xref: /linux/net/ipv4/tcp_vegas.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * TCP Vegas congestion control
3  *
4  * This is based on the congestion detection/avoidance scheme described in
5  *    Lawrence S. Brakmo and Larry L. Peterson.
6  *    "TCP Vegas: End to end congestion avoidance on a global internet."
7  *    IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
8  *    October 1995. Available from:
9  *	ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
10  *
11  * See http://www.cs.arizona.edu/xkernel/ for their implementation.
12  * The main aspects that distinguish this implementation from the
13  * Arizona Vegas implementation are:
14  *   o We do not change the loss detection or recovery mechanisms of
15  *     Linux in any way. Linux already recovers from losses quite well,
16  *     using fine-grained timers, NewReno, and FACK.
17  *   o To avoid the performance penalty imposed by increasing cwnd
18  *     only every-other RTT during slow start, we increase during
19  *     every RTT during slow start, just like Reno.
20  *   o Largely to allow continuous cwnd growth during slow start,
21  *     we use the rate at which ACKs come back as the "actual"
22  *     rate, rather than the rate at which data is sent.
23  *   o To speed convergence to the right rate, we set the cwnd
24  *     to achieve the right ("actual") rate when we exit slow start.
25  *   o To filter out the noise caused by delayed ACKs, we use the
26  *     minimum RTT sample observed during the last RTT to calculate
27  *     the actual rate.
28  *   o When the sender re-starts from idle, it waits until it has
29  *     received ACKs for an entire flight of new data before making
30  *     a cwnd adjustment decision. The original Vegas implementation
31  *     assumed senders never went idle.
32  */
33 
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/skbuff.h>
37 #include <linux/inet_diag.h>
38 
39 #include <net/tcp.h>
40 
41 #include "tcp_vegas.h"
42 
43 /* Default values of the Vegas variables, in fixed-point representation
44  * with V_PARAM_SHIFT bits to the right of the binary point.
45  */
46 #define V_PARAM_SHIFT 1
47 static int alpha = 2<<V_PARAM_SHIFT;
48 static int beta  = 4<<V_PARAM_SHIFT;
49 static int gamma = 1<<V_PARAM_SHIFT;
50 
51 module_param(alpha, int, 0644);
52 MODULE_PARM_DESC(alpha, "lower bound of packets in network (scale by 2)");
53 module_param(beta, int, 0644);
54 MODULE_PARM_DESC(beta, "upper bound of packets in network (scale by 2)");
55 module_param(gamma, int, 0644);
56 MODULE_PARM_DESC(gamma, "limit on increase (scale by 2)");
57 
58 
59 /* There are several situations when we must "re-start" Vegas:
60  *
61  *  o when a connection is established
62  *  o after an RTO
63  *  o after fast recovery
64  *  o when we send a packet and there is no outstanding
65  *    unacknowledged data (restarting an idle connection)
66  *
67  * In these circumstances we cannot do a Vegas calculation at the
68  * end of the first RTT, because any calculation we do is using
69  * stale info -- both the saved cwnd and congestion feedback are
70  * stale.
71  *
72  * Instead we must wait until the completion of an RTT during
73  * which we actually receive ACKs.
74  */
75 static void vegas_enable(struct sock *sk)
76 {
77 	const struct tcp_sock *tp = tcp_sk(sk);
78 	struct vegas *vegas = inet_csk_ca(sk);
79 
80 	/* Begin taking Vegas samples next time we send something. */
81 	vegas->doing_vegas_now = 1;
82 
83 	/* Set the beginning of the next send window. */
84 	vegas->beg_snd_nxt = tp->snd_nxt;
85 
86 	vegas->cntRTT = 0;
87 	vegas->minRTT = 0x7fffffff;
88 }
89 
90 /* Stop taking Vegas samples for now. */
91 static inline void vegas_disable(struct sock *sk)
92 {
93 	struct vegas *vegas = inet_csk_ca(sk);
94 
95 	vegas->doing_vegas_now = 0;
96 }
97 
98 void tcp_vegas_init(struct sock *sk)
99 {
100 	struct vegas *vegas = inet_csk_ca(sk);
101 
102 	vegas->baseRTT = 0x7fffffff;
103 	vegas_enable(sk);
104 }
105 EXPORT_SYMBOL_GPL(tcp_vegas_init);
106 
107 /* Do RTT sampling needed for Vegas.
