1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, increase pingpong count. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 181 { 182 struct tcp_sock *tp = tcp_sk(sk); 183 184 if (unlikely(tp->compressed_ack)) { 185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 186 tp->compressed_ack); 187 tp->compressed_ack = 0; 188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 189 __sock_put(sk); 190 } 191 192 if (unlikely(rcv_nxt != tp->rcv_nxt)) 193 return; /* Special ACK sent by DCTCP to reflect ECN */ 194 tcp_dec_quickack_mode(sk); 195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = rounddown(space, mss); 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = min_t(u32, space, U16_MAX); 233 234 if (init_rcv_wnd) 235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 236 237 *rcv_wscale = 0; 238 if (wscale_ok) { 239 /* Set window scaling on max possible window */ 240 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 241 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 242 space = min_t(u32, space, *window_clamp); 243 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 244 0, TCP_MAX_WSCALE); 245 } 246 /* Set the clamp no higher than max representable value */ 247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 248 } 249 EXPORT_SYMBOL(tcp_select_initial_window); 250 251 /* Chose a new window to advertise, update state in tcp_sock for the 252 * socket, and return result with RFC1323 scaling applied. The return 253 * value can be stuffed directly into th->window for an outgoing 254 * frame. 255 */ 256 static u16 tcp_select_window(struct sock *sk) 257 { 258 struct tcp_sock *tp = tcp_sk(sk); 259 struct net *net = sock_net(sk); 260 u32 old_win = tp->rcv_wnd; 261 u32 cur_win, new_win; 262 263 /* Make the window 0 if we failed to queue the data because we 264 * are out of memory. The window is temporary, so we don't store 265 * it on the socket. 266 */ 267 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 268 return 0; 269 270 cur_win = tcp_receive_window(tp); 271 new_win = __tcp_select_window(sk); 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 281 /* Never shrink the offered window */ 282 if (new_win == 0) 283 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 285 } 286 } 287 288 tp->rcv_wnd = new_win; 289 tp->rcv_wup = tp->rcv_nxt; 290 291 /* Make sure we do not exceed the maximum possible 292 * scaled window. 293 */ 294 if (!tp->rx_opt.rcv_wscale && 295 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 296 new_win = min(new_win, MAX_TCP_WINDOW); 297 else 298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 299 300 /* RFC1323 scaling applied */ 301 new_win >>= tp->rx_opt.rcv_wscale; 302 303 /* If we advertise zero window, disable fast path. */ 304 if (new_win == 0) { 305 tp->pred_flags = 0; 306 if (old_win) 307 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 308 } else if (old_win == 0) { 309 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 310 } 311 312 return new_win; 313 } 314 315 /* Packet ECN state for a SYN-ACK */ 316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 317 { 318 const struct tcp_sock *tp = tcp_sk(sk); 319 320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 321 if (!(tp->ecn_flags & TCP_ECN_OK)) 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 323 else if (tcp_ca_needs_ecn(sk) || 324 tcp_bpf_ca_needs_ecn(sk)) 325 INET_ECN_xmit(sk); 326 } 327 328 /* Packet ECN state for a SYN. */ 329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 333 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 334 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 354 { 355 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 356 /* tp->ecn_flags are cleared at a later point in time when 357 * SYN ACK is ultimatively being received. 358 */ 359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 360 } 361 362 static void 363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 364 { 365 if (inet_rsk(req)->ecn_ok) 366 th->ece = 1; 367 } 368 369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 370 * be sent. 371 */ 372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 373 struct tcphdr *th, int tcp_header_len) 374 { 375 struct tcp_sock *tp = tcp_sk(sk); 376 377 if (tp->ecn_flags & TCP_ECN_OK) { 378 /* Not-retransmitted data segment: set ECT and inject CWR. */ 379 if (skb->len != tcp_header_len && 380 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 381 INET_ECN_xmit(sk); 382 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 383 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 384 th->cwr = 1; 385 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 386 } 387 } else if (!tcp_ca_needs_ecn(sk)) { 388 /* ACK or retransmitted segment: clear ECT|CE */ 389 INET_ECN_dontxmit(sk); 390 } 391 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 392 th->ece = 1; 393 } 394 } 395 396 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 397 * auto increment end seqno. 398 */ 399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 400 { 401 skb->ip_summed = CHECKSUM_PARTIAL; 402 403 TCP_SKB_CB(skb)->tcp_flags = flags; 404 405 tcp_skb_pcount_set(skb, 1); 406 407 TCP_SKB_CB(skb)->seq = seq; 408 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 409 seq++; 410 TCP_SKB_CB(skb)->end_seq = seq; 411 } 412 413 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 414 { 415 return tp->snd_una != tp->snd_up; 416 } 417 418 #define OPTION_SACK_ADVERTISE BIT(0) 419 #define OPTION_TS BIT(1) 420 #define OPTION_MD5 BIT(2) 421 #define OPTION_WSCALE BIT(3) 422 #define OPTION_FAST_OPEN_COOKIE BIT(8) 423 #define OPTION_SMC BIT(9) 424 #define OPTION_MPTCP BIT(10) 425 #define OPTION_AO BIT(11) 426 427 static void smc_options_write(__be32 *ptr, u16 *options) 428 { 429 #if IS_ENABLED(CONFIG_SMC) 430 if (static_branch_unlikely(&tcp_have_smc)) { 431 if (unlikely(OPTION_SMC & *options)) { 432 *ptr++ = htonl((TCPOPT_NOP << 24) | 433 (TCPOPT_NOP << 16) | 434 (TCPOPT_EXP << 8) | 435 (TCPOLEN_EXP_SMC_BASE)); 436 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 437 } 438 } 439 #endif 440 } 441 442 struct tcp_out_options { 443 u16 options; /* bit field of OPTION_* */ 444 u16 mss; /* 0 to disable */ 445 u8 ws; /* window scale, 0 to disable */ 446 u8 num_sack_blocks; /* number of SACK blocks to include */ 447 u8 hash_size; /* bytes in hash_location */ 448 u8 bpf_opt_len; /* length of BPF hdr option */ 449 __u8 *hash_location; /* temporary pointer, overloaded */ 450 __u32 tsval, tsecr; /* need to include OPTION_TS */ 451 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 452 struct mptcp_out_options mptcp; 453 }; 454 455 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 456 struct tcp_sock *tp, 457 struct tcp_out_options *opts) 458 { 459 #if IS_ENABLED(CONFIG_MPTCP) 460 if (unlikely(OPTION_MPTCP & opts->options)) 461 mptcp_write_options(th, ptr, tp, &opts->mptcp); 462 #endif 463 } 464 465 #ifdef CONFIG_CGROUP_BPF 466 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 467 enum tcp_synack_type synack_type) 468 { 469 if (unlikely(!skb)) 470 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 471 472 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 473 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 474 475 return 0; 476 } 477 478 /* req, syn_skb and synack_type are used when writing synack */ 479 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 480 struct request_sock *req, 481 struct sk_buff *syn_skb, 482 enum tcp_synack_type synack_type, 483 struct tcp_out_options *opts, 484 unsigned int *remaining) 485 { 486 struct bpf_sock_ops_kern sock_ops; 487 int err; 488 489 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 490 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 491 !*remaining) 492 return; 493 494 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 495 496 /* init sock_ops */ 497 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 498 499 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 500 501 if (req) { 502 /* The listen "sk" cannot be passed here because 503 * it is not locked. It would not make too much 504 * sense to do bpf_setsockopt(listen_sk) based 505 * on individual connection request also. 506 * 507 * Thus, "req" is passed here and the cgroup-bpf-progs 508 * of the listen "sk" will be run. 509 * 510 * "req" is also used here for fastopen even the "sk" here is 511 * a fullsock "child" sk. It is to keep the behavior 512 * consistent between fastopen and non-fastopen on 513 * the bpf programming side. 514 */ 515 sock_ops.sk = (struct sock *)req; 516 sock_ops.syn_skb = syn_skb; 517 } else { 518 sock_owned_by_me(sk); 519 520 sock_ops.is_fullsock = 1; 521 sock_ops.sk = sk; 522 } 523 524 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 525 sock_ops.remaining_opt_len = *remaining; 526 /* tcp_current_mss() does not pass a skb */ 527 if (skb) 528 bpf_skops_init_skb(&sock_ops, skb, 0); 529 530 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 531 532 if (err || sock_ops.remaining_opt_len == *remaining) 533 return; 534 535 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 536 /* round up to 4 bytes */ 537 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 538 539 *remaining -= opts->bpf_opt_len; 540 } 541 542 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 543 struct request_sock *req, 544 struct sk_buff *syn_skb, 545 enum tcp_synack_type synack_type, 546 struct tcp_out_options *opts) 547 { 548 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 549 struct bpf_sock_ops_kern sock_ops; 550 int err; 551 552 if (likely(!max_opt_len)) 553 return; 554 555 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 556 557 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 558 559 if (req) { 560 sock_ops.sk = (struct sock *)req; 561 sock_ops.syn_skb = syn_skb; 562 } else { 563 sock_owned_by_me(sk); 564 565 sock_ops.is_fullsock = 1; 566 sock_ops.sk = sk; 567 } 568 569 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 570 sock_ops.remaining_opt_len = max_opt_len; 571 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 572 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 573 574 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 575 576 if (err) 577 nr_written = 0; 578 else 579 nr_written = max_opt_len - sock_ops.remaining_opt_len; 580 581 if (nr_written < max_opt_len) 582 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 583 max_opt_len - nr_written); 584 } 585 #else 586 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 587 struct request_sock *req, 588 struct sk_buff *syn_skb, 589 enum tcp_synack_type synack_type, 590 struct tcp_out_options *opts, 591 unsigned int *remaining) 592 { 593 } 594 595 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 596 struct request_sock *req, 597 struct sk_buff *syn_skb, 598 enum tcp_synack_type synack_type, 599 struct tcp_out_options *opts) 600 { 601 } 602 #endif 603 604 /* Write previously computed TCP options to the packet. 605 * 606 * Beware: Something in the Internet is very sensitive to the ordering of 607 * TCP options, we learned this through the hard way, so be careful here. 608 * Luckily we can at least blame others for their non-compliance but from 609 * inter-operability perspective it seems that we're somewhat stuck with 610 * the ordering which we have been using if we want to keep working with 611 * those broken things (not that it currently hurts anybody as there isn't 612 * particular reason why the ordering would need to be changed). 613 * 614 * At least SACK_PERM as the first option is known to lead to a disaster 615 * (but it may well be that other scenarios fail similarly). 616 */ 617 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 618 const struct tcp_request_sock *tcprsk, 619 struct tcp_out_options *opts, 620 struct tcp_key *key) 621 { 622 __be32 *ptr = (__be32 *)(th + 1); 623 u16 options = opts->options; /* mungable copy */ 624 625 if (tcp_key_is_md5(key)) { 626 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 627 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 628 /* overload cookie hash location */ 629 opts->hash_location = (__u8 *)ptr; 630 ptr += 4; 631 } else if (tcp_key_is_ao(key)) { 632 #ifdef CONFIG_TCP_AO 633 u8 maclen = tcp_ao_maclen(key->ao_key); 634 635 if (tcprsk) { 636 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 637 638 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 639 (tcprsk->ao_keyid << 8) | 640 (tcprsk->ao_rcv_next)); 641 } else { 642 struct tcp_ao_key *rnext_key; 643 struct tcp_ao_info *ao_info; 644 645 ao_info = rcu_dereference_check(tp->ao_info, 646 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 647 rnext_key = READ_ONCE(ao_info->rnext_key); 648 if (WARN_ON_ONCE(!rnext_key)) 649 goto out_ao; 650 *ptr++ = htonl((TCPOPT_AO << 24) | 651 (tcp_ao_len(key->ao_key) << 16) | 652 (key->ao_key->sndid << 8) | 653 (rnext_key->rcvid)); 654 } 655 opts->hash_location = (__u8 *)ptr; 656 ptr += maclen / sizeof(*ptr); 657 if (unlikely(maclen % sizeof(*ptr))) { 658 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 659 ptr++; 660 } 661 out_ao: 662 #endif 663 } 664 if (unlikely(opts->mss)) { 665 *ptr++ = htonl((TCPOPT_MSS << 24) | 666 (TCPOLEN_MSS << 16) | 667 opts->mss); 668 } 669 670 if (likely(OPTION_TS & options)) { 671 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 672 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 673 (TCPOLEN_SACK_PERM << 16) | 674 (TCPOPT_TIMESTAMP << 8) | 675 TCPOLEN_TIMESTAMP); 676 options &= ~OPTION_SACK_ADVERTISE; 677 } else { 678 *ptr++ = htonl((TCPOPT_NOP << 24) | 679 (TCPOPT_NOP << 16) | 680 (TCPOPT_TIMESTAMP << 8) | 681 TCPOLEN_TIMESTAMP); 682 } 683 *ptr++ = htonl(opts->tsval); 684 *ptr++ = htonl(opts->tsecr); 685 } 686 687 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 688 *ptr++ = htonl((TCPOPT_NOP << 24) | 689 (TCPOPT_NOP << 16) | 690 (TCPOPT_SACK_PERM << 8) | 691 TCPOLEN_SACK_PERM); 692 } 693 694 if (unlikely(OPTION_WSCALE & options)) { 695 *ptr++ = htonl((TCPOPT_NOP << 24) | 696 (TCPOPT_WINDOW << 16) | 697 (TCPOLEN_WINDOW << 8) | 698 opts->ws); 699 } 700 701 if (unlikely(opts->num_sack_blocks)) { 702 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 703 tp->duplicate_sack : tp->selective_acks; 704 int this_sack; 705 706 *ptr++ = htonl((TCPOPT_NOP << 24) | 707 (TCPOPT_NOP << 16) | 708 (TCPOPT_SACK << 8) | 709 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 710 TCPOLEN_SACK_PERBLOCK))); 711 712 for (this_sack = 0; this_sack < opts->num_sack_blocks; 713 ++this_sack) { 714 *ptr++ = htonl(sp[this_sack].start_seq); 715 *ptr++ = htonl(sp[this_sack].end_seq); 716 } 717 718 tp->rx_opt.dsack = 0; 719 } 720 721 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 722 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 723 u8 *p = (u8 *)ptr; 724 u32 len; /* Fast Open option length */ 725 726 if (foc->exp) { 727 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 728 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 729 TCPOPT_FASTOPEN_MAGIC); 730 p += TCPOLEN_EXP_FASTOPEN_BASE; 731 } else { 732 len = TCPOLEN_FASTOPEN_BASE + foc->len; 733 *p++ = TCPOPT_FASTOPEN; 734 *p++ = len; 735 } 736 737 memcpy(p, foc->val, foc->len); 738 if ((len & 3) == 2) { 739 p[foc->len] = TCPOPT_NOP; 740 p[foc->len + 1] = TCPOPT_NOP; 741 } 742 ptr += (len + 3) >> 2; 743 } 744 745 smc_options_write(ptr, &options); 746 747 mptcp_options_write(th, ptr, tp, opts); 748 } 749 750 static void smc_set_option(const struct tcp_sock *tp, 751 struct tcp_out_options *opts, 752 unsigned int *remaining) 753 { 754 #if IS_ENABLED(CONFIG_SMC) 755 if (static_branch_unlikely(&tcp_have_smc)) { 756 if (tp->syn_smc) { 757 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 758 opts->options |= OPTION_SMC; 759 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 760 } 761 } 762 } 763 #endif 764 } 765 766 static void smc_set_option_cond(const struct tcp_sock *tp, 767 const struct inet_request_sock *ireq, 768 struct tcp_out_options *opts, 769 unsigned int *remaining) 770 { 771 #if IS_ENABLED(CONFIG_SMC) 772 if (static_branch_unlikely(&tcp_have_smc)) { 773 if (tp->syn_smc && ireq->smc_ok) { 774 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 775 opts->options |= OPTION_SMC; 776 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 777 } 778 } 779 } 780 #endif 781 } 782 783 static void mptcp_set_option_cond(const struct request_sock *req, 784 struct tcp_out_options *opts, 785 unsigned int *remaining) 786 { 787 if (rsk_is_mptcp(req)) { 788 unsigned int size; 789 790 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 791 if (*remaining >= size) { 792 opts->options |= OPTION_MPTCP; 793 *remaining -= size; 794 } 795 } 796 } 797 } 798 799 /* Compute TCP options for SYN packets. This is not the final 800 * network wire format yet. 801 */ 802 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 803 struct tcp_out_options *opts, 804 struct tcp_key *key) 805 { 806 struct tcp_sock *tp = tcp_sk(sk); 807 unsigned int remaining = MAX_TCP_OPTION_SPACE; 808 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 809 bool timestamps; 810 811 /* Better than switch (key.type) as it has static branches */ 812 if (tcp_key_is_md5(key)) { 813 timestamps = false; 814 opts->options |= OPTION_MD5; 815 remaining -= TCPOLEN_MD5SIG_ALIGNED; 816 } else { 817 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 818 if (tcp_key_is_ao(key)) { 819 opts->options |= OPTION_AO; 820 remaining -= tcp_ao_len(key->ao_key); 821 } 822 } 823 824 /* We always get an MSS option. The option bytes which will be seen in 825 * normal data packets should timestamps be used, must be in the MSS 826 * advertised. But we subtract them from tp->mss_cache so that 827 * calculations in tcp_sendmsg are simpler etc. So account for this 828 * fact here if necessary. If we don't do this correctly, as a 829 * receiver we won't recognize data packets as being full sized when we 830 * should, and thus we won't abide by the delayed ACK rules correctly. 