 */ 226 int udp_lib_get_port(struct sock *sk, unsigned short snum, 227 unsigned int hash2_nulladdr) 228 { 229 struct udp_hslot *hslot, *hslot2; 230 struct udp_table *udptable = sk->sk_prot->h.udp_table; 231 int error = 1; 232 struct net *net = sock_net(sk); 233 234 if (!snum) { 235 int low, high, remaining; 236 unsigned int rand; 237 unsigned short first, last; 238 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 239 240 inet_get_local_port_range(net, &low, &high); 241 remaining = (high - low) + 1; 242 243 rand = prandom_u32(); 244 first = reciprocal_scale(rand, remaining) + low; 245 /* 246 * force rand to be an odd multiple of UDP_HTABLE_SIZE 247 */ 248 rand = (rand | 1) * (udptable->mask + 1); 249 last = first + udptable->mask + 1; 250 do { 251 hslot = udp_hashslot(udptable, net, first); 252 bitmap_zero(bitmap, PORTS_PER_CHAIN); 253 spin_lock_bh(&hslot->lock); 254 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 255 udptable->log); 256 257 snum = first; 258 /* 259 * Iterate on all possible values of snum for this hash. 260 * Using steps of an odd multiple of UDP_HTABLE_SIZE 261 * give us randomization and full range coverage. 262 */ 263 do { 264 if (low <= snum && snum <= high && 265 !test_bit(snum >> udptable->log, bitmap) && 266 !inet_is_local_reserved_port(net, snum)) 267 goto found; 268 snum += rand; 269 } while (snum != first); 270 spin_unlock_bh(&hslot->lock); 271 cond_resched(); 272 } while (++first != last); 273 goto fail; 274 } else { 275 hslot = udp_hashslot(udptable, net, snum); 276 spin_lock_bh(&hslot->lock); 277 if (hslot->count > 10) { 278 int exist; 279 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 280 281 slot2 &= udptable->mask; 282 hash2_nulladdr &= udptable->mask; 283 284 hslot2 = udp_hashslot2(udptable, slot2); 285 if (hslot->count < hslot2->count) 286 goto scan_primary_hash; 287 288 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 289 if (!exist && (hash2_nulladdr != slot2)) { 290 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 291 exist = udp_lib_lport_inuse2(net, snum, hslot2, 292 sk); 293 } 294 if (exist) 295 goto fail_unlock; 296 else 297 goto found; 298 } 299 scan_primary_hash: 300 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 301 goto fail_unlock; 302 } 303 found: 304 inet_sk(sk)->inet_num = snum; 305 udp_sk(sk)->udp_port_hash = snum; 306 udp_sk(sk)->udp_portaddr_hash ^= snum; 307 if (sk_unhashed(sk)) { 308 if (sk->sk_reuseport && 309 udp_reuseport_add_sock(sk, hslot)) { 310 inet_sk(sk)->inet_num = 0; 311 udp_sk(sk)->udp_port_hash = 0; 312 udp_sk(sk)->udp_portaddr_hash ^= snum; 313 goto fail_unlock; 314 } 315 316 sk_add_node_rcu(sk, &hslot->head); 317 hslot->count++; 318 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 319 320 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 321 spin_lock(&hslot2->lock); 322 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 323 sk->sk_family == AF_INET6) 324 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 325 &hslot2->head); 326 else 327 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 328 &hslot2->head); 329 hslot2->count++; 330 spin_unlock(&hslot2->lock); 331 } 332 sock_set_flag(sk, SOCK_RCU_FREE); 333 error = 0; 334 fail_unlock: 335 spin_unlock_bh(&hslot->lock); 336 fail: 337 return error; 338 } 339 EXPORT_SYMBOL(udp_lib_get_port); 340 341 int udp_v4_get_port(struct sock *sk, unsigned short snum) 342 { 343 unsigned int hash2_nulladdr = 344 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 345 unsigned int hash2_partial = 346 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 347 348 /* precompute partial secondary hash */ 349 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 350 return udp_lib_get_port(sk, snum, hash2_nulladdr); 351 } 352 353 static int compute_score(struct sock *sk, struct net *net, 354 __be32 saddr, __be16 sport, 355 __be32 daddr, unsigned short hnum, 356 int dif, int sdif) 357 { 358 int score; 359 struct inet_sock *inet; 360 bool dev_match; 361 362 if (!net_eq(sock_net(sk), net) || 363 udp_sk(sk)->udp_port_hash != hnum || 364 ipv6_only_sock(sk)) 365 return -1; 366 367 if (sk->sk_rcv_saddr != daddr) 368 return -1; 369 370 score = (sk->sk_family == PF_INET) ? 2 : 1; 371 372 inet = inet_sk(sk); 373 if (inet->inet_daddr) { 374 if (inet->inet_daddr != saddr) 375 return -1; 376 score += 4; 377 } 378 379 if (inet->inet_dport) { 380 if (inet->inet_dport != sport) 381 return -1; 382 score += 4; 383 } 384 385 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 386 dif, sdif); 387 if (!dev_match) 388 return -1; 389 score += 4; 390 391 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 392 score++; 393 return score; 394 } 395 396 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 397 const __u16 lport, const __be32 faddr, 398 const __be16 fport) 399 { 400 static u32 udp_ehash_secret __read_mostly; 401 402 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 403 404 return __inet_ehashfn(laddr, lport, faddr, fport, 405 udp_ehash_secret + net_hash_mix(net)); 406 } 407 408 /* called with rcu_read_lock() */ 409 static struct sock *udp4_lib_lookup2(struct net *net, 410 __be32 saddr, __be16 sport, 411 __be32 daddr, unsigned int hnum, 412 int dif, int sdif, 413 struct udp_hslot *hslot2, 414 struct sk_buff *skb) 415 { 416 struct sock *sk, *result; 417 int score, badness; 418 u32 hash = 0; 419 420 result = NULL; 421 badness = 0; 422 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 423 score = compute_score(sk, net, saddr, sport, 424 daddr, hnum, dif, sdif); 425 if (score > badness) { 426 if (sk->sk_reuseport && 427 sk->sk_state != TCP_ESTABLISHED) { 428 hash = udp_ehashfn(net, daddr, hnum, 429 saddr, sport); 430 result = reuseport_select_sock(sk, hash, skb, 431 sizeof(struct udphdr)); 432 if (result && !reuseport_has_conns(sk, false)) 433 return result; 434 } 435 badness = score; 436 result = sk; 437 } 438 } 439 return result; 440 } 441 442 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 443 * harder than this. -DaveM 444 */ 445 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 446 __be16 sport, __be32 daddr, __be16 dport, int dif, 447 int sdif, struct udp_table *udptable, struct sk_buff *skb) 448 { 449 struct sock *result; 450 unsigned short hnum = ntohs(dport); 451 unsigned int hash2, slot2; 452 struct udp_hslot *hslot2; 453 454 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 455 slot2 = hash2 & udptable->mask; 456 hslot2 = &udptable->hash2[slot2]; 457 458 result = udp4_lib_lookup2(net, saddr, sport, 459 daddr, hnum, dif, sdif, 460 hslot2, skb); 461 if (!result) { 462 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 463 slot2 = hash2 & udptable->mask; 464 hslot2 = &udptable->hash2[slot2]; 465 466 result = udp4_lib_lookup2(net, saddr, sport, 467 htonl(INADDR_ANY), hnum, dif, sdif, 468 hslot2, skb); 469 } 470 if (IS_ERR(result)) 471 return NULL; 472 return result; 473 } 474 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 475 476 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 477 __be16 sport, __be16 dport, 478 struct udp_table *udptable) 479 { 480 const struct iphdr *iph = ip_hdr(skb); 481 482 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 483 iph->daddr, dport, inet_iif(skb), 484 inet_sdif(skb), udptable, skb); 485 } 486 487 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 488 __be16 sport, __be16 dport) 489 { 490 const struct iphdr *iph = ip_hdr(skb); 491 492 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 493 iph->daddr, dport, inet_iif(skb), 494 inet_sdif(skb), &udp_table, NULL); 495 } 496 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 497 498 /* Must be called under rcu_read_lock(). 499 * Does increment socket refcount. 500 */ 501 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 502 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 503 __be32 daddr, __be16 dport, int dif) 504 { 505 struct sock *sk; 506 507 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 508 dif, 0, &udp_table, NULL); 509 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 510 sk = NULL; 511 return sk; 512 } 513 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 514 #endif 515 516 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 517 __be16 loc_port, __be32 loc_addr, 518 __be16 rmt_port, __be32 rmt_addr, 519 int dif, int sdif, unsigned short hnum) 520 { 521 struct inet_sock *inet = inet_sk(sk); 522 523 if (!net_eq(sock_net(sk), net) || 524 udp_sk(sk)->udp_port_hash != hnum || 525 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 526 (inet->inet_dport != rmt_port && inet->inet_dport) || 527 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 528 ipv6_only_sock(sk) || 529 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 530 return false; 531 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 532 return false; 533 return true; 534 } 535 536 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 537 void udp_encap_enable(void) 538 { 539 static_branch_inc(&udp_encap_needed_key); 540 } 541 EXPORT_SYMBOL(udp_encap_enable); 542 543 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 544 * through error handlers in encapsulations looking for a match. 545 */ 546 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 547 { 548 int i; 549 550 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 551 int (*handler)(struct sk_buff *skb, u32 info); 552 const struct ip_tunnel_encap_ops *encap; 553 554 encap = rcu_dereference(iptun_encaps[i]); 555 if (!encap) 556 continue; 557 handler = encap->err_handler; 558 if (handler && !handler(skb, info)) 559 return 0; 560 } 561 562 return -ENOENT; 563 } 564 565 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 566 * reversing source and destination port: this will match tunnels that force the 567 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 568 * lwtunnels might actually break this assumption by being configured with 569 * different destination ports on endpoints, in this case we won't be able to 570 * trace ICMP messages back to them. 571 * 572 * If this doesn't match any socket, probe tunnels with arbitrary destination 573 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 574 * we've sent packets to won't necessarily match the local destination port. 575 * 576 * Then ask the tunnel implementation to match the error against a valid 577 * association. 