1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The User Datagram Protocol (UDP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 12 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 13 * Hirokazu Takahashi, <taka@valinux.co.jp> 14 * 15 * Fixes: 16 * Alan Cox : verify_area() calls 17 * Alan Cox : stopped close while in use off icmp 18 * messages. Not a fix but a botch that 19 * for udp at least is 'valid'. 20 * Alan Cox : Fixed icmp handling properly 21 * Alan Cox : Correct error for oversized datagrams 22 * Alan Cox : Tidied select() semantics. 23 * Alan Cox : udp_err() fixed properly, also now 24 * select and read wake correctly on errors 25 * Alan Cox : udp_send verify_area moved to avoid mem leak 26 * Alan Cox : UDP can count its memory 27 * Alan Cox : send to an unknown connection causes 28 * an ECONNREFUSED off the icmp, but 29 * does NOT close. 30 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 32 * bug no longer crashes it. 33 * Fred Van Kempen : Net2e support for sk->broadcast. 34 * Alan Cox : Uses skb_free_datagram 35 * Alan Cox : Added get/set sockopt support. 36 * Alan Cox : Broadcasting without option set returns EACCES. 37 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 38 * Alan Cox : Use ip_tos and ip_ttl 39 * Alan Cox : SNMP Mibs 40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 41 * Matt Dillon : UDP length checks. 42 * Alan Cox : Smarter af_inet used properly. 43 * Alan Cox : Use new kernel side addressing. 44 * Alan Cox : Incorrect return on truncated datagram receive. 45 * Arnt Gulbrandsen : New udp_send and stuff 46 * Alan Cox : Cache last socket 47 * Alan Cox : Route cache 48 * Jon Peatfield : Minor efficiency fix to sendto(). 49 * Mike Shaver : RFC1122 checks. 50 * Alan Cox : Nonblocking error fix. 51 * Willy Konynenberg : Transparent proxying support. 52 * Mike McLagan : Routing by source 53 * David S. Miller : New socket lookup architecture. 54 * Last socket cache retained as it 55 * does have a high hit rate. 56 * Olaf Kirch : Don't linearise iovec on sendmsg. 57 * Andi Kleen : Some cleanups, cache destination entry 58 * for connect. 59 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 60 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 61 * return ENOTCONN for unconnected sockets (POSIX) 62 * Janos Farkas : don't deliver multi/broadcasts to a different 63 * bound-to-device socket 64 * Hirokazu Takahashi : HW checksumming for outgoing UDP 65 * datagrams. 66 * Hirokazu Takahashi : sendfile() on UDP works now. 67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 70 * a single port at the same time. 71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 72 * James Chapman : Add L2TP encapsulation type. 73 */ 74 75 #define pr_fmt(fmt) "UDP: " fmt 76 77 #include <linux/bpf-cgroup.h> 78 #include <linux/uaccess.h> 79 #include <asm/ioctls.h> 80 #include <linux/memblock.h> 81 #include <linux/highmem.h> 82 #include <linux/types.h> 83 #include <linux/fcntl.h> 84 #include <linux/module.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/igmp.h> 88 #include <linux/inetdevice.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/inet.h> 94 #include <linux/netdevice.h> 95 #include <linux/slab.h> 96 #include <net/tcp_states.h> 97 #include <linux/skbuff.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <net/net_namespace.h> 101 #include <net/icmp.h> 102 #include <net/inet_hashtables.h> 103 #include <net/ip.h> 104 #include <net/ip_tunnels.h> 105 #include <net/route.h> 106 #include <net/checksum.h> 107 #include <net/gso.h> 108 #include <net/xfrm.h> 109 #include <trace/events/udp.h> 110 #include <linux/static_key.h> 111 #include <linux/btf_ids.h> 112 #include <trace/events/skb.h> 113 #include <net/busy_poll.h> 114 #include "udp_impl.h" 115 #include <net/sock_reuseport.h> 116 #include <net/addrconf.h> 117 #include <net/udp_tunnel.h> 118 #include <net/gro.h> 119 #if IS_ENABLED(CONFIG_IPV6) 120 #include <net/ipv6_stubs.h> 121 #endif 122 123 struct udp_table udp_table __read_mostly; 124 125 long sysctl_udp_mem[3] __read_mostly; 126 EXPORT_IPV6_MOD(sysctl_udp_mem); 127 128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; 129 EXPORT_IPV6_MOD(udp_memory_allocated); 130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); 131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); 132 133 #define MAX_UDP_PORTS 65536 134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) 135 136 static struct udp_table *udp_get_table_prot(struct sock *sk) 137 { 138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; 139 } 140 141 static int udp_lib_lport_inuse(struct net *net, __u16 num, 142 const struct udp_hslot *hslot, 143 unsigned long *bitmap, 144 struct sock *sk, unsigned int log) 145 { 146 struct sock *sk2; 147 kuid_t uid = sock_i_uid(sk); 148 149 sk_for_each(sk2, &hslot->head) { 150 if (net_eq(sock_net(sk2), net) && 151 sk2 != sk && 152 (bitmap || udp_sk(sk2)->udp_port_hash == num) && 153 (!sk2->sk_reuse || !sk->sk_reuse) && 154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 156 inet_rcv_saddr_equal(sk, sk2, true)) { 157 if (sk2->sk_reuseport && sk->sk_reuseport && 158 !rcu_access_pointer(sk->sk_reuseport_cb) && 159 uid_eq(uid, sock_i_uid(sk2))) { 160 if (!bitmap) 161 return 0; 162 } else { 163 if (!bitmap) 164 return 1; 165 __set_bit(udp_sk(sk2)->udp_port_hash >> log, 166 bitmap); 167 } 168 } 169 } 170 return 0; 171 } 172 173 /* 174 * Note: we still hold spinlock of primary hash chain, so no other writer 175 * can insert/delete a socket with local_port == num 176 */ 177 static int udp_lib_lport_inuse2(struct net *net, __u16 num, 178 struct udp_hslot *hslot2, 179 struct sock *sk) 180 { 181 struct sock *sk2; 182 kuid_t uid = sock_i_uid(sk); 183 int res = 0; 184 185 spin_lock(&hslot2->lock); 186 udp_portaddr_for_each_entry(sk2, &hslot2->head) { 187 if (net_eq(sock_net(sk2), net) && 188 sk2 != sk && 189 (udp_sk(sk2)->udp_port_hash == num) && 190 (!sk2->sk_reuse || !sk->sk_reuse) && 191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || 192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 193 inet_rcv_saddr_equal(sk, sk2, true)) { 194 if (sk2->sk_reuseport && sk->sk_reuseport && 195 !rcu_access_pointer(sk->sk_reuseport_cb) && 196 uid_eq(uid, sock_i_uid(sk2))) { 197 res = 0; 198 } else { 199 res = 1; 200 } 201 break; 202 } 203 } 204 spin_unlock(&hslot2->lock); 205 return res; 206 } 207 208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) 209 { 210 struct net *net = sock_net(sk); 211 kuid_t uid = sock_i_uid(sk); 212 struct sock *sk2; 213 214 sk_for_each(sk2, &hslot->head) { 215 if (net_eq(sock_net(sk2), net) && 216 sk2 != sk && 217 sk2->sk_family == sk->sk_family && 218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) && 219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && 220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) && 222 inet_rcv_saddr_equal(sk, sk2, false)) { 223 return reuseport_add_sock(sk, sk2, 224 inet_rcv_saddr_any(sk)); 225 } 226 } 227 228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); 229 } 230 231 /** 232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 233 * 234 * @sk: socket struct in question 235 * @snum: port number to look up 236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, 237 * with NULL address 238 */ 239 int udp_lib_get_port(struct sock *sk, unsigned short snum, 240 unsigned int hash2_nulladdr) 241 { 242 struct udp_table *udptable = udp_get_table_prot(sk); 243 struct udp_hslot *hslot, *hslot2; 244 struct net *net = sock_net(sk); 245 int error = -EADDRINUSE; 246 247 if (!snum) { 248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); 249 unsigned short first, last; 250 int low, high, remaining; 251 unsigned int rand; 252 253 inet_sk_get_local_port_range(sk, &low, &high); 254 remaining = (high - low) + 1; 255 256 rand = get_random_u32(); 257 first = reciprocal_scale(rand, remaining) + low; 258 /* 259 * force rand to be an odd multiple of UDP_HTABLE_SIZE 260 */ 261 rand = (rand | 1) * (udptable->mask + 1); 262 last = first + udptable->mask + 1; 263 do { 264 hslot = udp_hashslot(udptable, net, first); 265 bitmap_zero(bitmap, PORTS_PER_CHAIN); 266 spin_lock_bh(&hslot->lock); 267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, 268 udptable->log); 269 270 snum = first; 271 /* 272 * Iterate on all possible values of snum for this hash. 273 * Using steps of an odd multiple of UDP_HTABLE_SIZE 274 * give us randomization and full range coverage. 275 */ 276 do { 277 if (low <= snum && snum <= high && 278 !test_bit(snum >> udptable->log, bitmap) && 279 !inet_is_local_reserved_port(net, snum)) 280 goto found; 281 snum += rand; 282 } while (snum != first); 283 spin_unlock_bh(&hslot->lock); 284 cond_resched(); 285 } while (++first != last); 286 goto fail; 287 } else { 288 hslot = udp_hashslot(udptable, net, snum); 289 spin_lock_bh(&hslot->lock); 290 if (hslot->count > 10) { 291 int exist; 292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; 293 294 slot2 &= udptable->mask; 295 hash2_nulladdr &= udptable->mask; 296 297 hslot2 = udp_hashslot2(udptable, slot2); 298 if (hslot->count < hslot2->count) 299 goto scan_primary_hash; 300 301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); 302 if (!exist && (hash2_nulladdr != slot2)) { 303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr); 304 exist = udp_lib_lport_inuse2(net, snum, hslot2, 305 sk); 306 } 307 if (exist) 308 goto fail_unlock; 309 else 310 goto found; 311 } 312 scan_primary_hash: 313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) 314 goto fail_unlock; 315 } 316 found: 317 inet_sk(sk)->inet_num = snum; 318 udp_sk(sk)->udp_port_hash = snum; 319 udp_sk(sk)->udp_portaddr_hash ^= snum; 320 if (sk_unhashed(sk)) { 321 if (sk->sk_reuseport && 322 udp_reuseport_add_sock(sk, hslot)) { 323 inet_sk(sk)->inet_num = 0; 324 udp_sk(sk)->udp_port_hash = 0; 325 udp_sk(sk)->udp_portaddr_hash ^= snum; 326 goto fail_unlock; 327 } 328 329 sock_set_flag(sk, SOCK_RCU_FREE); 330 331 sk_add_node_rcu(sk, &hslot->head); 332 hslot->count++; 333 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 334 335 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 336 spin_lock(&hslot2->lock); 337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && 338 sk->sk_family == AF_INET6) 339 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, 340 &hslot2->head); 341 else 342 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 343 &hslot2->head); 344 hslot2->count++; 345 spin_unlock(&hslot2->lock); 346 } 347 348 error = 0; 349 fail_unlock: 350 spin_unlock_bh(&hslot->lock); 351 fail: 352 return error; 353 } 354 EXPORT_IPV6_MOD(udp_lib_get_port); 355 356 int udp_v4_get_port(struct sock *sk, unsigned short snum) 357 { 358 unsigned int hash2_nulladdr = 359 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); 360 unsigned int hash2_partial = 361 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); 362 363 /* precompute partial secondary hash */ 364 udp_sk(sk)->udp_portaddr_hash = hash2_partial; 365 return udp_lib_get_port(sk, snum, hash2_nulladdr); 366 } 367 368 static int compute_score(struct sock *sk, const struct net *net, 369 __be32 saddr, __be16 sport, 370 __be32 daddr, unsigned short hnum, 371 int dif, int sdif) 372 { 373 int score; 374 struct inet_sock *inet; 375 bool dev_match; 376 377 if (!net_eq(sock_net(sk), net) || 378 udp_sk(sk)->udp_port_hash != hnum || 379 ipv6_only_sock(sk)) 380 return -1; 381 382 if (sk->sk_rcv_saddr != daddr) 383 return -1; 384 385 score = (sk->sk_family == PF_INET) ? 2 : 1; 386 387 inet = inet_sk(sk); 388 if (inet->inet_daddr) { 389 if (inet->inet_daddr != saddr) 390 return -1; 391 score += 4; 392 } 393 394 if (inet->inet_dport) { 395 if (inet->inet_dport != sport) 396 return -1; 397 score += 4; 398 } 399 400 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, 401 dif, sdif); 402 if (!dev_match) 403 return -1; 404 if (sk->sk_bound_dev_if) 405 score += 4; 406 407 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) 408 score++; 409 return score; 410 } 411 412 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, 413 const __be32 faddr, const __be16 fport) 414 { 415 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); 416 417 return __inet_ehashfn(laddr, lport, faddr, fport, 418 udp_ehash_secret + net_hash_mix(net)); 419 } 420 EXPORT_IPV6_MOD(udp_ehashfn); 421 422 /** 423 * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port) 424 * @net: Network namespace 425 * @saddr: Source address, network order 426 * @sport: Source port, network order 427 * @daddr: Destination address, network order 428 * @hnum: Destination port, host order 429 * @dif: Destination interface index 430 * @sdif: Destination bridge port index, if relevant 431 * @udptable: Set of UDP hash tables 432 * 433 * Simplified lookup to be used as fallback if no sockets are found due to a 434 * potential race between (receive) address change, and lookup happening before 435 * the rehash operation. This function ignores SO_REUSEPORT groups while scoring 436 * result sockets, because if we have one, we don't need the fallback at all. 437 * 438 * Called under rcu_read_lock(). 