xref: /linux/net/ipv4/tcp_output.c (revision ff97d2a956a142bc0383f52560dd46e003c216dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, increase pingpong count.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = rounddown(space, mss);
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
233 
234 	if (init_rcv_wnd)
235 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 
237 	*rcv_wscale = 0;
238 	if (wscale_ok) {
239 		/* Set window scaling on max possible window */
240 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 		space = min_t(u32, space, *window_clamp);
243 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 				      0, TCP_MAX_WSCALE);
245 	}
246 	/* Set the clamp no higher than max representable value */
247 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250 
251 /* Chose a new window to advertise, update state in tcp_sock for the
252  * socket, and return result with RFC1323 scaling applied.  The return
253  * value can be stuffed directly into th->window for an outgoing
254  * frame.
255  */
256 static u16 tcp_select_window(struct sock *sk)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 	struct net *net = sock_net(sk);
260 	u32 old_win = tp->rcv_wnd;
261 	u32 cur_win, new_win;
262 
263 	/* Make the window 0 if we failed to queue the data because we
264 	 * are out of memory. The window is temporary, so we don't store
265 	 * it on the socket.
266 	 */
267 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
268 		return 0;
269 
270 	cur_win = tcp_receive_window(tp);
271 	new_win = __tcp_select_window(sk);
272 	if (new_win < cur_win) {
273 		/* Danger Will Robinson!
274 		 * Don't update rcv_wup/rcv_wnd here or else
275 		 * we will not be able to advertise a zero
276 		 * window in time.  --DaveM
277 		 *
278 		 * Relax Will Robinson.
279 		 */
280 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
281 			/* Never shrink the offered window */
282 			if (new_win == 0)
283 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
284 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 		}
286 	}
287 
288 	tp->rcv_wnd = new_win;
289 	tp->rcv_wup = tp->rcv_nxt;
290 
291 	/* Make sure we do not exceed the maximum possible
292 	 * scaled window.
293 	 */
294 	if (!tp->rx_opt.rcv_wscale &&
295 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
296 		new_win = min(new_win, MAX_TCP_WINDOW);
297 	else
298 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
299 
300 	/* RFC1323 scaling applied */
301 	new_win >>= tp->rx_opt.rcv_wscale;
302 
303 	/* If we advertise zero window, disable fast path. */
304 	if (new_win == 0) {
305 		tp->pred_flags = 0;
306 		if (old_win)
307 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
308 	} else if (old_win == 0) {
309 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
310 	}
311 
312 	return new_win;
313 }
314 
315 /* Packet ECN state for a SYN-ACK */
316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317 {
318 	const struct tcp_sock *tp = tcp_sk(sk);
319 
320 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321 	if (!(tp->ecn_flags & TCP_ECN_OK))
322 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323 	else if (tcp_ca_needs_ecn(sk) ||
324 		 tcp_bpf_ca_needs_ecn(sk))
325 		INET_ECN_xmit(sk);
326 }
327 
328 /* Packet ECN state for a SYN.  */
329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
333 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
334 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
335 
336 	if (!use_ecn) {
337 		const struct dst_entry *dst = __sk_dst_get(sk);
338 
339 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 			use_ecn = true;
341 	}
342 
343 	tp->ecn_flags = 0;
344 
345 	if (use_ecn) {
346 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 		tp->ecn_flags = TCP_ECN_OK;
348 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
349 			INET_ECN_xmit(sk);
350 	}
351 }
352 
353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354 {
355 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
356 		/* tp->ecn_flags are cleared at a later point in time when
357 		 * SYN ACK is ultimatively being received.
358 		 */
359 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360 }
361 
362 static void
363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
364 {
365 	if (inet_rsk(req)->ecn_ok)
366 		th->ece = 1;
367 }
368 
369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
370  * be sent.
371  */
372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
373 			 struct tcphdr *th, int tcp_header_len)
374 {
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	if (tp->ecn_flags & TCP_ECN_OK) {
378 		/* Not-retransmitted data segment: set ECT and inject CWR. */
379 		if (skb->len != tcp_header_len &&
380 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
381 			INET_ECN_xmit(sk);
382 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
383 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
384 				th->cwr = 1;
385 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
386 			}
387 		} else if (!tcp_ca_needs_ecn(sk)) {
388 			/* ACK or retransmitted segment: clear ECT|CE */
389 			INET_ECN_dontxmit(sk);
390 		}
391 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
392 			th->ece = 1;
393 	}
394 }
395 
396 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
397  * auto increment end seqno.
398  */
399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
400 {
401 	skb->ip_summed = CHECKSUM_PARTIAL;
402 
403 	TCP_SKB_CB(skb)->tcp_flags = flags;
404 
405 	tcp_skb_pcount_set(skb, 1);
406 
407 	TCP_SKB_CB(skb)->seq = seq;
408 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
409 		seq++;
410 	TCP_SKB_CB(skb)->end_seq = seq;
411 }
412 
413 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
414 {
415 	return tp->snd_una != tp->snd_up;
416 }
417 
418 #define OPTION_SACK_ADVERTISE	BIT(0)
419 #define OPTION_TS		BIT(1)
420 #define OPTION_MD5		BIT(2)
421 #define OPTION_WSCALE		BIT(3)
422 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
423 #define OPTION_SMC		BIT(9)
424 #define OPTION_MPTCP		BIT(10)
425 #define OPTION_AO		BIT(11)
426 
427 static void smc_options_write(__be32 *ptr, u16 *options)
428 {
429 #if IS_ENABLED(CONFIG_SMC)
430 	if (static_branch_unlikely(&tcp_have_smc)) {
431 		if (unlikely(OPTION_SMC & *options)) {
432 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
433 				       (TCPOPT_NOP  << 16) |
434 				       (TCPOPT_EXP <<  8) |
435 				       (TCPOLEN_EXP_SMC_BASE));
436 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
437 		}
438 	}
439 #endif
440 }
441 
442 struct tcp_out_options {
443 	u16 options;		/* bit field of OPTION_* */
444 	u16 mss;		/* 0 to disable */
445 	u8 ws;			/* window scale, 0 to disable */
446 	u8 num_sack_blocks;	/* number of SACK blocks to include */
447 	u8 hash_size;		/* bytes in hash_location */
448 	u8 bpf_opt_len;		/* length of BPF hdr option */
449 	__u8 *hash_location;	/* temporary pointer, overloaded */
450 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
451 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
452 	struct mptcp_out_options mptcp;
453 };
454 
455 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
456 				struct tcp_sock *tp,
457 				struct tcp_out_options *opts)
458 {
459 #if IS_ENABLED(CONFIG_MPTCP)
460 	if (unlikely(OPTION_MPTCP & opts->options))
461 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
462 #endif
463 }
464 
465 #ifdef CONFIG_CGROUP_BPF
466 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
467 					enum tcp_synack_type synack_type)
468 {
469 	if (unlikely(!skb))
470 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
471 
472 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
473 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
474 
475 	return 0;
476 }
477 
478 /* req, syn_skb and synack_type are used when writing synack */
479 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
480 				  struct request_sock *req,
481 				  struct sk_buff *syn_skb,
482 				  enum tcp_synack_type synack_type,
483 				  struct tcp_out_options *opts,
484 				  unsigned int *remaining)
485 {
486 	struct bpf_sock_ops_kern sock_ops;
487 	int err;
488 
489 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
490 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
491 	    !*remaining)
492 		return;
493 
494 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
495 
496 	/* init sock_ops */
497 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
498 
499 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
500 
501 	if (req) {
502 		/* The listen "sk" cannot be passed here because
503 		 * it is not locked.  It would not make too much
504 		 * sense to do bpf_setsockopt(listen_sk) based
505 		 * on individual connection request also.
506 		 *
507 		 * Thus, "req" is passed here and the cgroup-bpf-progs
508 		 * of the listen "sk" will be run.
509 		 *
510 		 * "req" is also used here for fastopen even the "sk" here is
511 		 * a fullsock "child" sk.  It is to keep the behavior
512 		 * consistent between fastopen and non-fastopen on
513 		 * the bpf programming side.
514 		 */
515 		sock_ops.sk = (struct sock *)req;
516 		sock_ops.syn_skb = syn_skb;
517 	} else {
518 		sock_owned_by_me(sk);
519 
520 		sock_ops.is_fullsock = 1;
521 		sock_ops.sk = sk;
522 	}
523 
524 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
525 	sock_ops.remaining_opt_len = *remaining;
526 	/* tcp_current_mss() does not pass a skb */
527 	if (skb)
528 		bpf_skops_init_skb(&sock_ops, skb, 0);
529 
530 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
531 
532 	if (err || sock_ops.remaining_opt_len == *remaining)
533 		return;
534 
535 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
536 	/* round up to 4 bytes */
537 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
538 
539 	*remaining -= opts->bpf_opt_len;
540 }
541 
542 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
543 				    struct request_sock *req,
544 				    struct sk_buff *syn_skb,
545 				    enum tcp_synack_type synack_type,
546 				    struct tcp_out_options *opts)
547 {
548 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
549 	struct bpf_sock_ops_kern sock_ops;
550 	int err;
551 
552 	if (likely(!max_opt_len))
553 		return;
554 
555 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
556 
557 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
558 
559 	if (req) {
560 		sock_ops.sk = (struct sock *)req;
561 		sock_ops.syn_skb = syn_skb;
562 	} else {
563 		sock_owned_by_me(sk);
564 
565 		sock_ops.is_fullsock = 1;
566 		sock_ops.sk = sk;
567 	}
568 
569 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
570 	sock_ops.remaining_opt_len = max_opt_len;
571 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
572 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
573 
574 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
575 
576 	if (err)
577 		nr_written = 0;
578 	else
579 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
580 
581 	if (nr_written < max_opt_len)
582 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
583 		       max_opt_len - nr_written);
584 }
585 #else
586 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
587 				  struct request_sock *req,
588 				  struct sk_buff *syn_skb,
589 				  enum tcp_synack_type synack_type,
590 				  struct tcp_out_options *opts,
591 				  unsigned int *remaining)
592 {
593 }
594 
595 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
596 				    struct request_sock *req,
597 				    struct sk_buff *syn_skb,
598 				    enum tcp_synack_type synack_type,
599 				    struct tcp_out_options *opts)
600 {
601 }
602 #endif
603 
604 /* Write previously computed TCP options to the packet.
605  *
606  * Beware: Something in the Internet is very sensitive to the ordering of
607  * TCP options, we learned this through the hard way, so be careful here.
608  * Luckily we can at least blame others for their non-compliance but from
609  * inter-operability perspective it seems that we're somewhat stuck with
610  * the ordering which we have been using if we want to keep working with
611  * those broken things (not that it currently hurts anybody as there isn't
612  * particular reason why the ordering would need to be changed).
613  *
614  * At least SACK_PERM as the first option is known to lead to a disaster
615  * (but it may well be that other scenarios fail similarly).
616  */
617 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
618 			      const struct tcp_request_sock *tcprsk,
619 			      struct tcp_out_options *opts,
620 			      struct tcp_key *key)
621 {
622 	__be32 *ptr = (__be32 *)(th + 1);
623 	u16 options = opts->options;	/* mungable copy */
624 
625 	if (tcp_key_is_md5(key)) {
626 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
627 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
628 		/* overload cookie hash location */
629 		opts->hash_location = (__u8 *)ptr;
630 		ptr += 4;
631 	} else if (tcp_key_is_ao(key)) {
632 #ifdef CONFIG_TCP_AO
633 		u8 maclen = tcp_ao_maclen(key->ao_key);
634 
635 		if (tcprsk) {
636 			u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
637 
638 			*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
639 				       (tcprsk->ao_keyid << 8) |
640 				       (tcprsk->ao_rcv_next));
641 		} else {
642 			struct tcp_ao_key *rnext_key;
643 			struct tcp_ao_info *ao_info;
644 
645 			ao_info = rcu_dereference_check(tp->ao_info,
646 				lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
647 			rnext_key = READ_ONCE(ao_info->rnext_key);
648 			if (WARN_ON_ONCE(!rnext_key))
649 				goto out_ao;
650 			*ptr++ = htonl((TCPOPT_AO << 24) |
651 				       (tcp_ao_len(key->ao_key) << 16) |
652 				       (key->ao_key->sndid << 8) |
653 				       (rnext_key->rcvid));
654 		}
655 		opts->hash_location = (__u8 *)ptr;
656 		ptr += maclen / sizeof(*ptr);
657 		if (unlikely(maclen % sizeof(*ptr))) {
658 			memset(ptr, TCPOPT_NOP, sizeof(*ptr));
659 			ptr++;
660 		}
661 out_ao:
662 #endif
663 	}
664 	if (unlikely(opts->mss)) {
665 		*ptr++ = htonl((TCPOPT_MSS << 24) |
666 			       (TCPOLEN_MSS << 16) |
667 			       opts->mss);
668 	}
669 
670 	if (likely(OPTION_TS & options)) {
671 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
672 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
673 				       (TCPOLEN_SACK_PERM << 16) |
674 				       (TCPOPT_TIMESTAMP << 8) |
675 				       TCPOLEN_TIMESTAMP);
676 			options &= ~OPTION_SACK_ADVERTISE;
677 		} else {
678 			*ptr++ = htonl((TCPOPT_NOP << 24) |
679 				       (TCPOPT_NOP << 16) |
680 				       (TCPOPT_TIMESTAMP << 8) |
681 				       TCPOLEN_TIMESTAMP);
682 		}
683 		*ptr++ = htonl(opts->tsval);
684 		*ptr++ = htonl(opts->tsecr);
685 	}
686 
687 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
688 		*ptr++ = htonl((TCPOPT_NOP << 24) |
689 			       (TCPOPT_NOP << 16) |
690 			       (TCPOPT_SACK_PERM << 8) |
691 			       TCPOLEN_SACK_PERM);
692 	}
693 
694 	if (unlikely(OPTION_WSCALE & options)) {
695 		*ptr++ = htonl((TCPOPT_NOP << 24) |
696 			       (TCPOPT_WINDOW << 16) |
697 			       (TCPOLEN_WINDOW << 8) |
698 			       opts->ws);
699 	}
700 
701 	if (unlikely(opts->num_sack_blocks)) {
702 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
703 			tp->duplicate_sack : tp->selective_acks;
704 		int this_sack;
705 
706 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
707 			       (TCPOPT_NOP  << 16) |
708 			       (TCPOPT_SACK <<  8) |
709 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
710 						     TCPOLEN_SACK_PERBLOCK)));
711 
712 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
713 		     ++this_sack) {
714 			*ptr++ = htonl(sp[this_sack].start_seq);
715 			*ptr++ = htonl(sp[this_sack].end_seq);
716 		}
717 
718 		tp->rx_opt.dsack = 0;
719 	}
720 
721 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
722 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
723 		u8 *p = (u8 *)ptr;
724 		u32 len; /* Fast Open option length */
725 
726 		if (foc->exp) {
727 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
728 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
729 				     TCPOPT_FASTOPEN_MAGIC);
730 			p += TCPOLEN_EXP_FASTOPEN_BASE;
731 		} else {
732 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
733 			*p++ = TCPOPT_FASTOPEN;
734 			*p++ = len;
735 		}
736 
737 		memcpy(p, foc->val, foc->len);
738 		if ((len & 3) == 2) {
739 			p[foc->len] = TCPOPT_NOP;
740 			p[foc->len + 1] = TCPOPT_NOP;
741 		}
742 		ptr += (len + 3) >> 2;
743 	}
744 
745 	smc_options_write(ptr, &options);
746 
747 	mptcp_options_write(th, ptr, tp, opts);
748 }
749 
750 static void smc_set_option(const struct tcp_sock *tp,
751 			   struct tcp_out_options *opts,
752 			   unsigned int *remaining)
753 {
754 #if IS_ENABLED(CONFIG_SMC)
755 	if (static_branch_unlikely(&tcp_have_smc)) {
756 		if (tp->syn_smc) {
757 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
758 				opts->options |= OPTION_SMC;
759 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
760 			}
761 		}
762 	}
763 #endif
764 }
765 
766 static void smc_set_option_cond(const struct tcp_sock *tp,
767 				const struct inet_request_sock *ireq,
768 				struct tcp_out_options *opts,
769 				unsigned int *remaining)
770 {
771 #if IS_ENABLED(CONFIG_SMC)
772 	if (static_branch_unlikely(&tcp_have_smc)) {
773 		if (tp->syn_smc && ireq->smc_ok) {
774 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
775 				opts->options |= OPTION_SMC;
776 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
777 			}
778 		}
779 	}
780 #endif
781 }
782 
783 static void mptcp_set_option_cond(const struct request_sock *req,
784 				  struct tcp_out_options *opts,
785 				  unsigned int *remaining)
786 {
787 	if (rsk_is_mptcp(req)) {
788 		unsigned int size;
789 
790 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
791 			if (*remaining >= size) {
792 				opts->options |= OPTION_MPTCP;
793 				*remaining -= size;
794 			}
795 		}
796 	}
797 }
798 
799 /* Compute TCP options for SYN packets. This is not the final
800  * network wire format yet.
