1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 49 int push_one, gfp_t gfp); 50 51 /* Account for new data that has been sent to the network. */ 52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 53 { 54 struct inet_connection_sock *icsk = inet_csk(sk); 55 struct tcp_sock *tp = tcp_sk(sk); 56 unsigned int prior_packets = tp->packets_out; 57 58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 59 60 __skb_unlink(skb, &sk->sk_write_queue); 61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 62 63 tp->packets_out += tcp_skb_pcount(skb); 64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 65 tcp_rearm_rto(sk); 66 67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 68 tcp_skb_pcount(skb)); 69 } 70 71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 72 * window scaling factor due to loss of precision. 73 * If window has been shrunk, what should we make? It is not clear at all. 74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 76 * invalid. OK, let's make this for now: 77 */ 78 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 79 { 80 const struct tcp_sock *tp = tcp_sk(sk); 81 82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 83 (tp->rx_opt.wscale_ok && 84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 85 return tp->snd_nxt; 86 else 87 return tcp_wnd_end(tp); 88 } 89 90 /* Calculate mss to advertise in SYN segment. 91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 92 * 93 * 1. It is independent of path mtu. 94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 96 * attached devices, because some buggy hosts are confused by 97 * large MSS. 98 * 4. We do not make 3, we advertise MSS, calculated from first 99 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 100 * This may be overridden via information stored in routing table. 101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 102 * probably even Jumbo". 103 */ 104 static __u16 tcp_advertise_mss(struct sock *sk) 105 { 106 struct tcp_sock *tp = tcp_sk(sk); 107 const struct dst_entry *dst = __sk_dst_get(sk); 108 int mss = tp->advmss; 109 110 if (dst) { 111 unsigned int metric = dst_metric_advmss(dst); 112 113 if (metric < mss) { 114 mss = metric; 115 tp->advmss = mss; 116 } 117 } 118 119 return (__u16)mss; 120 } 121 122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 123 * This is the first part of cwnd validation mechanism. 124 */ 125 void tcp_cwnd_restart(struct sock *sk, s32 delta) 126 { 127 struct tcp_sock *tp = tcp_sk(sk); 128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 129 u32 cwnd = tp->snd_cwnd; 130 131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 132 133 tp->snd_ssthresh = tcp_current_ssthresh(sk); 134 restart_cwnd = min(restart_cwnd, cwnd); 135 136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 137 cwnd >>= 1; 138 tp->snd_cwnd = max(cwnd, restart_cwnd); 139 tp->snd_cwnd_stamp = tcp_jiffies32; 140 tp->snd_cwnd_used = 0; 141 } 142 143 /* Congestion state accounting after a packet has been sent. */ 144 static void tcp_event_data_sent(struct tcp_sock *tp, 145 struct sock *sk) 146 { 147 struct inet_connection_sock *icsk = inet_csk(sk); 148 const u32 now = tcp_jiffies32; 149 150 if (tcp_packets_in_flight(tp) == 0) 151 tcp_ca_event(sk, CA_EVENT_TX_START); 152 153 tp->lsndtime = now; 154 155 /* If it is a reply for ato after last received 156 * packet, enter pingpong mode. 157 */ 158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 159 icsk->icsk_ack.pingpong = 1; 160 } 161 162 /* Account for an ACK we sent. */ 163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 164 { 165 tcp_dec_quickack_mode(sk, pkts); 166 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 167 } 168 169 170 u32 tcp_default_init_rwnd(u32 mss) 171 { 172 /* Initial receive window should be twice of TCP_INIT_CWND to 173 * enable proper sending of new unsent data during fast recovery 174 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 175 * limit when mss is larger than 1460. 176 */ 177 u32 init_rwnd = TCP_INIT_CWND * 2; 178 179 if (mss > 1460) 180 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 181 return init_rwnd; 182 } 183 184 /* Determine a window scaling and initial window to offer. 185 * Based on the assumption that the given amount of space 186 * will be offered. Store the results in the tp structure. 187 * NOTE: for smooth operation initial space offering should 188 * be a multiple of mss if possible. We assume here that mss >= 1. 189 * This MUST be enforced by all callers. 190 */ 191 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 192 __u32 *rcv_wnd, __u32 *window_clamp, 193 int wscale_ok, __u8 *rcv_wscale, 194 __u32 init_rcv_wnd) 195 { 196 unsigned int space = (__space < 0 ? 0 : __space); 197 198 /* If no clamp set the clamp to the max possible scaled window */ 199 if (*window_clamp == 0) 200 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 201 space = min(*window_clamp, space); 202 203 /* Quantize space offering to a multiple of mss if possible. */ 204 if (space > mss) 205 space = rounddown(space, mss); 206 207 /* NOTE: offering an initial window larger than 32767 208 * will break some buggy TCP stacks. If the admin tells us 209 * it is likely we could be speaking with such a buggy stack 210 * we will truncate our initial window offering to 32K-1 211 * unless the remote has sent us a window scaling option, 212 * which we interpret as a sign the remote TCP is not 213 * misinterpreting the window field as a signed quantity. 214 */ 215 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 217 else 218 (*rcv_wnd) = space; 219 220 (*rcv_wscale) = 0; 221 if (wscale_ok) { 222 /* Set window scaling on max possible window */ 223 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 224 space = max_t(u32, space, sysctl_rmem_max); 225 space = min_t(u32, space, *window_clamp); 226 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 227 space >>= 1; 228 (*rcv_wscale)++; 229 } 230 } 231 232 if (mss > (1 << *rcv_wscale)) { 233 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 234 init_rcv_wnd = tcp_default_init_rwnd(mss); 235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 236 } 237 238 /* Set the clamp no higher than max representable value */ 239 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 240 } 241 EXPORT_SYMBOL(tcp_select_initial_window); 242 243 /* Chose a new window to advertise, update state in tcp_sock for the 244 * socket, and return result with RFC1323 scaling applied. The return 245 * value can be stuffed directly into th->window for an outgoing 246 * frame. 