xref: /linux/net/ipv4/udp.c (revision 000aa1250d572171807b47fb9cd3fadfbcc36ad0)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The User Datagram Protocol (UDP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Hirokazu Takahashi, <taka@valinux.co.jp>
13  *
14  * Fixes:
15  *		Alan Cox	:	verify_area() calls
16  *		Alan Cox	: 	stopped close while in use off icmp
17  *					messages. Not a fix but a botch that
18  *					for udp at least is 'valid'.
19  *		Alan Cox	:	Fixed icmp handling properly
20  *		Alan Cox	: 	Correct error for oversized datagrams
21  *		Alan Cox	:	Tidied select() semantics.
22  *		Alan Cox	:	udp_err() fixed properly, also now
23  *					select and read wake correctly on errors
24  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
25  *		Alan Cox	:	UDP can count its memory
26  *		Alan Cox	:	send to an unknown connection causes
27  *					an ECONNREFUSED off the icmp, but
28  *					does NOT close.
29  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
30  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
31  *					bug no longer crashes it.
32  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
33  *		Alan Cox	:	Uses skb_free_datagram
34  *		Alan Cox	:	Added get/set sockopt support.
35  *		Alan Cox	:	Broadcasting without option set returns EACCES.
36  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
37  *		Alan Cox	:	Use ip_tos and ip_ttl
38  *		Alan Cox	:	SNMP Mibs
39  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
40  *		Matt Dillon	:	UDP length checks.
41  *		Alan Cox	:	Smarter af_inet used properly.
42  *		Alan Cox	:	Use new kernel side addressing.
43  *		Alan Cox	:	Incorrect return on truncated datagram receive.
44  *	Arnt Gulbrandsen 	:	New udp_send and stuff
45  *		Alan Cox	:	Cache last socket
46  *		Alan Cox	:	Route cache
47  *		Jon Peatfield	:	Minor efficiency fix to sendto().
48  *		Mike Shaver	:	RFC1122 checks.
49  *		Alan Cox	:	Nonblocking error fix.
50  *	Willy Konynenberg	:	Transparent proxying support.
51  *		Mike McLagan	:	Routing by source
52  *		David S. Miller	:	New socket lookup architecture.
53  *					Last socket cache retained as it
54  *					does have a high hit rate.
55  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
56  *		Andi Kleen	:	Some cleanups, cache destination entry
57  *					for connect.
58  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
59  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
60  *					return ENOTCONN for unconnected sockets (POSIX)
61  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
62  *					bound-to-device socket
63  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
64  *					datagrams.
65  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
66  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
67  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
68  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
69  *					a single port at the same time.
70  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71  *	James Chapman		:	Add L2TP encapsulation type.
72  *
73  *
74  *		This program is free software; you can redistribute it and/or
75  *		modify it under the terms of the GNU General Public License
76  *		as published by the Free Software Foundation; either version
77  *		2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/memblock.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/ip_tunnels.h>
109 #include <net/route.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <trace/events/udp.h>
113 #include <linux/static_key.h>
114 #include <trace/events/skb.h>
115 #include <net/busy_poll.h>
116 #include "udp_impl.h"
117 #include <net/sock_reuseport.h>
118 #include <net/addrconf.h>
119 #include <net/udp_tunnel.h>
120 
121 struct udp_table udp_table __read_mostly;
122 EXPORT_SYMBOL(udp_table);
123 
124 long sysctl_udp_mem[3] __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_mem);
126 
127 atomic_long_t udp_memory_allocated;
128 EXPORT_SYMBOL(udp_memory_allocated);
129 
130 #define MAX_UDP_PORTS 65536
131 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
132 
133 /* IPCB reference means this can not be used from early demux */
134 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
135 {
136 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
137 	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
138 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
139 		return true;
140 #endif
141 	return false;
142 }
143 
144 static int udp_lib_lport_inuse(struct net *net, __u16 num,
145 			       const struct udp_hslot *hslot,
146 			       unsigned long *bitmap,
147 			       struct sock *sk, unsigned int log)
148 {
149 	struct sock *sk2;
150 	kuid_t uid = sock_i_uid(sk);
151 
152 	sk_for_each(sk2, &hslot->head) {
153 		if (net_eq(sock_net(sk2), net) &&
154 		    sk2 != sk &&
155 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
156 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
157 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
158 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
159 		    inet_rcv_saddr_equal(sk, sk2, true)) {
160 			if (sk2->sk_reuseport && sk->sk_reuseport &&
161 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
162 			    uid_eq(uid, sock_i_uid(sk2))) {
163 				if (!bitmap)
164 					return 0;
165 			} else {
166 				if (!bitmap)
167 					return 1;
168 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
169 					  bitmap);
170 			}
171 		}
172 	}
173 	return 0;
174 }
175 
176 /*
177  * Note: we still hold spinlock of primary hash chain, so no other writer
178  * can insert/delete a socket with local_port == num
179  */
180 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
181 				struct udp_hslot *hslot2,
182 				struct sock *sk)
183 {
184 	struct sock *sk2;
185 	kuid_t uid = sock_i_uid(sk);
186 	int res = 0;
187 
188 	spin_lock(&hslot2->lock);
189 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
190 		if (net_eq(sock_net(sk2), net) &&
191 		    sk2 != sk &&
192 		    (udp_sk(sk2)->udp_port_hash == num) &&
193 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
194 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
195 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
196 		    inet_rcv_saddr_equal(sk, sk2, true)) {
197 			if (sk2->sk_reuseport && sk->sk_reuseport &&
198 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
199 			    uid_eq(uid, sock_i_uid(sk2))) {
200 				res = 0;
201 			} else {
202 				res = 1;
203 			}
204 			break;
205 		}
206 	}
207 	spin_unlock(&hslot2->lock);
208 	return res;
209 }
210 
211 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
212 {
213 	struct net *net = sock_net(sk);
214 	kuid_t uid = sock_i_uid(sk);
215 	struct sock *sk2;
216 
217 	sk_for_each(sk2, &hslot->head) {
218 		if (net_eq(sock_net(sk2), net) &&
219 		    sk2 != sk &&
220 		    sk2->sk_family == sk->sk_family &&
221 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
222 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
223 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
224 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
225 		    inet_rcv_saddr_equal(sk, sk2, false)) {
226 			return reuseport_add_sock(sk, sk2,
227 						  inet_rcv_saddr_any(sk));
228 		}
229 	}
230 
231 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
232 }
233 
234 /**
235  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
236  *
237  *  @sk:          socket struct in question
238  *  @snum:        port number to look up
239  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
240  *                   with NULL address
241  */
242 int udp_lib_get_port(struct sock *sk, unsigned short snum,
243 		     unsigned int hash2_nulladdr)
244 {
245 	struct udp_hslot *hslot, *hslot2;
246 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
247 	int    error = 1;
248 	struct net *net = sock_net(sk);
249 
250 	if (!snum) {
251 		int low, high, remaining;
252 		unsigned int rand;
253 		unsigned short first, last;
254 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
255 
256 		inet_get_local_port_range(net, &low, &high);
257 		remaining = (high - low) + 1;
258 
259 		rand = prandom_u32();
260 		first = reciprocal_scale(rand, remaining) + low;
261 		/*
262 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
263 		 */
264 		rand = (rand | 1) * (udptable->mask + 1);
265 		last = first + udptable->mask + 1;
266 		do {
267 			hslot = udp_hashslot(udptable, net, first);
268 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
269 			spin_lock_bh(&hslot->lock);
270 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
271 					    udptable->log);
272 
273 			snum = first;
274 			/*
275 			 * Iterate on all possible values of snum for this hash.
276 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
277 			 * give us randomization and full range coverage.
278 			 */
279 			do {
280 				if (low <= snum && snum <= high &&
281 				    !test_bit(snum >> udptable->log, bitmap) &&
282 				    !inet_is_local_reserved_port(net, snum))
283 					goto found;
284 				snum += rand;
285 			} while (snum != first);
286 			spin_unlock_bh(&hslot->lock);
287 			cond_resched();
288 		} while (++first != last);
289 		goto fail;
290 	} else {
291 		hslot = udp_hashslot(udptable, net, snum);
292 		spin_lock_bh(&hslot->lock);
293 		if (hslot->count > 10) {
294 			int exist;
295 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
296 
297 			slot2          &= udptable->mask;
298 			hash2_nulladdr &= udptable->mask;
299 
300 			hslot2 = udp_hashslot2(udptable, slot2);
301 			if (hslot->count < hslot2->count)
302 				goto scan_primary_hash;
303 
304 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
305 			if (!exist && (hash2_nulladdr != slot2)) {
306 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
307 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
308 							     sk);
309 			}
310 			if (exist)
311 				goto fail_unlock;
312 			else
313 				goto found;
314 		}
315 scan_primary_hash:
316 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
317 			goto fail_unlock;
318 	}
319 found:
320 	inet_sk(sk)->inet_num = snum;
321 	udp_sk(sk)->udp_port_hash = snum;
322 	udp_sk(sk)->udp_portaddr_hash ^= snum;
323 	if (sk_unhashed(sk)) {
324 		if (sk->sk_reuseport &&
325 		    udp_reuseport_add_sock(sk, hslot)) {
326 			inet_sk(sk)->inet_num = 0;
327 			udp_sk(sk)->udp_port_hash = 0;
328 			udp_sk(sk)->udp_portaddr_hash ^= snum;
329 			goto fail_unlock;
330 		}
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 	sock_set_flag(sk, SOCK_RCU_FREE);
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
369 static int compute_score(struct sock *sk, struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif, bool exact_dif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	score += 4;
406 
407 	if (sk->sk_incoming_cpu == raw_smp_processor_id())
408 		score++;
409 	return score;
410 }
411 
412 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
413 		       const __u16 lport, const __be32 faddr,
414 		       const __be16 fport)
415 {
416 	static u32 udp_ehash_secret __read_mostly;
417 
418 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
419 
420 	return __inet_ehashfn(laddr, lport, faddr, fport,
421 			      udp_ehash_secret + net_hash_mix(net));
422 }
423 
424 /* called with rcu_read_lock() */
425 static struct sock *udp4_lib_lookup2(struct net *net,
426 				     __be32 saddr, __be16 sport,
427 				     __be32 daddr, unsigned int hnum,
428 				     int dif, int sdif, bool exact_dif,
429 				     struct udp_hslot *hslot2,
430 				     struct sk_buff *skb)
431 {
432 	struct sock *sk, *result;
433 	int score, badness;
434 	u32 hash = 0;
435 
436 	result = NULL;
437 	badness = 0;
438 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
439 		score = compute_score(sk, net, saddr, sport,
440 				      daddr, hnum, dif, sdif, exact_dif);
441 		if (score > badness) {
442 			if (sk->sk_reuseport) {
443 				hash = udp_ehashfn(net, daddr, hnum,
444 						   saddr, sport);
445 				result = reuseport_select_sock(sk, hash, skb,
446 							sizeof(struct udphdr));
447 				if (result)
448 					return result;
449 			}
450 			badness = score;
451 			result = sk;
452 		}
453 	}
454 	return result;
455 }
456 
457 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
458  * harder than this. -DaveM
459  */
460 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
461 		__be16 sport, __be32 daddr, __be16 dport, int dif,
462 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
463 {
464 	struct sock *result;
465 	unsigned short hnum = ntohs(dport);
466 	unsigned int hash2, slot2;
467 	struct udp_hslot *hslot2;
468 	bool exact_dif = udp_lib_exact_dif_match(net, skb);
469 
470 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
471 	slot2 = hash2 & udptable->mask;
472 	hslot2 = &udptable->hash2[slot2];
473 
474 	result = udp4_lib_lookup2(net, saddr, sport,
475 				  daddr, hnum, dif, sdif,
476 				  exact_dif, hslot2, skb);
477 	if (!result) {
478 		hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
479 		slot2 = hash2 & udptable->mask;
480 		hslot2 = &udptable->hash2[slot2];
481 
482 		result = udp4_lib_lookup2(net, saddr, sport,
483 					  htonl(INADDR_ANY), hnum, dif, sdif,
484 					  exact_dif, hslot2, skb);
485 	}
486 	if (unlikely(IS_ERR(result)))
487 		return NULL;
488 	return result;
489 }
490 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
491 
492 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
493 						 __be16 sport, __be16 dport,
494 						 struct udp_table *udptable)
495 {
496 	const struct iphdr *iph = ip_hdr(skb);
497 
498 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
499 				 iph->daddr, dport, inet_iif(skb),
500 				 inet_sdif(skb), udptable, skb);
501 }
502 
503 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
504 				 __be16 sport, __be16 dport)
505 {
506 	const struct iphdr *iph = ip_hdr(skb);
507 
508 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
509 				 iph->daddr, dport, inet_iif(skb),
510 				 inet_sdif(skb), &udp_table, NULL);
511 }
512 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
513 
514 /* Must be called under rcu_read_lock().