801  */
802 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
803 				struct tcp_out_options *opts,
804 				struct tcp_key *key)
805 {
806 	struct tcp_sock *tp = tcp_sk(sk);
807 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
808 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
809 	bool timestamps;
810 
811 	/* Better than switch (key.type) as it has static branches */
812 	if (tcp_key_is_md5(key)) {
813 		timestamps = false;
814 		opts->options |= OPTION_MD5;
815 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
816 	} else {
817 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
818 		if (tcp_key_is_ao(key)) {
819 			opts->options |= OPTION_AO;
820 			remaining -= tcp_ao_len(key->ao_key);
821 		}
822 	}
823 
824 	/* We always get an MSS option.  The option bytes which will be seen in
825 	 * normal data packets should timestamps be used, must be in the MSS
826 	 * advertised.  But we subtract them from tp->mss_cache so that
827 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
828 	 * fact here if necessary.  If we don't do this correctly, as a
829 	 * receiver we won't recognize data packets as being full sized when we
830 	 * should, and thus we won't abide by the delayed ACK rules correctly.
831 	 * SACKs don't matter, we never delay an ACK when we have any of those
832 	 * going out.  */
833 	opts->mss = tcp_advertise_mss(sk);
834 	remaining -= TCPOLEN_MSS_ALIGNED;
835 
836 	if (likely(timestamps)) {
837 		opts->options |= OPTION_TS;
838 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
839 		opts->tsecr = tp->rx_opt.ts_recent;
840 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
841 	}
842 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
843 		opts->ws = tp->rx_opt.rcv_wscale;
844 		opts->options |= OPTION_WSCALE;
845 		remaining -= TCPOLEN_WSCALE_ALIGNED;
846 	}
847 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
848 		opts->options |= OPTION_SACK_ADVERTISE;
849 		if (unlikely(!(OPTION_TS & opts->options)))
850 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
851 	}
852 
853 	if (fastopen && fastopen->cookie.len >= 0) {
854 		u32 need = fastopen->cookie.len;
855 
856 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
857 					       TCPOLEN_FASTOPEN_BASE;
858 		need = (need + 3) & ~3U;  /* Align to 32 bits */
859 		if (remaining >= need) {
860 			opts->options |= OPTION_FAST_OPEN_COOKIE;
861 			opts->fastopen_cookie = &fastopen->cookie;
862 			remaining -= need;
863 			tp->syn_fastopen = 1;
864 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
865 		}
866 	}
867 
868 	smc_set_option(tp, opts, &remaining);
869 
870 	if (sk_is_mptcp(sk)) {
871 		unsigned int size;
872 
873 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
874 			opts->options |= OPTION_MPTCP;
875 			remaining -= size;
876 		}
877 	}
878 
879 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
880 
881 	return MAX_TCP_OPTION_SPACE - remaining;
882 }
883 
884 /* Set up TCP options for SYN-ACKs. */
885 static unsigned int tcp_synack_options(const struct sock *sk,
886 				       struct request_sock *req,
887 				       unsigned int mss, struct sk_buff *skb,
888 				       struct tcp_out_options *opts,
889 				       const struct tcp_key *key,
890 				       struct tcp_fastopen_cookie *foc,
891 				       enum tcp_synack_type synack_type,
892 				       struct sk_buff *syn_skb)
893 {
894 	struct inet_request_sock *ireq = inet_rsk(req);
895 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
896 
897 	if (tcp_key_is_md5(key)) {
898 		opts->options |= OPTION_MD5;
899 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
900 
901 		/* We can't fit any SACK blocks in a packet with MD5 + TS
902 		 * options. There was discussion about disabling SACK
903 		 * rather than TS in order to fit in better with old,
904 		 * buggy kernels, but that was deemed to be unnecessary.
905 		 */
906 		if (synack_type != TCP_SYNACK_COOKIE)
907 			ireq->tstamp_ok &= !ireq->sack_ok;
908 	} else if (tcp_key_is_ao(key)) {
909 		opts->options |= OPTION_AO;
910 		remaining -= tcp_ao_len(key->ao_key);
911 		ireq->tstamp_ok &= !ireq->sack_ok;
912 	}
913 
914 	/* We always send an MSS option. */
915 	opts->mss = mss;
916 	remaining -= TCPOLEN_MSS_ALIGNED;
917 
918 	if (likely(ireq->wscale_ok)) {
919 		opts->ws = ireq->rcv_wscale;
920 		opts->options |= OPTION_WSCALE;
921 		remaining -= TCPOLEN_WSCALE_ALIGNED;
922 	}
923 	if (likely(ireq->tstamp_ok)) {
924 		opts->options |= OPTION_TS;
925 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
926 			      tcp_rsk(req)->ts_off;
927 		opts->tsecr = READ_ONCE(req->ts_recent);
928 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
929 	}
930 	if (likely(ireq->sack_ok)) {
931 		opts->options |= OPTION_SACK_ADVERTISE;
932 		if (unlikely(!ireq->tstamp_ok))
933 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
934 	}
935 	if (foc != NULL && foc->len >= 0) {
936 		u32 need = foc->len;
937 
938 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
939 				   TCPOLEN_FASTOPEN_BASE;
940 		need = (need + 3) & ~3U;  /* Align to 32 bits */
941 		if (remaining >= need) {
942 			opts->options |= OPTION_FAST_OPEN_COOKIE;
943 			opts->fastopen_cookie = foc;
944 			remaining -= need;
945 		}
946 	}
947 
948 	mptcp_set_option_cond(req, opts, &remaining);
949 
950 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
951 
952 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
953 			      synack_type, opts, &remaining);
954 
955 	return MAX_TCP_OPTION_SPACE - remaining;
956 }
957 
958 /* Compute TCP options for ESTABLISHED sockets. This is not the
959  * final wire format yet.
960  */
961 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
962 					struct tcp_out_options *opts,
963 					struct tcp_key *key)
964 {
965 	struct tcp_sock *tp = tcp_sk(sk);
966 	unsigned int size = 0;
967 	unsigned int eff_sacks;
968 
969 	opts->options = 0;
970 
971 	/* Better than switch (key.type) as it has static branches */
972 	if (tcp_key_is_md5(key)) {
973 		opts->options |= OPTION_MD5;
974 		size += TCPOLEN_MD5SIG_ALIGNED;
975 	} else if (tcp_key_is_ao(key)) {
976 		opts->options |= OPTION_AO;
977 		size += tcp_ao_len(key->ao_key);
978 	}
979 
980 	if (likely(tp->rx_opt.tstamp_ok)) {
981 		opts->options |= OPTION_TS;
982 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
983 				tp->tsoffset : 0;
984 		opts->tsecr = tp->rx_opt.ts_recent;
985 		size += TCPOLEN_TSTAMP_ALIGNED;
986 	}
987 
988 	/* MPTCP options have precedence over SACK for the limited TCP
989 	 * option space because a MPTCP connection would be forced to
990 	 * fall back to regular TCP if a required multipath option is
991 	 * missing. SACK still gets a chance to use whatever space is
992 	 * left.
993 	 */
994 	if (sk_is_mptcp(sk)) {
995 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
996 		unsigned int opt_size = 0;
997 
998 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
999 					      &opts->mptcp)) {
1000 			opts->options |= OPTION_MPTCP;
1001 			size += opt_size;
1002 		}
1003 	}
1004 
1005 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1006 	if (unlikely(eff_sacks)) {
1007 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1008 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1009 					 TCPOLEN_SACK_PERBLOCK))
1010 			return size;
1011 
1012 		opts->num_sack_blocks =
1013 			min_t(unsigned int, eff_sacks,
1014 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1015 			      TCPOLEN_SACK_PERBLOCK);
1016 
1017 		size += TCPOLEN_SACK_BASE_ALIGNED +
1018 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1019 	}
1020 
1021 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1022 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1023 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1024 
1025 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1026 
1027 		size = MAX_TCP_OPTION_SPACE - remaining;
1028 	}
1029 
1030 	return size;
1031 }
1032 
1033 
1034 /* TCP SMALL QUEUES (TSQ)
1035  *
1036  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1037  * to reduce RTT and bufferbloat.
1038  * We do this using a special skb destructor (tcp_wfree).
1039  *
1040  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1041  * needs to be reallocated in a driver.
1042  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1043  *
1044  * Since transmit from skb destructor is forbidden, we use a tasklet
1045  * to process all sockets that eventually need to send more skbs.
1046  * We use one tasklet per cpu, with its own queue of sockets.
1047  */
1048 struct tsq_tasklet {
1049 	struct tasklet_struct	tasklet;
1050 	struct list_head	head; /* queue of tcp sockets */
1051 };
1052 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1053 
1054 static void tcp_tsq_write(struct sock *sk)
1055 {
1056 	if ((1 << sk->sk_state) &
1057 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1058 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1059 		struct tcp_sock *tp = tcp_sk(sk);
1060 
1061 		if (tp->lost_out > tp->retrans_out &&
1062 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1063 			tcp_mstamp_refresh(tp);
1064 			tcp_xmit_retransmit_queue(sk);
1065 		}
1066 
1067 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1068 			       0, GFP_ATOMIC);
1069 	}
1070 }
1071 
1072 static void tcp_tsq_handler(struct sock *sk)
1073 {
1074 	bh_lock_sock(sk);
1075 	if (!sock_owned_by_user(sk))
1076 		tcp_tsq_write(sk);
1077 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1078 		sock_hold(sk);
1079 	bh_unlock_sock(sk);
1080 }
1081 /*
1082  * One tasklet per cpu tries to send more skbs.
1083  * We run in tasklet context but need to disable irqs when
1084  * transferring tsq->head because tcp_wfree() might
1085  * interrupt us (non NAPI drivers)
1086  */
1087 static void tcp_tasklet_func(struct tasklet_struct *t)
1088 {
1089 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1090 	LIST_HEAD(list);
1091 	unsigned long flags;
1092 	struct list_head *q, *n;
1093 	struct tcp_sock *tp;
1094 	struct sock *sk;
1095 
1096 	local_irq_save(flags);
1097 	list_splice_init(&tsq->head, &list);
1098 	local_irq_restore(flags);
1099 
1100 	list_for_each_safe(q, n, &list) {
1101 		tp = list_entry(q, struct tcp_sock, tsq_node);
1102 		list_del(&tp->tsq_node);
1103 
1104 		sk = (struct sock *)tp;
1105 		smp_mb__before_atomic();
1106 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1107 
1108 		tcp_tsq_handler(sk);
1109 		sk_free(sk);
1110 	}
1111 }
1112 
1113 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1114 			  TCPF_WRITE_TIMER_DEFERRED |	\
1115 			  TCPF_DELACK_TIMER_DEFERRED |	\
1116 			  TCPF_MTU_REDUCED_DEFERRED |	\
1117 			  TCPF_ACK_DEFERRED)
1118 /**
1119  * tcp_release_cb - tcp release_sock() callback
1120  * @sk: socket
1121  *
1122  * called from release_sock() to perform protocol dependent
1123  * actions before socket release.
1124  */
1125 void tcp_release_cb(struct sock *sk)
1126 {
1127 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1128 	unsigned long nflags;
1129 
1130 	/* perform an atomic operation only if at least one flag is set */
1131 	do {
1132 		if (!(flags & TCP_DEFERRED_ALL))
1133 			return;
1134 		nflags = flags & ~TCP_DEFERRED_ALL;
1135 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1136 
1137 	if (flags & TCPF_TSQ_DEFERRED) {
1138 		tcp_tsq_write(sk);
1139 		__sock_put(sk);
1140 	}
1141 
1142 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1143 		tcp_write_timer_handler(sk);
1144 		__sock_put(sk);
1145 	}
1146 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1147 		tcp_delack_timer_handler(sk);
1148 		__sock_put(sk);
1149 	}
1150 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1151 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1152 		__sock_put(sk);
1153 	}
1154 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1155 		tcp_send_ack(sk);
1156 }
1157 EXPORT_SYMBOL(tcp_release_cb);
1158 
1159 void __init tcp_tasklet_init(void)
1160 {
1161 	int i;
1162 
1163 	for_each_possible_cpu(i) {
1164 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1165 
1166 		INIT_LIST_HEAD(&tsq->head);
1167 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1168 	}
1169 }
1170 
1171 /*
1172  * Write buffer destructor automatically called from kfree_skb.
1173  * We can't xmit new skbs from this context, as we might already
1174  * hold qdisc lock.
1175  */
1176 void tcp_wfree(struct sk_buff *skb)
1177 {
1178 	struct sock *sk = skb->sk;
1179 	struct tcp_sock *tp = tcp_sk(sk);
1180 	unsigned long flags, nval, oval;
1181 	struct tsq_tasklet *tsq;
1182 	bool empty;
1183 
1184 	/* Keep one reference on sk_wmem_alloc.
1185 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1186 	 */
1187 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1188 
1189 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1190 	 * Wait until our queues (qdisc + devices) are drained.
1191 	 * This gives :
1192 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1193 	 * - chance for incoming ACK (processed by another cpu maybe)
1194 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1195 	 */
1196 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1197 		goto out;
1198 
1199 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1200 	do {
1201 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1202 			goto out;
1203 
1204 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1205 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1206 
1207 	/* queue this socket to tasklet queue */
1208 	local_irq_save(flags);
1209 	tsq = this_cpu_ptr(&tsq_tasklet);
1210 	empty = list_empty(&tsq->head);
1211 	list_add(&tp->tsq_node, &tsq->head);
1212 	if (empty)
1213 		tasklet_schedule(&tsq->tasklet);
1214 	local_irq_restore(flags);
1215 	return;
1216 out:
1217 	sk_free(sk);
1218 }
1219 
1220 /* Note: Called under soft irq.
1221  * We can call TCP stack right away, unless socket is owned by user.
1222  */
1223 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1224 {
1225 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1226 	struct sock *sk = (struct sock *)tp;
1227 
1228 	tcp_tsq_handler(sk);
1229 	sock_put(sk);
1230 
1231 	return HRTIMER_NORESTART;
1232 }
1233 
1234 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1235 				      u64 prior_wstamp)
1236 {
1237 	struct tcp_sock *tp = tcp_sk(sk);
1238 
1239 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1240 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1241 
1242 		/* Original sch_fq does not pace first 10 MSS
1243 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1244 		 * this is a minor annoyance.
1245 		 */
1246 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1247 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1248 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1249 
1250 			/* take into account OS jitter */
1251 			len_ns -= min_t(u64, len_ns / 2, credit);
1252 			tp->tcp_wstamp_ns += len_ns;
1253 		}
1254 	}
1255 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1256 }
1257 
1258 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1259 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1260 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1261 
1262 /* This routine actually transmits TCP packets queued in by
1263  * tcp_do_sendmsg().  This is used by both the initial
1264  * transmission and possible later retransmissions.
1265  * All SKB's seen here are completely headerless.  It is our
1266  * job to build the TCP header, and pass the packet down to
1267  * IP so it can do the same plus pass the packet off to the
1268  * device.
1269  *
1270  * We are working here with either a clone of the original
1271  * SKB, or a fresh unique copy made by the retransmit engine.