439 * 440 * Return: socket with highest matching score if any, NULL if none 441 */ 442 static struct sock *udp4_lib_lookup1(const struct net *net, 443 __be32 saddr, __be16 sport, 444 __be32 daddr, unsigned int hnum, 445 int dif, int sdif, 446 const struct udp_table *udptable) 447 { 448 unsigned int slot = udp_hashfn(net, hnum, udptable->mask); 449 struct udp_hslot *hslot = &udptable->hash[slot]; 450 struct sock *sk, *result = NULL; 451 int score, badness = 0; 452 453 sk_for_each_rcu(sk, &hslot->head) { 454 score = compute_score(sk, net, 455 saddr, sport, daddr, hnum, dif, sdif); 456 if (score > badness) { 457 result = sk; 458 badness = score; 459 } 460 } 461 462 return result; 463 } 464 465 /* called with rcu_read_lock() */ 466 static struct sock *udp4_lib_lookup2(const struct net *net, 467 __be32 saddr, __be16 sport, 468 __be32 daddr, unsigned int hnum, 469 int dif, int sdif, 470 struct udp_hslot *hslot2, 471 struct sk_buff *skb) 472 { 473 struct sock *sk, *result; 474 int score, badness; 475 bool need_rescore; 476 477 result = NULL; 478 badness = 0; 479 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 480 need_rescore = false; 481 rescore: 482 score = compute_score(need_rescore ? result : sk, net, saddr, 483 sport, daddr, hnum, dif, sdif); 484 if (score > badness) { 485 badness = score; 486 487 if (need_rescore) 488 continue; 489 490 if (sk->sk_state == TCP_ESTABLISHED) { 491 result = sk; 492 continue; 493 } 494 495 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), 496 saddr, sport, daddr, hnum, udp_ehashfn); 497 if (!result) { 498 result = sk; 499 continue; 500 } 501 502 /* Fall back to scoring if group has connections */ 503 if (!reuseport_has_conns(sk)) 504 return result; 505 506 /* Reuseport logic returned an error, keep original score. */ 507 if (IS_ERR(result)) 508 continue; 509 510 /* compute_score is too long of a function to be 511 * inlined, and calling it again here yields 512 * measureable overhead for some 513 * workloads. Work around it by jumping 514 * backwards to rescore 'result'. 515 */ 516 need_rescore = true; 517 goto rescore; 518 } 519 } 520 return result; 521 } 522 523 #if IS_ENABLED(CONFIG_BASE_SMALL) 524 static struct sock *udp4_lib_lookup4(const struct net *net, 525 __be32 saddr, __be16 sport, 526 __be32 daddr, unsigned int hnum, 527 int dif, int sdif, 528 struct udp_table *udptable) 529 { 530 return NULL; 531 } 532 533 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 534 u16 newhash4) 535 { 536 } 537 538 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 539 { 540 } 541 #else /* !CONFIG_BASE_SMALL */ 542 static struct sock *udp4_lib_lookup4(const struct net *net, 543 __be32 saddr, __be16 sport, 544 __be32 daddr, unsigned int hnum, 545 int dif, int sdif, 546 struct udp_table *udptable) 547 { 548 const __portpair ports = INET_COMBINED_PORTS(sport, hnum); 549 const struct hlist_nulls_node *node; 550 struct udp_hslot *hslot4; 551 unsigned int hash4, slot; 552 struct udp_sock *up; 553 struct sock *sk; 554 555 hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport); 556 slot = hash4 & udptable->mask; 557 hslot4 = &udptable->hash4[slot]; 558 INET_ADDR_COOKIE(acookie, saddr, daddr); 559 560 begin: 561 /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */ 562 udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) { 563 sk = (struct sock *)up; 564 if (inet_match(net, sk, acookie, ports, dif, sdif)) 565 return sk; 566 } 567 568 /* if the nulls value we got at the end of this lookup is not the 569 * expected one, we must restart lookup. We probably met an item that 570 * was moved to another chain due to rehash. 571 */ 572 if (get_nulls_value(node) != slot) 573 goto begin; 574 575 return NULL; 576 } 577 578 /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */ 579 static void udp_rehash4(struct udp_table *udptable, struct sock *sk, 580 u16 newhash4) 581 { 582 struct udp_hslot *hslot4, *nhslot4; 583 584 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 585 nhslot4 = udp_hashslot4(udptable, newhash4); 586 udp_sk(sk)->udp_lrpa_hash = newhash4; 587 588 if (hslot4 != nhslot4) { 589 spin_lock_bh(&hslot4->lock); 590 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 591 hslot4->count--; 592 spin_unlock_bh(&hslot4->lock); 593 594 spin_lock_bh(&nhslot4->lock); 595 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 596 &nhslot4->nulls_head); 597 nhslot4->count++; 598 spin_unlock_bh(&nhslot4->lock); 599 } 600 } 601 602 static void udp_unhash4(struct udp_table *udptable, struct sock *sk) 603 { 604 struct udp_hslot *hslot2, *hslot4; 605 606 if (udp_hashed4(sk)) { 607 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 608 hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); 609 610 spin_lock(&hslot4->lock); 611 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); 612 hslot4->count--; 613 spin_unlock(&hslot4->lock); 614 615 spin_lock(&hslot2->lock); 616 udp_hash4_dec(hslot2); 617 spin_unlock(&hslot2->lock); 618 } 619 } 620 621 void udp_lib_hash4(struct sock *sk, u16 hash) 622 { 623 struct udp_hslot *hslot, *hslot2, *hslot4; 624 struct net *net = sock_net(sk); 625 struct udp_table *udptable; 626 627 /* Connected udp socket can re-connect to another remote address, which 628 * will be handled by rehash. Thus no need to redo hash4 here. 629 */ 630 if (udp_hashed4(sk)) 631 return; 632 633 udptable = net->ipv4.udp_table; 634 hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash); 635 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 636 hslot4 = udp_hashslot4(udptable, hash); 637 udp_sk(sk)->udp_lrpa_hash = hash; 638 639 spin_lock_bh(&hslot->lock); 640 if (rcu_access_pointer(sk->sk_reuseport_cb)) 641 reuseport_detach_sock(sk); 642 643 spin_lock(&hslot4->lock); 644 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, 645 &hslot4->nulls_head); 646 hslot4->count++; 647 spin_unlock(&hslot4->lock); 648 649 spin_lock(&hslot2->lock); 650 udp_hash4_inc(hslot2); 651 spin_unlock(&hslot2->lock); 652 653 spin_unlock_bh(&hslot->lock); 654 } 655 EXPORT_IPV6_MOD(udp_lib_hash4); 656 657 /* call with sock lock */ 658 void udp4_hash4(struct sock *sk) 659 { 660 struct net *net = sock_net(sk); 661 unsigned int hash; 662 663 if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY)) 664 return; 665 666 hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num, 667 sk->sk_daddr, sk->sk_dport); 668 669 udp_lib_hash4(sk, hash); 670 } 671 EXPORT_IPV6_MOD(udp4_hash4); 672 #endif /* CONFIG_BASE_SMALL */ 673 674 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 675 * harder than this. -DaveM 676 */ 677 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, 678 __be16 sport, __be32 daddr, __be16 dport, int dif, 679 int sdif, struct udp_table *udptable, struct sk_buff *skb) 680 { 681 unsigned short hnum = ntohs(dport); 682 struct udp_hslot *hslot2; 683 struct sock *result, *sk; 684 unsigned int hash2; 685 686 hash2 = ipv4_portaddr_hash(net, daddr, hnum); 687 hslot2 = udp_hashslot2(udptable, hash2); 688 689 if (udp_has_hash4(hslot2)) { 690 result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum, 691 dif, sdif, udptable); 692 if (result) /* udp4_lib_lookup4 return sk or NULL */ 693 return result; 694 } 695 696 /* Lookup connected or non-wildcard socket */ 697 result = udp4_lib_lookup2(net, saddr, sport, 698 daddr, hnum, dif, sdif, 699 hslot2, skb); 700 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) 701 goto done; 702 703 /* Lookup redirect from BPF */ 704 if (static_branch_unlikely(&bpf_sk_lookup_enabled) && 705 udptable == net->ipv4.udp_table) { 706 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), 707 saddr, sport, daddr, hnum, dif, 708 udp_ehashfn); 709 if (sk) { 710 result = sk; 711 goto done; 712 } 713 } 714 715 /* Got non-wildcard socket or error on first lookup */ 716 if (result) 717 goto done; 718 719 /* Lookup wildcard sockets */ 720 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); 721 hslot2 = udp_hashslot2(udptable, hash2); 722 723 result = udp4_lib_lookup2(net, saddr, sport, 724 htonl(INADDR_ANY), hnum, dif, sdif, 725 hslot2, skb); 726 if (!IS_ERR_OR_NULL(result)) 727 goto done; 728 729 /* Primary hash (destination port) lookup as fallback for this race: 730 * 1. __ip4_datagram_connect() sets sk_rcv_saddr 731 * 2. lookup (this function): new sk_rcv_saddr, hashes not updated yet 732 * 3. rehash operation updating _secondary and four-tuple_ hashes 733 * The primary hash doesn't need an update after 1., so, thanks to this 734 * further step, 1. and 3. don't need to be atomic against the lookup. 735 */ 736 result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif, 737 udptable); 738 739 done: 740 if (IS_ERR(result)) 741 return NULL; 742 return result; 743 } 744 EXPORT_SYMBOL_GPL(__udp4_lib_lookup); 745 746 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, 747 __be16 sport, __be16 dport, 748 struct udp_table *udptable) 749 { 750 const struct iphdr *iph = ip_hdr(skb); 751 752 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, 753 iph->daddr, dport, inet_iif(skb), 754 inet_sdif(skb), udptable, skb); 755 } 756 757 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, 758 __be16 sport, __be16 dport) 759 { 760 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; 761 const struct iphdr *iph = (struct iphdr *)(skb->data + offset); 762 struct net *net = dev_net(skb->dev); 763 int iif, sdif; 764 765 inet_get_iif_sdif(skb, &iif, &sdif); 766 767 return __udp4_lib_lookup(net, iph->saddr, sport, 768 iph->daddr, dport, iif, 769 sdif, net->ipv4.udp_table, NULL); 770 } 771 772 /* Must be called under rcu_read_lock(). 773 * Does increment socket refcount. 774 */ 775 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) 776 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, 777 __be32 daddr, __be16 dport, int dif) 778 { 779 struct sock *sk; 780 781 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, 782 dif, 0, net->ipv4.udp_table, NULL); 783 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) 784 sk = NULL; 785 return sk; 786 } 787 EXPORT_SYMBOL_GPL(udp4_lib_lookup); 788 #endif 789 790 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, 791 __be16 loc_port, __be32 loc_addr, 792 __be16 rmt_port, __be32 rmt_addr, 793 int dif, int sdif, unsigned short hnum) 794 { 795 const struct inet_sock *inet = inet_sk(sk); 796 797 if (!net_eq(sock_net(sk), net) || 798 udp_sk(sk)->udp_port_hash != hnum || 799 (inet->inet_daddr && inet->inet_daddr != rmt_addr) || 800 (inet->inet_dport != rmt_port && inet->inet_dport) || 801 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || 802 ipv6_only_sock(sk) || 803 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) 804 return false; 805 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) 806 return false; 807 return true; 808 } 809 810 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); 811 EXPORT_IPV6_MOD(udp_encap_needed_key); 812 813 #if IS_ENABLED(CONFIG_IPV6) 814 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); 815 EXPORT_IPV6_MOD(udpv6_encap_needed_key); 816 #endif 817 818 void udp_encap_enable(void) 819 { 820 static_branch_inc(&udp_encap_needed_key); 821 } 822 EXPORT_SYMBOL(udp_encap_enable); 823 824 void udp_encap_disable(void) 825 { 826 static_branch_dec(&udp_encap_needed_key); 827 } 828 EXPORT_SYMBOL(udp_encap_disable); 829 830 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go 831 * through error handlers in encapsulations looking for a match. 832 */ 833 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) 834 { 835 int i; 836 837 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { 838 int (*handler)(struct sk_buff *skb, u32 info); 839 const struct ip_tunnel_encap_ops *encap; 840 841 encap = rcu_dereference(iptun_encaps[i]); 842 if (!encap) 843 continue; 844 handler = encap->err_handler; 845 if (handler && !handler(skb, info)) 846 return 0; 847 } 848 849 return -ENOENT; 850 } 851 852 /* Try to match ICMP errors to UDP tunnels by looking up a socket without 853 * reversing source and destination port: this will match tunnels that force the 854 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that 855 * lwtunnels might actually break this assumption by being configured with 856 * different destination ports on endpoints, in this case we won't be able to 857 * trace ICMP messages back to them. 858 * 859 * If this doesn't match any socket, probe tunnels with arbitrary destination 860 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port 861 * we've sent packets to won't necessarily match the local destination port. 862 * 863 * Then ask the tunnel implementation to match the error against a valid 864 * association. 865 * 866 * Return an error if we can't find a match, the socket if we need further 867 * processing, zero otherwise. 868 */ 869 static struct sock *__udp4_lib_err_encap(struct net *net, 870 const struct iphdr *iph, 871 struct udphdr *uh, 872 struct udp_table *udptable, 873 struct sock *sk, 874 struct sk_buff *skb, u32 info) 875 { 876 int (*lookup)(struct sock *sk, struct sk_buff *skb); 877 int network_offset, transport_offset; 878 struct udp_sock *up; 879 880 network_offset = skb_network_offset(skb); 881 transport_offset = skb_transport_offset(skb); 882 883 /* Network header needs to point to the outer IPv4 header inside ICMP */ 884 skb_reset_network_header(skb); 885 886 /* Transport header needs to point to the UDP header */ 887 skb_set_transport_header(skb, iph->ihl << 2); 888 889 if (sk) { 890 up = udp_sk(sk); 891 892 lookup = READ_ONCE(up->encap_err_lookup); 893 if (lookup && lookup(sk, skb)) 894 sk = NULL; 895 896 goto out; 897 } 898 899 sk = __udp4_lib_lookup(net, iph->daddr, uh->source, 900 iph->saddr, uh->dest, skb->dev->ifindex, 0, 901 udptable, NULL); 902 if (sk) { 903 up = udp_sk(sk); 904 905 lookup = READ_ONCE(up->encap_err_lookup); 906 if (!lookup || lookup(sk, skb)) 907 sk = NULL; 908 } 909 910 out: 911 if (!sk) 912 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); 913 914 skb_set_transport_header(skb, transport_offset); 915 skb_set_network_header(skb, network_offset); 916 917 return sk; 918 } 919 920 /* 921 * This routine is called by the ICMP module when it gets some 922 * sort of error condition. If err < 0 then the socket should 923 * be closed and the error returned to the user. If err > 0 924 * it's just the icmp type << 8 | icmp code. 925 * Header points to the ip header of the error packet. We move 926 * on past this. Then (as it used to claim before adjustment) 927 * header points to the first 8 bytes of the udp header. We need 928 * to find the appropriate port. 929 */ 930 931 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) 932 { 933 struct inet_sock *inet; 934 const struct iphdr *iph = (const struct iphdr *)skb->data; 935 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); 936 const int type = icmp_hdr(skb)->type; 937 const int code = icmp_hdr(skb)->code; 938 bool tunnel = false; 939 struct sock *sk; 940 int harderr; 941 int err; 942 struct net *net = dev_net(skb->dev); 943 944 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, 945 iph->saddr, uh->source, skb->dev->ifindex, 946 inet_sdif(skb), udptable, NULL); 947 948 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { 949 /* No socket for error: try tunnels before discarding */ 950 if (static_branch_unlikely(&udp_encap_needed_key)) { 951 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, 952 info); 953 if (!sk) 954 return 0; 955 } else 956 sk = ERR_PTR(-ENOENT); 957 958 if (IS_ERR(sk)) { 959 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 960 return PTR_ERR(sk); 961 } 962 963 tunnel = true; 964 } 965 966 err = 0; 967 harderr = 0; 968 inet = inet_sk(sk); 969 970 switch (type) { 971 default: 972 case ICMP_TIME_EXCEEDED: 973 err = EHOSTUNREACH; 974 break; 975 case ICMP_SOURCE_QUENCH: 976 goto out; 977 case ICMP_PARAMETERPROB: 978 err = EPROTO; 979 harderr = 1; 980 break; 981 case ICMP_DEST_UNREACH: 982 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 983 ipv4_sk_update_pmtu(skb, sk, info); 984 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { 985 err = EMSGSIZE; 986 harderr = 1; 987 break; 988 } 989 goto out; 990 } 991 err = EHOSTUNREACH; 992 if (code <= NR_ICMP_UNREACH) { 993 harderr = icmp_err_convert[code].fatal; 994 err = icmp_err_convert[code].errno; 995 } 996 break; 997 case ICMP_REDIRECT: 998 ipv4_sk_redirect(skb, sk); 999 goto out; 1000 } 1001 1002 /* 1003 * RFC1122: OK. Passes ICMP errors back to application, as per 1004 * 4.1.3.3. 