578 * 579 * Return an error if we can't find a match, the socket if we need further 580 * processing, zero otherwise. 581 */ 582 static struct sock *__udp4_lib_err_encap(struct net *net, 583 const struct iphdr *iph, 584 struct udphdr *uh, 585 struct udp_table *udptable, 586 struct sk_buff *skb, u32 info) 587 { 588 int network_offset, transport_offset; 589 struct sock *sk; 590 591 network_offset = skb_network_offset(skb); 592 transport_offset = skb_transport_offset(skb); 593 594 /* Network header needs to point to the outer IPv4 header inside ICMP */ 595 skb_reset_network_header(skb); 596 597 /* Transport header needs to point to the UDP header */ 598 skb_set_transport_header(skb, iph->ihl << 2); 599 600 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 601 iph->saddr, uh->dest, skb->dev->ifindex, 0, 602 udptable, NULL); 603 if (sk) { 604 int (*lookup)(struct sock *sk, struct sk_buff *skb); 605 struct udp_sock *up = udp_sk(sk); 606 607 lookup = READ_ONCE(up->encap_err_lookup); 608 if (!lookup || lookup(sk, skb)) 609 sk = NULL; 610 } 611 612 if (!sk) 613 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 614 615 skb_set_transport_header(skb, transport_offset); 616 skb_set_network_header(skb, network_offset); 617 618 return sk; 619 } 620 621 /* 622 * This routine is called by the ICMP module when it gets some 623 * sort of error condition. If err < 0 then the socket should 624 * be closed and the error returned to the user. If err > 0 625 * it's just the icmp type << 8 | icmp code. 626 * Header points to the ip header of the error packet. We move 627 * on past this. Then (as it used to claim before adjustment) 628 * header points to the first 8 bytes of the udp header. We need 629 * to find the appropriate port. 630 */ 631 632 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 633 { 634 struct inet_sock *inet; 635 const struct iphdr *iph = (const struct iphdr *)skb->data; 636 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 637 const int type = icmp_hdr(skb)->type; 638 const int code = icmp_hdr(skb)->code; 639 bool tunnel = false; 640 struct sock *sk; 641 int harderr; 642 int err; 643 struct net *net = dev_net(skb->dev); 644 645 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 646 iph->saddr, uh->source, skb->dev->ifindex, 647 inet_sdif(skb), udptable, NULL); 648 if (!sk) { 649 /* No socket for error: try tunnels before discarding */ 650 sk = ERR_PTR(-ENOENT); 651 if (static_branch_unlikely(&udp_encap_needed_key)) { 652 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb, 653 info); 654 if (!sk) 655 return 0; 656 } 657 658 if (IS_ERR(sk)) { 659 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 660 return PTR_ERR(sk); 661 } 662 663 tunnel = true; 664 } 665 666 err = 0; 667 harderr = 0; 668 inet = inet_sk(sk); 669 670 switch (type) { 671 default: 672 case ICMP_TIME_EXCEEDED: 673 err = EHOSTUNREACH; 674 break; 675 case ICMP_SOURCE_QUENCH: 676 goto out; 677 case ICMP_PARAMETERPROB: 678 err = EPROTO; 679 harderr = 1; 680 break; 681 case ICMP_DEST_UNREACH: 682 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 683 ipv4_sk_update_pmtu(skb, sk, info); 684 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 685 err = EMSGSIZE; 686 harderr = 1; 687 break; 688 } 689 goto out; 690 } 691 err = EHOSTUNREACH; 692 if (code <= NR_ICMP_UNREACH) { 693 harderr = icmp_err_convert[code].fatal; 694 err = icmp_err_convert[code].errno; 695 } 696 break; 697 case ICMP_REDIRECT: 698 ipv4_sk_redirect(skb, sk); 699 goto out; 700 } 701 702 /* 703 * RFC1122: OK. Passes ICMP errors back to application, as per 704 * 4.1.3.3. 705 */ 706 if (tunnel) { 707 /* ...not for tunnels though: we don't have a sending socket */ 708 goto out; 709 } 710 if (!inet->recverr) { 711 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 712 goto out; 713 } else 714 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 715 716 sk->sk_err = err; 717 sk->sk_error_report(sk); 718 out: 719 return 0; 720 } 721 722 int udp_err(struct sk_buff *skb, u32 info) 723 { 724 return __udp4_lib_err(skb, info, &udp_table); 725 } 726 727 /* 728 * Throw away all pending data and cancel the corking. Socket is locked. 729 */ 730 void udp_flush_pending_frames(struct sock *sk) 731 { 732 struct udp_sock *up = udp_sk(sk); 733 734 if (up->pending) { 735 up->len = 0; 736 up->pending = 0; 737 ip_flush_pending_frames(sk); 738 } 739 } 740 EXPORT_SYMBOL(udp_flush_pending_frames); 741 742 /** 743 * udp4_hwcsum - handle outgoing HW checksumming 744 * @skb: sk_buff containing the filled-in UDP header 745 * (checksum field must be zeroed out) 746 * @src: source IP address 747 * @dst: destination IP address 748 */ 749 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 750 { 751 struct udphdr *uh = udp_hdr(skb); 752 int offset = skb_transport_offset(skb); 753 int len = skb->len - offset; 754 int hlen = len; 755 __wsum csum = 0; 756 757 if (!skb_has_frag_list(skb)) { 758 /* 759 * Only one fragment on the socket. 760 */ 761 skb->csum_start = skb_transport_header(skb) - skb->head; 762 skb->csum_offset = offsetof(struct udphdr, check); 763 uh->check = ~csum_tcpudp_magic(src, dst, len, 764 IPPROTO_UDP, 0); 765 } else { 766 struct sk_buff *frags; 767 768 /* 769 * HW-checksum won't work as there are two or more 770 * fragments on the socket so that all csums of sk_buffs 771 * should be together 772 */ 773 skb_walk_frags(skb, frags) { 774 csum = csum_add(csum, frags->csum); 775 hlen -= frags->len; 776 } 777 778 csum = skb_checksum(skb, offset, hlen, csum); 779 skb->ip_summed = CHECKSUM_NONE; 780 781 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 782 if (uh->check == 0) 783 uh->check = CSUM_MANGLED_0; 784 } 785 } 786 EXPORT_SYMBOL_GPL(udp4_hwcsum); 787 788 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 789 * for the simple case like when setting the checksum for a UDP tunnel. 790 */ 791 void udp_set_csum(bool nocheck, struct sk_buff *skb, 792 __be32 saddr, __be32 daddr, int len) 793 { 794 struct udphdr *uh = udp_hdr(skb); 795 796 if (nocheck) { 797 uh->check = 0; 798 } else if (skb_is_gso(skb)) { 799 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 800 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 801 uh->check = 0; 802 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 803 if (uh->check == 0) 804 uh->check = CSUM_MANGLED_0; 805 } else { 806 skb->ip_summed = CHECKSUM_PARTIAL; 807 skb->csum_start = skb_transport_header(skb) - skb->head; 808 skb->csum_offset = offsetof(struct udphdr, check); 809 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 810 } 811 } 812 EXPORT_SYMBOL(udp_set_csum); 813 814 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 815 struct inet_cork *cork) 816 { 817 struct sock *sk = skb->sk; 818 struct inet_sock *inet = inet_sk(sk); 819 struct udphdr *uh; 820 int err = 0; 821 int is_udplite = IS_UDPLITE(sk); 822 int offset = skb_transport_offset(skb); 823 int len = skb->len - offset; 824 __wsum csum = 0; 825 826 /* 827 * Create a UDP header 828 */ 829 uh = udp_hdr(skb); 830 uh->source = inet->inet_sport; 831 uh->dest = fl4->fl4_dport; 832 uh->len = htons(len); 833 uh->check = 0; 834 835 if (cork->gso_size) { 836 const int hlen = skb_network_header_len(skb) + 837 sizeof(struct udphdr); 838 839 if (hlen + cork->gso_size > cork->fragsize) { 840 kfree_skb(skb); 841 return -EINVAL; 842 } 843 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) { 844 kfree_skb(skb); 845 return -EINVAL; 846 } 847 if (sk->sk_no_check_tx) { 848 kfree_skb(skb); 849 return -EINVAL; 850 } 851 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 852 dst_xfrm(skb_dst(skb))) { 853 kfree_skb(skb); 854 return -EIO; 855 } 856 857 skb_shinfo(skb)->gso_size = cork->gso_size; 858 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 859 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 860 cork->gso_size); 861 goto csum_partial; 862 } 863 864 if (is_udplite) /* UDP-Lite */ 865 csum = udplite_csum(skb); 866 867 else if (sk->sk_no_check_tx) { /* UDP csum off */ 868 869 skb->ip_summed = CHECKSUM_NONE; 870 goto send; 871 872 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 873 csum_partial: 874 875 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 876 goto send; 877 878 } else 879 csum = udp_csum(skb); 880 881 /* add protocol-dependent pseudo-header */ 882 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 883 sk->sk_protocol, csum); 884 if (uh->check == 0) 885 uh->check = CSUM_MANGLED_0; 886 887 send: 888 err = ip_send_skb(sock_net(sk), skb); 889 if (err) { 890 if (err == -ENOBUFS && !inet->recverr) { 891 UDP_INC_STATS(sock_net(sk), 892 UDP_MIB_SNDBUFERRORS, is_udplite); 893 err = 0; 894 } 895 } else 896 UDP_INC_STATS(sock_net(sk), 897 UDP_MIB_OUTDATAGRAMS, is_udplite); 898 return err; 899 } 900 901 /* 902 * Push out all pending data as one UDP datagram. Socket is locked. 