515  * Does increment socket refcount.
516  */
517 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
518 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
519 			     __be32 daddr, __be16 dport, int dif)
520 {
521 	struct sock *sk;
522 
523 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
524 			       dif, 0, &udp_table, NULL);
525 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
526 		sk = NULL;
527 	return sk;
528 }
529 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
530 #endif
531 
532 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
533 				       __be16 loc_port, __be32 loc_addr,
534 				       __be16 rmt_port, __be32 rmt_addr,
535 				       int dif, int sdif, unsigned short hnum)
536 {
537 	struct inet_sock *inet = inet_sk(sk);
538 
539 	if (!net_eq(sock_net(sk), net) ||
540 	    udp_sk(sk)->udp_port_hash != hnum ||
541 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
542 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
543 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
544 	    ipv6_only_sock(sk) ||
545 	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
546 	     sk->sk_bound_dev_if != sdif))
547 		return false;
548 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
549 		return false;
550 	return true;
551 }
552 
553 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
554 void udp_encap_enable(void)
555 {
556 	static_branch_inc(&udp_encap_needed_key);
557 }
558 EXPORT_SYMBOL(udp_encap_enable);
559 
560 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
561  * through error handlers in encapsulations looking for a match.
562  */
563 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
564 {
565 	int i;
566 
567 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
568 		int (*handler)(struct sk_buff *skb, u32 info);
569 		const struct ip_tunnel_encap_ops *encap;
570 
571 		encap = rcu_dereference(iptun_encaps[i]);
572 		if (!encap)
573 			continue;
574 		handler = encap->err_handler;
575 		if (handler && !handler(skb, info))
576 			return 0;
577 	}
578 
579 	return -ENOENT;
580 }
581 
582 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
583  * reversing source and destination port: this will match tunnels that force the
584  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
585  * lwtunnels might actually break this assumption by being configured with
586  * different destination ports on endpoints, in this case we won't be able to
587  * trace ICMP messages back to them.
588  *
589  * If this doesn't match any socket, probe tunnels with arbitrary destination
590  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
591  * we've sent packets to won't necessarily match the local destination port.
592  *
593  * Then ask the tunnel implementation to match the error against a valid
594  * association.
595  *
596  * Return an error if we can't find a match, the socket if we need further
597  * processing, zero otherwise.
598  */
599 static struct sock *__udp4_lib_err_encap(struct net *net,
600 					 const struct iphdr *iph,
601 					 struct udphdr *uh,
602 					 struct udp_table *udptable,
603 					 struct sk_buff *skb, u32 info)
604 {
605 	int network_offset, transport_offset;
606 	struct sock *sk;
607 
608 	network_offset = skb_network_offset(skb);
609 	transport_offset = skb_transport_offset(skb);
610 
611 	/* Network header needs to point to the outer IPv4 header inside ICMP */
612 	skb_reset_network_header(skb);
613 
614 	/* Transport header needs to point to the UDP header */
615 	skb_set_transport_header(skb, iph->ihl << 2);
616 
617 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
618 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
619 			       udptable, NULL);
620 	if (sk) {
621 		int (*lookup)(struct sock *sk, struct sk_buff *skb);
622 		struct udp_sock *up = udp_sk(sk);
623 
624 		lookup = READ_ONCE(up->encap_err_lookup);
625 		if (!lookup || lookup(sk, skb))
626 			sk = NULL;
627 	}
628 
629 	if (!sk)
630 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
631 
632 	skb_set_transport_header(skb, transport_offset);
633 	skb_set_network_header(skb, network_offset);
634 
635 	return sk;
636 }
637 
638 /*
639  * This routine is called by the ICMP module when it gets some
640  * sort of error condition.  If err < 0 then the socket should
641  * be closed and the error returned to the user.  If err > 0
642  * it's just the icmp type << 8 | icmp code.
643  * Header points to the ip header of the error packet. We move
644  * on past this. Then (as it used to claim before adjustment)
645  * header points to the first 8 bytes of the udp header.  We need
646  * to find the appropriate port.
647  */
648 
649 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
650 {
651 	struct inet_sock *inet;
652 	const struct iphdr *iph = (const struct iphdr *)skb->data;
653 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
654 	const int type = icmp_hdr(skb)->type;
655 	const int code = icmp_hdr(skb)->code;
656 	bool tunnel = false;
657 	struct sock *sk;
658 	int harderr;
659 	int err;
660 	struct net *net = dev_net(skb->dev);
661 
662 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
663 			       iph->saddr, uh->source, skb->dev->ifindex,
664 			       inet_sdif(skb), udptable, NULL);
665 	if (!sk) {
666 		/* No socket for error: try tunnels before discarding */
667 		sk = ERR_PTR(-ENOENT);
668 		if (static_branch_unlikely(&udp_encap_needed_key)) {
669 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
670 						  info);
671 			if (!sk)
672 				return 0;
673 		}
674 
675 		if (IS_ERR(sk)) {
676 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
677 			return PTR_ERR(sk);
678 		}
679 
680 		tunnel = true;
681 	}
682 
683 	err = 0;
684 	harderr = 0;
685 	inet = inet_sk(sk);
686 
687 	switch (type) {
688 	default:
689 	case ICMP_TIME_EXCEEDED:
690 		err = EHOSTUNREACH;
691 		break;
692 	case ICMP_SOURCE_QUENCH:
693 		goto out;
694 	case ICMP_PARAMETERPROB:
695 		err = EPROTO;
696 		harderr = 1;
697 		break;
698 	case ICMP_DEST_UNREACH:
699 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
700 			ipv4_sk_update_pmtu(skb, sk, info);
701 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
702 				err = EMSGSIZE;
703 				harderr = 1;
704 				break;
705 			}
706 			goto out;
707 		}
708 		err = EHOSTUNREACH;
709 		if (code <= NR_ICMP_UNREACH) {
710 			harderr = icmp_err_convert[code].fatal;
711 			err = icmp_err_convert[code].errno;
712 		}
713 		break;
714 	case ICMP_REDIRECT:
715 		ipv4_sk_redirect(skb, sk);
716 		goto out;
717 	}
718 
719 	/*
720 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
721 	 *	4.1.3.3.
722 	 */
723 	if (tunnel) {
724 		/* ...not for tunnels though: we don't have a sending socket */
725 		goto out;
726 	}
727 	if (!inet->recverr) {
728 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
729 			goto out;
730 	} else
731 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
732 
733 	sk->sk_err = err;
734 	sk->sk_error_report(sk);
735 out:
736 	return 0;
737 }
738 
739 int udp_err(struct sk_buff *skb, u32 info)
740 {
741 	return __udp4_lib_err(skb, info, &udp_table);
742 }
743 
744 /*
745  * Throw away all pending data and cancel the corking. Socket is locked.
746  */
747 void udp_flush_pending_frames(struct sock *sk)
748 {
749 	struct udp_sock *up = udp_sk(sk);
750 
751 	if (up->pending) {
752 		up->len = 0;
753 		up->pending = 0;
754 		ip_flush_pending_frames(sk);
755 	}
756 }
757 EXPORT_SYMBOL(udp_flush_pending_frames);
758 
759 /**
760  * 	udp4_hwcsum  -  handle outgoing HW checksumming
761  * 	@skb: 	sk_buff containing the filled-in UDP header
762  * 	        (checksum field must be zeroed out)
763  *	@src:	source IP address
764  *	@dst:	destination IP address
765  */
766 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
767 {
768 	struct udphdr *uh = udp_hdr(skb);
769 	int offset = skb_transport_offset(skb);
770 	int len = skb->len - offset;
771 	int hlen = len;
772 	__wsum csum = 0;
773 
774 	if (!skb_has_frag_list(skb)) {
775 		/*
776 		 * Only one fragment on the socket.
777 		 */
778 		skb->csum_start = skb_transport_header(skb) - skb->head;
779 		skb->csum_offset = offsetof(struct udphdr, check);
780 		uh->check = ~csum_tcpudp_magic(src, dst, len,
781 					       IPPROTO_UDP, 0);
782 	} else {
783 		struct sk_buff *frags;
784 
785 		/*
786 		 * HW-checksum won't work as there are two or more
787 		 * fragments on the socket so that all csums of sk_buffs
788 		 * should be together
789 		 */
790 		skb_walk_frags(skb, frags) {
791 			csum = csum_add(csum, frags->csum);
792 			hlen -= frags->len;
793 		}
794 
795 		csum = skb_checksum(skb, offset, hlen, csum);
796 		skb->ip_summed = CHECKSUM_NONE;
797 
798 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
799 		if (uh->check == 0)
800 			uh->check = CSUM_MANGLED_0;
801 	}
802 }
803 EXPORT_SYMBOL_GPL(udp4_hwcsum);
804 
805 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
806  * for the simple case like when setting the checksum for a UDP tunnel.