247 */ 248 static u16 tcp_select_window(struct sock *sk) 249 { 250 struct tcp_sock *tp = tcp_sk(sk); 251 u32 old_win = tp->rcv_wnd; 252 u32 cur_win = tcp_receive_window(tp); 253 u32 new_win = __tcp_select_window(sk); 254 255 /* Never shrink the offered window */ 256 if (new_win < cur_win) { 257 /* Danger Will Robinson! 258 * Don't update rcv_wup/rcv_wnd here or else 259 * we will not be able to advertise a zero 260 * window in time. --DaveM 261 * 262 * Relax Will Robinson. 263 */ 264 if (new_win == 0) 265 NET_INC_STATS(sock_net(sk), 266 LINUX_MIB_TCPWANTZEROWINDOWADV); 267 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 268 } 269 tp->rcv_wnd = new_win; 270 tp->rcv_wup = tp->rcv_nxt; 271 272 /* Make sure we do not exceed the maximum possible 273 * scaled window. 274 */ 275 if (!tp->rx_opt.rcv_wscale && 276 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 277 new_win = min(new_win, MAX_TCP_WINDOW); 278 else 279 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 280 281 /* RFC1323 scaling applied */ 282 new_win >>= tp->rx_opt.rcv_wscale; 283 284 /* If we advertise zero window, disable fast path. */ 285 if (new_win == 0) { 286 tp->pred_flags = 0; 287 if (old_win) 288 NET_INC_STATS(sock_net(sk), 289 LINUX_MIB_TCPTOZEROWINDOWADV); 290 } else if (old_win == 0) { 291 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 292 } 293 294 return new_win; 295 } 296 297 /* Packet ECN state for a SYN-ACK */ 298 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 299 { 300 const struct tcp_sock *tp = tcp_sk(sk); 301 302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 303 if (!(tp->ecn_flags & TCP_ECN_OK)) 304 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 305 else if (tcp_ca_needs_ecn(sk) || 306 tcp_bpf_ca_needs_ecn(sk)) 307 INET_ECN_xmit(sk); 308 } 309 310 /* Packet ECN state for a SYN. */ 311 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 312 { 313 struct tcp_sock *tp = tcp_sk(sk); 314 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 315 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 316 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 317 318 if (!use_ecn) { 319 const struct dst_entry *dst = __sk_dst_get(sk); 320 321 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 322 use_ecn = true; 323 } 324 325 tp->ecn_flags = 0; 326 327 if (use_ecn) { 328 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 329 tp->ecn_flags = TCP_ECN_OK; 330 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 331 INET_ECN_xmit(sk); 332 } 333 } 334 335 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 336 { 337 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 338 /* tp->ecn_flags are cleared at a later point in time when 339 * SYN ACK is ultimatively being received. 340 */ 341 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 342 } 343 344 static void 345 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 346 { 347 if (inet_rsk(req)->ecn_ok) 348 th->ece = 1; 349 } 350 351 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 352 * be sent. 353 */ 354 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 355 struct tcphdr *th, int tcp_header_len) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 359 if (tp->ecn_flags & TCP_ECN_OK) { 360 /* Not-retransmitted data segment: set ECT and inject CWR. */ 361 if (skb->len != tcp_header_len && 362 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 363 INET_ECN_xmit(sk); 364 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 365 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 366 th->cwr = 1; 367 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 368 } 369 } else if (!tcp_ca_needs_ecn(sk)) { 370 /* ACK or retransmitted segment: clear ECT|CE */ 371 INET_ECN_dontxmit(sk); 372 } 373 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 374 th->ece = 1; 375 } 376 } 377 378 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 379 * auto increment end seqno. 380 */ 381 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 382 { 383 skb->ip_summed = CHECKSUM_PARTIAL; 384 385 TCP_SKB_CB(skb)->tcp_flags = flags; 386 TCP_SKB_CB(skb)->sacked = 0; 387 388 tcp_skb_pcount_set(skb, 1); 389 390 TCP_SKB_CB(skb)->seq = seq; 391 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 392 seq++; 393 TCP_SKB_CB(skb)->end_seq = seq; 394 } 395 396 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 397 { 398 return tp->snd_una != tp->snd_up; 399 } 400 401 #define OPTION_SACK_ADVERTISE (1 << 0) 402 #define OPTION_TS (1 << 1) 403 #define OPTION_MD5 (1 << 2) 404 #define OPTION_WSCALE (1 << 3) 405 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 406 #define OPTION_SMC (1 << 9) 407 408 static void smc_options_write(__be32 *ptr, u16 *options) 409 { 410 #if IS_ENABLED(CONFIG_SMC) 411 if (static_branch_unlikely(&tcp_have_smc)) { 412 if (unlikely(OPTION_SMC & *options)) { 413 *ptr++ = htonl((TCPOPT_NOP << 24) | 414 (TCPOPT_NOP << 16) | 415 (TCPOPT_EXP << 8) | 416 (TCPOLEN_EXP_SMC_BASE)); 417 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 418 } 419 } 420 #endif 421 } 422 423 struct tcp_out_options { 424 u16 options; /* bit field of OPTION_* */ 425 u16 mss; /* 0 to disable */ 426 u8 ws; /* window scale, 0 to disable */ 427 u8 num_sack_blocks; /* number of SACK blocks to include */ 428 u8 hash_size; /* bytes in hash_location */ 429 __u8 *hash_location; /* temporary pointer, overloaded */ 430 __u32 tsval, tsecr; /* need to include OPTION_TS */ 431 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 432 }; 433 434 /* Write previously computed TCP options to the packet. 435 * 436 * Beware: Something in the Internet is very sensitive to the ordering of 437 * TCP options, we learned this through the hard way, so be careful here. 438 * Luckily we can at least blame others for their non-compliance but from 439 * inter-operability perspective it seems that we're somewhat stuck with 440 * the ordering which we have been using if we want to keep working with 441 * those broken things (not that it currently hurts anybody as there isn't 442 * particular reason why the ordering would need to be changed). 443 * 444 * At least SACK_PERM as the first option is known to lead to a disaster 445 * (but it may well be that other scenarios fail similarly). 