xref: /linux/net/ipv4/tcp_recovery.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/tcp.h>
3 #include <net/tcp.h>
4 
5 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
6 {
7 	struct tcp_sock *tp = tcp_sk(sk);
8 
9 	tcp_skb_mark_lost_uncond_verify(tp, skb);
10 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
11 		/* Account for retransmits that are lost again */
12 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
13 		tp->retrans_out -= tcp_skb_pcount(skb);
14 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
15 			      tcp_skb_pcount(skb));
16 	}
17 }
18 
19 static bool tcp_rack_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
20 {
21 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
22 }
23 
24 static u32 tcp_rack_reo_wnd(const struct sock *sk)
25 {
26 	struct tcp_sock *tp = tcp_sk(sk);
27 
28 	if (!tp->reord_seen) {
29 		/* If reordering has not been observed, be aggressive during
30 		 * the recovery or starting the recovery by DUPACK threshold.
31 		 */
32 		if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery)
33 			return 0;
34 
35 		if (tp->sacked_out >= tp->reordering &&
36 		    !(sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_NO_DUPTHRESH))
37 			return 0;
38 	}
39 
40 	/* To be more reordering resilient, allow min_rtt/4 settling delay.
41 	 * Use min_rtt instead of the smoothed RTT because reordering is
42 	 * often a path property and less related to queuing or delayed ACKs.
43 	 * Upon receiving DSACKs, linearly increase the window up to the
44 	 * smoothed RTT.
45 	 */
46 	return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps,
47 		   tp->srtt_us >> 3);
48 }
49 
50 s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd)
51 {
52 	return tp->rack.rtt_us + reo_wnd -
53 	       tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp);
54 }
55 
56 /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
57  *
58  * Marks a packet lost, if some packet sent later has been (s)acked.
59  * The underlying idea is similar to the traditional dupthresh and FACK
60  * but they look at different metrics:
61  *
62  * dupthresh: 3 OOO packets delivered (packet count)
63  * FACK: sequence delta to highest sacked sequence (sequence space)
64  * RACK: sent time delta to the latest delivered packet (time domain)
65  *
66  * The advantage of RACK is it applies to both original and retransmitted
67  * packet and therefore is robust against tail losses. Another advantage
68  * is being more resilient to reordering by simply allowing some
69  * "settling delay", instead of tweaking the dupthresh.
70  *
71  * When tcp_rack_detect_loss() detects some packets are lost and we
72  * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
73  * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
74  * make us enter the CA_Recovery state.
75  */
76 static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout)
77 {
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	struct sk_buff *skb, *n;
80 	u32 reo_wnd;
81 
82 	*reo_timeout = 0;
83 	reo_wnd = tcp_rack_reo_wnd(sk);
84 	list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue,
85 				 tcp_tsorted_anchor) {
86 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
87 		s32 remaining;
88 
89 		/* Skip ones marked lost but not yet retransmitted */
90 		if ((scb->sacked & TCPCB_LOST) &&
91 		    !(scb->sacked & TCPCB_SACKED_RETRANS))
92 			continue;
93 
94 		if (!tcp_rack_sent_after(tp->rack.mstamp, skb->skb_mstamp,
95 					 tp->rack.end_seq, scb->end_seq))
96 			break;
97 
98 		/* A packet is lost if it has not been s/acked beyond
99 		 * the recent RTT plus the reordering window.
100 		 */
101 		remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd);
102 		if (remaining <= 0) {
103 			tcp_mark_skb_lost(sk, skb);
104 			list_del_init(&skb->tcp_tsorted_anchor);
105 		} else {
106 			/* Record maximum wait time */
107 			*reo_timeout = max_t(u32, *reo_timeout, remaining);
108 		}
109 	}
110 }
111 
112 void tcp_rack_mark_lost(struct sock *sk)
113 {
114 	struct tcp_sock *tp = tcp_sk(sk);
115 	u32 timeout;
116 
117 	if (!tp->rack.advanced)
118 		return;
119 
120 	/* Reset the advanced flag to avoid unnecessary queue scanning */
121 	tp->rack.advanced = 0;
122 	tcp_rack_detect_loss(sk, &timeout);
123 	if (timeout) {
124 		timeout = usecs_to_jiffies(timeout) + TCP_TIMEOUT_MIN;
125 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT,
126 					  timeout, inet_csk(sk)->icsk_rto);
127 	}
128 }
129 
130 /* Record the most recently (re)sent time among the (s)acked packets
131  * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
132  * draft-cheng-tcpm-rack-00.txt
133  */
134 void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
135 		      u64 xmit_time)
136 {
137 	u32 rtt_us;
138 
139 	rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time);
140 	if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) {
141 		/* If the sacked packet was retransmitted, it's ambiguous
142 		 * whether the retransmission or the original (or the prior
143 		 * retransmission) was sacked.