807  */
808 void udp_set_csum(bool nocheck, struct sk_buff *skb,
809 		  __be32 saddr, __be32 daddr, int len)
810 {
811 	struct udphdr *uh = udp_hdr(skb);
812 
813 	if (nocheck) {
814 		uh->check = 0;
815 	} else if (skb_is_gso(skb)) {
816 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
817 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
818 		uh->check = 0;
819 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
820 		if (uh->check == 0)
821 			uh->check = CSUM_MANGLED_0;
822 	} else {
823 		skb->ip_summed = CHECKSUM_PARTIAL;
824 		skb->csum_start = skb_transport_header(skb) - skb->head;
825 		skb->csum_offset = offsetof(struct udphdr, check);
826 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
827 	}
828 }
829 EXPORT_SYMBOL(udp_set_csum);
830 
831 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
832 			struct inet_cork *cork)
833 {
834 	struct sock *sk = skb->sk;
835 	struct inet_sock *inet = inet_sk(sk);
836 	struct udphdr *uh;
837 	int err = 0;
838 	int is_udplite = IS_UDPLITE(sk);
839 	int offset = skb_transport_offset(skb);
840 	int len = skb->len - offset;
841 	__wsum csum = 0;
842 
843 	/*
844 	 * Create a UDP header
845 	 */
846 	uh = udp_hdr(skb);
847 	uh->source = inet->inet_sport;
848 	uh->dest = fl4->fl4_dport;
849 	uh->len = htons(len);
850 	uh->check = 0;
851 
852 	if (cork->gso_size) {
853 		const int hlen = skb_network_header_len(skb) +
854 				 sizeof(struct udphdr);
855 
856 		if (hlen + cork->gso_size > cork->fragsize) {
857 			kfree_skb(skb);
858 			return -EINVAL;
859 		}
860 		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
861 			kfree_skb(skb);
862 			return -EINVAL;
863 		}
864 		if (sk->sk_no_check_tx) {
865 			kfree_skb(skb);
866 			return -EINVAL;
867 		}
868 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
869 		    dst_xfrm(skb_dst(skb))) {
870 			kfree_skb(skb);
871 			return -EIO;
872 		}
873 
874 		skb_shinfo(skb)->gso_size = cork->gso_size;
875 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
876 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
877 							 cork->gso_size);
878 		goto csum_partial;
879 	}
880 
881 	if (is_udplite)  				 /*     UDP-Lite      */
882 		csum = udplite_csum(skb);
883 
884 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
885 
886 		skb->ip_summed = CHECKSUM_NONE;
887 		goto send;
888 
889 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
890 csum_partial:
891 
892 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
893 		goto send;
894 
895 	} else
896 		csum = udp_csum(skb);
897 
898 	/* add protocol-dependent pseudo-header */
899 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
900 				      sk->sk_protocol, csum);
901 	if (uh->check == 0)
902 		uh->check = CSUM_MANGLED_0;
903 
904 send:
905 	err = ip_send_skb(sock_net(sk), skb);
906 	if (err) {
907 		if (err == -ENOBUFS && !inet->recverr) {
908 			UDP_INC_STATS(sock_net(sk),
909 				      UDP_MIB_SNDBUFERRORS, is_udplite);
910 			err = 0;
911 		}
912 	} else
913 		UDP_INC_STATS(sock_net(sk),
914 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
915 	return err;
916 }
917 
918 /*
919  * Push out all pending data as one UDP datagram. Socket is locked.
920  */
921 int udp_push_pending_frames(struct sock *sk)
922 {
923 	struct udp_sock  *up = udp_sk(sk);
924 	struct inet_sock *inet = inet_sk(sk);
925 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
926 	struct sk_buff *skb;
927 	int err = 0;
928 
929 	skb = ip_finish_skb(sk, fl4);
930 	if (!skb)
931 		goto out;
932 
933 	err = udp_send_skb(skb, fl4, &inet->cork.base);
934 
935 out:
936 	up->len = 0;
937 	up->pending = 0;
938 	return err;
939 }
940 EXPORT_SYMBOL(udp_push_pending_frames);
941 
942 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
943 {
944 	switch (cmsg->cmsg_type) {
945 	case UDP_SEGMENT:
946 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
947 			return -EINVAL;
948 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
949 		return 0;
950 	default:
951 		return -EINVAL;
952 	}
953 }
954 
955 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
956 {
957 	struct cmsghdr *cmsg;
958 	bool need_ip = false;
959 	int err;
960 
961 	for_each_cmsghdr(cmsg, msg) {
962 		if (!CMSG_OK(msg, cmsg))
963 			return -EINVAL;
964 
965 		if (cmsg->cmsg_level != SOL_UDP) {
966 			need_ip = true;
967 			continue;
968 		}
969 
970 		err = __udp_cmsg_send(cmsg, gso_size);
971 		if (err)
972 			return err;
973 	}
974 
975 	return need_ip;
976 }
977 EXPORT_SYMBOL_GPL(udp_cmsg_send);
978 
979 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
980 {
981 	struct inet_sock *inet = inet_sk(sk);
982 	struct udp_sock *up = udp_sk(sk);
983 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
984 	struct flowi4 fl4_stack;
985 	struct flowi4 *fl4;
986 	int ulen = len;
987 	struct ipcm_cookie ipc;
988 	struct rtable *rt = NULL;
989 	int free = 0;
990 	int connected = 0;
991 	__be32 daddr, faddr, saddr;
992 	__be16 dport;
993 	u8  tos;
994 	int err, is_udplite = IS_UDPLITE(sk);
995 	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
996 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
997 	struct sk_buff *skb;
998 	struct ip_options_data opt_copy;
999 
1000 	if (len > 0xFFFF)
1001 		return -EMSGSIZE;
1002 
1003 	/*
1004 	 *	Check the flags.
1005 	 */
1006 
1007 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1008 		return -EOPNOTSUPP;
1009 
1010 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1011 
1012 	fl4 = &inet->cork.fl.u.ip4;
1013 	if (up->pending) {
1014 		/*
1015 		 * There are pending frames.
1016 		 * The socket lock must be held while it's corked.
1017 		 */
1018 		lock_sock(sk);
1019 		if (likely(up->pending)) {
1020 			if (unlikely(up->pending != AF_INET)) {
1021 				release_sock(sk);
1022 				return -EINVAL;
1023 			}
1024 			goto do_append_data;
1025 		}
1026 		release_sock(sk);
1027 	}
1028 	ulen += sizeof(struct udphdr);
1029 
1030 	/*
1031 	 *	Get and verify the address.
1032 	 */
1033 	if (usin) {
1034 		if (msg->msg_namelen < sizeof(*usin))
1035 			return -EINVAL;
1036 		if (usin->sin_family != AF_INET) {
1037 			if (usin->sin_family != AF_UNSPEC)
1038 				return -EAFNOSUPPORT;
1039 		}
1040 
1041 		daddr = usin->sin_addr.s_addr;
1042 		dport = usin->sin_port;
1043 		if (dport == 0)
1044 			return -EINVAL;
1045 	} else {
1046 		if (sk->sk_state != TCP_ESTABLISHED)
1047 			return -EDESTADDRREQ;
1048 		daddr = inet->inet_daddr;
1049 		dport = inet->inet_dport;
1050 		/* Open fast path for connected socket.
1051 		   Route will not be used, if at least one option is set.
1052 		 */
1053 		connected = 1;
1054 	}
1055 
1056 	ipcm_init_sk(&ipc, inet);
1057 	ipc.gso_size = up->gso_size;
1058 
1059 	if (msg->msg_controllen) {
1060 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1061 		if (err > 0)
1062 			err = ip_cmsg_send(sk, msg, &ipc,
1063 					   sk->sk_family == AF_INET6);
1064 		if (unlikely(err < 0)) {
1065 			kfree(ipc.opt);
1066 			return err;
1067 		}
1068 		if (ipc.opt)
1069 			free = 1;
1070 		connected = 0;
1071 	}
1072 	if (!ipc.opt) {
1073 		struct ip_options_rcu *inet_opt;
1074 
1075 		rcu_read_lock();
1076 		inet_opt = rcu_dereference(inet->inet_opt);
1077 		if (inet_opt) {
1078 			memcpy(&opt_copy, inet_opt,
1079 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1080 			ipc.opt = &opt_copy.opt;
1081 		}
1082 		rcu_read_unlock();
1083 	}
1084 
1085 	if (cgroup_bpf_enabled && !connected) {
1086 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1087 					    (struct sockaddr *)usin, &ipc.addr);
1088 		if (err)
1089 			goto out_free;
1090 		if (usin) {
1091 			if (usin->sin_port == 0) {
1092 				/* BPF program set invalid port. Reject it. */
1093 				err = -EINVAL;
1094 				goto out_free;
1095 			}
1096 			daddr = usin->sin_addr.s_addr;
1097 			dport = usin->sin_port;
1098 		}
1099 	}
1100 
1101 	saddr = ipc.addr;
1102 	ipc.addr = faddr = daddr;
1103 
1104 	if (ipc.opt && ipc.opt->opt.srr) {
1105 		if (!daddr) {
1106 			err = -EINVAL;
1107 			goto out_free;
1108 		}
1109 		faddr = ipc.opt->opt.faddr;
1110 		connected = 0;
1111 	}
1112 	tos = get_rttos(&ipc, inet);
1113 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1114 	    (msg->msg_flags & MSG_DONTROUTE) ||
1115 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1116 		tos |= RTO_ONLINK;
1117 		connected = 0;
1118 	}
1119 
1120 	if (ipv4_is_multicast(daddr)) {
1121 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1122 			ipc.oif = inet->mc_index;
1123 		if (!saddr)
1124 			saddr = inet->mc_addr;
1125 		connected = 0;
1126 	} else if (!ipc.oif) {
1127 		ipc.oif = inet->uc_index;
1128 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1129 		/* oif is set, packet is to local broadcast and
1130 		 * and uc_index is set. oif is most likely set
1131 		 * by sk_bound_dev_if. If uc_index != oif check if the
1132 		 * oif is an L3 master and uc_index is an L3 slave.
1133 		 * If so, we want to allow the send using the uc_index.
1134 		 */
1135 		if (ipc.oif != inet->uc_index &&
1136 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1137 							      inet->uc_index)) {
1138 			ipc.oif = inet->uc_index;
1139 		}
1140 	}
1141 
1142 	if (connected)
1143 		rt = (struct rtable *)sk_dst_check(sk, 0);
1144 
1145 	if (!rt) {
1146 		struct net *net = sock_net(sk);
1147 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1148 
1149 		fl4 = &fl4_stack;
1150 
1151 		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1152 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1153 				   flow_flags,
1154 				   faddr, saddr, dport, inet->inet_sport,
1155 				   sk->sk_uid);
1156 
1157 		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1158 		rt = ip_route_output_flow(net, fl4, sk);
1159 		if (IS_ERR(rt)) {
1160 			err = PTR_ERR(rt);
1161 			rt = NULL;
1162 			if (err == -ENETUNREACH)
1163 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1164 			goto out;
1165 		}
1166 
1167 		err = -EACCES;
1168 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1169 		    !sock_flag(sk, SOCK_BROADCAST))
1170 			goto out;
1171 		if (connected)
1172 			sk_dst_set(sk, dst_clone(&rt->dst));
1173 	}
1174 
1175 	if (msg->msg_flags&MSG_CONFIRM)
1176 		goto do_confirm;
1177 back_from_confirm:
1178 
1179 	saddr = fl4->saddr;
1180 	if (!ipc.addr)
1181 		daddr = ipc.addr = fl4->daddr;
1182 
1183 	/* Lockless fast path for the non-corking case. */
1184 	if (!corkreq) {
1185 		struct inet_cork cork;
1186 
1187 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1188 				  sizeof(struct udphdr), &ipc, &rt,
1189 				  &cork, msg->msg_flags);
1190 		err = PTR_ERR(skb);
1191 		if (!IS_ERR_OR_NULL(skb))
1192 			err = udp_send_skb(skb, fl4, &cork);
1193 		goto out;
1194 	}
1195 
1196 	lock_sock(sk);
1197 	if (unlikely(up->pending)) {
1198 		/* The socket is already corked while preparing it. */
1199 		/* ... which is an evident application bug. --ANK */
1200 		release_sock(sk);
1201 
1202 		net_dbg_ratelimited("socket already corked\n");
1203 		err = -EINVAL;
1204 		goto out;
1205 	}
1206 	/*
1207 	 *	Now cork the socket to pend data.