831 * SACKs don't matter, we never delay an ACK when we have any of those 832 * going out. */ 833 opts->mss = tcp_advertise_mss(sk); 834 remaining -= TCPOLEN_MSS_ALIGNED; 835 836 if (likely(timestamps)) { 837 opts->options |= OPTION_TS; 838 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 839 opts->tsecr = tp->rx_opt.ts_recent; 840 remaining -= TCPOLEN_TSTAMP_ALIGNED; 841 } 842 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 843 opts->ws = tp->rx_opt.rcv_wscale; 844 opts->options |= OPTION_WSCALE; 845 remaining -= TCPOLEN_WSCALE_ALIGNED; 846 } 847 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 848 opts->options |= OPTION_SACK_ADVERTISE; 849 if (unlikely(!(OPTION_TS & opts->options))) 850 remaining -= TCPOLEN_SACKPERM_ALIGNED; 851 } 852 853 if (fastopen && fastopen->cookie.len >= 0) { 854 u32 need = fastopen->cookie.len; 855 856 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 857 TCPOLEN_FASTOPEN_BASE; 858 need = (need + 3) & ~3U; /* Align to 32 bits */ 859 if (remaining >= need) { 860 opts->options |= OPTION_FAST_OPEN_COOKIE; 861 opts->fastopen_cookie = &fastopen->cookie; 862 remaining -= need; 863 tp->syn_fastopen = 1; 864 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 865 } 866 } 867 868 smc_set_option(tp, opts, &remaining); 869 870 if (sk_is_mptcp(sk)) { 871 unsigned int size; 872 873 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 874 opts->options |= OPTION_MPTCP; 875 remaining -= size; 876 } 877 } 878 879 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 880 881 return MAX_TCP_OPTION_SPACE - remaining; 882 } 883 884 /* Set up TCP options for SYN-ACKs. */ 885 static unsigned int tcp_synack_options(const struct sock *sk, 886 struct request_sock *req, 887 unsigned int mss, struct sk_buff *skb, 888 struct tcp_out_options *opts, 889 const struct tcp_key *key, 890 struct tcp_fastopen_cookie *foc, 891 enum tcp_synack_type synack_type, 892 struct sk_buff *syn_skb) 893 { 894 struct inet_request_sock *ireq = inet_rsk(req); 895 unsigned int remaining = MAX_TCP_OPTION_SPACE; 896 897 if (tcp_key_is_md5(key)) { 898 opts->options |= OPTION_MD5; 899 remaining -= TCPOLEN_MD5SIG_ALIGNED; 900 901 /* We can't fit any SACK blocks in a packet with MD5 + TS 902 * options. There was discussion about disabling SACK 903 * rather than TS in order to fit in better with old, 904 * buggy kernels, but that was deemed to be unnecessary. 905 */ 906 if (synack_type != TCP_SYNACK_COOKIE) 907 ireq->tstamp_ok &= !ireq->sack_ok; 908 } else if (tcp_key_is_ao(key)) { 909 opts->options |= OPTION_AO; 910 remaining -= tcp_ao_len(key->ao_key); 911 ireq->tstamp_ok &= !ireq->sack_ok; 912 } 913 914 /* We always send an MSS option. */ 915 opts->mss = mss; 916 remaining -= TCPOLEN_MSS_ALIGNED; 917 918 if (likely(ireq->wscale_ok)) { 919 opts->ws = ireq->rcv_wscale; 920 opts->options |= OPTION_WSCALE; 921 remaining -= TCPOLEN_WSCALE_ALIGNED; 922 } 923 if (likely(ireq->tstamp_ok)) { 924 opts->options |= OPTION_TS; 925 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 926 tcp_rsk(req)->ts_off; 927 opts->tsecr = READ_ONCE(req->ts_recent); 928 remaining -= TCPOLEN_TSTAMP_ALIGNED; 929 } 930 if (likely(ireq->sack_ok)) { 931 opts->options |= OPTION_SACK_ADVERTISE; 932 if (unlikely(!ireq->tstamp_ok)) 933 remaining -= TCPOLEN_SACKPERM_ALIGNED; 934 } 935 if (foc != NULL && foc->len >= 0) { 936 u32 need = foc->len; 937 938 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 939 TCPOLEN_FASTOPEN_BASE; 940 need = (need + 3) & ~3U; /* Align to 32 bits */ 941 if (remaining >= need) { 942 opts->options |= OPTION_FAST_OPEN_COOKIE; 943 opts->fastopen_cookie = foc; 944 remaining -= need; 945 } 946 } 947 948 mptcp_set_option_cond(req, opts, &remaining); 949 950 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 951 952 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 953 synack_type, opts, &remaining); 954 955 return MAX_TCP_OPTION_SPACE - remaining; 956 } 957 958 /* Compute TCP options for ESTABLISHED sockets. This is not the 959 * final wire format yet. 960 */ 961 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 962 struct tcp_out_options *opts, 963 struct tcp_key *key) 964 { 965 struct tcp_sock *tp = tcp_sk(sk); 966 unsigned int size = 0; 967 unsigned int eff_sacks; 968 969 opts->options = 0; 970 971 /* Better than switch (key.type) as it has static branches */ 972 if (tcp_key_is_md5(key)) { 973 opts->options |= OPTION_MD5; 974 size += TCPOLEN_MD5SIG_ALIGNED; 975 } else if (tcp_key_is_ao(key)) { 976 opts->options |= OPTION_AO; 977 size += tcp_ao_len(key->ao_key); 978 } 979 980 if (likely(tp->rx_opt.tstamp_ok)) { 981 opts->options |= OPTION_TS; 982 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 983 tp->tsoffset : 0; 984 opts->tsecr = tp->rx_opt.ts_recent; 985 size += TCPOLEN_TSTAMP_ALIGNED; 986 } 987 988 /* MPTCP options have precedence over SACK for the limited TCP 989 * option space because a MPTCP connection would be forced to 990 * fall back to regular TCP if a required multipath option is 991 * missing. SACK still gets a chance to use whatever space is 992 * left. 993 */ 994 if (sk_is_mptcp(sk)) { 995 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 996 unsigned int opt_size = 0; 997 998 if (mptcp_established_options(sk, skb, &opt_size, remaining, 999 &opts->mptcp)) { 1000 opts->options |= OPTION_MPTCP; 1001 size += opt_size; 1002 } 1003 } 1004 1005 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1006 if (unlikely(eff_sacks)) { 1007 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1008 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 1009 TCPOLEN_SACK_PERBLOCK)) 1010 return size; 1011 1012 opts->num_sack_blocks = 1013 min_t(unsigned int, eff_sacks, 1014 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1015 TCPOLEN_SACK_PERBLOCK); 1016 1017 size += TCPOLEN_SACK_BASE_ALIGNED + 1018 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1019 } 1020 1021 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1022 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1023 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1024 1025 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1026 1027 size = MAX_TCP_OPTION_SPACE - remaining; 1028 } 1029 1030 return size; 1031 } 1032 1033 1034 /* TCP SMALL QUEUES (TSQ) 1035 * 1036 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1037 * to reduce RTT and bufferbloat. 1038 * We do this using a special skb destructor (tcp_wfree). 1039 * 1040 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1041 * needs to be reallocated in a driver. 1042 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1043 * 1044 * Since transmit from skb destructor is forbidden, we use a tasklet 1045 * to process all sockets that eventually need to send more skbs. 1046 * We use one tasklet per cpu, with its own queue of sockets. 1047 */ 1048 struct tsq_tasklet { 1049 struct tasklet_struct tasklet; 1050 struct list_head head; /* queue of tcp sockets */ 1051 }; 1052 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1053 1054 static void tcp_tsq_write(struct sock *sk) 1055 { 1056 if ((1 << sk->sk_state) & 1057 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1058 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1059 struct tcp_sock *tp = tcp_sk(sk); 1060 1061 if (tp->lost_out > tp->retrans_out && 1062 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1063 tcp_mstamp_refresh(tp); 1064 tcp_xmit_retransmit_queue(sk); 1065 } 1066 1067 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1068 0, GFP_ATOMIC); 1069 } 1070 } 1071 1072 static void tcp_tsq_handler(struct sock *sk) 1073 { 1074 bh_lock_sock(sk); 1075 if (!sock_owned_by_user(sk)) 1076 tcp_tsq_write(sk); 1077 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1078 sock_hold(sk); 1079 bh_unlock_sock(sk); 1080 } 1081 /* 1082 * One tasklet per cpu tries to send more skbs. 1083 * We run in tasklet context but need to disable irqs when 1084 * transferring tsq->head because tcp_wfree() might 1085 * interrupt us (non NAPI drivers) 1086 */ 1087 static void tcp_tasklet_func(struct tasklet_struct *t) 1088 { 1089 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1090 LIST_HEAD(list); 1091 unsigned long flags; 1092 struct list_head *q, *n; 1093 struct tcp_sock *tp; 1094 struct sock *sk; 1095 1096 local_irq_save(flags); 1097 list_splice_init(&tsq->head, &list); 1098 local_irq_restore(flags); 1099 1100 list_for_each_safe(q, n, &list) { 1101 tp = list_entry(q, struct tcp_sock, tsq_node); 1102 list_del(&tp->tsq_node); 1103 1104 sk = (struct sock *)tp; 1105 smp_mb__before_atomic(); 1106 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1107 1108 tcp_tsq_handler(sk); 1109 sk_free(sk); 1110 } 1111 } 1112 1113 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1114 TCPF_WRITE_TIMER_DEFERRED | \ 1115 TCPF_DELACK_TIMER_DEFERRED | \ 1116 TCPF_MTU_REDUCED_DEFERRED | \ 1117 TCPF_ACK_DEFERRED) 1118 /** 1119 * tcp_release_cb - tcp release_sock() callback 1120 * @sk: socket 1121 * 1122 * called from release_sock() to perform protocol dependent 1123 * actions before socket release. 1124 */ 1125 void tcp_release_cb(struct sock *sk) 1126 { 1127 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1128 unsigned long nflags; 1129 1130 /* perform an atomic operation only if at least one flag is set */ 1131 do { 1132 if (!(flags & TCP_DEFERRED_ALL)) 1133 return; 1134 nflags = flags & ~TCP_DEFERRED_ALL; 1135 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1136 1137 if (flags & TCPF_TSQ_DEFERRED) { 1138 tcp_tsq_write(sk); 1139 __sock_put(sk); 1140 } 1141 1142 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1143 tcp_write_timer_handler(sk); 1144 __sock_put(sk); 1145 } 1146 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1147 tcp_delack_timer_handler(sk); 1148 __sock_put(sk); 1149 } 1150 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1151 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1152 __sock_put(sk); 1153 } 1154 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1155 tcp_send_ack(sk); 1156 } 1157 EXPORT_SYMBOL(tcp_release_cb); 1158 1159 void __init tcp_tasklet_init(void) 1160 { 1161 int i; 1162 1163 for_each_possible_cpu(i) { 1164 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1165 1166 INIT_LIST_HEAD(&tsq->head); 1167 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1168 } 1169 } 1170 1171 /* 1172 * Write buffer destructor automatically called from kfree_skb. 1173 * We can't xmit new skbs from this context, as we might already 1174 * hold qdisc lock. 1175 */ 1176 void tcp_wfree(struct sk_buff *skb) 1177 { 1178 struct sock *sk = skb->sk; 1179 struct tcp_sock *tp = tcp_sk(sk); 1180 unsigned long flags, nval, oval; 1181 struct tsq_tasklet *tsq; 1182 bool empty; 1183 1184 /* Keep one reference on sk_wmem_alloc. 1185 * Will be released by sk_free() from here or tcp_tasklet_func() 1186 */ 1187 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1188 1189 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1190 * Wait until our queues (qdisc + devices) are drained. 1191 * This gives : 1192 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1193 * - chance for incoming ACK (processed by another cpu maybe) 1194 * to migrate this flow (skb->ooo_okay will be eventually set) 1195 */ 1196 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1197 goto out; 1198 1199 oval = smp_load_acquire(&sk->sk_tsq_flags); 1200 do { 1201 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1202 goto out; 1203 1204 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1205 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1206 1207 /* queue this socket to tasklet queue */ 1208 local_irq_save(flags); 1209 tsq = this_cpu_ptr(&tsq_tasklet); 1210 empty = list_empty(&tsq->head); 1211 list_add(&tp->tsq_node, &tsq->head); 1212 if (empty) 1213 tasklet_schedule(&tsq->tasklet); 1214 local_irq_restore(flags); 1215 return; 1216 out: 1217 sk_free(sk); 1218 } 1219 1220 /* Note: Called under soft irq. 1221 * We can call TCP stack right away, unless socket is owned by user. 1222 */ 1223 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1224 { 1225 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1226 struct sock *sk = (struct sock *)tp; 1227 1228 tcp_tsq_handler(sk); 1229 sock_put(sk); 1230 1231 return HRTIMER_NORESTART; 1232 } 1233 1234 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1235 u64 prior_wstamp) 1236 { 1237 struct tcp_sock *tp = tcp_sk(sk); 1238 1239 if (sk->sk_pacing_status != SK_PACING_NONE) { 1240 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1241 1242 /* Original sch_fq does not pace first 10 MSS 1243 * Note that tp->data_segs_out overflows after 2^32 packets, 1244 * this is a minor annoyance. 1245 */ 1246 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1247 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1248 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1249 1250 /* take into account OS jitter */ 1251 len_ns -= min_t(u64, len_ns / 2, credit); 1252 tp->tcp_wstamp_ns += len_ns; 1253 } 1254 } 1255 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1256 } 1257 1258 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1259 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1260 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1261 1262 /* This routine actually transmits TCP packets queued in by 1263 * tcp_do_sendmsg(). This is used by both the initial 1264 * transmission and possible later retransmissions. 1265 * All SKB's seen here are completely headerless. It is our 1266 * job to build the TCP header, and pass the packet down to 1267 * IP so it can do the same plus pass the packet off to the 1268 * device. 1269 * 1270 * We are working here with either a clone of the original 1271 * SKB, or a fresh unique copy made by the retransmit engine. 1272 */ 1273 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1274 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1275 { 1276 const struct inet_connection_sock *icsk = inet_csk(sk); 1277 struct inet_sock *inet; 1278 struct tcp_sock *tp; 1279 struct tcp_skb_cb *tcb; 1280 struct tcp_out_options opts; 1281 unsigned int tcp_options_size, tcp_header_size; 1282 struct sk_buff *oskb = NULL; 1283 struct tcp_key key; 1284 struct tcphdr *th; 1285 u64 prior_wstamp; 1286 int err; 1287 1288 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1289 tp = tcp_sk(sk); 1290 prior_wstamp = tp->tcp_wstamp_ns; 1291 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1292 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1293 if (clone_it) { 1294 oskb = skb; 1295 1296 tcp_skb_tsorted_save(oskb) { 1297 if (unlikely(skb_cloned(oskb))) 1298 skb = pskb_copy(oskb, gfp_mask); 1299 else 1300 skb = skb_clone(oskb, gfp_mask); 1301 } tcp_skb_tsorted_restore(oskb); 1302 1303 if (unlikely(!skb)) 1304 return -ENOBUFS; 1305 /* retransmit skbs might have a non zero value in skb->dev 1306 * because skb->dev is aliased with skb->rbnode.rb_left 1307 */ 1308 skb->dev = NULL; 1309 } 1310 1311 inet = inet_sk(sk); 1312 tcb = TCP_SKB_CB(skb); 1313 memset(&opts, 0, sizeof(opts)); 1314 1315 tcp_get_current_key(sk, &key); 1316 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1317 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1318 } else { 1319 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1320 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1321 * at receiver : This slightly improve GRO performance. 