108  * Basically we:
109  *   o min-filter RTT samples from within an RTT to get the current
110  *     propagation delay + queuing delay (we are min-filtering to try to
111  *     avoid the effects of delayed ACKs)
112  *   o min-filter RTT samples from a much longer window (forever for now)
113  *     to find the propagation delay (baseRTT)
114  */
115 void tcp_vegas_pkts_acked(struct sock *sk, u32 cnt, s32 rtt_us)
116 {
117 	struct vegas *vegas = inet_csk_ca(sk);
118 	u32 vrtt;
119 
120 	if (rtt_us < 0)
121 		return;
122 
123 	/* Never allow zero rtt or baseRTT */
124 	vrtt = rtt_us + 1;
125 
126 	/* Filter to find propagation delay: */
127 	if (vrtt < vegas->baseRTT)
128 		vegas->baseRTT = vrtt;
129 
130 	/* Find the min RTT during the last RTT to find
131 	 * the current prop. delay + queuing delay:
132 	 */
133 	vegas->minRTT = min(vegas->minRTT, vrtt);
134 	vegas->cntRTT++;
135 }
136 EXPORT_SYMBOL_GPL(tcp_vegas_pkts_acked);
137 
138 void tcp_vegas_state(struct sock *sk, u8 ca_state)
139 {
140 
141 	if (ca_state == TCP_CA_Open)
142 		vegas_enable(sk);
143 	else
144 		vegas_disable(sk);
145 }
146 EXPORT_SYMBOL_GPL(tcp_vegas_state);
147 
148 /*
149  * If the connection is idle and we are restarting,
150  * then we don't want to do any Vegas calculations
151  * until we get fresh RTT samples.  So when we
152  * restart, we reset our Vegas state to a clean
153  * slate. After we get acks for this flight of
154  * packets, _then_ we can make Vegas calculations
155  * again.
156  */
157 void tcp_vegas_cwnd_event(struct sock *sk, enum tcp_ca_event event)
158 {
159 	if (event == CA_EVENT_CWND_RESTART ||
160 	    event == CA_EVENT_TX_START)
161 		tcp_vegas_init(sk);
162 }
163 EXPORT_SYMBOL_GPL(tcp_vegas_cwnd_event);
164 
165 static void tcp_vegas_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
166 {
167 	struct tcp_sock *tp = tcp_sk(sk);
168 	struct vegas *vegas = inet_csk_ca(sk);
169 
170 	if (!vegas->doing_vegas_now) {
171 		tcp_reno_cong_avoid(sk, ack, in_flight);
172 		return;
173 	}
174 
175 	/* The key players are v_beg_snd_una and v_beg_snd_nxt.
176 	 *
177 	 * These are so named because they represent the approximate values
178 	 * of snd_una and snd_nxt at the beginning of the current RTT. More
179 	 * precisely, they represent the amount of data sent during the RTT.
180 	 * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
181 	 * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
182 	 * bytes of data have been ACKed during the course of the RTT, giving
183 	 * an "actual" rate of:
184 	 *
185 	 *     (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
186 	 *
187 	 * Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
188 	 * because delayed ACKs can cover more than one segment, so they
189 	 * don't line up nicely with the boundaries of RTTs.
190 	 *
191 	 * Another unfortunate fact of life is that delayed ACKs delay the
192 	 * advance of the left edge of our send window, so that the number
193 	 * of bytes we send in an RTT is often less than our cwnd will allow.
194 	 * So we keep track of our cwnd separately, in v_beg_snd_cwnd.
