1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 11 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 12 * Hirokazu Takahashi, <taka@valinux.co.jp> 13 * 14 * Fixes: 15 * Alan Cox : verify_area() calls 16 * Alan Cox : stopped close while in use off icmp 17 * messages. Not a fix but a botch that 18 * for udp at least is 'valid'. 19 * Alan Cox : Fixed icmp handling properly 20 * Alan Cox : Correct error for oversized datagrams 21 * Alan Cox : Tidied select() semantics. 22 * Alan Cox : udp_err() fixed properly, also now 23 * select and read wake correctly on errors 24 * Alan Cox : udp_send verify_area moved to avoid mem leak 25 * Alan Cox : UDP can count its memory 26 * Alan Cox : send to an unknown connection causes 27 * an ECONNREFUSED off the icmp, but 28 * does NOT close. 29 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 31 * bug no longer crashes it. 32 * Fred Van Kempen : Net2e support for sk->broadcast. 33 * Alan Cox : Uses skb_free_datagram 34 * Alan Cox : Added get/set sockopt support. 35 * Alan Cox : Broadcasting without option set returns EACCES. 36 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 37 * Alan Cox : Use ip_tos and ip_ttl 38 * Alan Cox : SNMP Mibs 39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 40 * Matt Dillon : UDP length checks. 41 * Alan Cox : Smarter af_inet used properly. 42 * Alan Cox : Use new kernel side addressing. 43 * Alan Cox : Incorrect return on truncated datagram receive. 44 * Arnt Gulbrandsen : New udp_send and stuff 45 * Alan Cox : Cache last socket 46 * Alan Cox : Route cache 47 * Jon Peatfield : Minor efficiency fix to sendto(). 48 * Mike Shaver : RFC1122 checks. 49 * Alan Cox : Nonblocking error fix. 50 * Willy Konynenberg : Transparent proxying support. 51 * Mike McLagan : Routing by source 52 * David S. Miller : New socket lookup architecture. 53 * Last socket cache retained as it 54 * does have a high hit rate. 55 * Olaf Kirch : Don't linearise iovec on sendmsg. 56 * Andi Kleen : Some cleanups, cache destination entry 57 * for connect. 58 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 59 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 60 * return ENOTCONN for unconnected sockets (POSIX) 61 * Janos Farkas : don't deliver multi/broadcasts to a different 62 * bound-to-device socket 63 * Hirokazu Takahashi : HW checksumming for outgoing UDP 64 * datagrams. 65 * Hirokazu Takahashi : sendfile() on UDP works now. 66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 69 * a single port at the same time. 70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 71 * James Chapman : Add L2TP encapsulation type. 72 * 73 * 74 * This program is free software; you can redistribute it and/or 75 * modify it under the terms of the GNU General Public License 76 * as published by the Free Software Foundation; either version 77 * 2 of the License, or (at your option) any later version. 78 */ 79 80 #define pr_fmt(fmt) "UDP: " fmt 81 82 #include <linux/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/bootmem.h> 85 #include <linux/highmem.h> 86 #include <linux/swap.h> 87 #include <linux/types.h> 88 #include <linux/fcntl.h> 89 #include <linux/module.h> 90 #include <linux/socket.h> 91 #include <linux/sockios.h> 92 #include <linux/igmp.h> 93 #include <linux/inetdevice.h> 94 #include <linux/in.h> 95 #include <linux/errno.h> 96 #include <linux/timer.h> 97 #include <linux/mm.h> 98 #include <linux/inet.h> 99 #include <linux/netdevice.h> 100 #include <linux/slab.h> 101 #include <net/tcp_states.h> 102 #include <linux/skbuff.h> 103 #include <linux/proc_fs.h> 104 #include <linux/seq_file.h> 105 #include <net/net_namespace.h> 106 #include <net/icmp.h> 107 #include <net/inet_hashtables.h> 108 #include <net/route.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <trace/events/udp.h> 112 #include <linux/static_key.h> 113 #include <trace/events/skb.h> 114 #include <net/busy_poll.h> 115 #include "udp_impl.h" 116 #include <net/sock_reuseport.h> 117 #include <net/addrconf.h> 118 119 struct udp_table udp_table __read_mostly; 120 EXPORT_SYMBOL(udp_table); 121 122 long sysctl_udp_mem[3] __read_mostly; 123 EXPORT_SYMBOL(sysctl_udp_mem); 124 125 atomic_long_t udp_memory_allocated; 126 EXPORT_SYMBOL(udp_memory_allocated); 127 128 #define MAX_UDP_PORTS 65536 129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) 130 131 /* IPCB reference means this can not be used from early demux */ 132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb) 133 { 134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 135 if (!net->ipv4.sysctl_udp_l3mdev_accept && 136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 137 return true; 138 #endif 139 return false; 140 } 141 142 static int udp_lib_lport_inuse(struct net *net, __u16 num, 143 const struct udp_hslot *hslot, 144 unsigned long *bitmap, 145 struct sock *sk, unsigned int log) 146 { 147 struct sock *sk2; 148 kuid_t uid = sock_i_uid(sk); 149 150 sk_for_each(sk2, &hslot->head) { 151 if (net_eq(sock_net(sk2), net) && 152 sk2 != sk && 153 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 154 (!sk2->sk_reuse || !sk->sk_reuse) && 155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 157 inet_rcv_saddr_equal(sk, sk2, true)) { 158 if (sk2->sk_reuseport && sk->sk_reuseport && 159 !rcu_access_pointer(sk->sk_reuseport_cb) && 160 uid_eq(uid, sock_i_uid(sk2))) { 161 if (!bitmap) 162 return 0; 163 } else { 164 if (!bitmap) 165 return 1; 166 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 167 bitmap); 168 } 169 } 170 } 171 return 0; 172 } 173 174 /* 175 * Note: we still hold spinlock of primary hash chain, so no other writer 176 * can insert/delete a socket with local_port == num 177 */ 178 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 179 struct udp_hslot *hslot2, 180 struct sock *sk) 181 { 182 struct sock *sk2; 183 kuid_t uid = sock_i_uid(sk); 184 int res = 0; 185 186 spin_lock(&hslot2->lock); 187 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 188 if (net_eq(sock_net(sk2), net) && 189 sk2 != sk && 190 (udp_sk(sk2)->udp_port_hash == num) && 191 (!sk2->sk_reuse || !sk->sk_reuse) && 192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 194 inet_rcv_saddr_equal(sk, sk2, true)) { 195 if (sk2->sk_reuseport && sk->sk_reuseport && 196 !rcu_access_pointer(sk->sk_reuseport_cb) && 197 uid_eq(uid, sock_i_uid(sk2))) { 198 res = 0; 199 } else { 200 res = 1; 201 } 202 break; 203 } 204 } 205 spin_unlock(&hslot2->lock); 206 return res; 207 } 208 209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 210 { 211 struct net *net = sock_net(sk); 212 kuid_t uid = sock_i_uid(sk); 213 struct sock *sk2; 214 215 sk_for_each(sk2, &hslot->head) { 216 if (net_eq(sock_net(sk2), net) && 217 sk2 != sk && 218 sk2->sk_family == sk->sk_family && 219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 223 inet_rcv_saddr_equal(sk, sk2, false)) { 224 return reuseport_add_sock(sk, sk2); 225 } 226 } 227 228 return reuseport_alloc(sk); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_hslot *hslot, *hslot2; 243 struct udp_table *udptable = sk->sk_prot->h.udp_table; 244 int error = 1; 245 struct net *net = sock_net(sk); 246 247 if (!snum) { 248 int low, high, remaining; 249 unsigned int rand; 250 unsigned short first, last; 251 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 252 253 inet_get_local_port_range(net, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = prandom_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sk_add_node_rcu(sk, &hslot->head); 330 hslot->count++; 331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 332 333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 334 spin_lock(&hslot2->lock); 335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 336 sk->sk_family == AF_INET6) 337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 338 &hslot2->head); 339 else 340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 341 &hslot2->head); 342 hslot2->count++; 343 spin_unlock(&hslot2->lock); 344 } 345 sock_set_flag(sk, SOCK_RCU_FREE); 346 error = 0; 347 fail_unlock: 348 spin_unlock_bh(&hslot->lock); 349 fail: 350 return error; 351 } 352 EXPORT_SYMBOL(udp_lib_get_port); 353 354 int udp_v4_get_port(struct sock *sk, unsigned short snum) 355 { 356 unsigned int hash2_nulladdr = 357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 358 unsigned int hash2_partial = 359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 360 361 /* precompute partial secondary hash */ 362 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 363 return udp_lib_get_port(sk, snum, hash2_nulladdr); 364 } 365 366 static int compute_score(struct sock *sk, struct net *net, 367 __be32 saddr, __be16 sport, 368 __be32 daddr, unsigned short hnum, 369 int dif, int sdif, bool exact_dif) 370 { 371 int score; 372 struct inet_sock *inet; 373 374 if (!net_eq(sock_net(sk), net) || 375 udp_sk(sk)->udp_port_hash != hnum || 376 ipv6_only_sock(sk)) 377 return -1; 378 379 score = (sk->sk_family == PF_INET) ? 