1322 * Note that we do not force the PSH flag for non GSO packets, 1323 * because they might be sent under high congestion events, 1324 * and in this case it is better to delay the delivery of 1-MSS 1325 * packets and thus the corresponding ACK packet that would 1326 * release the following packet. 1327 */ 1328 if (tcp_skb_pcount(skb) > 1) 1329 tcb->tcp_flags |= TCPHDR_PSH; 1330 } 1331 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1332 1333 /* We set skb->ooo_okay to one if this packet can select 1334 * a different TX queue than prior packets of this flow, 1335 * to avoid self inflicted reorders. 1336 * The 'other' queue decision is based on current cpu number 1337 * if XPS is enabled, or sk->sk_txhash otherwise. 1338 * We can switch to another (and better) queue if: 1339 * 1) No packet with payload is in qdisc/device queues. 1340 * Delays in TX completion can defeat the test 1341 * even if packets were already sent. 1342 * 2) Or rtx queue is empty. 1343 * This mitigates above case if ACK packets for 1344 * all prior packets were already processed. 1345 */ 1346 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1347 tcp_rtx_queue_empty(sk); 1348 1349 /* If we had to use memory reserve to allocate this skb, 1350 * this might cause drops if packet is looped back : 1351 * Other socket might not have SOCK_MEMALLOC. 1352 * Packets not looped back do not care about pfmemalloc. 1353 */ 1354 skb->pfmemalloc = 0; 1355 1356 skb_push(skb, tcp_header_size); 1357 skb_reset_transport_header(skb); 1358 1359 skb_orphan(skb); 1360 skb->sk = sk; 1361 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1362 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1363 1364 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1365 1366 /* Build TCP header and checksum it. */ 1367 th = (struct tcphdr *)skb->data; 1368 th->source = inet->inet_sport; 1369 th->dest = inet->inet_dport; 1370 th->seq = htonl(tcb->seq); 1371 th->ack_seq = htonl(rcv_nxt); 1372 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1373 tcb->tcp_flags); 1374 1375 th->check = 0; 1376 th->urg_ptr = 0; 1377 1378 /* The urg_mode check is necessary during a below snd_una win probe */ 1379 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1380 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1381 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1382 th->urg = 1; 1383 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1384 th->urg_ptr = htons(0xFFFF); 1385 th->urg = 1; 1386 } 1387 } 1388 1389 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1390 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1391 th->window = htons(tcp_select_window(sk)); 1392 tcp_ecn_send(sk, skb, th, tcp_header_size); 1393 } else { 1394 /* RFC1323: The window in SYN & SYN/ACK segments 1395 * is never scaled. 1396 */ 1397 th->window = htons(min(tp->rcv_wnd, 65535U)); 1398 } 1399 1400 tcp_options_write(th, tp, NULL, &opts, &key); 1401 1402 if (tcp_key_is_md5(&key)) { 1403 #ifdef CONFIG_TCP_MD5SIG 1404 /* Calculate the MD5 hash, as we have all we need now */ 1405 sk_gso_disable(sk); 1406 tp->af_specific->calc_md5_hash(opts.hash_location, 1407 key.md5_key, sk, skb); 1408 #endif 1409 } else if (tcp_key_is_ao(&key)) { 1410 int err; 1411 1412 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1413 opts.hash_location); 1414 if (err) { 1415 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1416 return -ENOMEM; 1417 } 1418 } 1419 1420 /* BPF prog is the last one writing header option */ 1421 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1422 1423 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1424 tcp_v6_send_check, tcp_v4_send_check, 1425 sk, skb); 1426 1427 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1428 tcp_event_ack_sent(sk, rcv_nxt); 1429 1430 if (skb->len != tcp_header_size) { 1431 tcp_event_data_sent(tp, sk); 1432 tp->data_segs_out += tcp_skb_pcount(skb); 1433 tp->bytes_sent += skb->len - tcp_header_size; 1434 } 1435 1436 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1437 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1438 tcp_skb_pcount(skb)); 1439 1440 tp->segs_out += tcp_skb_pcount(skb); 1441 skb_set_hash_from_sk(skb, sk); 1442 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1443 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1444 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1445 1446 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1447 1448 /* Cleanup our debris for IP stacks */ 1449 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1450 sizeof(struct inet6_skb_parm))); 1451 1452 tcp_add_tx_delay(skb, tp); 1453 1454 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1455 inet6_csk_xmit, ip_queue_xmit, 1456 sk, skb, &inet->cork.fl); 1457 1458 if (unlikely(err > 0)) { 1459 tcp_enter_cwr(sk); 1460 err = net_xmit_eval(err); 1461 } 1462 if (!err && oskb) { 1463 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1464 tcp_rate_skb_sent(sk, oskb); 1465 } 1466 return err; 1467 } 1468 1469 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1470 gfp_t gfp_mask) 1471 { 1472 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1473 tcp_sk(sk)->rcv_nxt); 1474 } 1475 1476 /* This routine just queues the buffer for sending. 1477 * 1478 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1479 * otherwise socket can stall. 1480 */ 1481 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1482 { 1483 struct tcp_sock *tp = tcp_sk(sk); 1484 1485 /* Advance write_seq and place onto the write_queue. */ 1486 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1487 __skb_header_release(skb); 1488 tcp_add_write_queue_tail(sk, skb); 1489 sk_wmem_queued_add(sk, skb->truesize); 1490 sk_mem_charge(sk, skb->truesize); 1491 } 1492 1493 /* Initialize TSO segments for a packet. */ 1494 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1495 { 1496 if (skb->len <= mss_now) { 1497 /* Avoid the costly divide in the normal 1498 * non-TSO case. 1499 */ 1500 tcp_skb_pcount_set(skb, 1); 1501 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1502 } else { 1503 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1504 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1505 } 1506 } 1507 1508 /* Pcount in the middle of the write queue got changed, we need to do various 1509 * tweaks to fix counters 1510 */ 1511 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1512 { 1513 struct tcp_sock *tp = tcp_sk(sk); 1514 1515 tp->packets_out -= decr; 1516 1517 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1518 tp->sacked_out -= decr; 1519 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1520 tp->retrans_out -= decr; 1521 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1522 tp->lost_out -= decr; 1523 1524 /* Reno case is special. Sigh... */ 1525 if (tcp_is_reno(tp) && decr > 0) 1526 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1527 1528 if (tp->lost_skb_hint && 1529 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1530 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1531 tp->lost_cnt_hint -= decr; 1532 1533 tcp_verify_left_out(tp); 1534 } 1535 1536 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1537 { 1538 return TCP_SKB_CB(skb)->txstamp_ack || 1539 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1540 } 1541 1542 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1543 { 1544 struct skb_shared_info *shinfo = skb_shinfo(skb); 1545 1546 if (unlikely(tcp_has_tx_tstamp(skb)) && 1547 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1548 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1549 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1550 1551 shinfo->tx_flags &= ~tsflags; 1552 shinfo2->tx_flags |= tsflags; 1553 swap(shinfo->tskey, shinfo2->tskey); 1554 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1555 TCP_SKB_CB(skb)->txstamp_ack = 0; 1556 } 1557 } 1558 1559 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1560 { 1561 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1562 TCP_SKB_CB(skb)->eor = 0; 1563 } 1564 1565 /* Insert buff after skb on the write or rtx queue of sk. */ 1566 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1567 struct sk_buff *buff, 1568 struct sock *sk, 1569 enum tcp_queue tcp_queue) 1570 { 1571 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1572 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1573 else 1574 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1575 } 1576 1577 /* Function to create two new TCP segments. Shrinks the given segment 1578 * to the specified size and appends a new segment with the rest of the 1579 * packet to the list. This won't be called frequently, I hope. 1580 * Remember, these are still headerless SKBs at this point. 1581 */ 1582 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1583 struct sk_buff *skb, u32 len, 1584 unsigned int mss_now, gfp_t gfp) 1585 { 1586 struct tcp_sock *tp = tcp_sk(sk); 1587 struct sk_buff *buff; 1588 int old_factor; 1589 long limit; 1590 int nlen; 1591 u8 flags; 1592 1593 if (WARN_ON(len > skb->len)) 1594 return -EINVAL; 1595 1596 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1597 1598 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1599 * We need some allowance to not penalize applications setting small 1600 * SO_SNDBUF values. 1601 * Also allow first and last skb in retransmit queue to be split. 1602 */ 1603 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1604 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1605 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1606 skb != tcp_rtx_queue_head(sk) && 1607 skb != tcp_rtx_queue_tail(sk))) { 1608 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1609 return -ENOMEM; 1610 } 1611 1612 if (skb_unclone_keeptruesize(skb, gfp)) 1613 return -ENOMEM; 1614 1615 /* Get a new skb... force flag on. */ 1616 buff = tcp_stream_alloc_skb(sk, gfp, true); 1617 if (!buff) 1618 return -ENOMEM; /* We'll just try again later. */ 1619 skb_copy_decrypted(buff, skb); 1620 mptcp_skb_ext_copy(buff, skb); 1621 1622 sk_wmem_queued_add(sk, buff->truesize); 1623 sk_mem_charge(sk, buff->truesize); 1624 nlen = skb->len - len; 1625 buff->truesize += nlen; 1626 skb->truesize -= nlen; 1627 1628 /* Correct the sequence numbers. */ 1629 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1630 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1631 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1632 1633 /* PSH and FIN should only be set in the second packet. */ 1634 flags = TCP_SKB_CB(skb)->tcp_flags; 1635 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1636 TCP_SKB_CB(buff)->tcp_flags = flags; 1637 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1638 tcp_skb_fragment_eor(skb, buff); 1639 1640 skb_split(skb, buff, len); 1641 1642 skb_set_delivery_time(buff, skb->tstamp, true); 1643 tcp_fragment_tstamp(skb, buff); 1644 1645 old_factor = tcp_skb_pcount(skb); 1646 1647 /* Fix up tso_factor for both original and new SKB. */ 1648 tcp_set_skb_tso_segs(skb, mss_now); 1649 tcp_set_skb_tso_segs(buff, mss_now); 1650 1651 /* Update delivered info for the new segment */ 1652 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1653 1654 /* If this packet has been sent out already, we must 1655 * adjust the various packet counters. 1656 */ 1657 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1658 int diff = old_factor - tcp_skb_pcount(skb) - 1659 tcp_skb_pcount(buff); 1660 1661 if (diff) 1662 tcp_adjust_pcount(sk, skb, diff); 1663 } 1664 1665 /* Link BUFF into the send queue. */ 1666 __skb_header_release(buff); 1667 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1668 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1669 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1670 1671 return 0; 1672 } 1673 1674 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1675 * data is not copied, but immediately discarded. 1676 */ 1677 static int __pskb_trim_head(struct sk_buff *skb, int len) 1678 { 1679 struct skb_shared_info *shinfo; 1680 int i, k, eat; 1681 1682 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1683 eat = len; 1684 k = 0; 1685 shinfo = skb_shinfo(skb); 1686 for (i = 0; i < shinfo->nr_frags; i++) { 1687 int size = skb_frag_size(&shinfo->frags[i]); 1688 1689 if (size <= eat) { 1690 skb_frag_unref(skb, i); 1691 eat -= size; 1692 } else { 1693 shinfo->frags[k] = shinfo->frags[i]; 1694 if (eat) { 1695 skb_frag_off_add(&shinfo->frags[k], eat); 1696 skb_frag_size_sub(&shinfo->frags[k], eat); 1697 eat = 0; 1698 } 1699 k++; 1700 } 1701 } 1702 shinfo->nr_frags = k; 1703 1704 skb->data_len -= len; 1705 skb->len = skb->data_len; 1706 return len; 1707 } 1708 1709 /* Remove acked data from a packet in the transmit queue. */ 1710 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1711 { 1712 u32 delta_truesize; 1713 1714 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1715 return -ENOMEM; 1716 1717 delta_truesize = __pskb_trim_head(skb, len); 1718 1719 TCP_SKB_CB(skb)->seq += len; 1720 1721 skb->truesize -= delta_truesize; 1722 sk_wmem_queued_add(sk, -delta_truesize); 1723 if (!skb_zcopy_pure(skb)) 1724 sk_mem_uncharge(sk, delta_truesize); 1725 1726 /* Any change of skb->len requires recalculation of tso factor. */ 1727 if (tcp_skb_pcount(skb) > 1) 1728 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1729 1730 return 0; 1731 } 1732 1733 /* Calculate MSS not accounting any TCP options. */ 1734 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1735 { 1736 const struct tcp_sock *tp = tcp_sk(sk); 1737 const struct inet_connection_sock *icsk = inet_csk(sk); 1738 int mss_now; 1739 1740 /* Calculate base mss without TCP options: 1741 It is MMS_S - sizeof(tcphdr) of rfc1122 1742 */ 1743 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1744 1745 /* Clamp it (mss_clamp does not include tcp options) */ 1746 if (mss_now > tp->rx_opt.mss_clamp) 1747 mss_now = tp->rx_opt.mss_clamp; 1748 1749 /* Now subtract optional transport overhead */ 1750 mss_now -= icsk->icsk_ext_hdr_len; 1751 1752 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1753 mss_now = max(mss_now, 1754 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1755 return mss_now; 1756 } 1757 1758 /* Calculate MSS. Not accounting for SACKs here. */ 1759 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1760 { 1761 /* Subtract TCP options size, not including SACKs */ 1762 return __tcp_mtu_to_mss(sk, pmtu) - 1763 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1764 } 1765 EXPORT_SYMBOL(tcp_mtu_to_mss); 1766 1767 /* Inverse of above */ 1768 int tcp_mss_to_mtu(struct sock *sk, int mss) 1769 { 1770 const struct tcp_sock *tp = tcp_sk(sk); 1771 const struct inet_connection_sock *icsk = inet_csk(sk); 1772 1773 return mss + 1774 tp->tcp_header_len + 1775 icsk->icsk_ext_hdr_len + 1776 icsk->icsk_af_ops->net_header_len; 1777 } 1778 EXPORT_SYMBOL(tcp_mss_to_mtu); 1779 1780 /* MTU probing init per socket */ 1781 void tcp_mtup_init(struct sock *sk) 1782 { 1783 struct tcp_sock *tp = tcp_sk(sk); 1784 struct inet_connection_sock *icsk = inet_csk(sk); 1785 struct net *net = sock_net(sk); 1786 1787 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1788 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1789 icsk->icsk_af_ops->net_header_len; 1790 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1791 icsk->icsk_mtup.probe_size = 0; 1792 if (icsk->icsk_mtup.enabled) 1793 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1794 } 1795 EXPORT_SYMBOL(tcp_mtup_init); 1796 1797 /* This function synchronize snd mss to current pmtu/exthdr set. 1798 1799 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1800 for TCP options, but includes only bare TCP header. 1801 1802 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1803 It is minimum of user_mss and mss received with SYN. 1804 It also does not include TCP options. 1805 1806 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1807 1808 tp->mss_cache is current effective sending mss, including 1809 all tcp options except for SACKs. It is evaluated, 1810 taking into account current pmtu, but never exceeds 1811 tp->rx_opt.mss_clamp. 1812 1813 NOTE1. rfc1122 clearly states that advertised MSS 1814 DOES NOT include either tcp or ip options. 1815 1816 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1817 are READ ONLY outside this function. --ANK (980731) 1818 */ 1819 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1820 { 1821 struct tcp_sock *tp = tcp_sk(sk); 1822 struct inet_connection_sock *icsk = inet_csk(sk); 1823 int mss_now; 1824 1825 if (icsk->icsk_mtup.search_high > pmtu) 1826 icsk->icsk_mtup.search_high = pmtu; 1827 1828 mss_now = tcp_mtu_to_mss(sk, pmtu); 1829 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1830 1831 /* And store cached results */ 1832 icsk->icsk_pmtu_cookie = pmtu; 1833 if (icsk->icsk_mtup.enabled) 1834 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1835 tp->mss_cache = mss_now; 1836 1837 return mss_now; 1838 } 1839 EXPORT_SYMBOL(tcp_sync_mss); 1840 1841 /* Compute the current effective MSS, taking SACKs and IP options, 1842 * and even PMTU discovery events into account. 