446 */ 447 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 448 struct tcp_out_options *opts) 449 { 450 u16 options = opts->options; /* mungable copy */ 451 452 if (unlikely(OPTION_MD5 & options)) { 453 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 454 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 455 /* overload cookie hash location */ 456 opts->hash_location = (__u8 *)ptr; 457 ptr += 4; 458 } 459 460 if (unlikely(opts->mss)) { 461 *ptr++ = htonl((TCPOPT_MSS << 24) | 462 (TCPOLEN_MSS << 16) | 463 opts->mss); 464 } 465 466 if (likely(OPTION_TS & options)) { 467 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 468 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 469 (TCPOLEN_SACK_PERM << 16) | 470 (TCPOPT_TIMESTAMP << 8) | 471 TCPOLEN_TIMESTAMP); 472 options &= ~OPTION_SACK_ADVERTISE; 473 } else { 474 *ptr++ = htonl((TCPOPT_NOP << 24) | 475 (TCPOPT_NOP << 16) | 476 (TCPOPT_TIMESTAMP << 8) | 477 TCPOLEN_TIMESTAMP); 478 } 479 *ptr++ = htonl(opts->tsval); 480 *ptr++ = htonl(opts->tsecr); 481 } 482 483 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 484 *ptr++ = htonl((TCPOPT_NOP << 24) | 485 (TCPOPT_NOP << 16) | 486 (TCPOPT_SACK_PERM << 8) | 487 TCPOLEN_SACK_PERM); 488 } 489 490 if (unlikely(OPTION_WSCALE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_WINDOW << 16) | 493 (TCPOLEN_WINDOW << 8) | 494 opts->ws); 495 } 496 497 if (unlikely(opts->num_sack_blocks)) { 498 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 499 tp->duplicate_sack : tp->selective_acks; 500 int this_sack; 501 502 *ptr++ = htonl((TCPOPT_NOP << 24) | 503 (TCPOPT_NOP << 16) | 504 (TCPOPT_SACK << 8) | 505 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 506 TCPOLEN_SACK_PERBLOCK))); 507 508 for (this_sack = 0; this_sack < opts->num_sack_blocks; 509 ++this_sack) { 510 *ptr++ = htonl(sp[this_sack].start_seq); 511 *ptr++ = htonl(sp[this_sack].end_seq); 512 } 513 514 tp->rx_opt.dsack = 0; 515 } 516 517 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 518 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 519 u8 *p = (u8 *)ptr; 520 u32 len; /* Fast Open option length */ 521 522 if (foc->exp) { 523 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 524 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 525 TCPOPT_FASTOPEN_MAGIC); 526 p += TCPOLEN_EXP_FASTOPEN_BASE; 527 } else { 528 len = TCPOLEN_FASTOPEN_BASE + foc->len; 529 *p++ = TCPOPT_FASTOPEN; 530 *p++ = len; 531 } 532 533 memcpy(p, foc->val, foc->len); 534 if ((len & 3) == 2) { 535 p[foc->len] = TCPOPT_NOP; 536 p[foc->len + 1] = TCPOPT_NOP; 537 } 538 ptr += (len + 3) >> 2; 539 } 540 541 smc_options_write(ptr, &options); 542 } 543 544 static void smc_set_option(const struct tcp_sock *tp, 545 struct tcp_out_options *opts, 546 unsigned int *remaining) 547 { 548 #if IS_ENABLED(CONFIG_SMC) 549 if (static_branch_unlikely(&tcp_have_smc)) { 550 if (tp->syn_smc) { 551 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 552 opts->options |= OPTION_SMC; 553 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 554 } 555 } 556 } 557 #endif 558 } 559 560 static void smc_set_option_cond(const struct tcp_sock *tp, 561 const struct inet_request_sock *ireq, 562 struct tcp_out_options *opts, 563 unsigned int *remaining) 564 { 565 #if IS_ENABLED(CONFIG_SMC) 566 if (static_branch_unlikely(&tcp_have_smc)) { 567 if (tp->syn_smc && ireq->smc_ok) { 568 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 569 opts->options |= OPTION_SMC; 570 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 571 } 572 } 573 } 574 #endif 575 } 576 577 /* Compute TCP options for SYN packets. This is not the final 578 * network wire format yet. 579 */ 580 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 581 struct tcp_out_options *opts, 582 struct tcp_md5sig_key **md5) 583 { 584 struct tcp_sock *tp = tcp_sk(sk); 585 unsigned int remaining = MAX_TCP_OPTION_SPACE; 586 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 587 588 #ifdef CONFIG_TCP_MD5SIG 589 *md5 = tp->af_specific->md5_lookup(sk, sk); 590 if (*md5) { 591 opts->options |= OPTION_MD5; 592 remaining -= TCPOLEN_MD5SIG_ALIGNED; 593 } 594 #else 595 *md5 = NULL; 596 #endif 597 598 /* We always get an MSS option. The option bytes which will be seen in 599 * normal data packets should timestamps be used, must be in the MSS 600 * advertised. But we subtract them from tp->mss_cache so that 601 * calculations in tcp_sendmsg are simpler etc. So account for this 602 * fact here if necessary. If we don't do this correctly, as a 603 * receiver we won't recognize data packets as being full sized when we 604 * should, and thus we won't abide by the delayed ACK rules correctly. 605 * SACKs don't matter, we never delay an ACK when we have any of those 606 * going out. */ 607 opts->mss = tcp_advertise_mss(sk); 608 remaining -= TCPOLEN_MSS_ALIGNED; 609 610 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 611 opts->options |= OPTION_TS; 612 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 613 opts->tsecr = tp->rx_opt.ts_recent; 614 remaining -= TCPOLEN_TSTAMP_ALIGNED; 615 } 616 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 617 opts->ws = tp->rx_opt.rcv_wscale; 618 opts->options |= OPTION_WSCALE; 619 remaining -= TCPOLEN_WSCALE_ALIGNED; 620 } 621 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 622 opts->options |= OPTION_SACK_ADVERTISE; 623 if (unlikely(!(OPTION_TS & opts->options))) 624 remaining -= TCPOLEN_SACKPERM_ALIGNED; 625 } 626 627 if (fastopen && fastopen->cookie.len >= 0) { 628 u32 need = fastopen->cookie.len; 629 630 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 631 TCPOLEN_FASTOPEN_BASE; 632 need = (need + 3) & ~3U; /* Align to 32 bits */ 633 if (remaining >= need) { 634 opts->options |= OPTION_FAST_OPEN_COOKIE; 635 opts->fastopen_cookie = &fastopen->cookie; 636 remaining -= need; 637 tp->syn_fastopen = 1; 638 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 639 } 640 } 641 642 smc_set_option(tp, opts, &remaining); 643 644 return MAX_TCP_OPTION_SPACE - remaining; 645 } 646 647 /* Set up TCP options for SYN-ACKs. */ 648 static unsigned int tcp_synack_options(const struct sock *sk, 649 struct request_sock *req, 650 unsigned int mss, struct sk_buff *skb, 651 struct tcp_out_options *opts, 652 const struct tcp_md5sig_key *md5, 653 struct tcp_fastopen_cookie *foc) 654 { 655 struct inet_request_sock *ireq = inet_rsk(req); 656 unsigned int remaining = MAX_TCP_OPTION_SPACE; 657 658 #ifdef CONFIG_TCP_MD5SIG 659 if (md5) { 660 opts->options |= OPTION_MD5; 661 remaining -= TCPOLEN_MD5SIG_ALIGNED; 662 663 /* We can't fit any SACK blocks in a packet with MD5 + TS 664 * options. There was discussion about disabling SACK 665 * rather than TS in order to fit in better with old, 666 * buggy kernels, but that was deemed to be unnecessary. 