2 : 1; 380 inet = inet_sk(sk); 381 382 if (inet->inet_rcv_saddr) { 383 if (inet->inet_rcv_saddr != daddr) 384 return -1; 385 score += 4; 386 } 387 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 if (sk->sk_bound_dev_if || exact_dif) { 401 bool dev_match = (sk->sk_bound_dev_if == dif || 402 sk->sk_bound_dev_if == sdif); 403 404 if (!dev_match) 405 return -1; 406 if (sk->sk_bound_dev_if) 407 score += 4; 408 } 409 410 if (sk->sk_incoming_cpu == raw_smp_processor_id()) 411 score++; 412 return score; 413 } 414 415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr, 416 const __u16 lport, const __be32 faddr, 417 const __be16 fport) 418 { 419 static u32 udp_ehash_secret __read_mostly; 420 421 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 422 423 return __inet_ehashfn(laddr, lport, faddr, fport, 424 udp_ehash_secret + net_hash_mix(net)); 425 } 426 427 /* called with rcu_read_lock() */ 428 static struct sock *udp4_lib_lookup2(struct net *net, 429 __be32 saddr, __be16 sport, 430 __be32 daddr, unsigned int hnum, 431 int dif, int sdif, bool exact_dif, 432 struct udp_hslot *hslot2, 433 struct sk_buff *skb) 434 { 435 struct sock *sk, *result; 436 int score, badness; 437 u32 hash = 0; 438 439 result = NULL; 440 badness = 0; 441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 442 score = compute_score(sk, net, saddr, sport, 443 daddr, hnum, dif, sdif, exact_dif); 444 if (score > badness) { 445 if (sk->sk_reuseport) { 446 hash = udp_ehashfn(net, daddr, hnum, 447 saddr, sport); 448 result = reuseport_select_sock(sk, hash, skb, 449 sizeof(struct udphdr)); 450 if (result) 451 return result; 452 } 453 badness = score; 454 result = sk; 455 } 456 } 457 return result; 458 } 459 460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 461 * harder than this. -DaveM 462 */ 463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, 464 __be16 sport, __be32 daddr, __be16 dport, int dif, 465 int sdif, struct udp_table *udptable, struct sk_buff *skb) 466 { 467 struct sock *sk, *result; 468 unsigned short hnum = ntohs(dport); 469 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); 470 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; 471 bool exact_dif = udp_lib_exact_dif_match(net, skb); 472 int score, badness; 473 u32 hash = 0; 474 475 if (hslot->count > 10) { 476 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 477 slot2 = hash2 & udptable->mask; 478 hslot2 = &udptable->hash2[slot2]; 479 if (hslot->count < hslot2->count) 480 goto begin; 481 482 result = udp4_lib_lookup2(net, saddr, sport, 483 daddr, hnum, dif, sdif, 484 exact_dif, hslot2, skb); 485 if (!result) { 486 unsigned int old_slot2 = slot2; 487 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 488 slot2 = hash2 & udptable->mask; 489 /* avoid searching the same slot again. */ 490 if (unlikely(slot2 == old_slot2)) 491 return result; 492 493 hslot2 = &udptable->hash2[slot2]; 494 if (hslot->count < hslot2->count) 495 goto begin; 496 497 result = udp4_lib_lookup2(net, saddr, sport, 498 daddr, hnum, dif, sdif, 499 exact_dif, hslot2, skb); 500 } 501 return result; 502 } 503 begin: 504 result = NULL; 505 badness = 0; 506 sk_for_each_rcu(sk, &hslot->head) { 507 score = compute_score(sk, net, saddr, sport, 508 daddr, hnum, dif, sdif, exact_dif); 509 if (score > badness) { 510 if (sk->sk_reuseport) { 511 hash = udp_ehashfn(net, daddr, hnum, 512 saddr, sport); 513 result = reuseport_select_sock(sk, hash, skb, 514 sizeof(struct udphdr)); 515 if (result) 516 return result; 517 } 518 result = sk; 519 badness = score; 520 } 521 } 522 return result; 523 } 524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 525 526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 527 __be16 sport, __be16 dport, 528 struct udp_table *udptable) 529 { 530 const struct iphdr *iph = ip_hdr(skb); 531 532 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 533 iph->daddr, dport, inet_iif(skb), 534 inet_sdif(skb), udptable, skb); 535 } 536 537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb, 538 __be16 sport, __be16 dport) 539 { 540 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table); 541 } 542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb); 543 544 /* Must be called under rcu_read_lock(). 545 * Does increment socket refcount. 546 */ 547 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 548 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, 549 __be32 daddr, __be16 dport, int dif) 550 { 551 struct sock *sk; 552 553 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 554 dif, 0, &udp_table, NULL); 555 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 556 sk = NULL; 557 return sk; 558 } 559 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 560 #endif 561 562 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk, 563 __be16 loc_port, __be32 loc_addr, 564 __be16 rmt_port, __be32 rmt_addr, 565 int dif, int sdif, unsigned short hnum) 566 { 567 struct inet_sock *inet = inet_sk(sk); 568 569 if (!net_eq(sock_net(sk), net) || 570 udp_sk(sk)->udp_port_hash != hnum || 571 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 572 (inet->inet_dport != rmt_port && inet->inet_dport) || 573 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 574 ipv6_only_sock(sk) || 575 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && 576 sk->sk_bound_dev_if != sdif)) 577 return false; 578 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 579 return false; 580 return true; 581 } 582 583 /* 584 * This routine is called by the ICMP module when it gets some 585 * sort of error condition. If err < 0 then the socket should 586 * be closed and the error returned to the user. If err > 0 587 * it's just the icmp type << 8 | icmp code. 588 * Header points to the ip header of the error packet. We move 589 * on past this. Then (as it used to claim before adjustment) 590 * header points to the first 8 bytes of the udp header. We need 591 * to find the appropriate port. 592 */ 593 594 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 595 { 596 struct inet_sock *inet; 597 const struct iphdr *iph = (const struct iphdr *)skb->data; 598 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 599 const int type = icmp_hdr(skb)->type; 600 const int code = icmp_hdr(skb)->code; 601 struct sock *sk; 602 int harderr; 603 int err; 604 struct net *net = dev_net(skb->dev); 605 606 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 607 iph->saddr, uh->source, skb->dev->ifindex, 0, 608 udptable, NULL); 609 if (!sk) { 610 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 611 return; /* No socket for error */ 612 } 613 614 err = 0; 615 harderr = 0; 616 inet = inet_sk(sk); 617 618 switch (type) { 619 default: 620 case ICMP_TIME_EXCEEDED: 621 err = EHOSTUNREACH; 622 break; 623 case ICMP_SOURCE_QUENCH: 624 goto out; 625 case ICMP_PARAMETERPROB: 626 err = EPROTO; 627 harderr = 1; 628 break; 629 case ICMP_DEST_UNREACH: 630 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 631 ipv4_sk_update_pmtu(skb, sk, info); 632 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 633 err = EMSGSIZE; 634 harderr = 1; 635 break; 636 } 637 goto out; 638 } 639 err = EHOSTUNREACH; 640 if (code <= NR_ICMP_UNREACH) { 641 harderr = icmp_err_convert[code].fatal; 642 err = icmp_err_convert[code].errno; 643 } 644 break; 645 case ICMP_REDIRECT: 646 ipv4_sk_redirect(skb, sk); 647 goto out; 648 } 649 650 /* 651 * RFC1122: OK. Passes ICMP errors back to application, as per 652 * 4.1.3.3. 653 */ 654 if (!inet->recverr) { 655 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 656 goto out; 657 } else 658 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 659 660 sk->sk_err = err; 661 sk->sk_error_report(sk); 662 out: 663 return; 664 } 665 666 void udp_err(struct sk_buff *skb, u32 info) 667 { 668 __udp4_lib_err(skb, info, &udp_table); 669 } 670 671 /* 672 * Throw away all pending data and cancel the corking. Socket is locked. 673 */ 674 void udp_flush_pending_frames(struct sock *sk) 675 { 676 struct udp_sock *up = udp_sk(sk); 677 678 if (up->pending) { 679 up->len = 0; 680 up->pending = 0; 681 ip_flush_pending_frames(sk); 682 } 683 } 684 EXPORT_SYMBOL(udp_flush_pending_frames); 685 686 /** 687 * udp4_hwcsum - handle outgoing HW checksumming 688 * @skb: sk_buff containing the filled-in UDP header 689 * (checksum field must be zeroed out) 690 * @src: source IP address 691 * @dst: destination IP address 692 */ 693 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 694 { 695 struct udphdr *uh = udp_hdr(skb); 696 int offset = skb_transport_offset(skb); 697 int len = skb->len - offset; 698 int hlen = len; 699 __wsum csum = 0; 700 701 if (!skb_has_frag_list(skb)) { 702 /* 703 * Only one fragment on the socket. 704 */ 705 skb->csum_start = skb_transport_header(skb) - skb->head; 706 skb->csum_offset = offsetof(struct udphdr, check); 707 uh->check = ~csum_tcpudp_magic(src, dst, len, 708 IPPROTO_UDP, 0); 709 } else { 710 struct sk_buff *frags; 711 712 /* 713 * HW-checksum won't work as there are two or more 714 * fragments on the socket so that all csums of sk_buffs 715 * should be together 716 */ 717 skb_walk_frags(skb, frags) { 718 csum = csum_add(csum, frags->csum); 719 hlen -= frags->len; 720 } 721 722 csum = skb_checksum(skb, offset, hlen, csum); 723 skb->ip_summed = CHECKSUM_NONE; 724 725 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 726 if (uh->check == 0) 727 uh->check = CSUM_MANGLED_0; 728 } 729 } 730 EXPORT_SYMBOL_GPL(udp4_hwcsum); 731 732 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 733 * for the simple case like when setting the checksum for a UDP tunnel. 