1272  */
1273 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1274 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1275 {
1276 	const struct inet_connection_sock *icsk = inet_csk(sk);
1277 	struct inet_sock *inet;
1278 	struct tcp_sock *tp;
1279 	struct tcp_skb_cb *tcb;
1280 	struct tcp_out_options opts;
1281 	unsigned int tcp_options_size, tcp_header_size;
1282 	struct sk_buff *oskb = NULL;
1283 	struct tcp_key key;
1284 	struct tcphdr *th;
1285 	u64 prior_wstamp;
1286 	int err;
1287 
1288 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1289 	tp = tcp_sk(sk);
1290 	prior_wstamp = tp->tcp_wstamp_ns;
1291 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1292 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1293 	if (clone_it) {
1294 		oskb = skb;
1295 
1296 		tcp_skb_tsorted_save(oskb) {
1297 			if (unlikely(skb_cloned(oskb)))
1298 				skb = pskb_copy(oskb, gfp_mask);
1299 			else
1300 				skb = skb_clone(oskb, gfp_mask);
1301 		} tcp_skb_tsorted_restore(oskb);
1302 
1303 		if (unlikely(!skb))
1304 			return -ENOBUFS;
1305 		/* retransmit skbs might have a non zero value in skb->dev
1306 		 * because skb->dev is aliased with skb->rbnode.rb_left
1307 		 */
1308 		skb->dev = NULL;
1309 	}
1310 
1311 	inet = inet_sk(sk);
1312 	tcb = TCP_SKB_CB(skb);
1313 	memset(&opts, 0, sizeof(opts));
1314 
1315 	tcp_get_current_key(sk, &key);
1316 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1317 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1318 	} else {
1319 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1320 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1321 		 * at receiver : This slightly improve GRO performance.
1322 		 * Note that we do not force the PSH flag for non GSO packets,
1323 		 * because they might be sent under high congestion events,
1324 		 * and in this case it is better to delay the delivery of 1-MSS
1325 		 * packets and thus the corresponding ACK packet that would
1326 		 * release the following packet.
1327 		 */
1328 		if (tcp_skb_pcount(skb) > 1)
1329 			tcb->tcp_flags |= TCPHDR_PSH;
1330 	}
1331 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1332 
1333 	/* We set skb->ooo_okay to one if this packet can select
1334 	 * a different TX queue than prior packets of this flow,
1335 	 * to avoid self inflicted reorders.
1336 	 * The 'other' queue decision is based on current cpu number
1337 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1338 	 * We can switch to another (and better) queue if:
1339 	 * 1) No packet with payload is in qdisc/device queues.
1340 	 *    Delays in TX completion can defeat the test
1341 	 *    even if packets were already sent.
1342 	 * 2) Or rtx queue is empty.
1343 	 *    This mitigates above case if ACK packets for
1344 	 *    all prior packets were already processed.
1345 	 */
1346 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1347 			tcp_rtx_queue_empty(sk);
1348 
1349 	/* If we had to use memory reserve to allocate this skb,
1350 	 * this might cause drops if packet is looped back :
1351 	 * Other socket might not have SOCK_MEMALLOC.
1352 	 * Packets not looped back do not care about pfmemalloc.
1353 	 */
1354 	skb->pfmemalloc = 0;
1355 
1356 	skb_push(skb, tcp_header_size);
1357 	skb_reset_transport_header(skb);
1358 
1359 	skb_orphan(skb);
1360 	skb->sk = sk;
1361 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1362 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1363 
1364 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1365 
1366 	/* Build TCP header and checksum it. */
1367 	th = (struct tcphdr *)skb->data;
1368 	th->source		= inet->inet_sport;
1369 	th->dest		= inet->inet_dport;
1370 	th->seq			= htonl(tcb->seq);
1371 	th->ack_seq		= htonl(rcv_nxt);
1372 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1373 					tcb->tcp_flags);
1374 
1375 	th->check		= 0;
1376 	th->urg_ptr		= 0;
1377 
1378 	/* The urg_mode check is necessary during a below snd_una win probe */
1379 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1380 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1381 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1382 			th->urg = 1;
1383 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1384 			th->urg_ptr = htons(0xFFFF);
1385 			th->urg = 1;
1386 		}
1387 	}
1388 
1389 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1390 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1391 		th->window      = htons(tcp_select_window(sk));
1392 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1393 	} else {
1394 		/* RFC1323: The window in SYN & SYN/ACK segments
1395 		 * is never scaled.
1396 		 */
1397 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1398 	}
1399 
1400 	tcp_options_write(th, tp, NULL, &opts, &key);
1401 
1402 	if (tcp_key_is_md5(&key)) {
1403 #ifdef CONFIG_TCP_MD5SIG
1404 		/* Calculate the MD5 hash, as we have all we need now */
1405 		sk_gso_disable(sk);
1406 		tp->af_specific->calc_md5_hash(opts.hash_location,
1407 					       key.md5_key, sk, skb);
1408 #endif
1409 	} else if (tcp_key_is_ao(&key)) {
1410 		int err;
1411 
1412 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1413 					  opts.hash_location);
1414 		if (err) {
1415 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1416 			return -ENOMEM;
1417 		}
1418 	}
1419 
1420 	/* BPF prog is the last one writing header option */
1421 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1422 
1423 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1424 			   tcp_v6_send_check, tcp_v4_send_check,
1425 			   sk, skb);
1426 
1427 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1428 		tcp_event_ack_sent(sk, rcv_nxt);
1429 
1430 	if (skb->len != tcp_header_size) {
1431 		tcp_event_data_sent(tp, sk);
1432 		tp->data_segs_out += tcp_skb_pcount(skb);
1433 		tp->bytes_sent += skb->len - tcp_header_size;
1434 	}
1435 
1436 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1437 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1438 			      tcp_skb_pcount(skb));
1439 
1440 	tp->segs_out += tcp_skb_pcount(skb);
1441 	skb_set_hash_from_sk(skb, sk);
1442 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1443 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1444 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1445 
1446 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1447 
1448 	/* Cleanup our debris for IP stacks */
1449 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1450 			       sizeof(struct inet6_skb_parm)));
1451 
1452 	tcp_add_tx_delay(skb, tp);
1453 
1454 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1455 				 inet6_csk_xmit, ip_queue_xmit,
1456 				 sk, skb, &inet->cork.fl);
1457 
1458 	if (unlikely(err > 0)) {
1459 		tcp_enter_cwr(sk);
1460 		err = net_xmit_eval(err);
1461 	}
1462 	if (!err && oskb) {
1463 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1464 		tcp_rate_skb_sent(sk, oskb);
1465 	}
1466 	return err;
1467 }
1468 
1469 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1470 			    gfp_t gfp_mask)
1471 {
1472 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1473 				  tcp_sk(sk)->rcv_nxt);
1474 }
1475 
1476 /* This routine just queues the buffer for sending.
1477  *
1478  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1479  * otherwise socket can stall.
1480  */
1481 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1482 {
1483 	struct tcp_sock *tp = tcp_sk(sk);
1484 
1485 	/* Advance write_seq and place onto the write_queue. */
1486 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1487 	__skb_header_release(skb);
1488 	tcp_add_write_queue_tail(sk, skb);
1489 	sk_wmem_queued_add(sk, skb->truesize);
1490 	sk_mem_charge(sk, skb->truesize);
1491 }
1492 
1493 /* Initialize TSO segments for a packet. */
1494 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1495 {
1496 	if (skb->len <= mss_now) {
1497 		/* Avoid the costly divide in the normal
1498 		 * non-TSO case.
1499 		 */
1500 		tcp_skb_pcount_set(skb, 1);
1501 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1502 	} else {
1503 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1504 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1505 	}
1506 }
1507 
1508 /* Pcount in the middle of the write queue got changed, we need to do various
1509  * tweaks to fix counters
1510  */
1511 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1512 {
1513 	struct tcp_sock *tp = tcp_sk(sk);
1514 
1515 	tp->packets_out -= decr;
1516 
1517 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1518 		tp->sacked_out -= decr;
1519 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1520 		tp->retrans_out -= decr;
1521 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1522 		tp->lost_out -= decr;
1523 
1524 	/* Reno case is special. Sigh... */
1525 	if (tcp_is_reno(tp) && decr > 0)
1526 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1527 
1528 	if (tp->lost_skb_hint &&
1529 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1530 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1531 		tp->lost_cnt_hint -= decr;
1532 
1533 	tcp_verify_left_out(tp);
1534 }
1535 
1536 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1537 {
1538 	return TCP_SKB_CB(skb)->txstamp_ack ||
1539 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1540 }
1541 
1542 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1543 {
1544 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1545 
1546 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1547 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1548 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1549 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1550 
1551 		shinfo->tx_flags &= ~tsflags;
1552 		shinfo2->tx_flags |= tsflags;
1553 		swap(shinfo->tskey, shinfo2->tskey);
1554 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1555 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1556 	}
1557 }
1558 
1559 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1560 {
1561 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1562 	TCP_SKB_CB(skb)->eor = 0;
1563 }
1564 
1565 /* Insert buff after skb on the write or rtx queue of sk.  */
1566 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1567 					 struct sk_buff *buff,
1568 					 struct sock *sk,
1569 					 enum tcp_queue tcp_queue)
1570 {
1571 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1572 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1573 	else
1574 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1575 }
1576 
1577 /* Function to create two new TCP segments.  Shrinks the given segment
1578  * to the specified size and appends a new segment with the rest of the
1579  * packet to the list.  This won't be called frequently, I hope.
1580  * Remember, these are still headerless SKBs at this point.
1581  */
1582 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1583 		 struct sk_buff *skb, u32 len,
1584 		 unsigned int mss_now, gfp_t gfp)
1585 {
1586 	struct tcp_sock *tp = tcp_sk(sk);
1587 	struct sk_buff *buff;
1588 	int old_factor;
1589 	long limit;
1590 	int nlen;
1591 	u8 flags;
1592 
1593 	if (WARN_ON(len > skb->len))
1594 		return -EINVAL;
1595 
1596 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1597 
1598 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1599 	 * We need some allowance to not penalize applications setting small
1600 	 * SO_SNDBUF values.
1601 	 * Also allow first and last skb in retransmit queue to be split.
1602 	 */
1603 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1604 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1605 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1606 		     skb != tcp_rtx_queue_head(sk) &&
1607 		     skb != tcp_rtx_queue_tail(sk))) {
1608 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1609 		return -ENOMEM;
1610 	}
1611 
1612 	if (skb_unclone_keeptruesize(skb, gfp))
1613 		return -ENOMEM;
1614 
1615 	/* Get a new skb... force flag on. */
1616 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1617 	if (!buff)
1618 		return -ENOMEM; /* We'll just try again later. */
1619 	skb_copy_decrypted(buff, skb);
1620 	mptcp_skb_ext_copy(buff, skb);
1621 
1622 	sk_wmem_queued_add(sk, buff->truesize);
1623 	sk_mem_charge(sk, buff->truesize);
1624 	nlen = skb->len - len;
1625 	buff->truesize += nlen;
1626 	skb->truesize -= nlen;
1627 
1628 	/* Correct the sequence numbers. */
1629 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1630 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1631 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1632 
1633 	/* PSH and FIN should only be set in the second packet. */
1634 	flags = TCP_SKB_CB(skb)->tcp_flags;
1635 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1636 	TCP_SKB_CB(buff)->tcp_flags = flags;
1637 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1638 	tcp_skb_fragment_eor(skb, buff);
1639 
1640 	skb_split(skb, buff, len);
1641 
1642 	skb_set_delivery_time(buff, skb->tstamp, true);
1643 	tcp_fragment_tstamp(skb, buff);
1644 
1645 	old_factor = tcp_skb_pcount(skb);
1646 
1647 	/* Fix up tso_factor for both original and new SKB.  */
1648 	tcp_set_skb_tso_segs(skb, mss_now);
1649 	tcp_set_skb_tso_segs(buff, mss_now);
1650 
1651 	/* Update delivered info for the new segment */
1652 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1653 
1654 	/* If this packet has been sent out already, we must
1655 	 * adjust the various packet counters.
1656 	 */
1657 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1658 		int diff = old_factor - tcp_skb_pcount(skb) -
1659 			tcp_skb_pcount(buff);
1660 
1661 		if (diff)
1662 			tcp_adjust_pcount(sk, skb, diff);
1663 	}
1664 
1665 	/* Link BUFF into the send queue. */
1666 	__skb_header_release(buff);
1667 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1668 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1669 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1670 
1671 	return 0;
1672 }
1673 
1674 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1675  * data is not copied, but immediately discarded.
1676  */
1677 static int __pskb_trim_head(struct sk_buff *skb, int len)
1678 {
1679 	struct skb_shared_info *shinfo;
1680 	int i, k, eat;
1681 
1682 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1683 	eat = len;
1684 	k = 0;
1685 	shinfo = skb_shinfo(skb);
1686 	for (i = 0; i < shinfo->nr_frags; i++) {
1687 		int size = skb_frag_size(&shinfo->frags[i]);
1688 
1689 		if (size <= eat) {
1690 			skb_frag_unref(skb, i);
1691 			eat -= size;
1692 		} else {
1693 			shinfo->frags[k] = shinfo->frags[i];
1694 			if (eat) {
1695 				skb_frag_off_add(&shinfo->frags[k], eat);
1696 				skb_frag_size_sub(&shinfo->frags[k], eat);
1697 				eat = 0;
1698 			}
1699 			k++;
1700 		}
1701 	}
1702 	shinfo->nr_frags = k;
1703 
1704 	skb->data_len -= len;
1705 	skb->len = skb->data_len;
1706 	return len;
1707 }
1708 
1709 /* Remove acked data from a packet in the transmit queue. */
1710 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1711 {
1712 	u32 delta_truesize;
1713 
1714 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1715 		return -ENOMEM;
1716 
1717 	delta_truesize = __pskb_trim_head(skb, len);
1718 
1719 	TCP_SKB_CB(skb)->seq += len;
1720 
1721 	skb->truesize	   -= delta_truesize;
1722 	sk_wmem_queued_add(sk, -delta_truesize);
1723 	if (!skb_zcopy_pure(skb))
1724 		sk_mem_uncharge(sk, delta_truesize);
1725 
1726 	/* Any change of skb->len requires recalculation of tso factor. */
1727 	if (tcp_skb_pcount(skb) > 1)
1728 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1729 
1730 	return 0;
1731 }
1732 
1733 /* Calculate MSS not accounting any TCP options.  */
1734 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1735 {
1736 	const struct tcp_sock *tp = tcp_sk(sk);
1737 	const struct inet_connection_sock *icsk = inet_csk(sk);
1738 	int mss_now;
1739 
1740 	/* Calculate base mss without TCP options:
1741 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1742 	 */
1743 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1744 
1745 	/* Clamp it (mss_clamp does not include tcp options) */
1746 	if (mss_now > tp->rx_opt.mss_clamp)
1747 		mss_now = tp->rx_opt.mss_clamp;
1748 
1749 	/* Now subtract optional transport overhead */
1750 	mss_now -= icsk->icsk_ext_hdr_len;
1751 
1752 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1753 	mss_now = max(mss_now,
1754 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1755 	return mss_now;
1756 }
1757 
1758 /* Calculate MSS. Not accounting for SACKs here.  */
1759 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1760 {
1761 	/* Subtract TCP options size, not including SACKs */
1762 	return __tcp_mtu_to_mss(sk, pmtu) -
1763 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1764 }
1765 EXPORT_SYMBOL(tcp_mtu_to_mss);
1766 
1767 /* Inverse of above */
1768 int tcp_mss_to_mtu(struct sock *sk, int mss)
1769 {
1770 	const struct tcp_sock *tp = tcp_sk(sk);
1771 	const struct inet_connection_sock *icsk = inet_csk(sk);
1772 
1773 	return mss +
1774 	      tp->tcp_header_len +
1775 	      icsk->icsk_ext_hdr_len +
1776 	      icsk->icsk_af_ops->net_header_len;
1777 }
1778 EXPORT_SYMBOL(tcp_mss_to_mtu);
1779 
1780 /* MTU probing init per socket */
1781 void tcp_mtup_init(struct sock *sk)
1782 {
1783 	struct tcp_sock *tp = tcp_sk(sk);
1784 	struct inet_connection_sock *icsk = inet_csk(sk);
1785 	struct net *net = sock_net(sk);
1786 
1787 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1788 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1789 			       icsk->icsk_af_ops->net_header_len;
1790 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1791 	icsk->icsk_mtup.probe_size = 0;
1792 	if (icsk->icsk_mtup.enabled)
1793 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1794 }
1795 EXPORT_SYMBOL(tcp_mtup_init);
1796 
1797 /* This function synchronize snd mss to current pmtu/exthdr set.
1798 
1799    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1800    for TCP options, but includes only bare TCP header.