1005 */ 1006 if (tunnel) { 1007 /* ...not for tunnels though: we don't have a sending socket */ 1008 if (udp_sk(sk)->encap_err_rcv) 1009 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, 1010 (u8 *)(uh+1)); 1011 goto out; 1012 } 1013 if (!inet_test_bit(RECVERR, sk)) { 1014 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 1015 goto out; 1016 } else 1017 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); 1018 1019 sk->sk_err = err; 1020 sk_error_report(sk); 1021 out: 1022 return 0; 1023 } 1024 1025 int udp_err(struct sk_buff *skb, u32 info) 1026 { 1027 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); 1028 } 1029 1030 /* 1031 * Throw away all pending data and cancel the corking. Socket is locked. 1032 */ 1033 void udp_flush_pending_frames(struct sock *sk) 1034 { 1035 struct udp_sock *up = udp_sk(sk); 1036 1037 if (up->pending) { 1038 up->len = 0; 1039 WRITE_ONCE(up->pending, 0); 1040 ip_flush_pending_frames(sk); 1041 } 1042 } 1043 EXPORT_IPV6_MOD(udp_flush_pending_frames); 1044 1045 /** 1046 * udp4_hwcsum - handle outgoing HW checksumming 1047 * @skb: sk_buff containing the filled-in UDP header 1048 * (checksum field must be zeroed out) 1049 * @src: source IP address 1050 * @dst: destination IP address 1051 */ 1052 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) 1053 { 1054 struct udphdr *uh = udp_hdr(skb); 1055 int offset = skb_transport_offset(skb); 1056 int len = skb->len - offset; 1057 int hlen = len; 1058 __wsum csum = 0; 1059 1060 if (!skb_has_frag_list(skb)) { 1061 /* 1062 * Only one fragment on the socket. 1063 */ 1064 skb->csum_start = skb_transport_header(skb) - skb->head; 1065 skb->csum_offset = offsetof(struct udphdr, check); 1066 uh->check = ~csum_tcpudp_magic(src, dst, len, 1067 IPPROTO_UDP, 0); 1068 } else { 1069 struct sk_buff *frags; 1070 1071 /* 1072 * HW-checksum won't work as there are two or more 1073 * fragments on the socket so that all csums of sk_buffs 1074 * should be together 1075 */ 1076 skb_walk_frags(skb, frags) { 1077 csum = csum_add(csum, frags->csum); 1078 hlen -= frags->len; 1079 } 1080 1081 csum = skb_checksum(skb, offset, hlen, csum); 1082 skb->ip_summed = CHECKSUM_NONE; 1083 1084 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); 1085 if (uh->check == 0) 1086 uh->check = CSUM_MANGLED_0; 1087 } 1088 } 1089 EXPORT_SYMBOL_GPL(udp4_hwcsum); 1090 1091 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended 1092 * for the simple case like when setting the checksum for a UDP tunnel. 1093 */ 1094 void udp_set_csum(bool nocheck, struct sk_buff *skb, 1095 __be32 saddr, __be32 daddr, int len) 1096 { 1097 struct udphdr *uh = udp_hdr(skb); 1098 1099 if (nocheck) { 1100 uh->check = 0; 1101 } else if (skb_is_gso(skb)) { 1102 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1103 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 1104 uh->check = 0; 1105 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); 1106 if (uh->check == 0) 1107 uh->check = CSUM_MANGLED_0; 1108 } else { 1109 skb->ip_summed = CHECKSUM_PARTIAL; 1110 skb->csum_start = skb_transport_header(skb) - skb->head; 1111 skb->csum_offset = offsetof(struct udphdr, check); 1112 uh->check = ~udp_v4_check(len, saddr, daddr, 0); 1113 } 1114 } 1115 EXPORT_SYMBOL(udp_set_csum); 1116 1117 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, 1118 struct inet_cork *cork) 1119 { 1120 struct sock *sk = skb->sk; 1121 struct inet_sock *inet = inet_sk(sk); 1122 struct udphdr *uh; 1123 int err; 1124 int is_udplite = IS_UDPLITE(sk); 1125 int offset = skb_transport_offset(skb); 1126 int len = skb->len - offset; 1127 int datalen = len - sizeof(*uh); 1128 __wsum csum = 0; 1129 1130 /* 1131 * Create a UDP header 1132 */ 1133 uh = udp_hdr(skb); 1134 uh->source = inet->inet_sport; 1135 uh->dest = fl4->fl4_dport; 1136 uh->len = htons(len); 1137 uh->check = 0; 1138 1139 if (cork->gso_size) { 1140 const int hlen = skb_network_header_len(skb) + 1141 sizeof(struct udphdr); 1142 1143 if (hlen + min(datalen, cork->gso_size) > cork->fragsize) { 1144 kfree_skb(skb); 1145 return -EMSGSIZE; 1146 } 1147 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { 1148 kfree_skb(skb); 1149 return -EINVAL; 1150 } 1151 if (sk->sk_no_check_tx) { 1152 kfree_skb(skb); 1153 return -EINVAL; 1154 } 1155 if (is_udplite || dst_xfrm(skb_dst(skb))) { 1156 kfree_skb(skb); 1157 return -EIO; 1158 } 1159 1160 if (datalen > cork->gso_size) { 1161 skb_shinfo(skb)->gso_size = cork->gso_size; 1162 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; 1163 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, 1164 cork->gso_size); 1165 1166 /* Don't checksum the payload, skb will get segmented */ 1167 goto csum_partial; 1168 } 1169 } 1170 1171 if (is_udplite) /* UDP-Lite */ 1172 csum = udplite_csum(skb); 1173 1174 else if (sk->sk_no_check_tx) { /* UDP csum off */ 1175 1176 skb->ip_summed = CHECKSUM_NONE; 1177 goto send; 1178 1179 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ 1180 csum_partial: 1181 1182 udp4_hwcsum(skb, fl4->saddr, fl4->daddr); 1183 goto send; 1184 1185 } else 1186 csum = udp_csum(skb); 1187 1188 /* add protocol-dependent pseudo-header */ 1189 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, 1190 sk->sk_protocol, csum); 1191 if (uh->check == 0) 1192 uh->check = CSUM_MANGLED_0; 1193 1194 send: 1195 err = ip_send_skb(sock_net(sk), skb); 1196 if (err) { 1197 if (err == -ENOBUFS && 1198 !inet_test_bit(RECVERR, sk)) { 1199 UDP_INC_STATS(sock_net(sk), 1200 UDP_MIB_SNDBUFERRORS, is_udplite); 1201 err = 0; 1202 } 1203 } else 1204 UDP_INC_STATS(sock_net(sk), 1205 UDP_MIB_OUTDATAGRAMS, is_udplite); 1206 return err; 1207 } 1208 1209 /* 1210 * Push out all pending data as one UDP datagram. Socket is locked. 1211 */ 1212 int udp_push_pending_frames(struct sock *sk) 1213 { 1214 struct udp_sock *up = udp_sk(sk); 1215 struct inet_sock *inet = inet_sk(sk); 1216 struct flowi4 *fl4 = &inet->cork.fl.u.ip4; 1217 struct sk_buff *skb; 1218 int err = 0; 1219 1220 skb = ip_finish_skb(sk, fl4); 1221 if (!skb) 1222 goto out; 1223 1224 err = udp_send_skb(skb, fl4, &inet->cork.base); 1225 1226 out: 1227 up->len = 0; 1228 WRITE_ONCE(up->pending, 0); 1229 return err; 1230 } 1231 EXPORT_IPV6_MOD(udp_push_pending_frames); 1232 1233 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) 1234 { 1235 switch (cmsg->cmsg_type) { 1236 case UDP_SEGMENT: 1237 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) 1238 return -EINVAL; 1239 *gso_size = *(__u16 *)CMSG_DATA(cmsg); 1240 return 0; 1241 default: 1242 return -EINVAL; 1243 } 1244 } 1245 1246 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) 1247 { 1248 struct cmsghdr *cmsg; 1249 bool need_ip = false; 1250 int err; 1251 1252 for_each_cmsghdr(cmsg, msg) { 1253 if (!CMSG_OK(msg, cmsg)) 1254 return -EINVAL; 1255 1256 if (cmsg->cmsg_level != SOL_UDP) { 1257 need_ip = true; 1258 continue; 1259 } 1260 1261 err = __udp_cmsg_send(cmsg, gso_size); 1262 if (err) 1263 return err; 1264 } 1265 1266 return need_ip; 1267 } 1268 EXPORT_IPV6_MOD_GPL(udp_cmsg_send); 1269 1270 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1271 { 1272 struct inet_sock *inet = inet_sk(sk); 1273 struct udp_sock *up = udp_sk(sk); 1274 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); 1275 struct flowi4 fl4_stack; 1276 struct flowi4 *fl4; 1277 int ulen = len; 1278 struct ipcm_cookie ipc; 1279 struct rtable *rt = NULL; 1280 int free = 0; 1281 int connected = 0; 1282 __be32 daddr, faddr, saddr; 1283 u8 scope; 1284 __be16 dport; 1285 int err, is_udplite = IS_UDPLITE(sk); 1286 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; 1287 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); 1288 struct sk_buff *skb; 1289 struct ip_options_data opt_copy; 1290 int uc_index; 1291 1292 if (len > 0xFFFF) 1293 return -EMSGSIZE; 1294 1295 /* 1296 * Check the flags. 1297 */ 1298 1299 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ 1300 return -EOPNOTSUPP; 1301 1302 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; 1303 1304 fl4 = &inet->cork.fl.u.ip4; 1305 if (READ_ONCE(up->pending)) { 1306 /* 1307 * There are pending frames. 1308 * The socket lock must be held while it's corked. 1309 */ 1310 lock_sock(sk); 1311 if (likely(up->pending)) { 1312 if (unlikely(up->pending != AF_INET)) { 1313 release_sock(sk); 1314 return -EINVAL; 1315 } 1316 goto do_append_data; 1317 } 1318 release_sock(sk); 1319 } 1320 ulen += sizeof(struct udphdr); 1321 1322 /* 1323 * Get and verify the address. 1324 */ 1325 if (usin) { 1326 if (msg->msg_namelen < sizeof(*usin)) 1327 return -EINVAL; 1328 if (usin->sin_family != AF_INET) { 1329 if (usin->sin_family != AF_UNSPEC) 1330 return -EAFNOSUPPORT; 1331 } 1332 1333 daddr = usin->sin_addr.s_addr; 1334 dport = usin->sin_port; 1335 if (dport == 0) 1336 return -EINVAL; 1337 } else { 1338 if (sk->sk_state != TCP_ESTABLISHED) 1339 return -EDESTADDRREQ; 1340 daddr = inet->inet_daddr; 1341 dport = inet->inet_dport; 1342 /* Open fast path for connected socket. 1343 Route will not be used, if at least one option is set. 1344 */ 1345 connected = 1; 1346 } 1347 1348 ipcm_init_sk(&ipc, inet); 1349 ipc.gso_size = READ_ONCE(up->gso_size); 1350 1351 if (msg->msg_controllen) { 1352 err = udp_cmsg_send(sk, msg, &ipc.gso_size); 1353 if (err > 0) { 1354 err = ip_cmsg_send(sk, msg, &ipc, 1355 sk->sk_family == AF_INET6); 1356 connected = 0; 1357 } 1358 if (unlikely(err < 0)) { 1359 kfree(ipc.opt); 1360 return err; 1361 } 1362 if (ipc.opt) 1363 free = 1; 1364 } 1365 if (!ipc.opt) { 1366 struct ip_options_rcu *inet_opt; 1367 1368 rcu_read_lock(); 1369 inet_opt = rcu_dereference(inet->inet_opt); 1370 if (inet_opt) { 1371 memcpy(&opt_copy, inet_opt, 1372 sizeof(*inet_opt) + inet_opt->opt.optlen); 1373 ipc.opt = &opt_copy.opt; 1374 } 1375 rcu_read_unlock(); 1376 } 1377 1378 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { 1379 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, 1380 (struct sockaddr *)usin, 1381 &msg->msg_namelen, 1382 &ipc.addr); 1383 if (err) 1384 goto out_free; 1385 if (usin) { 1386 if (usin->sin_port == 0) { 1387 /* BPF program set invalid port. Reject it. */ 1388 err = -EINVAL; 1389 goto out_free; 1390 } 1391 daddr = usin->sin_addr.s_addr; 1392 dport = usin->sin_port; 1393 } 1394 } 1395 1396 saddr = ipc.addr; 1397 ipc.addr = faddr = daddr; 1398 1399 if (ipc.opt && ipc.opt->opt.srr) { 1400 if (!daddr) { 1401 err = -EINVAL; 1402 goto out_free; 1403 } 1404 faddr = ipc.opt->opt.faddr; 1405 connected = 0; 1406 } 1407 scope = ip_sendmsg_scope(inet, &ipc, msg); 1408 if (scope == RT_SCOPE_LINK) 1409 connected = 0; 1410 1411 uc_index = READ_ONCE(inet->uc_index); 1412 if (ipv4_is_multicast(daddr)) { 1413 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) 1414 ipc.oif = READ_ONCE(inet->mc_index); 1415 if (!saddr) 1416 saddr = READ_ONCE(inet->mc_addr); 1417 connected = 0; 1418 } else if (!ipc.oif) { 1419 ipc.oif = uc_index; 1420 } else if (ipv4_is_lbcast(daddr) && uc_index) { 1421 /* oif is set, packet is to local broadcast and 1422 * uc_index is set. oif is most likely set 1423 * by sk_bound_dev_if. If uc_index != oif check if the 1424 * oif is an L3 master and uc_index is an L3 slave. 1425 * If so, we want to allow the send using the uc_index. 