903 */ 904 int udp_push_pending_frames(struct sock *sk) 905 { 906 struct udp_sock *up = udp_sk(sk); 907 struct inet_sock *inet = inet_sk(sk); 908 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 909 struct sk_buff *skb; 910 int err = 0; 911 912 skb = ip_finish_skb(sk, fl4); 913 if (!skb) 914 goto out; 915 916 err = udp_send_skb(skb, fl4, &inet->cork.base); 917 918 out: 919 up->len = 0; 920 up->pending = 0; 921 return err; 922 } 923 EXPORT_SYMBOL(udp_push_pending_frames); 924 925 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 926 { 927 switch (cmsg->cmsg_type) { 928 case UDP_SEGMENT: 929 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 930 return -EINVAL; 931 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 932 return 0; 933 default: 934 return -EINVAL; 935 } 936 } 937 938 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 939 { 940 struct cmsghdr *cmsg; 941 bool need_ip = false; 942 int err; 943 944 for_each_cmsghdr(cmsg, msg) { 945 if (!CMSG_OK(msg, cmsg)) 946 return -EINVAL; 947 948 if (cmsg->cmsg_level != SOL_UDP) { 949 need_ip = true; 950 continue; 951 } 952 953 err = __udp_cmsg_send(cmsg, gso_size); 954 if (err) 955 return err; 956 } 957 958 return need_ip; 959 } 960 EXPORT_SYMBOL_GPL(udp_cmsg_send); 961 962 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 963 { 964 struct inet_sock *inet = inet_sk(sk); 965 struct udp_sock *up = udp_sk(sk); 966 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 967 struct flowi4 fl4_stack; 968 struct flowi4 *fl4; 969 int ulen = len; 970 struct ipcm_cookie ipc; 971 struct rtable *rt = NULL; 972 int free = 0; 973 int connected = 0; 974 __be32 daddr, faddr, saddr; 975 __be16 dport; 976 u8 tos; 977 int err, is_udplite = IS_UDPLITE(sk); 978 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 979 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 980 struct sk_buff *skb; 981 struct ip_options_data opt_copy; 982 983 if (len > 0xFFFF) 984 return -EMSGSIZE; 985 986 /* 987 * Check the flags. 988 */ 989 990 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 991 return -EOPNOTSUPP; 992 993 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 994 995 fl4 = &inet->cork.fl.u.ip4; 996 if (up->pending) { 997 /* 998 * There are pending frames. 999 * The socket lock must be held while it's corked. 1000 */ 1001 lock_sock(sk); 1002 if (likely(up->pending)) { 1003 if (unlikely(up->pending != AF_INET)) { 1004 release_sock(sk); 1005 return -EINVAL; 1006 } 1007 goto do_append_data; 1008 } 1009 release_sock(sk); 1010 } 1011 ulen += sizeof(struct udphdr); 1012 1013 /* 1014 * Get and verify the address. 1015 */ 1016 if (usin) { 1017 if (msg->msg_namelen < sizeof(*usin)) 1018 return -EINVAL; 1019 if (usin->sin_family != AF_INET) { 1020 if (usin->sin_family != AF_UNSPEC) 1021 return -EAFNOSUPPORT; 1022 } 1023 1024 daddr = usin->sin_addr.s_addr; 1025 dport = usin->sin_port; 1026 if (dport == 0) 1027 return -EINVAL; 1028 } else { 1029 if (sk->sk_state != TCP_ESTABLISHED) 1030 return -EDESTADDRREQ; 1031 daddr = inet->inet_daddr; 1032 dport = inet->inet_dport; 1033 /* Open fast path for connected socket. 1034 Route will not be used, if at least one option is set. 1035 */ 1036 connected = 1; 1037 } 1038 1039 ipcm_init_sk(&ipc, inet); 1040 ipc.gso_size = up->gso_size; 1041 1042 if (msg->msg_controllen) { 1043 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1044 if (err > 0) 1045 err = ip_cmsg_send(sk, msg, &ipc, 1046 sk->sk_family == AF_INET6); 1047 if (unlikely(err < 0)) { 1048 kfree(ipc.opt); 1049 return err; 1050 } 1051 if (ipc.opt) 1052 free = 1; 1053 connected = 0; 1054 } 1055 if (!ipc.opt) { 1056 struct ip_options_rcu *inet_opt; 1057 1058 rcu_read_lock(); 1059 inet_opt = rcu_dereference(inet->inet_opt); 1060 if (inet_opt) { 1061 memcpy(&opt_copy, inet_opt, 1062 sizeof(*inet_opt) + inet_opt->opt.optlen); 1063 ipc.opt = &opt_copy.opt; 1064 } 1065 rcu_read_unlock(); 1066 } 1067 1068 if (cgroup_bpf_enabled && !connected) { 1069 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1070 (struct sockaddr *)usin, &ipc.addr); 1071 if (err) 1072 goto out_free; 1073 if (usin) { 1074 if (usin->sin_port == 0) { 1075 /* BPF program set invalid port. Reject it. */ 1076 err = -EINVAL; 1077 goto out_free; 1078 } 1079 daddr = usin->sin_addr.s_addr; 1080 dport = usin->sin_port; 1081 } 1082 } 1083 1084 saddr = ipc.addr; 1085 ipc.addr = faddr = daddr; 1086 1087 if (ipc.opt && ipc.opt->opt.srr) { 1088 if (!daddr) { 1089 err = -EINVAL; 1090 goto out_free; 1091 } 1092 faddr = ipc.opt->opt.faddr; 1093 connected = 0; 1094 } 1095 tos = get_rttos(&ipc, inet); 1096 if (sock_flag(sk, SOCK_LOCALROUTE) || 1097 (msg->msg_flags & MSG_DONTROUTE) || 1098 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1099 tos |= RTO_ONLINK; 1100 connected = 0; 1101 } 1102 1103 if (ipv4_is_multicast(daddr)) { 1104 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1105 ipc.oif = inet->mc_index; 1106 if (!saddr) 1107 saddr = inet->mc_addr; 1108 connected = 0; 1109 } else if (!ipc.oif) { 1110 ipc.oif = inet->uc_index; 1111 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1112 /* oif is set, packet is to local broadcast and 1113 * and uc_index is set. oif is most likely set 1114 * by sk_bound_dev_if. If uc_index != oif check if the 1115 * oif is an L3 master and uc_index is an L3 slave. 1116 * If so, we want to allow the send using the uc_index. 1117 */ 1118 if (ipc.oif != inet->uc_index && 1119 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1120 inet->uc_index)) { 1121 ipc.oif = inet->uc_index; 1122 } 1123 } 1124 1125 if (connected) 1126 rt = (struct rtable *)sk_dst_check(sk, 0); 1127 1128 if (!rt) { 1129 struct net *net = sock_net(sk); 1130 __u8 flow_flags = inet_sk_flowi_flags(sk); 1131 1132 fl4 = &fl4_stack; 1133 1134 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, 1135 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1136 flow_flags, 1137 faddr, saddr, dport, inet->inet_sport, 1138 sk->sk_uid); 1139 1140 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1141 rt = ip_route_output_flow(net, fl4, sk); 1142 if (IS_ERR(rt)) { 1143 err = PTR_ERR(rt); 1144 rt = NULL; 1145 if (err == -ENETUNREACH) 1146 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1147 goto out; 1148 } 1149 1150 err = -EACCES; 1151 if ((rt->rt_flags & RTCF_BROADCAST) && 1152 !sock_flag(sk, SOCK_BROADCAST)) 1153 goto out; 1154 if (connected) 1155 sk_dst_set(sk, dst_clone(&rt->dst)); 1156 } 1157 1158 if (msg->msg_flags&MSG_CONFIRM) 1159 goto do_confirm; 1160 back_from_confirm: 1161 1162 saddr = fl4->saddr; 1163 if (!ipc.addr) 1164 daddr = ipc.addr = fl4->daddr; 1165 1166 /* Lockless fast path for the non-corking case. */ 1167 if (!corkreq) { 1168 struct inet_cork cork; 1169 1170 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1171 sizeof(struct udphdr), &ipc, &rt, 1172 &cork, msg->msg_flags); 1173 err = PTR_ERR(skb); 1174 if (!IS_ERR_OR_NULL(skb)) 1175 err = udp_send_skb(skb, fl4, &cork); 1176 goto out; 1177 } 1178 1179 lock_sock(sk); 1180 if (unlikely(up->pending)) { 1181 /* The socket is already corked while preparing it. */ 1182 /* ... which is an evident application bug. --ANK */ 1183 release_sock(sk); 1184 1185 net_dbg_ratelimited("socket already corked\n"); 1186 err = -EINVAL; 1187 goto out; 1188 } 1189 /* 1190 * Now cork the socket to pend data. 1191 */ 1192 fl4 = &inet->cork.fl.u.ip4; 1193 fl4->daddr = daddr; 1194 fl4->saddr = saddr; 1195 fl4->fl4_dport = dport; 1196 fl4->fl4_sport = inet->inet_sport; 1197 up->pending = AF_INET; 1198 1199 do_append_data: 1200 up->len += ulen; 1201 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1202 sizeof(struct udphdr), &ipc, &rt, 1203 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1204 if (err) 1205 udp_flush_pending_frames(sk); 1206 else if (!corkreq) 1207 err = udp_push_pending_frames(sk); 1208 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1209 up->pending = 0; 1210 release_sock(sk); 1211 1212 out: 1213 ip_rt_put(rt); 1214 out_free: 1215 if (free) 1216 kfree(ipc.opt); 1217 if (!err) 1218 return len; 1219 /* 1220 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1221 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1222 * we don't have a good statistic (IpOutDiscards but it can be too many 1223 * things). We could add another new stat but at least for now that 1224 * seems like overkill. 1225 */ 1226 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1227 UDP_INC_STATS(sock_net(sk), 1228 UDP_MIB_SNDBUFERRORS, is_udplite); 1229 } 1230 return err; 1231 1232 do_confirm: 1233 if (msg->msg_flags & MSG_PROBE) 1234 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1235 if (!(msg->msg_flags&MSG_PROBE) || len) 1236 goto back_from_confirm; 1237 err = 0; 1238 goto out; 1239 } 1240 EXPORT_SYMBOL(udp_sendmsg); 1241 1242 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1243 size_t size, int flags) 1244 { 1245 struct inet_sock *inet = inet_sk(sk); 1246 struct udp_sock *up = udp_sk(sk); 1247 int ret; 1248 1249 if (flags & MSG_SENDPAGE_NOTLAST) 1250 flags |= MSG_MORE; 1251 1252 if (!up->pending) { 1253 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1254 1255 /* Call udp_sendmsg to specify destination address which 1256 * sendpage interface can't pass. 1257 * This will succeed only when the socket is connected. 1258 */ 1259 ret = udp_sendmsg(sk, &msg, 0); 1260 if (ret < 0) 1261 return ret; 1262 } 1263 1264 lock_sock(sk); 1265 1266 if (unlikely(!up->pending)) { 1267 release_sock(sk); 1268 1269 net_dbg_ratelimited("cork failed\n"); 1270 return -EINVAL; 1271 } 1272 1273 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1274 page, offset, size, flags); 1275 if (ret == -EOPNOTSUPP) { 1276 release_sock(sk); 1277 return sock_no_sendpage(sk->sk_socket, page, offset, 1278 size, flags); 1279 } 1280 if (ret < 0) { 1281 udp_flush_pending_frames(sk); 1282 goto out; 1283 } 1284 1285 up->len += size; 1286 if (!