144 		 *
145 		 * If the original is lost, there is no ambiguity. Otherwise
146 		 * we assume the original can be delayed up to aRTT + min_rtt.
147 		 * the aRTT term is bounded by the fast recovery or timeout,
148 		 * so it's at least one RTT (i.e., retransmission is at least
149 		 * an RTT later).
150 		 */
151 		return;
152 	}
153 	tp->rack.advanced = 1;
154 	tp->rack.rtt_us = rtt_us;
155 	if (tcp_rack_sent_after(xmit_time, tp->rack.mstamp,
156 				end_seq, tp->rack.end_seq)) {
157 		tp->rack.mstamp = xmit_time;
158 		tp->rack.end_seq = end_seq;
159 	}
160 }
161 
162 /* We have waited long enough to accommodate reordering. Mark the expired
163  * packets lost and retransmit them.
164  */
165 void tcp_rack_reo_timeout(struct sock *sk)
166 {
167 	struct tcp_sock *tp = tcp_sk(sk);
168 	u32 timeout, prior_inflight;
169 
170 	prior_inflight = tcp_packets_in_flight(tp);
171 	tcp_rack_detect_loss(sk, &timeout);
172 	if (prior_inflight != tcp_packets_in_flight(tp)) {
173 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) {
174 			tcp_enter_recovery(sk, false);
175 			if (!inet_csk(sk)->icsk_ca_ops->cong_control)
176 				tcp_cwnd_reduction(sk, 1, 0);
177 		}
178 		tcp_xmit_retransmit_queue(sk);
179 	}
180 	if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS)
181 		tcp_rearm_rto(sk);
182 }
183 
184 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
185  *
186  * If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded
187  * by srtt), since there is possibility that spurious retransmission was
188  * due to reordering delay longer than reo_wnd.
189  *
190  * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
191  * no. of successful recoveries (accounts for full DSACK-based loss
192  * recovery undo). After that, reset it to default (min_rtt/4).
193  *
194  * At max, reo_wnd is incremented only once per rtt. So that the new
195  * DSACK on which we are reacting, is due to the spurious retx (approx)
196  * after the reo_wnd has been updated last time.
197  *
198  * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
199  * absolute value to account for change in rtt.
200  */
201 void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs)
202 {
203 	struct tcp_sock *tp = tcp_sk(sk);
204 
205 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_STATIC_REO_WND ||
206 	    !rs->prior_delivered)
207 		return;
208 
209 	/* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
210 	if (before(rs->prior_delivered, tp->rack.last_delivered))
211 		tp->rack.dsack_seen = 0;
212 
213 	/* Adjust the reo_wnd if update is pending */
214 	if (tp->rack.dsack_seen) {
215 		tp->rack.reo_wnd_steps = min_t(u32, 0xFF,
216 					       tp->rack.reo_wnd_steps + 1);
217 		tp->rack.dsack_seen = 0;
218 		tp->rack.last_delivered = tp->delivered;
219 		tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH;
220 	} else if (!tp->rack.reo_wnd_persist) {
221 		tp->rack.reo_wnd_steps = 1;
222 	}
223 }
224 
225 /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
226  * the next unacked packet upon receiving
227  * a) three or more DUPACKs to start the fast recovery
228  * b) an ACK acknowledging new data during the fast recovery.
229  */
230 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced)
231 {
232 	const u8 state = inet_csk(sk)->icsk_ca_state;
233 	struct tcp_sock *tp = tcp_sk(sk);
234 
235 	if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) ||
236 	    (state == TCP_CA_Recovery && snd_una_advanced)) {
237 		struct sk_buff *skb = tcp_rtx_queue_head(sk);
238 		u32 mss;
239 
240 		if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
241 			return;
242 
243 		mss = tcp_skb_mss(skb);
244 		if (tcp_skb_pcount(skb) > 1 && skb->len > mss)
245 			tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
246 				     mss, mss, GFP_ATOMIC);
247 
248 		tcp_skb_mark_lost_uncond_verify(tp, skb);
249 	}
250 }
251