1426 */ 1427 if (ipc.oif != uc_index && 1428 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), 1429 uc_index)) { 1430 ipc.oif = uc_index; 1431 } 1432 } 1433 1434 if (connected) 1435 rt = dst_rtable(sk_dst_check(sk, 0)); 1436 1437 if (!rt) { 1438 struct net *net = sock_net(sk); 1439 __u8 flow_flags = inet_sk_flowi_flags(sk); 1440 1441 fl4 = &fl4_stack; 1442 1443 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, 1444 ipc.tos & INET_DSCP_MASK, scope, 1445 sk->sk_protocol, flow_flags, faddr, saddr, 1446 dport, inet->inet_sport, sk->sk_uid); 1447 1448 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); 1449 rt = ip_route_output_flow(net, fl4, sk); 1450 if (IS_ERR(rt)) { 1451 err = PTR_ERR(rt); 1452 rt = NULL; 1453 if (err == -ENETUNREACH) 1454 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 1455 goto out; 1456 } 1457 1458 err = -EACCES; 1459 if ((rt->rt_flags & RTCF_BROADCAST) && 1460 !sock_flag(sk, SOCK_BROADCAST)) 1461 goto out; 1462 if (connected) 1463 sk_dst_set(sk, dst_clone(&rt->dst)); 1464 } 1465 1466 if (msg->msg_flags&MSG_CONFIRM) 1467 goto do_confirm; 1468 back_from_confirm: 1469 1470 saddr = fl4->saddr; 1471 if (!ipc.addr) 1472 daddr = ipc.addr = fl4->daddr; 1473 1474 /* Lockless fast path for the non-corking case. */ 1475 if (!corkreq) { 1476 struct inet_cork cork; 1477 1478 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, 1479 sizeof(struct udphdr), &ipc, &rt, 1480 &cork, msg->msg_flags); 1481 err = PTR_ERR(skb); 1482 if (!IS_ERR_OR_NULL(skb)) 1483 err = udp_send_skb(skb, fl4, &cork); 1484 goto out; 1485 } 1486 1487 lock_sock(sk); 1488 if (unlikely(up->pending)) { 1489 /* The socket is already corked while preparing it. */ 1490 /* ... which is an evident application bug. --ANK */ 1491 release_sock(sk); 1492 1493 net_dbg_ratelimited("socket already corked\n"); 1494 err = -EINVAL; 1495 goto out; 1496 } 1497 /* 1498 * Now cork the socket to pend data. 1499 */ 1500 fl4 = &inet->cork.fl.u.ip4; 1501 fl4->daddr = daddr; 1502 fl4->saddr = saddr; 1503 fl4->fl4_dport = dport; 1504 fl4->fl4_sport = inet->inet_sport; 1505 WRITE_ONCE(up->pending, AF_INET); 1506 1507 do_append_data: 1508 up->len += ulen; 1509 err = ip_append_data(sk, fl4, getfrag, msg, ulen, 1510 sizeof(struct udphdr), &ipc, &rt, 1511 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 1512 if (err) 1513 udp_flush_pending_frames(sk); 1514 else if (!corkreq) 1515 err = udp_push_pending_frames(sk); 1516 else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) 1517 WRITE_ONCE(up->pending, 0); 1518 release_sock(sk); 1519 1520 out: 1521 ip_rt_put(rt); 1522 out_free: 1523 if (free) 1524 kfree(ipc.opt); 1525 if (!err) 1526 return len; 1527 /* 1528 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting 1529 * ENOBUFS might not be good (it's not tunable per se), but otherwise 1530 * we don't have a good statistic (IpOutDiscards but it can be too many 1531 * things). We could add another new stat but at least for now that 1532 * seems like overkill. 1533 */ 1534 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1535 UDP_INC_STATS(sock_net(sk), 1536 UDP_MIB_SNDBUFERRORS, is_udplite); 1537 } 1538 return err; 1539 1540 do_confirm: 1541 if (msg->msg_flags & MSG_PROBE) 1542 dst_confirm_neigh(&rt->dst, &fl4->daddr); 1543 if (!(msg->msg_flags&MSG_PROBE) || len) 1544 goto back_from_confirm; 1545 err = 0; 1546 goto out; 1547 } 1548 EXPORT_SYMBOL(udp_sendmsg); 1549 1550 void udp_splice_eof(struct socket *sock) 1551 { 1552 struct sock *sk = sock->sk; 1553 struct udp_sock *up = udp_sk(sk); 1554 1555 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) 1556 return; 1557 1558 lock_sock(sk); 1559 if (up->pending && !udp_test_bit(CORK, sk)) 1560 udp_push_pending_frames(sk); 1561 release_sock(sk); 1562 } 1563 EXPORT_IPV6_MOD_GPL(udp_splice_eof); 1564 1565 #define UDP_SKB_IS_STATELESS 0x80000000 1566 1567 /* all head states (dst, sk, nf conntrack) except skb extensions are 1568 * cleared by udp_rcv(). 1569 * 1570 * We need to preserve secpath, if present, to eventually process 1571 * IP_CMSG_PASSSEC at recvmsg() time. 1572 * 1573 * Other extensions can be cleared. 1574 */ 1575 static bool udp_try_make_stateless(struct sk_buff *skb) 1576 { 1577 if (!skb_has_extensions(skb)) 1578 return true; 1579 1580 if (!secpath_exists(skb)) { 1581 skb_ext_reset(skb); 1582 return true; 1583 } 1584 1585 return false; 1586 } 1587 1588 static void udp_set_dev_scratch(struct sk_buff *skb) 1589 { 1590 struct udp_dev_scratch *scratch = udp_skb_scratch(skb); 1591 1592 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); 1593 scratch->_tsize_state = skb->truesize; 1594 #if BITS_PER_LONG == 64 1595 scratch->len = skb->len; 1596 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); 1597 scratch->is_linear = !skb_is_nonlinear(skb); 1598 #endif 1599 if (udp_try_make_stateless(skb)) 1600 scratch->_tsize_state |= UDP_SKB_IS_STATELESS; 1601 } 1602 1603 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) 1604 { 1605 /* We come here after udp_lib_checksum_complete() returned 0. 1606 * This means that __skb_checksum_complete() might have 1607 * set skb->csum_valid to 1. 1608 * On 64bit platforms, we can set csum_unnecessary 1609 * to true, but only if the skb is not shared. 1610 */ 1611 #if BITS_PER_LONG == 64 1612 if (!skb_shared(skb)) 1613 udp_skb_scratch(skb)->csum_unnecessary = true; 1614 #endif 1615 } 1616 1617 static int udp_skb_truesize(struct sk_buff *skb) 1618 { 1619 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; 1620 } 1621 1622 static bool udp_skb_has_head_state(struct sk_buff *skb) 1623 { 1624 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); 1625 } 1626 1627 /* fully reclaim rmem/fwd memory allocated for skb */ 1628 static void udp_rmem_release(struct sock *sk, int size, int partial, 1629 bool rx_queue_lock_held) 1630 { 1631 struct udp_sock *up = udp_sk(sk); 1632 struct sk_buff_head *sk_queue; 1633 int amt; 1634 1635 if (likely(partial)) { 1636 up->forward_deficit += size; 1637 size = up->forward_deficit; 1638 if (size < READ_ONCE(up->forward_threshold) && 1639 !skb_queue_empty(&up->reader_queue)) 1640 return; 1641 } else { 1642 size += up->forward_deficit; 1643 } 1644 up->forward_deficit = 0; 1645 1646 /* acquire the sk_receive_queue for fwd allocated memory scheduling, 1647 * if the called don't held it already 1648 */ 1649 sk_queue = &sk->sk_receive_queue; 1650 if (!rx_queue_lock_held) 1651 spin_lock(&sk_queue->lock); 1652 1653 1654 sk_forward_alloc_add(sk, size); 1655 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); 1656 sk_forward_alloc_add(sk, -amt); 1657 1658 if (amt) 1659 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); 1660 1661 atomic_sub(size, &sk->sk_rmem_alloc); 1662 1663 /* this can save us from acquiring the rx queue lock on next receive */ 1664 skb_queue_splice_tail_init(sk_queue, &up->reader_queue); 1665 1666 if (!rx_queue_lock_held) 1667 spin_unlock(&sk_queue->lock); 1668 } 1669 1670 /* Note: called with reader_queue.lock held. 1671 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch 1672 * This avoids a cache line miss while receive_queue lock is held. 1673 * Look at __udp_enqueue_schedule_skb() to find where this copy is done. 1674 */ 1675 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) 1676 { 1677 prefetch(&skb->data); 1678 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); 1679 } 1680 EXPORT_IPV6_MOD(udp_skb_destructor); 1681 1682 /* as above, but the caller held the rx queue lock, too */ 1683 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) 1684 { 1685 prefetch(&skb->data); 1686 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); 1687 } 1688 1689 /* Idea of busylocks is to let producers grab an extra spinlock 1690 * to relieve pressure on the receive_queue spinlock shared by consumer. 1691 * Under flood, this means that only one producer can be in line 1692 * trying to acquire the receive_queue spinlock. 1693 * These busylock can be allocated on a per cpu manner, instead of a 1694 * per socket one (that would consume a cache line per socket) 1695 */ 1696 static int udp_busylocks_log __read_mostly; 1697 static spinlock_t *udp_busylocks __read_mostly; 1698 1699 static spinlock_t *busylock_acquire(void *ptr) 1700 { 1701 spinlock_t *busy; 1702 1703 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); 1704 spin_lock(busy); 1705 return busy; 1706 } 1707 1708 static void busylock_release(spinlock_t *busy) 1709 { 1710 if (busy) 1711 spin_unlock(busy); 1712 } 1713 1714 static int udp_rmem_schedule(struct sock *sk, int size) 1715 { 1716 int delta; 1717 1718 delta = size - sk->sk_forward_alloc; 1719 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) 1720 return -ENOBUFS; 1721 1722 return 0; 1723 } 1724 1725 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) 1726 { 1727 struct sk_buff_head *list = &sk->sk_receive_queue; 1728 int rmem, err = -ENOMEM; 1729 spinlock_t *busy = NULL; 1730 int size, rcvbuf; 1731 1732 /* Immediately drop when the receive queue is full. 1733 * Always allow at least one packet. 1734 */ 1735 rmem = atomic_read(&sk->sk_rmem_alloc); 1736 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1737 if (rmem > rcvbuf) 1738 goto drop; 1739 1740 /* Under mem pressure, it might be helpful to help udp_recvmsg() 1741 * having linear skbs : 1742 * - Reduce memory overhead and thus increase receive queue capacity 1743 * - Less cache line misses at copyout() time 1744 * - Less work at consume_skb() (less alien page frag freeing) 1745 */ 1746 if (rmem > (rcvbuf >> 1)) { 1747 skb_condense(skb); 1748 1749 busy = busylock_acquire(sk); 1750 } 1751 size = skb->truesize; 1752 udp_set_dev_scratch(skb); 1753 1754 atomic_add(size, &sk->sk_rmem_alloc); 1755 1756 spin_lock(&list->lock); 1757 err = udp_rmem_schedule(sk, size); 1758 if (err) { 1759 spin_unlock(&list->lock); 1760 goto uncharge_drop; 1761 } 1762 1763 sk_forward_alloc_add(sk, -size); 1764 1765 /* no need to setup a destructor, we will explicitly release the 1766 * forward allocated memory on dequeue 1767 */ 1768 sock_skb_set_dropcount(sk, skb); 1769 1770 __skb_queue_tail(list, skb); 1771 spin_unlock(&list->lock); 1772 1773 if (!sock_flag(sk, SOCK_DEAD)) 1774 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); 1775 1776 busylock_release(busy); 1777 return 0; 1778 1779 uncharge_drop: 1780 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1781 1782 drop: 1783 atomic_inc(&sk->sk_drops); 1784 busylock_release(busy); 1785 return err; 1786 } 1787 EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb); 1788 1789 void udp_destruct_common(struct sock *sk) 1790 { 1791 /* reclaim completely the forward allocated memory */ 1792 struct udp_sock *up = udp_sk(sk); 1793 unsigned int total = 0; 1794 struct sk_buff *skb; 1795 1796 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); 1797 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { 1798 total += skb->truesize; 1799 kfree_skb(skb); 1800 } 1801 udp_rmem_release(sk, total, 0, true); 1802 } 1803 EXPORT_IPV6_MOD_GPL(udp_destruct_common); 1804 1805 static void udp_destruct_sock(struct sock *sk) 1806 { 1807 udp_destruct_common(sk); 1808 inet_sock_destruct(sk); 1809 } 1810 1811 int udp_init_sock(struct sock *sk) 1812 { 1813 udp_lib_init_sock(sk); 1814 sk->sk_destruct = udp_destruct_sock; 1815 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 1816 return 0; 1817 } 1818 1819 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) 1820 { 1821 if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) 1822 sk_peek_offset_bwd(sk, len); 1823 1824 if (!skb_unref(skb)) 1825 return; 1826 1827 /* In the more common cases we cleared the head states previously, 1828 * see __udp_queue_rcv_skb(). 1829 */ 1830 if (unlikely(udp_skb_has_head_state(skb))) 1831 skb_release_head_state(skb); 1832 __consume_stateless_skb(skb); 1833 } 1834 EXPORT_IPV6_MOD_GPL(skb_consume_udp); 1835 1836 static struct sk_buff *__first_packet_length(struct sock *sk, 1837 struct sk_buff_head *rcvq, 1838 int *total) 1839 { 1840 struct sk_buff *skb; 1841 1842 while ((skb = skb_peek(rcvq)) != NULL) { 1843 if (udp_lib_checksum_complete(skb)) { 1844 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, 1845 IS_UDPLITE(sk)); 1846 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, 1847 IS_UDPLITE(sk)); 1848 atomic_inc(&sk->sk_drops); 1849 __skb_unlink(skb, rcvq); 1850 *total += skb->truesize; 1851 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 1852 } else { 1853 udp_skb_csum_unnecessary_set(skb); 1854 break; 1855 } 1856 } 1857 return skb; 1858 } 1859 1860 /** 1861 * first_packet_length - return length of first packet in receive queue 1862 * @sk: socket 1863 * 1864 * Drops all bad checksum frames, until a valid one is found. 1865 * Returns the length of found skb, or -1 if none is found. 1866 */ 1867 static int first_packet_length(struct sock *sk) 1868 { 1869 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; 1870 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1871 struct sk_buff *skb; 1872 int total = 0; 1873 int res; 1874 1875 spin_lock_bh(&rcvq->lock); 1876 skb = __first_packet_length(sk, rcvq, &total); 1877 if (!skb && !skb_queue_empty_lockless(sk_queue)) { 1878 spin_lock(&sk_queue->lock); 1879 skb_queue_splice_tail_init(sk_queue, rcvq); 1880 spin_unlock(&sk_queue->lock); 1881 1882 skb = __first_packet_length(sk, rcvq, &total); 1883 } 1884 res = skb ? skb->len : -1; 1885 if (total) 1886 udp_rmem_release(sk, total, 1, false); 1887 spin_unlock_bh(&rcvq->lock); 1888 return res; 1889 } 1890 1891 /* 1892 * IOCTL requests applicable to the UDP protocol 1893 */ 1894 1895 int udp_ioctl(struct sock *sk, int cmd, int *karg) 1896 { 1897 switch (cmd) { 1898 case SIOCOUTQ: 1899 { 1900 *karg = sk_wmem_alloc_get(sk); 1901 return 0; 1902 } 1903 1904 case SIOCINQ: 1905 { 1906 *karg = max_t(int, 0, first_packet_length(sk)); 1907 return 0; 1908 } 1909 1910 default: 1911 return -ENOIOCTLCMD; 1912 } 1913 1914 return 0; 1915 } 1916 EXPORT_IPV6_MOD(udp_ioctl); 1917 1918 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, 1919 int *off, int *err) 1920 { 1921 struct sk_buff_head *sk_queue = &sk->sk_receive_queue; 1922 struct sk_buff_head *queue; 1923 struct sk_buff *last; 1924 long timeo; 1925 int error; 1926 1927 queue = &udp_sk(sk)->reader_queue; 1928 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1929 do { 1930 struct sk_buff *skb; 1931 1932 error = sock_error(sk); 1933 if (error) 1934 break; 1935 1936 error = -EAGAIN; 1937 do { 1938 spin_lock_bh(&queue->lock); 1939 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1940 err, &last); 1941 if (skb) { 1942 if (!(flags & MSG_PEEK)) 1943 udp_skb_destructor(sk, skb); 1944 spin_unlock_bh(&queue->lock); 1945 return skb; 1946 } 1947 1948 if (skb_queue_empty_lockless(sk_queue)) { 1949 spin_unlock_bh(&queue->lock); 1950 goto busy_check; 1951 } 1952 1953 /* refill the reader queue and walk it again 1954 * keep both queues locked to avoid re-acquiring 1955 * the sk_receive_queue lock if fwd memory scheduling 1956 * is needed. 