1208 	 */
1209 	fl4 = &inet->cork.fl.u.ip4;
1210 	fl4->daddr = daddr;
1211 	fl4->saddr = saddr;
1212 	fl4->fl4_dport = dport;
1213 	fl4->fl4_sport = inet->inet_sport;
1214 	up->pending = AF_INET;
1215 
1216 do_append_data:
1217 	up->len += ulen;
1218 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1219 			     sizeof(struct udphdr), &ipc, &rt,
1220 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1221 	if (err)
1222 		udp_flush_pending_frames(sk);
1223 	else if (!corkreq)
1224 		err = udp_push_pending_frames(sk);
1225 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1226 		up->pending = 0;
1227 	release_sock(sk);
1228 
1229 out:
1230 	ip_rt_put(rt);
1231 out_free:
1232 	if (free)
1233 		kfree(ipc.opt);
1234 	if (!err)
1235 		return len;
1236 	/*
1237 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1238 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1239 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1240 	 * things).  We could add another new stat but at least for now that
1241 	 * seems like overkill.
1242 	 */
1243 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1244 		UDP_INC_STATS(sock_net(sk),
1245 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1246 	}
1247 	return err;
1248 
1249 do_confirm:
1250 	if (msg->msg_flags & MSG_PROBE)
1251 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1252 	if (!(msg->msg_flags&MSG_PROBE) || len)
1253 		goto back_from_confirm;
1254 	err = 0;
1255 	goto out;
1256 }
1257 EXPORT_SYMBOL(udp_sendmsg);
1258 
1259 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1260 		 size_t size, int flags)
1261 {
1262 	struct inet_sock *inet = inet_sk(sk);
1263 	struct udp_sock *up = udp_sk(sk);
1264 	int ret;
1265 
1266 	if (flags & MSG_SENDPAGE_NOTLAST)
1267 		flags |= MSG_MORE;
1268 
1269 	if (!up->pending) {
1270 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1271 
1272 		/* Call udp_sendmsg to specify destination address which
1273 		 * sendpage interface can't pass.
1274 		 * This will succeed only when the socket is connected.
1275 		 */
1276 		ret = udp_sendmsg(sk, &msg, 0);
1277 		if (ret < 0)
1278 			return ret;
1279 	}
1280 
1281 	lock_sock(sk);
1282 
1283 	if (unlikely(!up->pending)) {
1284 		release_sock(sk);
1285 
1286 		net_dbg_ratelimited("cork failed\n");
1287 		return -EINVAL;
1288 	}
1289 
1290 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1291 			     page, offset, size, flags);
1292 	if (ret == -EOPNOTSUPP) {
1293 		release_sock(sk);
1294 		return sock_no_sendpage(sk->sk_socket, page, offset,
1295 					size, flags);
1296 	}
1297 	if (ret < 0) {
1298 		udp_flush_pending_frames(sk);
1299 		goto out;
1300 	}
1301 
1302 	up->len += size;
1303 	if (!(up->corkflag || (flags&MSG_MORE)))
1304 		ret = udp_push_pending_frames(sk);
1305 	if (!ret)
1306 		ret = size;
1307 out:
1308 	release_sock(sk);
1309 	return ret;
1310 }
1311 
1312 #define UDP_SKB_IS_STATELESS 0x80000000
1313 
1314 static void udp_set_dev_scratch(struct sk_buff *skb)
1315 {
1316 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1317 
1318 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1319 	scratch->_tsize_state = skb->truesize;
1320 #if BITS_PER_LONG == 64
1321 	scratch->len = skb->len;
1322 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1323 	scratch->is_linear = !skb_is_nonlinear(skb);
1324 #endif
1325 	/* all head states execept sp (dst, sk, nf) are always cleared by
1326 	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1327 	 * process IP_CMSG_PASSSEC at recvmsg() time
1328 	 */
1329 	if (likely(!skb_sec_path(skb)))
1330 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1331 }
1332 
1333 static int udp_skb_truesize(struct sk_buff *skb)
1334 {
1335 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1336 }
1337 
1338 static bool udp_skb_has_head_state(struct sk_buff *skb)
1339 {
1340 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1341 }
1342 
1343 /* fully reclaim rmem/fwd memory allocated for skb */
1344 static void udp_rmem_release(struct sock *sk, int size, int partial,
1345 			     bool rx_queue_lock_held)
1346 {
1347 	struct udp_sock *up = udp_sk(sk);
1348 	struct sk_buff_head *sk_queue;
1349 	int amt;
1350 
1351 	if (likely(partial)) {
1352 		up->forward_deficit += size;
1353 		size = up->forward_deficit;
1354 		if (size < (sk->sk_rcvbuf >> 2))
1355 			return;
1356 	} else {
1357 		size += up->forward_deficit;
1358 	}
1359 	up->forward_deficit = 0;
1360 
1361 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1362 	 * if the called don't held it already
1363 	 */
1364 	sk_queue = &sk->sk_receive_queue;
1365 	if (!rx_queue_lock_held)
1366 		spin_lock(&sk_queue->lock);
1367 
1368 
1369 	sk->sk_forward_alloc += size;
1370 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1371 	sk->sk_forward_alloc -= amt;
1372 
1373 	if (amt)
1374 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1375 
1376 	atomic_sub(size, &sk->sk_rmem_alloc);
1377 
1378 	/* this can save us from acquiring the rx queue lock on next receive */
1379 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1380 
1381 	if (!rx_queue_lock_held)
1382 		spin_unlock(&sk_queue->lock);
1383 }
1384 
1385 /* Note: called with reader_queue.lock held.
1386  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1387  * This avoids a cache line miss while receive_queue lock is held.
1388  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1389  */
1390 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1391 {
1392 	prefetch(&skb->data);
1393 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1394 }
1395 EXPORT_SYMBOL(udp_skb_destructor);
1396 
1397 /* as above, but the caller held the rx queue lock, too */
1398 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1399 {
1400 	prefetch(&skb->data);
1401 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1402 }
1403 
1404 /* Idea of busylocks is to let producers grab an extra spinlock
1405  * to relieve pressure on the receive_queue spinlock shared by consumer.
1406  * Under flood, this means that only one producer can be in line
1407  * trying to acquire the receive_queue spinlock.
1408  * These busylock can be allocated on a per cpu manner, instead of a
1409  * per socket one (that would consume a cache line per socket)
1410  */
1411 static int udp_busylocks_log __read_mostly;
1412 static spinlock_t *udp_busylocks __read_mostly;
1413 
1414 static spinlock_t *busylock_acquire(void *ptr)
1415 {
1416 	spinlock_t *busy;
1417 
1418 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1419 	spin_lock(busy);
1420 	return busy;
1421 }
1422 
1423 static void busylock_release(spinlock_t *busy)
1424 {
1425 	if (busy)
1426 		spin_unlock(busy);
1427 }
1428 
1429 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431 	struct sk_buff_head *list = &sk->sk_receive_queue;
1432 	int rmem, delta, amt, err = -ENOMEM;
1433 	spinlock_t *busy = NULL;
1434 	int size;
1435 
1436 	/* try to avoid the costly atomic add/sub pair when the receive
1437 	 * queue is full; always allow at least a packet
1438 	 */
1439 	rmem = atomic_read(&sk->sk_rmem_alloc);
1440 	if (rmem > sk->sk_rcvbuf)
1441 		goto drop;
1442 
1443 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1444 	 * having linear skbs :
1445 	 * - Reduce memory overhead and thus increase receive queue capacity
1446 	 * - Less cache line misses at copyout() time
1447 	 * - Less work at consume_skb() (less alien page frag freeing)
1448 	 */
1449 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1450 		skb_condense(skb);
1451 
1452 		busy = busylock_acquire(sk);
1453 	}
1454 	size = skb->truesize;
1455 	udp_set_dev_scratch(skb);
1456 
1457 	/* we drop only if the receive buf is full and the receive
1458 	 * queue contains some other skb
1459 	 */
1460 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1461 	if (rmem > (size + sk->sk_rcvbuf))
1462 		goto uncharge_drop;
1463 
1464 	spin_lock(&list->lock);
1465 	if (size >= sk->sk_forward_alloc) {
1466 		amt = sk_mem_pages(size);
1467 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1468 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1469 			err = -ENOBUFS;
1470 			spin_unlock(&list->lock);
1471 			goto uncharge_drop;
1472 		}
1473 
1474 		sk->sk_forward_alloc += delta;
1475 	}
1476 
1477 	sk->sk_forward_alloc -= size;
1478 
1479 	/* no need to setup a destructor, we will explicitly release the
1480 	 * forward allocated memory on dequeue
1481 	 */
1482 	sock_skb_set_dropcount(sk, skb);
1483 
1484 	__skb_queue_tail(list, skb);
1485 	spin_unlock(&list->lock);
1486 
1487 	if (!sock_flag(sk, SOCK_DEAD))
1488 		sk->sk_data_ready(sk);
1489 
1490 	busylock_release(busy);
1491 	return 0;
1492 
1493 uncharge_drop:
1494 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1495 
1496 drop:
1497 	atomic_inc(&sk->sk_drops);
1498 	busylock_release(busy);
1499 	return err;
1500 }
1501 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1502 
1503 void udp_destruct_sock(struct sock *sk)
1504 {
1505 	/* reclaim completely the forward allocated memory */
1506 	struct udp_sock *up = udp_sk(sk);
1507 	unsigned int total = 0;
1508 	struct sk_buff *skb;
1509 
1510 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1511 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1512 		total += skb->truesize;
1513 		kfree_skb(skb);
1514 	}
1515 	udp_rmem_release(sk, total, 0, true);
1516 
1517 	inet_sock_destruct(sk);
1518 }
1519 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1520 
1521 int udp_init_sock(struct sock *sk)
1522 {
1523 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1524 	sk->sk_destruct = udp_destruct_sock;
1525 	return 0;
1526 }
1527 EXPORT_SYMBOL_GPL(udp_init_sock);
1528 
1529 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1530 {
1531 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1532 		bool slow = lock_sock_fast(sk);
1533 
1534 		sk_peek_offset_bwd(sk, len);
1535 		unlock_sock_fast(sk, slow);
1536 	}
1537 
1538 	if (!skb_unref(skb))
1539 		return;
1540 
1541 	/* In the more common cases we cleared the head states previously,
1542 	 * see __udp_queue_rcv_skb().
1543 	 */
1544 	if (unlikely(udp_skb_has_head_state(skb)))
1545 		skb_release_head_state(skb);
1546 	__consume_stateless_skb(skb);
1547 }
1548 EXPORT_SYMBOL_GPL(skb_consume_udp);
1549 
1550 static struct sk_buff *__first_packet_length(struct sock *sk,
1551 					     struct sk_buff_head *rcvq,
1552 					     int *total)
1553 {
1554 	struct sk_buff *skb;
1555 
1556 	while ((skb = skb_peek(rcvq)) != NULL) {
1557 		if (udp_lib_checksum_complete(skb)) {
1558 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1559 					IS_UDPLITE(sk));
1560 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1561 					IS_UDPLITE(sk));
1562 			atomic_inc(&sk->sk_drops);
1563 			__skb_unlink(skb, rcvq);
1564 			*total += skb->truesize;
1565 			kfree_skb(skb);
1566 		} else {
1567 			/* the csum related bits could be changed, refresh
1568 			 * the scratch area
1569 			 */
1570 			udp_set_dev_scratch(skb);
1571 			break;
1572 		}
1573 	}
1574 	return skb;
1575 }
1576 
1577 /**
1578  *	first_packet_length	- return length of first packet in receive queue
1579  *	@sk: socket
1580  *
1581  *	Drops all bad checksum frames, until a valid one is found.
1582  *	Returns the length of found skb, or -1 if none is found.