667 */ 668 ireq->tstamp_ok &= !ireq->sack_ok; 669 } 670 #endif 671 672 /* We always send an MSS option. */ 673 opts->mss = mss; 674 remaining -= TCPOLEN_MSS_ALIGNED; 675 676 if (likely(ireq->wscale_ok)) { 677 opts->ws = ireq->rcv_wscale; 678 opts->options |= OPTION_WSCALE; 679 remaining -= TCPOLEN_WSCALE_ALIGNED; 680 } 681 if (likely(ireq->tstamp_ok)) { 682 opts->options |= OPTION_TS; 683 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 684 opts->tsecr = req->ts_recent; 685 remaining -= TCPOLEN_TSTAMP_ALIGNED; 686 } 687 if (likely(ireq->sack_ok)) { 688 opts->options |= OPTION_SACK_ADVERTISE; 689 if (unlikely(!ireq->tstamp_ok)) 690 remaining -= TCPOLEN_SACKPERM_ALIGNED; 691 } 692 if (foc != NULL && foc->len >= 0) { 693 u32 need = foc->len; 694 695 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 696 TCPOLEN_FASTOPEN_BASE; 697 need = (need + 3) & ~3U; /* Align to 32 bits */ 698 if (remaining >= need) { 699 opts->options |= OPTION_FAST_OPEN_COOKIE; 700 opts->fastopen_cookie = foc; 701 remaining -= need; 702 } 703 } 704 705 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 706 707 return MAX_TCP_OPTION_SPACE - remaining; 708 } 709 710 /* Compute TCP options for ESTABLISHED sockets. This is not the 711 * final wire format yet. 712 */ 713 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 714 struct tcp_out_options *opts, 715 struct tcp_md5sig_key **md5) 716 { 717 struct tcp_sock *tp = tcp_sk(sk); 718 unsigned int size = 0; 719 unsigned int eff_sacks; 720 721 opts->options = 0; 722 723 #ifdef CONFIG_TCP_MD5SIG 724 *md5 = tp->af_specific->md5_lookup(sk, sk); 725 if (unlikely(*md5)) { 726 opts->options |= OPTION_MD5; 727 size += TCPOLEN_MD5SIG_ALIGNED; 728 } 729 #else 730 *md5 = NULL; 731 #endif 732 733 if (likely(tp->rx_opt.tstamp_ok)) { 734 opts->options |= OPTION_TS; 735 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 736 opts->tsecr = tp->rx_opt.ts_recent; 737 size += TCPOLEN_TSTAMP_ALIGNED; 738 } 739 740 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 741 if (unlikely(eff_sacks)) { 742 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 743 opts->num_sack_blocks = 744 min_t(unsigned int, eff_sacks, 745 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 746 TCPOLEN_SACK_PERBLOCK); 747 size += TCPOLEN_SACK_BASE_ALIGNED + 748 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 749 } 750 751 return size; 752 } 753 754 755 /* TCP SMALL QUEUES (TSQ) 756 * 757 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 758 * to reduce RTT and bufferbloat. 759 * We do this using a special skb destructor (tcp_wfree). 760 * 761 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 762 * needs to be reallocated in a driver. 763 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 764 * 765 * Since transmit from skb destructor is forbidden, we use a tasklet 766 * to process all sockets that eventually need to send more skbs. 767 * We use one tasklet per cpu, with its own queue of sockets. 768 */ 769 struct tsq_tasklet { 770 struct tasklet_struct tasklet; 771 struct list_head head; /* queue of tcp sockets */ 772 }; 773 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 774 775 static void tcp_tsq_handler(struct sock *sk) 776 { 777 if ((1 << sk->sk_state) & 778 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 779 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 780 struct tcp_sock *tp = tcp_sk(sk); 781 782 if (tp->lost_out > tp->retrans_out && 783 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 784 tcp_mstamp_refresh(tp); 785 tcp_xmit_retransmit_queue(sk); 786 } 787 788 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 789 0, GFP_ATOMIC); 790 } 791 } 792 /* 793 * One tasklet per cpu tries to send more skbs. 794 * We run in tasklet context but need to disable irqs when 795 * transferring tsq->head because tcp_wfree() might 796 * interrupt us (non NAPI drivers) 797 */ 798 static void tcp_tasklet_func(unsigned long data) 799 { 800 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 801 LIST_HEAD(list); 802 unsigned long flags; 803 struct list_head *q, *n; 804 struct tcp_sock *tp; 805 struct sock *sk; 806 807 local_irq_save(flags); 808 list_splice_init(&tsq->head, &list); 809 local_irq_restore(flags); 810 811 list_for_each_safe(q, n, &list) { 812 tp = list_entry(q, struct tcp_sock, tsq_node); 813 list_del(&tp->tsq_node); 814 815 sk = (struct sock *)tp; 816 smp_mb__before_atomic(); 817 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 818 819 if (!sk->sk_lock.owned && 820 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 821 bh_lock_sock(sk); 822 if (!sock_owned_by_user(sk)) { 823 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 824 tcp_tsq_handler(sk); 825 } 826 bh_unlock_sock(sk); 827 } 828 829 sk_free(sk); 830 } 831 } 832 833 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 834 TCPF_WRITE_TIMER_DEFERRED | \ 835 TCPF_DELACK_TIMER_DEFERRED | \ 836 TCPF_MTU_REDUCED_DEFERRED) 837 /** 838 * tcp_release_cb - tcp release_sock() callback 839 * @sk: socket 840 * 841 * called from release_sock() to perform protocol dependent 842 * actions before socket release. 843 */ 844 void tcp_release_cb(struct sock *sk) 845 { 846 unsigned long flags, nflags; 847 848 /* perform an atomic operation only if at least one flag is set */ 849 do { 850 flags = sk->sk_tsq_flags; 851 if (!(flags & TCP_DEFERRED_ALL)) 852 return; 853 nflags = flags & ~TCP_DEFERRED_ALL; 854 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 855 856 if (flags & TCPF_TSQ_DEFERRED) 857 tcp_tsq_handler(sk); 858 859 /* Here begins the tricky part : 860 * We are called from release_sock() with : 861 * 1) BH disabled 862 * 2) sk_lock.slock spinlock held 863 * 3) socket owned by us (sk->sk_lock.owned == 1) 864 * 865 * But following code is meant to be called from BH handlers, 866 * so we should keep BH disabled, but early release socket ownership 867 */ 868 sock_release_ownership(sk); 869 870 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 871 tcp_write_timer_handler(sk); 872 __sock_put(sk); 873 } 874 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 875 tcp_delack_timer_handler(sk); 876 __sock_put(sk); 877 } 878 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 879 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 880 __sock_put(sk); 881 } 882 } 883 EXPORT_SYMBOL(tcp_release_cb); 884 885 void __init tcp_tasklet_init(void) 886 { 887 int i; 888 889 for_each_possible_cpu(i) { 890 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 891 892 INIT_LIST_HEAD(&tsq->head); 893 tasklet_init(&tsq->tasklet, 894 tcp_tasklet_func, 895 (unsigned long)tsq); 896 } 897 } 898 899 /* 900 * Write buffer destructor automatically called from kfree_skb. 901 * We can't xmit new skbs from this context, as we might already 902 * hold qdisc lock. 903 */ 904 void tcp_wfree(struct sk_buff *skb) 905 { 906 struct sock *sk = skb->sk; 907 struct tcp_sock *tp = tcp_sk(sk); 908 unsigned long flags, nval, oval; 909 910 /* Keep one reference on sk_wmem_alloc. 911 * Will be released by sk_free() from here or tcp_tasklet_func() 912 */ 913 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 914 915 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 916 * Wait until our queues (qdisc + devices) are drained. 