1843 */ 1844 unsigned int tcp_current_mss(struct sock *sk) 1845 { 1846 const struct tcp_sock *tp = tcp_sk(sk); 1847 const struct dst_entry *dst = __sk_dst_get(sk); 1848 u32 mss_now; 1849 unsigned int header_len; 1850 struct tcp_out_options opts; 1851 struct tcp_key key; 1852 1853 mss_now = tp->mss_cache; 1854 1855 if (dst) { 1856 u32 mtu = dst_mtu(dst); 1857 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1858 mss_now = tcp_sync_mss(sk, mtu); 1859 } 1860 tcp_get_current_key(sk, &key); 1861 header_len = tcp_established_options(sk, NULL, &opts, &key) + 1862 sizeof(struct tcphdr); 1863 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1864 * some common options. If this is an odd packet (because we have SACK 1865 * blocks etc) then our calculated header_len will be different, and 1866 * we have to adjust mss_now correspondingly */ 1867 if (header_len != tp->tcp_header_len) { 1868 int delta = (int) header_len - tp->tcp_header_len; 1869 mss_now -= delta; 1870 } 1871 1872 return mss_now; 1873 } 1874 1875 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1876 * As additional protections, we do not touch cwnd in retransmission phases, 1877 * and if application hit its sndbuf limit recently. 1878 */ 1879 static void tcp_cwnd_application_limited(struct sock *sk) 1880 { 1881 struct tcp_sock *tp = tcp_sk(sk); 1882 1883 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1884 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1885 /* Limited by application or receiver window. */ 1886 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1887 u32 win_used = max(tp->snd_cwnd_used, init_win); 1888 if (win_used < tcp_snd_cwnd(tp)) { 1889 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1890 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1891 } 1892 tp->snd_cwnd_used = 0; 1893 } 1894 tp->snd_cwnd_stamp = tcp_jiffies32; 1895 } 1896 1897 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1898 { 1899 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1900 struct tcp_sock *tp = tcp_sk(sk); 1901 1902 /* Track the strongest available signal of the degree to which the cwnd 1903 * is fully utilized. If cwnd-limited then remember that fact for the 1904 * current window. If not cwnd-limited then track the maximum number of 1905 * outstanding packets in the current window. (If cwnd-limited then we 1906 * chose to not update tp->max_packets_out to avoid an extra else 1907 * clause with no functional impact.) 1908 */ 1909 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1910 is_cwnd_limited || 1911 (!tp->is_cwnd_limited && 1912 tp->packets_out > tp->max_packets_out)) { 1913 tp->is_cwnd_limited = is_cwnd_limited; 1914 tp->max_packets_out = tp->packets_out; 1915 tp->cwnd_usage_seq = tp->snd_nxt; 1916 } 1917 1918 if (tcp_is_cwnd_limited(sk)) { 1919 /* Network is feed fully. */ 1920 tp->snd_cwnd_used = 0; 1921 tp->snd_cwnd_stamp = tcp_jiffies32; 1922 } else { 1923 /* Network starves. */ 1924 if (tp->packets_out > tp->snd_cwnd_used) 1925 tp->snd_cwnd_used = tp->packets_out; 1926 1927 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1928 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1929 !ca_ops->cong_control) 1930 tcp_cwnd_application_limited(sk); 1931 1932 /* The following conditions together indicate the starvation 1933 * is caused by insufficient sender buffer: 1934 * 1) just sent some data (see tcp_write_xmit) 1935 * 2) not cwnd limited (this else condition) 1936 * 3) no more data to send (tcp_write_queue_empty()) 1937 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1938 */ 1939 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1940 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1941 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1942 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1943 } 1944 } 1945 1946 /* Minshall's variant of the Nagle send check. */ 1947 static bool tcp_minshall_check(const struct tcp_sock *tp) 1948 { 1949 return after(tp->snd_sml, tp->snd_una) && 1950 !after(tp->snd_sml, tp->snd_nxt); 1951 } 1952 1953 /* Update snd_sml if this skb is under mss 1954 * Note that a TSO packet might end with a sub-mss segment 1955 * The test is really : 1956 * if ((skb->len % mss) != 0) 1957 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1958 * But we can avoid doing the divide again given we already have 1959 * skb_pcount = skb->len / mss_now 1960 */ 1961 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1962 const struct sk_buff *skb) 1963 { 1964 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1965 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1966 } 1967 1968 /* Return false, if packet can be sent now without violation Nagle's rules: 1969 * 1. It is full sized. (provided by caller in %partial bool) 1970 * 2. Or it contains FIN. (already checked by caller) 1971 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1972 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1973 * With Minshall's modification: all sent small packets are ACKed. 1974 */ 1975 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1976 int nonagle) 1977 { 1978 return partial && 1979 ((nonagle & TCP_NAGLE_CORK) || 1980 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1981 } 1982 1983 /* Return how many segs we'd like on a TSO packet, 1984 * depending on current pacing rate, and how close the peer is. 1985 * 1986 * Rationale is: 1987 * - For close peers, we rather send bigger packets to reduce 1988 * cpu costs, because occasional losses will be repaired fast. 1989 * - For long distance/rtt flows, we would like to get ACK clocking 1990 * with 1 ACK per ms. 1991 * 1992 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 1993 * in bigger TSO bursts. We we cut the RTT-based allowance in half 1994 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 1995 * is below 1500 bytes after 6 * ~500 usec = 3ms. 1996 */ 1997 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1998 int min_tso_segs) 1999 { 2000 unsigned long bytes; 2001 u32 r; 2002 2003 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2004 2005 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2006 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2007 bytes += sk->sk_gso_max_size >> r; 2008 2009 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2010 2011 return max_t(u32, bytes / mss_now, min_tso_segs); 2012 } 2013 2014 /* Return the number of segments we want in the skb we are transmitting. 2015 * See if congestion control module wants to decide; otherwise, autosize. 2016 */ 2017 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2018 { 2019 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2020 u32 min_tso, tso_segs; 2021 2022 min_tso = ca_ops->min_tso_segs ? 2023 ca_ops->min_tso_segs(sk) : 2024 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2025 2026 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2027 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2028 } 2029 2030 /* Returns the portion of skb which can be sent right away */ 2031 static unsigned int tcp_mss_split_point(const struct sock *sk, 2032 const struct sk_buff *skb, 2033 unsigned int mss_now, 2034 unsigned int max_segs, 2035 int nonagle) 2036 { 2037 const struct tcp_sock *tp = tcp_sk(sk); 2038 u32 partial, needed, window, max_len; 2039 2040 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2041 max_len = mss_now * max_segs; 2042 2043 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2044 return max_len; 2045 2046 needed = min(skb->len, window); 2047 2048 if (max_len <= needed) 2049 return max_len; 2050 2051 partial = needed % mss_now; 2052 /* If last segment is not a full MSS, check if Nagle rules allow us 2053 * to include this last segment in this skb. 2054 * Otherwise, we'll split the skb at last MSS boundary 2055 */ 2056 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2057 return needed - partial; 2058 2059 return needed; 2060 } 2061 2062 /* Can at least one segment of SKB be sent right now, according to the 2063 * congestion window rules? If so, return how many segments are allowed. 2064 */ 2065 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2066 const struct sk_buff *skb) 2067 { 2068 u32 in_flight, cwnd, halfcwnd; 2069 2070 /* Don't be strict about the congestion window for the final FIN. */ 2071 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2072 tcp_skb_pcount(skb) == 1) 2073 return 1; 2074 2075 in_flight = tcp_packets_in_flight(tp); 2076 cwnd = tcp_snd_cwnd(tp); 2077 if (in_flight >= cwnd) 2078 return 0; 2079 2080 /* For better scheduling, ensure we have at least 2081 * 2 GSO packets in flight. 2082 */ 2083 halfcwnd = max(cwnd >> 1, 1U); 2084 return min(halfcwnd, cwnd - in_flight); 2085 } 2086 2087 /* Initialize TSO state of a skb. 2088 * This must be invoked the first time we consider transmitting 2089 * SKB onto the wire. 2090 */ 2091 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2092 { 2093 int tso_segs = tcp_skb_pcount(skb); 2094 2095 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2096 tcp_set_skb_tso_segs(skb, mss_now); 2097 tso_segs = tcp_skb_pcount(skb); 2098 } 2099 return tso_segs; 2100 } 2101 2102 2103 /* Return true if the Nagle test allows this packet to be 2104 * sent now. 2105 */ 2106 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2107 unsigned int cur_mss, int nonagle) 2108 { 2109 /* Nagle rule does not apply to frames, which sit in the middle of the 2110 * write_queue (they have no chances to get new data). 2111 * 2112 * This is implemented in the callers, where they modify the 'nonagle' 2113 * argument based upon the location of SKB in the send queue. 2114 */ 2115 if (nonagle & TCP_NAGLE_PUSH) 2116 return true; 2117 2118 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2119 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2120 return true; 2121 2122 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2123 return true; 2124 2125 return false; 2126 } 2127 2128 /* Does at least the first segment of SKB fit into the send window? */ 2129 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2130 const struct sk_buff *skb, 2131 unsigned int cur_mss) 2132 { 2133 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2134 2135 if (skb->len > cur_mss) 2136 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2137 2138 return !after(end_seq, tcp_wnd_end(tp)); 2139 } 2140 2141 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2142 * which is put after SKB on the list. It is very much like 2143 * tcp_fragment() except that it may make several kinds of assumptions 2144 * in order to speed up the splitting operation. In particular, we 2145 * know that all the data is in scatter-gather pages, and that the 2146 * packet has never been sent out before (and thus is not cloned). 2147 */ 2148 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2149 unsigned int mss_now, gfp_t gfp) 2150 { 2151 int nlen = skb->len - len; 2152 struct sk_buff *buff; 2153 u8 flags; 2154 2155 /* All of a TSO frame must be composed of paged data. */ 2156 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2157 2158 buff = tcp_stream_alloc_skb(sk, gfp, true); 2159 if (unlikely(!buff)) 2160 return -ENOMEM; 2161 skb_copy_decrypted(buff, skb); 2162 mptcp_skb_ext_copy(buff, skb); 2163 2164 sk_wmem_queued_add(sk, buff->truesize); 2165 sk_mem_charge(sk, buff->truesize); 2166 buff->truesize += nlen; 2167 skb->truesize -= nlen; 2168 2169 /* Correct the sequence numbers. */ 2170 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2171 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2172 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2173 2174 /* PSH and FIN should only be set in the second packet. */ 2175 flags = TCP_SKB_CB(skb)->tcp_flags; 2176 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2177 TCP_SKB_CB(buff)->tcp_flags = flags; 2178 2179 tcp_skb_fragment_eor(skb, buff); 2180 2181 skb_split(skb, buff, len); 2182 tcp_fragment_tstamp(skb, buff); 2183 2184 /* Fix up tso_factor for both original and new SKB. */ 2185 tcp_set_skb_tso_segs(skb, mss_now); 2186 tcp_set_skb_tso_segs(buff, mss_now); 2187 2188 /* Link BUFF into the send queue. */ 2189 __skb_header_release(buff); 2190 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2191 2192 return 0; 2193 } 2194 2195 /* Try to defer sending, if possible, in order to minimize the amount 2196 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2197 * 2198 * This algorithm is from John Heffner. 2199 */ 2200 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2201 bool *is_cwnd_limited, 2202 bool *is_rwnd_limited, 2203 u32 max_segs) 2204 { 2205 const struct inet_connection_sock *icsk = inet_csk(sk); 2206 u32 send_win, cong_win, limit, in_flight; 2207 struct tcp_sock *tp = tcp_sk(sk); 2208 struct sk_buff *head; 2209 int win_divisor; 2210 s64 delta; 2211 2212 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2213 goto send_now; 2214 2215 /* Avoid bursty behavior by allowing defer 2216 * only if the last write was recent (1 ms). 2217 * Note that tp->tcp_wstamp_ns can be in the future if we have 2218 * packets waiting in a qdisc or device for EDT delivery. 2219 */ 2220 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2221 if (delta > 0) 2222 goto send_now; 2223 2224 in_flight = tcp_packets_in_flight(tp); 2225 2226 BUG_ON(tcp_skb_pcount(skb) <= 1); 2227 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2228 2229 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2230 2231 /* From in_flight test above, we know that cwnd > in_flight. */ 2232 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2233 2234 limit = min(send_win, cong_win); 2235 2236 /* If a full-sized TSO skb can be sent, do it. */ 2237 if (limit >= max_segs * tp->mss_cache) 2238 goto send_now; 2239 2240 /* Middle in queue won't get any more data, full sendable already? */ 2241 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2242 goto send_now; 2243 2244 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2245 if (win_divisor) { 2246 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2247 2248 /* If at least some fraction of a window is available, 2249 * just use it. 2250 */ 2251 chunk /= win_divisor; 2252 if (limit >= chunk) 2253 goto send_now; 2254 } else { 2255 /* Different approach, try not to defer past a single 2256 * ACK. Receiver should ACK every other full sized 2257 * frame, so if we have space for more than 3 frames 2258 * then send now. 2259 */ 2260 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2261 goto send_now; 2262 } 2263 2264 /* TODO : use tsorted_sent_queue ? */ 2265 head = tcp_rtx_queue_head(sk); 2266 if (!head) 2267 goto send_now; 2268 delta = tp->tcp_clock_cache - head->tstamp; 2269 /* If next ACK is likely to come too late (half srtt), do not defer */ 2270 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2271 goto send_now; 2272 2273 /* Ok, it looks like it is advisable to defer. 2274 * Three cases are tracked : 2275 * 1) We are cwnd-limited 2276 * 2) We are rwnd-limited 2277 * 3) We are application limited. 