1801 
1802    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1803    It is minimum of user_mss and mss received with SYN.
1804    It also does not include TCP options.
1805 
1806    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1807 
1808    tp->mss_cache is current effective sending mss, including
1809    all tcp options except for SACKs. It is evaluated,
1810    taking into account current pmtu, but never exceeds
1811    tp->rx_opt.mss_clamp.
1812 
1813    NOTE1. rfc1122 clearly states that advertised MSS
1814    DOES NOT include either tcp or ip options.
1815 
1816    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1817    are READ ONLY outside this function.		--ANK (980731)
1818  */
1819 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1820 {
1821 	struct tcp_sock *tp = tcp_sk(sk);
1822 	struct inet_connection_sock *icsk = inet_csk(sk);
1823 	int mss_now;
1824 
1825 	if (icsk->icsk_mtup.search_high > pmtu)
1826 		icsk->icsk_mtup.search_high = pmtu;
1827 
1828 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1829 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1830 
1831 	/* And store cached results */
1832 	icsk->icsk_pmtu_cookie = pmtu;
1833 	if (icsk->icsk_mtup.enabled)
1834 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1835 	tp->mss_cache = mss_now;
1836 
1837 	return mss_now;
1838 }
1839 EXPORT_SYMBOL(tcp_sync_mss);
1840 
1841 /* Compute the current effective MSS, taking SACKs and IP options,
1842  * and even PMTU discovery events into account.
1843  */
1844 unsigned int tcp_current_mss(struct sock *sk)
1845 {
1846 	const struct tcp_sock *tp = tcp_sk(sk);
1847 	const struct dst_entry *dst = __sk_dst_get(sk);
1848 	u32 mss_now;
1849 	unsigned int header_len;
1850 	struct tcp_out_options opts;
1851 	struct tcp_key key;
1852 
1853 	mss_now = tp->mss_cache;
1854 
1855 	if (dst) {
1856 		u32 mtu = dst_mtu(dst);
1857 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1858 			mss_now = tcp_sync_mss(sk, mtu);
1859 	}
1860 	tcp_get_current_key(sk, &key);
1861 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1862 		     sizeof(struct tcphdr);
1863 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1864 	 * some common options. If this is an odd packet (because we have SACK
1865 	 * blocks etc) then our calculated header_len will be different, and
1866 	 * we have to adjust mss_now correspondingly */
1867 	if (header_len != tp->tcp_header_len) {
1868 		int delta = (int) header_len - tp->tcp_header_len;
1869 		mss_now -= delta;
1870 	}
1871 
1872 	return mss_now;
1873 }
1874 
1875 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1876  * As additional protections, we do not touch cwnd in retransmission phases,
1877  * and if application hit its sndbuf limit recently.
1878  */
1879 static void tcp_cwnd_application_limited(struct sock *sk)
1880 {
1881 	struct tcp_sock *tp = tcp_sk(sk);
1882 
1883 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1884 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1885 		/* Limited by application or receiver window. */
1886 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1887 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1888 		if (win_used < tcp_snd_cwnd(tp)) {
1889 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1890 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1891 		}
1892 		tp->snd_cwnd_used = 0;
1893 	}
1894 	tp->snd_cwnd_stamp = tcp_jiffies32;
1895 }
1896 
1897 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1898 {
1899 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1900 	struct tcp_sock *tp = tcp_sk(sk);
1901 
1902 	/* Track the strongest available signal of the degree to which the cwnd
1903 	 * is fully utilized. If cwnd-limited then remember that fact for the
1904 	 * current window. If not cwnd-limited then track the maximum number of
1905 	 * outstanding packets in the current window. (If cwnd-limited then we
1906 	 * chose to not update tp->max_packets_out to avoid an extra else
1907 	 * clause with no functional impact.)
1908 	 */
1909 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1910 	    is_cwnd_limited ||
1911 	    (!tp->is_cwnd_limited &&
1912 	     tp->packets_out > tp->max_packets_out)) {
1913 		tp->is_cwnd_limited = is_cwnd_limited;
1914 		tp->max_packets_out = tp->packets_out;
1915 		tp->cwnd_usage_seq = tp->snd_nxt;
1916 	}
1917 
1918 	if (tcp_is_cwnd_limited(sk)) {
1919 		/* Network is feed fully. */
1920 		tp->snd_cwnd_used = 0;
1921 		tp->snd_cwnd_stamp = tcp_jiffies32;
1922 	} else {
1923 		/* Network starves. */
1924 		if (tp->packets_out > tp->snd_cwnd_used)
1925 			tp->snd_cwnd_used = tp->packets_out;
1926 
1927 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1928 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1929 		    !ca_ops->cong_control)
1930 			tcp_cwnd_application_limited(sk);
1931 
1932 		/* The following conditions together indicate the starvation
1933 		 * is caused by insufficient sender buffer:
1934 		 * 1) just sent some data (see tcp_write_xmit)
1935 		 * 2) not cwnd limited (this else condition)
1936 		 * 3) no more data to send (tcp_write_queue_empty())
1937 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1938 		 */
1939 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1940 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1941 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1942 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1943 	}
1944 }
1945 
1946 /* Minshall's variant of the Nagle send check. */
1947 static bool tcp_minshall_check(const struct tcp_sock *tp)
1948 {
1949 	return after(tp->snd_sml, tp->snd_una) &&
1950 		!after(tp->snd_sml, tp->snd_nxt);
1951 }
1952 
1953 /* Update snd_sml if this skb is under mss
1954  * Note that a TSO packet might end with a sub-mss segment
1955  * The test is really :
1956  * if ((skb->len % mss) != 0)
1957  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1958  * But we can avoid doing the divide again given we already have
1959  *  skb_pcount = skb->len / mss_now
1960  */
1961 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1962 				const struct sk_buff *skb)
1963 {
1964 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1965 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1966 }
1967 
1968 /* Return false, if packet can be sent now without violation Nagle's rules:
1969  * 1. It is full sized. (provided by caller in %partial bool)
1970  * 2. Or it contains FIN. (already checked by caller)
1971  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1972  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1973  *    With Minshall's modification: all sent small packets are ACKed.
1974  */
1975 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1976 			    int nonagle)
1977 {
1978 	return partial &&
1979 		((nonagle & TCP_NAGLE_CORK) ||
1980 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1981 }
1982 
1983 /* Return how many segs we'd like on a TSO packet,
1984  * depending on current pacing rate, and how close the peer is.
1985  *
1986  * Rationale is:
1987  * - For close peers, we rather send bigger packets to reduce
1988  *   cpu costs, because occasional losses will be repaired fast.
1989  * - For long distance/rtt flows, we would like to get ACK clocking
1990  *   with 1 ACK per ms.
1991  *
1992  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1993  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1994  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1995  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1996  */
1997 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1998 			    int min_tso_segs)
1999 {
2000 	unsigned long bytes;
2001 	u32 r;
2002 
2003 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2004 
2005 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2006 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2007 		bytes += sk->sk_gso_max_size >> r;
2008 
2009 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2010 
2011 	return max_t(u32, bytes / mss_now, min_tso_segs);
2012 }
2013 
2014 /* Return the number of segments we want in the skb we are transmitting.
2015  * See if congestion control module wants to decide; otherwise, autosize.
2016  */
2017 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2018 {
2019 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2020 	u32 min_tso, tso_segs;
2021 
2022 	min_tso = ca_ops->min_tso_segs ?
2023 			ca_ops->min_tso_segs(sk) :
2024 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2025 
2026 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2027 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2028 }
2029 
2030 /* Returns the portion of skb which can be sent right away */
2031 static unsigned int tcp_mss_split_point(const struct sock *sk,
2032 					const struct sk_buff *skb,
2033 					unsigned int mss_now,
2034 					unsigned int max_segs,
2035 					int nonagle)
2036 {
2037 	const struct tcp_sock *tp = tcp_sk(sk);
2038 	u32 partial, needed, window, max_len;
2039 
2040 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2041 	max_len = mss_now * max_segs;
2042 
2043 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2044 		return max_len;
2045 
2046 	needed = min(skb->len, window);
2047 
2048 	if (max_len <= needed)
2049 		return max_len;
2050 
2051 	partial = needed % mss_now;
2052 	/* If last segment is not a full MSS, check if Nagle rules allow us
2053 	 * to include this last segment in this skb.
2054 	 * Otherwise, we'll split the skb at last MSS boundary
2055 	 */
2056 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2057 		return needed - partial;
2058 
2059 	return needed;
2060 }
2061 
2062 /* Can at least one segment of SKB be sent right now, according to the
2063  * congestion window rules?  If so, return how many segments are allowed.
2064  */
2065 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2066 					 const struct sk_buff *skb)
2067 {
2068 	u32 in_flight, cwnd, halfcwnd;
2069 
2070 	/* Don't be strict about the congestion window for the final FIN.  */
2071 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2072 	    tcp_skb_pcount(skb) == 1)
2073 		return 1;
2074 
2075 	in_flight = tcp_packets_in_flight(tp);
2076 	cwnd = tcp_snd_cwnd(tp);
2077 	if (in_flight >= cwnd)
2078 		return 0;
2079 
2080 	/* For better scheduling, ensure we have at least
2081 	 * 2 GSO packets in flight.
2082 	 */
2083 	halfcwnd = max(cwnd >> 1, 1U);
2084 	return min(halfcwnd, cwnd - in_flight);
2085 }
2086 
2087 /* Initialize TSO state of a skb.
2088  * This must be invoked the first time we consider transmitting
2089  * SKB onto the wire.
2090  */
2091 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2092 {
2093 	int tso_segs = tcp_skb_pcount(skb);
2094 
2095 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2096 		tcp_set_skb_tso_segs(skb, mss_now);
2097 		tso_segs = tcp_skb_pcount(skb);
2098 	}
2099 	return tso_segs;
2100 }
2101 
2102 
2103 /* Return true if the Nagle test allows this packet to be
2104  * sent now.
2105  */
2106 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2107 				  unsigned int cur_mss, int nonagle)
2108 {
2109 	/* Nagle rule does not apply to frames, which sit in the middle of the
2110 	 * write_queue (they have no chances to get new data).
2111 	 *
2112 	 * This is implemented in the callers, where they modify the 'nonagle'
2113 	 * argument based upon the location of SKB in the send queue.
2114 	 */
2115 	if (nonagle & TCP_NAGLE_PUSH)
2116 		return true;
2117 
2118 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2119 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2120 		return true;
2121 
2122 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2123 		return true;
2124 
2125 	return false;
2126 }
2127 
2128 /* Does at least the first segment of SKB fit into the send window? */
2129 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2130 			     const struct sk_buff *skb,
2131 			     unsigned int cur_mss)
2132 {
2133 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2134 
2135 	if (skb->len > cur_mss)
2136 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2137 
2138 	return !after(end_seq, tcp_wnd_end(tp));
2139 }
2140 
2141 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2142  * which is put after SKB on the list.  It is very much like
2143  * tcp_fragment() except that it may make several kinds of assumptions
2144  * in order to speed up the splitting operation.  In particular, we
2145  * know that all the data is in scatter-gather pages, and that the
2146  * packet has never been sent out before (and thus is not cloned).
2147  */
2148 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2149 			unsigned int mss_now, gfp_t gfp)
2150 {
2151 	int nlen = skb->len - len;
2152 	struct sk_buff *buff;
2153 	u8 flags;
2154 
2155 	/* All of a TSO frame must be composed of paged data.  */
2156 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2157 
2158 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2159 	if (unlikely(!buff))
2160 		return -ENOMEM;
2161 	skb_copy_decrypted(buff, skb);
2162 	mptcp_skb_ext_copy(buff, skb);
2163 
2164 	sk_wmem_queued_add(sk, buff->truesize);
2165 	sk_mem_charge(sk, buff->truesize);
2166 	buff->truesize += nlen;
2167 	skb->truesize -= nlen;
2168 
2169 	/* Correct the sequence numbers. */
2170 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2171 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2172 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2173 
2174 	/* PSH and FIN should only be set in the second packet. */
2175 	flags = TCP_SKB_CB(skb)->tcp_flags;
2176 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2177 	TCP_SKB_CB(buff)->tcp_flags = flags;
2178 
2179 	tcp_skb_fragment_eor(skb, buff);
2180 
2181 	skb_split(skb, buff, len);
2182 	tcp_fragment_tstamp(skb, buff);
2183 
2184 	/* Fix up tso_factor for both original and new SKB.  */
2185 	tcp_set_skb_tso_segs(skb, mss_now);
2186 	tcp_set_skb_tso_segs(buff, mss_now);
2187 
2188 	/* Link BUFF into the send queue. */
2189 	__skb_header_release(buff);
2190 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2191 
2192 	return 0;
2193 }
2194 
2195 /* Try to defer sending, if possible, in order to minimize the amount
2196  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2197  *
2198  * This algorithm is from John Heffner.
2199  */
2200 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2201 				 bool *is_cwnd_limited,
2202 				 bool *is_rwnd_limited,
2203 				 u32 max_segs)
2204 {
2205 	const struct inet_connection_sock *icsk = inet_csk(sk);
2206 	u32 send_win, cong_win, limit, in_flight;
2207 	struct tcp_sock *tp = tcp_sk(sk);
2208 	struct sk_buff *head;
2209 	int win_divisor;
2210 	s64 delta;
2211 
2212 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2213 		goto send_now;
2214 
2215 	/* Avoid bursty behavior by allowing defer
2216 	 * only if the last write was recent (1 ms).
2217 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2218 	 * packets waiting in a qdisc or device for EDT delivery.
2219 	 */
2220 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2221 	if (delta > 0)
2222 		goto send_now;
2223 
2224 	in_flight = tcp_packets_in_flight(tp);
2225 
2226 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2227 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2228 
2229 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2230 
2231 	/* From in_flight test above, we know that cwnd > in_flight.  */
2232 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2233 
2234 	limit = min(send_win, cong_win);
2235 
2236 	/* If a full-sized TSO skb can be sent, do it. */
2237 	if (limit >= max_segs * tp->mss_cache)
2238 		goto send_now;
2239 
2240 	/* Middle in queue won't get any more data, full sendable already? */
2241 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2242 		goto send_now;
2243 
2244 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2245 	if (win_divisor) {
2246 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2247 
2248 		/* If at least some fraction of a window is available,
2249 		 * just use it.
2250 		 */
2251 		chunk /= win_divisor;
2252 		if (limit >= chunk)
2253 			goto send_now;
2254 	} else {
2255 		/* Different approach, try not to defer past a single
2256 		 * ACK.  Receiver should ACK every other full sized
2257 		 * frame, so if we have space for more than 3 frames
2258 		 * then send now.
2259 		 */
2260 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2261 			goto send_now;
2262 	}
2263 
2264 	/* TODO : use tsorted_sent_queue ? */
2265 	head = tcp_rtx_queue_head(sk);
2266 	if (!head)
2267 		goto send_now;
2268 	delta = tp->tcp_clock_cache - head->tstamp;
2269 	/* If next ACK is likely to come too late (half srtt), do not defer */
2270 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2271 		goto send_now;
2272 
2273 	/* Ok, it looks like it is advisable to defer.
2274 	 * Three cases are tracked :
2275 	 * 1) We are cwnd-limited
2276 	 * 2) We are rwnd-limited
2277 	 * 3) We are application limited.