1583  */
1584 static int first_packet_length(struct sock *sk)
1585 {
1586 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1587 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1588 	struct sk_buff *skb;
1589 	int total = 0;
1590 	int res;
1591 
1592 	spin_lock_bh(&rcvq->lock);
1593 	skb = __first_packet_length(sk, rcvq, &total);
1594 	if (!skb && !skb_queue_empty(sk_queue)) {
1595 		spin_lock(&sk_queue->lock);
1596 		skb_queue_splice_tail_init(sk_queue, rcvq);
1597 		spin_unlock(&sk_queue->lock);
1598 
1599 		skb = __first_packet_length(sk, rcvq, &total);
1600 	}
1601 	res = skb ? skb->len : -1;
1602 	if (total)
1603 		udp_rmem_release(sk, total, 1, false);
1604 	spin_unlock_bh(&rcvq->lock);
1605 	return res;
1606 }
1607 
1608 /*
1609  *	IOCTL requests applicable to the UDP protocol
1610  */
1611 
1612 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1613 {
1614 	switch (cmd) {
1615 	case SIOCOUTQ:
1616 	{
1617 		int amount = sk_wmem_alloc_get(sk);
1618 
1619 		return put_user(amount, (int __user *)arg);
1620 	}
1621 
1622 	case SIOCINQ:
1623 	{
1624 		int amount = max_t(int, 0, first_packet_length(sk));
1625 
1626 		return put_user(amount, (int __user *)arg);
1627 	}
1628 
1629 	default:
1630 		return -ENOIOCTLCMD;
1631 	}
1632 
1633 	return 0;
1634 }
1635 EXPORT_SYMBOL(udp_ioctl);
1636 
1637 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1638 			       int noblock, int *off, int *err)
1639 {
1640 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1641 	struct sk_buff_head *queue;
1642 	struct sk_buff *last;
1643 	long timeo;
1644 	int error;
1645 
1646 	queue = &udp_sk(sk)->reader_queue;
1647 	flags |= noblock ? MSG_DONTWAIT : 0;
1648 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1649 	do {
1650 		struct sk_buff *skb;
1651 
1652 		error = sock_error(sk);
1653 		if (error)
1654 			break;
1655 
1656 		error = -EAGAIN;
1657 		do {
1658 			spin_lock_bh(&queue->lock);
1659 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1660 							udp_skb_destructor,
1661 							off, err, &last);
1662 			if (skb) {
1663 				spin_unlock_bh(&queue->lock);
1664 				return skb;
1665 			}
1666 
1667 			if (skb_queue_empty(sk_queue)) {
1668 				spin_unlock_bh(&queue->lock);
1669 				goto busy_check;
1670 			}
1671 
1672 			/* refill the reader queue and walk it again
1673 			 * keep both queues locked to avoid re-acquiring
1674 			 * the sk_receive_queue lock if fwd memory scheduling
1675 			 * is needed.
1676 			 */
1677 			spin_lock(&sk_queue->lock);
1678 			skb_queue_splice_tail_init(sk_queue, queue);
1679 
1680 			skb = __skb_try_recv_from_queue(sk, queue, flags,
1681 							udp_skb_dtor_locked,
1682 							off, err, &last);
1683 			spin_unlock(&sk_queue->lock);
1684 			spin_unlock_bh(&queue->lock);
1685 			if (skb)
1686 				return skb;
1687 
1688 busy_check:
1689 			if (!sk_can_busy_loop(sk))
1690 				break;
1691 
1692 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1693 		} while (!skb_queue_empty(sk_queue));
1694 
1695 		/* sk_queue is empty, reader_queue may contain peeked packets */
1696 	} while (timeo &&
1697 		 !__skb_wait_for_more_packets(sk, &error, &timeo,
1698 					      (struct sk_buff *)sk_queue));
1699 
1700 	*err = error;
1701 	return NULL;
1702 }
1703 EXPORT_SYMBOL(__skb_recv_udp);
1704 
1705 /*
1706  * 	This should be easy, if there is something there we
1707  * 	return it, otherwise we block.
1708  */
1709 
1710 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1711 		int flags, int *addr_len)
1712 {
1713 	struct inet_sock *inet = inet_sk(sk);
1714 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1715 	struct sk_buff *skb;
1716 	unsigned int ulen, copied;
1717 	int off, err, peeking = flags & MSG_PEEK;
1718 	int is_udplite = IS_UDPLITE(sk);
1719 	bool checksum_valid = false;
1720 
1721 	if (flags & MSG_ERRQUEUE)
1722 		return ip_recv_error(sk, msg, len, addr_len);
1723 
1724 try_again:
1725 	off = sk_peek_offset(sk, flags);
1726 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1727 	if (!skb)
1728 		return err;
1729 
1730 	ulen = udp_skb_len(skb);
1731 	copied = len;
1732 	if (copied > ulen - off)
1733 		copied = ulen - off;
1734 	else if (copied < ulen)
1735 		msg->msg_flags |= MSG_TRUNC;
1736 
1737 	/*
1738 	 * If checksum is needed at all, try to do it while copying the
1739 	 * data.  If the data is truncated, or if we only want a partial
1740 	 * coverage checksum (UDP-Lite), do it before the copy.
1741 	 */
1742 
1743 	if (copied < ulen || peeking ||
1744 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1745 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1746 				!__udp_lib_checksum_complete(skb);
1747 		if (!checksum_valid)
1748 			goto csum_copy_err;
1749 	}
1750 
1751 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1752 		if (udp_skb_is_linear(skb))
1753 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1754 		else
1755 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1756 	} else {
1757 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1758 
1759 		if (err == -EINVAL)
1760 			goto csum_copy_err;
1761 	}
1762 
1763 	if (unlikely(err)) {
1764 		if (!peeking) {
1765 			atomic_inc(&sk->sk_drops);
1766 			UDP_INC_STATS(sock_net(sk),
1767 				      UDP_MIB_INERRORS, is_udplite);
1768 		}
1769 		kfree_skb(skb);
1770 		return err;
1771 	}
1772 
1773 	if (!peeking)
1774 		UDP_INC_STATS(sock_net(sk),
1775 			      UDP_MIB_INDATAGRAMS, is_udplite);
1776 
1777 	sock_recv_ts_and_drops(msg, sk, skb);
1778 
1779 	/* Copy the address. */
1780 	if (sin) {
1781 		sin->sin_family = AF_INET;
1782 		sin->sin_port = udp_hdr(skb)->source;
1783 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1784 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1785 		*addr_len = sizeof(*sin);
1786 
1787 		if (cgroup_bpf_enabled)
1788 			BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1789 							(struct sockaddr *)sin);
1790 	}
1791 
1792 	if (udp_sk(sk)->gro_enabled)
1793 		udp_cmsg_recv(msg, sk, skb);
1794 
1795 	if (inet->cmsg_flags)
1796 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1797 
1798 	err = copied;
1799 	if (flags & MSG_TRUNC)
1800 		err = ulen;
1801 
1802 	skb_consume_udp(sk, skb, peeking ? -err : err);
1803 	return err;
1804 
1805 csum_copy_err:
1806 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1807 				 udp_skb_destructor)) {
1808 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1809 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1810 	}
1811 	kfree_skb(skb);
1812 
1813 	/* starting over for a new packet, but check if we need to yield */
1814 	cond_resched();
1815 	msg->msg_flags &= ~MSG_TRUNC;
1816 	goto try_again;
1817 }
1818 
1819 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1820 {
1821 	/* This check is replicated from __ip4_datagram_connect() and
1822 	 * intended to prevent BPF program called below from accessing bytes
1823 	 * that are out of the bound specified by user in addr_len.
1824 	 */
1825 	if (addr_len < sizeof(struct sockaddr_in))
1826 		return -EINVAL;
1827 
1828 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1829 }
1830 EXPORT_SYMBOL(udp_pre_connect);
1831 
1832 int __udp_disconnect(struct sock *sk, int flags)
1833 {
1834 	struct inet_sock *inet = inet_sk(sk);
1835 	/*
1836 	 *	1003.1g - break association.
1837 	 */
1838 
1839 	sk->sk_state = TCP_CLOSE;
1840 	inet->inet_daddr = 0;
1841 	inet->inet_dport = 0;
1842 	sock_rps_reset_rxhash(sk);
1843 	sk->sk_bound_dev_if = 0;
1844 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1845 		inet_reset_saddr(sk);
1846 
1847 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1848 		sk->sk_prot->unhash(sk);
1849 		inet->inet_sport = 0;
1850 	}
1851 	sk_dst_reset(sk);
1852 	return 0;
1853 }
1854 EXPORT_SYMBOL(__udp_disconnect);
1855 
1856 int udp_disconnect(struct sock *sk, int flags)
1857 {
1858 	lock_sock(sk);
1859 	__udp_disconnect(sk, flags);
1860 	release_sock(sk);
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(udp_disconnect);
1864 
1865 void udp_lib_unhash(struct sock *sk)
1866 {
1867 	if (sk_hashed(sk)) {
1868 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1869 		struct udp_hslot *hslot, *hslot2;
1870 
1871 		hslot  = udp_hashslot(udptable, sock_net(sk),
1872 				      udp_sk(sk)->udp_port_hash);
1873 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1874 
1875 		spin_lock_bh(&hslot->lock);
1876 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1877 			reuseport_detach_sock(sk);
1878 		if (sk_del_node_init_rcu(sk)) {
1879 			hslot->count--;
1880 			inet_sk(sk)->inet_num = 0;
1881 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1882 
1883 			spin_lock(&hslot2->lock);
1884 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1885 			hslot2->count--;
1886 			spin_unlock(&hslot2->lock);
1887 		}
1888 		spin_unlock_bh(&hslot->lock);
1889 	}
1890 }
1891 EXPORT_SYMBOL(udp_lib_unhash);
1892 
1893 /*
1894  * inet_rcv_saddr was changed, we must rehash secondary hash
1895  */
1896 void udp_lib_rehash(struct sock *sk, u16 newhash)
1897 {
1898 	if (sk_hashed(sk)) {
1899 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1900 		struct udp_hslot *hslot, *hslot2, *nhslot2;
1901 
1902 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1903 		nhslot2 = udp_hashslot2(udptable, newhash);
1904 		udp_sk(sk)->udp_portaddr_hash = newhash;
1905 
1906 		if (hslot2 != nhslot2 ||
1907 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1908 			hslot = udp_hashslot(udptable, sock_net(sk),
1909 					     udp_sk(sk)->udp_port_hash);
1910 			/* we must lock primary chain too */
1911 			spin_lock_bh(&hslot->lock);
1912 			if (rcu_access_pointer(sk->sk_reuseport_cb))
1913 				reuseport_detach_sock(sk);
1914 
1915 			if (hslot2 != nhslot2) {
1916 				spin_lock(&hslot2->lock);
1917 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1918 				hslot2->count--;
1919 				spin_unlock(&hslot2->lock);
1920 
1921 				spin_lock(&nhslot2->lock);
1922 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1923 							 &nhslot2->head);
1924 				nhslot2->count++;
1925 				spin_unlock(&nhslot2->lock);
1926 			}
1927 
1928 			spin_unlock_bh(&hslot->lock);
1929 		}
1930 	}
1931 }
1932 EXPORT_SYMBOL(udp_lib_rehash);
1933 
1934 void udp_v4_rehash(struct sock *sk)
1935 {
1936 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1937 					  inet_sk(sk)->inet_rcv_saddr,
1938 					  inet_sk(sk)->inet_num);
1939 	udp_lib_rehash(sk, new_hash);
1940 }
1941 
1942 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1943 {
1944 	int rc;
1945 
1946 	if (inet_sk(sk)->inet_daddr) {
1947 		sock_rps_save_rxhash(sk, skb);
1948 		sk_mark_napi_id(sk, skb);
1949 		sk_incoming_cpu_update(sk);
1950 	} else {
1951 		sk_mark_napi_id_once(sk, skb);
1952 	}
1953 
1954 	rc = __udp_enqueue_schedule_skb(sk, skb);
1955 	if (rc < 0) {
1956 		int is_udplite = IS_UDPLITE(sk);
1957 
1958 		/* Note that an ENOMEM error is charged twice */
1959 		if (rc == -ENOMEM)
1960 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1961 					is_udplite);
1962 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1963 		kfree_skb(skb);
1964 		trace_udp_fail_queue_rcv_skb(rc, sk);
1965 		return -1;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 /* returns:
1972  *  -1: error
1973  *   0: success
1974  *  >0: "udp encap" protocol resubmission
1975  *
1976  * Note that in the success and error cases, the skb is assumed to
1977  * have either been requeued or freed.