734 */ 735 void udp_set_csum(bool nocheck, struct sk_buff *skb, 736 __be32 saddr, __be32 daddr, int len) 737 { 738 struct udphdr *uh = udp_hdr(skb); 739 740 if (nocheck) { 741 uh->check = 0; 742 } else if (skb_is_gso(skb)) { 743 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 744 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 745 uh->check = 0; 746 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 747 if (uh->check == 0) 748 uh->check = CSUM_MANGLED_0; 749 } else { 750 skb->ip_summed = CHECKSUM_PARTIAL; 751 skb->csum_start = skb_transport_header(skb) - skb->head; 752 skb->csum_offset = offsetof(struct udphdr, check); 753 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 754 } 755 } 756 EXPORT_SYMBOL(udp_set_csum); 757 758 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 759 struct inet_cork *cork) 760 { 761 struct sock *sk = skb->sk; 762 struct inet_sock *inet = inet_sk(sk); 763 struct udphdr *uh; 764 int err = 0; 765 int is_udplite = IS_UDPLITE(sk); 766 int offset = skb_transport_offset(skb); 767 int len = skb->len - offset; 768 __wsum csum = 0; 769 770 /* 771 * Create a UDP header 772 */ 773 uh = udp_hdr(skb); 774 uh->source = inet->inet_sport; 775 uh->dest = fl4->fl4_dport; 776 uh->len = htons(len); 777 uh->check = 0; 778 779 if (cork->gso_size) { 780 const int hlen = skb_network_header_len(skb) + 781 sizeof(struct udphdr); 782 783 if (hlen + cork->gso_size > cork->fragsize) 784 return -EINVAL; 785 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) 786 return -EINVAL; 787 if (sk->sk_no_check_tx) 788 return -EINVAL; 789 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || 790 dst_xfrm(skb_dst(skb))) 791 return -EIO; 792 793 skb_shinfo(skb)->gso_size = cork->gso_size; 794 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 795 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh), 796 cork->gso_size); 797 goto csum_partial; 798 } 799 800 if (is_udplite) /* UDP-Lite */ 801 csum = udplite_csum(skb); 802 803 else if (sk->sk_no_check_tx) { /* UDP csum off */ 804 805 skb->ip_summed = CHECKSUM_NONE; 806 goto send; 807 808 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 809 csum_partial: 810 811 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 812 goto send; 813 814 } else 815 csum = udp_csum(skb); 816 817 /* add protocol-dependent pseudo-header */ 818 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 819 sk->sk_protocol, csum); 820 if (uh->check == 0) 821 uh->check = CSUM_MANGLED_0; 822 823 send: 824 err = ip_send_skb(sock_net(sk), skb); 825 if (err) { 826 if (err == -ENOBUFS && !inet->recverr) { 827 UDP_INC_STATS(sock_net(sk), 828 UDP_MIB_SNDBUFERRORS, is_udplite); 829 err = 0; 830 } 831 } else 832 UDP_INC_STATS(sock_net(sk), 833 UDP_MIB_OUTDATAGRAMS, is_udplite); 834 return err; 835 } 836 837 /* 838 * Push out all pending data as one UDP datagram. Socket is locked. 839 */ 840 int udp_push_pending_frames(struct sock *sk) 841 { 842 struct udp_sock *up = udp_sk(sk); 843 struct inet_sock *inet = inet_sk(sk); 844 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 845 struct sk_buff *skb; 846 int err = 0; 847 848 skb = ip_finish_skb(sk, fl4); 849 if (!skb) 850 goto out; 851 852 err = udp_send_skb(skb, fl4, &inet->cork.base); 853 854 out: 855 up->len = 0; 856 up->pending = 0; 857 return err; 858 } 859 EXPORT_SYMBOL(udp_push_pending_frames); 860 861 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 862 { 863 switch (cmsg->cmsg_type) { 864 case UDP_SEGMENT: 865 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 866 return -EINVAL; 867 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 868 return 0; 869 default: 870 return -EINVAL; 871 } 872 } 873 874 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 875 { 876 struct cmsghdr *cmsg; 877 bool need_ip = false; 878 int err; 879 880 for_each_cmsghdr(cmsg, msg) { 881 if (!CMSG_OK(msg, cmsg)) 882 return -EINVAL; 883 884 if (cmsg->cmsg_level != SOL_UDP) { 885 need_ip = true; 886 continue; 887 } 888 889 err = __udp_cmsg_send(cmsg, gso_size); 890 if (err) 891 return err; 892 } 893 894 return need_ip; 895 } 896 EXPORT_SYMBOL_GPL(udp_cmsg_send); 897 898 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 899 { 900 struct inet_sock *inet = inet_sk(sk); 901 struct udp_sock *up = udp_sk(sk); 902 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 903 struct flowi4 fl4_stack; 904 struct flowi4 *fl4; 905 int ulen = len; 906 struct ipcm_cookie ipc; 907 struct rtable *rt = NULL; 908 int free = 0; 909 int connected = 0; 910 __be32 daddr, faddr, saddr; 911 __be16 dport; 912 u8 tos; 913 int err, is_udplite = IS_UDPLITE(sk); 914 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 915 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 916 struct sk_buff *skb; 917 struct ip_options_data opt_copy; 918 919 if (len > 0xFFFF) 920 return -EMSGSIZE; 921 922 /* 923 * Check the flags. 924 */ 925 926 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 927 return -EOPNOTSUPP; 928 929 ipc.opt = NULL; 930 ipc.tx_flags = 0; 931 ipc.ttl = 0; 932 ipc.tos = -1; 933 ipc.sockc.transmit_time = 0; 934 935 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 936 937 fl4 = &inet->cork.fl.u.ip4; 938 if (up->pending) { 939 /* 940 * There are pending frames. 941 * The socket lock must be held while it's corked. 942 */ 943 lock_sock(sk); 944 if (likely(up->pending)) { 945 if (unlikely(up->pending != AF_INET)) { 946 release_sock(sk); 947 return -EINVAL; 948 } 949 goto do_append_data; 950 } 951 release_sock(sk); 952 } 953 ulen += sizeof(struct udphdr); 954 955 /* 956 * Get and verify the address. 957 */ 958 if (usin) { 959 if (msg->msg_namelen < sizeof(*usin)) 960 return -EINVAL; 961 if (usin->sin_family != AF_INET) { 962 if (usin->sin_family != AF_UNSPEC) 963 return -EAFNOSUPPORT; 964 } 965 966 daddr = usin->sin_addr.s_addr; 967 dport = usin->sin_port; 968 if (dport == 0) 969 return -EINVAL; 970 } else { 971 if (sk->sk_state != TCP_ESTABLISHED) 972 return -EDESTADDRREQ; 973 daddr = inet->inet_daddr; 974 dport = inet->inet_dport; 975 /* Open fast path for connected socket. 976 Route will not be used, if at least one option is set. 977 */ 978 connected = 1; 979 } 980 981 ipc.sockc.tsflags = sk->sk_tsflags; 982 ipc.addr = inet->inet_saddr; 983 ipc.oif = sk->sk_bound_dev_if; 984 ipc.gso_size = up->gso_size; 985 986 if (msg->msg_controllen) { 987 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 988 if (err > 0) 989 err = ip_cmsg_send(sk, msg, &ipc, 990 sk->sk_family == AF_INET6); 991 if (unlikely(err < 0)) { 992 kfree(ipc.opt); 993 return err; 994 } 995 if (ipc.opt) 996 free = 1; 997 connected = 0; 998 } 999 if (!ipc.opt) { 1000 struct ip_options_rcu *inet_opt; 1001 1002 rcu_read_lock(); 1003 inet_opt = rcu_dereference(inet->inet_opt); 1004 if (inet_opt) { 1005 memcpy(&opt_copy, inet_opt, 1006 sizeof(*inet_opt) + inet_opt->opt.optlen); 1007 ipc.opt = &opt_copy.opt; 1008 } 1009 rcu_read_unlock(); 1010 } 1011 1012 if (cgroup_bpf_enabled && !connected) { 1013 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1014 (struct sockaddr *)usin, &ipc.addr); 1015 if (err) 1016 goto out_free; 1017 if (usin) { 1018 if (usin->sin_port == 0) { 1019 /* BPF program set invalid port. Reject it. */ 1020 err = -EINVAL; 1021 goto out_free; 1022 } 1023 daddr = usin->sin_addr.s_addr; 1024 dport = usin->sin_port; 1025 } 1026 } 1027 1028 saddr = ipc.addr; 1029 ipc.addr = faddr = daddr; 1030 1031 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); 1032 1033 if (ipc.opt && ipc.opt->opt.srr) { 1034 if (!daddr) { 1035 err = -EINVAL; 1036 goto out_free; 1037 } 1038 faddr = ipc.opt->opt.faddr; 1039 connected = 0; 1040 } 1041 tos = get_rttos(&ipc, inet); 1042 if (sock_flag(sk, SOCK_LOCALROUTE) || 1043 (msg->msg_flags & MSG_DONTROUTE) || 1044 (ipc.opt && ipc.opt->opt.is_strictroute)) { 1045 tos |= RTO_ONLINK; 1046 connected = 0; 1047 } 1048 1049 if (ipv4_is_multicast(daddr)) { 1050 if (!ipc.oif) 1051 ipc.oif = inet->mc_index; 1052 if (!saddr) 1053 saddr = inet->mc_addr; 1054 connected = 0; 1055 } else if (!ipc.oif) { 1056 ipc.oif = inet->uc_index; 1057 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) { 1058 /* oif is set, packet is to local broadcast and 1059 * and uc_index is set. oif is most likely set 1060 * by sk_bound_dev_if. If uc_index != oif check if the 1061 * oif is an L3 master and uc_index is an L3 slave. 1062 * If so, we want to allow the send using the uc_index. 1063 */ 1064 if (ipc.oif != inet->uc_index && 1065 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1066 inet->uc_index)) { 1067 ipc.oif = inet->uc_index; 1068 } 1069 } 1070 1071 if (connected) 1072 rt = (struct rtable *)sk_dst_check(sk, 0); 1073 1074 if (!rt) { 1075 struct net *net = sock_net(sk); 1076 __u8 flow_flags = inet_sk_flowi_flags(sk); 1077 1078 fl4 = &fl4_stack; 1079 1080 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos, 1081 RT_SCOPE_UNIVERSE, sk->sk_protocol, 1082 flow_flags, 1083 faddr, saddr, dport, inet->inet_sport, 1084 sk->sk_uid); 1085 1086 security_sk_classify_flow(sk, flowi4_to_flowi(fl4)); 1087 rt = ip_route_output_flow(net, fl4, sk); 1088 if (IS_ERR(rt)) { 1089 err = PTR_ERR(rt); 1090 rt = NULL; 1091 if (err == -ENETUNREACH) 1092 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1093 goto out; 1094 } 1095 1096 err = -EACCES; 1097 if ((rt->rt_flags & RTCF_BROADCAST) && 1098 !sock_flag(sk, SOCK_BROADCAST)) 1099 goto out; 1100 if (connected) 1101 sk_dst_set(sk, dst_clone(&rt->dst)); 1102 } 1103 1104 if (msg->msg_flags&MSG_CONFIRM) 1105 goto do_confirm; 1106 back_from_confirm: 1107 1108 saddr = fl4->saddr; 1109 if (!ipc.addr) 1110 daddr = ipc.addr = fl4->daddr; 1111 1112 /* Lockless fast path for the non-corking case. */ 1113 if (!corkreq) { 1114 struct inet_cork cork; 1115 1116 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1117 sizeof(struct udphdr), &ipc, &rt, 1118 &cork, msg->msg_flags); 1119 err = PTR_ERR(skb); 1120 if (!IS_ERR_OR_NULL(skb)) 1121 err = udp_send_skb(skb, fl4, &cork); 1122 goto out; 1123 } 1124 1125 lock_sock(sk); 1126 if (unlikely(up->pending)) { 1127 /* The socket is already corked while preparing it. */ 1128 /* ... which is an evident application bug. --ANK */ 1129 release_sock(sk); 1130 1131 net_dbg_ratelimited("socket already corked\n"); 1132 err = -EINVAL; 1133 goto out; 1134 } 1135 /* 1136 * Now cork the socket to pend data. 1137 */ 1138 fl4 = &inet->cork.fl.u.ip4; 1139 fl4->daddr = daddr; 1140 fl4->saddr = saddr; 1141 fl4->fl4_dport = dport; 1142 fl4->fl4_sport = inet->inet_sport; 1143 up->pending = AF_INET; 1144 1145 do_append_data: 1146 up->len += ulen; 1147 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1148 sizeof(struct udphdr), &ipc, &rt, 1149 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1150 if (err) 1151 udp_flush_pending_frames(sk); 1152 else if (!corkreq) 1153 err = udp_push_pending_frames(sk); 1154 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1155 up->pending = 0; 1156 release_sock(sk); 1157 1158 out: 1159 ip_rt_put(rt); 1160 out_free: 1161 if (free) 1162 kfree(ipc.opt); 1163 if (!err) 1164 return len; 1165 /* 1166 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1167 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1168 * we don't have a good statistic (IpOutDiscards but it can be too many 1169 * things). We could add another new stat but at least for now that 1170 * seems like overkill. 