2278 	 */
2279 	if (cong_win < send_win) {
2280 		if (cong_win <= skb->len) {
2281 			*is_cwnd_limited = true;
2282 			return true;
2283 		}
2284 	} else {
2285 		if (send_win <= skb->len) {
2286 			*is_rwnd_limited = true;
2287 			return true;
2288 		}
2289 	}
2290 
2291 	/* If this packet won't get more data, do not wait. */
2292 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2293 	    TCP_SKB_CB(skb)->eor)
2294 		goto send_now;
2295 
2296 	return true;
2297 
2298 send_now:
2299 	return false;
2300 }
2301 
2302 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2303 {
2304 	struct inet_connection_sock *icsk = inet_csk(sk);
2305 	struct tcp_sock *tp = tcp_sk(sk);
2306 	struct net *net = sock_net(sk);
2307 	u32 interval;
2308 	s32 delta;
2309 
2310 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2311 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2312 	if (unlikely(delta >= interval * HZ)) {
2313 		int mss = tcp_current_mss(sk);
2314 
2315 		/* Update current search range */
2316 		icsk->icsk_mtup.probe_size = 0;
2317 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2318 			sizeof(struct tcphdr) +
2319 			icsk->icsk_af_ops->net_header_len;
2320 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2321 
2322 		/* Update probe time stamp */
2323 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2324 	}
2325 }
2326 
2327 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2328 {
2329 	struct sk_buff *skb, *next;
2330 
2331 	skb = tcp_send_head(sk);
2332 	tcp_for_write_queue_from_safe(skb, next, sk) {
2333 		if (len <= skb->len)
2334 			break;
2335 
2336 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2337 		    tcp_has_tx_tstamp(skb) ||
2338 		    !skb_pure_zcopy_same(skb, next))
2339 			return false;
2340 
2341 		len -= skb->len;
2342 	}
2343 
2344 	return true;
2345 }
2346 
2347 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2348 			     int probe_size)
2349 {
2350 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2351 	int i, todo, len = 0, nr_frags = 0;
2352 	const struct sk_buff *skb;
2353 
2354 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2355 		return -ENOMEM;
2356 
2357 	skb_queue_walk(&sk->sk_write_queue, skb) {
2358 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2359 
2360 		if (skb_headlen(skb))
2361 			return -EINVAL;
2362 
2363 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2364 			if (len >= probe_size)
2365 				goto commit;
2366 			todo = min_t(int, skb_frag_size(fragfrom),
2367 				     probe_size - len);
2368 			len += todo;
2369 			if (lastfrag &&
2370 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2371 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2372 						      skb_frag_size(lastfrag)) {
2373 				skb_frag_size_add(lastfrag, todo);
2374 				continue;
2375 			}
2376 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2377 				return -E2BIG;
2378 			skb_frag_page_copy(fragto, fragfrom);
2379 			skb_frag_off_copy(fragto, fragfrom);
2380 			skb_frag_size_set(fragto, todo);
2381 			nr_frags++;
2382 			lastfrag = fragto++;
2383 		}
2384 	}
2385 commit:
2386 	WARN_ON_ONCE(len != probe_size);
2387 	for (i = 0; i < nr_frags; i++)
2388 		skb_frag_ref(to, i);
2389 
2390 	skb_shinfo(to)->nr_frags = nr_frags;
2391 	to->truesize += probe_size;
2392 	to->len += probe_size;
2393 	to->data_len += probe_size;
2394 	__skb_header_release(to);
2395 	return 0;
2396 }
2397 
2398 /* Create a new MTU probe if we are ready.
2399  * MTU probe is regularly attempting to increase the path MTU by
2400  * deliberately sending larger packets.  This discovers routing
2401  * changes resulting in larger path MTUs.
2402  *
2403  * Returns 0 if we should wait to probe (no cwnd available),
2404  *         1 if a probe was sent,
2405  *         -1 otherwise
2406  */
2407 static int tcp_mtu_probe(struct sock *sk)
2408 {
2409 	struct inet_connection_sock *icsk = inet_csk(sk);
2410 	struct tcp_sock *tp = tcp_sk(sk);
2411 	struct sk_buff *skb, *nskb, *next;
2412 	struct net *net = sock_net(sk);
2413 	int probe_size;
2414 	int size_needed;
2415 	int copy, len;
2416 	int mss_now;
2417 	int interval;
2418 
2419 	/* Not currently probing/verifying,
2420 	 * not in recovery,
2421 	 * have enough cwnd, and
2422 	 * not SACKing (the variable headers throw things off)
2423 	 */
2424 	if (likely(!icsk->icsk_mtup.enabled ||
2425 		   icsk->icsk_mtup.probe_size ||
2426 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2427 		   tcp_snd_cwnd(tp) < 11 ||
2428 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2429 		return -1;
2430 
2431 	/* Use binary search for probe_size between tcp_mss_base,
2432 	 * and current mss_clamp. if (search_high - search_low)
2433 	 * smaller than a threshold, backoff from probing.
2434 	 */
2435 	mss_now = tcp_current_mss(sk);
2436 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2437 				    icsk->icsk_mtup.search_low) >> 1);
2438 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2439 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2440 	/* When misfortune happens, we are reprobing actively,
2441 	 * and then reprobe timer has expired. We stick with current
2442 	 * probing process by not resetting search range to its orignal.
2443 	 */
2444 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2445 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2446 		/* Check whether enough time has elaplased for
2447 		 * another round of probing.
2448 		 */
2449 		tcp_mtu_check_reprobe(sk);
2450 		return -1;
2451 	}
2452 
2453 	/* Have enough data in the send queue to probe? */
2454 	if (tp->write_seq - tp->snd_nxt < size_needed)
2455 		return -1;
2456 
2457 	if (tp->snd_wnd < size_needed)
2458 		return -1;
2459 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2460 		return 0;
2461 
2462 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2463 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2464 		if (!tcp_packets_in_flight(tp))
2465 			return -1;
2466 		else
2467 			return 0;
2468 	}
2469 
2470 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2471 		return -1;
2472 
2473 	/* We're allowed to probe.  Build it now. */
2474 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2475 	if (!nskb)
2476 		return -1;
2477 
2478 	/* build the payload, and be prepared to abort if this fails. */
2479 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2480 		tcp_skb_tsorted_anchor_cleanup(nskb);
2481 		consume_skb(nskb);
2482 		return -1;
2483 	}
2484 	sk_wmem_queued_add(sk, nskb->truesize);
2485 	sk_mem_charge(sk, nskb->truesize);
2486 
2487 	skb = tcp_send_head(sk);
2488 	skb_copy_decrypted(nskb, skb);
2489 	mptcp_skb_ext_copy(nskb, skb);
2490 
2491 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2492 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2493 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2494 
2495 	tcp_insert_write_queue_before(nskb, skb, sk);
2496 	tcp_highest_sack_replace(sk, skb, nskb);
2497 
2498 	len = 0;
2499 	tcp_for_write_queue_from_safe(skb, next, sk) {
2500 		copy = min_t(int, skb->len, probe_size - len);
2501 
2502 		if (skb->len <= copy) {
2503 			/* We've eaten all the data from this skb.
2504 			 * Throw it away. */
2505 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2506 			/* If this is the last SKB we copy and eor is set
2507 			 * we need to propagate it to the new skb.
2508 			 */
2509 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2510 			tcp_skb_collapse_tstamp(nskb, skb);
2511 			tcp_unlink_write_queue(skb, sk);
2512 			tcp_wmem_free_skb(sk, skb);
2513 		} else {
2514 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2515 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2516 			__pskb_trim_head(skb, copy);
2517 			tcp_set_skb_tso_segs(skb, mss_now);
2518 			TCP_SKB_CB(skb)->seq += copy;
2519 		}
2520 
2521 		len += copy;
2522 
2523 		if (len >= probe_size)
2524 			break;
2525 	}
2526 	tcp_init_tso_segs(nskb, nskb->len);
2527 
2528 	/* We're ready to send.  If this fails, the probe will
2529 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2530 	 */
2531 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2532 		/* Decrement cwnd here because we are sending
2533 		 * effectively two packets. */
2534 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2535 		tcp_event_new_data_sent(sk, nskb);
2536 
2537 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2538 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2539 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2540 
2541 		return 1;
2542 	}
2543 
2544 	return -1;
2545 }
2546 
2547 static bool tcp_pacing_check(struct sock *sk)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 
2551 	if (!tcp_needs_internal_pacing(sk))
2552 		return false;
2553 
2554 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2555 		return false;
2556 
2557 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2558 		hrtimer_start(&tp->pacing_timer,
2559 			      ns_to_ktime(tp->tcp_wstamp_ns),
2560 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2561 		sock_hold(sk);
2562 	}
2563 	return true;
2564 }
2565 
2566 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2567 {
2568 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2569 
2570 	/* No skb in the rtx queue. */
2571 	if (!node)
2572 		return true;
2573 
2574 	/* Only one skb in rtx queue. */
2575 	return !node->rb_left && !node->rb_right;
2576 }
2577 
2578 /* TCP Small Queues :
2579  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2580  * (These limits are doubled for retransmits)
2581  * This allows for :
2582  *  - better RTT estimation and ACK scheduling
2583  *  - faster recovery
2584  *  - high rates
2585  * Alas, some drivers / subsystems require a fair amount
2586  * of queued bytes to ensure line rate.
2587  * One example is wifi aggregation (802.11 AMPDU)
2588  */
2589 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2590 				  unsigned int factor)
2591 {
2592 	unsigned long limit;
2593 
2594 	limit = max_t(unsigned long,
2595 		      2 * skb->truesize,
2596 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2597 	if (sk->sk_pacing_status == SK_PACING_NONE)
2598 		limit = min_t(unsigned long, limit,
2599 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2600 	limit <<= factor;
2601 
2602 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2603 	    tcp_sk(sk)->tcp_tx_delay) {
2604 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2605 				  tcp_sk(sk)->tcp_tx_delay;
2606 
2607 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2608 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2609 		 * USEC_PER_SEC is approximated by 2^20.
2610 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2611 		 */
2612 		extra_bytes >>= (20 - 1);
2613 		limit += extra_bytes;
2614 	}
2615 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2616 		/* Always send skb if rtx queue is empty or has one skb.
2617 		 * No need to wait for TX completion to call us back,
2618 		 * after softirq/tasklet schedule.
2619 		 * This helps when TX completions are delayed too much.
2620 		 */
2621 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2622 			return false;
2623 
2624 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2625 		/* It is possible TX completion already happened
2626 		 * before we set TSQ_THROTTLED, so we must
2627 		 * test again the condition.
2628 		 */
2629 		smp_mb__after_atomic();
2630 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2631 			return true;
2632 	}
2633 	return false;
2634 }
2635 
2636 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2637 {
2638 	const u32 now = tcp_jiffies32;
2639 	enum tcp_chrono old = tp->chrono_type;
2640 
2641 	if (old > TCP_CHRONO_UNSPEC)
2642 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2643 	tp->chrono_start = now;
2644 	tp->chrono_type = new;
2645 }
2646 
2647 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2648 {
2649 	struct tcp_sock *tp = tcp_sk(sk);
2650 
2651 	/* If there are multiple conditions worthy of tracking in a
2652 	 * chronograph then the highest priority enum takes precedence
2653 	 * over the other conditions. So that if something "more interesting"
2654 	 * starts happening, stop the previous chrono and start a new one.
2655 	 */
2656 	if (type > tp->chrono_type)
2657 		tcp_chrono_set(tp, type);
2658 }
2659 
2660 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2661 {
2662 	struct tcp_sock *tp = tcp_sk(sk);
2663 
2664 
2665 	/* There are multiple conditions worthy of tracking in a
2666 	 * chronograph, so that the highest priority enum takes
2667 	 * precedence over the other conditions (see tcp_chrono_start).
2668 	 * If a condition stops, we only stop chrono tracking if
2669 	 * it's the "most interesting" or current chrono we are
2670 	 * tracking and starts busy chrono if we have pending data.
2671 	 */
2672 	if (tcp_rtx_and_write_queues_empty(sk))
2673 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2674 	else if (type == tp->chrono_type)
2675 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2676 }
2677 
2678 /* This routine writes packets to the network.  It advances the
2679  * send_head.  This happens as incoming acks open up the remote
2680  * window for us.
2681  *
2682  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2683  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2684  * account rare use of URG, this is not a big flaw.
2685  *
2686  * Send at most one packet when push_one > 0. Temporarily ignore
2687  * cwnd limit to force at most one packet out when push_one == 2.
2688 
2689  * Returns true, if no segments are in flight and we have queued segments,
2690  * but cannot send anything now because of SWS or another problem.
2691  */
2692 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2693 			   int push_one, gfp_t gfp)
2694 {
2695 	struct tcp_sock *tp = tcp_sk(sk);
2696 	struct sk_buff *skb;
2697 	unsigned int tso_segs, sent_pkts;
2698 	int cwnd_quota;
2699 	int result;
2700 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2701 	u32 max_segs;
2702 
2703 	sent_pkts = 0;
2704 
2705 	tcp_mstamp_refresh(tp);
2706 	if (!push_one) {
2707 		/* Do MTU probing. */
2708 		result = tcp_mtu_probe(sk);
2709 		if (!result) {
2710 			return false;
2711 		} else if (result > 0) {
2712 			sent_pkts = 1;
2713 		}
2714 	}
2715 
2716 	max_segs = tcp_tso_segs(sk, mss_now);
2717 	while ((skb = tcp_send_head(sk))) {
2718 		unsigned int limit;
2719 
2720 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2721 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2722 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2723 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2724 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2725 			tcp_init_tso_segs(skb, mss_now);
2726 			goto repair; /* Skip network transmission */
2727 		}
2728 
2729 		if (tcp_pacing_check(sk))
2730 			break;
2731 
2732 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2733 		BUG_ON(!tso_segs);
2734 
2735 		cwnd_quota = tcp_cwnd_test(tp, skb);
2736 		if (!cwnd_quota) {
2737 			if (push_one == 2)
2738 				/* Force out a loss probe pkt. */
2739 				cwnd_quota = 1;
2740 			else
2741 				break;
2742 		}
2743 
2744 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2745 			is_rwnd_limited = true;
2746 			break;
2747 		}
2748 
2749 		if (tso_segs == 1) {
2750 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2751 						     (tcp_skb_is_last(sk, skb) ?
2752 						      nonagle : TCP_NAGLE_PUSH))))
2753 				break;
2754 		} else {
2755 			if (!push_one &&
2756 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2757 						 &is_rwnd_limited, max_segs))
2758 				break;
2759 		}
2760 
2761 		limit = mss_now;
2762 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2763 			limit = tcp_mss_split_point(sk, skb, mss_now,
2764 						    min_t(unsigned int,
2765 							  cwnd_quota,
2766 							  max_segs),
2767 						    nonagle);
2768 
2769 		if (skb->len > limit &&
2770 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2771 			break;
2772 
2773 		if (tcp_small_queue_check(sk, skb, 0))
2774 			break;
2775 
2776 		/* Argh, we hit an empty skb(), presumably a thread
2777 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2778 		 * We do not want to send a pure-ack packet and have
2779 		 * a strange looking rtx queue with empty packet(s).
2780 		 */
2781 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2782 			break;
2783 
2784 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2785 			break;
2786 
2787 repair:
2788 		/* Advance the send_head.  This one is sent out.
2789 		 * This call will increment packets_out.
2790 		 */
2791 		tcp_event_new_data_sent(sk, skb);
2792 
2793 		tcp_minshall_update(tp, mss_now, skb);
2794 		sent_pkts += tcp_skb_pcount(skb);
2795 
2796 		if (push_one)
2797 			break;
2798 	}
2799 
2800 	if (is_rwnd_limited)
2801 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2802 	else
2803 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2804 
2805 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2806 	if (likely(sent_pkts || is_cwnd_limited))
2807 		tcp_cwnd_validate(sk, is_cwnd_limited);
2808 
2809 	if (likely(sent_pkts)) {
2810 		if (tcp_in_cwnd_reduction(sk))
2811 			tp->prr_out += sent_pkts;
2812 
2813 		/* Send one loss probe per tail loss episode. */
2814 		if (push_one != 2)
2815 			tcp_schedule_loss_probe(sk, false);
2816 		return false;
2817 	}
2818 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2819 }
2820 
2821 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2822 {
2823 	struct inet_connection_sock *icsk = inet_csk(sk);
2824 	struct tcp_sock *tp = tcp_sk(sk);
2825 	u32 timeout, timeout_us, rto_delta_us;
2826 	int early_retrans;
2827 
2828 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2829 	 * finishes.
2830 	 */
2831 	if (rcu_access_pointer(tp->fastopen_rsk))
2832 		return false;
2833 
2834 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2835 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2836 	 * not in loss recovery, that are either limited by cwnd or application.
2837 	 */
2838 	if ((early_retrans != 3 && early_retrans != 4) ||
2839 	    !tp->packets_out || !tcp_is_sack(tp) ||
2840 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2841 	     icsk->icsk_ca_state != TCP_CA_CWR))
2842 		return false;
2843 
2844 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2845 	 * for delayed ack when there's one outstanding packet. If no RTT
2846 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2847 	 */
2848 	if (tp->srtt_us) {
2849 		timeout_us = tp->srtt_us >> 2;
2850 		if (tp->packets_out == 1)
2851 			timeout_us += tcp_rto_min_us(sk);
2852 		else
2853 			timeout_us += TCP_TIMEOUT_MIN_US;
2854 		timeout = usecs_to_jiffies(timeout_us);
2855 	} else {
2856 		timeout = TCP_TIMEOUT_INIT;
2857 	}
2858 
2859 	/* If the RTO formula yields an earlier time, then use that time. */
2860 	rto_delta_us = advancing_rto ?