1957 */ 1958 spin_lock(&sk_queue->lock); 1959 skb_queue_splice_tail_init(sk_queue, queue); 1960 1961 skb = __skb_try_recv_from_queue(sk, queue, flags, off, 1962 err, &last); 1963 if (skb && !(flags & MSG_PEEK)) 1964 udp_skb_dtor_locked(sk, skb); 1965 spin_unlock(&sk_queue->lock); 1966 spin_unlock_bh(&queue->lock); 1967 if (skb) 1968 return skb; 1969 1970 busy_check: 1971 if (!sk_can_busy_loop(sk)) 1972 break; 1973 1974 sk_busy_loop(sk, flags & MSG_DONTWAIT); 1975 } while (!skb_queue_empty_lockless(sk_queue)); 1976 1977 /* sk_queue is empty, reader_queue may contain peeked packets */ 1978 } while (timeo && 1979 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, 1980 &error, &timeo, 1981 (struct sk_buff *)sk_queue)); 1982 1983 *err = error; 1984 return NULL; 1985 } 1986 EXPORT_SYMBOL(__skb_recv_udp); 1987 1988 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1989 { 1990 struct sk_buff *skb; 1991 int err; 1992 1993 try_again: 1994 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1995 if (!skb) 1996 return err; 1997 1998 if (udp_lib_checksum_complete(skb)) { 1999 int is_udplite = IS_UDPLITE(sk); 2000 struct net *net = sock_net(sk); 2001 2002 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); 2003 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); 2004 atomic_inc(&sk->sk_drops); 2005 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2006 goto try_again; 2007 } 2008 2009 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 2010 return recv_actor(sk, skb); 2011 } 2012 EXPORT_IPV6_MOD(udp_read_skb); 2013 2014 /* 2015 * This should be easy, if there is something there we 2016 * return it, otherwise we block. 2017 */ 2018 2019 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2020 int *addr_len) 2021 { 2022 struct inet_sock *inet = inet_sk(sk); 2023 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); 2024 struct sk_buff *skb; 2025 unsigned int ulen, copied; 2026 int off, err, peeking = flags & MSG_PEEK; 2027 int is_udplite = IS_UDPLITE(sk); 2028 bool checksum_valid = false; 2029 2030 if (flags & MSG_ERRQUEUE) 2031 return ip_recv_error(sk, msg, len, addr_len); 2032 2033 try_again: 2034 off = sk_peek_offset(sk, flags); 2035 skb = __skb_recv_udp(sk, flags, &off, &err); 2036 if (!skb) 2037 return err; 2038 2039 ulen = udp_skb_len(skb); 2040 copied = len; 2041 if (copied > ulen - off) 2042 copied = ulen - off; 2043 else if (copied < ulen) 2044 msg->msg_flags |= MSG_TRUNC; 2045 2046 /* 2047 * If checksum is needed at all, try to do it while copying the 2048 * data. If the data is truncated, or if we only want a partial 2049 * coverage checksum (UDP-Lite), do it before the copy. 2050 */ 2051 2052 if (copied < ulen || peeking || 2053 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { 2054 checksum_valid = udp_skb_csum_unnecessary(skb) || 2055 !__udp_lib_checksum_complete(skb); 2056 if (!checksum_valid) 2057 goto csum_copy_err; 2058 } 2059 2060 if (checksum_valid || udp_skb_csum_unnecessary(skb)) { 2061 if (udp_skb_is_linear(skb)) 2062 err = copy_linear_skb(skb, copied, off, &msg->msg_iter); 2063 else 2064 err = skb_copy_datagram_msg(skb, off, msg, copied); 2065 } else { 2066 err = skb_copy_and_csum_datagram_msg(skb, off, msg); 2067 2068 if (err == -EINVAL) 2069 goto csum_copy_err; 2070 } 2071 2072 if (unlikely(err)) { 2073 if (!peeking) { 2074 atomic_inc(&sk->sk_drops); 2075 UDP_INC_STATS(sock_net(sk), 2076 UDP_MIB_INERRORS, is_udplite); 2077 } 2078 kfree_skb(skb); 2079 return err; 2080 } 2081 2082 if (!peeking) 2083 UDP_INC_STATS(sock_net(sk), 2084 UDP_MIB_INDATAGRAMS, is_udplite); 2085 2086 sock_recv_cmsgs(msg, sk, skb); 2087 2088 /* Copy the address. */ 2089 if (sin) { 2090 sin->sin_family = AF_INET; 2091 sin->sin_port = udp_hdr(skb)->source; 2092 sin->sin_addr.s_addr = ip_hdr(skb)->saddr; 2093 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2094 *addr_len = sizeof(*sin); 2095 2096 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, 2097 (struct sockaddr *)sin, 2098 addr_len); 2099 } 2100 2101 if (udp_test_bit(GRO_ENABLED, sk)) 2102 udp_cmsg_recv(msg, sk, skb); 2103 2104 if (inet_cmsg_flags(inet)) 2105 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); 2106 2107 err = copied; 2108 if (flags & MSG_TRUNC) 2109 err = ulen; 2110 2111 skb_consume_udp(sk, skb, peeking ? -err : err); 2112 return err; 2113 2114 csum_copy_err: 2115 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, 2116 udp_skb_destructor)) { 2117 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2118 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2119 } 2120 kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); 2121 2122 /* starting over for a new packet, but check if we need to yield */ 2123 cond_resched(); 2124 msg->msg_flags &= ~MSG_TRUNC; 2125 goto try_again; 2126 } 2127 2128 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2129 { 2130 /* This check is replicated from __ip4_datagram_connect() and 2131 * intended to prevent BPF program called below from accessing bytes 2132 * that are out of the bound specified by user in addr_len. 2133 */ 2134 if (addr_len < sizeof(struct sockaddr_in)) 2135 return -EINVAL; 2136 2137 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); 2138 } 2139 EXPORT_IPV6_MOD(udp_pre_connect); 2140 2141 static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 2142 { 2143 int res; 2144 2145 lock_sock(sk); 2146 res = __ip4_datagram_connect(sk, uaddr, addr_len); 2147 if (!res) 2148 udp4_hash4(sk); 2149 release_sock(sk); 2150 return res; 2151 } 2152 2153 int __udp_disconnect(struct sock *sk, int flags) 2154 { 2155 struct inet_sock *inet = inet_sk(sk); 2156 /* 2157 * 1003.1g - break association. 2158 */ 2159 2160 sk->sk_state = TCP_CLOSE; 2161 inet->inet_daddr = 0; 2162 inet->inet_dport = 0; 2163 sock_rps_reset_rxhash(sk); 2164 sk->sk_bound_dev_if = 0; 2165 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { 2166 inet_reset_saddr(sk); 2167 if (sk->sk_prot->rehash && 2168 (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2169 sk->sk_prot->rehash(sk); 2170 } 2171 2172 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 2173 sk->sk_prot->unhash(sk); 2174 inet->inet_sport = 0; 2175 } 2176 sk_dst_reset(sk); 2177 return 0; 2178 } 2179 EXPORT_SYMBOL(__udp_disconnect); 2180 2181 int udp_disconnect(struct sock *sk, int flags) 2182 { 2183 lock_sock(sk); 2184 __udp_disconnect(sk, flags); 2185 release_sock(sk); 2186 return 0; 2187 } 2188 EXPORT_IPV6_MOD(udp_disconnect); 2189 2190 void udp_lib_unhash(struct sock *sk) 2191 { 2192 if (sk_hashed(sk)) { 2193 struct udp_table *udptable = udp_get_table_prot(sk); 2194 struct udp_hslot *hslot, *hslot2; 2195 2196 hslot = udp_hashslot(udptable, sock_net(sk), 2197 udp_sk(sk)->udp_port_hash); 2198 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2199 2200 spin_lock_bh(&hslot->lock); 2201 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2202 reuseport_detach_sock(sk); 2203 if (sk_del_node_init_rcu(sk)) { 2204 hslot->count--; 2205 inet_sk(sk)->inet_num = 0; 2206 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2207 2208 spin_lock(&hslot2->lock); 2209 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2210 hslot2->count--; 2211 spin_unlock(&hslot2->lock); 2212 2213 udp_unhash4(udptable, sk); 2214 } 2215 spin_unlock_bh(&hslot->lock); 2216 } 2217 } 2218 EXPORT_IPV6_MOD(udp_lib_unhash); 2219 2220 /* 2221 * inet_rcv_saddr was changed, we must rehash secondary hash 2222 */ 2223 void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4) 2224 { 2225 if (sk_hashed(sk)) { 2226 struct udp_table *udptable = udp_get_table_prot(sk); 2227 struct udp_hslot *hslot, *hslot2, *nhslot2; 2228 2229 hslot = udp_hashslot(udptable, sock_net(sk), 2230 udp_sk(sk)->udp_port_hash); 2231 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); 2232 nhslot2 = udp_hashslot2(udptable, newhash); 2233 udp_sk(sk)->udp_portaddr_hash = newhash; 2234 2235 if (hslot2 != nhslot2 || 2236 rcu_access_pointer(sk->sk_reuseport_cb)) { 2237 /* we must lock primary chain too */ 2238 spin_lock_bh(&hslot->lock); 2239 if (rcu_access_pointer(sk->sk_reuseport_cb)) 2240 reuseport_detach_sock(sk); 2241 2242 if (hslot2 != nhslot2) { 2243 spin_lock(&hslot2->lock); 2244 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); 2245 hslot2->count--; 2246 spin_unlock(&hslot2->lock); 2247 2248 spin_lock(&nhslot2->lock); 2249 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, 2250 &nhslot2->head); 2251 nhslot2->count++; 2252 spin_unlock(&nhslot2->lock); 2253 } 2254 2255 spin_unlock_bh(&hslot->lock); 2256 } 2257 2258 /* Now process hash4 if necessary: 2259 * (1) update hslot4; 2260 * (2) update hslot2->hash4_cnt. 2261 * Note that hslot2/hslot4 should be checked separately, as 2262 * either of them may change with the other unchanged. 2263 */ 2264 if (udp_hashed4(sk)) { 2265 spin_lock_bh(&hslot->lock); 2266 2267 udp_rehash4(udptable, sk, newhash4); 2268 if (hslot2 != nhslot2) { 2269 spin_lock(&hslot2->lock); 2270 udp_hash4_dec(hslot2); 2271 spin_unlock(&hslot2->lock); 2272 2273 spin_lock(&nhslot2->lock); 2274 udp_hash4_inc(nhslot2); 2275 spin_unlock(&nhslot2->lock); 2276 } 2277 2278 spin_unlock_bh(&hslot->lock); 2279 } 2280 } 2281 } 2282 EXPORT_IPV6_MOD(udp_lib_rehash); 2283 2284 void udp_v4_rehash(struct sock *sk) 2285 { 2286 u16 new_hash = ipv4_portaddr_hash(sock_net(sk), 2287 inet_sk(sk)->inet_rcv_saddr, 2288 inet_sk(sk)->inet_num); 2289 u16 new_hash4 = udp_ehashfn(sock_net(sk), 2290 sk->sk_rcv_saddr, sk->sk_num, 2291 sk->sk_daddr, sk->sk_dport); 2292 2293 udp_lib_rehash(sk, new_hash, new_hash4); 2294 } 2295 2296 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2297 { 2298 int rc; 2299 2300 if (inet_sk(sk)->inet_daddr) { 2301 sock_rps_save_rxhash(sk, skb); 2302 sk_mark_napi_id(sk, skb); 2303 sk_incoming_cpu_update(sk); 2304 } else { 2305 sk_mark_napi_id_once(sk, skb); 2306 } 2307 2308 rc = __udp_enqueue_schedule_skb(sk, skb); 2309 if (rc < 0) { 2310 int is_udplite = IS_UDPLITE(sk); 2311 int drop_reason; 2312 2313 /* Note that an ENOMEM error is charged twice */ 2314 if (rc == -ENOMEM) { 2315 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, 2316 is_udplite); 2317 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; 2318 } else { 2319 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, 2320 is_udplite); 2321 drop_reason = SKB_DROP_REASON_PROTO_MEM; 2322 } 2323 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2324 trace_udp_fail_queue_rcv_skb(rc, sk, skb); 2325 sk_skb_reason_drop(sk, skb, drop_reason); 2326 return -1; 2327 } 2328 2329 return 0; 2330 } 2331 2332 /* returns: 2333 * -1: error 2334 * 0: success 2335 * >0: "udp encap" protocol resubmission 2336 * 2337 * Note that in the success and error cases, the skb is assumed to 2338 * have either been requeued or freed. 2339 */ 2340 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) 2341 { 2342 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2343 struct udp_sock *up = udp_sk(sk); 2344 int is_udplite = IS_UDPLITE(sk); 2345 2346 /* 2347 * Charge it to the socket, dropping if the queue is full. 2348 */ 2349 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2350 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2351 goto drop; 2352 } 2353 nf_reset_ct(skb); 2354 2355 if (static_branch_unlikely(&udp_encap_needed_key) && 2356 READ_ONCE(up->encap_type)) { 2357 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); 2358 2359 /* 2360 * This is an encapsulation socket so pass the skb to 2361 * the socket's udp_encap_rcv() hook. Otherwise, just 2362 * fall through and pass this up the UDP socket. 2363 * up->encap_rcv() returns the following value: 2364 * =0 if skb was successfully passed to the encap 2365 * handler or was discarded by it. 2366 * >0 if skb should be passed on to UDP. 2367 * <0 if skb should be resubmitted as proto -N 2368 */ 2369 2370 /* if we're overly short, let UDP handle it */ 2371 encap_rcv = READ_ONCE(up->encap_rcv); 2372 if (encap_rcv) { 2373 int ret; 2374 2375 /* Verify checksum before giving to encap */ 2376 if (udp_lib_checksum_complete(skb)) 2377 goto csum_error; 2378 2379 ret = encap_rcv(sk, skb); 2380 if (ret <= 0) { 2381 __UDP_INC_STATS(sock_net(sk), 2382 UDP_MIB_INDATAGRAMS, 2383 is_udplite); 2384 return -ret; 2385 } 2386 } 2387 2388 /* FALLTHROUGH -- it's a UDP Packet */ 2389 } 2390 2391 /* 2392 * UDP-Lite specific tests, ignored on UDP sockets 2393 */ 2394 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { 2395 u16 pcrlen = READ_ONCE(up->pcrlen); 2396 2397 /* 2398 * MIB statistics other than incrementing the error count are 2399 * disabled for the following two types of errors: these depend 2400 * on the application settings, not on the functioning of the 2401 * protocol stack as such. 2402 * 2403 * RFC 3828 here recommends (sec 3.3): "There should also be a 2404 * way ... to ... at least let the receiving application block 2405 * delivery of packets with coverage values less than a value 2406 * provided by the application." 2407 */ 2408 if (pcrlen == 0) { /* full coverage was set */ 2409 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", 2410 UDP_SKB_CB(skb)->cscov, skb->len); 2411 goto drop; 2412 } 2413 /* The next case involves violating the min. coverage requested 2414 * by the receiver. This is subtle: if receiver wants x and x is 2415 * greater than the buffersize/MTU then receiver will complain 2416 * that it wants x while sender emits packets of smaller size y. 2417 * Therefore the above ...()->partial_cov statement is essential. 