1171 */ 1172 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1173 UDP_INC_STATS(sock_net(sk), 1174 UDP_MIB_SNDBUFERRORS, is_udplite); 1175 } 1176 return err; 1177 1178 do_confirm: 1179 if (msg->msg_flags & MSG_PROBE) 1180 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1181 if (!(msg->msg_flags&MSG_PROBE) || len) 1182 goto back_from_confirm; 1183 err = 0; 1184 goto out; 1185 } 1186 EXPORT_SYMBOL(udp_sendmsg); 1187 1188 int udp_sendpage(struct sock *sk, struct page *page, int offset, 1189 size_t size, int flags) 1190 { 1191 struct inet_sock *inet = inet_sk(sk); 1192 struct udp_sock *up = udp_sk(sk); 1193 int ret; 1194 1195 if (flags & MSG_SENDPAGE_NOTLAST) 1196 flags |= MSG_MORE; 1197 1198 if (!up->pending) { 1199 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 1200 1201 /* Call udp_sendmsg to specify destination address which 1202 * sendpage interface can't pass. 1203 * This will succeed only when the socket is connected. 1204 */ 1205 ret = udp_sendmsg(sk, &msg, 0); 1206 if (ret < 0) 1207 return ret; 1208 } 1209 1210 lock_sock(sk); 1211 1212 if (unlikely(!up->pending)) { 1213 release_sock(sk); 1214 1215 net_dbg_ratelimited("cork failed\n"); 1216 return -EINVAL; 1217 } 1218 1219 ret = ip_append_page(sk, &inet->cork.fl.u.ip4, 1220 page, offset, size, flags); 1221 if (ret == -EOPNOTSUPP) { 1222 release_sock(sk); 1223 return sock_no_sendpage(sk->sk_socket, page, offset, 1224 size, flags); 1225 } 1226 if (ret < 0) { 1227 udp_flush_pending_frames(sk); 1228 goto out; 1229 } 1230 1231 up->len += size; 1232 if (!(up->corkflag || (flags&MSG_MORE))) 1233 ret = udp_push_pending_frames(sk); 1234 if (!ret) 1235 ret = size; 1236 out: 1237 release_sock(sk); 1238 return ret; 1239 } 1240 1241 #define UDP_SKB_IS_STATELESS 0x80000000 1242 1243 static void udp_set_dev_scratch(struct sk_buff *skb) 1244 { 1245 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1246 1247 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1248 scratch->_tsize_state = skb->truesize; 1249 #if BITS_PER_LONG == 64 1250 scratch->len = skb->len; 1251 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1252 scratch->is_linear = !skb_is_nonlinear(skb); 1253 #endif 1254 /* all head states execept sp (dst, sk, nf) are always cleared by 1255 * udp_rcv() and we need to preserve secpath, if present, to eventually 1256 * process IP_CMSG_PASSSEC at recvmsg() time 1257 */ 1258 if (likely(!skb_sec_path(skb))) 1259 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1260 } 1261 1262 static int udp_skb_truesize(struct sk_buff *skb) 1263 { 1264 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1265 } 1266 1267 static bool udp_skb_has_head_state(struct sk_buff *skb) 1268 { 1269 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1270 } 1271 1272 /* fully reclaim rmem/fwd memory allocated for skb */ 1273 static void udp_rmem_release(struct sock *sk, int size, int partial, 1274 bool rx_queue_lock_held) 1275 { 1276 struct udp_sock *up = udp_sk(sk); 1277 struct sk_buff_head *sk_queue; 1278 int amt; 1279 1280 if (likely(partial)) { 1281 up->forward_deficit += size; 1282 size = up->forward_deficit; 1283 if (size < (sk->sk_rcvbuf >> 2)) 1284 return; 1285 } else { 1286 size += up->forward_deficit; 1287 } 1288 up->forward_deficit = 0; 1289 1290 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1291 * if the called don't held it already 1292 */ 1293 sk_queue = &sk->sk_receive_queue; 1294 if (!rx_queue_lock_held) 1295 spin_lock(&sk_queue->lock); 1296 1297 1298 sk->sk_forward_alloc += size; 1299 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1); 1300 sk->sk_forward_alloc -= amt; 1301 1302 if (amt) 1303 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT); 1304 1305 atomic_sub(size, &sk->sk_rmem_alloc); 1306 1307 /* this can save us from acquiring the rx queue lock on next receive */ 1308 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1309 1310 if (!rx_queue_lock_held) 1311 spin_unlock(&sk_queue->lock); 1312 } 1313 1314 /* Note: called with reader_queue.lock held. 1315 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1316 * This avoids a cache line miss while receive_queue lock is held. 1317 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1318 */ 1319 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1320 { 1321 prefetch(&skb->data); 1322 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1323 } 1324 EXPORT_SYMBOL(udp_skb_destructor); 1325 1326 /* as above, but the caller held the rx queue lock, too */ 1327 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1328 { 1329 prefetch(&skb->data); 1330 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1331 } 1332 1333 /* Idea of busylocks is to let producers grab an extra spinlock 1334 * to relieve pressure on the receive_queue spinlock shared by consumer. 1335 * Under flood, this means that only one producer can be in line 1336 * trying to acquire the receive_queue spinlock. 1337 * These busylock can be allocated on a per cpu manner, instead of a 1338 * per socket one (that would consume a cache line per socket) 1339 */ 1340 static int udp_busylocks_log __read_mostly; 1341 static spinlock_t *udp_busylocks __read_mostly; 1342 1343 static spinlock_t *busylock_acquire(void *ptr) 1344 { 1345 spinlock_t *busy; 1346 1347 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1348 spin_lock(busy); 1349 return busy; 1350 } 1351 1352 static void busylock_release(spinlock_t *busy) 1353 { 1354 if (busy) 1355 spin_unlock(busy); 1356 } 1357 1358 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1359 { 1360 struct sk_buff_head *list = &sk->sk_receive_queue; 1361 int rmem, delta, amt, err = -ENOMEM; 1362 spinlock_t *busy = NULL; 1363 int size; 1364 1365 /* try to avoid the costly atomic add/sub pair when the receive 1366 * queue is full; always allow at least a packet 1367 */ 1368 rmem = atomic_read(&sk->sk_rmem_alloc); 1369 if (rmem > sk->sk_rcvbuf) 1370 goto drop; 1371 1372 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1373 * having linear skbs : 1374 * - Reduce memory overhead and thus increase receive queue capacity 1375 * - Less cache line misses at copyout() time 1376 * - Less work at consume_skb() (less alien page frag freeing) 1377 */ 1378 if (rmem > (sk->sk_rcvbuf >> 1)) { 1379 skb_condense(skb); 1380 1381 busy = busylock_acquire(sk); 1382 } 1383 size = skb->truesize; 1384 udp_set_dev_scratch(skb); 1385 1386 /* we drop only if the receive buf is full and the receive 1387 * queue contains some other skb 1388 */ 1389 rmem = atomic_add_return(size, &sk->sk_rmem_alloc); 1390 if (rmem > (size + sk->sk_rcvbuf)) 1391 goto uncharge_drop; 1392 1393 spin_lock(&list->lock); 1394 if (size >= sk->sk_forward_alloc) { 1395 amt = sk_mem_pages(size); 1396 delta = amt << SK_MEM_QUANTUM_SHIFT; 1397 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) { 1398 err = -ENOBUFS; 1399 spin_unlock(&list->lock); 1400 goto uncharge_drop; 1401 } 1402 1403 sk->sk_forward_alloc += delta; 1404 } 1405 1406 sk->sk_forward_alloc -= size; 1407 1408 /* no need to setup a destructor, we will explicitly release the 1409 * forward allocated memory on dequeue 1410 */ 1411 sock_skb_set_dropcount(sk, skb); 1412 1413 __skb_queue_tail(list, skb); 1414 spin_unlock(&list->lock); 1415 1416 if (!sock_flag(sk, SOCK_DEAD)) 1417 sk->sk_data_ready(sk); 1418 1419 busylock_release(busy); 1420 return 0; 1421 1422 uncharge_drop: 1423 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1424 1425 drop: 1426 atomic_inc(&sk->sk_drops); 1427 busylock_release(busy); 1428 return err; 1429 } 1430 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); 1431 1432 void udp_destruct_sock(struct sock *sk) 1433 { 1434 /* reclaim completely the forward allocated memory */ 1435 struct udp_sock *up = udp_sk(sk); 1436 unsigned int total = 0; 1437 struct sk_buff *skb; 1438 1439 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1440 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1441 total += skb->truesize; 1442 kfree_skb(skb); 1443 } 1444 udp_rmem_release(sk, total, 0, true); 1445 1446 inet_sock_destruct(sk); 1447 } 1448 EXPORT_SYMBOL_GPL(udp_destruct_sock); 1449 1450 int udp_init_sock(struct sock *sk) 1451 { 1452 skb_queue_head_init(&udp_sk(sk)->reader_queue); 1453 sk->sk_destruct = udp_destruct_sock; 1454 return 0; 1455 } 1456 EXPORT_SYMBOL_GPL(udp_init_sock); 1457 1458 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1459 { 1460 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) { 1461 bool slow = lock_sock_fast(sk); 1462 1463 sk_peek_offset_bwd(sk, len); 1464 unlock_sock_fast(sk, slow); 1465 } 1466 1467 if (!skb_unref(skb)) 1468 return; 1469 1470 /* In the more common cases we cleared the head states previously, 1471 * see __udp_queue_rcv_skb(). 1472 */ 1473 if (unlikely(udp_skb_has_head_state(skb))) 1474 skb_release_head_state(skb); 1475 __consume_stateless_skb(skb); 1476 } 1477 EXPORT_SYMBOL_GPL(skb_consume_udp); 1478 1479 static struct sk_buff *__first_packet_length(struct sock *sk, 1480 struct sk_buff_head *rcvq, 1481 int *total) 1482 { 1483 struct sk_buff *skb; 1484 1485 while ((skb = skb_peek(rcvq)) != NULL) { 1486 if (udp_lib_checksum_complete(skb)) { 1487 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1488 IS_UDPLITE(sk)); 1489 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1490 IS_UDPLITE(sk)); 1491 atomic_inc(&sk->sk_drops); 1492 __skb_unlink(skb, rcvq); 1493 *total += skb->truesize; 1494 kfree_skb(skb); 1495 } else { 1496 /* the csum related bits could be changed, refresh 1497 * the scratch area 1498 */ 1499 udp_set_dev_scratch(skb); 1500 break; 1501 } 1502 } 1503 return skb; 1504 } 1505 1506 /** 1507 * first_packet_length - return length of first packet in receive queue 1508 * @sk: socket 1509 * 1510 * Drops all bad checksum frames, until a valid one is found. 1511 * Returns the length of found skb, or -1 if none is found. 