(up->corkflag || (flags&MSG_MORE))) 1287 ret = udp_push_pending_frames(sk); 1288 if (!ret) 1289 ret = size; 1290 out: 1291 release_sock(sk); 1292 return ret; 1293 } 1294 1295 #define UDP_SKB_IS_STATELESS 0x80000000 1296 1297 static void udp_set_dev_scratch(struct sk_buff *skb) 1298 { 1299 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1300 1301 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1302 scratch->_tsize_state = skb->truesize; 1303 #if BITS_PER_LONG == 64 1304 scratch->len = skb->len; 1305 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1306 scratch->is_linear = !skb_is_nonlinear(skb); 1307 #endif 1308 /* all head states execept sp (dst, sk, nf) are always cleared by 1309 * udp_rcv() and we need to preserve secpath, if present, to eventually 1310 * process IP_CMSG_PASSSEC at recvmsg() time 1311 */ 1312 if (likely(!skb_sec_path(skb))) 1313 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1314 } 1315 1316 static int udp_skb_truesize(struct sk_buff *skb) 1317 { 1318 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1319 } 1320 1321 static bool udp_skb_has_head_state(struct sk_buff *skb) 1322 { 1323 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1324 } 1325 1326 /* fully reclaim rmem/fwd memory allocated for skb */ 1327 static void udp_rmem_release(struct sock *sk, int size, int partial, 1328 bool rx_queue_lock_held) 1329 { 1330 struct udp_sock *up = udp_sk(sk); 1331 struct sk_buff_head *sk_queue; 1332 int amt; 1333 1334 if (likely(partial)) { 1335 up->forward_deficit += size; 1336 size = up->forward_deficit; 1337 if (size < (sk->sk_rcvbuf >> 2)) 1338 return; 1339 } else { 1340 size += up->forward_deficit; 1341 } 1342 up->forward_deficit = 0; 1343 1344 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1345 * if the called don't held it already 1346 */ 1347 sk_queue = &sk->sk_receive_queue; 1348 if (!rx_queue_lock_held) 1349 spin_lock(&sk_queue->lock); 1350 1351 1352 sk->sk_forward_alloc += size; 1353 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1354 sk->sk_forward_alloc -= amt; 1355 1356 if (amt) 1357 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1358 1359 atomic_sub(size, &sk->sk_rmem_alloc); 1360 1361 /* this can save us from acquiring the rx queue lock on next receive */ 1362 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1363 1364 if (!rx_queue_lock_held) 1365 spin_unlock(&sk_queue->lock); 1366 } 1367 1368 /* Note: called with reader_queue.lock held. 1369 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1370 * This avoids a cache line miss while receive_queue lock is held. 1371 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1372 */ 1373 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1374 { 1375 prefetch(&skb->data); 1376 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1377 } 1378 EXPORT_SYMBOL(udp_skb_destructor); 1379 1380 /* as above, but the caller held the rx queue lock, too */ 1381 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1382 { 1383 prefetch(&skb->data); 1384 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1385 } 1386 1387 /* Idea of busylocks is to let producers grab an extra spinlock 1388 * to relieve pressure on the receive_queue spinlock shared by consumer. 1389 * Under flood, this means that only one producer can be in line 1390 * trying to acquire the receive_queue spinlock. 1391 * These busylock can be allocated on a per cpu manner, instead of a 1392 * per socket one (that would consume a cache line per socket) 1393 */ 1394 static int udp_busylocks_log __read_mostly; 1395 static spinlock_t *udp_busylocks __read_mostly; 1396 1397 static spinlock_t *busylock_acquire(void *ptr) 1398 { 1399 spinlock_t *busy; 1400 1401 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1402 spin_lock(busy); 1403 return busy; 1404 } 1405 1406 static void busylock_release(spinlock_t *busy) 1407 { 1408 if (busy) 1409 spin_unlock(busy); 1410 } 1411 1412 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1413 { 1414 struct sk_buff_head *list = &sk->sk_receive_queue; 1415 int rmem, delta, amt, err = -ENOMEM; 1416 spinlock_t *busy = NULL; 1417 int size; 1418 1419 /* try to avoid the costly atomic add/sub pair when the receive 1420 * queue is full; always allow at least a packet 1421 */ 1422 rmem = atomic_read(&sk->sk_rmem_alloc); 1423 if (rmem > sk->sk_rcvbuf) 1424 goto drop; 1425 1426 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1427 * having linear skbs : 1428 * - Reduce memory overhead and thus increase receive queue capacity 1429 * - Less cache line misses at copyout() time 1430 * - Less work at consume_skb() (less alien page frag freeing) 1431 */ 1432 if (rmem > (sk->sk_rcvbuf >> 1)) { 1433 skb_condense(skb); 1434 1435 busy = busylock_acquire(sk); 1436 } 1437 size = skb->truesize; 1438 udp_set_dev_scratch(skb); 1439 1440 /* we drop only if the receive buf is full and the receive 1441 * queue contains some other skb 1442 */ 1443 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1444 if (rmem > (size + sk->sk_rcvbuf)) 1445 goto uncharge_drop; 1446 1447 spin_lock(&list->lock); 1448 if (size >= sk->sk_forward_alloc) { 1449 amt = sk_mem_pages(size); 1450 delta = amt << SK_MEM_QUANTUM_SHIFT; 1451 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1452 err = -ENOBUFS; 1453 spin_unlock(&list->lock); 1454 goto uncharge_drop; 1455 } 1456 1457 sk->sk_forward_alloc += delta; 1458 } 1459 1460 sk->sk_forward_alloc -= size; 1461 1462 /* no need to setup a destructor, we will explicitly release the 1463 * forward allocated memory on dequeue 1464 */ 1465 sock_skb_set_dropcount(sk, skb); 1466 1467 __skb_queue_tail(list, skb); 1468 spin_unlock(&list->lock); 1469 1470 if (!sock_flag(sk, SOCK_DEAD)) 1471 sk->sk_data_ready(sk); 1472 1473 busylock_release(busy); 1474 return 0; 1475 1476 uncharge_drop: 1477 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1478 1479 drop: 1480 atomic_inc(&sk->sk_drops); 1481 busylock_release(busy); 1482 return err; 1483 } 1484 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1485 1486 void udp_destruct_sock(struct sock *sk) 1487 { 1488 /* reclaim completely the forward allocated memory */ 1489 struct udp_sock *up = udp_sk(sk); 1490 unsigned int total = 0; 1491 struct sk_buff *skb; 1492 1493 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1494 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1495 total += skb->truesize; 1496 kfree_skb(skb); 1497 } 1498 udp_rmem_release(sk, total, 0, true); 1499 1500 inet_sock_destruct(sk); 1501 } 1502 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1503 1504 int udp_init_sock(struct sock *sk) 1505 { 1506 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1507 sk->sk_destruct = udp_destruct_sock; 1508 return 0; 1509 } 1510 EXPORT_SYMBOL_GPL(udp_init_sock); 1511 1512 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1513 { 1514 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1515 bool slow = lock_sock_fast(sk); 1516 1517 sk_peek_offset_bwd(sk, len); 1518 unlock_sock_fast(sk, slow); 1519 } 1520 1521 if (!skb_unref(skb)) 1522 return; 1523 1524 /* In the more common cases we cleared the head states previously, 1525 * see __udp_queue_rcv_skb(). 1526 */ 1527 if (unlikely(udp_skb_has_head_state(skb))) 1528 skb_release_head_state(skb); 1529 __consume_stateless_skb(skb); 1530 } 1531 EXPORT_SYMBOL_GPL(skb_consume_udp); 1532 1533 static struct sk_buff *__first_packet_length(struct sock *sk, 1534 struct sk_buff_head *rcvq, 1535 int *total) 1536 { 1537 struct sk_buff *skb; 1538 1539 while ((skb = skb_peek(rcvq)) != NULL) { 1540 if (udp_lib_checksum_complete(skb)) { 1541 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1542 IS_UDPLITE(sk)); 1543 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1544 IS_UDPLITE(sk)); 1545 atomic_inc(&sk->sk_drops); 1546 __skb_unlink(skb, rcvq); 1547 *total += skb->truesize; 1548 kfree_skb(skb); 1549 } else { 1550 /* the csum related bits could be changed, refresh 1551 * the scratch area 1552 */ 1553 udp_set_dev_scratch(skb); 1554 break; 1555 } 1556 } 1557 return skb; 1558 } 1559 1560 /** 1561 * first_packet_length - return length of first packet in receive queue 1562 * @sk: socket 1563 * 1564 * Drops all bad checksum frames, until a valid one is found. 1565 * Returns the length of found skb, or -1 if none is found. 1566 */ 1567 static int first_packet_length(struct sock *sk) 1568 { 1569 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1570 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1571 struct sk_buff *skb; 1572 int total = 0; 1573 int res; 1574 1575 spin_lock_bh(&rcvq->lock); 1576 skb = __first_packet_length(sk, rcvq, &total); 1577 if (!skb && !skb_queue_empty(sk_queue)) { 1578 spin_lock(&sk_queue->lock); 1579 skb_queue_splice_tail_init(sk_queue, rcvq); 1580 spin_unlock(&sk_queue->lock); 1581 1582 skb = __first_packet_length(sk, rcvq, &total); 1583 } 1584 res = skb ? skb->len : -1; 1585 if (total) 1586 udp_rmem_release(sk, total, 1, false); 1587 spin_unlock_bh(&rcvq->lock); 1588 return res; 1589 } 1590 1591 /* 1592 * IOCTL requests applicable to the UDP protocol 1593 */ 1594 1595 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1596 { 1597 switch (cmd) { 1598 case SIOCOUTQ: 1599 { 1600 int amount = sk_wmem_alloc_get(sk); 1601 1602 return put_user(amount, (int __user *)arg); 1603 } 1604 1605 case SIOCINQ: 1606 { 1607 int amount = max_t(int, 0, first_packet_length(sk)); 1608 1609 return put_user(amount, (int __user *)arg); 1610 } 1611 1612 default: 1613 return -ENOIOCTLCMD; 1614 } 1615 1616 return 0; 1617 } 1618 EXPORT_SYMBOL(udp_ioctl); 1619 1620 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1621 int noblock, int *off, int *err) 1622 { 1623 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1624 struct sk_buff_head *queue; 1625 struct sk_buff *last; 1626 long timeo; 1627 int error; 1628 1629 queue = &udp_sk(sk)->reader_queue; 1630 flags |= noblock ? MSG_DONTWAIT : 0; 1631 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1632 do { 1633 struct sk_buff *skb; 1634 1635 error = sock_error(sk); 1636 if (error) 1637 break; 1638 1639 error = -EAGAIN; 1640 do { 1641 spin_lock_bh(&queue->lock); 1642 skb = __skb_try_recv_from_queue(sk, queue, flags, 1643 udp_skb_destructor, 1644 off, err, &last); 1645 if (skb) { 1646 spin_unlock_bh(&queue->lock); 1647 return skb; 1648 } 1649 1650 if (skb_queue_empty(sk_queue)) { 1651 spin_unlock_bh(&queue->lock); 1652 goto busy_check; 1653 } 1654 1655 /* refill the reader queue and walk it again 1656 * keep both queues locked to avoid re-acquiring 1657 * the sk_receive_queue lock if fwd memory scheduling 1658 * is needed. 