2418 */ 2419 if (UDP_SKB_CB(skb)->cscov < pcrlen) { 2420 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", 2421 UDP_SKB_CB(skb)->cscov, pcrlen); 2422 goto drop; 2423 } 2424 } 2425 2426 prefetch(&sk->sk_rmem_alloc); 2427 if (rcu_access_pointer(sk->sk_filter) && 2428 udp_lib_checksum_complete(skb)) 2429 goto csum_error; 2430 2431 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) { 2432 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2433 goto drop; 2434 } 2435 2436 udp_csum_pull_header(skb); 2437 2438 ipv4_pktinfo_prepare(sk, skb, true); 2439 return __udp_queue_rcv_skb(sk, skb); 2440 2441 csum_error: 2442 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2443 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); 2444 drop: 2445 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); 2446 atomic_inc(&sk->sk_drops); 2447 sk_skb_reason_drop(sk, skb, drop_reason); 2448 return -1; 2449 } 2450 2451 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 2452 { 2453 struct sk_buff *next, *segs; 2454 int ret; 2455 2456 if (likely(!udp_unexpected_gso(sk, skb))) 2457 return udp_queue_rcv_one_skb(sk, skb); 2458 2459 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); 2460 __skb_push(skb, -skb_mac_offset(skb)); 2461 segs = udp_rcv_segment(sk, skb, true); 2462 skb_list_walk_safe(segs, skb, next) { 2463 __skb_pull(skb, skb_transport_offset(skb)); 2464 2465 udp_post_segment_fix_csum(skb); 2466 ret = udp_queue_rcv_one_skb(sk, skb); 2467 if (ret > 0) 2468 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); 2469 } 2470 return 0; 2471 } 2472 2473 /* For TCP sockets, sk_rx_dst is protected by socket lock 2474 * For UDP, we use xchg() to guard against concurrent changes. 2475 */ 2476 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) 2477 { 2478 struct dst_entry *old; 2479 2480 if (dst_hold_safe(dst)) { 2481 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); 2482 dst_release(old); 2483 return old != dst; 2484 } 2485 return false; 2486 } 2487 EXPORT_IPV6_MOD(udp_sk_rx_dst_set); 2488 2489 /* 2490 * Multicasts and broadcasts go to each listener. 2491 * 2492 * Note: called only from the BH handler context. 2493 */ 2494 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, 2495 struct udphdr *uh, 2496 __be32 saddr, __be32 daddr, 2497 struct udp_table *udptable, 2498 int proto) 2499 { 2500 struct sock *sk, *first = NULL; 2501 unsigned short hnum = ntohs(uh->dest); 2502 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); 2503 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); 2504 unsigned int offset = offsetof(typeof(*sk), sk_node); 2505 int dif = skb->dev->ifindex; 2506 int sdif = inet_sdif(skb); 2507 struct hlist_node *node; 2508 struct sk_buff *nskb; 2509 2510 if (use_hash2) { 2511 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & 2512 udptable->mask; 2513 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; 2514 start_lookup: 2515 hslot = &udptable->hash2[hash2].hslot; 2516 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); 2517 } 2518 2519 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { 2520 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, 2521 uh->source, saddr, dif, sdif, hnum)) 2522 continue; 2523 2524 if (!first) { 2525 first = sk; 2526 continue; 2527 } 2528 nskb = skb_clone(skb, GFP_ATOMIC); 2529 2530 if (unlikely(!nskb)) { 2531 atomic_inc(&sk->sk_drops); 2532 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, 2533 IS_UDPLITE(sk)); 2534 __UDP_INC_STATS(net, UDP_MIB_INERRORS, 2535 IS_UDPLITE(sk)); 2536 continue; 2537 } 2538 if (udp_queue_rcv_skb(sk, nskb) > 0) 2539 consume_skb(nskb); 2540 } 2541 2542 /* Also lookup *:port if we are using hash2 and haven't done so yet. */ 2543 if (use_hash2 && hash2 != hash2_any) { 2544 hash2 = hash2_any; 2545 goto start_lookup; 2546 } 2547 2548 if (first) { 2549 if (udp_queue_rcv_skb(first, skb) > 0) 2550 consume_skb(skb); 2551 } else { 2552 kfree_skb(skb); 2553 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, 2554 proto == IPPROTO_UDPLITE); 2555 } 2556 return 0; 2557 } 2558 2559 /* Initialize UDP checksum. If exited with zero value (success), 2560 * CHECKSUM_UNNECESSARY means, that no more checks are required. 2561 * Otherwise, csum completion requires checksumming packet body, 2562 * including udp header and folding it to skb->csum. 2563 */ 2564 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, 2565 int proto) 2566 { 2567 int err; 2568 2569 UDP_SKB_CB(skb)->partial_cov = 0; 2570 UDP_SKB_CB(skb)->cscov = skb->len; 2571 2572 if (proto == IPPROTO_UDPLITE) { 2573 err = udplite_checksum_init(skb, uh); 2574 if (err) 2575 return err; 2576 2577 if (UDP_SKB_CB(skb)->partial_cov) { 2578 skb->csum = inet_compute_pseudo(skb, proto); 2579 return 0; 2580 } 2581 } 2582 2583 /* Note, we are only interested in != 0 or == 0, thus the 2584 * force to int. 2585 */ 2586 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, 2587 inet_compute_pseudo); 2588 if (err) 2589 return err; 2590 2591 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { 2592 /* If SW calculated the value, we know it's bad */ 2593 if (skb->csum_complete_sw) 2594 return 1; 2595 2596 /* HW says the value is bad. Let's validate that. 2597 * skb->csum is no longer the full packet checksum, 2598 * so don't treat it as such. 2599 */ 2600 skb_checksum_complete_unset(skb); 2601 } 2602 2603 return 0; 2604 } 2605 2606 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and 2607 * return code conversion for ip layer consumption 2608 */ 2609 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, 2610 struct udphdr *uh) 2611 { 2612 int ret; 2613 2614 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) 2615 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); 2616 2617 ret = udp_queue_rcv_skb(sk, skb); 2618 2619 /* a return value > 0 means to resubmit the input, but 2620 * it wants the return to be -protocol, or 0 2621 */ 2622 if (ret > 0) 2623 return -ret; 2624 return 0; 2625 } 2626 2627 /* 2628 * All we need to do is get the socket, and then do a checksum. 2629 */ 2630 2631 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, 2632 int proto) 2633 { 2634 struct sock *sk = NULL; 2635 struct udphdr *uh; 2636 unsigned short ulen; 2637 struct rtable *rt = skb_rtable(skb); 2638 __be32 saddr, daddr; 2639 struct net *net = dev_net(skb->dev); 2640 bool refcounted; 2641 int drop_reason; 2642 2643 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2644 2645 /* 2646 * Validate the packet. 2647 */ 2648 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 2649 goto drop; /* No space for header. */ 2650 2651 uh = udp_hdr(skb); 2652 ulen = ntohs(uh->len); 2653 saddr = ip_hdr(skb)->saddr; 2654 daddr = ip_hdr(skb)->daddr; 2655 2656 if (ulen > skb->len) 2657 goto short_packet; 2658 2659 if (proto == IPPROTO_UDP) { 2660 /* UDP validates ulen. */ 2661 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) 2662 goto short_packet; 2663 uh = udp_hdr(skb); 2664 } 2665 2666 if (udp4_csum_init(skb, uh, proto)) 2667 goto csum_error; 2668 2669 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, 2670 &refcounted, udp_ehashfn); 2671 if (IS_ERR(sk)) 2672 goto no_sk; 2673 2674 if (sk) { 2675 struct dst_entry *dst = skb_dst(skb); 2676 int ret; 2677 2678 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) 2679 udp_sk_rx_dst_set(sk, dst); 2680 2681 ret = udp_unicast_rcv_skb(sk, skb, uh); 2682 if (refcounted) 2683 sock_put(sk); 2684 return ret; 2685 } 2686 2687 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 2688 return __udp4_lib_mcast_deliver(net, skb, uh, 2689 saddr, daddr, udptable, proto); 2690 2691 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); 2692 if (sk) 2693 return udp_unicast_rcv_skb(sk, skb, uh); 2694 no_sk: 2695 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2696 goto drop; 2697 nf_reset_ct(skb); 2698 2699 /* No socket. Drop packet silently, if checksum is wrong */ 2700 if (udp_lib_checksum_complete(skb)) 2701 goto csum_error; 2702 2703 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2704 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); 2705 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 2706 2707 /* 2708 * Hmm. We got an UDP packet to a port to which we 2709 * don't wanna listen. Ignore it. 2710 */ 2711 sk_skb_reason_drop(sk, skb, drop_reason); 2712 return 0; 2713 2714 short_packet: 2715 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2716 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", 2717 proto == IPPROTO_UDPLITE ? "Lite" : "", 2718 &saddr, ntohs(uh->source), 2719 ulen, skb->len, 2720 &daddr, ntohs(uh->dest)); 2721 goto drop; 2722 2723 csum_error: 2724 /* 2725 * RFC1122: OK. Discards the bad packet silently (as far as 2726 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 2727 */ 2728 drop_reason = SKB_DROP_REASON_UDP_CSUM; 2729 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", 2730 proto == IPPROTO_UDPLITE ? "Lite" : "", 2731 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), 2732 ulen); 2733 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); 2734 drop: 2735 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); 2736 sk_skb_reason_drop(sk, skb, drop_reason); 2737 return 0; 2738 } 2739 2740 /* We can only early demux multicast if there is a single matching socket. 2741 * If more than one socket found returns NULL 2742 */ 2743 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, 2744 __be16 loc_port, __be32 loc_addr, 2745 __be16 rmt_port, __be32 rmt_addr, 2746 int dif, int sdif) 2747 { 2748 struct udp_table *udptable = net->ipv4.udp_table; 2749 unsigned short hnum = ntohs(loc_port); 2750 struct sock *sk, *result; 2751 struct udp_hslot *hslot; 2752 unsigned int slot; 2753 2754 slot = udp_hashfn(net, hnum, udptable->mask); 2755 hslot = &udptable->hash[slot]; 2756 2757 /* Do not bother scanning a too big list */ 2758 if (hslot->count > 10) 2759 return NULL; 2760 2761 result = NULL; 2762 sk_for_each_rcu(sk, &hslot->head) { 2763 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, 2764 rmt_port, rmt_addr, dif, sdif, hnum)) { 2765 if (result) 2766 return NULL; 2767 result = sk; 2768 } 2769 } 2770 2771 return result; 2772 } 2773 2774 /* For unicast we should only early demux connected sockets or we can 2775 * break forwarding setups. The chains here can be long so only check 2776 * if the first socket is an exact match and if not move on. 2777 */ 2778 static struct sock *__udp4_lib_demux_lookup(struct net *net, 2779 __be16 loc_port, __be32 loc_addr, 2780 __be16 rmt_port, __be32 rmt_addr, 2781 int dif, int sdif) 2782 { 2783 struct udp_table *udptable = net->ipv4.udp_table; 2784 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); 2785 unsigned short hnum = ntohs(loc_port); 2786 struct udp_hslot *hslot2; 2787 unsigned int hash2; 2788 __portpair ports; 2789 struct sock *sk; 2790 2791 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); 2792 hslot2 = udp_hashslot2(udptable, hash2); 2793 ports = INET_COMBINED_PORTS(rmt_port, hnum); 2794 2795 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { 2796 if (inet_match(net, sk, acookie, ports, dif, sdif)) 2797 return sk; 2798 /* Only check first socket in chain */ 2799 break; 2800 } 2801 return NULL; 2802 } 2803 2804 int udp_v4_early_demux(struct sk_buff *skb) 2805 { 2806 struct net *net = dev_net(skb->dev); 2807 struct in_device *in_dev = NULL; 2808 const struct iphdr *iph; 2809 const struct udphdr *uh; 2810 struct sock *sk = NULL; 2811 struct dst_entry *dst; 2812 int dif = skb->dev->ifindex; 2813 int sdif = inet_sdif(skb); 2814 int ours; 2815 2816 /* validate the packet */ 2817 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) 2818 return 0; 2819 2820 iph = ip_hdr(skb); 2821 uh = udp_hdr(skb); 2822 2823 if (skb->pkt_type == PACKET_MULTICAST) { 2824 in_dev = __in_dev_get_rcu(skb->dev); 2825 2826 if (!in_dev) 2827 return 0; 2828 2829 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, 2830 iph->protocol); 2831 if (!ours) 2832 return 0; 2833 2834 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, 2835 uh->source, iph->saddr, 2836 dif, sdif); 2837 } else if (skb->pkt_type == PACKET_HOST) { 2838 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, 2839 uh->source, iph->saddr, dif, sdif); 2840 } 2841 2842 if (!sk) 2843 return 0; 2844 2845 skb->sk = sk; 2846 DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); 2847 skb->destructor = sock_pfree; 2848 dst = rcu_dereference(sk->sk_rx_dst); 2849 2850 if (dst) 2851 dst = dst_check(dst, 0); 2852 if (dst) { 2853 u32 itag = 0; 2854 2855 /* set noref for now. 2856 * any place which wants to hold dst has to call 2857 * dst_hold_safe() 2858 */ 2859 skb_dst_set_noref(skb, dst); 2860 2861 /* for unconnected multicast sockets we need to validate 2862 * the source on each packet 2863 */ 2864 if (!inet_sk(sk)->inet_daddr && in_dev) 2865 return ip_mc_validate_source(skb, iph->daddr, 2866 iph->saddr, 2867 ip4h_dscp(iph), 2868 skb->dev, in_dev, &itag); 2869 } 2870 return 0; 2871 } 2872 2873 int udp_rcv(struct sk_buff *skb) 2874 { 2875 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); 2876 } 2877 2878 void udp_destroy_sock(struct sock *sk) 2879 { 2880 struct udp_sock *up = udp_sk(sk); 2881 bool slow = lock_sock_fast(sk); 2882 2883 /* protects from races with udp_abort() */ 2884 sock_set_flag(sk, SOCK_DEAD); 2885 udp_flush_pending_frames(sk); 2886 unlock_sock_fast(sk, slow); 2887 if (static_branch_unlikely(&udp_encap_needed_key)) { 2888 if (up->encap_type) { 2889 void (*encap_destroy)(struct sock *sk); 2890 encap_destroy = READ_ONCE(up->encap_destroy); 2891 if (encap_destroy) 2892 encap_destroy(sk); 2893 } 2894 if (udp_test_bit(ENCAP_ENABLED, sk)) 2895 static_branch_dec(&udp_encap_needed_key); 2896 } 2897 } 2898 2899 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, 2900 struct sock *sk) 2901 { 2902 #ifdef CONFIG_XFRM 2903 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { 2904 if (family == AF_INET) 2905 WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv); 2906 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) 2907 WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv); 2908 } 2909 #endif 2910 } 2911 2912 /* 2913 * Socket option code for UDP 2914 */ 2915 int udp_lib_setsockopt(struct sock *sk, int level, int optname, 2916 sockptr_t optval, unsigned int optlen, 2917 int (*push_pending_frames)(struct sock *)) 2918 { 2919 struct udp_sock *up = udp_sk(sk); 2920 int val, valbool; 2921 int err = 0; 2922 int is_udplite = IS_UDPLITE(sk); 2923 2924 if (level == SOL_SOCKET) { 2925 err = sk_setsockopt(sk, level, optname, optval, optlen); 2926 2927 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { 2928 sockopt_lock_sock(sk); 2929 /* paired with READ_ONCE in udp_rmem_release() */ 2930 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); 2931 sockopt_release_sock(sk); 2932 } 2933 return err; 2934 } 2935 2936 if (optlen < sizeof(int)) 2937 return -EINVAL; 2938 2939 if (copy_from_sockptr(&val, optval, sizeof(val))) 2940 return -EFAULT; 2941 2942 valbool = val ? 