2861 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2862 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2863 	if (rto_delta_us > 0)
2864 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2865 
2866 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2867 	return true;
2868 }
2869 
2870 /* Thanks to skb fast clones, we can detect if a prior transmit of
2871  * a packet is still in a qdisc or driver queue.
2872  * In this case, there is very little point doing a retransmit !
2873  */
2874 static bool skb_still_in_host_queue(struct sock *sk,
2875 				    const struct sk_buff *skb)
2876 {
2877 	if (unlikely(skb_fclone_busy(sk, skb))) {
2878 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2879 		smp_mb__after_atomic();
2880 		if (skb_fclone_busy(sk, skb)) {
2881 			NET_INC_STATS(sock_net(sk),
2882 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2883 			return true;
2884 		}
2885 	}
2886 	return false;
2887 }
2888 
2889 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2890  * retransmit the last segment.
2891  */
2892 void tcp_send_loss_probe(struct sock *sk)
2893 {
2894 	struct tcp_sock *tp = tcp_sk(sk);
2895 	struct sk_buff *skb;
2896 	int pcount;
2897 	int mss = tcp_current_mss(sk);
2898 
2899 	/* At most one outstanding TLP */
2900 	if (tp->tlp_high_seq)
2901 		goto rearm_timer;
2902 
2903 	tp->tlp_retrans = 0;
2904 	skb = tcp_send_head(sk);
2905 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2906 		pcount = tp->packets_out;
2907 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2908 		if (tp->packets_out > pcount)
2909 			goto probe_sent;
2910 		goto rearm_timer;
2911 	}
2912 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2913 	if (unlikely(!skb)) {
2914 		WARN_ONCE(tp->packets_out,
2915 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2916 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2917 		inet_csk(sk)->icsk_pending = 0;
2918 		return;
2919 	}
2920 
2921 	if (skb_still_in_host_queue(sk, skb))
2922 		goto rearm_timer;
2923 
2924 	pcount = tcp_skb_pcount(skb);
2925 	if (WARN_ON(!pcount))
2926 		goto rearm_timer;
2927 
2928 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2929 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2930 					  (pcount - 1) * mss, mss,
2931 					  GFP_ATOMIC)))
2932 			goto rearm_timer;
2933 		skb = skb_rb_next(skb);
2934 	}
2935 
2936 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2937 		goto rearm_timer;
2938 
2939 	if (__tcp_retransmit_skb(sk, skb, 1))
2940 		goto rearm_timer;
2941 
2942 	tp->tlp_retrans = 1;
2943 
2944 probe_sent:
2945 	/* Record snd_nxt for loss detection. */
2946 	tp->tlp_high_seq = tp->snd_nxt;
2947 
2948 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2949 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2950 	inet_csk(sk)->icsk_pending = 0;
2951 rearm_timer:
2952 	tcp_rearm_rto(sk);
2953 }
2954 
2955 /* Push out any pending frames which were held back due to
2956  * TCP_CORK or attempt at coalescing tiny packets.
2957  * The socket must be locked by the caller.
2958  */
2959 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2960 			       int nonagle)
2961 {
2962 	/* If we are closed, the bytes will have to remain here.
2963 	 * In time closedown will finish, we empty the write queue and
2964 	 * all will be happy.
2965 	 */
2966 	if (unlikely(sk->sk_state == TCP_CLOSE))
2967 		return;
2968 
2969 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2970 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2971 		tcp_check_probe_timer(sk);
2972 }
2973 
2974 /* Send _single_ skb sitting at the send head. This function requires
2975  * true push pending frames to setup probe timer etc.
2976  */
2977 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2978 {
2979 	struct sk_buff *skb = tcp_send_head(sk);
2980 
2981 	BUG_ON(!skb || skb->len < mss_now);
2982 
2983 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2984 }
2985 
2986 /* This function returns the amount that we can raise the
2987  * usable window based on the following constraints
2988  *
2989  * 1. The window can never be shrunk once it is offered (RFC 793)
2990  * 2. We limit memory per socket
2991  *
2992  * RFC 1122:
2993  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2994  *  RECV.NEXT + RCV.WIN fixed until:
2995  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2996  *
2997  * i.e. don't raise the right edge of the window until you can raise
2998  * it at least MSS bytes.
2999  *
3000  * Unfortunately, the recommended algorithm breaks header prediction,
3001  * since header prediction assumes th->window stays fixed.
3002  *
3003  * Strictly speaking, keeping th->window fixed violates the receiver
3004  * side SWS prevention criteria. The problem is that under this rule
3005  * a stream of single byte packets will cause the right side of the
3006  * window to always advance by a single byte.
3007  *
3008  * Of course, if the sender implements sender side SWS prevention
3009  * then this will not be a problem.
3010  *
3011  * BSD seems to make the following compromise:
3012  *
3013  *	If the free space is less than the 1/4 of the maximum
3014  *	space available and the free space is less than 1/2 mss,
3015  *	then set the window to 0.
3016  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3017  *	Otherwise, just prevent the window from shrinking
3018  *	and from being larger than the largest representable value.
3019  *
3020  * This prevents incremental opening of the window in the regime
3021  * where TCP is limited by the speed of the reader side taking
3022  * data out of the TCP receive queue. It does nothing about
3023  * those cases where the window is constrained on the sender side
3024  * because the pipeline is full.
3025  *
3026  * BSD also seems to "accidentally" limit itself to windows that are a
3027  * multiple of MSS, at least until the free space gets quite small.
3028  * This would appear to be a side effect of the mbuf implementation.
3029  * Combining these two algorithms results in the observed behavior
3030  * of having a fixed window size at almost all times.
3031  *
3032  * Below we obtain similar behavior by forcing the offered window to
3033  * a multiple of the mss when it is feasible to do so.
3034  *
3035  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3036  * Regular options like TIMESTAMP are taken into account.
3037  */
3038 u32 __tcp_select_window(struct sock *sk)
3039 {
3040 	struct inet_connection_sock *icsk = inet_csk(sk);
3041 	struct tcp_sock *tp = tcp_sk(sk);
3042 	struct net *net = sock_net(sk);
3043 	/* MSS for the peer's data.  Previous versions used mss_clamp
3044 	 * here.  I don't know if the value based on our guesses
3045 	 * of peer's MSS is better for the performance.  It's more correct
3046 	 * but may be worse for the performance because of rcv_mss
3047 	 * fluctuations.  --SAW  1998/11/1
3048 	 */
3049 	int mss = icsk->icsk_ack.rcv_mss;
3050 	int free_space = tcp_space(sk);
3051 	int allowed_space = tcp_full_space(sk);
3052 	int full_space, window;
3053 
3054 	if (sk_is_mptcp(sk))
3055 		mptcp_space(sk, &free_space, &allowed_space);
3056 
3057 	full_space = min_t(int, tp->window_clamp, allowed_space);
3058 
3059 	if (unlikely(mss > full_space)) {
3060 		mss = full_space;
3061 		if (mss <= 0)
3062 			return 0;
3063 	}
3064 
3065 	/* Only allow window shrink if the sysctl is enabled and we have
3066 	 * a non-zero scaling factor in effect.
3067 	 */
3068 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3069 		goto shrink_window_allowed;
3070 
3071 	/* do not allow window to shrink */
3072 
3073 	if (free_space < (full_space >> 1)) {
3074 		icsk->icsk_ack.quick = 0;
3075 
3076 		if (tcp_under_memory_pressure(sk))
3077 			tcp_adjust_rcv_ssthresh(sk);
3078 
3079 		/* free_space might become our new window, make sure we don't
3080 		 * increase it due to wscale.
3081 		 */
3082 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3083 
3084 		/* if free space is less than mss estimate, or is below 1/16th
3085 		 * of the maximum allowed, try to move to zero-window, else
3086 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3087 		 * new incoming data is dropped due to memory limits.
3088 		 * With large window, mss test triggers way too late in order
3089 		 * to announce zero window in time before rmem limit kicks in.
3090 		 */
3091 		if (free_space < (allowed_space >> 4) || free_space < mss)
3092 			return 0;
3093 	}
3094 
3095 	if (free_space > tp->rcv_ssthresh)
3096 		free_space = tp->rcv_ssthresh;
3097 
3098 	/* Don't do rounding if we are using window scaling, since the
3099 	 * scaled window will not line up with the MSS boundary anyway.
3100 	 */
3101 	if (tp->rx_opt.rcv_wscale) {
3102 		window = free_space;
3103 
3104 		/* Advertise enough space so that it won't get scaled away.
3105 		 * Import case: prevent zero window announcement if
3106 		 * 1<<rcv_wscale > mss.
3107 		 */
3108 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3109 	} else {
3110 		window = tp->rcv_wnd;
3111 		/* Get the largest window that is a nice multiple of mss.
3112 		 * Window clamp already applied above.
3113 		 * If our current window offering is within 1 mss of the
3114 		 * free space we just keep it. This prevents the divide
3115 		 * and multiply from happening most of the time.
3116 		 * We also don't do any window rounding when the free space
3117 		 * is too small.
3118 		 */
3119 		if (window <= free_space - mss || window > free_space)
3120 			window = rounddown(free_space, mss);
3121 		else if (mss == full_space &&
3122 			 free_space > window + (full_space >> 1))
3123 			window = free_space;
3124 	}
3125 
3126 	return window;
3127 
3128 shrink_window_allowed:
3129 	/* new window should always be an exact multiple of scaling factor */
3130 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3131 
3132 	if (free_space < (full_space >> 1)) {
3133 		icsk->icsk_ack.quick = 0;
3134 
3135 		if (tcp_under_memory_pressure(sk))
3136 			tcp_adjust_rcv_ssthresh(sk);
3137 
3138 		/* if free space is too low, return a zero window */
3139 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3140 			free_space < (1 << tp->rx_opt.rcv_wscale))
3141 			return 0;
3142 	}
3143 
3144 	if (free_space > tp->rcv_ssthresh) {
3145 		free_space = tp->rcv_ssthresh;
3146 		/* new window should always be an exact multiple of scaling factor
3147 		 *
3148 		 * For this case, we ALIGN "up" (increase free_space) because
3149 		 * we know free_space is not zero here, it has been reduced from
3150 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3151 		 * (unlike sk_rcvbuf).
3152 		 */
3153 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3154 	}
3155 
3156 	return free_space;
3157 }
3158 
3159 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3160 			     const struct sk_buff *next_skb)
3161 {
3162 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3163 		const struct skb_shared_info *next_shinfo =
3164 			skb_shinfo(next_skb);
3165 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3166 
3167 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3168 		shinfo->tskey = next_shinfo->tskey;
3169 		TCP_SKB_CB(skb)->txstamp_ack |=
3170 			TCP_SKB_CB(next_skb)->txstamp_ack;
3171 	}
3172 }
3173 
3174 /* Collapses two adjacent SKB's during retransmission. */
3175 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3176 {
3177 	struct tcp_sock *tp = tcp_sk(sk);
3178 	struct sk_buff *next_skb = skb_rb_next(skb);
3179 	int next_skb_size;
3180 
3181 	next_skb_size = next_skb->len;
3182 
3183 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3184 
3185 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3186 		return false;
3187 
3188 	tcp_highest_sack_replace(sk, next_skb, skb);
3189 
3190 	/* Update sequence range on original skb. */
3191 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3192 
3193 	/* Merge over control information. This moves PSH/FIN etc. over */
3194 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3195 
3196 	/* All done, get rid of second SKB and account for it so
3197 	 * packet counting does not break.
3198 	 */
3199 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3200 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3201 
3202 	/* changed transmit queue under us so clear hints */
3203 	tcp_clear_retrans_hints_partial(tp);
3204 	if (next_skb == tp->retransmit_skb_hint)
3205 		tp->retransmit_skb_hint = skb;
3206 
3207 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3208 
3209 	tcp_skb_collapse_tstamp(skb, next_skb);
3210 
3211 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3212 	return true;
3213 }
3214 
3215 /* Check if coalescing SKBs is legal. */
3216 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3217 {
3218 	if (tcp_skb_pcount(skb) > 1)
3219 		return false;
3220 	if (skb_cloned(skb))
3221 		return false;
3222 	/* Some heuristics for collapsing over SACK'd could be invented */
3223 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3224 		return false;
3225 
3226 	return true;
3227 }
3228 
3229 /* Collapse packets in the retransmit queue to make to create
3230  * less packets on the wire. This is only done on retransmission.
3231  */
3232 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3233 				     int space)
3234 {
3235 	struct tcp_sock *tp = tcp_sk(sk);
3236 	struct sk_buff *skb = to, *tmp;
3237 	bool first = true;
3238 
3239 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3240 		return;
3241 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3242 		return;
3243 
3244 	skb_rbtree_walk_from_safe(skb, tmp) {
3245 		if (!tcp_can_collapse(sk, skb))
3246 			break;
3247 
3248 		if (!tcp_skb_can_collapse(to, skb))
3249 			break;
3250 
3251 		space -= skb->len;
3252 
3253 		if (first) {
3254 			first = false;
3255 			continue;
3256 		}
3257 
3258 		if (space < 0)
3259 			break;
3260 
3261 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3262 			break;
3263 
3264 		if (!tcp_collapse_retrans(sk, to))
3265 			break;
3266 	}
3267 }
3268 
3269 /* This retransmits one SKB.  Policy decisions and retransmit queue
3270  * state updates are done by the caller.  Returns non-zero if an
3271  * error occurred which prevented the send.
3272  */
3273 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3274 {
3275 	struct inet_connection_sock *icsk = inet_csk(sk);
3276 	struct tcp_sock *tp = tcp_sk(sk);
3277 	unsigned int cur_mss;
3278 	int diff, len, err;
3279 	int avail_wnd;
3280 
3281 	/* Inconclusive MTU probe */
3282 	if (icsk->icsk_mtup.probe_size)
3283 		icsk->icsk_mtup.probe_size = 0;
3284 
3285 	if (skb_still_in_host_queue(sk, skb))
3286 		return -EBUSY;
3287 
3288 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3289 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3290 			WARN_ON_ONCE(1);
3291 			return -EINVAL;
3292 		}
3293 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3294 			return -ENOMEM;
3295 	}
3296 
3297 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3298 		return -EHOSTUNREACH; /* Routing failure or similar. */
3299 
3300 	cur_mss = tcp_current_mss(sk);
3301 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3302 
3303 	/* If receiver has shrunk his window, and skb is out of
3304 	 * new window, do not retransmit it. The exception is the
3305 	 * case, when window is shrunk to zero. In this case
3306 	 * our retransmit of one segment serves as a zero window probe.
3307 	 */
3308 	if (avail_wnd <= 0) {
3309 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3310 			return -EAGAIN;
3311 		avail_wnd = cur_mss;
3312 	}
3313 
3314 	len = cur_mss * segs;
3315 	if (len > avail_wnd) {
3316 		len = rounddown(avail_wnd, cur_mss);
3317 		if (!len)
3318 			len = avail_wnd;
3319 	}
3320 	if (skb->len > len) {
3321 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3322 				 cur_mss, GFP_ATOMIC))
3323 			return -ENOMEM; /* We'll try again later. */
3324 	} else {
3325 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3326 			return -ENOMEM;
3327 
3328 		diff = tcp_skb_pcount(skb);
3329 		tcp_set_skb_tso_segs(skb, cur_mss);
3330 		diff -= tcp_skb_pcount(skb);
3331 		if (diff)
3332 			tcp_adjust_pcount(sk, skb, diff);
3333 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3334 		if (skb->len < avail_wnd)
3335 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3336 	}
3337 
3338 	/* RFC3168, section 6.1.1.1. ECN fallback */
3339 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3340 		tcp_ecn_clear_syn(sk, skb);
3341 
3342 	/* Update global and local TCP statistics. */
3343 	segs = tcp_skb_pcount(skb);
3344 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3345 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3346 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3347 	tp->total_retrans += segs;
3348 	tp->bytes_retrans += skb->len;
3349 
3350 	/* make sure skb->data is aligned on arches that require it
3351 	 * and check if ack-trimming & collapsing extended the headroom
3352 	 * beyond what csum_start can cover.