1659 */ 1660 spin_lock(&sk_queue->lock); 1661 skb_queue_splice_tail_init(sk_queue, queue); 1662 1663 skb = __skb_try_recv_from_queue(sk, queue, flags, 1664 udp_skb_dtor_locked, 1665 off, err, &last); 1666 spin_unlock(&sk_queue->lock); 1667 spin_unlock_bh(&queue->lock); 1668 if (skb) 1669 return skb; 1670 1671 busy_check: 1672 if (!sk_can_busy_loop(sk)) 1673 break; 1674 1675 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1676 } while (!skb_queue_empty(sk_queue)); 1677 1678 /* sk_queue is empty, reader_queue may contain peeked packets */ 1679 } while (timeo && 1680 !__skb_wait_for_more_packets(sk, &error, &timeo, 1681 (struct sk_buff *)sk_queue)); 1682 1683 *err = error; 1684 return NULL; 1685 } 1686 EXPORT_SYMBOL(__skb_recv_udp); 1687 1688 /* 1689 * This should be easy, if there is something there we 1690 * return it, otherwise we block. 1691 */ 1692 1693 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1694 int flags, int *addr_len) 1695 { 1696 struct inet_sock *inet = inet_sk(sk); 1697 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1698 struct sk_buff *skb; 1699 unsigned int ulen, copied; 1700 int off, err, peeking = flags & MSG_PEEK; 1701 int is_udplite = IS_UDPLITE(sk); 1702 bool checksum_valid = false; 1703 1704 if (flags & MSG_ERRQUEUE) 1705 return ip_recv_error(sk, msg, len, addr_len); 1706 1707 try_again: 1708 off = sk_peek_offset(sk, flags); 1709 skb = __skb_recv_udp(sk, flags, noblock, &off, &err); 1710 if (!skb) 1711 return err; 1712 1713 ulen = udp_skb_len(skb); 1714 copied = len; 1715 if (copied > ulen - off) 1716 copied = ulen - off; 1717 else if (copied < ulen) 1718 msg->msg_flags |= MSG_TRUNC; 1719 1720 /* 1721 * If checksum is needed at all, try to do it while copying the 1722 * data. If the data is truncated, or if we only want a partial 1723 * coverage checksum (UDP-Lite), do it before the copy. 1724 */ 1725 1726 if (copied < ulen || peeking || 1727 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1728 checksum_valid = udp_skb_csum_unnecessary(skb) || 1729 !__udp_lib_checksum_complete(skb); 1730 if (!checksum_valid) 1731 goto csum_copy_err; 1732 } 1733 1734 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1735 if (udp_skb_is_linear(skb)) 1736 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1737 else 1738 err = skb_copy_datagram_msg(skb, off, msg, copied); 1739 } else { 1740 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1741 1742 if (err == -EINVAL) 1743 goto csum_copy_err; 1744 } 1745 1746 if (unlikely(err)) { 1747 if (!peeking) { 1748 atomic_inc(&sk->sk_drops); 1749 UDP_INC_STATS(sock_net(sk), 1750 UDP_MIB_INERRORS, is_udplite); 1751 } 1752 kfree_skb(skb); 1753 return err; 1754 } 1755 1756 if (!peeking) 1757 UDP_INC_STATS(sock_net(sk), 1758 UDP_MIB_INDATAGRAMS, is_udplite); 1759 1760 sock_recv_ts_and_drops(msg, sk, skb); 1761 1762 /* Copy the address. */ 1763 if (sin) { 1764 sin->sin_family = AF_INET; 1765 sin->sin_port = udp_hdr(skb)->source; 1766 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1767 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1768 *addr_len = sizeof(*sin); 1769 1770 if (cgroup_bpf_enabled) 1771 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 1772 (struct sockaddr *)sin); 1773 } 1774 1775 if (udp_sk(sk)->gro_enabled) 1776 udp_cmsg_recv(msg, sk, skb); 1777 1778 if (inet->cmsg_flags) 1779 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1780 1781 err = copied; 1782 if (flags & MSG_TRUNC) 1783 err = ulen; 1784 1785 skb_consume_udp(sk, skb, peeking ? -err : err); 1786 return err; 1787 1788 csum_copy_err: 1789 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1790 udp_skb_destructor)) { 1791 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1792 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1793 } 1794 kfree_skb(skb); 1795 1796 /* starting over for a new packet, but check if we need to yield */ 1797 cond_resched(); 1798 msg->msg_flags &= ~MSG_TRUNC; 1799 goto try_again; 1800 } 1801 1802 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1803 { 1804 /* This check is replicated from __ip4_datagram_connect() and 1805 * intended to prevent BPF program called below from accessing bytes 1806 * that are out of the bound specified by user in addr_len. 1807 */ 1808 if (addr_len < sizeof(struct sockaddr_in)) 1809 return -EINVAL; 1810 1811 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1812 } 1813 EXPORT_SYMBOL(udp_pre_connect); 1814 1815 int __udp_disconnect(struct sock *sk, int flags) 1816 { 1817 struct inet_sock *inet = inet_sk(sk); 1818 /* 1819 * 1003.1g - break association. 1820 */ 1821 1822 sk->sk_state = TCP_CLOSE; 1823 inet->inet_daddr = 0; 1824 inet->inet_dport = 0; 1825 sock_rps_reset_rxhash(sk); 1826 sk->sk_bound_dev_if = 0; 1827 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1828 inet_reset_saddr(sk); 1829 1830 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1831 sk->sk_prot->unhash(sk); 1832 inet->inet_sport = 0; 1833 } 1834 sk_dst_reset(sk); 1835 return 0; 1836 } 1837 EXPORT_SYMBOL(__udp_disconnect); 1838 1839 int udp_disconnect(struct sock *sk, int flags) 1840 { 1841 lock_sock(sk); 1842 __udp_disconnect(sk, flags); 1843 release_sock(sk); 1844 return 0; 1845 } 1846 EXPORT_SYMBOL(udp_disconnect); 1847 1848 void udp_lib_unhash(struct sock *sk) 1849 { 1850 if (sk_hashed(sk)) { 1851 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1852 struct udp_hslot *hslot, *hslot2; 1853 1854 hslot = udp_hashslot(udptable, sock_net(sk), 1855 udp_sk(sk)->udp_port_hash); 1856 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1857 1858 spin_lock_bh(&hslot->lock); 1859 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1860 reuseport_detach_sock(sk); 1861 if (sk_del_node_init_rcu(sk)) { 1862 hslot->count--; 1863 inet_sk(sk)->inet_num = 0; 1864 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1865 1866 spin_lock(&hslot2->lock); 1867 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1868 hslot2->count--; 1869 spin_unlock(&hslot2->lock); 1870 } 1871 spin_unlock_bh(&hslot->lock); 1872 } 1873 } 1874 EXPORT_SYMBOL(udp_lib_unhash); 1875 1876 /* 1877 * inet_rcv_saddr was changed, we must rehash secondary hash 1878 */ 1879 void udp_lib_rehash(struct sock *sk, u16 newhash) 1880 { 1881 if (sk_hashed(sk)) { 1882 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1883 struct udp_hslot *hslot, *hslot2, *nhslot2; 1884 1885 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1886 nhslot2 = udp_hashslot2(udptable, newhash); 1887 udp_sk(sk)->udp_portaddr_hash = newhash; 1888 1889 if (hslot2 != nhslot2 || 1890 rcu_access_pointer(sk->sk_reuseport_cb)) { 1891 hslot = udp_hashslot(udptable, sock_net(sk), 1892 udp_sk(sk)->udp_port_hash); 1893 /* we must lock primary chain too */ 1894 spin_lock_bh(&hslot->lock); 1895 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1896 reuseport_detach_sock(sk); 1897 1898 if (hslot2 != nhslot2) { 1899 spin_lock(&hslot2->lock); 1900 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1901 hslot2->count--; 1902 spin_unlock(&hslot2->lock); 1903 1904 spin_lock(&nhslot2->lock); 1905 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1906 &nhslot2->head); 1907 nhslot2->count++; 1908 spin_unlock(&nhslot2->lock); 1909 } 1910 1911 spin_unlock_bh(&hslot->lock); 1912 } 1913 } 1914 } 1915 EXPORT_SYMBOL(udp_lib_rehash); 1916 1917 void udp_v4_rehash(struct sock *sk) 1918 { 1919 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1920 inet_sk(sk)->inet_rcv_saddr, 1921 inet_sk(sk)->inet_num); 1922 udp_lib_rehash(sk, new_hash); 1923 } 1924 1925 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1926 { 1927 int rc; 1928 1929 if (inet_sk(sk)->inet_daddr) { 1930 sock_rps_save_rxhash(sk, skb); 1931 sk_mark_napi_id(sk, skb); 1932 sk_incoming_cpu_update(sk); 1933 } else { 1934 sk_mark_napi_id_once(sk, skb); 1935 } 1936 1937 rc = __udp_enqueue_schedule_skb(sk, skb); 1938 if (rc < 0) { 1939 int is_udplite = IS_UDPLITE(sk); 1940 1941 /* Note that an ENOMEM error is charged twice */ 1942 if (rc == -ENOMEM) 1943 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1944 is_udplite); 1945 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1946 kfree_skb(skb); 1947 trace_udp_fail_queue_rcv_skb(rc, sk); 1948 return -1; 1949 } 1950 1951 return 0; 1952 } 1953 1954 /* returns: 1955 * -1: error 1956 * 0: success 1957 * >0: "udp encap" protocol resubmission 1958 * 1959 * Note that in the success and error cases, the skb is assumed to 1960 * have either been requeued or freed. 1961 */ 1962 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 1963 { 1964 struct udp_sock *up = udp_sk(sk); 1965 int is_udplite = IS_UDPLITE(sk); 1966 1967 /* 1968 * Charge it to the socket, dropping if the queue is full. 1969 */ 1970 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1971 goto drop; 1972 nf_reset(skb); 1973 1974 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1975 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1976 1977 /* 1978 * This is an encapsulation socket so pass the skb to 1979 * the socket's udp_encap_rcv() hook. Otherwise, just 1980 * fall through and pass this up the UDP socket. 