1978  */
1979 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
1980 {
1981 	struct udp_sock *up = udp_sk(sk);
1982 	int is_udplite = IS_UDPLITE(sk);
1983 
1984 	/*
1985 	 *	Charge it to the socket, dropping if the queue is full.
1986 	 */
1987 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1988 		goto drop;
1989 	nf_reset(skb);
1990 
1991 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1992 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1993 
1994 		/*
1995 		 * This is an encapsulation socket so pass the skb to
1996 		 * the socket's udp_encap_rcv() hook. Otherwise, just
1997 		 * fall through and pass this up the UDP socket.
1998 		 * up->encap_rcv() returns the following value:
1999 		 * =0 if skb was successfully passed to the encap
2000 		 *    handler or was discarded by it.
2001 		 * >0 if skb should be passed on to UDP.
2002 		 * <0 if skb should be resubmitted as proto -N
2003 		 */
2004 
2005 		/* if we're overly short, let UDP handle it */
2006 		encap_rcv = READ_ONCE(up->encap_rcv);
2007 		if (encap_rcv) {
2008 			int ret;
2009 
2010 			/* Verify checksum before giving to encap */
2011 			if (udp_lib_checksum_complete(skb))
2012 				goto csum_error;
2013 
2014 			ret = encap_rcv(sk, skb);
2015 			if (ret <= 0) {
2016 				__UDP_INC_STATS(sock_net(sk),
2017 						UDP_MIB_INDATAGRAMS,
2018 						is_udplite);
2019 				return -ret;
2020 			}
2021 		}
2022 
2023 		/* FALLTHROUGH -- it's a UDP Packet */
2024 	}
2025 
2026 	/*
2027 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2028 	 */
2029 	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2030 
2031 		/*
2032 		 * MIB statistics other than incrementing the error count are
2033 		 * disabled for the following two types of errors: these depend
2034 		 * on the application settings, not on the functioning of the
2035 		 * protocol stack as such.
2036 		 *
2037 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2038 		 * way ... to ... at least let the receiving application block
2039 		 * delivery of packets with coverage values less than a value
2040 		 * provided by the application."
2041 		 */
2042 		if (up->pcrlen == 0) {          /* full coverage was set  */
2043 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2044 					    UDP_SKB_CB(skb)->cscov, skb->len);
2045 			goto drop;
2046 		}
2047 		/* The next case involves violating the min. coverage requested
2048 		 * by the receiver. This is subtle: if receiver wants x and x is
2049 		 * greater than the buffersize/MTU then receiver will complain
2050 		 * that it wants x while sender emits packets of smaller size y.
2051 		 * Therefore the above ...()->partial_cov statement is essential.
2052 		 */
2053 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2054 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2055 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2056 			goto drop;
2057 		}
2058 	}
2059 
2060 	prefetch(&sk->sk_rmem_alloc);
2061 	if (rcu_access_pointer(sk->sk_filter) &&
2062 	    udp_lib_checksum_complete(skb))
2063 			goto csum_error;
2064 
2065 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2066 		goto drop;
2067 
2068 	udp_csum_pull_header(skb);
2069 
2070 	ipv4_pktinfo_prepare(sk, skb);
2071 	return __udp_queue_rcv_skb(sk, skb);
2072 
2073 csum_error:
2074 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2075 drop:
2076 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2077 	atomic_inc(&sk->sk_drops);
2078 	kfree_skb(skb);
2079 	return -1;
2080 }
2081 
2082 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2083 {
2084 	struct sk_buff *next, *segs;
2085 	int ret;
2086 
2087 	if (likely(!udp_unexpected_gso(sk, skb)))
2088 		return udp_queue_rcv_one_skb(sk, skb);
2089 
2090 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_SGO_CB_OFFSET);
2091 	__skb_push(skb, -skb_mac_offset(skb));
2092 	segs = udp_rcv_segment(sk, skb, true);
2093 	for (skb = segs; skb; skb = next) {
2094 		next = skb->next;
2095 		__skb_pull(skb, skb_transport_offset(skb));
2096 		ret = udp_queue_rcv_one_skb(sk, skb);
2097 		if (ret > 0)
2098 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, -ret);
2099 	}
2100 	return 0;
2101 }
2102 
2103 /* For TCP sockets, sk_rx_dst is protected by socket lock
2104  * For UDP, we use xchg() to guard against concurrent changes.
2105  */
2106 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2107 {
2108 	struct dst_entry *old;
2109 
2110 	if (dst_hold_safe(dst)) {
2111 		old = xchg(&sk->sk_rx_dst, dst);
2112 		dst_release(old);
2113 		return old != dst;
2114 	}
2115 	return false;
2116 }
2117 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2118 
2119 /*
2120  *	Multicasts and broadcasts go to each listener.
2121  *
2122  *	Note: called only from the BH handler context.
2123  */
2124 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2125 				    struct udphdr  *uh,
2126 				    __be32 saddr, __be32 daddr,
2127 				    struct udp_table *udptable,
2128 				    int proto)
2129 {
2130 	struct sock *sk, *first = NULL;
2131 	unsigned short hnum = ntohs(uh->dest);
2132 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2133 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2134 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2135 	int dif = skb->dev->ifindex;
2136 	int sdif = inet_sdif(skb);
2137 	struct hlist_node *node;
2138 	struct sk_buff *nskb;
2139 
2140 	if (use_hash2) {
2141 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2142 			    udptable->mask;
2143 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2144 start_lookup:
2145 		hslot = &udptable->hash2[hash2];
2146 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2147 	}
2148 
2149 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2150 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2151 					 uh->source, saddr, dif, sdif, hnum))
2152 			continue;
2153 
2154 		if (!first) {
2155 			first = sk;
2156 			continue;
2157 		}
2158 		nskb = skb_clone(skb, GFP_ATOMIC);
2159 
2160 		if (unlikely(!nskb)) {
2161 			atomic_inc(&sk->sk_drops);
2162 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2163 					IS_UDPLITE(sk));
2164 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2165 					IS_UDPLITE(sk));
2166 			continue;
2167 		}
2168 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2169 			consume_skb(nskb);
2170 	}
2171 
2172 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2173 	if (use_hash2 && hash2 != hash2_any) {
2174 		hash2 = hash2_any;
2175 		goto start_lookup;
2176 	}
2177 
2178 	if (first) {
2179 		if (udp_queue_rcv_skb(first, skb) > 0)
2180 			consume_skb(skb);
2181 	} else {
2182 		kfree_skb(skb);
2183 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2184 				proto == IPPROTO_UDPLITE);
2185 	}
2186 	return 0;
2187 }
2188 
2189 /* Initialize UDP checksum. If exited with zero value (success),
2190  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2191  * Otherwise, csum completion requires chacksumming packet body,
2192  * including udp header and folding it to skb->csum.
2193  */
2194 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2195 				 int proto)
2196 {
2197 	int err;
2198 
2199 	UDP_SKB_CB(skb)->partial_cov = 0;
2200 	UDP_SKB_CB(skb)->cscov = skb->len;
2201 
2202 	if (proto == IPPROTO_UDPLITE) {
2203 		err = udplite_checksum_init(skb, uh);
2204 		if (err)
2205 			return err;
2206 
2207 		if (UDP_SKB_CB(skb)->partial_cov) {
2208 			skb->csum = inet_compute_pseudo(skb, proto);
2209 			return 0;
2210 		}
2211 	}
2212 
2213 	/* Note, we are only interested in != 0 or == 0, thus the
2214 	 * force to int.
2215 	 */
2216 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2217 							inet_compute_pseudo);
2218 	if (err)
2219 		return err;
2220 
2221 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2222 		/* If SW calculated the value, we know it's bad */
2223 		if (skb->csum_complete_sw)
2224 			return 1;
2225 
2226 		/* HW says the value is bad. Let's validate that.
2227 		 * skb->csum is no longer the full packet checksum,
2228 		 * so don't treat it as such.
2229 		 */
2230 		skb_checksum_complete_unset(skb);
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2237  * return code conversion for ip layer consumption
2238  */
2239 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2240 			       struct udphdr *uh)
2241 {
2242 	int ret;
2243 
2244 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2245 		skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2246 					 inet_compute_pseudo);
2247 
2248 	ret = udp_queue_rcv_skb(sk, skb);
2249 
2250 	/* a return value > 0 means to resubmit the input, but
2251 	 * it wants the return to be -protocol, or 0
2252 	 */
2253 	if (ret > 0)
2254 		return -ret;
2255 	return 0;
2256 }
2257 
2258 /*
2259  *	All we need to do is get the socket, and then do a checksum.
2260  */
2261 
2262 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2263 		   int proto)
2264 {
2265 	struct sock *sk;
2266 	struct udphdr *uh;
2267 	unsigned short ulen;
2268 	struct rtable *rt = skb_rtable(skb);
2269 	__be32 saddr, daddr;
2270 	struct net *net = dev_net(skb->dev);
2271 
2272 	/*
2273 	 *  Validate the packet.
2274 	 */
2275 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2276 		goto drop;		/* No space for header. */
2277 
2278 	uh   = udp_hdr(skb);
2279 	ulen = ntohs(uh->len);
2280 	saddr = ip_hdr(skb)->saddr;
2281 	daddr = ip_hdr(skb)->daddr;
2282 
2283 	if (ulen > skb->len)
2284 		goto short_packet;
2285 
2286 	if (proto == IPPROTO_UDP) {
2287 		/* UDP validates ulen. */
2288 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2289 			goto short_packet;
2290 		uh = udp_hdr(skb);
2291 	}
2292 
2293 	if (udp4_csum_init(skb, uh, proto))
2294 		goto csum_error;
2295 
2296 	sk = skb_steal_sock(skb);
2297 	if (sk) {
2298 		struct dst_entry *dst = skb_dst(skb);
2299 		int ret;
2300 
2301 		if (unlikely(sk->sk_rx_dst != dst))
2302 			udp_sk_rx_dst_set(sk, dst);
2303 
2304 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2305 		sock_put(sk);
2306 		return ret;
2307 	}
2308 
2309 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2310 		return __udp4_lib_mcast_deliver(net, skb, uh,
2311 						saddr, daddr, udptable, proto);
2312 
2313 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2314 	if (sk)
2315 		return udp_unicast_rcv_skb(sk, skb, uh);
2316 
2317 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2318 		goto drop;
2319 	nf_reset(skb);
2320 
2321 	/* No socket. Drop packet silently, if checksum is wrong */
2322 	if (udp_lib_checksum_complete(skb))
2323 		goto csum_error;
2324 
2325 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2326 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2327 
2328 	/*
2329 	 * Hmm.  We got an UDP packet to a port to which we
2330 	 * don't wanna listen.  Ignore it.