3353 	 */
3354 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3355 		     skb_headroom(skb) >= 0xFFFF)) {
3356 		struct sk_buff *nskb;
3357 
3358 		tcp_skb_tsorted_save(skb) {
3359 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3360 			if (nskb) {
3361 				nskb->dev = NULL;
3362 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3363 			} else {
3364 				err = -ENOBUFS;
3365 			}
3366 		} tcp_skb_tsorted_restore(skb);
3367 
3368 		if (!err) {
3369 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3370 			tcp_rate_skb_sent(sk, skb);
3371 		}
3372 	} else {
3373 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3374 	}
3375 
3376 	/* To avoid taking spuriously low RTT samples based on a timestamp
3377 	 * for a transmit that never happened, always mark EVER_RETRANS
3378 	 */
3379 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3380 
3381 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3382 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3383 				  TCP_SKB_CB(skb)->seq, segs, err);
3384 
3385 	if (likely(!err)) {
3386 		trace_tcp_retransmit_skb(sk, skb);
3387 	} else if (err != -EBUSY) {
3388 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3389 	}
3390 	return err;
3391 }
3392 
3393 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3394 {
3395 	struct tcp_sock *tp = tcp_sk(sk);
3396 	int err = __tcp_retransmit_skb(sk, skb, segs);
3397 
3398 	if (err == 0) {
3399 #if FASTRETRANS_DEBUG > 0
3400 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3401 			net_dbg_ratelimited("retrans_out leaked\n");
3402 		}
3403 #endif
3404 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3405 		tp->retrans_out += tcp_skb_pcount(skb);
3406 	}
3407 
3408 	/* Save stamp of the first (attempted) retransmit. */
3409 	if (!tp->retrans_stamp)
3410 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3411 
3412 	if (tp->undo_retrans < 0)
3413 		tp->undo_retrans = 0;
3414 	tp->undo_retrans += tcp_skb_pcount(skb);
3415 	return err;
3416 }
3417 
3418 /* This gets called after a retransmit timeout, and the initially
3419  * retransmitted data is acknowledged.  It tries to continue
3420  * resending the rest of the retransmit queue, until either
3421  * we've sent it all or the congestion window limit is reached.
3422  */
3423 void tcp_xmit_retransmit_queue(struct sock *sk)
3424 {
3425 	const struct inet_connection_sock *icsk = inet_csk(sk);
3426 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3427 	struct tcp_sock *tp = tcp_sk(sk);
3428 	bool rearm_timer = false;
3429 	u32 max_segs;
3430 	int mib_idx;
3431 
3432 	if (!tp->packets_out)
3433 		return;
3434 
3435 	rtx_head = tcp_rtx_queue_head(sk);
3436 	skb = tp->retransmit_skb_hint ?: rtx_head;
3437 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3438 	skb_rbtree_walk_from(skb) {
3439 		__u8 sacked;
3440 		int segs;
3441 
3442 		if (tcp_pacing_check(sk))
3443 			break;
3444 
3445 		/* we could do better than to assign each time */
3446 		if (!hole)
3447 			tp->retransmit_skb_hint = skb;
3448 
3449 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3450 		if (segs <= 0)
3451 			break;
3452 		sacked = TCP_SKB_CB(skb)->sacked;
3453 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3454 		 * we need to make sure not sending too bigs TSO packets
3455 		 */
3456 		segs = min_t(int, segs, max_segs);
3457 
3458 		if (tp->retrans_out >= tp->lost_out) {
3459 			break;
3460 		} else if (!(sacked & TCPCB_LOST)) {
3461 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3462 				hole = skb;
3463 			continue;
3464 
3465 		} else {
3466 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3467 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3468 			else
3469 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3470 		}
3471 
3472 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3473 			continue;
3474 
3475 		if (tcp_small_queue_check(sk, skb, 1))
3476 			break;
3477 
3478 		if (tcp_retransmit_skb(sk, skb, segs))
3479 			break;
3480 
3481 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3482 
3483 		if (tcp_in_cwnd_reduction(sk))
3484 			tp->prr_out += tcp_skb_pcount(skb);
3485 
3486 		if (skb == rtx_head &&
3487 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3488 			rearm_timer = true;
3489 
3490 	}
3491 	if (rearm_timer)
3492 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3493 				     inet_csk(sk)->icsk_rto,
3494 				     TCP_RTO_MAX);
3495 }
3496 
3497 /* We allow to exceed memory limits for FIN packets to expedite
3498  * connection tear down and (memory) recovery.
3499  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3500  * or even be forced to close flow without any FIN.
3501  * In general, we want to allow one skb per socket to avoid hangs
3502  * with edge trigger epoll()
3503  */
3504 void sk_forced_mem_schedule(struct sock *sk, int size)
3505 {
3506 	int delta, amt;
3507 
3508 	delta = size - sk->sk_forward_alloc;
3509 	if (delta <= 0)
3510 		return;
3511 	amt = sk_mem_pages(delta);
3512 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3513 	sk_memory_allocated_add(sk, amt);
3514 
3515 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3516 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3517 					gfp_memcg_charge() | __GFP_NOFAIL);
3518 }
3519 
3520 /* Send a FIN. The caller locks the socket for us.
3521  * We should try to send a FIN packet really hard, but eventually give up.
3522  */
3523 void tcp_send_fin(struct sock *sk)
3524 {
3525 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3526 	struct tcp_sock *tp = tcp_sk(sk);
3527 
3528 	/* Optimization, tack on the FIN if we have one skb in write queue and
3529 	 * this skb was not yet sent, or we are under memory pressure.
3530 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3531 	 * as TCP stack thinks it has already been transmitted.
3532 	 */
3533 	tskb = tail;
3534 	if (!tskb && tcp_under_memory_pressure(sk))
3535 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3536 
3537 	if (tskb) {
3538 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3539 		TCP_SKB_CB(tskb)->end_seq++;
3540 		tp->write_seq++;
3541 		if (!tail) {
3542 			/* This means tskb was already sent.
3543 			 * Pretend we included the FIN on previous transmit.
3544 			 * We need to set tp->snd_nxt to the value it would have
3545 			 * if FIN had been sent. This is because retransmit path
3546 			 * does not change tp->snd_nxt.
3547 			 */
3548 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3549 			return;
3550 		}
3551 	} else {
3552 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3553 		if (unlikely(!skb))
3554 			return;
3555 
3556 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3557 		skb_reserve(skb, MAX_TCP_HEADER);
3558 		sk_forced_mem_schedule(sk, skb->truesize);
3559 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3560 		tcp_init_nondata_skb(skb, tp->write_seq,
3561 				     TCPHDR_ACK | TCPHDR_FIN);
3562 		tcp_queue_skb(sk, skb);
3563 	}
3564 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3565 }
3566 
3567 /* We get here when a process closes a file descriptor (either due to
3568  * an explicit close() or as a byproduct of exit()'ing) and there
3569  * was unread data in the receive queue.  This behavior is recommended
3570  * by RFC 2525, section 2.17.  -DaveM
3571  */
3572 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3573 {
3574 	struct sk_buff *skb;
3575 
3576 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3577 
3578 	/* NOTE: No TCP options attached and we never retransmit this. */
3579 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3580 	if (!skb) {
3581 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3582 		return;
3583 	}
3584 
3585 	/* Reserve space for headers and prepare control bits. */
3586 	skb_reserve(skb, MAX_TCP_HEADER);
3587 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3588 			     TCPHDR_ACK | TCPHDR_RST);
3589 	tcp_mstamp_refresh(tcp_sk(sk));
3590 	/* Send it off. */
3591 	if (tcp_transmit_skb(sk, skb, 0, priority))
3592 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3593 
3594 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3595 	 * skb here is different to the troublesome skb, so use NULL
3596 	 */
3597 	trace_tcp_send_reset(sk, NULL);
3598 }
3599 
3600 /* Send a crossed SYN-ACK during socket establishment.
3601  * WARNING: This routine must only be called when we have already sent
3602  * a SYN packet that crossed the incoming SYN that caused this routine
3603  * to get called. If this assumption fails then the initial rcv_wnd
3604  * and rcv_wscale values will not be correct.
3605  */
3606 int tcp_send_synack(struct sock *sk)
3607 {
3608 	struct sk_buff *skb;
3609 
3610 	skb = tcp_rtx_queue_head(sk);
3611 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3612 		pr_err("%s: wrong queue state\n", __func__);
3613 		return -EFAULT;
3614 	}
3615 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3616 		if (skb_cloned(skb)) {
3617 			struct sk_buff *nskb;
3618 
3619 			tcp_skb_tsorted_save(skb) {
3620 				nskb = skb_copy(skb, GFP_ATOMIC);
3621 			} tcp_skb_tsorted_restore(skb);
3622 			if (!nskb)
3623 				return -ENOMEM;
3624 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3625 			tcp_highest_sack_replace(sk, skb, nskb);
3626 			tcp_rtx_queue_unlink_and_free(skb, sk);
3627 			__skb_header_release(nskb);
3628 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3629 			sk_wmem_queued_add(sk, nskb->truesize);
3630 			sk_mem_charge(sk, nskb->truesize);
3631 			skb = nskb;
3632 		}
3633 
3634 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3635 		tcp_ecn_send_synack(sk, skb);
3636 	}
3637 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3638 }
3639 
3640 /**
3641  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3642  * @sk: listener socket
3643  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3644  *       should not use it again.
3645  * @req: request_sock pointer
3646  * @foc: cookie for tcp fast open
3647  * @synack_type: Type of synack to prepare
3648  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3649  */
3650 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3651 				struct request_sock *req,
3652 				struct tcp_fastopen_cookie *foc,
3653 				enum tcp_synack_type synack_type,
3654 				struct sk_buff *syn_skb)
3655 {
3656 	struct inet_request_sock *ireq = inet_rsk(req);
3657 	const struct tcp_sock *tp = tcp_sk(sk);
3658 	struct tcp_out_options opts;
3659 	struct tcp_key key = {};
3660 	struct sk_buff *skb;
3661 	int tcp_header_size;
3662 	struct tcphdr *th;
3663 	int mss;
3664 	u64 now;
3665 
3666 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3667 	if (unlikely(!skb)) {
3668 		dst_release(dst);
3669 		return NULL;
3670 	}
3671 	/* Reserve space for headers. */
3672 	skb_reserve(skb, MAX_TCP_HEADER);
3673 
3674 	switch (synack_type) {
3675 	case TCP_SYNACK_NORMAL:
3676 		skb_set_owner_w(skb, req_to_sk(req));
3677 		break;
3678 	case TCP_SYNACK_COOKIE:
3679 		/* Under synflood, we do not attach skb to a socket,
3680 		 * to avoid false sharing.
3681 		 */
3682 		break;
3683 	case TCP_SYNACK_FASTOPEN:
3684 		/* sk is a const pointer, because we want to express multiple
3685 		 * cpu might call us concurrently.
3686 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3687 		 */
3688 		skb_set_owner_w(skb, (struct sock *)sk);
3689 		break;
3690 	}
3691 	skb_dst_set(skb, dst);
3692 
3693 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3694 
3695 	memset(&opts, 0, sizeof(opts));
3696 	if (tcp_rsk(req)->req_usec_ts < 0)
3697 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
3698 	now = tcp_clock_ns();
3699 #ifdef CONFIG_SYN_COOKIES
3700 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3701 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3702 				      true);
3703 	else
3704 #endif
3705 	{
3706 		skb_set_delivery_time(skb, now, true);
3707 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3708 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3709 	}
3710 
3711 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3712 	rcu_read_lock();
3713 #endif
3714 	if (tcp_rsk_used_ao(req)) {
3715 #ifdef CONFIG_TCP_AO
3716 		struct tcp_ao_key *ao_key = NULL;
3717 		u8 maclen = tcp_rsk(req)->maclen;
3718 		u8 keyid = tcp_rsk(req)->ao_keyid;
3719 
3720 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3721 							    keyid, -1);
3722 		/* If there is no matching key - avoid sending anything,
3723 		 * especially usigned segments. It could try harder and lookup
3724 		 * for another peer-matching key, but the peer has requested
3725 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3726 		 */
3727 		if (unlikely(!ao_key || tcp_ao_maclen(ao_key) != maclen)) {
3728 			u8 key_maclen = ao_key ? tcp_ao_maclen(ao_key) : 0;
3729 
3730 			rcu_read_unlock();
3731 			kfree_skb(skb);
3732 			net_warn_ratelimited("TCP-AO: the keyid %u with maclen %u|%u from SYN packet is not present - not sending SYNACK\n",
3733 					     keyid, maclen, key_maclen);
3734 			return NULL;
3735 		}
3736 		key.ao_key = ao_key;
3737 		key.type = TCP_KEY_AO;
3738 #endif
3739 	} else {
3740 #ifdef CONFIG_TCP_MD5SIG
3741 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3742 					req_to_sk(req));
3743 		if (key.md5_key)
3744 			key.type = TCP_KEY_MD5;
3745 #endif
3746 	}
3747 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3748 	/* bpf program will be interested in the tcp_flags */
3749 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3750 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3751 					     &key, foc, synack_type, syn_skb)
3752 					+ sizeof(*th);
3753 
3754 	skb_push(skb, tcp_header_size);
3755 	skb_reset_transport_header(skb);
3756 
3757 	th = (struct tcphdr *)skb->data;
3758 	memset(th, 0, sizeof(struct tcphdr));
3759 	th->syn = 1;
3760 	th->ack = 1;
3761 	tcp_ecn_make_synack(req, th);
3762 	th->source = htons(ireq->ir_num);
3763 	th->dest = ireq->ir_rmt_port;
3764 	skb->mark = ireq->ir_mark;
3765 	skb->ip_summed = CHECKSUM_PARTIAL;
3766 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3767 	/* XXX data is queued and acked as is. No buffer/window check */
3768 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3769 
3770 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3771 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3772 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3773 	th->doff = (tcp_header_size >> 2);
3774 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3775 
3776 	/* Okay, we have all we need - do the md5 hash if needed */
3777 	if (tcp_key_is_md5(&key)) {
3778 #ifdef CONFIG_TCP_MD5SIG
3779 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3780 					key.md5_key, req_to_sk(req), skb);
3781 #endif
3782 	} else if (tcp_key_is_ao(&key)) {
3783 #ifdef CONFIG_TCP_AO
3784 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3785 					key.ao_key, req, skb,
3786 					opts.hash_location - (u8 *)th, 0);
3787 #endif
3788 	}
3789 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3790 	rcu_read_unlock();
3791 #endif
3792 
3793 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3794 				synack_type, &opts);
3795 
3796 	skb_set_delivery_time(skb, now, true);
3797 	tcp_add_tx_delay(skb, tp);
3798 
3799 	return skb;
3800 }
3801 EXPORT_SYMBOL(tcp_make_synack);
3802 
3803 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3804 {
3805 	struct inet_connection_sock *icsk = inet_csk(sk);
3806 	const struct tcp_congestion_ops *ca;
3807 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3808 
3809 	if (ca_key == TCP_CA_UNSPEC)
3810 		return;
3811 
3812 	rcu_read_lock();
3813 	ca = tcp_ca_find_key(ca_key);
3814 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3815 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3816 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3817 		icsk->icsk_ca_ops = ca;
3818 	}
3819 	rcu_read_unlock();
3820 }
3821 
3822 /* Do all connect socket setups that can be done AF independent. */
3823 static void tcp_connect_init(struct sock *sk)
3824 {
3825 	const struct dst_entry *dst = __sk_dst_get(sk);
3826 	struct tcp_sock *tp = tcp_sk(sk);
3827 	__u8 rcv_wscale;
3828 	u32 rcv_wnd;
3829 
3830 	/* We'll fix this up when we get a response from the other end.