1 : 0; 2943 2944 switch (optname) { 2945 case UDP_CORK: 2946 if (val != 0) { 2947 udp_set_bit(CORK, sk); 2948 } else { 2949 udp_clear_bit(CORK, sk); 2950 lock_sock(sk); 2951 push_pending_frames(sk); 2952 release_sock(sk); 2953 } 2954 break; 2955 2956 case UDP_ENCAP: 2957 switch (val) { 2958 case 0: 2959 #ifdef CONFIG_XFRM 2960 case UDP_ENCAP_ESPINUDP: 2961 set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); 2962 #if IS_ENABLED(CONFIG_IPV6) 2963 if (sk->sk_family == AF_INET6) 2964 WRITE_ONCE(up->encap_rcv, 2965 ipv6_stub->xfrm6_udp_encap_rcv); 2966 else 2967 #endif 2968 WRITE_ONCE(up->encap_rcv, 2969 xfrm4_udp_encap_rcv); 2970 #endif 2971 fallthrough; 2972 case UDP_ENCAP_L2TPINUDP: 2973 WRITE_ONCE(up->encap_type, val); 2974 udp_tunnel_encap_enable(sk); 2975 break; 2976 default: 2977 err = -ENOPROTOOPT; 2978 break; 2979 } 2980 break; 2981 2982 case UDP_NO_CHECK6_TX: 2983 udp_set_no_check6_tx(sk, valbool); 2984 break; 2985 2986 case UDP_NO_CHECK6_RX: 2987 udp_set_no_check6_rx(sk, valbool); 2988 break; 2989 2990 case UDP_SEGMENT: 2991 if (val < 0 || val > USHRT_MAX) 2992 return -EINVAL; 2993 WRITE_ONCE(up->gso_size, val); 2994 break; 2995 2996 case UDP_GRO: 2997 2998 /* when enabling GRO, accept the related GSO packet type */ 2999 if (valbool) 3000 udp_tunnel_encap_enable(sk); 3001 udp_assign_bit(GRO_ENABLED, sk, valbool); 3002 udp_assign_bit(ACCEPT_L4, sk, valbool); 3003 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); 3004 break; 3005 3006 /* 3007 * UDP-Lite's partial checksum coverage (RFC 3828). 3008 */ 3009 /* The sender sets actual checksum coverage length via this option. 3010 * The case coverage > packet length is handled by send module. */ 3011 case UDPLITE_SEND_CSCOV: 3012 if (!is_udplite) /* Disable the option on UDP sockets */ 3013 return -ENOPROTOOPT; 3014 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ 3015 val = 8; 3016 else if (val > USHRT_MAX) 3017 val = USHRT_MAX; 3018 WRITE_ONCE(up->pcslen, val); 3019 udp_set_bit(UDPLITE_SEND_CC, sk); 3020 break; 3021 3022 /* The receiver specifies a minimum checksum coverage value. To make 3023 * sense, this should be set to at least 8 (as done below). If zero is 3024 * used, this again means full checksum coverage. */ 3025 case UDPLITE_RECV_CSCOV: 3026 if (!is_udplite) /* Disable the option on UDP sockets */ 3027 return -ENOPROTOOPT; 3028 if (val != 0 && val < 8) /* Avoid silly minimal values. */ 3029 val = 8; 3030 else if (val > USHRT_MAX) 3031 val = USHRT_MAX; 3032 WRITE_ONCE(up->pcrlen, val); 3033 udp_set_bit(UDPLITE_RECV_CC, sk); 3034 break; 3035 3036 default: 3037 err = -ENOPROTOOPT; 3038 break; 3039 } 3040 3041 return err; 3042 } 3043 EXPORT_IPV6_MOD(udp_lib_setsockopt); 3044 3045 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3046 unsigned int optlen) 3047 { 3048 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) 3049 return udp_lib_setsockopt(sk, level, optname, 3050 optval, optlen, 3051 udp_push_pending_frames); 3052 return ip_setsockopt(sk, level, optname, optval, optlen); 3053 } 3054 3055 int udp_lib_getsockopt(struct sock *sk, int level, int optname, 3056 char __user *optval, int __user *optlen) 3057 { 3058 struct udp_sock *up = udp_sk(sk); 3059 int val, len; 3060 3061 if (get_user(len, optlen)) 3062 return -EFAULT; 3063 3064 if (len < 0) 3065 return -EINVAL; 3066 3067 len = min_t(unsigned int, len, sizeof(int)); 3068 3069 switch (optname) { 3070 case UDP_CORK: 3071 val = udp_test_bit(CORK, sk); 3072 break; 3073 3074 case UDP_ENCAP: 3075 val = READ_ONCE(up->encap_type); 3076 break; 3077 3078 case UDP_NO_CHECK6_TX: 3079 val = udp_get_no_check6_tx(sk); 3080 break; 3081 3082 case UDP_NO_CHECK6_RX: 3083 val = udp_get_no_check6_rx(sk); 3084 break; 3085 3086 case UDP_SEGMENT: 3087 val = READ_ONCE(up->gso_size); 3088 break; 3089 3090 case UDP_GRO: 3091 val = udp_test_bit(GRO_ENABLED, sk); 3092 break; 3093 3094 /* The following two cannot be changed on UDP sockets, the return is 3095 * always 0 (which corresponds to the full checksum coverage of UDP). */ 3096 case UDPLITE_SEND_CSCOV: 3097 val = READ_ONCE(up->pcslen); 3098 break; 3099 3100 case UDPLITE_RECV_CSCOV: 3101 val = READ_ONCE(up->pcrlen); 3102 break; 3103 3104 default: 3105 return -ENOPROTOOPT; 3106 } 3107 3108 if (put_user(len, optlen)) 3109 return -EFAULT; 3110 if (copy_to_user(optval, &val, len)) 3111 return -EFAULT; 3112 return 0; 3113 } 3114 EXPORT_IPV6_MOD(udp_lib_getsockopt); 3115 3116 int udp_getsockopt(struct sock *sk, int level, int optname, 3117 char __user *optval, int __user *optlen) 3118 { 3119 if (level == SOL_UDP || level == SOL_UDPLITE) 3120 return udp_lib_getsockopt(sk, level, optname, optval, optlen); 3121 return ip_getsockopt(sk, level, optname, optval, optlen); 3122 } 3123 3124 /** 3125 * udp_poll - wait for a UDP event. 3126 * @file: - file struct 3127 * @sock: - socket 3128 * @wait: - poll table 3129 * 3130 * This is same as datagram poll, except for the special case of 3131 * blocking sockets. If application is using a blocking fd 3132 * and a packet with checksum error is in the queue; 3133 * then it could get return from select indicating data available 3134 * but then block when reading it. Add special case code 3135 * to work around these arguably broken applications. 3136 */ 3137 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) 3138 { 3139 __poll_t mask = datagram_poll(file, sock, wait); 3140 struct sock *sk = sock->sk; 3141 3142 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) 3143 mask |= EPOLLIN | EPOLLRDNORM; 3144 3145 /* Check for false positives due to checksum errors */ 3146 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && 3147 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) 3148 mask &= ~(EPOLLIN | EPOLLRDNORM); 3149 3150 /* psock ingress_msg queue should not contain any bad checksum frames */ 3151 if (sk_is_readable(sk)) 3152 mask |= EPOLLIN | EPOLLRDNORM; 3153 return mask; 3154 3155 } 3156 EXPORT_IPV6_MOD(udp_poll); 3157 3158 int udp_abort(struct sock *sk, int err) 3159 { 3160 if (!has_current_bpf_ctx()) 3161 lock_sock(sk); 3162 3163 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing 3164 * with close() 3165 */ 3166 if (sock_flag(sk, SOCK_DEAD)) 3167 goto out; 3168 3169 sk->sk_err = err; 3170 sk_error_report(sk); 3171 __udp_disconnect(sk, 0); 3172 3173 out: 3174 if (!has_current_bpf_ctx()) 3175 release_sock(sk); 3176 3177 return 0; 3178 } 3179 EXPORT_IPV6_MOD_GPL(udp_abort); 3180 3181 struct proto udp_prot = { 3182 .name = "UDP", 3183 .owner = THIS_MODULE, 3184 .close = udp_lib_close, 3185 .pre_connect = udp_pre_connect, 3186 .connect = udp_connect, 3187 .disconnect = udp_disconnect, 3188 .ioctl = udp_ioctl, 3189 .init = udp_init_sock, 3190 .destroy = udp_destroy_sock, 3191 .setsockopt = udp_setsockopt, 3192 .getsockopt = udp_getsockopt, 3193 .sendmsg = udp_sendmsg, 3194 .recvmsg = udp_recvmsg, 3195 .splice_eof = udp_splice_eof, 3196 .release_cb = ip4_datagram_release_cb, 3197 .hash = udp_lib_hash, 3198 .unhash = udp_lib_unhash, 3199 .rehash = udp_v4_rehash, 3200 .get_port = udp_v4_get_port, 3201 .put_port = udp_lib_unhash, 3202 #ifdef CONFIG_BPF_SYSCALL 3203 .psock_update_sk_prot = udp_bpf_update_proto, 3204 #endif 3205 .memory_allocated = &udp_memory_allocated, 3206 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, 3207 3208 .sysctl_mem = sysctl_udp_mem, 3209 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), 3210 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), 3211 .obj_size = sizeof(struct udp_sock), 3212 .h.udp_table = NULL, 3213 .diag_destroy = udp_abort, 3214 }; 3215 EXPORT_SYMBOL(udp_prot); 3216 3217 /* ------------------------------------------------------------------------ */ 3218 #ifdef CONFIG_PROC_FS 3219 3220 static unsigned short seq_file_family(const struct seq_file *seq); 3221 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 3222 { 3223 unsigned short family = seq_file_family(seq); 3224 3225 /* AF_UNSPEC is used as a match all */ 3226 return ((family == AF_UNSPEC || family == sk->sk_family) && 3227 net_eq(sock_net(sk), seq_file_net(seq))); 3228 } 3229 3230 #ifdef CONFIG_BPF_SYSCALL 3231 static const struct seq_operations bpf_iter_udp_seq_ops; 3232 #endif 3233 static struct udp_table *udp_get_table_seq(struct seq_file *seq, 3234 struct net *net) 3235 { 3236 const struct udp_seq_afinfo *afinfo; 3237 3238 #ifdef CONFIG_BPF_SYSCALL 3239 if (seq->op == &bpf_iter_udp_seq_ops) 3240 return net->ipv4.udp_table; 3241 #endif 3242 3243 afinfo = pde_data(file_inode(seq->file)); 3244 return afinfo->udp_table ? : net->ipv4.udp_table; 3245 } 3246 3247 static struct sock *udp_get_first(struct seq_file *seq, int start) 3248 { 3249 struct udp_iter_state *state = seq->private; 3250 struct net *net = seq_file_net(seq); 3251 struct udp_table *udptable; 3252 struct sock *sk; 3253 3254 udptable = udp_get_table_seq(seq, net); 3255 3256 for (state->bucket = start; state->bucket <= udptable->mask; 3257 ++state->bucket) { 3258 struct udp_hslot *hslot = &udptable->hash[state->bucket]; 3259 3260 if (hlist_empty(&hslot->head)) 3261 continue; 3262 3263 spin_lock_bh(&hslot->lock); 3264 sk_for_each(sk, &hslot->head) { 3265 if (seq_sk_match(seq, sk)) 3266 goto found; 3267 } 3268 spin_unlock_bh(&hslot->lock); 3269 } 3270 sk = NULL; 3271 found: 3272 return sk; 3273 } 3274 3275 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 3276 { 3277 struct udp_iter_state *state = seq->private; 3278 struct net *net = seq_file_net(seq); 3279 struct udp_table *udptable; 3280 3281 do { 3282 sk = sk_next(sk); 3283 } while (sk && !seq_sk_match(seq, sk)); 3284 3285 if (!sk) { 3286 udptable = udp_get_table_seq(seq, net); 3287 3288 if (state->bucket <= udptable->mask) 3289 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3290 3291 return udp_get_first(seq, state->bucket + 1); 3292 } 3293 return sk; 3294 } 3295 3296 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 3297 { 3298 struct sock *sk = udp_get_first(seq, 0); 3299 3300 if (sk) 3301 while (pos && (sk = udp_get_next(seq, sk)) != NULL) 3302 --pos; 3303 return pos ? NULL : sk; 3304 } 3305 3306 void *udp_seq_start(struct seq_file *seq, loff_t *pos) 3307 { 3308 struct udp_iter_state *state = seq->private; 3309 state->bucket = MAX_UDP_PORTS; 3310 3311 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; 3312 } 3313 EXPORT_IPV6_MOD(udp_seq_start); 3314 3315 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3316 { 3317 struct sock *sk; 3318 3319 if (v == SEQ_START_TOKEN) 3320 sk = udp_get_idx(seq, 0); 3321 else 3322 sk = udp_get_next(seq, v); 3323 3324 ++*pos; 3325 return sk; 3326 } 3327 EXPORT_IPV6_MOD(udp_seq_next); 3328 3329 void udp_seq_stop(struct seq_file *seq, void *v) 3330 { 3331 struct udp_iter_state *state = seq->private; 3332 struct udp_table *udptable; 3333 3334 udptable = udp_get_table_seq(seq, seq_file_net(seq)); 3335 3336 if (state->bucket <= udptable->mask) 3337 spin_unlock_bh(&udptable->hash[state->bucket].lock); 3338 } 3339 EXPORT_IPV6_MOD(udp_seq_stop); 3340 3341 /* ------------------------------------------------------------------------ */ 3342 static void udp4_format_sock(struct sock *sp, struct seq_file *f, 3343 int bucket) 3344 { 3345 struct inet_sock *inet = inet_sk(sp); 3346 __be32 dest = inet->inet_daddr; 3347 __be32 src = inet->inet_rcv_saddr; 3348 __u16 destp = ntohs(inet->inet_dport); 3349 __u16 srcp = ntohs(inet->inet_sport); 3350 3351 seq_printf(f, "%5d: %08X:%04X %08X:%04X" 3352 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", 3353 bucket, src, srcp, dest, destp, sp->sk_state, 3354 sk_wmem_alloc_get(sp), 3355 udp_rqueue_get(sp), 3356 0, 0L, 0, 3357 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 3358 0, sock_i_ino(sp), 3359 refcount_read(&sp->sk_refcnt), sp, 3360 atomic_read(&sp->sk_drops)); 3361 } 3362 3363 int udp4_seq_show(struct seq_file *seq, void *v) 3364 { 3365 seq_setwidth(seq, 127); 3366 if (v == SEQ_START_TOKEN) 3367 seq_puts(seq, " sl local_address rem_address st tx_queue " 3368 "rx_queue tr tm->when retrnsmt uid timeout " 3369 "inode ref pointer drops"); 3370 else { 3371 struct udp_iter_state *state = seq->private; 3372 3373 udp4_format_sock(v, seq, state->bucket); 3374 } 3375 seq_pad(seq, '\n'); 3376 return 0; 3377 } 3378 3379 #ifdef CONFIG_BPF_SYSCALL 3380 struct bpf_iter__udp { 3381 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3382 __bpf_md_ptr(struct udp_sock *, udp_sk); 3383 uid_t uid __aligned(8); 3384 int bucket __aligned(8); 3385 }; 3386 3387 struct bpf_udp_iter_state { 3388 struct udp_iter_state state; 3389 unsigned int cur_sk; 3390 unsigned int end_sk; 3391 unsigned int max_sk; 3392 int offset; 3393 struct sock **batch; 3394 bool st_bucket_done; 3395 }; 3396 3397 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3398 unsigned int new_batch_sz); 3399 static struct sock *bpf_iter_udp_batch(struct seq_file *seq) 3400 { 3401 struct bpf_udp_iter_state *iter = seq->private; 3402 struct udp_iter_state *state = &iter->state; 3403 struct net *net = seq_file_net(seq); 3404 int resume_bucket, resume_offset; 3405 struct udp_table *udptable; 3406 unsigned int batch_sks = 0; 3407 bool resized = false; 3408 struct sock *sk; 3409 3410 resume_bucket = state->bucket; 3411 resume_offset = iter->offset; 3412 3413 /* The current batch is done, so advance the bucket. */ 3414 if (iter->st_bucket_done) 3415 state->bucket++; 3416 3417 udptable = udp_get_table_seq(seq, net); 3418 3419 again: 3420 /* New batch for the next bucket. 