1981 * up->encap_rcv() returns the following value: 1982 * =0 if skb was successfully passed to the encap 1983 * handler or was discarded by it. 1984 * >0 if skb should be passed on to UDP. 1985 * <0 if skb should be resubmitted as proto -N 1986 */ 1987 1988 /* if we're overly short, let UDP handle it */ 1989 encap_rcv = READ_ONCE(up->encap_rcv); 1990 if (encap_rcv) { 1991 int ret; 1992 1993 /* Verify checksum before giving to encap */ 1994 if (udp_lib_checksum_complete(skb)) 1995 goto csum_error; 1996 1997 ret = encap_rcv(sk, skb); 1998 if (ret <= 0) { 1999 __UDP_INC_STATS(sock_net(sk), 2000 UDP_MIB_INDATAGRAMS, 2001 is_udplite); 2002 return -ret; 2003 } 2004 } 2005 2006 /* FALLTHROUGH -- it's a UDP Packet */ 2007 } 2008 2009 /* 2010 * UDP-Lite specific tests, ignored on UDP sockets 2011 */ 2012 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 2013 2014 /* 2015 * MIB statistics other than incrementing the error count are 2016 * disabled for the following two types of errors: these depend 2017 * on the application settings, not on the functioning of the 2018 * protocol stack as such. 2019 * 2020 * RFC 3828 here recommends (sec 3.3): "There should also be a 2021 * way ... to ... at least let the receiving application block 2022 * delivery of packets with coverage values less than a value 2023 * provided by the application." 2024 */ 2025 if (up->pcrlen == 0) { /* full coverage was set */ 2026 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2027 UDP_SKB_CB(skb)->cscov, skb->len); 2028 goto drop; 2029 } 2030 /* The next case involves violating the min. coverage requested 2031 * by the receiver. This is subtle: if receiver wants x and x is 2032 * greater than the buffersize/MTU then receiver will complain 2033 * that it wants x while sender emits packets of smaller size y. 2034 * Therefore the above ...()->partial_cov statement is essential. 2035 */ 2036 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 2037 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2038 UDP_SKB_CB(skb)->cscov, up->pcrlen); 2039 goto drop; 2040 } 2041 } 2042 2043 prefetch(&sk->sk_rmem_alloc); 2044 if (rcu_access_pointer(sk->sk_filter) && 2045 udp_lib_checksum_complete(skb)) 2046 goto csum_error; 2047 2048 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 2049 goto drop; 2050 2051 udp_csum_pull_header(skb); 2052 2053 ipv4_pktinfo_prepare(sk, skb); 2054 return __udp_queue_rcv_skb(sk, skb); 2055 2056 csum_error: 2057 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2058 drop: 2059 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2060 atomic_inc(&sk->sk_drops); 2061 kfree_skb(skb); 2062 return -1; 2063 } 2064 2065 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2066 { 2067 struct sk_buff *next, *segs; 2068 int ret; 2069 2070 if (likely(!udp_unexpected_gso(sk, skb))) 2071 return udp_queue_rcv_one_skb(sk, skb); 2072 2073 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET); 2074 __skb_push(skb, -skb_mac_offset(skb)); 2075 segs = udp_rcv_segment(sk, skb, true); 2076 for (skb = segs; skb; skb = next) { 2077 next = skb->next; 2078 __skb_pull(skb, skb_transport_offset(skb)); 2079 ret = udp_queue_rcv_one_skb(sk, skb); 2080 if (ret > 0) 2081 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret); 2082 } 2083 return 0; 2084 } 2085 2086 /* For TCP sockets, sk_rx_dst is protected by socket lock 2087 * For UDP, we use xchg() to guard against concurrent changes. 2088 */ 2089 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2090 { 2091 struct dst_entry *old; 2092 2093 if (dst_hold_safe(dst)) { 2094 old = xchg(&sk->sk_rx_dst, dst); 2095 dst_release(old); 2096 return old != dst; 2097 } 2098 return false; 2099 } 2100 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2101 2102 /* 2103 * Multicasts and broadcasts go to each listener. 2104 * 2105 * Note: called only from the BH handler context. 2106 */ 2107 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2108 struct udphdr *uh, 2109 __be32 saddr, __be32 daddr, 2110 struct udp_table *udptable, 2111 int proto) 2112 { 2113 struct sock *sk, *first = NULL; 2114 unsigned short hnum = ntohs(uh->dest); 2115 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2116 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2117 unsigned int offset = offsetof(typeof(*sk), sk_node); 2118 int dif = skb->dev->ifindex; 2119 int sdif = inet_sdif(skb); 2120 struct hlist_node *node; 2121 struct sk_buff *nskb; 2122 2123 if (use_hash2) { 2124 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2125 udptable->mask; 2126 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2127 start_lookup: 2128 hslot = &udptable->hash2[hash2]; 2129 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2130 } 2131 2132 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2133 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2134 uh->source, saddr, dif, sdif, hnum)) 2135 continue; 2136 2137 if (!first) { 2138 first = sk; 2139 continue; 2140 } 2141 nskb = skb_clone(skb, GFP_ATOMIC); 2142 2143 if (unlikely(!nskb)) { 2144 atomic_inc(&sk->sk_drops); 2145 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2146 IS_UDPLITE(sk)); 2147 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2148 IS_UDPLITE(sk)); 2149 continue; 2150 } 2151 if (udp_queue_rcv_skb(sk, nskb) > 0) 2152 consume_skb(nskb); 2153 } 2154 2155 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2156 if (use_hash2 && hash2 != hash2_any) { 2157 hash2 = hash2_any; 2158 goto start_lookup; 2159 } 2160 2161 if (first) { 2162 if (udp_queue_rcv_skb(first, skb) > 0) 2163 consume_skb(skb); 2164 } else { 2165 kfree_skb(skb); 2166 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2167 proto == IPPROTO_UDPLITE); 2168 } 2169 return 0; 2170 } 2171 2172 /* Initialize UDP checksum. If exited with zero value (success), 2173 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2174 * Otherwise, csum completion requires checksumming packet body, 2175 * including udp header and folding it to skb->csum. 2176 */ 2177 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2178 int proto) 2179 { 2180 int err; 2181 2182 UDP_SKB_CB(skb)->partial_cov = 0; 2183 UDP_SKB_CB(skb)->cscov = skb->len; 2184 2185 if (proto == IPPROTO_UDPLITE) { 2186 err = udplite_checksum_init(skb, uh); 2187 if (err) 2188 return err; 2189 2190 if (UDP_SKB_CB(skb)->partial_cov) { 2191 skb->csum = inet_compute_pseudo(skb, proto); 2192 return 0; 2193 } 2194 } 2195 2196 /* Note, we are only interested in != 0 or == 0, thus the 2197 * force to int. 2198 */ 2199 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2200 inet_compute_pseudo); 2201 if (err) 2202 return err; 2203 2204 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2205 /* If SW calculated the value, we know it's bad */ 2206 if (skb->csum_complete_sw) 2207 return 1; 2208 2209 /* HW says the value is bad. Let's validate that. 2210 * skb->csum is no longer the full packet checksum, 2211 * so don't treat it as such. 2212 */ 2213 skb_checksum_complete_unset(skb); 2214 } 2215 2216 return 0; 2217 } 2218 2219 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2220 * return code conversion for ip layer consumption 2221 */ 2222 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2223 struct udphdr *uh) 2224 { 2225 int ret; 2226 2227 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2228 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2229 2230 ret = udp_queue_rcv_skb(sk, skb); 2231 2232 /* a return value > 0 means to resubmit the input, but 2233 * it wants the return to be -protocol, or 0 2234 */ 2235 if (ret > 0) 2236 return -ret; 2237 return 0; 2238 } 2239 2240 /* 2241 * All we need to do is get the socket, and then do a checksum. 2242 */ 2243 2244 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2245 int proto) 2246 { 2247 struct sock *sk; 2248 struct udphdr *uh; 2249 unsigned short ulen; 2250 struct rtable *rt = skb_rtable(skb); 2251 __be32 saddr, daddr; 2252 struct net *net = dev_net(skb->dev); 2253 2254 /* 2255 * Validate the packet. 2256 */ 2257 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2258 goto drop; /* No space for header. */ 2259 2260 uh = udp_hdr(skb); 2261 ulen = ntohs(uh->len); 2262 saddr = ip_hdr(skb)->saddr; 2263 daddr = ip_hdr(skb)->daddr; 2264 2265 if (ulen > skb->len) 2266 goto short_packet; 2267 2268 if (proto == IPPROTO_UDP) { 2269 /* UDP validates ulen. */ 2270 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2271 goto short_packet; 2272 uh = udp_hdr(skb); 2273 } 2274 2275 if (udp4_csum_init(skb, uh, proto)) 2276 goto csum_error; 2277 2278 sk = skb_steal_sock(skb); 2279 if (sk) { 2280 struct dst_entry *dst = skb_dst(skb); 2281 int ret; 2282 2283 if (unlikely(sk->sk_rx_dst != dst)) 2284 udp_sk_rx_dst_set(sk, dst); 2285 2286 ret = udp_unicast_rcv_skb(sk, skb, uh); 2287 sock_put(sk); 2288 return ret; 2289 } 2290 2291 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2292 return __udp4_lib_mcast_deliver(net, skb, uh, 2293 saddr, daddr, udptable, proto); 2294 2295 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2296 if (sk) 2297 return udp_unicast_rcv_skb(sk, skb, uh); 2298 2299 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2300 goto drop; 2301 nf_reset(skb); 2302 2303 /* No socket. Drop packet silently, if checksum is wrong */ 2304 if (udp_lib_checksum_complete(skb)) 2305 goto csum_error; 2306 2307 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2308 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2309 2310 /* 2311 * Hmm. We got an UDP packet to a port to which we 2312 * don't wanna listen. Ignore it. 2313 */ 2314 kfree_skb(skb); 2315 return 0; 2316 2317 short_packet: 2318 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2319 proto == IPPROTO_UDPLITE ? "Lite" : "", 2320 &saddr, ntohs(uh->source), 2321 ulen, skb->len, 2322 &daddr, ntohs(uh->dest)); 2323 goto drop; 2324 2325 csum_error: 2326 /* 2327 * RFC1122: OK. Discards the bad packet silently (as far as 2328 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2329 */ 2330 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2331 proto == IPPROTO_UDPLITE ? "Lite" : "", 2332 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2333 ulen); 2334 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2335 drop: 2336 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2337 kfree_skb(skb); 2338 return 0; 2339 } 2340 2341 /* We can only early demux multicast if there is a single matching socket. 