917 * This gives : 918 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 919 * - chance for incoming ACK (processed by another cpu maybe) 920 * to migrate this flow (skb->ooo_okay will be eventually set) 921 */ 922 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 923 goto out; 924 925 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 926 struct tsq_tasklet *tsq; 927 bool empty; 928 929 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 930 goto out; 931 932 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 933 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 934 if (nval != oval) 935 continue; 936 937 /* queue this socket to tasklet queue */ 938 local_irq_save(flags); 939 tsq = this_cpu_ptr(&tsq_tasklet); 940 empty = list_empty(&tsq->head); 941 list_add(&tp->tsq_node, &tsq->head); 942 if (empty) 943 tasklet_schedule(&tsq->tasklet); 944 local_irq_restore(flags); 945 return; 946 } 947 out: 948 sk_free(sk); 949 } 950 951 /* Note: Called under hard irq. 952 * We can not call TCP stack right away. 953 */ 954 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 955 { 956 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 957 struct sock *sk = (struct sock *)tp; 958 unsigned long nval, oval; 959 960 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 961 struct tsq_tasklet *tsq; 962 bool empty; 963 964 if (oval & TSQF_QUEUED) 965 break; 966 967 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 968 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 969 if (nval != oval) 970 continue; 971 972 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc)) 973 break; 974 /* queue this socket to tasklet queue */ 975 tsq = this_cpu_ptr(&tsq_tasklet); 976 empty = list_empty(&tsq->head); 977 list_add(&tp->tsq_node, &tsq->head); 978 if (empty) 979 tasklet_schedule(&tsq->tasklet); 980 break; 981 } 982 return HRTIMER_NORESTART; 983 } 984 985 /* BBR congestion control needs pacing. 986 * Same remark for SO_MAX_PACING_RATE. 987 * sch_fq packet scheduler is efficiently handling pacing, 988 * but is not always installed/used. 989 * Return true if TCP stack should pace packets itself. 990 */ 991 static bool tcp_needs_internal_pacing(const struct sock *sk) 992 { 993 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 994 } 995 996 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 997 { 998 u64 len_ns; 999 u32 rate; 1000 1001 if (!tcp_needs_internal_pacing(sk)) 1002 return; 1003 rate = sk->sk_pacing_rate; 1004 if (!rate || rate == ~0U) 1005 return; 1006 1007 /* Should account for header sizes as sch_fq does, 1008 * but lets make things simple. 1009 */ 1010 len_ns = (u64)skb->len * NSEC_PER_SEC; 1011 do_div(len_ns, rate); 1012 hrtimer_start(&tcp_sk(sk)->pacing_timer, 1013 ktime_add_ns(ktime_get(), len_ns), 1014 HRTIMER_MODE_ABS_PINNED); 1015 } 1016 1017 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 1018 { 1019 skb->skb_mstamp = tp->tcp_mstamp; 1020 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1021 } 1022 1023 /* This routine actually transmits TCP packets queued in by 1024 * tcp_do_sendmsg(). This is used by both the initial 1025 * transmission and possible later retransmissions. 1026 * All SKB's seen here are completely headerless. It is our 1027 * job to build the TCP header, and pass the packet down to 1028 * IP so it can do the same plus pass the packet off to the 1029 * device. 1030 * 1031 * We are working here with either a clone of the original 1032 * SKB, or a fresh unique copy made by the retransmit engine. 1033 */ 1034 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1035 gfp_t gfp_mask) 1036 { 1037 const struct inet_connection_sock *icsk = inet_csk(sk); 1038 struct inet_sock *inet; 1039 struct tcp_sock *tp; 1040 struct tcp_skb_cb *tcb; 1041 struct tcp_out_options opts; 1042 unsigned int tcp_options_size, tcp_header_size; 1043 struct sk_buff *oskb = NULL; 1044 struct tcp_md5sig_key *md5; 1045 struct tcphdr *th; 1046 int err; 1047 1048 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1049 tp = tcp_sk(sk); 1050 1051 if (clone_it) { 1052 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1053 - tp->snd_una; 1054 oskb = skb; 1055 1056 tcp_skb_tsorted_save(oskb) { 1057 if (unlikely(skb_cloned(oskb))) 1058 skb = pskb_copy(oskb, gfp_mask); 1059 else 1060 skb = skb_clone(oskb, gfp_mask); 1061 } tcp_skb_tsorted_restore(oskb); 1062 1063 if (unlikely(!skb)) 1064 return -ENOBUFS; 1065 } 1066 skb->skb_mstamp = tp->tcp_mstamp; 1067 1068 inet = inet_sk(sk); 1069 tcb = TCP_SKB_CB(skb); 1070 memset(&opts, 0, sizeof(opts)); 1071 1072 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1073 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1074 else 1075 tcp_options_size = tcp_established_options(sk, skb, &opts, 1076 &md5); 1077 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1078 1079 /* if no packet is in qdisc/device queue, then allow XPS to select 1080 * another queue. We can be called from tcp_tsq_handler() 1081 * which holds one reference to sk_wmem_alloc. 1082 * 1083 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1084 * One way to get this would be to set skb->truesize = 2 on them. 1085 */ 1086 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1087 1088 /* If we had to use memory reserve to allocate this skb, 1089 * this might cause drops if packet is looped back : 1090 * Other socket might not have SOCK_MEMALLOC. 1091 * Packets not looped back do not care about pfmemalloc. 1092 */ 1093 skb->pfmemalloc = 0; 1094 1095 skb_push(skb, tcp_header_size); 1096 skb_reset_transport_header(skb); 1097 1098 skb_orphan(skb); 1099 skb->sk = sk; 1100 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1101 skb_set_hash_from_sk(skb, sk); 1102 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1103 1104 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1105 1106 /* Build TCP header and checksum it. */ 1107 th = (struct tcphdr *)skb->data; 1108 th->source = inet->inet_sport; 1109 th->dest = inet->inet_dport; 1110 th->seq = htonl(tcb->seq); 1111 th->ack_seq = htonl(tp->rcv_nxt); 1112 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1113 tcb->tcp_flags); 1114 1115 th->check = 0; 1116 th->urg_ptr = 0; 1117 1118 /* The urg_mode check is necessary during a below snd_una win probe */ 1119 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1120 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1121 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1122 th->urg = 1; 1123 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1124 th->urg_ptr = htons(0xFFFF); 1125 th->urg = 1; 1126 } 1127 } 1128 1129 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1130 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1131 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1132 th->window = htons(tcp_select_window(sk)); 1133 tcp_ecn_send(sk, skb, th, tcp_header_size); 1134 } else { 1135 /* RFC1323: The window in SYN & SYN/ACK segments 1136 * is never scaled. 