3421 * Iterate over the hash table to find a bucket with sockets matching 3422 * the iterator attributes, and return the first matching socket from 3423 * the bucket. The remaining matched sockets from the bucket are batched 3424 * before releasing the bucket lock. This allows BPF programs that are 3425 * called in seq_show to acquire the bucket lock if needed. 3426 */ 3427 iter->cur_sk = 0; 3428 iter->end_sk = 0; 3429 iter->st_bucket_done = false; 3430 batch_sks = 0; 3431 3432 for (; state->bucket <= udptable->mask; state->bucket++) { 3433 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot; 3434 3435 if (hlist_empty(&hslot2->head)) 3436 continue; 3437 3438 iter->offset = 0; 3439 spin_lock_bh(&hslot2->lock); 3440 udp_portaddr_for_each_entry(sk, &hslot2->head) { 3441 if (seq_sk_match(seq, sk)) { 3442 /* Resume from the last iterated socket at the 3443 * offset in the bucket before iterator was stopped. 3444 */ 3445 if (state->bucket == resume_bucket && 3446 iter->offset < resume_offset) { 3447 ++iter->offset; 3448 continue; 3449 } 3450 if (iter->end_sk < iter->max_sk) { 3451 sock_hold(sk); 3452 iter->batch[iter->end_sk++] = sk; 3453 } 3454 batch_sks++; 3455 } 3456 } 3457 spin_unlock_bh(&hslot2->lock); 3458 3459 if (iter->end_sk) 3460 break; 3461 } 3462 3463 /* All done: no batch made. */ 3464 if (!iter->end_sk) 3465 return NULL; 3466 3467 if (iter->end_sk == batch_sks) { 3468 /* Batching is done for the current bucket; return the first 3469 * socket to be iterated from the batch. 3470 */ 3471 iter->st_bucket_done = true; 3472 goto done; 3473 } 3474 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) { 3475 resized = true; 3476 /* After allocating a larger batch, retry one more time to grab 3477 * the whole bucket. 3478 */ 3479 goto again; 3480 } 3481 done: 3482 return iter->batch[0]; 3483 } 3484 3485 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3486 { 3487 struct bpf_udp_iter_state *iter = seq->private; 3488 struct sock *sk; 3489 3490 /* Whenever seq_next() is called, the iter->cur_sk is 3491 * done with seq_show(), so unref the iter->cur_sk. 3492 */ 3493 if (iter->cur_sk < iter->end_sk) { 3494 sock_put(iter->batch[iter->cur_sk++]); 3495 ++iter->offset; 3496 } 3497 3498 /* After updating iter->cur_sk, check if there are more sockets 3499 * available in the current bucket batch. 3500 */ 3501 if (iter->cur_sk < iter->end_sk) 3502 sk = iter->batch[iter->cur_sk]; 3503 else 3504 /* Prepare a new batch. */ 3505 sk = bpf_iter_udp_batch(seq); 3506 3507 ++*pos; 3508 return sk; 3509 } 3510 3511 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) 3512 { 3513 /* bpf iter does not support lseek, so it always 3514 * continue from where it was stop()-ped. 3515 */ 3516 if (*pos) 3517 return bpf_iter_udp_batch(seq); 3518 3519 return SEQ_START_TOKEN; 3520 } 3521 3522 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3523 struct udp_sock *udp_sk, uid_t uid, int bucket) 3524 { 3525 struct bpf_iter__udp ctx; 3526 3527 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3528 ctx.meta = meta; 3529 ctx.udp_sk = udp_sk; 3530 ctx.uid = uid; 3531 ctx.bucket = bucket; 3532 return bpf_iter_run_prog(prog, &ctx); 3533 } 3534 3535 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) 3536 { 3537 struct udp_iter_state *state = seq->private; 3538 struct bpf_iter_meta meta; 3539 struct bpf_prog *prog; 3540 struct sock *sk = v; 3541 uid_t uid; 3542 int ret; 3543 3544 if (v == SEQ_START_TOKEN) 3545 return 0; 3546 3547 lock_sock(sk); 3548 3549 if (unlikely(sk_unhashed(sk))) { 3550 ret = SEQ_SKIP; 3551 goto unlock; 3552 } 3553 3554 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3555 meta.seq = seq; 3556 prog = bpf_iter_get_info(&meta, false); 3557 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); 3558 3559 unlock: 3560 release_sock(sk); 3561 return ret; 3562 } 3563 3564 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) 3565 { 3566 while (iter->cur_sk < iter->end_sk) 3567 sock_put(iter->batch[iter->cur_sk++]); 3568 } 3569 3570 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) 3571 { 3572 struct bpf_udp_iter_state *iter = seq->private; 3573 struct bpf_iter_meta meta; 3574 struct bpf_prog *prog; 3575 3576 if (!v) { 3577 meta.seq = seq; 3578 prog = bpf_iter_get_info(&meta, true); 3579 if (prog) 3580 (void)udp_prog_seq_show(prog, &meta, v, 0, 0); 3581 } 3582 3583 if (iter->cur_sk < iter->end_sk) { 3584 bpf_iter_udp_put_batch(iter); 3585 iter->st_bucket_done = false; 3586 } 3587 } 3588 3589 static const struct seq_operations bpf_iter_udp_seq_ops = { 3590 .start = bpf_iter_udp_seq_start, 3591 .next = bpf_iter_udp_seq_next, 3592 .stop = bpf_iter_udp_seq_stop, 3593 .show = bpf_iter_udp_seq_show, 3594 }; 3595 #endif 3596 3597 static unsigned short seq_file_family(const struct seq_file *seq) 3598 { 3599 const struct udp_seq_afinfo *afinfo; 3600 3601 #ifdef CONFIG_BPF_SYSCALL 3602 /* BPF iterator: bpf programs to filter sockets. */ 3603 if (seq->op == &bpf_iter_udp_seq_ops) 3604 return AF_UNSPEC; 3605 #endif 3606 3607 /* Proc fs iterator */ 3608 afinfo = pde_data(file_inode(seq->file)); 3609 return afinfo->family; 3610 } 3611 3612 const struct seq_operations udp_seq_ops = { 3613 .start = udp_seq_start, 3614 .next = udp_seq_next, 3615 .stop = udp_seq_stop, 3616 .show = udp4_seq_show, 3617 }; 3618 EXPORT_IPV6_MOD(udp_seq_ops); 3619 3620 static struct udp_seq_afinfo udp4_seq_afinfo = { 3621 .family = AF_INET, 3622 .udp_table = NULL, 3623 }; 3624 3625 static int __net_init udp4_proc_init_net(struct net *net) 3626 { 3627 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, 3628 sizeof(struct udp_iter_state), &udp4_seq_afinfo)) 3629 return -ENOMEM; 3630 return 0; 3631 } 3632 3633 static void __net_exit udp4_proc_exit_net(struct net *net) 3634 { 3635 remove_proc_entry("udp", net->proc_net); 3636 } 3637 3638 static struct pernet_operations udp4_net_ops = { 3639 .init = udp4_proc_init_net, 3640 .exit = udp4_proc_exit_net, 3641 }; 3642 3643 int __init udp4_proc_init(void) 3644 { 3645 return register_pernet_subsys(&udp4_net_ops); 3646 } 3647 3648 void udp4_proc_exit(void) 3649 { 3650 unregister_pernet_subsys(&udp4_net_ops); 3651 } 3652 #endif /* CONFIG_PROC_FS */ 3653 3654 static __initdata unsigned long uhash_entries; 3655 static int __init set_uhash_entries(char *str) 3656 { 3657 ssize_t ret; 3658 3659 if (!str) 3660 return 0; 3661 3662 ret = kstrtoul(str, 0, &uhash_entries); 3663 if (ret) 3664 return 0; 3665 3666 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) 3667 uhash_entries = UDP_HTABLE_SIZE_MIN; 3668 return 1; 3669 } 3670 __setup("uhash_entries=", set_uhash_entries); 3671 3672 void __init udp_table_init(struct udp_table *table, const char *name) 3673 { 3674 unsigned int i, slot_size; 3675 3676 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3677 udp_hash4_slot_size(); 3678 table->hash = alloc_large_system_hash(name, 3679 slot_size, 3680 uhash_entries, 3681 21, /* one slot per 2 MB */ 3682 0, 3683 &table->log, 3684 &table->mask, 3685 UDP_HTABLE_SIZE_MIN, 3686 UDP_HTABLE_SIZE_MAX); 3687 3688 table->hash2 = (void *)(table->hash + (table->mask + 1)); 3689 for (i = 0; i <= table->mask; i++) { 3690 INIT_HLIST_HEAD(&table->hash[i].head); 3691 table->hash[i].count = 0; 3692 spin_lock_init(&table->hash[i].lock); 3693 } 3694 for (i = 0; i <= table->mask; i++) { 3695 INIT_HLIST_HEAD(&table->hash2[i].hslot.head); 3696 table->hash2[i].hslot.count = 0; 3697 spin_lock_init(&table->hash2[i].hslot.lock); 3698 } 3699 udp_table_hash4_init(table); 3700 } 3701 3702 u32 udp_flow_hashrnd(void) 3703 { 3704 static u32 hashrnd __read_mostly; 3705 3706 net_get_random_once(&hashrnd, sizeof(hashrnd)); 3707 3708 return hashrnd; 3709 } 3710 EXPORT_SYMBOL(udp_flow_hashrnd); 3711 3712 static void __net_init udp_sysctl_init(struct net *net) 3713 { 3714 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; 3715 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; 3716 3717 #ifdef CONFIG_NET_L3_MASTER_DEV 3718 net->ipv4.sysctl_udp_l3mdev_accept = 0; 3719 #endif 3720 } 3721 3722 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) 3723 { 3724 struct udp_table *udptable; 3725 unsigned int slot_size; 3726 int i; 3727 3728 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); 3729 if (!udptable) 3730 goto out; 3731 3732 slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + 3733 udp_hash4_slot_size(); 3734 udptable->hash = vmalloc_huge(hash_entries * slot_size, 3735 GFP_KERNEL_ACCOUNT); 3736 if (!udptable->hash) 3737 goto free_table; 3738 3739 udptable->hash2 = (void *)(udptable->hash + hash_entries); 3740 udptable->mask = hash_entries - 1; 3741 udptable->log = ilog2(hash_entries); 3742 3743 for (i = 0; i < hash_entries; i++) { 3744 INIT_HLIST_HEAD(&udptable->hash[i].head); 3745 udptable->hash[i].count = 0; 3746 spin_lock_init(&udptable->hash[i].lock); 3747 3748 INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head); 3749 udptable->hash2[i].hslot.count = 0; 3750 spin_lock_init(&udptable->hash2[i].hslot.lock); 3751 } 3752 udp_table_hash4_init(udptable); 3753 3754 return udptable; 3755 3756 free_table: 3757 kfree(udptable); 3758 out: 3759 return NULL; 3760 } 3761 3762 static void __net_exit udp_pernet_table_free(struct net *net) 3763 { 3764 struct udp_table *udptable = net->ipv4.udp_table; 3765 3766 if (udptable == &udp_table) 3767 return; 3768 3769 kvfree(udptable->hash); 3770 kfree(udptable); 3771 } 3772 3773 static void __net_init udp_set_table(struct net *net) 3774 { 3775 struct udp_table *udptable; 3776 unsigned int hash_entries; 3777 struct net *old_net; 3778 3779 if (net_eq(net, &init_net)) 3780 goto fallback; 3781 3782 old_net = current->nsproxy->net_ns; 3783 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); 3784 if (!hash_entries) 3785 goto fallback; 3786 3787 /* Set min to keep the bitmap on stack in udp_lib_get_port() */ 3788 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) 3789 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; 3790 else 3791 hash_entries = roundup_pow_of_two(hash_entries); 3792 3793 udptable = udp_pernet_table_alloc(hash_entries); 3794 if (udptable) { 3795 net->ipv4.udp_table = udptable; 3796 } else { 3797 pr_warn("Failed to allocate UDP hash table (entries: %u) " 3798 "for a netns, fallback to the global one\n", 3799 hash_entries); 3800 fallback: 3801 net->ipv4.udp_table = &udp_table; 3802 } 3803 } 3804 3805 static int __net_init udp_pernet_init(struct net *net) 3806 { 3807 udp_sysctl_init(net); 3808 udp_set_table(net); 3809 3810 return 0; 3811 } 3812 3813 static void __net_exit udp_pernet_exit(struct net *net) 3814 { 3815 udp_pernet_table_free(net); 3816 } 3817 3818 static struct pernet_operations __net_initdata udp_sysctl_ops = { 3819 .init = udp_pernet_init, 3820 .exit = udp_pernet_exit, 3821 }; 3822 3823 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3824 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, 3825 struct udp_sock *udp_sk, uid_t uid, int bucket) 3826 3827 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, 3828 unsigned int new_batch_sz) 3829 { 3830 struct sock **new_batch; 3831 3832 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), 3833 GFP_USER | __GFP_NOWARN); 3834 if (!new_batch) 3835 return -ENOMEM; 3836 3837 bpf_iter_udp_put_batch(iter); 3838 kvfree(iter->batch); 3839 iter->batch = new_batch; 3840 iter->max_sk = new_batch_sz; 3841 3842 return 0; 3843 } 3844 3845 #define INIT_BATCH_SZ 16 3846 3847 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) 3848 { 3849 struct bpf_udp_iter_state *iter = priv_data; 3850 int ret; 3851 3852 ret = bpf_iter_init_seq_net(priv_data, aux); 3853 if (ret) 3854 return ret; 3855 3856 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); 3857 if (ret) 3858 bpf_iter_fini_seq_net(priv_data); 3859 3860 return ret; 3861 } 3862 3863 static void bpf_iter_fini_udp(void *priv_data) 3864 { 3865 struct bpf_udp_iter_state *iter = priv_data; 3866 3867 bpf_iter_fini_seq_net(priv_data); 3868 kvfree(iter->batch); 3869 } 3870 3871 static const struct bpf_iter_seq_info udp_seq_info = { 3872 .seq_ops = &bpf_iter_udp_seq_ops, 3873 .init_seq_private = bpf_iter_init_udp, 3874 .fini_seq_private = bpf_iter_fini_udp, 3875 .seq_priv_size = sizeof(struct bpf_udp_iter_state), 3876 }; 3877 3878 static struct bpf_iter_reg udp_reg_info = { 3879 .target = "udp", 3880 .ctx_arg_info_size = 1, 3881 .ctx_arg_info = { 3882 { offsetof(struct bpf_iter__udp, udp_sk), 3883 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3884 }, 3885 .seq_info = &udp_seq_info, 3886 }; 3887 3888 static void __init bpf_iter_register(void) 3889 { 3890 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; 3891 if (bpf_iter_reg_target(&udp_reg_info)) 3892 pr_warn("Warning: could not register bpf iterator udp\n"); 3893 } 3894 #endif 3895 3896 void __init udp_init(void) 3897 { 3898 unsigned long limit; 3899 unsigned int i; 3900 3901 udp_table_init(&udp_table, "UDP"); 3902 limit = nr_free_buffer_pages() / 8; 3903 limit = max(limit, 128UL); 3904 sysctl_udp_mem[0] = limit / 4 * 3; 3905 sysctl_udp_mem[1] = limit; 3906 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; 3907 3908 /* 16 spinlocks per cpu */ 3909 udp_busylocks_log = ilog2(nr_cpu_ids) + 4; 3910 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, 3911 GFP_KERNEL); 3912 if (!udp_busylocks) 3913 panic("UDP: failed to alloc udp_busylocks\n"); 3914 for (i = 0; i < (1U << udp_busylocks_log); i++) 3915 spin_lock_init(udp_busylocks + i); 3916 3917 if (register_pernet_subsys(&udp_sysctl_ops)) 3918 panic("UDP: failed to init sysctl parameters.\n"); 3919 3920 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3921 bpf_iter_register(); 3922 #endif 3923 } 3924