2342 * If more than one socket found returns NULL 2343 */ 2344 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2345 __be16 loc_port, __be32 loc_addr, 2346 __be16 rmt_port, __be32 rmt_addr, 2347 int dif, int sdif) 2348 { 2349 struct sock *sk, *result; 2350 unsigned short hnum = ntohs(loc_port); 2351 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2352 struct udp_hslot *hslot = &udp_table.hash[slot]; 2353 2354 /* Do not bother scanning a too big list */ 2355 if (hslot->count > 10) 2356 return NULL; 2357 2358 result = NULL; 2359 sk_for_each_rcu(sk, &hslot->head) { 2360 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2361 rmt_port, rmt_addr, dif, sdif, hnum)) { 2362 if (result) 2363 return NULL; 2364 result = sk; 2365 } 2366 } 2367 2368 return result; 2369 } 2370 2371 /* For unicast we should only early demux connected sockets or we can 2372 * break forwarding setups. The chains here can be long so only check 2373 * if the first socket is an exact match and if not move on. 2374 */ 2375 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2376 __be16 loc_port, __be32 loc_addr, 2377 __be16 rmt_port, __be32 rmt_addr, 2378 int dif, int sdif) 2379 { 2380 unsigned short hnum = ntohs(loc_port); 2381 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2382 unsigned int slot2 = hash2 & udp_table.mask; 2383 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2384 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2385 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2386 struct sock *sk; 2387 2388 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2389 if (INET_MATCH(sk, net, acookie, rmt_addr, 2390 loc_addr, ports, dif, sdif)) 2391 return sk; 2392 /* Only check first socket in chain */ 2393 break; 2394 } 2395 return NULL; 2396 } 2397 2398 int udp_v4_early_demux(struct sk_buff *skb) 2399 { 2400 struct net *net = dev_net(skb->dev); 2401 struct in_device *in_dev = NULL; 2402 const struct iphdr *iph; 2403 const struct udphdr *uh; 2404 struct sock *sk = NULL; 2405 struct dst_entry *dst; 2406 int dif = skb->dev->ifindex; 2407 int sdif = inet_sdif(skb); 2408 int ours; 2409 2410 /* validate the packet */ 2411 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2412 return 0; 2413 2414 iph = ip_hdr(skb); 2415 uh = udp_hdr(skb); 2416 2417 if (skb->pkt_type == PACKET_MULTICAST) { 2418 in_dev = __in_dev_get_rcu(skb->dev); 2419 2420 if (!in_dev) 2421 return 0; 2422 2423 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2424 iph->protocol); 2425 if (!ours) 2426 return 0; 2427 2428 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2429 uh->source, iph->saddr, 2430 dif, sdif); 2431 } else if (skb->pkt_type == PACKET_HOST) { 2432 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2433 uh->source, iph->saddr, dif, sdif); 2434 } 2435 2436 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2437 return 0; 2438 2439 skb->sk = sk; 2440 skb->destructor = sock_efree; 2441 dst = READ_ONCE(sk->sk_rx_dst); 2442 2443 if (dst) 2444 dst = dst_check(dst, 0); 2445 if (dst) { 2446 u32 itag = 0; 2447 2448 /* set noref for now. 2449 * any place which wants to hold dst has to call 2450 * dst_hold_safe() 2451 */ 2452 skb_dst_set_noref(skb, dst); 2453 2454 /* for unconnected multicast sockets we need to validate 2455 * the source on each packet 2456 */ 2457 if (!inet_sk(sk)->inet_daddr && in_dev) 2458 return ip_mc_validate_source(skb, iph->daddr, 2459 iph->saddr, iph->tos, 2460 skb->dev, in_dev, &itag); 2461 } 2462 return 0; 2463 } 2464 2465 int udp_rcv(struct sk_buff *skb) 2466 { 2467 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2468 } 2469 2470 void udp_destroy_sock(struct sock *sk) 2471 { 2472 struct udp_sock *up = udp_sk(sk); 2473 bool slow = lock_sock_fast(sk); 2474 udp_flush_pending_frames(sk); 2475 unlock_sock_fast(sk, slow); 2476 if (static_branch_unlikely(&udp_encap_needed_key)) { 2477 if (up->encap_type) { 2478 void (*encap_destroy)(struct sock *sk); 2479 encap_destroy = READ_ONCE(up->encap_destroy); 2480 if (encap_destroy) 2481 encap_destroy(sk); 2482 } 2483 if (up->encap_enabled) 2484 static_branch_dec(&udp_encap_needed_key); 2485 } 2486 } 2487 2488 /* 2489 * Socket option code for UDP 2490 */ 2491 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2492 char __user *optval, unsigned int optlen, 2493 int (*push_pending_frames)(struct sock *)) 2494 { 2495 struct udp_sock *up = udp_sk(sk); 2496 int val, valbool; 2497 int err = 0; 2498 int is_udplite = IS_UDPLITE(sk); 2499 2500 if (optlen < sizeof(int)) 2501 return -EINVAL; 2502 2503 if (get_user(val, (int __user *)optval)) 2504 return -EFAULT; 2505 2506 valbool = val ? 1 : 0; 2507 2508 switch (optname) { 2509 case UDP_CORK: 2510 if (val != 0) { 2511 up->corkflag = 1; 2512 } else { 2513 up->corkflag = 0; 2514 lock_sock(sk); 2515 push_pending_frames(sk); 2516 release_sock(sk); 2517 } 2518 break; 2519 2520 case UDP_ENCAP: 2521 switch (val) { 2522 case 0: 2523 case UDP_ENCAP_ESPINUDP: 2524 case UDP_ENCAP_ESPINUDP_NON_IKE: 2525 up->encap_rcv = xfrm4_udp_encap_rcv; 2526 /* FALLTHROUGH */ 2527 case UDP_ENCAP_L2TPINUDP: 2528 up->encap_type = val; 2529 lock_sock(sk); 2530 udp_tunnel_encap_enable(sk->sk_socket); 2531 release_sock(sk); 2532 break; 2533 default: 2534 err = -ENOPROTOOPT; 2535 break; 2536 } 2537 break; 2538 2539 case UDP_NO_CHECK6_TX: 2540 up->no_check6_tx = valbool; 2541 break; 2542 2543 case UDP_NO_CHECK6_RX: 2544 up->no_check6_rx = valbool; 2545 break; 2546 2547 case UDP_SEGMENT: 2548 if (val < 0 || val > USHRT_MAX) 2549 return -EINVAL; 2550 up->gso_size = val; 2551 break; 2552 2553 case UDP_GRO: 2554 lock_sock(sk); 2555 if (valbool) 2556 udp_tunnel_encap_enable(sk->sk_socket); 2557 up->gro_enabled = valbool; 2558 release_sock(sk); 2559 break; 2560 2561 /* 2562 * UDP-Lite's partial checksum coverage (RFC 3828). 2563 */ 2564 /* The sender sets actual checksum coverage length via this option. 2565 * The case coverage > packet length is handled by send module. */ 2566 case UDPLITE_SEND_CSCOV: 2567 if (!is_udplite) /* Disable the option on UDP sockets */ 2568 return -ENOPROTOOPT; 2569 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2570 val = 8; 2571 else if (val > USHRT_MAX) 2572 val = USHRT_MAX; 2573 up->pcslen = val; 2574 up->pcflag |= UDPLITE_SEND_CC; 2575 break; 2576 2577 /* The receiver specifies a minimum checksum coverage value. To make 2578 * sense, this should be set to at least 8 (as done below). If zero is 2579 * used, this again means full checksum coverage. */ 2580 case UDPLITE_RECV_CSCOV: 2581 if (!is_udplite) /* Disable the option on UDP sockets */ 2582 return -ENOPROTOOPT; 2583 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2584 val = 8; 2585 else if (val > USHRT_MAX) 2586 val = USHRT_MAX; 2587 up->pcrlen = val; 2588 up->pcflag |= UDPLITE_RECV_CC; 2589 break; 2590 2591 default: 2592 err = -ENOPROTOOPT; 2593 break; 2594 } 2595 2596 return err; 2597 } 2598 EXPORT_SYMBOL(udp_lib_setsockopt); 2599 2600 int udp_setsockopt(struct sock *sk, int level, int optname, 2601 char __user *optval, unsigned int optlen) 2602 { 2603 if (level == SOL_UDP || level == SOL_UDPLITE) 2604 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2605 udp_push_pending_frames); 2606 return ip_setsockopt(sk, level, optname, optval, optlen); 2607 } 2608 2609 #ifdef CONFIG_COMPAT 2610 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2611 char __user *optval, unsigned int optlen) 2612 { 2613 if (level == SOL_UDP || level == SOL_UDPLITE) 2614 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2615 udp_push_pending_frames); 2616 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2617 } 2618 #endif 2619 2620 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2621 char __user *optval, int __user *optlen) 2622 { 2623 struct udp_sock *up = udp_sk(sk); 2624 int val, len; 2625 2626 if (get_user(len, optlen)) 2627 return -EFAULT; 2628 2629 len = min_t(unsigned int, len, sizeof(int)); 2630 2631 if (len < 0) 2632 return -EINVAL; 2633 2634 switch (optname) { 2635 case UDP_CORK: 2636 val = up->corkflag; 2637 break; 2638 2639 case UDP_ENCAP: 2640 val = up->encap_type; 2641 break; 2642 2643 case UDP_NO_CHECK6_TX: 2644 val = up->no_check6_tx; 2645 break; 2646 2647 case UDP_NO_CHECK6_RX: 2648 val = up->no_check6_rx; 2649 break; 2650 2651 case UDP_SEGMENT: 2652 val = up->gso_size; 2653 break; 2654 2655 /* The following two cannot be changed on UDP sockets, the return is 2656 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2657 case UDPLITE_SEND_CSCOV: 2658 val = up->pcslen; 2659 break; 2660 2661 case UDPLITE_RECV_CSCOV: 2662 val = up->pcrlen; 2663 break; 2664 2665 default: 2666 return -ENOPROTOOPT; 2667 } 2668 2669 if (put_user(len, optlen)) 2670 return -EFAULT; 2671 if (copy_to_user(optval, &val, len)) 2672 return -EFAULT; 2673 return 0; 2674 } 2675 EXPORT_SYMBOL(udp_lib_getsockopt); 2676 2677 int udp_getsockopt(struct sock *sk, int level, int optname, 2678 char __user *optval, int __user *optlen) 2679 { 2680 if (level == SOL_UDP || level == SOL_UDPLITE) 2681 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2682 return ip_getsockopt(sk, level, optname, optval, optlen); 2683 } 2684 2685 #ifdef CONFIG_COMPAT 2686 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2687 char __user *optval, int __user *optlen) 2688 { 2689 if (level == SOL_UDP || level == SOL_UDPLITE) 2690 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2691 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2692 } 2693 #endif 2694 /** 2695 * udp_poll - wait for a UDP event. 