1137 */ 1138 th->window = htons(min(tp->rcv_wnd, 65535U)); 1139 } 1140 #ifdef CONFIG_TCP_MD5SIG 1141 /* Calculate the MD5 hash, as we have all we need now */ 1142 if (md5) { 1143 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1144 tp->af_specific->calc_md5_hash(opts.hash_location, 1145 md5, sk, skb); 1146 } 1147 #endif 1148 1149 icsk->icsk_af_ops->send_check(sk, skb); 1150 1151 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1152 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1153 1154 if (skb->len != tcp_header_size) { 1155 tcp_event_data_sent(tp, sk); 1156 tp->data_segs_out += tcp_skb_pcount(skb); 1157 tcp_internal_pacing(sk, skb); 1158 } 1159 1160 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1161 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1162 tcp_skb_pcount(skb)); 1163 1164 tp->segs_out += tcp_skb_pcount(skb); 1165 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1166 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1167 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1168 1169 /* Our usage of tstamp should remain private */ 1170 skb->tstamp = 0; 1171 1172 /* Cleanup our debris for IP stacks */ 1173 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1174 sizeof(struct inet6_skb_parm))); 1175 1176 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1177 1178 if (unlikely(err > 0)) { 1179 tcp_enter_cwr(sk); 1180 err = net_xmit_eval(err); 1181 } 1182 if (!err && oskb) { 1183 tcp_update_skb_after_send(tp, oskb); 1184 tcp_rate_skb_sent(sk, oskb); 1185 } 1186 return err; 1187 } 1188 1189 /* This routine just queues the buffer for sending. 1190 * 1191 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1192 * otherwise socket can stall. 1193 */ 1194 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1195 { 1196 struct tcp_sock *tp = tcp_sk(sk); 1197 1198 /* Advance write_seq and place onto the write_queue. */ 1199 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1200 __skb_header_release(skb); 1201 tcp_add_write_queue_tail(sk, skb); 1202 sk->sk_wmem_queued += skb->truesize; 1203 sk_mem_charge(sk, skb->truesize); 1204 } 1205 1206 /* Initialize TSO segments for a packet. */ 1207 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1208 { 1209 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1210 /* Avoid the costly divide in the normal 1211 * non-TSO case. 1212 */ 1213 tcp_skb_pcount_set(skb, 1); 1214 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1215 } else { 1216 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1217 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1218 } 1219 } 1220 1221 /* Pcount in the middle of the write queue got changed, we need to do various 1222 * tweaks to fix counters 1223 */ 1224 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1225 { 1226 struct tcp_sock *tp = tcp_sk(sk); 1227 1228 tp->packets_out -= decr; 1229 1230 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1231 tp->sacked_out -= decr; 1232 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1233 tp->retrans_out -= decr; 1234 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1235 tp->lost_out -= decr; 1236 1237 /* Reno case is special. Sigh... */ 1238 if (tcp_is_reno(tp) && decr > 0) 1239 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1240 1241 if (tp->lost_skb_hint && 1242 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1243 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1244 tp->lost_cnt_hint -= decr; 1245 1246 tcp_verify_left_out(tp); 1247 } 1248 1249 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1250 { 1251 return TCP_SKB_CB(skb)->txstamp_ack || 1252 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1253 } 1254 1255 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1256 { 1257 struct skb_shared_info *shinfo = skb_shinfo(skb); 1258 1259 if (unlikely(tcp_has_tx_tstamp(skb)) && 1260 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1261 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1262 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1263 1264 shinfo->tx_flags &= ~tsflags; 1265 shinfo2->tx_flags |= tsflags; 1266 swap(shinfo->tskey, shinfo2->tskey); 1267 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1268 TCP_SKB_CB(skb)->txstamp_ack = 0; 1269 } 1270 } 1271 1272 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1273 { 1274 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1275 TCP_SKB_CB(skb)->eor = 0; 1276 } 1277 1278 /* Insert buff after skb on the write or rtx queue of sk. */ 1279 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1280 struct sk_buff *buff, 1281 struct sock *sk, 1282 enum tcp_queue tcp_queue) 1283 { 1284 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1285 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1286 else 1287 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1288 } 1289 1290 /* Function to create two new TCP segments. Shrinks the given segment 1291 * to the specified size and appends a new segment with the rest of the 1292 * packet to the list. This won't be called frequently, I hope. 1293 * Remember, these are still headerless SKBs at this point. 1294 */ 1295 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1296 struct sk_buff *skb, u32 len, 1297 unsigned int mss_now, gfp_t gfp) 1298 { 1299 struct tcp_sock *tp = tcp_sk(sk); 1300 struct sk_buff *buff; 1301 int nsize, old_factor; 1302 int nlen; 1303 u8 flags; 1304 1305 if (WARN_ON(len > skb->len)) 1306 return -EINVAL; 1307 1308 nsize = skb_headlen(skb) - len; 1309 if (nsize < 0) 1310 nsize = 0; 1311 1312 if (skb_unclone(skb, gfp)) 1313 return -ENOMEM; 1314 1315 /* Get a new skb... force flag on. */ 1316 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1317 if (!buff) 1318 return -ENOMEM; /* We'll just try again later. */ 1319 1320 sk->sk_wmem_queued += buff->truesize; 1321 sk_mem_charge(sk, buff->truesize); 1322 nlen = skb->len - len - nsize; 1323 buff->truesize += nlen; 1324 skb->truesize -= nlen; 1325 1326 /* Correct the sequence numbers. */ 1327 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1328 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1329 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1330 1331 /* PSH and FIN should only be set in the second packet. */ 1332 flags = TCP_SKB_CB(skb)->tcp_flags; 1333 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1334 TCP_SKB_CB(buff)->tcp_flags = flags; 1335 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1336 tcp_skb_fragment_eor(skb, buff); 1337 1338 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1339 /* Copy and checksum data tail into the new buffer. */ 1340 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1341 skb_put(buff, nsize), 1342 nsize, 0); 1343 1344 skb_trim(skb, len); 1345 1346 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1347 } else { 1348 skb->ip_summed = CHECKSUM_PARTIAL; 1349 skb_split(skb, buff, len); 1350 } 1351 1352 buff->ip_summed = skb->ip_summed; 1353 1354 buff->tstamp = skb->tstamp; 1355 tcp_fragment_tstamp(skb, buff); 1356 1357 old_factor = tcp_skb_pcount(skb); 1358 1359 /* Fix up tso_factor for both original and new SKB. */ 1360 tcp_set_skb_tso_segs(skb, mss_now); 1361 tcp_set_skb_tso_segs(buff, mss_now); 1362 1363 /* Update delivered info for the new segment */ 1364 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1365 1366 /* If this packet has been sent out already, we must 1367 * adjust the various packet counters. 