2278 */ 2279 if (cong_win < send_win) { 2280 if (cong_win <= skb->len) { 2281 *is_cwnd_limited = true; 2282 return true; 2283 } 2284 } else { 2285 if (send_win <= skb->len) { 2286 *is_rwnd_limited = true; 2287 return true; 2288 } 2289 } 2290 2291 /* If this packet won't get more data, do not wait. */ 2292 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2293 TCP_SKB_CB(skb)->eor) 2294 goto send_now; 2295 2296 return true; 2297 2298 send_now: 2299 return false; 2300 } 2301 2302 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2303 { 2304 struct inet_connection_sock *icsk = inet_csk(sk); 2305 struct tcp_sock *tp = tcp_sk(sk); 2306 struct net *net = sock_net(sk); 2307 u32 interval; 2308 s32 delta; 2309 2310 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2311 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2312 if (unlikely(delta >= interval * HZ)) { 2313 int mss = tcp_current_mss(sk); 2314 2315 /* Update current search range */ 2316 icsk->icsk_mtup.probe_size = 0; 2317 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2318 sizeof(struct tcphdr) + 2319 icsk->icsk_af_ops->net_header_len; 2320 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2321 2322 /* Update probe time stamp */ 2323 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2324 } 2325 } 2326 2327 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2328 { 2329 struct sk_buff *skb, *next; 2330 2331 skb = tcp_send_head(sk); 2332 tcp_for_write_queue_from_safe(skb, next, sk) { 2333 if (len <= skb->len) 2334 break; 2335 2336 if (unlikely(TCP_SKB_CB(skb)->eor) || 2337 tcp_has_tx_tstamp(skb) || 2338 !skb_pure_zcopy_same(skb, next)) 2339 return false; 2340 2341 len -= skb->len; 2342 } 2343 2344 return true; 2345 } 2346 2347 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2348 int probe_size) 2349 { 2350 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2351 int i, todo, len = 0, nr_frags = 0; 2352 const struct sk_buff *skb; 2353 2354 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2355 return -ENOMEM; 2356 2357 skb_queue_walk(&sk->sk_write_queue, skb) { 2358 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2359 2360 if (skb_headlen(skb)) 2361 return -EINVAL; 2362 2363 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2364 if (len >= probe_size) 2365 goto commit; 2366 todo = min_t(int, skb_frag_size(fragfrom), 2367 probe_size - len); 2368 len += todo; 2369 if (lastfrag && 2370 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2371 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2372 skb_frag_size(lastfrag)) { 2373 skb_frag_size_add(lastfrag, todo); 2374 continue; 2375 } 2376 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2377 return -E2BIG; 2378 skb_frag_page_copy(fragto, fragfrom); 2379 skb_frag_off_copy(fragto, fragfrom); 2380 skb_frag_size_set(fragto, todo); 2381 nr_frags++; 2382 lastfrag = fragto++; 2383 } 2384 } 2385 commit: 2386 WARN_ON_ONCE(len != probe_size); 2387 for (i = 0; i < nr_frags; i++) 2388 skb_frag_ref(to, i); 2389 2390 skb_shinfo(to)->nr_frags = nr_frags; 2391 to->truesize += probe_size; 2392 to->len += probe_size; 2393 to->data_len += probe_size; 2394 __skb_header_release(to); 2395 return 0; 2396 } 2397 2398 /* Create a new MTU probe if we are ready. 2399 * MTU probe is regularly attempting to increase the path MTU by 2400 * deliberately sending larger packets. This discovers routing 2401 * changes resulting in larger path MTUs. 2402 * 2403 * Returns 0 if we should wait to probe (no cwnd available), 2404 * 1 if a probe was sent, 2405 * -1 otherwise 2406 */ 2407 static int tcp_mtu_probe(struct sock *sk) 2408 { 2409 struct inet_connection_sock *icsk = inet_csk(sk); 2410 struct tcp_sock *tp = tcp_sk(sk); 2411 struct sk_buff *skb, *nskb, *next; 2412 struct net *net = sock_net(sk); 2413 int probe_size; 2414 int size_needed; 2415 int copy, len; 2416 int mss_now; 2417 int interval; 2418 2419 /* Not currently probing/verifying, 2420 * not in recovery, 2421 * have enough cwnd, and 2422 * not SACKing (the variable headers throw things off) 2423 */ 2424 if (likely(!icsk->icsk_mtup.enabled || 2425 icsk->icsk_mtup.probe_size || 2426 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2427 tcp_snd_cwnd(tp) < 11 || 2428 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2429 return -1; 2430 2431 /* Use binary search for probe_size between tcp_mss_base, 2432 * and current mss_clamp. if (search_high - search_low) 2433 * smaller than a threshold, backoff from probing. 2434 */ 2435 mss_now = tcp_current_mss(sk); 2436 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2437 icsk->icsk_mtup.search_low) >> 1); 2438 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2439 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2440 /* When misfortune happens, we are reprobing actively, 2441 * and then reprobe timer has expired. We stick with current 2442 * probing process by not resetting search range to its orignal. 2443 */ 2444 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2445 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2446 /* Check whether enough time has elaplased for 2447 * another round of probing. 2448 */ 2449 tcp_mtu_check_reprobe(sk); 2450 return -1; 2451 } 2452 2453 /* Have enough data in the send queue to probe? */ 2454 if (tp->write_seq - tp->snd_nxt < size_needed) 2455 return -1; 2456 2457 if (tp->snd_wnd < size_needed) 2458 return -1; 2459 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2460 return 0; 2461 2462 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2463 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2464 if (!tcp_packets_in_flight(tp)) 2465 return -1; 2466 else 2467 return 0; 2468 } 2469 2470 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2471 return -1; 2472 2473 /* We're allowed to probe. Build it now. */ 2474 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2475 if (!nskb) 2476 return -1; 2477 2478 /* build the payload, and be prepared to abort if this fails. */ 2479 if (tcp_clone_payload(sk, nskb, probe_size)) { 2480 tcp_skb_tsorted_anchor_cleanup(nskb); 2481 consume_skb(nskb); 2482 return -1; 2483 } 2484 sk_wmem_queued_add(sk, nskb->truesize); 2485 sk_mem_charge(sk, nskb->truesize); 2486 2487 skb = tcp_send_head(sk); 2488 skb_copy_decrypted(nskb, skb); 2489 mptcp_skb_ext_copy(nskb, skb); 2490 2491 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2492 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2493 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2494 2495 tcp_insert_write_queue_before(nskb, skb, sk); 2496 tcp_highest_sack_replace(sk, skb, nskb); 2497 2498 len = 0; 2499 tcp_for_write_queue_from_safe(skb, next, sk) { 2500 copy = min_t(int, skb->len, probe_size - len); 2501 2502 if (skb->len <= copy) { 2503 /* We've eaten all the data from this skb. 2504 * Throw it away. */ 2505 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2506 /* If this is the last SKB we copy and eor is set 2507 * we need to propagate it to the new skb. 2508 */ 2509 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2510 tcp_skb_collapse_tstamp(nskb, skb); 2511 tcp_unlink_write_queue(skb, sk); 2512 tcp_wmem_free_skb(sk, skb); 2513 } else { 2514 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2515 ~(TCPHDR_FIN|TCPHDR_PSH); 2516 __pskb_trim_head(skb, copy); 2517 tcp_set_skb_tso_segs(skb, mss_now); 2518 TCP_SKB_CB(skb)->seq += copy; 2519 } 2520 2521 len += copy; 2522 2523 if (len >= probe_size) 2524 break; 2525 } 2526 tcp_init_tso_segs(nskb, nskb->len); 2527 2528 /* We're ready to send. If this fails, the probe will 2529 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2530 */ 2531 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2532 /* Decrement cwnd here because we are sending 2533 * effectively two packets. */ 2534 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2535 tcp_event_new_data_sent(sk, nskb); 2536 2537 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2538 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2539 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2540 2541 return 1; 2542 } 2543 2544 return -1; 2545 } 2546 2547 static bool tcp_pacing_check(struct sock *sk) 2548 { 2549 struct tcp_sock *tp = tcp_sk(sk); 2550 2551 if (!tcp_needs_internal_pacing(sk)) 2552 return false; 2553 2554 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2555 return false; 2556 2557 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2558 hrtimer_start(&tp->pacing_timer, 2559 ns_to_ktime(tp->tcp_wstamp_ns), 2560 HRTIMER_MODE_ABS_PINNED_SOFT); 2561 sock_hold(sk); 2562 } 2563 return true; 2564 } 2565 2566 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2567 { 2568 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2569 2570 /* No skb in the rtx queue. */ 2571 if (!node) 2572 return true; 2573 2574 /* Only one skb in rtx queue. */ 2575 return !node->rb_left && !node->rb_right; 2576 } 2577 2578 /* TCP Small Queues : 2579 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2580 * (These limits are doubled for retransmits) 2581 * This allows for : 2582 * - better RTT estimation and ACK scheduling 2583 * - faster recovery 2584 * - high rates 2585 * Alas, some drivers / subsystems require a fair amount 2586 * of queued bytes to ensure line rate. 2587 * One example is wifi aggregation (802.11 AMPDU) 2588 */ 2589 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2590 unsigned int factor) 2591 { 2592 unsigned long limit; 2593 2594 limit = max_t(unsigned long, 2595 2 * skb->truesize, 2596 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2597 if (sk->sk_pacing_status == SK_PACING_NONE) 2598 limit = min_t(unsigned long, limit, 2599 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2600 limit <<= factor; 2601 2602 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2603 tcp_sk(sk)->tcp_tx_delay) { 2604 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2605 tcp_sk(sk)->tcp_tx_delay; 2606 2607 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2608 * approximate our needs assuming an ~100% skb->truesize overhead. 2609 * USEC_PER_SEC is approximated by 2^20. 2610 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2611 */ 2612 extra_bytes >>= (20 - 1); 2613 limit += extra_bytes; 2614 } 2615 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2616 /* Always send skb if rtx queue is empty or has one skb. 2617 * No need to wait for TX completion to call us back, 2618 * after softirq/tasklet schedule. 2619 * This helps when TX completions are delayed too much. 2620 */ 2621 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2622 return false; 2623 2624 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2625 /* It is possible TX completion already happened 2626 * before we set TSQ_THROTTLED, so we must 2627 * test again the condition. 2628 */ 2629 smp_mb__after_atomic(); 2630 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2631 return true; 2632 } 2633 return false; 2634 } 2635 2636 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2637 { 2638 const u32 now = tcp_jiffies32; 2639 enum tcp_chrono old = tp->chrono_type; 2640 2641 if (old > TCP_CHRONO_UNSPEC) 2642 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2643 tp->chrono_start = now; 2644 tp->chrono_type = new; 2645 } 2646 2647 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2648 { 2649 struct tcp_sock *tp = tcp_sk(sk); 2650 2651 /* If there are multiple conditions worthy of tracking in a 2652 * chronograph then the highest priority enum takes precedence 2653 * over the other conditions. So that if something "more interesting" 2654 * starts happening, stop the previous chrono and start a new one. 2655 */ 2656 if (type > tp->chrono_type) 2657 tcp_chrono_set(tp, type); 2658 } 2659 2660 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2661 { 2662 struct tcp_sock *tp = tcp_sk(sk); 2663 2664 2665 /* There are multiple conditions worthy of tracking in a 2666 * chronograph, so that the highest priority enum takes 2667 * precedence over the other conditions (see tcp_chrono_start). 2668 * If a condition stops, we only stop chrono tracking if 2669 * it's the "most interesting" or current chrono we are 2670 * tracking and starts busy chrono if we have pending data. 2671 */ 2672 if (tcp_rtx_and_write_queues_empty(sk)) 2673 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2674 else if (type == tp->chrono_type) 2675 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2676 } 2677 2678 /* This routine writes packets to the network. It advances the 2679 * send_head. This happens as incoming acks open up the remote 2680 * window for us. 2681 * 2682 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2683 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2684 * account rare use of URG, this is not a big flaw. 2685 * 2686 * Send at most one packet when push_one > 0. Temporarily ignore 2687 * cwnd limit to force at most one packet out when push_one == 2. 2688 2689 * Returns true, if no segments are in flight and we have queued segments, 2690 * but cannot send anything now because of SWS or another problem. 2691 */ 2692 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2693 int push_one, gfp_t gfp) 2694 { 2695 struct tcp_sock *tp = tcp_sk(sk); 2696 struct sk_buff *skb; 2697 unsigned int tso_segs, sent_pkts; 2698 int cwnd_quota; 2699 int result; 2700 bool is_cwnd_limited = false, is_rwnd_limited = false; 2701 u32 max_segs; 2702 2703 sent_pkts = 0; 2704 2705 tcp_mstamp_refresh(tp); 2706 if (!push_one) { 2707 /* Do MTU probing. */ 2708 result = tcp_mtu_probe(sk); 2709 if (!result) { 2710 return false; 2711 } else if (result > 0) { 2712 sent_pkts = 1; 2713 } 2714 } 2715 2716 max_segs = tcp_tso_segs(sk, mss_now); 2717 while ((skb = tcp_send_head(sk))) { 2718 unsigned int limit; 2719 2720 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2721 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2722 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2723 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2724 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2725 tcp_init_tso_segs(skb, mss_now); 2726 goto repair; /* Skip network transmission */ 2727 } 2728 2729 if (tcp_pacing_check(sk)) 2730 break; 2731 2732 tso_segs = tcp_init_tso_segs(skb, mss_now); 2733 BUG_ON(!tso_segs); 2734 2735 cwnd_quota = tcp_cwnd_test(tp, skb); 2736 if (!cwnd_quota) { 2737 if (push_one == 2) 2738 /* Force out a loss probe pkt. */ 2739 cwnd_quota = 1; 2740 else 2741 break; 2742 } 2743 2744 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2745 is_rwnd_limited = true; 2746 break; 2747 } 2748 2749 if (tso_segs == 1) { 2750 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2751 (tcp_skb_is_last(sk, skb) ? 2752 nonagle : TCP_NAGLE_PUSH)))) 2753 break; 2754 } else { 2755 if (!push_one && 2756 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2757 &is_rwnd_limited, max_segs)) 2758 break; 2759 } 2760 2761 limit = mss_now; 2762 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2763 limit = tcp_mss_split_point(sk, skb, mss_now, 2764 min_t(unsigned int, 2765 cwnd_quota, 2766 max_segs), 2767 nonagle); 2768 2769 if (skb->len > limit && 2770 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2771 break; 2772 2773 if (tcp_small_queue_check(sk, skb, 0)) 2774 break; 2775 2776 /* Argh, we hit an empty skb(), presumably a thread 2777 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2778 * We do not want to send a pure-ack packet and have 2779 * a strange looking rtx queue with empty packet(s). 2780 */ 2781 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2782 break; 2783 2784 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2785 break; 2786 2787 repair: 2788 /* Advance the send_head. This one is sent out. 2789 * This call will increment packets_out. 2790 */ 2791 tcp_event_new_data_sent(sk, skb); 2792 2793 tcp_minshall_update(tp, mss_now, skb); 2794 sent_pkts += tcp_skb_pcount(skb); 2795 2796 if (push_one) 2797 break; 2798 } 2799 2800 if (is_rwnd_limited) 2801 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2802 else 2803 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2804 2805 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2806 if (likely(sent_pkts || is_cwnd_limited)) 2807 tcp_cwnd_validate(sk, is_cwnd_limited); 2808 2809 if (likely(sent_pkts)) { 2810 if (tcp_in_cwnd_reduction(sk)) 2811 tp->prr_out += sent_pkts; 2812 2813 /* Send one loss probe per tail loss episode. */ 2814 if (push_one != 2) 2815 tcp_schedule_loss_probe(sk, false); 2816 return false; 2817 } 2818 return !tp->packets_out && !tcp_write_queue_empty(sk); 2819 } 2820 2821 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2822 { 2823 struct inet_connection_sock *icsk = inet_csk(sk); 2824 struct tcp_sock *tp = tcp_sk(sk); 2825 u32 timeout, timeout_us, rto_delta_us; 2826 int early_retrans; 2827 2828 /* Don't do any loss probe on a Fast Open connection before 3WHS 2829 * finishes. 2830 */ 2831 if (rcu_access_pointer(tp->fastopen_rsk)) 2832 return false; 2833 2834 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2835 /* Schedule a loss probe in 2*RTT for SACK capable connections 2836 * not in loss recovery, that are either limited by cwnd or application. 2837 */ 2838 if ((early_retrans != 3 && early_retrans != 4) || 2839 !tp->packets_out || !tcp_is_sack(tp) || 2840 (icsk->icsk_ca_state != TCP_CA_Open && 2841 icsk->icsk_ca_state != TCP_CA_CWR)) 2842 return false; 2843 2844 /* Probe timeout is 2*rtt. Add minimum RTO to account 2845 * for delayed ack when there's one outstanding packet. If no RTT 2846 * sample is available then probe after TCP_TIMEOUT_INIT. 2847 */ 2848 if (tp->srtt_us) { 2849 timeout_us = tp->srtt_us >> 2; 2850 if (tp->packets_out == 1) 2851 timeout_us += tcp_rto_min_us(sk); 2852 else 2853 timeout_us += TCP_TIMEOUT_MIN_US; 2854 timeout = usecs_to_jiffies(timeout_us); 2855 } else { 2856 timeout = TCP_TIMEOUT_INIT; 2857 } 2858 2859 /* If the RTO formula yields an earlier time, then use that time. */ 2860 rto_delta_us = advancing_rto ? 