2696 * @file - file struct 2697 * @sock - socket 2698 * @wait - poll table 2699 * 2700 * This is same as datagram poll, except for the special case of 2701 * blocking sockets. If application is using a blocking fd 2702 * and a packet with checksum error is in the queue; 2703 * then it could get return from select indicating data available 2704 * but then block when reading it. Add special case code 2705 * to work around these arguably broken applications. 2706 */ 2707 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2708 { 2709 __poll_t mask = datagram_poll(file, sock, wait); 2710 struct sock *sk = sock->sk; 2711 2712 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2713 mask |= EPOLLIN | EPOLLRDNORM; 2714 2715 /* Check for false positives due to checksum errors */ 2716 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2717 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2718 mask &= ~(EPOLLIN | EPOLLRDNORM); 2719 2720 return mask; 2721 2722 } 2723 EXPORT_SYMBOL(udp_poll); 2724 2725 int udp_abort(struct sock *sk, int err) 2726 { 2727 lock_sock(sk); 2728 2729 sk->sk_err = err; 2730 sk->sk_error_report(sk); 2731 __udp_disconnect(sk, 0); 2732 2733 release_sock(sk); 2734 2735 return 0; 2736 } 2737 EXPORT_SYMBOL_GPL(udp_abort); 2738 2739 struct proto udp_prot = { 2740 .name = "UDP", 2741 .owner = THIS_MODULE, 2742 .close = udp_lib_close, 2743 .pre_connect = udp_pre_connect, 2744 .connect = ip4_datagram_connect, 2745 .disconnect = udp_disconnect, 2746 .ioctl = udp_ioctl, 2747 .init = udp_init_sock, 2748 .destroy = udp_destroy_sock, 2749 .setsockopt = udp_setsockopt, 2750 .getsockopt = udp_getsockopt, 2751 .sendmsg = udp_sendmsg, 2752 .recvmsg = udp_recvmsg, 2753 .sendpage = udp_sendpage, 2754 .release_cb = ip4_datagram_release_cb, 2755 .hash = udp_lib_hash, 2756 .unhash = udp_lib_unhash, 2757 .rehash = udp_v4_rehash, 2758 .get_port = udp_v4_get_port, 2759 .memory_allocated = &udp_memory_allocated, 2760 .sysctl_mem = sysctl_udp_mem, 2761 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2762 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2763 .obj_size = sizeof(struct udp_sock), 2764 .h.udp_table = &udp_table, 2765 #ifdef CONFIG_COMPAT 2766 .compat_setsockopt = compat_udp_setsockopt, 2767 .compat_getsockopt = compat_udp_getsockopt, 2768 #endif 2769 .diag_destroy = udp_abort, 2770 }; 2771 EXPORT_SYMBOL(udp_prot); 2772 2773 /* ------------------------------------------------------------------------ */ 2774 #ifdef CONFIG_PROC_FS 2775 2776 static struct sock *udp_get_first(struct seq_file *seq, int start) 2777 { 2778 struct sock *sk; 2779 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2780 struct udp_iter_state *state = seq->private; 2781 struct net *net = seq_file_net(seq); 2782 2783 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2784 ++state->bucket) { 2785 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2786 2787 if (hlist_empty(&hslot->head)) 2788 continue; 2789 2790 spin_lock_bh(&hslot->lock); 2791 sk_for_each(sk, &hslot->head) { 2792 if (!net_eq(sock_net(sk), net)) 2793 continue; 2794 if (sk->sk_family == afinfo->family) 2795 goto found; 2796 } 2797 spin_unlock_bh(&hslot->lock); 2798 } 2799 sk = NULL; 2800 found: 2801 return sk; 2802 } 2803 2804 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2805 { 2806 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2807 struct udp_iter_state *state = seq->private; 2808 struct net *net = seq_file_net(seq); 2809 2810 do { 2811 sk = sk_next(sk); 2812 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2813 2814 if (!sk) { 2815 if (state->bucket <= afinfo->udp_table->mask) 2816 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2817 return udp_get_first(seq, state->bucket + 1); 2818 } 2819 return sk; 2820 } 2821 2822 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2823 { 2824 struct sock *sk = udp_get_first(seq, 0); 2825 2826 if (sk) 2827 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2828 --pos; 2829 return pos ? NULL : sk; 2830 } 2831 2832 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2833 { 2834 struct udp_iter_state *state = seq->private; 2835 state->bucket = MAX_UDP_PORTS; 2836 2837 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2838 } 2839 EXPORT_SYMBOL(udp_seq_start); 2840 2841 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2842 { 2843 struct sock *sk; 2844 2845 if (v == SEQ_START_TOKEN) 2846 sk = udp_get_idx(seq, 0); 2847 else 2848 sk = udp_get_next(seq, v); 2849 2850 ++*pos; 2851 return sk; 2852 } 2853 EXPORT_SYMBOL(udp_seq_next); 2854 2855 void udp_seq_stop(struct seq_file *seq, void *v) 2856 { 2857 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2858 struct udp_iter_state *state = seq->private; 2859 2860 if (state->bucket <= afinfo->udp_table->mask) 2861 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2862 } 2863 EXPORT_SYMBOL(udp_seq_stop); 2864 2865 /* ------------------------------------------------------------------------ */ 2866 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2867 int bucket) 2868 { 2869 struct inet_sock *inet = inet_sk(sp); 2870 __be32 dest = inet->inet_daddr; 2871 __be32 src = inet->inet_rcv_saddr; 2872 __u16 destp = ntohs(inet->inet_dport); 2873 __u16 srcp = ntohs(inet->inet_sport); 2874 2875 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2876 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 2877 bucket, src, srcp, dest, destp, sp->sk_state, 2878 sk_wmem_alloc_get(sp), 2879 udp_rqueue_get(sp), 2880 0, 0L, 0, 2881 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2882 0, sock_i_ino(sp), 2883 refcount_read(&sp->sk_refcnt), sp, 2884 atomic_read(&sp->sk_drops)); 2885 } 2886 2887 int udp4_seq_show(struct seq_file *seq, void *v) 2888 { 2889 seq_setwidth(seq, 127); 2890 if (v == SEQ_START_TOKEN) 2891 seq_puts(seq, " sl local_address rem_address st tx_queue " 2892 "rx_queue tr tm->when retrnsmt uid timeout " 2893 "inode ref pointer drops"); 2894 else { 2895 struct udp_iter_state *state = seq->private; 2896 2897 udp4_format_sock(v, seq, state->bucket); 2898 } 2899 seq_pad(seq, '\n'); 2900 return 0; 2901 } 2902 2903 const struct seq_operations udp_seq_ops = { 2904 .start = udp_seq_start, 2905 .next = udp_seq_next, 2906 .stop = udp_seq_stop, 2907 .show = udp4_seq_show, 2908 }; 2909 EXPORT_SYMBOL(udp_seq_ops); 2910 2911 static struct udp_seq_afinfo udp4_seq_afinfo = { 2912 .family = AF_INET, 2913 .udp_table = &udp_table, 2914 }; 2915 2916 static int __net_init udp4_proc_init_net(struct net *net) 2917 { 2918 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2919 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2920 return -ENOMEM; 2921 return 0; 2922 } 2923 2924 static void __net_exit udp4_proc_exit_net(struct net *net) 2925 { 2926 remove_proc_entry("udp", net->proc_net); 2927 } 2928 2929 static struct pernet_operations udp4_net_ops = { 2930 .init = udp4_proc_init_net, 2931 .exit = udp4_proc_exit_net, 2932 }; 2933 2934 int __init udp4_proc_init(void) 2935 { 2936 return register_pernet_subsys(&udp4_net_ops); 2937 } 2938 2939 void udp4_proc_exit(void) 2940 { 2941 unregister_pernet_subsys(&udp4_net_ops); 2942 } 2943 #endif /* CONFIG_PROC_FS */ 2944 2945 static __initdata unsigned long uhash_entries; 2946 static int __init set_uhash_entries(char *str) 2947 { 2948 ssize_t ret; 2949 2950 if (!str) 2951 return 0; 2952 2953 ret = kstrtoul(str, 0, &uhash_entries); 2954 if (ret) 2955 return 0; 2956 2957 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2958 uhash_entries = UDP_HTABLE_SIZE_MIN; 2959 return 1; 2960 } 2961 __setup("uhash_entries=", set_uhash_entries); 2962 2963 void __init udp_table_init(struct udp_table *table, const char *name) 2964 { 2965 unsigned int i; 2966 2967 table->hash = alloc_large_system_hash(name, 2968 2 * sizeof(struct udp_hslot), 2969 uhash_entries, 2970 21, /* one slot per 2 MB */ 2971 0, 2972 &table->log, 2973 &table->mask, 2974 UDP_HTABLE_SIZE_MIN, 2975 64 * 1024); 2976 2977 table->hash2 = table->hash + (table->mask + 1); 2978 for (i = 0; i <= table->mask; i++) { 2979 INIT_HLIST_HEAD(&table->hash[i].head); 2980 table->hash[i].count = 0; 2981 spin_lock_init(&table->hash[i].lock); 2982 } 2983 for (i = 0; i <= table->mask; i++) { 2984 INIT_HLIST_HEAD(&table->hash2[i].head); 2985 table->hash2[i].count = 0; 2986 spin_lock_init(&table->hash2[i].lock); 2987 } 2988 } 2989 2990 u32 udp_flow_hashrnd(void) 2991 { 2992 static u32 hashrnd __read_mostly; 2993 2994 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2995 2996 return hashrnd; 2997 } 2998 EXPORT_SYMBOL(udp_flow_hashrnd); 2999 3000 static void __udp_sysctl_init(struct net *net) 3001 { 3002 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 3003 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 3004 3005 #ifdef CONFIG_NET_L3_MASTER_DEV 3006 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3007 #endif 3008 } 3009 3010 static int __net_init udp_sysctl_init(struct net *net) 3011 { 3012 __udp_sysctl_init(net); 3013 return 0; 3014 } 3015 3016 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3017 .init = udp_sysctl_init, 3018 }; 3019 3020 void __init udp_init(void) 3021 { 3022 unsigned long limit; 3023 unsigned int i; 3024 3025 udp_table_init(&udp_table, "UDP"); 3026 limit = nr_free_buffer_pages() / 8; 3027 limit = max(limit, 128UL); 3028 sysctl_udp_mem[0] = limit / 4 * 3; 3029 sysctl_udp_mem[1] = limit; 3030 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3031 3032 __udp_sysctl_init(&init_net); 3033 3034 /* 16 spinlocks per cpu */ 3035 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3036 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3037 GFP_KERNEL); 3038 if (!udp_busylocks) 3039 panic("UDP: failed to alloc udp_busylocks\n"); 3040 for (i = 0; i < (1U << udp_busylocks_log); i++) 3041 spin_lock_init(udp_busylocks + i); 3042 3043 if (register_pernet_subsys(&udp_sysctl_ops)) 3044 panic("UDP: failed to init sysctl parameters.\n"); 3045 } 3046