2331 	 */
2332 	kfree_skb(skb);
2333 	return 0;
2334 
2335 short_packet:
2336 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2337 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2338 			    &saddr, ntohs(uh->source),
2339 			    ulen, skb->len,
2340 			    &daddr, ntohs(uh->dest));
2341 	goto drop;
2342 
2343 csum_error:
2344 	/*
2345 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2346 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2347 	 */
2348 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2349 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2350 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2351 			    ulen);
2352 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2353 drop:
2354 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2355 	kfree_skb(skb);
2356 	return 0;
2357 }
2358 
2359 /* We can only early demux multicast if there is a single matching socket.
2360  * If more than one socket found returns NULL
2361  */
2362 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2363 						  __be16 loc_port, __be32 loc_addr,
2364 						  __be16 rmt_port, __be32 rmt_addr,
2365 						  int dif, int sdif)
2366 {
2367 	struct sock *sk, *result;
2368 	unsigned short hnum = ntohs(loc_port);
2369 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2370 	struct udp_hslot *hslot = &udp_table.hash[slot];
2371 
2372 	/* Do not bother scanning a too big list */
2373 	if (hslot->count > 10)
2374 		return NULL;
2375 
2376 	result = NULL;
2377 	sk_for_each_rcu(sk, &hslot->head) {
2378 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2379 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2380 			if (result)
2381 				return NULL;
2382 			result = sk;
2383 		}
2384 	}
2385 
2386 	return result;
2387 }
2388 
2389 /* For unicast we should only early demux connected sockets or we can
2390  * break forwarding setups.  The chains here can be long so only check
2391  * if the first socket is an exact match and if not move on.
2392  */
2393 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2394 					    __be16 loc_port, __be32 loc_addr,
2395 					    __be16 rmt_port, __be32 rmt_addr,
2396 					    int dif, int sdif)
2397 {
2398 	unsigned short hnum = ntohs(loc_port);
2399 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2400 	unsigned int slot2 = hash2 & udp_table.mask;
2401 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2402 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2403 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2404 	struct sock *sk;
2405 
2406 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2407 		if (INET_MATCH(sk, net, acookie, rmt_addr,
2408 			       loc_addr, ports, dif, sdif))
2409 			return sk;
2410 		/* Only check first socket in chain */
2411 		break;
2412 	}
2413 	return NULL;
2414 }
2415 
2416 int udp_v4_early_demux(struct sk_buff *skb)
2417 {
2418 	struct net *net = dev_net(skb->dev);
2419 	struct in_device *in_dev = NULL;
2420 	const struct iphdr *iph;
2421 	const struct udphdr *uh;
2422 	struct sock *sk = NULL;
2423 	struct dst_entry *dst;
2424 	int dif = skb->dev->ifindex;
2425 	int sdif = inet_sdif(skb);
2426 	int ours;
2427 
2428 	/* validate the packet */
2429 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2430 		return 0;
2431 
2432 	iph = ip_hdr(skb);
2433 	uh = udp_hdr(skb);
2434 
2435 	if (skb->pkt_type == PACKET_MULTICAST) {
2436 		in_dev = __in_dev_get_rcu(skb->dev);
2437 
2438 		if (!in_dev)
2439 			return 0;
2440 
2441 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2442 				       iph->protocol);
2443 		if (!ours)
2444 			return 0;
2445 
2446 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2447 						   uh->source, iph->saddr,
2448 						   dif, sdif);
2449 	} else if (skb->pkt_type == PACKET_HOST) {
2450 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2451 					     uh->source, iph->saddr, dif, sdif);
2452 	}
2453 
2454 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2455 		return 0;
2456 
2457 	skb->sk = sk;
2458 	skb->destructor = sock_efree;
2459 	dst = READ_ONCE(sk->sk_rx_dst);
2460 
2461 	if (dst)
2462 		dst = dst_check(dst, 0);
2463 	if (dst) {
2464 		u32 itag = 0;
2465 
2466 		/* set noref for now.
2467 		 * any place which wants to hold dst has to call
2468 		 * dst_hold_safe()
2469 		 */
2470 		skb_dst_set_noref(skb, dst);
2471 
2472 		/* for unconnected multicast sockets we need to validate
2473 		 * the source on each packet
2474 		 */
2475 		if (!inet_sk(sk)->inet_daddr && in_dev)
2476 			return ip_mc_validate_source(skb, iph->daddr,
2477 						     iph->saddr, iph->tos,
2478 						     skb->dev, in_dev, &itag);
2479 	}
2480 	return 0;
2481 }
2482 
2483 int udp_rcv(struct sk_buff *skb)
2484 {
2485 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2486 }
2487 
2488 void udp_destroy_sock(struct sock *sk)
2489 {
2490 	struct udp_sock *up = udp_sk(sk);
2491 	bool slow = lock_sock_fast(sk);
2492 	udp_flush_pending_frames(sk);
2493 	unlock_sock_fast(sk, slow);
2494 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2495 		if (up->encap_type) {
2496 			void (*encap_destroy)(struct sock *sk);
2497 			encap_destroy = READ_ONCE(up->encap_destroy);
2498 			if (encap_destroy)
2499 				encap_destroy(sk);
2500 		}
2501 		if (up->encap_enabled)
2502 			static_branch_dec(&udp_encap_needed_key);
2503 	}
2504 }
2505 
2506 /*
2507  *	Socket option code for UDP
2508  */
2509 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2510 		       char __user *optval, unsigned int optlen,
2511 		       int (*push_pending_frames)(struct sock *))
2512 {
2513 	struct udp_sock *up = udp_sk(sk);
2514 	int val, valbool;
2515 	int err = 0;
2516 	int is_udplite = IS_UDPLITE(sk);
2517 
2518 	if (optlen < sizeof(int))
2519 		return -EINVAL;
2520 
2521 	if (get_user(val, (int __user *)optval))
2522 		return -EFAULT;
2523 
2524 	valbool = val ? 1 : 0;
2525 
2526 	switch (optname) {
2527 	case UDP_CORK:
2528 		if (val != 0) {
2529 			up->corkflag = 1;
2530 		} else {
2531 			up->corkflag = 0;
2532 			lock_sock(sk);
2533 			push_pending_frames(sk);
2534 			release_sock(sk);
2535 		}
2536 		break;
2537 
2538 	case UDP_ENCAP:
2539 		switch (val) {
2540 		case 0:
2541 		case UDP_ENCAP_ESPINUDP:
2542 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2543 			up->encap_rcv = xfrm4_udp_encap_rcv;
2544 			/* FALLTHROUGH */
2545 		case UDP_ENCAP_L2TPINUDP:
2546 			up->encap_type = val;
2547 			lock_sock(sk);
2548 			udp_tunnel_encap_enable(sk->sk_socket);
2549 			release_sock(sk);
2550 			break;
2551 		default:
2552 			err = -ENOPROTOOPT;
2553 			break;
2554 		}
2555 		break;
2556 
2557 	case UDP_NO_CHECK6_TX:
2558 		up->no_check6_tx = valbool;
2559 		break;
2560 
2561 	case UDP_NO_CHECK6_RX:
2562 		up->no_check6_rx = valbool;
2563 		break;
2564 
2565 	case UDP_SEGMENT:
2566 		if (val < 0 || val > USHRT_MAX)
2567 			return -EINVAL;
2568 		up->gso_size = val;
2569 		break;
2570 
2571 	case UDP_GRO:
2572 		lock_sock(sk);
2573 		if (valbool)
2574 			udp_tunnel_encap_enable(sk->sk_socket);
2575 		up->gro_enabled = valbool;
2576 		release_sock(sk);
2577 		break;
2578 
2579 	/*
2580 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2581 	 */
2582 	/* The sender sets actual checksum coverage length via this option.
2583 	 * The case coverage > packet length is handled by send module. */
2584 	case UDPLITE_SEND_CSCOV:
2585 		if (!is_udplite)         /* Disable the option on UDP sockets */
2586 			return -ENOPROTOOPT;
2587 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2588 			val = 8;
2589 		else if (val > USHRT_MAX)
2590 			val = USHRT_MAX;
2591 		up->pcslen = val;
2592 		up->pcflag |= UDPLITE_SEND_CC;
2593 		break;
2594 
2595 	/* The receiver specifies a minimum checksum coverage value. To make
2596 	 * sense, this should be set to at least 8 (as done below). If zero is
2597 	 * used, this again means full checksum coverage.                     */
2598 	case UDPLITE_RECV_CSCOV:
2599 		if (!is_udplite)         /* Disable the option on UDP sockets */
2600 			return -ENOPROTOOPT;
2601 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2602 			val = 8;
2603 		else if (val > USHRT_MAX)
2604 			val = USHRT_MAX;
2605 		up->pcrlen = val;
2606 		up->pcflag |= UDPLITE_RECV_CC;
2607 		break;
2608 
2609 	default:
2610 		err = -ENOPROTOOPT;
2611 		break;
2612 	}
2613 
2614 	return err;
2615 }
2616 EXPORT_SYMBOL(udp_lib_setsockopt);
2617 
2618 int udp_setsockopt(struct sock *sk, int level, int optname,
2619 		   char __user *optval, unsigned int optlen)
2620 {
2621 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2622 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2623 					  udp_push_pending_frames);
2624 	return ip_setsockopt(sk, level, optname, optval, optlen);
2625 }
2626 
2627 #ifdef CONFIG_COMPAT
2628 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2629 			  char __user *optval, unsigned int optlen)
2630 {
2631 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2632 		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2633 					  udp_push_pending_frames);
2634 	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2635 }
2636 #endif
2637 
2638 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2639 		       char __user *optval, int __user *optlen)
2640 {
2641 	struct udp_sock *up = udp_sk(sk);
2642 	int val, len;
2643 
2644 	if (get_user(len, optlen))
2645 		return -EFAULT;
2646 
2647 	len = min_t(unsigned int, len, sizeof(int));
2648 
2649 	if (len < 0)
2650 		return -EINVAL;
2651 
2652 	switch (optname) {
2653 	case UDP_CORK:
2654 		val = up->corkflag;
2655 		break;
2656 
2657 	case UDP_ENCAP:
2658 		val = up->encap_type;
2659 		break;
2660 
2661 	case UDP_NO_CHECK6_TX:
2662 		val = up->no_check6_tx;
2663 		break;
2664 
2665 	case UDP_NO_CHECK6_RX:
2666 		val = up->no_check6_rx;
2667 		break;
2668 
2669 	case UDP_SEGMENT:
2670 		val = up->gso_size;
2671 		break;
2672 
2673 	/* The following two cannot be changed on UDP sockets, the return is
2674 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2675 	case UDPLITE_SEND_CSCOV:
2676 		val = up->pcslen;
2677 		break;
2678 
2679 	case UDPLITE_RECV_CSCOV:
2680 		val = up->pcrlen;
2681 		break;
2682 
2683 	default:
2684 		return -ENOPROTOOPT;
2685 	}
2686 
2687 	if (put_user(len, optlen))
2688 		return -EFAULT;
2689 	if (copy_to_user(optval, &val, len))
2690 		return -EFAULT;
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL(udp_lib_getsockopt);
2694 
2695 int udp_getsockopt(struct sock *sk, int level, int optname,
2696 		   char __user *optval, int __user *optlen)
2697 {
2698 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2699 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2700 	return ip_getsockopt(sk, level, optname, optval, optlen);
2701 }
2702 
2703 #ifdef CONFIG_COMPAT
2704 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2705 				 char __user *optval, int __user *optlen)
2706 {
2707 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2708 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2709 	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2710 }
2711 #endif
2712 /**
2713  * 	udp_poll - wait for a UDP event.