195 	 */
196 
197 	if (after(ack, vegas->beg_snd_nxt)) {
198 		/* Do the Vegas once-per-RTT cwnd adjustment. */
199 		u32 old_wnd, old_snd_cwnd;
200 
201 
202 		/* Here old_wnd is essentially the window of data that was
203 		 * sent during the previous RTT, and has all
204 		 * been acknowledged in the course of the RTT that ended
205 		 * with the ACK we just received. Likewise, old_snd_cwnd
206 		 * is the cwnd during the previous RTT.
207 		 */
208 		old_wnd = (vegas->beg_snd_nxt - vegas->beg_snd_una) /
209 			tp->mss_cache;
210 		old_snd_cwnd = vegas->beg_snd_cwnd;
211 
212 		/* Save the extent of the current window so we can use this
213 		 * at the end of the next RTT.
214 		 */
215 		vegas->beg_snd_una  = vegas->beg_snd_nxt;
216 		vegas->beg_snd_nxt  = tp->snd_nxt;
217 		vegas->beg_snd_cwnd = tp->snd_cwnd;
218 
219 		/* We do the Vegas calculations only if we got enough RTT
220 		 * samples that we can be reasonably sure that we got
221 		 * at least one RTT sample that wasn't from a delayed ACK.
222 		 * If we only had 2 samples total,
223 		 * then that means we're getting only 1 ACK per RTT, which
224 		 * means they're almost certainly delayed ACKs.
225 		 * If  we have 3 samples, we should be OK.
226 		 */
227 
228 		if (vegas->cntRTT <= 2) {
229 			/* We don't have enough RTT samples to do the Vegas
230 			 * calculation, so we'll behave like Reno.
231 			 */
232 			tcp_reno_cong_avoid(sk, ack, in_flight);
233 		} else {
234 			u32 rtt, diff;
235 			u64 target_cwnd;
236 
237 			/* We have enough RTT samples, so, using the Vegas
238 			 * algorithm, we determine if we should increase or
239 			 * decrease cwnd, and by how much.
240 			 */
241 
242 			/* Pluck out the RTT we are using for the Vegas
243 			 * calculations. This is the min RTT seen during the
244 			 * last RTT. Taking the min filters out the effects
245 			 * of delayed ACKs, at the cost of noticing congestion
246 			 * a bit later.
247 			 */
248 			rtt = vegas->minRTT;
249 
250 			/* Calculate the cwnd we should have, if we weren't
251 			 * going too fast.
252 			 *
253 			 * This is:
254 			 *     (actual rate in segments) * baseRTT
255 			 * We keep it as a fixed point number with
256 			 * V_PARAM_SHIFT bits to the right of the binary point.
257 			 */
258 			target_cwnd = ((u64)old_wnd * vegas->baseRTT);
259 			target_cwnd <<= V_PARAM_SHIFT;
260 			do_div(target_cwnd, rtt);
261 
262 			/* Calculate the difference between the window we had,
263 			 * and the window we would like to have. This quantity
264 			 * is the "Diff" from the Arizona Vegas papers.
265 			 *
266 			 * Again, this is a fixed point number with
267 			 * V_PARAM_SHIFT bits to the right of the binary
268 			 * point.
269 			 */
270 			diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd;
271 
272 			if (diff > gamma && tp->snd_ssthresh > 2 ) {
273 				/* Going too fast. Time to slow down
274 				 * and switch to congestion avoidance.
275 				 */
276 				tp->snd_ssthresh = 2;
277 
278 				/* Set cwnd to match the actual rate
279 				 * exactly:
280 				 *   cwnd = (actual rate) * baseRTT
281 				 * Then we add 1 because the integer
282 				 * truncation robs us of full link
283 				 * utilization.
284 				 */
285 				tp->snd_cwnd = min(tp->snd_cwnd,
286 						   ((u32)target_cwnd >>
287 						    V_PARAM_SHIFT)+1);
288 
289 			} else if (tp->snd_cwnd <= tp->snd_ssthresh) {
290 				/* Slow start.  */
291 				tcp_slow_start(tp);
292 			} else {
293 				/* Congestion avoidance. */
294 				u32 next_snd_cwnd;
295 
296 				/* Figure out where we would like cwnd
297 				 * to be.