1512 */ 1513 static int first_packet_length(struct sock *sk) 1514 { 1515 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1516 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1517 struct sk_buff *skb; 1518 int total = 0; 1519 int res; 1520 1521 spin_lock_bh(&rcvq->lock); 1522 skb = __first_packet_length(sk, rcvq, &total); 1523 if (!skb && !skb_queue_empty(sk_queue)) { 1524 spin_lock(&sk_queue->lock); 1525 skb_queue_splice_tail_init(sk_queue, rcvq); 1526 spin_unlock(&sk_queue->lock); 1527 1528 skb = __first_packet_length(sk, rcvq, &total); 1529 } 1530 res = skb ? skb->len : -1; 1531 if (total) 1532 udp_rmem_release(sk, total, 1, false); 1533 spin_unlock_bh(&rcvq->lock); 1534 return res; 1535 } 1536 1537 /* 1538 * IOCTL requests applicable to the UDP protocol 1539 */ 1540 1541 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 1542 { 1543 switch (cmd) { 1544 case SIOCOUTQ: 1545 { 1546 int amount = sk_wmem_alloc_get(sk); 1547 1548 return put_user(amount, (int __user *)arg); 1549 } 1550 1551 case SIOCINQ: 1552 { 1553 int amount = max_t(int, 0, first_packet_length(sk)); 1554 1555 return put_user(amount, (int __user *)arg); 1556 } 1557 1558 default: 1559 return -ENOIOCTLCMD; 1560 } 1561 1562 return 0; 1563 } 1564 EXPORT_SYMBOL(udp_ioctl); 1565 1566 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1567 int noblock, int *peeked, int *off, int *err) 1568 { 1569 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1570 struct sk_buff_head *queue; 1571 struct sk_buff *last; 1572 long timeo; 1573 int error; 1574 1575 queue = &udp_sk(sk)->reader_queue; 1576 flags |= noblock ? MSG_DONTWAIT : 0; 1577 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1578 do { 1579 struct sk_buff *skb; 1580 1581 error = sock_error(sk); 1582 if (error) 1583 break; 1584 1585 error = -EAGAIN; 1586 *peeked = 0; 1587 do { 1588 spin_lock_bh(&queue->lock); 1589 skb = __skb_try_recv_from_queue(sk, queue, flags, 1590 udp_skb_destructor, 1591 peeked, off, err, 1592 &last); 1593 if (skb) { 1594 spin_unlock_bh(&queue->lock); 1595 return skb; 1596 } 1597 1598 if (skb_queue_empty(sk_queue)) { 1599 spin_unlock_bh(&queue->lock); 1600 goto busy_check; 1601 } 1602 1603 /* refill the reader queue and walk it again 1604 * keep both queues locked to avoid re-acquiring 1605 * the sk_receive_queue lock if fwd memory scheduling 1606 * is needed. 1607 */ 1608 spin_lock(&sk_queue->lock); 1609 skb_queue_splice_tail_init(sk_queue, queue); 1610 1611 skb = __skb_try_recv_from_queue(sk, queue, flags, 1612 udp_skb_dtor_locked, 1613 peeked, off, err, 1614 &last); 1615 spin_unlock(&sk_queue->lock); 1616 spin_unlock_bh(&queue->lock); 1617 if (skb) 1618 return skb; 1619 1620 busy_check: 1621 if (!sk_can_busy_loop(sk)) 1622 break; 1623 1624 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1625 } while (!skb_queue_empty(sk_queue)); 1626 1627 /* sk_queue is empty, reader_queue may contain peeked packets */ 1628 } while (timeo && 1629 !__skb_wait_for_more_packets(sk, &error, &timeo, 1630 (struct sk_buff *)sk_queue)); 1631 1632 *err = error; 1633 return NULL; 1634 } 1635 EXPORT_SYMBOL_GPL(__skb_recv_udp); 1636 1637 /* 1638 * This should be easy, if there is something there we 1639 * return it, otherwise we block. 1640 */ 1641 1642 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock, 1643 int flags, int *addr_len) 1644 { 1645 struct inet_sock *inet = inet_sk(sk); 1646 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 1647 struct sk_buff *skb; 1648 unsigned int ulen, copied; 1649 int peeked, peeking, off; 1650 int err; 1651 int is_udplite = IS_UDPLITE(sk); 1652 bool checksum_valid = false; 1653 1654 if (flags & MSG_ERRQUEUE) 1655 return ip_recv_error(sk, msg, len, addr_len); 1656 1657 try_again: 1658 peeking = flags & MSG_PEEK; 1659 off = sk_peek_offset(sk, flags); 1660 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err); 1661 if (!skb) 1662 return err; 1663 1664 ulen = udp_skb_len(skb); 1665 copied = len; 1666 if (copied > ulen - off) 1667 copied = ulen - off; 1668 else if (copied < ulen) 1669 msg->msg_flags |= MSG_TRUNC; 1670 1671 /* 1672 * If checksum is needed at all, try to do it while copying the 1673 * data. If the data is truncated, or if we only want a partial 1674 * coverage checksum (UDP-Lite), do it before the copy. 1675 */ 1676 1677 if (copied < ulen || peeking || 1678 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 1679 checksum_valid = udp_skb_csum_unnecessary(skb) || 1680 !__udp_lib_checksum_complete(skb); 1681 if (!checksum_valid) 1682 goto csum_copy_err; 1683 } 1684 1685 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 1686 if (udp_skb_is_linear(skb)) 1687 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 1688 else 1689 err = skb_copy_datagram_msg(skb, off, msg, copied); 1690 } else { 1691 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 1692 1693 if (err == -EINVAL) 1694 goto csum_copy_err; 1695 } 1696 1697 if (unlikely(err)) { 1698 if (!peeked) { 1699 atomic_inc(&sk->sk_drops); 1700 UDP_INC_STATS(sock_net(sk), 1701 UDP_MIB_INERRORS, is_udplite); 1702 } 1703 kfree_skb(skb); 1704 return err; 1705 } 1706 1707 if (!peeked) 1708 UDP_INC_STATS(sock_net(sk), 1709 UDP_MIB_INDATAGRAMS, is_udplite); 1710 1711 sock_recv_ts_and_drops(msg, sk, skb); 1712 1713 /* Copy the address. */ 1714 if (sin) { 1715 sin->sin_family = AF_INET; 1716 sin->sin_port = udp_hdr(skb)->source; 1717 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 1718 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1719 *addr_len = sizeof(*sin); 1720 } 1721 if (inet->cmsg_flags) 1722 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 1723 1724 err = copied; 1725 if (flags & MSG_TRUNC) 1726 err = ulen; 1727 1728 skb_consume_udp(sk, skb, peeking ? -err : err); 1729 return err; 1730 1731 csum_copy_err: 1732 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 1733 udp_skb_destructor)) { 1734 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 1735 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1736 } 1737 kfree_skb(skb); 1738 1739 /* starting over for a new packet, but check if we need to yield */ 1740 cond_resched(); 1741 msg->msg_flags &= ~MSG_TRUNC; 1742 goto try_again; 1743 } 1744 1745 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 1746 { 1747 /* This check is replicated from __ip4_datagram_connect() and 1748 * intended to prevent BPF program called below from accessing bytes 1749 * that are out of the bound specified by user in addr_len. 1750 */ 1751 if (addr_len < sizeof(struct sockaddr_in)) 1752 return -EINVAL; 1753 1754 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr); 1755 } 1756 EXPORT_SYMBOL(udp_pre_connect); 1757 1758 int __udp_disconnect(struct sock *sk, int flags) 1759 { 1760 struct inet_sock *inet = inet_sk(sk); 1761 /* 1762 * 1003.1g - break association. 1763 */ 1764 1765 sk->sk_state = TCP_CLOSE; 1766 inet->inet_daddr = 0; 1767 inet->inet_dport = 0; 1768 sock_rps_reset_rxhash(sk); 1769 sk->sk_bound_dev_if = 0; 1770 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1771 inet_reset_saddr(sk); 1772 1773 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 1774 sk->sk_prot->unhash(sk); 1775 inet->inet_sport = 0; 1776 } 1777 sk_dst_reset(sk); 1778 return 0; 1779 } 1780 EXPORT_SYMBOL(__udp_disconnect); 1781 1782 int udp_disconnect(struct sock *sk, int flags) 1783 { 1784 lock_sock(sk); 1785 __udp_disconnect(sk, flags); 1786 release_sock(sk); 1787 return 0; 1788 } 1789 EXPORT_SYMBOL(udp_disconnect); 1790 1791 void udp_lib_unhash(struct sock *sk) 1792 { 1793 if (sk_hashed(sk)) { 1794 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1795 struct udp_hslot *hslot, *hslot2; 1796 1797 hslot = udp_hashslot(udptable, sock_net(sk), 1798 udp_sk(sk)->udp_port_hash); 1799 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1800 1801 spin_lock_bh(&hslot->lock); 1802 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1803 reuseport_detach_sock(sk); 1804 if (sk_del_node_init_rcu(sk)) { 1805 hslot->count--; 1806 inet_sk(sk)->inet_num = 0; 1807 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 1808 1809 spin_lock(&hslot2->lock); 1810 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1811 hslot2->count--; 1812 spin_unlock(&hslot2->lock); 1813 } 1814 spin_unlock_bh(&hslot->lock); 1815 } 1816 } 1817 EXPORT_SYMBOL(udp_lib_unhash); 1818 1819 /* 1820 * inet_rcv_saddr was changed, we must rehash secondary hash 1821 */ 1822 void udp_lib_rehash(struct sock *sk, u16 newhash) 1823 { 1824 if (sk_hashed(sk)) { 1825 struct udp_table *udptable = sk->sk_prot->h.udp_table; 1826 struct udp_hslot *hslot, *hslot2, *nhslot2; 1827 1828 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 1829 nhslot2 = udp_hashslot2(udptable, newhash); 1830 udp_sk(sk)->udp_portaddr_hash = newhash; 1831 1832 if (hslot2 != nhslot2 || 1833 rcu_access_pointer(sk->sk_reuseport_cb)) { 1834 hslot = udp_hashslot(udptable, sock_net(sk), 1835 udp_sk(sk)->udp_port_hash); 1836 /* we must lock primary chain too */ 1837 spin_lock_bh(&hslot->lock); 1838 if (rcu_access_pointer(sk->sk_reuseport_cb)) 1839 reuseport_detach_sock(sk); 1840 1841 if (hslot2 != nhslot2) { 1842 spin_lock(&hslot2->lock); 1843 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 1844 hslot2->count--; 1845 spin_unlock(&hslot2->lock); 1846 1847 spin_lock(&nhslot2->lock); 1848 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 1849 &nhslot2->head); 1850 nhslot2->count++; 1851 spin_unlock(&nhslot2->lock); 1852 } 1853 1854 spin_unlock_bh(&hslot->lock); 1855 } 1856 } 1857 } 1858 EXPORT_SYMBOL(udp_lib_rehash); 1859 1860 static void udp_v4_rehash(struct sock *sk) 1861 { 1862 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 1863 inet_sk(sk)->inet_rcv_saddr, 1864 inet_sk(sk)->inet_num); 1865 udp_lib_rehash(sk, new_hash); 1866 } 1867 1868 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1869 { 1870 int rc; 1871 1872 if (inet_sk(sk)->inet_daddr) { 1873 sock_rps_save_rxhash(sk, skb); 1874 sk_mark_napi_id(sk, skb); 1875 sk_incoming_cpu_update(sk); 1876 } else { 1877 sk_mark_napi_id_once(sk, skb); 1878 } 1879 1880 rc = __udp_enqueue_schedule_skb(sk, skb); 1881 if (rc < 0) { 1882 int is_udplite = IS_UDPLITE(sk); 1883 1884 /* Note that an ENOMEM error is charged twice */ 1885 if (rc == -ENOMEM) 1886 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 1887 is_udplite); 1888 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 1889 kfree_skb(skb); 1890 trace_udp_fail_queue_rcv_skb(rc, sk); 1891 return -1; 1892 } 1893 1894 return 0; 1895 } 1896 1897 static DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 1898 void udp_encap_enable(void) 1899 { 1900 static_branch_enable(&udp_encap_needed_key); 1901 } 1902 EXPORT_SYMBOL(udp_encap_enable); 1903 1904 /* returns: 1905 * -1: error 1906 * 0: success 1907 * >0: "udp encap" protocol resubmission 1908 * 1909 * Note that in the success and error cases, the skb is assumed to 1910 * have either been requeued or freed. 