1368 */ 1369 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1370 int diff = old_factor - tcp_skb_pcount(skb) - 1371 tcp_skb_pcount(buff); 1372 1373 if (diff) 1374 tcp_adjust_pcount(sk, skb, diff); 1375 } 1376 1377 /* Link BUFF into the send queue. */ 1378 __skb_header_release(buff); 1379 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1380 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1381 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1382 1383 return 0; 1384 } 1385 1386 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1387 * data is not copied, but immediately discarded. 1388 */ 1389 static int __pskb_trim_head(struct sk_buff *skb, int len) 1390 { 1391 struct skb_shared_info *shinfo; 1392 int i, k, eat; 1393 1394 eat = min_t(int, len, skb_headlen(skb)); 1395 if (eat) { 1396 __skb_pull(skb, eat); 1397 len -= eat; 1398 if (!len) 1399 return 0; 1400 } 1401 eat = len; 1402 k = 0; 1403 shinfo = skb_shinfo(skb); 1404 for (i = 0; i < shinfo->nr_frags; i++) { 1405 int size = skb_frag_size(&shinfo->frags[i]); 1406 1407 if (size <= eat) { 1408 skb_frag_unref(skb, i); 1409 eat -= size; 1410 } else { 1411 shinfo->frags[k] = shinfo->frags[i]; 1412 if (eat) { 1413 shinfo->frags[k].page_offset += eat; 1414 skb_frag_size_sub(&shinfo->frags[k], eat); 1415 eat = 0; 1416 } 1417 k++; 1418 } 1419 } 1420 shinfo->nr_frags = k; 1421 1422 skb->data_len -= len; 1423 skb->len = skb->data_len; 1424 return len; 1425 } 1426 1427 /* Remove acked data from a packet in the transmit queue. */ 1428 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1429 { 1430 u32 delta_truesize; 1431 1432 if (skb_unclone(skb, GFP_ATOMIC)) 1433 return -ENOMEM; 1434 1435 delta_truesize = __pskb_trim_head(skb, len); 1436 1437 TCP_SKB_CB(skb)->seq += len; 1438 skb->ip_summed = CHECKSUM_PARTIAL; 1439 1440 if (delta_truesize) { 1441 skb->truesize -= delta_truesize; 1442 sk->sk_wmem_queued -= delta_truesize; 1443 sk_mem_uncharge(sk, delta_truesize); 1444 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1445 } 1446 1447 /* Any change of skb->len requires recalculation of tso factor. */ 1448 if (tcp_skb_pcount(skb) > 1) 1449 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1450 1451 return 0; 1452 } 1453 1454 /* Calculate MSS not accounting any TCP options. */ 1455 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1456 { 1457 const struct tcp_sock *tp = tcp_sk(sk); 1458 const struct inet_connection_sock *icsk = inet_csk(sk); 1459 int mss_now; 1460 1461 /* Calculate base mss without TCP options: 1462 It is MMS_S - sizeof(tcphdr) of rfc1122 1463 */ 1464 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1465 1466 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1467 if (icsk->icsk_af_ops->net_frag_header_len) { 1468 const struct dst_entry *dst = __sk_dst_get(sk); 1469 1470 if (dst && dst_allfrag(dst)) 1471 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1472 } 1473 1474 /* Clamp it (mss_clamp does not include tcp options) */ 1475 if (mss_now > tp->rx_opt.mss_clamp) 1476 mss_now = tp->rx_opt.mss_clamp; 1477 1478 /* Now subtract optional transport overhead */ 1479 mss_now -= icsk->icsk_ext_hdr_len; 1480 1481 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1482 if (mss_now < 48) 1483 mss_now = 48; 1484 return mss_now; 1485 } 1486 1487 /* Calculate MSS. Not accounting for SACKs here. */ 1488 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1489 { 1490 /* Subtract TCP options size, not including SACKs */ 1491 return __tcp_mtu_to_mss(sk, pmtu) - 1492 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1493 } 1494 1495 /* Inverse of above */ 1496 int tcp_mss_to_mtu(struct sock *sk, int mss) 1497 { 1498 const struct tcp_sock *tp = tcp_sk(sk); 1499 const struct inet_connection_sock *icsk = inet_csk(sk); 1500 int mtu; 1501 1502 mtu = mss + 1503 tp->tcp_header_len + 1504 icsk->icsk_ext_hdr_len + 1505 icsk->icsk_af_ops->net_header_len; 1506 1507 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1508 if (icsk->icsk_af_ops->net_frag_header_len) { 1509 const struct dst_entry *dst = __sk_dst_get(sk); 1510 1511 if (dst && dst_allfrag(dst)) 1512 mtu += icsk->icsk_af_ops->net_frag_header_len; 1513 } 1514 return mtu; 1515 } 1516 EXPORT_SYMBOL(tcp_mss_to_mtu); 1517 1518 /* MTU probing init per socket */ 1519 void tcp_mtup_init(struct sock *sk) 1520 { 1521 struct tcp_sock *tp = tcp_sk(sk); 1522 struct inet_connection_sock *icsk = inet_csk(sk); 1523 struct net *net = sock_net(sk); 1524 1525 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1526 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1527 icsk->icsk_af_ops->net_header_len; 1528 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1529 icsk->icsk_mtup.probe_size = 0; 1530 if (icsk->icsk_mtup.enabled) 1531 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1532 } 1533 EXPORT_SYMBOL(tcp_mtup_init); 1534 1535 /* This function synchronize snd mss to current pmtu/exthdr set. 1536 1537 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1538 for TCP options, but includes only bare TCP header. 1539 1540 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1541 It is minimum of user_mss and mss received with SYN. 1542 It also does not include TCP options. 1543 1544 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1545 1546 tp->mss_cache is current effective sending mss, including 1547 all tcp options except for SACKs. It is evaluated, 1548 taking into account current pmtu, but never exceeds 1549 tp->rx_opt.mss_clamp. 1550 1551 NOTE1. rfc1122 clearly states that advertised MSS 1552 DOES NOT include either tcp or ip options. 