2714  *	@file - file struct
2715  *	@sock - socket
2716  *	@wait - poll table
2717  *
2718  *	This is same as datagram poll, except for the special case of
2719  *	blocking sockets. If application is using a blocking fd
2720  *	and a packet with checksum error is in the queue;
2721  *	then it could get return from select indicating data available
2722  *	but then block when reading it. Add special case code
2723  *	to work around these arguably broken applications.
2724  */
2725 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2726 {
2727 	__poll_t mask = datagram_poll(file, sock, wait);
2728 	struct sock *sk = sock->sk;
2729 
2730 	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2731 		mask |= EPOLLIN | EPOLLRDNORM;
2732 
2733 	/* Check for false positives due to checksum errors */
2734 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2735 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2736 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2737 
2738 	return mask;
2739 
2740 }
2741 EXPORT_SYMBOL(udp_poll);
2742 
2743 int udp_abort(struct sock *sk, int err)
2744 {
2745 	lock_sock(sk);
2746 
2747 	sk->sk_err = err;
2748 	sk->sk_error_report(sk);
2749 	__udp_disconnect(sk, 0);
2750 
2751 	release_sock(sk);
2752 
2753 	return 0;
2754 }
2755 EXPORT_SYMBOL_GPL(udp_abort);
2756 
2757 struct proto udp_prot = {
2758 	.name			= "UDP",
2759 	.owner			= THIS_MODULE,
2760 	.close			= udp_lib_close,
2761 	.pre_connect		= udp_pre_connect,
2762 	.connect		= ip4_datagram_connect,
2763 	.disconnect		= udp_disconnect,
2764 	.ioctl			= udp_ioctl,
2765 	.init			= udp_init_sock,
2766 	.destroy		= udp_destroy_sock,
2767 	.setsockopt		= udp_setsockopt,
2768 	.getsockopt		= udp_getsockopt,
2769 	.sendmsg		= udp_sendmsg,
2770 	.recvmsg		= udp_recvmsg,
2771 	.sendpage		= udp_sendpage,
2772 	.release_cb		= ip4_datagram_release_cb,
2773 	.hash			= udp_lib_hash,
2774 	.unhash			= udp_lib_unhash,
2775 	.rehash			= udp_v4_rehash,
2776 	.get_port		= udp_v4_get_port,
2777 	.memory_allocated	= &udp_memory_allocated,
2778 	.sysctl_mem		= sysctl_udp_mem,
2779 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2780 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2781 	.obj_size		= sizeof(struct udp_sock),
2782 	.h.udp_table		= &udp_table,
2783 #ifdef CONFIG_COMPAT
2784 	.compat_setsockopt	= compat_udp_setsockopt,
2785 	.compat_getsockopt	= compat_udp_getsockopt,
2786 #endif
2787 	.diag_destroy		= udp_abort,
2788 };
2789 EXPORT_SYMBOL(udp_prot);
2790 
2791 /* ------------------------------------------------------------------------ */
2792 #ifdef CONFIG_PROC_FS
2793 
2794 static struct sock *udp_get_first(struct seq_file *seq, int start)
2795 {
2796 	struct sock *sk;
2797 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2798 	struct udp_iter_state *state = seq->private;
2799 	struct net *net = seq_file_net(seq);
2800 
2801 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2802 	     ++state->bucket) {
2803 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2804 
2805 		if (hlist_empty(&hslot->head))
2806 			continue;
2807 
2808 		spin_lock_bh(&hslot->lock);
2809 		sk_for_each(sk, &hslot->head) {
2810 			if (!net_eq(sock_net(sk), net))
2811 				continue;
2812 			if (sk->sk_family == afinfo->family)
2813 				goto found;
2814 		}
2815 		spin_unlock_bh(&hslot->lock);
2816 	}
2817 	sk = NULL;
2818 found:
2819 	return sk;
2820 }
2821 
2822 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2823 {
2824 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2825 	struct udp_iter_state *state = seq->private;
2826 	struct net *net = seq_file_net(seq);
2827 
2828 	do {
2829 		sk = sk_next(sk);
2830 	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2831 
2832 	if (!sk) {
2833 		if (state->bucket <= afinfo->udp_table->mask)
2834 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2835 		return udp_get_first(seq, state->bucket + 1);
2836 	}
2837 	return sk;
2838 }
2839 
2840 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2841 {
2842 	struct sock *sk = udp_get_first(seq, 0);
2843 
2844 	if (sk)
2845 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2846 			--pos;
2847 	return pos ? NULL : sk;
2848 }
2849 
2850 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2851 {
2852 	struct udp_iter_state *state = seq->private;
2853 	state->bucket = MAX_UDP_PORTS;
2854 
2855 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2856 }
2857 EXPORT_SYMBOL(udp_seq_start);
2858 
2859 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2860 {
2861 	struct sock *sk;
2862 
2863 	if (v == SEQ_START_TOKEN)
2864 		sk = udp_get_idx(seq, 0);
2865 	else
2866 		sk = udp_get_next(seq, v);
2867 
2868 	++*pos;
2869 	return sk;
2870 }
2871 EXPORT_SYMBOL(udp_seq_next);
2872 
2873 void udp_seq_stop(struct seq_file *seq, void *v)
2874 {
2875 	struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2876 	struct udp_iter_state *state = seq->private;
2877 
2878 	if (state->bucket <= afinfo->udp_table->mask)
2879 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2880 }
2881 EXPORT_SYMBOL(udp_seq_stop);
2882 
2883 /* ------------------------------------------------------------------------ */
2884 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2885 		int bucket)
2886 {
2887 	struct inet_sock *inet = inet_sk(sp);
2888 	__be32 dest = inet->inet_daddr;
2889 	__be32 src  = inet->inet_rcv_saddr;
2890 	__u16 destp	  = ntohs(inet->inet_dport);
2891 	__u16 srcp	  = ntohs(inet->inet_sport);
2892 
2893 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2894 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
2895 		bucket, src, srcp, dest, destp, sp->sk_state,
2896 		sk_wmem_alloc_get(sp),
2897 		udp_rqueue_get(sp),
2898 		0, 0L, 0,
2899 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2900 		0, sock_i_ino(sp),
2901 		refcount_read(&sp->sk_refcnt), sp,
2902 		atomic_read(&sp->sk_drops));
2903 }
2904 
2905 int udp4_seq_show(struct seq_file *seq, void *v)
2906 {
2907 	seq_setwidth(seq, 127);
2908 	if (v == SEQ_START_TOKEN)
2909 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2910 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2911 			   "inode ref pointer drops");
2912 	else {
2913 		struct udp_iter_state *state = seq->private;
2914 
2915 		udp4_format_sock(v, seq, state->bucket);
2916 	}
2917 	seq_pad(seq, '\n');
2918 	return 0;
2919 }
2920 
2921 const struct seq_operations udp_seq_ops = {
2922 	.start		= udp_seq_start,
2923 	.next		= udp_seq_next,
2924 	.stop		= udp_seq_stop,
2925 	.show		= udp4_seq_show,
2926 };
2927 EXPORT_SYMBOL(udp_seq_ops);
2928 
2929 static struct udp_seq_afinfo udp4_seq_afinfo = {
2930 	.family		= AF_INET,
2931 	.udp_table	= &udp_table,
2932 };
2933 
2934 static int __net_init udp4_proc_init_net(struct net *net)
2935 {
2936 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2937 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2938 		return -ENOMEM;
2939 	return 0;
2940 }
2941 
2942 static void __net_exit udp4_proc_exit_net(struct net *net)
2943 {
2944 	remove_proc_entry("udp", net->proc_net);
2945 }
2946 
2947 static struct pernet_operations udp4_net_ops = {
2948 	.init = udp4_proc_init_net,
2949 	.exit = udp4_proc_exit_net,
2950 };
2951 
2952 int __init udp4_proc_init(void)
2953 {
2954 	return register_pernet_subsys(&udp4_net_ops);
2955 }
2956 
2957 void udp4_proc_exit(void)
2958 {
2959 	unregister_pernet_subsys(&udp4_net_ops);
2960 }
2961 #endif /* CONFIG_PROC_FS */
2962 
2963 static __initdata unsigned long uhash_entries;
2964 static int __init set_uhash_entries(char *str)
2965 {
2966 	ssize_t ret;
2967 
2968 	if (!str)
2969 		return 0;
2970 
2971 	ret = kstrtoul(str, 0, &uhash_entries);
2972 	if (ret)
2973 		return 0;
2974 
2975 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2976 		uhash_entries = UDP_HTABLE_SIZE_MIN;
2977 	return 1;
2978 }
2979 __setup("uhash_entries=", set_uhash_entries);
2980 
2981 void __init udp_table_init(struct udp_table *table, const char *name)
2982 {
2983 	unsigned int i;
2984 
2985 	table->hash = alloc_large_system_hash(name,
2986 					      2 * sizeof(struct udp_hslot),
2987 					      uhash_entries,
2988 					      21, /* one slot per 2 MB */
2989 					      0,
2990 					      &table->log,
2991 					      &table->mask,
2992 					      UDP_HTABLE_SIZE_MIN,
2993 					      64 * 1024);
2994 
2995 	table->hash2 = table->hash + (table->mask + 1);
2996 	for (i = 0; i <= table->mask; i++) {
2997 		INIT_HLIST_HEAD(&table->hash[i].head);
2998 		table->hash[i].count = 0;
2999 		spin_lock_init(&table->hash[i].lock);
3000 	}
3001 	for (i = 0; i <= table->mask; i++) {
3002 		INIT_HLIST_HEAD(&table->hash2[i].head);
3003 		table->hash2[i].count = 0;
3004 		spin_lock_init(&table->hash2[i].lock);
3005 	}
3006 }
3007 
3008 u32 udp_flow_hashrnd(void)
3009 {
3010 	static u32 hashrnd __read_mostly;
3011 
3012 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3013 
3014 	return hashrnd;
3015 }
3016 EXPORT_SYMBOL(udp_flow_hashrnd);
3017 
3018 static void __udp_sysctl_init(struct net *net)
3019 {
3020 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3021 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3022 
3023 #ifdef CONFIG_NET_L3_MASTER_DEV
3024 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3025 #endif
3026 }
3027 
3028 static int __net_init udp_sysctl_init(struct net *net)
3029 {
3030 	__udp_sysctl_init(net);
3031 	return 0;
3032 }
3033 
3034 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3035 	.init	= udp_sysctl_init,
3036 };
3037 
3038 void __init udp_init(void)
3039 {
3040 	unsigned long limit;
3041 	unsigned int i;
3042 
3043 	udp_table_init(&udp_table, "UDP");
3044 	limit = nr_free_buffer_pages() / 8;
3045 	limit = max(limit, 128UL);
3046 	sysctl_udp_mem[0] = limit / 4 * 3;
3047 	sysctl_udp_mem[1] = limit;
3048 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3049 
3050 	__udp_sysctl_init(&init_net);
3051 
3052 	/* 16 spinlocks per cpu */
3053 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3054 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3055 				GFP_KERNEL);
3056 	if (!udp_busylocks)
3057 		panic("UDP: failed to alloc udp_busylocks\n");
3058 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3059 		spin_lock_init(udp_busylocks + i);
3060 
3061 	if (register_pernet_subsys(&udp_sysctl_ops))
3062 		panic("UDP: failed to init sysctl parameters.\n");
3063 }
3064