1911 */ 1912 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1913 { 1914 struct udp_sock *up = udp_sk(sk); 1915 int is_udplite = IS_UDPLITE(sk); 1916 1917 /* 1918 * Charge it to the socket, dropping if the queue is full. 1919 */ 1920 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1921 goto drop; 1922 nf_reset(skb); 1923 1924 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 1925 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 1926 1927 /* 1928 * This is an encapsulation socket so pass the skb to 1929 * the socket's udp_encap_rcv() hook. Otherwise, just 1930 * fall through and pass this up the UDP socket. 1931 * up->encap_rcv() returns the following value: 1932 * =0 if skb was successfully passed to the encap 1933 * handler or was discarded by it. 1934 * >0 if skb should be passed on to UDP. 1935 * <0 if skb should be resubmitted as proto -N 1936 */ 1937 1938 /* if we're overly short, let UDP handle it */ 1939 encap_rcv = READ_ONCE(up->encap_rcv); 1940 if (encap_rcv) { 1941 int ret; 1942 1943 /* Verify checksum before giving to encap */ 1944 if (udp_lib_checksum_complete(skb)) 1945 goto csum_error; 1946 1947 ret = encap_rcv(sk, skb); 1948 if (ret <= 0) { 1949 __UDP_INC_STATS(sock_net(sk), 1950 UDP_MIB_INDATAGRAMS, 1951 is_udplite); 1952 return -ret; 1953 } 1954 } 1955 1956 /* FALLTHROUGH -- it's a UDP Packet */ 1957 } 1958 1959 /* 1960 * UDP-Lite specific tests, ignored on UDP sockets 1961 */ 1962 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) { 1963 1964 /* 1965 * MIB statistics other than incrementing the error count are 1966 * disabled for the following two types of errors: these depend 1967 * on the application settings, not on the functioning of the 1968 * protocol stack as such. 1969 * 1970 * RFC 3828 here recommends (sec 3.3): "There should also be a 1971 * way ... to ... at least let the receiving application block 1972 * delivery of packets with coverage values less than a value 1973 * provided by the application." 1974 */ 1975 if (up->pcrlen == 0) { /* full coverage was set */ 1976 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 1977 UDP_SKB_CB(skb)->cscov, skb->len); 1978 goto drop; 1979 } 1980 /* The next case involves violating the min. coverage requested 1981 * by the receiver. This is subtle: if receiver wants x and x is 1982 * greater than the buffersize/MTU then receiver will complain 1983 * that it wants x while sender emits packets of smaller size y. 1984 * Therefore the above ...()->partial_cov statement is essential. 1985 */ 1986 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) { 1987 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 1988 UDP_SKB_CB(skb)->cscov, up->pcrlen); 1989 goto drop; 1990 } 1991 } 1992 1993 prefetch(&sk->sk_rmem_alloc); 1994 if (rcu_access_pointer(sk->sk_filter) && 1995 udp_lib_checksum_complete(skb)) 1996 goto csum_error; 1997 1998 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) 1999 goto drop; 2000 2001 udp_csum_pull_header(skb); 2002 2003 ipv4_pktinfo_prepare(sk, skb); 2004 return __udp_queue_rcv_skb(sk, skb); 2005 2006 csum_error: 2007 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2008 drop: 2009 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2010 atomic_inc(&sk->sk_drops); 2011 kfree_skb(skb); 2012 return -1; 2013 } 2014 2015 /* For TCP sockets, sk_rx_dst is protected by socket lock 2016 * For UDP, we use xchg() to guard against concurrent changes. 2017 */ 2018 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2019 { 2020 struct dst_entry *old; 2021 2022 if (dst_hold_safe(dst)) { 2023 old = xchg(&sk->sk_rx_dst, dst); 2024 dst_release(old); 2025 return old != dst; 2026 } 2027 return false; 2028 } 2029 EXPORT_SYMBOL(udp_sk_rx_dst_set); 2030 2031 /* 2032 * Multicasts and broadcasts go to each listener. 2033 * 2034 * Note: called only from the BH handler context. 2035 */ 2036 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2037 struct udphdr *uh, 2038 __be32 saddr, __be32 daddr, 2039 struct udp_table *udptable, 2040 int proto) 2041 { 2042 struct sock *sk, *first = NULL; 2043 unsigned short hnum = ntohs(uh->dest); 2044 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2045 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2046 unsigned int offset = offsetof(typeof(*sk), sk_node); 2047 int dif = skb->dev->ifindex; 2048 int sdif = inet_sdif(skb); 2049 struct hlist_node *node; 2050 struct sk_buff *nskb; 2051 2052 if (use_hash2) { 2053 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2054 udptable->mask; 2055 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2056 start_lookup: 2057 hslot = &udptable->hash2[hash2]; 2058 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2059 } 2060 2061 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2062 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2063 uh->source, saddr, dif, sdif, hnum)) 2064 continue; 2065 2066 if (!first) { 2067 first = sk; 2068 continue; 2069 } 2070 nskb = skb_clone(skb, GFP_ATOMIC); 2071 2072 if (unlikely(!nskb)) { 2073 atomic_inc(&sk->sk_drops); 2074 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2075 IS_UDPLITE(sk)); 2076 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2077 IS_UDPLITE(sk)); 2078 continue; 2079 } 2080 if (udp_queue_rcv_skb(sk, nskb) > 0) 2081 consume_skb(nskb); 2082 } 2083 2084 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2085 if (use_hash2 && hash2 != hash2_any) { 2086 hash2 = hash2_any; 2087 goto start_lookup; 2088 } 2089 2090 if (first) { 2091 if (udp_queue_rcv_skb(first, skb) > 0) 2092 consume_skb(skb); 2093 } else { 2094 kfree_skb(skb); 2095 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2096 proto == IPPROTO_UDPLITE); 2097 } 2098 return 0; 2099 } 2100 2101 /* Initialize UDP checksum. If exited with zero value (success), 2102 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2103 * Otherwise, csum completion requires chacksumming packet body, 2104 * including udp header and folding it to skb->csum. 2105 */ 2106 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2107 int proto) 2108 { 2109 int err; 2110 2111 UDP_SKB_CB(skb)->partial_cov = 0; 2112 UDP_SKB_CB(skb)->cscov = skb->len; 2113 2114 if (proto == IPPROTO_UDPLITE) { 2115 err = udplite_checksum_init(skb, uh); 2116 if (err) 2117 return err; 2118 2119 if (UDP_SKB_CB(skb)->partial_cov) { 2120 skb->csum = inet_compute_pseudo(skb, proto); 2121 return 0; 2122 } 2123 } 2124 2125 /* Note, we are only interested in != 0 or == 0, thus the 2126 * force to int. 2127 */ 2128 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2129 inet_compute_pseudo); 2130 } 2131 2132 /* 2133 * All we need to do is get the socket, and then do a checksum. 2134 */ 2135 2136 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2137 int proto) 2138 { 2139 struct sock *sk; 2140 struct udphdr *uh; 2141 unsigned short ulen; 2142 struct rtable *rt = skb_rtable(skb); 2143 __be32 saddr, daddr; 2144 struct net *net = dev_net(skb->dev); 2145 2146 /* 2147 * Validate the packet. 2148 */ 2149 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2150 goto drop; /* No space for header. */ 2151 2152 uh = udp_hdr(skb); 2153 ulen = ntohs(uh->len); 2154 saddr = ip_hdr(skb)->saddr; 2155 daddr = ip_hdr(skb)->daddr; 2156 2157 if (ulen > skb->len) 2158 goto short_packet; 2159 2160 if (proto == IPPROTO_UDP) { 2161 /* UDP validates ulen. */ 2162 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2163 goto short_packet; 2164 uh = udp_hdr(skb); 2165 } 2166 2167 if (udp4_csum_init(skb, uh, proto)) 2168 goto csum_error; 2169 2170 sk = skb_steal_sock(skb); 2171 if (sk) { 2172 struct dst_entry *dst = skb_dst(skb); 2173 int ret; 2174 2175 if (unlikely(sk->sk_rx_dst != dst)) 2176 udp_sk_rx_dst_set(sk, dst); 2177 2178 ret = udp_queue_rcv_skb(sk, skb); 2179 sock_put(sk); 2180 /* a return value > 0 means to resubmit the input, but 2181 * it wants the return to be -protocol, or 0 2182 */ 2183 if (ret > 0) 2184 return -ret; 2185 return 0; 2186 } 2187 2188 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2189 return __udp4_lib_mcast_deliver(net, skb, uh, 2190 saddr, daddr, udptable, proto); 2191 2192 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2193 if (sk) { 2194 int ret; 2195 2196 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2197 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check, 2198 inet_compute_pseudo); 2199 2200 ret = udp_queue_rcv_skb(sk, skb); 2201 2202 /* a return value > 0 means to resubmit the input, but 2203 * it wants the return to be -protocol, or 0 2204 */ 2205 if (ret > 0) 2206 return -ret; 2207 return 0; 2208 } 2209 2210 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2211 goto drop; 2212 nf_reset(skb); 2213 2214 /* No socket. Drop packet silently, if checksum is wrong */ 2215 if (udp_lib_checksum_complete(skb)) 2216 goto csum_error; 2217 2218 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2219 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2220 2221 /* 2222 * Hmm. We got an UDP packet to a port to which we 2223 * don't wanna listen. Ignore it. 2224 */ 2225 kfree_skb(skb); 2226 return 0; 2227 2228 short_packet: 2229 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2230 proto == IPPROTO_UDPLITE ? "Lite" : "", 2231 &saddr, ntohs(uh->source), 2232 ulen, skb->len, 2233 &daddr, ntohs(uh->dest)); 2234 goto drop; 2235 2236 csum_error: 2237 /* 2238 * RFC1122: OK. Discards the bad packet silently (as far as 2239 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2240 */ 2241 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2242 proto == IPPROTO_UDPLITE ? "Lite" : "", 2243 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2244 ulen); 2245 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2246 drop: 2247 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2248 kfree_skb(skb); 2249 return 0; 2250 } 2251 2252 /* We can only early demux multicast if there is a single matching socket. 