298 				 */
299 				if (diff > beta) {
300 					/* The old window was too fast, so
301 					 * we slow down.
302 					 */
303 					next_snd_cwnd = old_snd_cwnd - 1;
304 				} else if (diff < alpha) {
305 					/* We don't have enough extra packets
306 					 * in the network, so speed up.
307 					 */
308 					next_snd_cwnd = old_snd_cwnd + 1;
309 				} else {
310 					/* Sending just as fast as we
311 					 * should be.
312 					 */
313 					next_snd_cwnd = old_snd_cwnd;
314 				}
315 
316 				/* Adjust cwnd upward or downward, toward the
317 				 * desired value.
318 				 */
319 				if (next_snd_cwnd > tp->snd_cwnd)
320 					tp->snd_cwnd++;
321 				else if (next_snd_cwnd < tp->snd_cwnd)
322 					tp->snd_cwnd--;
323 			}
324 
325 			if (tp->snd_cwnd < 2)
326 				tp->snd_cwnd = 2;
327 			else if (tp->snd_cwnd > tp->snd_cwnd_clamp)
328 				tp->snd_cwnd = tp->snd_cwnd_clamp;
329 		}
330 
331 		/* Wipe the slate clean for the next RTT. */
332 		vegas->cntRTT = 0;
333 		vegas->minRTT = 0x7fffffff;
334 	}
335 	/* Use normal slow start */
336 	else if (tp->snd_cwnd <= tp->snd_ssthresh)
337 		tcp_slow_start(tp);
338 
339 }
340 
341 /* Extract info for Tcp socket info provided via netlink. */
342 void tcp_vegas_get_info(struct sock *sk, u32 ext, struct sk_buff *skb)
343 {
344 	const struct vegas *ca = inet_csk_ca(sk);
345 	if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
346 		struct tcpvegas_info info = {
347 			.tcpv_enabled = ca->doing_vegas_now,
348 			.tcpv_rttcnt = ca->cntRTT,
349 			.tcpv_rtt = ca->baseRTT,
350 			.tcpv_minrtt = ca->minRTT,
351 		};
352 
353 		nla_put(skb, INET_DIAG_VEGASINFO, sizeof(info), &info);
354 	}
355 }
356 EXPORT_SYMBOL_GPL(tcp_vegas_get_info);
357 
358 static struct tcp_congestion_ops tcp_vegas = {
359 	.flags		= TCP_CONG_RTT_STAMP,
360 	.init		= tcp_vegas_init,
361 	.ssthresh	= tcp_reno_ssthresh,
362 	.cong_avoid	= tcp_vegas_cong_avoid,
363 	.min_cwnd	= tcp_reno_min_cwnd,
364 	.pkts_acked	= tcp_vegas_pkts_acked,
365 	.set_state	= tcp_vegas_state,
366 	.cwnd_event	= tcp_vegas_cwnd_event,
367 	.get_info	= tcp_vegas_get_info,
368 
369 	.owner		= THIS_MODULE,
370 	.name		= "vegas",
371 };
372 
373 static int __init tcp_vegas_register(void)
374 {
375 	BUILD_BUG_ON(sizeof(struct vegas) > ICSK_CA_PRIV_SIZE);
376 	tcp_register_congestion_control(&tcp_vegas);
377 	return 0;
378 }
379 
380 static void __exit tcp_vegas_unregister(void)
381 {
382 	tcp_unregister_congestion_control(&tcp_vegas);
383 }
384 
385 module_init(tcp_vegas_register);
386 module_exit(tcp_vegas_unregister);
387 
388 MODULE_AUTHOR("Stephen Hemminger");
389 MODULE_LICENSE("GPL");
390 MODULE_DESCRIPTION("TCP Vegas");
391