2861 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2862 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2863 if (rto_delta_us > 0) 2864 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2865 2866 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2867 return true; 2868 } 2869 2870 /* Thanks to skb fast clones, we can detect if a prior transmit of 2871 * a packet is still in a qdisc or driver queue. 2872 * In this case, there is very little point doing a retransmit ! 2873 */ 2874 static bool skb_still_in_host_queue(struct sock *sk, 2875 const struct sk_buff *skb) 2876 { 2877 if (unlikely(skb_fclone_busy(sk, skb))) { 2878 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2879 smp_mb__after_atomic(); 2880 if (skb_fclone_busy(sk, skb)) { 2881 NET_INC_STATS(sock_net(sk), 2882 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2883 return true; 2884 } 2885 } 2886 return false; 2887 } 2888 2889 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2890 * retransmit the last segment. 2891 */ 2892 void tcp_send_loss_probe(struct sock *sk) 2893 { 2894 struct tcp_sock *tp = tcp_sk(sk); 2895 struct sk_buff *skb; 2896 int pcount; 2897 int mss = tcp_current_mss(sk); 2898 2899 /* At most one outstanding TLP */ 2900 if (tp->tlp_high_seq) 2901 goto rearm_timer; 2902 2903 tp->tlp_retrans = 0; 2904 skb = tcp_send_head(sk); 2905 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2906 pcount = tp->packets_out; 2907 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2908 if (tp->packets_out > pcount) 2909 goto probe_sent; 2910 goto rearm_timer; 2911 } 2912 skb = skb_rb_last(&sk->tcp_rtx_queue); 2913 if (unlikely(!skb)) { 2914 WARN_ONCE(tp->packets_out, 2915 "invalid inflight: %u state %u cwnd %u mss %d\n", 2916 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2917 inet_csk(sk)->icsk_pending = 0; 2918 return; 2919 } 2920 2921 if (skb_still_in_host_queue(sk, skb)) 2922 goto rearm_timer; 2923 2924 pcount = tcp_skb_pcount(skb); 2925 if (WARN_ON(!pcount)) 2926 goto rearm_timer; 2927 2928 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2929 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2930 (pcount - 1) * mss, mss, 2931 GFP_ATOMIC))) 2932 goto rearm_timer; 2933 skb = skb_rb_next(skb); 2934 } 2935 2936 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2937 goto rearm_timer; 2938 2939 if (__tcp_retransmit_skb(sk, skb, 1)) 2940 goto rearm_timer; 2941 2942 tp->tlp_retrans = 1; 2943 2944 probe_sent: 2945 /* Record snd_nxt for loss detection. */ 2946 tp->tlp_high_seq = tp->snd_nxt; 2947 2948 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2949 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2950 inet_csk(sk)->icsk_pending = 0; 2951 rearm_timer: 2952 tcp_rearm_rto(sk); 2953 } 2954 2955 /* Push out any pending frames which were held back due to 2956 * TCP_CORK or attempt at coalescing tiny packets. 2957 * The socket must be locked by the caller. 2958 */ 2959 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2960 int nonagle) 2961 { 2962 /* If we are closed, the bytes will have to remain here. 2963 * In time closedown will finish, we empty the write queue and 2964 * all will be happy. 2965 */ 2966 if (unlikely(sk->sk_state == TCP_CLOSE)) 2967 return; 2968 2969 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2970 sk_gfp_mask(sk, GFP_ATOMIC))) 2971 tcp_check_probe_timer(sk); 2972 } 2973 2974 /* Send _single_ skb sitting at the send head. This function requires 2975 * true push pending frames to setup probe timer etc. 2976 */ 2977 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2978 { 2979 struct sk_buff *skb = tcp_send_head(sk); 2980 2981 BUG_ON(!skb || skb->len < mss_now); 2982 2983 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2984 } 2985 2986 /* This function returns the amount that we can raise the 2987 * usable window based on the following constraints 2988 * 2989 * 1. The window can never be shrunk once it is offered (RFC 793) 2990 * 2. We limit memory per socket 2991 * 2992 * RFC 1122: 2993 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2994 * RECV.NEXT + RCV.WIN fixed until: 2995 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2996 * 2997 * i.e. don't raise the right edge of the window until you can raise 2998 * it at least MSS bytes. 2999 * 3000 * Unfortunately, the recommended algorithm breaks header prediction, 3001 * since header prediction assumes th->window stays fixed. 3002 * 3003 * Strictly speaking, keeping th->window fixed violates the receiver 3004 * side SWS prevention criteria. The problem is that under this rule 3005 * a stream of single byte packets will cause the right side of the 3006 * window to always advance by a single byte. 3007 * 3008 * Of course, if the sender implements sender side SWS prevention 3009 * then this will not be a problem. 3010 * 3011 * BSD seems to make the following compromise: 3012 * 3013 * If the free space is less than the 1/4 of the maximum 3014 * space available and the free space is less than 1/2 mss, 3015 * then set the window to 0. 3016 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3017 * Otherwise, just prevent the window from shrinking 3018 * and from being larger than the largest representable value. 3019 * 3020 * This prevents incremental opening of the window in the regime 3021 * where TCP is limited by the speed of the reader side taking 3022 * data out of the TCP receive queue. It does nothing about 3023 * those cases where the window is constrained on the sender side 3024 * because the pipeline is full. 3025 * 3026 * BSD also seems to "accidentally" limit itself to windows that are a 3027 * multiple of MSS, at least until the free space gets quite small. 3028 * This would appear to be a side effect of the mbuf implementation. 3029 * Combining these two algorithms results in the observed behavior 3030 * of having a fixed window size at almost all times. 3031 * 3032 * Below we obtain similar behavior by forcing the offered window to 3033 * a multiple of the mss when it is feasible to do so. 3034 * 3035 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3036 * Regular options like TIMESTAMP are taken into account. 3037 */ 3038 u32 __tcp_select_window(struct sock *sk) 3039 { 3040 struct inet_connection_sock *icsk = inet_csk(sk); 3041 struct tcp_sock *tp = tcp_sk(sk); 3042 struct net *net = sock_net(sk); 3043 /* MSS for the peer's data. Previous versions used mss_clamp 3044 * here. I don't know if the value based on our guesses 3045 * of peer's MSS is better for the performance. It's more correct 3046 * but may be worse for the performance because of rcv_mss 3047 * fluctuations. --SAW 1998/11/1 3048 */ 3049 int mss = icsk->icsk_ack.rcv_mss; 3050 int free_space = tcp_space(sk); 3051 int allowed_space = tcp_full_space(sk); 3052 int full_space, window; 3053 3054 if (sk_is_mptcp(sk)) 3055 mptcp_space(sk, &free_space, &allowed_space); 3056 3057 full_space = min_t(int, tp->window_clamp, allowed_space); 3058 3059 if (unlikely(mss > full_space)) { 3060 mss = full_space; 3061 if (mss <= 0) 3062 return 0; 3063 } 3064 3065 /* Only allow window shrink if the sysctl is enabled and we have 3066 * a non-zero scaling factor in effect. 3067 */ 3068 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3069 goto shrink_window_allowed; 3070 3071 /* do not allow window to shrink */ 3072 3073 if (free_space < (full_space >> 1)) { 3074 icsk->icsk_ack.quick = 0; 3075 3076 if (tcp_under_memory_pressure(sk)) 3077 tcp_adjust_rcv_ssthresh(sk); 3078 3079 /* free_space might become our new window, make sure we don't 3080 * increase it due to wscale. 3081 */ 3082 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3083 3084 /* if free space is less than mss estimate, or is below 1/16th 3085 * of the maximum allowed, try to move to zero-window, else 3086 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3087 * new incoming data is dropped due to memory limits. 3088 * With large window, mss test triggers way too late in order 3089 * to announce zero window in time before rmem limit kicks in. 3090 */ 3091 if (free_space < (allowed_space >> 4) || free_space < mss) 3092 return 0; 3093 } 3094 3095 if (free_space > tp->rcv_ssthresh) 3096 free_space = tp->rcv_ssthresh; 3097 3098 /* Don't do rounding if we are using window scaling, since the 3099 * scaled window will not line up with the MSS boundary anyway. 3100 */ 3101 if (tp->rx_opt.rcv_wscale) { 3102 window = free_space; 3103 3104 /* Advertise enough space so that it won't get scaled away. 3105 * Import case: prevent zero window announcement if 3106 * 1<<rcv_wscale > mss. 3107 */ 3108 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3109 } else { 3110 window = tp->rcv_wnd; 3111 /* Get the largest window that is a nice multiple of mss. 3112 * Window clamp already applied above. 3113 * If our current window offering is within 1 mss of the 3114 * free space we just keep it. This prevents the divide 3115 * and multiply from happening most of the time. 3116 * We also don't do any window rounding when the free space 3117 * is too small. 3118 */ 3119 if (window <= free_space - mss || window > free_space) 3120 window = rounddown(free_space, mss); 3121 else if (mss == full_space && 3122 free_space > window + (full_space >> 1)) 3123 window = free_space; 3124 } 3125 3126 return window; 3127 3128 shrink_window_allowed: 3129 /* new window should always be an exact multiple of scaling factor */ 3130 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3131 3132 if (free_space < (full_space >> 1)) { 3133 icsk->icsk_ack.quick = 0; 3134 3135 if (tcp_under_memory_pressure(sk)) 3136 tcp_adjust_rcv_ssthresh(sk); 3137 3138 /* if free space is too low, return a zero window */ 3139 if (free_space < (allowed_space >> 4) || free_space < mss || 3140 free_space < (1 << tp->rx_opt.rcv_wscale)) 3141 return 0; 3142 } 3143 3144 if (free_space > tp->rcv_ssthresh) { 3145 free_space = tp->rcv_ssthresh; 3146 /* new window should always be an exact multiple of scaling factor 3147 * 3148 * For this case, we ALIGN "up" (increase free_space) because 3149 * we know free_space is not zero here, it has been reduced from 3150 * the memory-based limit, and rcv_ssthresh is not a hard limit 3151 * (unlike sk_rcvbuf). 3152 */ 3153 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3154 } 3155 3156 return free_space; 3157 } 3158 3159 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3160 const struct sk_buff *next_skb) 3161 { 3162 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3163 const struct skb_shared_info *next_shinfo = 3164 skb_shinfo(next_skb); 3165 struct skb_shared_info *shinfo = skb_shinfo(skb); 3166 3167 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3168 shinfo->tskey = next_shinfo->tskey; 3169 TCP_SKB_CB(skb)->txstamp_ack |= 3170 TCP_SKB_CB(next_skb)->txstamp_ack; 3171 } 3172 } 3173 3174 /* Collapses two adjacent SKB's during retransmission. */ 3175 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3176 { 3177 struct tcp_sock *tp = tcp_sk(sk); 3178 struct sk_buff *next_skb = skb_rb_next(skb); 3179 int next_skb_size; 3180 3181 next_skb_size = next_skb->len; 3182 3183 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3184 3185 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3186 return false; 3187 3188 tcp_highest_sack_replace(sk, next_skb, skb); 3189 3190 /* Update sequence range on original skb. */ 3191 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3192 3193 /* Merge over control information. This moves PSH/FIN etc. over */ 3194 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3195 3196 /* All done, get rid of second SKB and account for it so 3197 * packet counting does not break. 3198 */ 3199 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3200 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3201 3202 /* changed transmit queue under us so clear hints */ 3203 tcp_clear_retrans_hints_partial(tp); 3204 if (next_skb == tp->retransmit_skb_hint) 3205 tp->retransmit_skb_hint = skb; 3206 3207 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3208 3209 tcp_skb_collapse_tstamp(skb, next_skb); 3210 3211 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3212 return true; 3213 } 3214 3215 /* Check if coalescing SKBs is legal. */ 3216 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3217 { 3218 if (tcp_skb_pcount(skb) > 1) 3219 return false; 3220 if (skb_cloned(skb)) 3221 return false; 3222 /* Some heuristics for collapsing over SACK'd could be invented */ 3223 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3224 return false; 3225 3226 return true; 3227 } 3228 3229 /* Collapse packets in the retransmit queue to make to create 3230 * less packets on the wire. This is only done on retransmission. 3231 */ 3232 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3233 int space) 3234 { 3235 struct tcp_sock *tp = tcp_sk(sk); 3236 struct sk_buff *skb = to, *tmp; 3237 bool first = true; 3238 3239 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3240 return; 3241 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3242 return; 3243 3244 skb_rbtree_walk_from_safe(skb, tmp) { 3245 if (!tcp_can_collapse(sk, skb)) 3246 break; 3247 3248 if (!tcp_skb_can_collapse(to, skb)) 3249 break; 3250 3251 space -= skb->len; 3252 3253 if (first) { 3254 first = false; 3255 continue; 3256 } 3257 3258 if (space < 0) 3259 break; 3260 3261 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3262 break; 3263 3264 if (!tcp_collapse_retrans(sk, to)) 3265 break; 3266 } 3267 } 3268 3269 /* This retransmits one SKB. Policy decisions and retransmit queue 3270 * state updates are done by the caller. Returns non-zero if an 3271 * error occurred which prevented the send. 3272 */ 3273 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3274 { 3275 struct inet_connection_sock *icsk = inet_csk(sk); 3276 struct tcp_sock *tp = tcp_sk(sk); 3277 unsigned int cur_mss; 3278 int diff, len, err; 3279 int avail_wnd; 3280 3281 /* Inconclusive MTU probe */ 3282 if (icsk->icsk_mtup.probe_size) 3283 icsk->icsk_mtup.probe_size = 0; 3284 3285 if (skb_still_in_host_queue(sk, skb)) 3286 return -EBUSY; 3287 3288 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3289 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3290 WARN_ON_ONCE(1); 3291 return -EINVAL; 3292 } 3293 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3294 return -ENOMEM; 3295 } 3296 3297 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3298 return -EHOSTUNREACH; /* Routing failure or similar. */ 3299 3300 cur_mss = tcp_current_mss(sk); 3301 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3302 3303 /* If receiver has shrunk his window, and skb is out of 3304 * new window, do not retransmit it. The exception is the 3305 * case, when window is shrunk to zero. In this case 3306 * our retransmit of one segment serves as a zero window probe. 3307 */ 3308 if (avail_wnd <= 0) { 3309 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3310 return -EAGAIN; 3311 avail_wnd = cur_mss; 3312 } 3313 3314 len = cur_mss * segs; 3315 if (len > avail_wnd) { 3316 len = rounddown(avail_wnd, cur_mss); 3317 if (!len) 3318 len = avail_wnd; 3319 } 3320 if (skb->len > len) { 3321 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3322 cur_mss, GFP_ATOMIC)) 3323 return -ENOMEM; /* We'll try again later. */ 3324 } else { 3325 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3326 return -ENOMEM; 3327 3328 diff = tcp_skb_pcount(skb); 3329 tcp_set_skb_tso_segs(skb, cur_mss); 3330 diff -= tcp_skb_pcount(skb); 3331 if (diff) 3332 tcp_adjust_pcount(sk, skb, diff); 3333 avail_wnd = min_t(int, avail_wnd, cur_mss); 3334 if (skb->len < avail_wnd) 3335 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3336 } 3337 3338 /* RFC3168, section 6.1.1.1. ECN fallback */ 3339 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3340 tcp_ecn_clear_syn(sk, skb); 3341 3342 /* Update global and local TCP statistics. */ 3343 segs = tcp_skb_pcount(skb); 3344 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3345 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3346 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3347 tp->total_retrans += segs; 3348 tp->bytes_retrans += skb->len; 3349 3350 /* make sure skb->data is aligned on arches that require it 3351 * and check if ack-trimming & collapsing extended the headroom 3352 * beyond what csum_start can cover. 