2253 * If more than one socket found returns NULL 2254 */ 2255 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2256 __be16 loc_port, __be32 loc_addr, 2257 __be16 rmt_port, __be32 rmt_addr, 2258 int dif, int sdif) 2259 { 2260 struct sock *sk, *result; 2261 unsigned short hnum = ntohs(loc_port); 2262 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask); 2263 struct udp_hslot *hslot = &udp_table.hash[slot]; 2264 2265 /* Do not bother scanning a too big list */ 2266 if (hslot->count > 10) 2267 return NULL; 2268 2269 result = NULL; 2270 sk_for_each_rcu(sk, &hslot->head) { 2271 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2272 rmt_port, rmt_addr, dif, sdif, hnum)) { 2273 if (result) 2274 return NULL; 2275 result = sk; 2276 } 2277 } 2278 2279 return result; 2280 } 2281 2282 /* For unicast we should only early demux connected sockets or we can 2283 * break forwarding setups. The chains here can be long so only check 2284 * if the first socket is an exact match and if not move on. 2285 */ 2286 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2287 __be16 loc_port, __be32 loc_addr, 2288 __be16 rmt_port, __be32 rmt_addr, 2289 int dif, int sdif) 2290 { 2291 unsigned short hnum = ntohs(loc_port); 2292 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2293 unsigned int slot2 = hash2 & udp_table.mask; 2294 struct udp_hslot *hslot2 = &udp_table.hash2[slot2]; 2295 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2296 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum); 2297 struct sock *sk; 2298 2299 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2300 if (INET_MATCH(sk, net, acookie, rmt_addr, 2301 loc_addr, ports, dif, sdif)) 2302 return sk; 2303 /* Only check first socket in chain */ 2304 break; 2305 } 2306 return NULL; 2307 } 2308 2309 int udp_v4_early_demux(struct sk_buff *skb) 2310 { 2311 struct net *net = dev_net(skb->dev); 2312 struct in_device *in_dev = NULL; 2313 const struct iphdr *iph; 2314 const struct udphdr *uh; 2315 struct sock *sk = NULL; 2316 struct dst_entry *dst; 2317 int dif = skb->dev->ifindex; 2318 int sdif = inet_sdif(skb); 2319 int ours; 2320 2321 /* validate the packet */ 2322 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2323 return 0; 2324 2325 iph = ip_hdr(skb); 2326 uh = udp_hdr(skb); 2327 2328 if (skb->pkt_type == PACKET_MULTICAST) { 2329 in_dev = __in_dev_get_rcu(skb->dev); 2330 2331 if (!in_dev) 2332 return 0; 2333 2334 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2335 iph->protocol); 2336 if (!ours) 2337 return 0; 2338 2339 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2340 uh->source, iph->saddr, 2341 dif, sdif); 2342 } else if (skb->pkt_type == PACKET_HOST) { 2343 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2344 uh->source, iph->saddr, dif, sdif); 2345 } 2346 2347 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 2348 return 0; 2349 2350 skb->sk = sk; 2351 skb->destructor = sock_efree; 2352 dst = READ_ONCE(sk->sk_rx_dst); 2353 2354 if (dst) 2355 dst = dst_check(dst, 0); 2356 if (dst) { 2357 u32 itag = 0; 2358 2359 /* set noref for now. 2360 * any place which wants to hold dst has to call 2361 * dst_hold_safe() 2362 */ 2363 skb_dst_set_noref(skb, dst); 2364 2365 /* for unconnected multicast sockets we need to validate 2366 * the source on each packet 2367 */ 2368 if (!inet_sk(sk)->inet_daddr && in_dev) 2369 return ip_mc_validate_source(skb, iph->daddr, 2370 iph->saddr, iph->tos, 2371 skb->dev, in_dev, &itag); 2372 } 2373 return 0; 2374 } 2375 2376 int udp_rcv(struct sk_buff *skb) 2377 { 2378 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); 2379 } 2380 2381 void udp_destroy_sock(struct sock *sk) 2382 { 2383 struct udp_sock *up = udp_sk(sk); 2384 bool slow = lock_sock_fast(sk); 2385 udp_flush_pending_frames(sk); 2386 unlock_sock_fast(sk, slow); 2387 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) { 2388 void (*encap_destroy)(struct sock *sk); 2389 encap_destroy = READ_ONCE(up->encap_destroy); 2390 if (encap_destroy) 2391 encap_destroy(sk); 2392 } 2393 } 2394 2395 /* 2396 * Socket option code for UDP 2397 */ 2398 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2399 char __user *optval, unsigned int optlen, 2400 int (*push_pending_frames)(struct sock *)) 2401 { 2402 struct udp_sock *up = udp_sk(sk); 2403 int val, valbool; 2404 int err = 0; 2405 int is_udplite = IS_UDPLITE(sk); 2406 2407 if (optlen < sizeof(int)) 2408 return -EINVAL; 2409 2410 if (get_user(val, (int __user *)optval)) 2411 return -EFAULT; 2412 2413 valbool = val ? 1 : 0; 2414 2415 switch (optname) { 2416 case UDP_CORK: 2417 if (val != 0) { 2418 up->corkflag = 1; 2419 } else { 2420 up->corkflag = 0; 2421 lock_sock(sk); 2422 push_pending_frames(sk); 2423 release_sock(sk); 2424 } 2425 break; 2426 2427 case UDP_ENCAP: 2428 switch (val) { 2429 case 0: 2430 case UDP_ENCAP_ESPINUDP: 2431 case UDP_ENCAP_ESPINUDP_NON_IKE: 2432 up->encap_rcv = xfrm4_udp_encap_rcv; 2433 /* FALLTHROUGH */ 2434 case UDP_ENCAP_L2TPINUDP: 2435 up->encap_type = val; 2436 udp_encap_enable(); 2437 break; 2438 default: 2439 err = -ENOPROTOOPT; 2440 break; 2441 } 2442 break; 2443 2444 case UDP_NO_CHECK6_TX: 2445 up->no_check6_tx = valbool; 2446 break; 2447 2448 case UDP_NO_CHECK6_RX: 2449 up->no_check6_rx = valbool; 2450 break; 2451 2452 case UDP_SEGMENT: 2453 if (val < 0 || val > USHRT_MAX) 2454 return -EINVAL; 2455 up->gso_size = val; 2456 break; 2457 2458 /* 2459 * UDP-Lite's partial checksum coverage (RFC 3828). 2460 */ 2461 /* The sender sets actual checksum coverage length via this option. 2462 * The case coverage > packet length is handled by send module. */ 2463 case UDPLITE_SEND_CSCOV: 2464 if (!is_udplite) /* Disable the option on UDP sockets */ 2465 return -ENOPROTOOPT; 2466 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 2467 val = 8; 2468 else if (val > USHRT_MAX) 2469 val = USHRT_MAX; 2470 up->pcslen = val; 2471 up->pcflag |= UDPLITE_SEND_CC; 2472 break; 2473 2474 /* The receiver specifies a minimum checksum coverage value. To make 2475 * sense, this should be set to at least 8 (as done below). If zero is 2476 * used, this again means full checksum coverage. */ 2477 case UDPLITE_RECV_CSCOV: 2478 if (!is_udplite) /* Disable the option on UDP sockets */ 2479 return -ENOPROTOOPT; 2480 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 2481 val = 8; 2482 else if (val > USHRT_MAX) 2483 val = USHRT_MAX; 2484 up->pcrlen = val; 2485 up->pcflag |= UDPLITE_RECV_CC; 2486 break; 2487 2488 default: 2489 err = -ENOPROTOOPT; 2490 break; 2491 } 2492 2493 return err; 2494 } 2495 EXPORT_SYMBOL(udp_lib_setsockopt); 2496 2497 int udp_setsockopt(struct sock *sk, int level, int optname, 2498 char __user *optval, unsigned int optlen) 2499 { 2500 if (level == SOL_UDP || level == SOL_UDPLITE) 2501 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2502 udp_push_pending_frames); 2503 return ip_setsockopt(sk, level, optname, optval, optlen); 2504 } 2505 2506 #ifdef CONFIG_COMPAT 2507 int compat_udp_setsockopt(struct sock *sk, int level, int optname, 2508 char __user *optval, unsigned int optlen) 2509 { 2510 if (level == SOL_UDP || level == SOL_UDPLITE) 2511 return udp_lib_setsockopt(sk, level, optname, optval, optlen, 2512 udp_push_pending_frames); 2513 return compat_ip_setsockopt(sk, level, optname, optval, optlen); 2514 } 2515 #endif 2516 2517 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 2518 char __user *optval, int __user *optlen) 2519 { 2520 struct udp_sock *up = udp_sk(sk); 2521 int val, len; 2522 2523 if (get_user(len, optlen)) 2524 return -EFAULT; 2525 2526 len = min_t(unsigned int, len, sizeof(int)); 2527 2528 if (len < 0) 2529 return -EINVAL; 2530 2531 switch (optname) { 2532 case UDP_CORK: 2533 val = up->corkflag; 2534 break; 2535 2536 case UDP_ENCAP: 2537 val = up->encap_type; 2538 break; 2539 2540 case UDP_NO_CHECK6_TX: 2541 val = up->no_check6_tx; 2542 break; 2543 2544 case UDP_NO_CHECK6_RX: 2545 val = up->no_check6_rx; 2546 break; 2547 2548 case UDP_SEGMENT: 2549 val = up->gso_size; 2550 break; 2551 2552 /* The following two cannot be changed on UDP sockets, the return is 2553 * always 0 (which corresponds to the full checksum coverage of UDP). */ 2554 case UDPLITE_SEND_CSCOV: 2555 val = up->pcslen; 2556 break; 2557 2558 case UDPLITE_RECV_CSCOV: 2559 val = up->pcrlen; 2560 break; 2561 2562 default: 2563 return -ENOPROTOOPT; 2564 } 2565 2566 if (put_user(len, optlen)) 2567 return -EFAULT; 2568 if (copy_to_user(optval, &val, len)) 2569 return -EFAULT; 2570 return 0; 2571 } 2572 EXPORT_SYMBOL(udp_lib_getsockopt); 2573 2574 int udp_getsockopt(struct sock *sk, int level, int optname, 2575 char __user *optval, int __user *optlen) 2576 { 2577 if (level == SOL_UDP || level == SOL_UDPLITE) 2578 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2579 return ip_getsockopt(sk, level, optname, optval, optlen); 2580 } 2581 2582 #ifdef CONFIG_COMPAT 2583 int compat_udp_getsockopt(struct sock *sk, int level, int optname, 2584 char __user *optval, int __user *optlen) 2585 { 2586 if (level == SOL_UDP || level == SOL_UDPLITE) 2587 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 2588 return compat_ip_getsockopt(sk, level, optname, optval, optlen); 2589 } 2590 #endif 2591 /** 2592 * udp_poll - wait for a UDP event. 