3831 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3832 	 */
3833 	tp->tcp_header_len = sizeof(struct tcphdr);
3834 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3835 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3836 
3837 	tcp_ao_connect_init(sk);
3838 
3839 	/* If user gave his TCP_MAXSEG, record it to clamp */
3840 	if (tp->rx_opt.user_mss)
3841 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3842 	tp->max_window = 0;
3843 	tcp_mtup_init(sk);
3844 	tcp_sync_mss(sk, dst_mtu(dst));
3845 
3846 	tcp_ca_dst_init(sk, dst);
3847 
3848 	if (!tp->window_clamp)
3849 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3850 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3851 
3852 	tcp_initialize_rcv_mss(sk);
3853 
3854 	/* limit the window selection if the user enforce a smaller rx buffer */
3855 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3856 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3857 		tp->window_clamp = tcp_full_space(sk);
3858 
3859 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3860 	if (rcv_wnd == 0)
3861 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3862 
3863 	tcp_select_initial_window(sk, tcp_full_space(sk),
3864 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3865 				  &tp->rcv_wnd,
3866 				  &tp->window_clamp,
3867 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3868 				  &rcv_wscale,
3869 				  rcv_wnd);
3870 
3871 	tp->rx_opt.rcv_wscale = rcv_wscale;
3872 	tp->rcv_ssthresh = tp->rcv_wnd;
3873 
3874 	WRITE_ONCE(sk->sk_err, 0);
3875 	sock_reset_flag(sk, SOCK_DONE);
3876 	tp->snd_wnd = 0;
3877 	tcp_init_wl(tp, 0);
3878 	tcp_write_queue_purge(sk);
3879 	tp->snd_una = tp->write_seq;
3880 	tp->snd_sml = tp->write_seq;
3881 	tp->snd_up = tp->write_seq;
3882 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3883 
3884 	if (likely(!tp->repair))
3885 		tp->rcv_nxt = 0;
3886 	else
3887 		tp->rcv_tstamp = tcp_jiffies32;
3888 	tp->rcv_wup = tp->rcv_nxt;
3889 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3890 
3891 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3892 	inet_csk(sk)->icsk_retransmits = 0;
3893 	tcp_clear_retrans(tp);
3894 }
3895 
3896 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3897 {
3898 	struct tcp_sock *tp = tcp_sk(sk);
3899 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3900 
3901 	tcb->end_seq += skb->len;
3902 	__skb_header_release(skb);
3903 	sk_wmem_queued_add(sk, skb->truesize);
3904 	sk_mem_charge(sk, skb->truesize);
3905 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3906 	tp->packets_out += tcp_skb_pcount(skb);
3907 }
3908 
3909 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3910  * queue a data-only packet after the regular SYN, such that regular SYNs
3911  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3912  * only the SYN sequence, the data are retransmitted in the first ACK.
3913  * If cookie is not cached or other error occurs, falls back to send a
3914  * regular SYN with Fast Open cookie request option.
3915  */
3916 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3917 {
3918 	struct inet_connection_sock *icsk = inet_csk(sk);
3919 	struct tcp_sock *tp = tcp_sk(sk);
3920 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3921 	struct page_frag *pfrag = sk_page_frag(sk);
3922 	struct sk_buff *syn_data;
3923 	int space, err = 0;
3924 
3925 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3926 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3927 		goto fallback;
3928 
3929 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3930 	 * user-MSS. Reserve maximum option space for middleboxes that add
3931 	 * private TCP options. The cost is reduced data space in SYN :(
3932 	 */
3933 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3934 	/* Sync mss_cache after updating the mss_clamp */
3935 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3936 
3937 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3938 		MAX_TCP_OPTION_SPACE;
3939 
3940 	space = min_t(size_t, space, fo->size);
3941 
3942 	if (space &&
3943 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3944 				  pfrag, sk->sk_allocation))
3945 		goto fallback;
3946 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3947 	if (!syn_data)
3948 		goto fallback;
3949 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3950 	if (space) {
3951 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3952 		space = tcp_wmem_schedule(sk, space);
3953 	}
3954 	if (space) {
3955 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3956 					    space, &fo->data->msg_iter);
3957 		if (unlikely(!space)) {
3958 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3959 			kfree_skb(syn_data);
3960 			goto fallback;
3961 		}
3962 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3963 				   pfrag->offset, space);
3964 		page_ref_inc(pfrag->page);
3965 		pfrag->offset += space;
3966 		skb_len_add(syn_data, space);
3967 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3968 	}
3969 	/* No more data pending in inet_wait_for_connect() */
3970 	if (space == fo->size)
3971 		fo->data = NULL;
3972 	fo->copied = space;
3973 
3974 	tcp_connect_queue_skb(sk, syn_data);
3975 	if (syn_data->len)
3976 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3977 
3978 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3979 
3980 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3981 
3982 	/* Now full SYN+DATA was cloned and sent (or not),
3983 	 * remove the SYN from the original skb (syn_data)
3984 	 * we keep in write queue in case of a retransmit, as we
3985 	 * also have the SYN packet (with no data) in the same queue.
3986 	 */
3987 	TCP_SKB_CB(syn_data)->seq++;
3988 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3989 	if (!err) {
3990 		tp->syn_data = (fo->copied > 0);
3991 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3992 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3993 		goto done;
3994 	}
3995 
3996 	/* data was not sent, put it in write_queue */
3997 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3998 	tp->packets_out -= tcp_skb_pcount(syn_data);
3999 
4000 fallback:
4001 	/* Send a regular SYN with Fast Open cookie request option */
4002 	if (fo->cookie.len > 0)
4003 		fo->cookie.len = 0;
4004 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4005 	if (err)
4006 		tp->syn_fastopen = 0;
4007 done:
4008 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4009 	return err;
4010 }
4011 
4012 /* Build a SYN and send it off. */
4013 int tcp_connect(struct sock *sk)
4014 {
4015 	struct tcp_sock *tp = tcp_sk(sk);
4016 	struct sk_buff *buff;
4017 	int err;
4018 
4019 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4020 
4021 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4022 	/* Has to be checked late, after setting daddr/saddr/ops.
4023 	 * Return error if the peer has both a md5 and a tcp-ao key
4024 	 * configured as this is ambiguous.
4025 	 */
4026 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4027 					       lockdep_sock_is_held(sk)))) {
4028 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4029 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4030 		struct tcp_ao_info *ao_info;
4031 
4032 		ao_info = rcu_dereference_check(tp->ao_info,
4033 						lockdep_sock_is_held(sk));
4034 		if (ao_info) {
4035 			/* This is an extra check: tcp_ao_required() in
4036 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4037 			 * md5 keys on ao_required socket.
4038 			 */
4039 			needs_ao |= ao_info->ao_required;
4040 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4041 		}
4042 		if (needs_md5 && needs_ao)
4043 			return -EKEYREJECTED;
4044 
4045 		/* If we have a matching md5 key and no matching tcp-ao key
4046 		 * then free up ao_info if allocated.
4047 		 */
4048 		if (needs_md5) {
4049 			tcp_ao_destroy_sock(sk, false);
4050 		} else if (needs_ao) {
4051 			tcp_clear_md5_list(sk);
4052 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4053 						  lockdep_sock_is_held(sk)));
4054 		}
4055 	}
4056 #endif
4057 #ifdef CONFIG_TCP_AO
4058 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4059 					       lockdep_sock_is_held(sk)))) {
4060 		/* Don't allow connecting if ao is configured but no
4061 		 * matching key is found.
4062 		 */
4063 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4064 			return -EKEYREJECTED;
4065 	}
4066 #endif
4067 
4068 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4069 		return -EHOSTUNREACH; /* Routing failure or similar. */
4070 
4071 	tcp_connect_init(sk);
4072 
4073 	if (unlikely(tp->repair)) {
4074 		tcp_finish_connect(sk, NULL);
4075 		return 0;
4076 	}
4077 
4078 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4079 	if (unlikely(!buff))
4080 		return -ENOBUFS;
4081 
4082 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4083 	tcp_mstamp_refresh(tp);
4084 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4085 	tcp_connect_queue_skb(sk, buff);
4086 	tcp_ecn_send_syn(sk, buff);
4087 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4088 
4089 	/* Send off SYN; include data in Fast Open. */
4090 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4091 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4092 	if (err == -ECONNREFUSED)
4093 		return err;
4094 
4095 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4096 	 * in order to make this packet get counted in tcpOutSegs.
4097 	 */
4098 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4099 	tp->pushed_seq = tp->write_seq;
4100 	buff = tcp_send_head(sk);
4101 	if (unlikely(buff)) {
4102 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4103 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4104 	}
4105 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4106 
4107 	/* Timer for repeating the SYN until an answer. */
4108 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4109 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4110 	return 0;
4111 }
4112 EXPORT_SYMBOL(tcp_connect);
4113 
4114 u32 tcp_delack_max(const struct sock *sk)
4115 {
4116 	const struct dst_entry *dst = __sk_dst_get(sk);
4117 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4118 
4119 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4120 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4121 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4122 
4123 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4124 	}
4125 	return delack_max;
4126 }
4127 
4128 /* Send out a delayed ack, the caller does the policy checking
4129  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4130  * for details.
4131  */
4132 void tcp_send_delayed_ack(struct sock *sk)
4133 {
4134 	struct inet_connection_sock *icsk = inet_csk(sk);
4135 	int ato = icsk->icsk_ack.ato;
4136 	unsigned long timeout;
4137 
4138 	if (ato > TCP_DELACK_MIN) {
4139 		const struct tcp_sock *tp = tcp_sk(sk);
4140 		int max_ato = HZ / 2;
4141 
4142 		if (inet_csk_in_pingpong_mode(sk) ||
4143 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4144 			max_ato = TCP_DELACK_MAX;
4145 
4146 		/* Slow path, intersegment interval is "high". */
4147 
4148 		/* If some rtt estimate is known, use it to bound delayed ack.
4149 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4150 		 * directly.
4151 		 */
4152 		if (tp->srtt_us) {
4153 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4154 					TCP_DELACK_MIN);
4155 
4156 			if (rtt < max_ato)
4157 				max_ato = rtt;
4158 		}
4159 
4160 		ato = min(ato, max_ato);
4161 	}
4162 
4163 	ato = min_t(u32, ato, tcp_delack_max(sk));
4164 
4165 	/* Stay within the limit we were given */
4166 	timeout = jiffies + ato;
4167 
4168 	/* Use new timeout only if there wasn't a older one earlier. */
4169 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4170 		/* If delack timer is about to expire, send ACK now. */
4171 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4172 			tcp_send_ack(sk);
4173 			return;
4174 		}
4175 
4176 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4177 			timeout = icsk->icsk_ack.timeout;
4178 	}
4179 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4180 	icsk->icsk_ack.timeout = timeout;
4181 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4182 }
4183 
4184 /* This routine sends an ack and also updates the window. */
4185 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4186 {
4187 	struct sk_buff *buff;
4188 
4189 	/* If we have been reset, we may not send again. */
4190 	if (sk->sk_state == TCP_CLOSE)
4191 		return;
4192 
4193 	/* We are not putting this on the write queue, so
4194 	 * tcp_transmit_skb() will set the ownership to this
4195 	 * sock.
4196 	 */
4197 	buff = alloc_skb(MAX_TCP_HEADER,
4198 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4199 	if (unlikely(!buff)) {
4200 		struct inet_connection_sock *icsk = inet_csk(sk);
4201 		unsigned long delay;
4202 
4203 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4204 		if (delay < TCP_RTO_MAX)
4205 			icsk->icsk_ack.retry++;
4206 		inet_csk_schedule_ack(sk);
4207 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4208 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4209 		return;
4210 	}
4211 
4212 	/* Reserve space for headers and prepare control bits. */
4213 	skb_reserve(buff, MAX_TCP_HEADER);
4214 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4215 
4216 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4217 	 * too much.
4218 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4219 	 */
4220 	skb_set_tcp_pure_ack(buff);
4221 
4222 	/* Send it off, this clears delayed acks for us. */
4223 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4224 }
4225 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4226 
4227 void tcp_send_ack(struct sock *sk)
4228 {
4229 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4230 }
4231 
4232 /* This routine sends a packet with an out of date sequence
4233  * number. It assumes the other end will try to ack it.
4234  *
4235  * Question: what should we make while urgent mode?
4236  * 4.4BSD forces sending single byte of data. We cannot send
4237  * out of window data, because we have SND.NXT==SND.MAX...
4238  *
4239  * Current solution: to send TWO zero-length segments in urgent mode:
4240  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4241  * out-of-date with SND.UNA-1 to probe window.
4242  */
4243 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4244 {
4245 	struct tcp_sock *tp = tcp_sk(sk);
4246 	struct sk_buff *skb;
4247 
4248 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4249 	skb = alloc_skb(MAX_TCP_HEADER,
4250 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4251 	if (!skb)
4252 		return -1;
4253 
4254 	/* Reserve space for headers and set control bits. */
4255 	skb_reserve(skb, MAX_TCP_HEADER);
4256 	/* Use a previous sequence.  This should cause the other
4257 	 * end to send an ack.  Don't queue or clone SKB, just
4258 	 * send it.
4259 	 */
4260 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4261 	NET_INC_STATS(sock_net(sk), mib);
4262 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4263 }
4264 
4265 /* Called from setsockopt( ... TCP_REPAIR ) */
4266 void tcp_send_window_probe(struct sock *sk)
4267 {
4268 	if (sk->sk_state == TCP_ESTABLISHED) {
4269 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4270 		tcp_mstamp_refresh(tcp_sk(sk));
4271 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4272 	}
4273 }
4274 
4275 /* Initiate keepalive or window probe from timer. */
4276 int tcp_write_wakeup(struct sock *sk, int mib)
4277 {
4278 	struct tcp_sock *tp = tcp_sk(sk);
4279 	struct sk_buff *skb;
4280 
4281 	if (sk->sk_state == TCP_CLOSE)
4282 		return -1;
4283 
4284 	skb = tcp_send_head(sk);
4285 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4286 		int err;
4287 		unsigned int mss = tcp_current_mss(sk);
4288 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4289 
4290 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4291 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4292 
4293 		/* We are probing the opening of a window
4294 		 * but the window size is != 0
4295 		 * must have been a result SWS avoidance ( sender )
4296 		 */
4297 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4298 		    skb->len > mss) {
4299 			seg_size = min(seg_size, mss);
4300 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4301 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4302 					 skb, seg_size, mss, GFP_ATOMIC))
4303 				return -1;
4304 		} else if (!tcp_skb_pcount(skb))
4305 			tcp_set_skb_tso_segs(skb, mss);
4306 
4307 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4308 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4309 		if (!err)
4310 			tcp_event_new_data_sent(sk, skb);
4311 		return err;
4312 	} else {
4313 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4314 			tcp_xmit_probe_skb(sk, 1, mib);
4315 		return tcp_xmit_probe_skb(sk, 0, mib);
4316 	}
4317 }
4318 
4319 /* A window probe timeout has occurred.  If window is not closed send
4320  * a partial packet else a zero probe.
4321  */
4322 void tcp_send_probe0(struct sock *sk)
4323 {
4324 	struct inet_connection_sock *icsk = inet_csk(sk);
4325 	struct tcp_sock *tp = tcp_sk(sk);
4326 	struct net *net = sock_net(sk);
4327 	unsigned long timeout;
4328 	int err;
4329 
4330 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4331 
4332 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4333 		/* Cancel probe timer, if it is not required. */
4334 		icsk->icsk_probes_out = 0;
4335 		icsk->icsk_backoff = 0;
4336 		icsk->icsk_probes_tstamp = 0;
4337 		return;
4338 	}
4339 
4340 	icsk->icsk_probes_out++;
4341 	if (err <= 0) {
4342 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4343 			icsk->icsk_backoff++;
4344 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4345 	} else {
4346 		/* If packet was not sent due to local congestion,
4347 		 * Let senders fight for local resources conservatively.
4348 		 */
4349 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4350 	}
4351 
4352 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4353 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4354 }
4355 
4356 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4357 {
4358 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4359 	struct flowi fl;
4360 	int res;
4361 
4362 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4363 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4364 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4365 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4366 				  NULL);
4367 	if (!res) {
4368 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4369 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4370 		if (unlikely(tcp_passive_fastopen(sk))) {
4371 			/* sk has const attribute because listeners are lockless.
4372 			 * However in this case, we are dealing with a passive fastopen
4373 			 * socket thus we can change total_retrans value.
4374 			 */
4375 			tcp_sk_rw(sk)->total_retrans++;
4376 		}
4377 		trace_tcp_retransmit_synack(sk, req);
4378 	}
4379 	return res;
4380 }
4381 EXPORT_SYMBOL(tcp_rtx_synack);
4382