3353 */ 3354 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3355 skb_headroom(skb) >= 0xFFFF)) { 3356 struct sk_buff *nskb; 3357 3358 tcp_skb_tsorted_save(skb) { 3359 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3360 if (nskb) { 3361 nskb->dev = NULL; 3362 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3363 } else { 3364 err = -ENOBUFS; 3365 } 3366 } tcp_skb_tsorted_restore(skb); 3367 3368 if (!err) { 3369 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3370 tcp_rate_skb_sent(sk, skb); 3371 } 3372 } else { 3373 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3374 } 3375 3376 /* To avoid taking spuriously low RTT samples based on a timestamp 3377 * for a transmit that never happened, always mark EVER_RETRANS 3378 */ 3379 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3380 3381 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3382 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3383 TCP_SKB_CB(skb)->seq, segs, err); 3384 3385 if (likely(!err)) { 3386 trace_tcp_retransmit_skb(sk, skb); 3387 } else if (err != -EBUSY) { 3388 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3389 } 3390 return err; 3391 } 3392 3393 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3394 { 3395 struct tcp_sock *tp = tcp_sk(sk); 3396 int err = __tcp_retransmit_skb(sk, skb, segs); 3397 3398 if (err == 0) { 3399 #if FASTRETRANS_DEBUG > 0 3400 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3401 net_dbg_ratelimited("retrans_out leaked\n"); 3402 } 3403 #endif 3404 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3405 tp->retrans_out += tcp_skb_pcount(skb); 3406 } 3407 3408 /* Save stamp of the first (attempted) retransmit. */ 3409 if (!tp->retrans_stamp) 3410 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3411 3412 if (tp->undo_retrans < 0) 3413 tp->undo_retrans = 0; 3414 tp->undo_retrans += tcp_skb_pcount(skb); 3415 return err; 3416 } 3417 3418 /* This gets called after a retransmit timeout, and the initially 3419 * retransmitted data is acknowledged. It tries to continue 3420 * resending the rest of the retransmit queue, until either 3421 * we've sent it all or the congestion window limit is reached. 3422 */ 3423 void tcp_xmit_retransmit_queue(struct sock *sk) 3424 { 3425 const struct inet_connection_sock *icsk = inet_csk(sk); 3426 struct sk_buff *skb, *rtx_head, *hole = NULL; 3427 struct tcp_sock *tp = tcp_sk(sk); 3428 bool rearm_timer = false; 3429 u32 max_segs; 3430 int mib_idx; 3431 3432 if (!tp->packets_out) 3433 return; 3434 3435 rtx_head = tcp_rtx_queue_head(sk); 3436 skb = tp->retransmit_skb_hint ?: rtx_head; 3437 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3438 skb_rbtree_walk_from(skb) { 3439 __u8 sacked; 3440 int segs; 3441 3442 if (tcp_pacing_check(sk)) 3443 break; 3444 3445 /* we could do better than to assign each time */ 3446 if (!hole) 3447 tp->retransmit_skb_hint = skb; 3448 3449 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3450 if (segs <= 0) 3451 break; 3452 sacked = TCP_SKB_CB(skb)->sacked; 3453 /* In case tcp_shift_skb_data() have aggregated large skbs, 3454 * we need to make sure not sending too bigs TSO packets 3455 */ 3456 segs = min_t(int, segs, max_segs); 3457 3458 if (tp->retrans_out >= tp->lost_out) { 3459 break; 3460 } else if (!(sacked & TCPCB_LOST)) { 3461 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3462 hole = skb; 3463 continue; 3464 3465 } else { 3466 if (icsk->icsk_ca_state != TCP_CA_Loss) 3467 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3468 else 3469 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3470 } 3471 3472 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3473 continue; 3474 3475 if (tcp_small_queue_check(sk, skb, 1)) 3476 break; 3477 3478 if (tcp_retransmit_skb(sk, skb, segs)) 3479 break; 3480 3481 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3482 3483 if (tcp_in_cwnd_reduction(sk)) 3484 tp->prr_out += tcp_skb_pcount(skb); 3485 3486 if (skb == rtx_head && 3487 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3488 rearm_timer = true; 3489 3490 } 3491 if (rearm_timer) 3492 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3493 inet_csk(sk)->icsk_rto, 3494 TCP_RTO_MAX); 3495 } 3496 3497 /* We allow to exceed memory limits for FIN packets to expedite 3498 * connection tear down and (memory) recovery. 3499 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3500 * or even be forced to close flow without any FIN. 3501 * In general, we want to allow one skb per socket to avoid hangs 3502 * with edge trigger epoll() 3503 */ 3504 void sk_forced_mem_schedule(struct sock *sk, int size) 3505 { 3506 int delta, amt; 3507 3508 delta = size - sk->sk_forward_alloc; 3509 if (delta <= 0) 3510 return; 3511 amt = sk_mem_pages(delta); 3512 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3513 sk_memory_allocated_add(sk, amt); 3514 3515 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3516 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3517 gfp_memcg_charge() | __GFP_NOFAIL); 3518 } 3519 3520 /* Send a FIN. The caller locks the socket for us. 3521 * We should try to send a FIN packet really hard, but eventually give up. 3522 */ 3523 void tcp_send_fin(struct sock *sk) 3524 { 3525 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3526 struct tcp_sock *tp = tcp_sk(sk); 3527 3528 /* Optimization, tack on the FIN if we have one skb in write queue and 3529 * this skb was not yet sent, or we are under memory pressure. 3530 * Note: in the latter case, FIN packet will be sent after a timeout, 3531 * as TCP stack thinks it has already been transmitted. 3532 */ 3533 tskb = tail; 3534 if (!tskb && tcp_under_memory_pressure(sk)) 3535 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3536 3537 if (tskb) { 3538 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3539 TCP_SKB_CB(tskb)->end_seq++; 3540 tp->write_seq++; 3541 if (!tail) { 3542 /* This means tskb was already sent. 3543 * Pretend we included the FIN on previous transmit. 3544 * We need to set tp->snd_nxt to the value it would have 3545 * if FIN had been sent. This is because retransmit path 3546 * does not change tp->snd_nxt. 3547 */ 3548 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3549 return; 3550 } 3551 } else { 3552 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3553 if (unlikely(!skb)) 3554 return; 3555 3556 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3557 skb_reserve(skb, MAX_TCP_HEADER); 3558 sk_forced_mem_schedule(sk, skb->truesize); 3559 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3560 tcp_init_nondata_skb(skb, tp->write_seq, 3561 TCPHDR_ACK | TCPHDR_FIN); 3562 tcp_queue_skb(sk, skb); 3563 } 3564 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3565 } 3566 3567 /* We get here when a process closes a file descriptor (either due to 3568 * an explicit close() or as a byproduct of exit()'ing) and there 3569 * was unread data in the receive queue. This behavior is recommended 3570 * by RFC 2525, section 2.17. -DaveM 3571 */ 3572 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3573 { 3574 struct sk_buff *skb; 3575 3576 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3577 3578 /* NOTE: No TCP options attached and we never retransmit this. */ 3579 skb = alloc_skb(MAX_TCP_HEADER, priority); 3580 if (!skb) { 3581 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3582 return; 3583 } 3584 3585 /* Reserve space for headers and prepare control bits. */ 3586 skb_reserve(skb, MAX_TCP_HEADER); 3587 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3588 TCPHDR_ACK | TCPHDR_RST); 3589 tcp_mstamp_refresh(tcp_sk(sk)); 3590 /* Send it off. */ 3591 if (tcp_transmit_skb(sk, skb, 0, priority)) 3592 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3593 3594 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3595 * skb here is different to the troublesome skb, so use NULL 3596 */ 3597 trace_tcp_send_reset(sk, NULL); 3598 } 3599 3600 /* Send a crossed SYN-ACK during socket establishment. 3601 * WARNING: This routine must only be called when we have already sent 3602 * a SYN packet that crossed the incoming SYN that caused this routine 3603 * to get called. If this assumption fails then the initial rcv_wnd 3604 * and rcv_wscale values will not be correct. 3605 */ 3606 int tcp_send_synack(struct sock *sk) 3607 { 3608 struct sk_buff *skb; 3609 3610 skb = tcp_rtx_queue_head(sk); 3611 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3612 pr_err("%s: wrong queue state\n", __func__); 3613 return -EFAULT; 3614 } 3615 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3616 if (skb_cloned(skb)) { 3617 struct sk_buff *nskb; 3618 3619 tcp_skb_tsorted_save(skb) { 3620 nskb = skb_copy(skb, GFP_ATOMIC); 3621 } tcp_skb_tsorted_restore(skb); 3622 if (!nskb) 3623 return -ENOMEM; 3624 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3625 tcp_highest_sack_replace(sk, skb, nskb); 3626 tcp_rtx_queue_unlink_and_free(skb, sk); 3627 __skb_header_release(nskb); 3628 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3629 sk_wmem_queued_add(sk, nskb->truesize); 3630 sk_mem_charge(sk, nskb->truesize); 3631 skb = nskb; 3632 } 3633 3634 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3635 tcp_ecn_send_synack(sk, skb); 3636 } 3637 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3638 } 3639 3640 /** 3641 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3642 * @sk: listener socket 3643 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3644 * should not use it again. 3645 * @req: request_sock pointer 3646 * @foc: cookie for tcp fast open 3647 * @synack_type: Type of synack to prepare 3648 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3649 */ 3650 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3651 struct request_sock *req, 3652 struct tcp_fastopen_cookie *foc, 3653 enum tcp_synack_type synack_type, 3654 struct sk_buff *syn_skb) 3655 { 3656 struct inet_request_sock *ireq = inet_rsk(req); 3657 const struct tcp_sock *tp = tcp_sk(sk); 3658 struct tcp_out_options opts; 3659 struct tcp_key key = {}; 3660 struct sk_buff *skb; 3661 int tcp_header_size; 3662 struct tcphdr *th; 3663 int mss; 3664 u64 now; 3665 3666 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3667 if (unlikely(!skb)) { 3668 dst_release(dst); 3669 return NULL; 3670 } 3671 /* Reserve space for headers. */ 3672 skb_reserve(skb, MAX_TCP_HEADER); 3673 3674 switch (synack_type) { 3675 case TCP_SYNACK_NORMAL: 3676 skb_set_owner_w(skb, req_to_sk(req)); 3677 break; 3678 case TCP_SYNACK_COOKIE: 3679 /* Under synflood, we do not attach skb to a socket, 3680 * to avoid false sharing. 3681 */ 3682 break; 3683 case TCP_SYNACK_FASTOPEN: 3684 /* sk is a const pointer, because we want to express multiple 3685 * cpu might call us concurrently. 3686 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3687 */ 3688 skb_set_owner_w(skb, (struct sock *)sk); 3689 break; 3690 } 3691 skb_dst_set(skb, dst); 3692 3693 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3694 3695 memset(&opts, 0, sizeof(opts)); 3696 if (tcp_rsk(req)->req_usec_ts < 0) 3697 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 3698 now = tcp_clock_ns(); 3699 #ifdef CONFIG_SYN_COOKIES 3700 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3701 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3702 true); 3703 else 3704 #endif 3705 { 3706 skb_set_delivery_time(skb, now, true); 3707 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3708 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3709 } 3710 3711 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3712 rcu_read_lock(); 3713 #endif 3714 if (tcp_rsk_used_ao(req)) { 3715 #ifdef CONFIG_TCP_AO 3716 struct tcp_ao_key *ao_key = NULL; 3717 u8 maclen = tcp_rsk(req)->maclen; 3718 u8 keyid = tcp_rsk(req)->ao_keyid; 3719 3720 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3721 keyid, -1); 3722 /* If there is no matching key - avoid sending anything, 3723 * especially usigned segments. It could try harder and lookup 3724 * for another peer-matching key, but the peer has requested 3725 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3726 */ 3727 if (unlikely(!ao_key || tcp_ao_maclen(ao_key) != maclen)) { 3728 u8 key_maclen = ao_key ? tcp_ao_maclen(ao_key) : 0; 3729 3730 rcu_read_unlock(); 3731 kfree_skb(skb); 3732 net_warn_ratelimited("TCP-AO: the keyid %u with maclen %u|%u from SYN packet is not present - not sending SYNACK\n", 3733 keyid, maclen, key_maclen); 3734 return NULL; 3735 } 3736 key.ao_key = ao_key; 3737 key.type = TCP_KEY_AO; 3738 #endif 3739 } else { 3740 #ifdef CONFIG_TCP_MD5SIG 3741 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3742 req_to_sk(req)); 3743 if (key.md5_key) 3744 key.type = TCP_KEY_MD5; 3745 #endif 3746 } 3747 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3748 /* bpf program will be interested in the tcp_flags */ 3749 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3750 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3751 &key, foc, synack_type, syn_skb) 3752 + sizeof(*th); 3753 3754 skb_push(skb, tcp_header_size); 3755 skb_reset_transport_header(skb); 3756 3757 th = (struct tcphdr *)skb->data; 3758 memset(th, 0, sizeof(struct tcphdr)); 3759 th->syn = 1; 3760 th->ack = 1; 3761 tcp_ecn_make_synack(req, th); 3762 th->source = htons(ireq->ir_num); 3763 th->dest = ireq->ir_rmt_port; 3764 skb->mark = ireq->ir_mark; 3765 skb->ip_summed = CHECKSUM_PARTIAL; 3766 th->seq = htonl(tcp_rsk(req)->snt_isn); 3767 /* XXX data is queued and acked as is. No buffer/window check */ 3768 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3769 3770 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3771 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3772 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 3773 th->doff = (tcp_header_size >> 2); 3774 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3775 3776 /* Okay, we have all we need - do the md5 hash if needed */ 3777 if (tcp_key_is_md5(&key)) { 3778 #ifdef CONFIG_TCP_MD5SIG 3779 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3780 key.md5_key, req_to_sk(req), skb); 3781 #endif 3782 } else if (tcp_key_is_ao(&key)) { 3783 #ifdef CONFIG_TCP_AO 3784 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 3785 key.ao_key, req, skb, 3786 opts.hash_location - (u8 *)th, 0); 3787 #endif 3788 } 3789 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3790 rcu_read_unlock(); 3791 #endif 3792 3793 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3794 synack_type, &opts); 3795 3796 skb_set_delivery_time(skb, now, true); 3797 tcp_add_tx_delay(skb, tp); 3798 3799 return skb; 3800 } 3801 EXPORT_SYMBOL(tcp_make_synack); 3802 3803 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3804 { 3805 struct inet_connection_sock *icsk = inet_csk(sk); 3806 const struct tcp_congestion_ops *ca; 3807 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3808 3809 if (ca_key == TCP_CA_UNSPEC) 3810 return; 3811 3812 rcu_read_lock(); 3813 ca = tcp_ca_find_key(ca_key); 3814 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3815 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3816 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3817 icsk->icsk_ca_ops = ca; 3818 } 3819 rcu_read_unlock(); 3820 } 3821 3822 /* Do all connect socket setups that can be done AF independent. */ 3823 static void tcp_connect_init(struct sock *sk) 3824 { 3825 const struct dst_entry *dst = __sk_dst_get(sk); 3826 struct tcp_sock *tp = tcp_sk(sk); 3827 __u8 rcv_wscale; 3828 u32 rcv_wnd; 3829 3830 /* We'll fix this up when we get a response from the other end. 3831 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3832 */ 3833 tp->tcp_header_len = sizeof(struct tcphdr); 3834 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3835 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3836 3837 tcp_ao_connect_init(sk); 3838 3839 /* If user gave his TCP_MAXSEG, record it to clamp */ 3840 if (tp->rx_opt.user_mss) 3841 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3842 tp->max_window = 0; 3843 tcp_mtup_init(sk); 3844 tcp_sync_mss(sk, dst_mtu(dst)); 3845 3846 tcp_ca_dst_init(sk, dst); 3847 3848 if (!tp->window_clamp) 3849 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3850 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3851 3852 tcp_initialize_rcv_mss(sk); 3853 3854 /* limit the window selection if the user enforce a smaller rx buffer */ 3855 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3856 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3857 tp->window_clamp = tcp_full_space(sk); 3858 3859 rcv_wnd = tcp_rwnd_init_bpf(sk); 3860 if (rcv_wnd == 0) 3861 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3862 3863 tcp_select_initial_window(sk, tcp_full_space(sk), 3864 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3865 &tp->rcv_wnd, 3866 &tp->window_clamp, 3867 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3868 &rcv_wscale, 3869 rcv_wnd); 3870 3871 tp->rx_opt.rcv_wscale = rcv_wscale; 3872 tp->rcv_ssthresh = tp->rcv_wnd; 3873 3874 WRITE_ONCE(sk->sk_err, 0); 3875 sock_reset_flag(sk, SOCK_DONE); 3876 tp->snd_wnd = 0; 3877 tcp_init_wl(tp, 0); 3878 tcp_write_queue_purge(sk); 3879 tp->snd_una = tp->write_seq; 3880 tp->snd_sml = tp->write_seq; 3881 tp->snd_up = tp->write_seq; 3882 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3883 3884 if (likely(!tp->repair)) 3885 tp->rcv_nxt = 0; 3886 else 3887 tp->rcv_tstamp = tcp_jiffies32; 3888 tp->rcv_wup = tp->rcv_nxt; 3889 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3890 3891 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3892 inet_csk(sk)->icsk_retransmits = 0; 3893 tcp_clear_retrans(tp); 3894 } 3895 3896 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3897 { 3898 struct tcp_sock *tp = tcp_sk(sk); 3899 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3900 3901 tcb->end_seq += skb->len; 3902 __skb_header_release(skb); 3903 sk_wmem_queued_add(sk, skb->truesize); 3904 sk_mem_charge(sk, skb->truesize); 3905 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3906 tp->packets_out += tcp_skb_pcount(skb); 3907 } 3908 3909 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3910 * queue a data-only packet after the regular SYN, such that regular SYNs 3911 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3912 * only the SYN sequence, the data are retransmitted in the first ACK. 3913 * If cookie is not cached or other error occurs, falls back to send a 3914 * regular SYN with Fast Open cookie request option. 