2593 * @file - file struct 2594 * @sock - socket 2595 * @wait - poll table 2596 * 2597 * This is same as datagram poll, except for the special case of 2598 * blocking sockets. If application is using a blocking fd 2599 * and a packet with checksum error is in the queue; 2600 * then it could get return from select indicating data available 2601 * but then block when reading it. Add special case code 2602 * to work around these arguably broken applications. 2603 */ 2604 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 2605 { 2606 __poll_t mask = datagram_poll(file, sock, wait); 2607 struct sock *sk = sock->sk; 2608 2609 if (!skb_queue_empty(&udp_sk(sk)->reader_queue)) 2610 mask |= EPOLLIN | EPOLLRDNORM; 2611 2612 /* Check for false positives due to checksum errors */ 2613 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 2614 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 2615 mask &= ~(EPOLLIN | EPOLLRDNORM); 2616 2617 return mask; 2618 2619 } 2620 EXPORT_SYMBOL(udp_poll); 2621 2622 int udp_abort(struct sock *sk, int err) 2623 { 2624 lock_sock(sk); 2625 2626 sk->sk_err = err; 2627 sk->sk_error_report(sk); 2628 __udp_disconnect(sk, 0); 2629 2630 release_sock(sk); 2631 2632 return 0; 2633 } 2634 EXPORT_SYMBOL_GPL(udp_abort); 2635 2636 struct proto udp_prot = { 2637 .name = "UDP", 2638 .owner = THIS_MODULE, 2639 .close = udp_lib_close, 2640 .pre_connect = udp_pre_connect, 2641 .connect = ip4_datagram_connect, 2642 .disconnect = udp_disconnect, 2643 .ioctl = udp_ioctl, 2644 .init = udp_init_sock, 2645 .destroy = udp_destroy_sock, 2646 .setsockopt = udp_setsockopt, 2647 .getsockopt = udp_getsockopt, 2648 .sendmsg = udp_sendmsg, 2649 .recvmsg = udp_recvmsg, 2650 .sendpage = udp_sendpage, 2651 .release_cb = ip4_datagram_release_cb, 2652 .hash = udp_lib_hash, 2653 .unhash = udp_lib_unhash, 2654 .rehash = udp_v4_rehash, 2655 .get_port = udp_v4_get_port, 2656 .memory_allocated = &udp_memory_allocated, 2657 .sysctl_mem = sysctl_udp_mem, 2658 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 2659 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 2660 .obj_size = sizeof(struct udp_sock), 2661 .h.udp_table = &udp_table, 2662 #ifdef CONFIG_COMPAT 2663 .compat_setsockopt = compat_udp_setsockopt, 2664 .compat_getsockopt = compat_udp_getsockopt, 2665 #endif 2666 .diag_destroy = udp_abort, 2667 }; 2668 EXPORT_SYMBOL(udp_prot); 2669 2670 /* ------------------------------------------------------------------------ */ 2671 #ifdef CONFIG_PROC_FS 2672 2673 static struct sock *udp_get_first(struct seq_file *seq, int start) 2674 { 2675 struct sock *sk; 2676 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2677 struct udp_iter_state *state = seq->private; 2678 struct net *net = seq_file_net(seq); 2679 2680 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask; 2681 ++state->bucket) { 2682 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket]; 2683 2684 if (hlist_empty(&hslot->head)) 2685 continue; 2686 2687 spin_lock_bh(&hslot->lock); 2688 sk_for_each(sk, &hslot->head) { 2689 if (!net_eq(sock_net(sk), net)) 2690 continue; 2691 if (sk->sk_family == afinfo->family) 2692 goto found; 2693 } 2694 spin_unlock_bh(&hslot->lock); 2695 } 2696 sk = NULL; 2697 found: 2698 return sk; 2699 } 2700 2701 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 2702 { 2703 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2704 struct udp_iter_state *state = seq->private; 2705 struct net *net = seq_file_net(seq); 2706 2707 do { 2708 sk = sk_next(sk); 2709 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family)); 2710 2711 if (!sk) { 2712 if (state->bucket <= afinfo->udp_table->mask) 2713 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2714 return udp_get_first(seq, state->bucket + 1); 2715 } 2716 return sk; 2717 } 2718 2719 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 2720 { 2721 struct sock *sk = udp_get_first(seq, 0); 2722 2723 if (sk) 2724 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 2725 --pos; 2726 return pos ? NULL : sk; 2727 } 2728 2729 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 2730 { 2731 struct udp_iter_state *state = seq->private; 2732 state->bucket = MAX_UDP_PORTS; 2733 2734 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 2735 } 2736 EXPORT_SYMBOL(udp_seq_start); 2737 2738 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2739 { 2740 struct sock *sk; 2741 2742 if (v == SEQ_START_TOKEN) 2743 sk = udp_get_idx(seq, 0); 2744 else 2745 sk = udp_get_next(seq, v); 2746 2747 ++*pos; 2748 return sk; 2749 } 2750 EXPORT_SYMBOL(udp_seq_next); 2751 2752 void udp_seq_stop(struct seq_file *seq, void *v) 2753 { 2754 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2755 struct udp_iter_state *state = seq->private; 2756 2757 if (state->bucket <= afinfo->udp_table->mask) 2758 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock); 2759 } 2760 EXPORT_SYMBOL(udp_seq_stop); 2761 2762 /* ------------------------------------------------------------------------ */ 2763 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 2764 int bucket) 2765 { 2766 struct inet_sock *inet = inet_sk(sp); 2767 __be32 dest = inet->inet_daddr; 2768 __be32 src = inet->inet_rcv_saddr; 2769 __u16 destp = ntohs(inet->inet_dport); 2770 __u16 srcp = ntohs(inet->inet_sport); 2771 2772 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 2773 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d", 2774 bucket, src, srcp, dest, destp, sp->sk_state, 2775 sk_wmem_alloc_get(sp), 2776 udp_rqueue_get(sp), 2777 0, 0L, 0, 2778 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 2779 0, sock_i_ino(sp), 2780 refcount_read(&sp->sk_refcnt), sp, 2781 atomic_read(&sp->sk_drops)); 2782 } 2783 2784 int udp4_seq_show(struct seq_file *seq, void *v) 2785 { 2786 seq_setwidth(seq, 127); 2787 if (v == SEQ_START_TOKEN) 2788 seq_puts(seq, " sl local_address rem_address st tx_queue " 2789 "rx_queue tr tm->when retrnsmt uid timeout " 2790 "inode ref pointer drops"); 2791 else { 2792 struct udp_iter_state *state = seq->private; 2793 2794 udp4_format_sock(v, seq, state->bucket); 2795 } 2796 seq_pad(seq, '\n'); 2797 return 0; 2798 } 2799 2800 const struct seq_operations udp_seq_ops = { 2801 .start = udp_seq_start, 2802 .next = udp_seq_next, 2803 .stop = udp_seq_stop, 2804 .show = udp4_seq_show, 2805 }; 2806 EXPORT_SYMBOL(udp_seq_ops); 2807 2808 static struct udp_seq_afinfo udp4_seq_afinfo = { 2809 .family = AF_INET, 2810 .udp_table = &udp_table, 2811 }; 2812 2813 static int __net_init udp4_proc_init_net(struct net *net) 2814 { 2815 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 2816 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 2817 return -ENOMEM; 2818 return 0; 2819 } 2820 2821 static void __net_exit udp4_proc_exit_net(struct net *net) 2822 { 2823 remove_proc_entry("udp", net->proc_net); 2824 } 2825 2826 static struct pernet_operations udp4_net_ops = { 2827 .init = udp4_proc_init_net, 2828 .exit = udp4_proc_exit_net, 2829 }; 2830 2831 int __init udp4_proc_init(void) 2832 { 2833 return register_pernet_subsys(&udp4_net_ops); 2834 } 2835 2836 void udp4_proc_exit(void) 2837 { 2838 unregister_pernet_subsys(&udp4_net_ops); 2839 } 2840 #endif /* CONFIG_PROC_FS */ 2841 2842 static __initdata unsigned long uhash_entries; 2843 static int __init set_uhash_entries(char *str) 2844 { 2845 ssize_t ret; 2846 2847 if (!str) 2848 return 0; 2849 2850 ret = kstrtoul(str, 0, &uhash_entries); 2851 if (ret) 2852 return 0; 2853 2854 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 2855 uhash_entries = UDP_HTABLE_SIZE_MIN; 2856 return 1; 2857 } 2858 __setup("uhash_entries=", set_uhash_entries); 2859 2860 void __init udp_table_init(struct udp_table *table, const char *name) 2861 { 2862 unsigned int i; 2863 2864 table->hash = alloc_large_system_hash(name, 2865 2 * sizeof(struct udp_hslot), 2866 uhash_entries, 2867 21, /* one slot per 2 MB */ 2868 0, 2869 &table->log, 2870 &table->mask, 2871 UDP_HTABLE_SIZE_MIN, 2872 64 * 1024); 2873 2874 table->hash2 = table->hash + (table->mask + 1); 2875 for (i = 0; i <= table->mask; i++) { 2876 INIT_HLIST_HEAD(&table->hash[i].head); 2877 table->hash[i].count = 0; 2878 spin_lock_init(&table->hash[i].lock); 2879 } 2880 for (i = 0; i <= table->mask; i++) { 2881 INIT_HLIST_HEAD(&table->hash2[i].head); 2882 table->hash2[i].count = 0; 2883 spin_lock_init(&table->hash2[i].lock); 2884 } 2885 } 2886 2887 u32 udp_flow_hashrnd(void) 2888 { 2889 static u32 hashrnd __read_mostly; 2890 2891 net_get_random_once(&hashrnd, sizeof(hashrnd)); 2892 2893 return hashrnd; 2894 } 2895 EXPORT_SYMBOL(udp_flow_hashrnd); 2896 2897 static void __udp_sysctl_init(struct net *net) 2898 { 2899 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM; 2900 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM; 2901 2902 #ifdef CONFIG_NET_L3_MASTER_DEV 2903 net->ipv4.sysctl_udp_l3mdev_accept = 0; 2904 #endif 2905 } 2906 2907 static int __net_init udp_sysctl_init(struct net *net) 2908 { 2909 __udp_sysctl_init(net); 2910 return 0; 2911 } 2912 2913 static struct pernet_operations __net_initdata udp_sysctl_ops = { 2914 .init = udp_sysctl_init, 2915 }; 2916 2917 void __init udp_init(void) 2918 { 2919 unsigned long limit; 2920 unsigned int i; 2921 2922 udp_table_init(&udp_table, "UDP"); 2923 limit = nr_free_buffer_pages() / 8; 2924 limit = max(limit, 128UL); 2925 sysctl_udp_mem[0] = limit / 4 * 3; 2926 sysctl_udp_mem[1] = limit; 2927 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 2928 2929 __udp_sysctl_init(&init_net); 2930 2931 /* 16 spinlocks per cpu */ 2932 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 2933 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 2934 GFP_KERNEL); 2935 if (!udp_busylocks) 2936 panic("UDP: failed to alloc udp_busylocks\n"); 2937 for (i = 0; i < (1U << udp_busylocks_log); i++) 2938 spin_lock_init(udp_busylocks + i); 2939 2940 if (register_pernet_subsys(&udp_sysctl_ops)) 2941 panic("UDP: failed to init sysctl parameters.\n"); 2942 } 2943