3915 */ 3916 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3917 { 3918 struct inet_connection_sock *icsk = inet_csk(sk); 3919 struct tcp_sock *tp = tcp_sk(sk); 3920 struct tcp_fastopen_request *fo = tp->fastopen_req; 3921 struct page_frag *pfrag = sk_page_frag(sk); 3922 struct sk_buff *syn_data; 3923 int space, err = 0; 3924 3925 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3926 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3927 goto fallback; 3928 3929 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3930 * user-MSS. Reserve maximum option space for middleboxes that add 3931 * private TCP options. The cost is reduced data space in SYN :( 3932 */ 3933 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3934 /* Sync mss_cache after updating the mss_clamp */ 3935 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3936 3937 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3938 MAX_TCP_OPTION_SPACE; 3939 3940 space = min_t(size_t, space, fo->size); 3941 3942 if (space && 3943 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3944 pfrag, sk->sk_allocation)) 3945 goto fallback; 3946 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3947 if (!syn_data) 3948 goto fallback; 3949 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3950 if (space) { 3951 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3952 space = tcp_wmem_schedule(sk, space); 3953 } 3954 if (space) { 3955 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3956 space, &fo->data->msg_iter); 3957 if (unlikely(!space)) { 3958 tcp_skb_tsorted_anchor_cleanup(syn_data); 3959 kfree_skb(syn_data); 3960 goto fallback; 3961 } 3962 skb_fill_page_desc(syn_data, 0, pfrag->page, 3963 pfrag->offset, space); 3964 page_ref_inc(pfrag->page); 3965 pfrag->offset += space; 3966 skb_len_add(syn_data, space); 3967 skb_zcopy_set(syn_data, fo->uarg, NULL); 3968 } 3969 /* No more data pending in inet_wait_for_connect() */ 3970 if (space == fo->size) 3971 fo->data = NULL; 3972 fo->copied = space; 3973 3974 tcp_connect_queue_skb(sk, syn_data); 3975 if (syn_data->len) 3976 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3977 3978 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3979 3980 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3981 3982 /* Now full SYN+DATA was cloned and sent (or not), 3983 * remove the SYN from the original skb (syn_data) 3984 * we keep in write queue in case of a retransmit, as we 3985 * also have the SYN packet (with no data) in the same queue. 3986 */ 3987 TCP_SKB_CB(syn_data)->seq++; 3988 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3989 if (!err) { 3990 tp->syn_data = (fo->copied > 0); 3991 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3992 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3993 goto done; 3994 } 3995 3996 /* data was not sent, put it in write_queue */ 3997 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3998 tp->packets_out -= tcp_skb_pcount(syn_data); 3999 4000 fallback: 4001 /* Send a regular SYN with Fast Open cookie request option */ 4002 if (fo->cookie.len > 0) 4003 fo->cookie.len = 0; 4004 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4005 if (err) 4006 tp->syn_fastopen = 0; 4007 done: 4008 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4009 return err; 4010 } 4011 4012 /* Build a SYN and send it off. */ 4013 int tcp_connect(struct sock *sk) 4014 { 4015 struct tcp_sock *tp = tcp_sk(sk); 4016 struct sk_buff *buff; 4017 int err; 4018 4019 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4020 4021 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4022 /* Has to be checked late, after setting daddr/saddr/ops. 4023 * Return error if the peer has both a md5 and a tcp-ao key 4024 * configured as this is ambiguous. 4025 */ 4026 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4027 lockdep_sock_is_held(sk)))) { 4028 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4029 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4030 struct tcp_ao_info *ao_info; 4031 4032 ao_info = rcu_dereference_check(tp->ao_info, 4033 lockdep_sock_is_held(sk)); 4034 if (ao_info) { 4035 /* This is an extra check: tcp_ao_required() in 4036 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4037 * md5 keys on ao_required socket. 4038 */ 4039 needs_ao |= ao_info->ao_required; 4040 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4041 } 4042 if (needs_md5 && needs_ao) 4043 return -EKEYREJECTED; 4044 4045 /* If we have a matching md5 key and no matching tcp-ao key 4046 * then free up ao_info if allocated. 4047 */ 4048 if (needs_md5) { 4049 tcp_ao_destroy_sock(sk, false); 4050 } else if (needs_ao) { 4051 tcp_clear_md5_list(sk); 4052 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4053 lockdep_sock_is_held(sk))); 4054 } 4055 } 4056 #endif 4057 #ifdef CONFIG_TCP_AO 4058 if (unlikely(rcu_dereference_protected(tp->ao_info, 4059 lockdep_sock_is_held(sk)))) { 4060 /* Don't allow connecting if ao is configured but no 4061 * matching key is found. 4062 */ 4063 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4064 return -EKEYREJECTED; 4065 } 4066 #endif 4067 4068 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4069 return -EHOSTUNREACH; /* Routing failure or similar. */ 4070 4071 tcp_connect_init(sk); 4072 4073 if (unlikely(tp->repair)) { 4074 tcp_finish_connect(sk, NULL); 4075 return 0; 4076 } 4077 4078 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4079 if (unlikely(!buff)) 4080 return -ENOBUFS; 4081 4082 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 4083 tcp_mstamp_refresh(tp); 4084 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4085 tcp_connect_queue_skb(sk, buff); 4086 tcp_ecn_send_syn(sk, buff); 4087 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4088 4089 /* Send off SYN; include data in Fast Open. */ 4090 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4091 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4092 if (err == -ECONNREFUSED) 4093 return err; 4094 4095 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4096 * in order to make this packet get counted in tcpOutSegs. 4097 */ 4098 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4099 tp->pushed_seq = tp->write_seq; 4100 buff = tcp_send_head(sk); 4101 if (unlikely(buff)) { 4102 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4103 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4104 } 4105 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4106 4107 /* Timer for repeating the SYN until an answer. */ 4108 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4109 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 4110 return 0; 4111 } 4112 EXPORT_SYMBOL(tcp_connect); 4113 4114 u32 tcp_delack_max(const struct sock *sk) 4115 { 4116 const struct dst_entry *dst = __sk_dst_get(sk); 4117 u32 delack_max = inet_csk(sk)->icsk_delack_max; 4118 4119 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) { 4120 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 4121 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1); 4122 4123 delack_max = min_t(u32, delack_max, delack_from_rto_min); 4124 } 4125 return delack_max; 4126 } 4127 4128 /* Send out a delayed ack, the caller does the policy checking 4129 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4130 * for details. 4131 */ 4132 void tcp_send_delayed_ack(struct sock *sk) 4133 { 4134 struct inet_connection_sock *icsk = inet_csk(sk); 4135 int ato = icsk->icsk_ack.ato; 4136 unsigned long timeout; 4137 4138 if (ato > TCP_DELACK_MIN) { 4139 const struct tcp_sock *tp = tcp_sk(sk); 4140 int max_ato = HZ / 2; 4141 4142 if (inet_csk_in_pingpong_mode(sk) || 4143 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4144 max_ato = TCP_DELACK_MAX; 4145 4146 /* Slow path, intersegment interval is "high". */ 4147 4148 /* If some rtt estimate is known, use it to bound delayed ack. 4149 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4150 * directly. 4151 */ 4152 if (tp->srtt_us) { 4153 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4154 TCP_DELACK_MIN); 4155 4156 if (rtt < max_ato) 4157 max_ato = rtt; 4158 } 4159 4160 ato = min(ato, max_ato); 4161 } 4162 4163 ato = min_t(u32, ato, tcp_delack_max(sk)); 4164 4165 /* Stay within the limit we were given */ 4166 timeout = jiffies + ato; 4167 4168 /* Use new timeout only if there wasn't a older one earlier. */ 4169 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4170 /* If delack timer is about to expire, send ACK now. */ 4171 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4172 tcp_send_ack(sk); 4173 return; 4174 } 4175 4176 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4177 timeout = icsk->icsk_ack.timeout; 4178 } 4179 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4180 icsk->icsk_ack.timeout = timeout; 4181 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4182 } 4183 4184 /* This routine sends an ack and also updates the window. */ 4185 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4186 { 4187 struct sk_buff *buff; 4188 4189 /* If we have been reset, we may not send again. */ 4190 if (sk->sk_state == TCP_CLOSE) 4191 return; 4192 4193 /* We are not putting this on the write queue, so 4194 * tcp_transmit_skb() will set the ownership to this 4195 * sock. 4196 */ 4197 buff = alloc_skb(MAX_TCP_HEADER, 4198 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4199 if (unlikely(!buff)) { 4200 struct inet_connection_sock *icsk = inet_csk(sk); 4201 unsigned long delay; 4202 4203 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4204 if (delay < TCP_RTO_MAX) 4205 icsk->icsk_ack.retry++; 4206 inet_csk_schedule_ack(sk); 4207 icsk->icsk_ack.ato = TCP_ATO_MIN; 4208 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4209 return; 4210 } 4211 4212 /* Reserve space for headers and prepare control bits. */ 4213 skb_reserve(buff, MAX_TCP_HEADER); 4214 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4215 4216 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4217 * too much. 4218 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4219 */ 4220 skb_set_tcp_pure_ack(buff); 4221 4222 /* Send it off, this clears delayed acks for us. */ 4223 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4224 } 4225 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4226 4227 void tcp_send_ack(struct sock *sk) 4228 { 4229 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4230 } 4231 4232 /* This routine sends a packet with an out of date sequence 4233 * number. It assumes the other end will try to ack it. 4234 * 4235 * Question: what should we make while urgent mode? 4236 * 4.4BSD forces sending single byte of data. We cannot send 4237 * out of window data, because we have SND.NXT==SND.MAX... 4238 * 4239 * Current solution: to send TWO zero-length segments in urgent mode: 4240 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4241 * out-of-date with SND.UNA-1 to probe window. 4242 */ 4243 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4244 { 4245 struct tcp_sock *tp = tcp_sk(sk); 4246 struct sk_buff *skb; 4247 4248 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4249 skb = alloc_skb(MAX_TCP_HEADER, 4250 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4251 if (!skb) 4252 return -1; 4253 4254 /* Reserve space for headers and set control bits. */ 4255 skb_reserve(skb, MAX_TCP_HEADER); 4256 /* Use a previous sequence. This should cause the other 4257 * end to send an ack. Don't queue or clone SKB, just 4258 * send it. 4259 */ 4260 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4261 NET_INC_STATS(sock_net(sk), mib); 4262 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4263 } 4264 4265 /* Called from setsockopt( ... TCP_REPAIR ) */ 4266 void tcp_send_window_probe(struct sock *sk) 4267 { 4268 if (sk->sk_state == TCP_ESTABLISHED) { 4269 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4270 tcp_mstamp_refresh(tcp_sk(sk)); 4271 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4272 } 4273 } 4274 4275 /* Initiate keepalive or window probe from timer. */ 4276 int tcp_write_wakeup(struct sock *sk, int mib) 4277 { 4278 struct tcp_sock *tp = tcp_sk(sk); 4279 struct sk_buff *skb; 4280 4281 if (sk->sk_state == TCP_CLOSE) 4282 return -1; 4283 4284 skb = tcp_send_head(sk); 4285 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4286 int err; 4287 unsigned int mss = tcp_current_mss(sk); 4288 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4289 4290 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4291 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4292 4293 /* We are probing the opening of a window 4294 * but the window size is != 0 4295 * must have been a result SWS avoidance ( sender ) 4296 */ 4297 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4298 skb->len > mss) { 4299 seg_size = min(seg_size, mss); 4300 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4301 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4302 skb, seg_size, mss, GFP_ATOMIC)) 4303 return -1; 4304 } else if (!tcp_skb_pcount(skb)) 4305 tcp_set_skb_tso_segs(skb, mss); 4306 4307 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4308 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4309 if (!err) 4310 tcp_event_new_data_sent(sk, skb); 4311 return err; 4312 } else { 4313 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4314 tcp_xmit_probe_skb(sk, 1, mib); 4315 return tcp_xmit_probe_skb(sk, 0, mib); 4316 } 4317 } 4318 4319 /* A window probe timeout has occurred. If window is not closed send 4320 * a partial packet else a zero probe. 4321 */ 4322 void tcp_send_probe0(struct sock *sk) 4323 { 4324 struct inet_connection_sock *icsk = inet_csk(sk); 4325 struct tcp_sock *tp = tcp_sk(sk); 4326 struct net *net = sock_net(sk); 4327 unsigned long timeout; 4328 int err; 4329 4330 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4331 4332 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4333 /* Cancel probe timer, if it is not required. */ 4334 icsk->icsk_probes_out = 0; 4335 icsk->icsk_backoff = 0; 4336 icsk->icsk_probes_tstamp = 0; 4337 return; 4338 } 4339 4340 icsk->icsk_probes_out++; 4341 if (err <= 0) { 4342 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4343 icsk->icsk_backoff++; 4344 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4345 } else { 4346 /* If packet was not sent due to local congestion, 4347 * Let senders fight for local resources conservatively. 4348 */ 4349 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4350 } 4351 4352 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4353 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4354 } 4355 4356 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4357 { 4358 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4359 struct flowi fl; 4360 int res; 4361 4362 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4363 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4364 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4365 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4366 NULL); 4367 if (!res) { 4368 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4369 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4370 if (unlikely(tcp_passive_fastopen(sk))) { 4371 /* sk has const attribute because listeners are lockless. 4372 * However in this case, we are dealing with a passive fastopen 4373 * socket thus we can change total_retrans value. 4374 */ 4375 tcp_sk_rw(sk)->total_retrans++; 4376 } 4377 trace_tcp_retransmit_synack(sk, req); 4378 } 4379 return res; 4380 } 4381 EXPORT_SYMBOL(tcp_rtx_synack); 4382