1553 1554 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1555 are READ ONLY outside this function. --ANK (980731) 1556 */ 1557 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1558 { 1559 struct tcp_sock *tp = tcp_sk(sk); 1560 struct inet_connection_sock *icsk = inet_csk(sk); 1561 int mss_now; 1562 1563 if (icsk->icsk_mtup.search_high > pmtu) 1564 icsk->icsk_mtup.search_high = pmtu; 1565 1566 mss_now = tcp_mtu_to_mss(sk, pmtu); 1567 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1568 1569 /* And store cached results */ 1570 icsk->icsk_pmtu_cookie = pmtu; 1571 if (icsk->icsk_mtup.enabled) 1572 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1573 tp->mss_cache = mss_now; 1574 1575 return mss_now; 1576 } 1577 EXPORT_SYMBOL(tcp_sync_mss); 1578 1579 /* Compute the current effective MSS, taking SACKs and IP options, 1580 * and even PMTU discovery events into account. 1581 */ 1582 unsigned int tcp_current_mss(struct sock *sk) 1583 { 1584 const struct tcp_sock *tp = tcp_sk(sk); 1585 const struct dst_entry *dst = __sk_dst_get(sk); 1586 u32 mss_now; 1587 unsigned int header_len; 1588 struct tcp_out_options opts; 1589 struct tcp_md5sig_key *md5; 1590 1591 mss_now = tp->mss_cache; 1592 1593 if (dst) { 1594 u32 mtu = dst_mtu(dst); 1595 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1596 mss_now = tcp_sync_mss(sk, mtu); 1597 } 1598 1599 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1600 sizeof(struct tcphdr); 1601 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1602 * some common options. If this is an odd packet (because we have SACK 1603 * blocks etc) then our calculated header_len will be different, and 1604 * we have to adjust mss_now correspondingly */ 1605 if (header_len != tp->tcp_header_len) { 1606 int delta = (int) header_len - tp->tcp_header_len; 1607 mss_now -= delta; 1608 } 1609 1610 return mss_now; 1611 } 1612 1613 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1614 * As additional protections, we do not touch cwnd in retransmission phases, 1615 * and if application hit its sndbuf limit recently. 1616 */ 1617 static void tcp_cwnd_application_limited(struct sock *sk) 1618 { 1619 struct tcp_sock *tp = tcp_sk(sk); 1620 1621 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1622 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1623 /* Limited by application or receiver window. */ 1624 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1625 u32 win_used = max(tp->snd_cwnd_used, init_win); 1626 if (win_used < tp->snd_cwnd) { 1627 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1628 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1629 } 1630 tp->snd_cwnd_used = 0; 1631 } 1632 tp->snd_cwnd_stamp = tcp_jiffies32; 1633 } 1634 1635 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1636 { 1637 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1638 struct tcp_sock *tp = tcp_sk(sk); 1639 1640 /* Track the maximum number of outstanding packets in each 1641 * window, and remember whether we were cwnd-limited then. 1642 */ 1643 if (!before(tp->snd_una, tp->max_packets_seq) || 1644 tp->packets_out > tp->max_packets_out) { 1645 tp->max_packets_out = tp->packets_out; 1646 tp->max_packets_seq = tp->snd_nxt; 1647 tp->is_cwnd_limited = is_cwnd_limited; 1648 } 1649 1650 if (tcp_is_cwnd_limited(sk)) { 1651 /* Network is feed fully. */ 1652 tp->snd_cwnd_used = 0; 1653 tp->snd_cwnd_stamp = tcp_jiffies32; 1654 } else { 1655 /* Network starves. */ 1656 if (tp->packets_out > tp->snd_cwnd_used) 1657 tp->snd_cwnd_used = tp->packets_out; 1658 1659 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1660 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1661 !ca_ops->cong_control) 1662 tcp_cwnd_application_limited(sk); 1663 1664 /* The following conditions together indicate the starvation 1665 * is caused by insufficient sender buffer: 1666 * 1) just sent some data (see tcp_write_xmit) 1667 * 2) not cwnd limited (this else condition) 1668 * 3) no more data to send (tcp_write_queue_empty()) 1669 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1670 */ 1671 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1672 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1673 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1674 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1675 } 1676 } 1677 1678 /* Minshall's variant of the Nagle send check. */ 1679 static bool tcp_minshall_check(const struct tcp_sock *tp) 1680 { 1681 return after(tp->snd_sml, tp->snd_una) && 1682 !after(tp->snd_sml, tp->snd_nxt); 1683 } 1684 1685 /* Update snd_sml if this skb is under mss 1686 * Note that a TSO packet might end with a sub-mss segment 1687 * The test is really : 1688 * if ((skb->len % mss) != 0) 1689 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1690 * But we can avoid doing the divide again given we already have 1691 * skb_pcount = skb->len / mss_now 1692 */ 1693 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1694 const struct sk_buff *skb) 1695 { 1696 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1697 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1698 } 1699 1700 /* Return false, if packet can be sent now without violation Nagle's rules: 1701 * 1. It is full sized. (provided by caller in %partial bool) 1702 * 2. Or it contains FIN. (already checked by caller) 1703 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1704 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1705 * With Minshall's modification: all sent small packets are ACKed. 1706 */ 1707 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1708 int nonagle) 1709 { 1710 return partial && 1711 ((nonagle & TCP_NAGLE_CORK) || 1712 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1713 } 1714 1715 /* Return how many segs we'd like on a TSO packet, 1716 * to send one TSO packet per ms 1717 */ 1718 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1719 int min_tso_segs) 1720 { 1721 u32 bytes, segs; 1722 1723 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, 1724 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1725 1726 /* Goal is to send at least one packet per ms, 1727 * not one big TSO packet every 100 ms. 1728 * This preserves ACK clocking and is consistent 1729 * with tcp_tso_should_defer() heuristic. 1730 */ 1731 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1732 1733 return min_t(u32, segs, sk->sk_gso_max_segs); 1734 } 1735 EXPORT_SYMBOL(tcp_tso_autosize); 1736 1737 /* Return the number of segments we want in the skb we are transmitting. 1738 * See if congestion control module wants to decide; otherwise, autosize. 1739 */ 1740 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1741 { 1742 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1743 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1744 1745 return tso_segs ? : 1746 tcp_tso_autosize(sk, mss_now, 1747 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 1748 } 1749 1750 /* Returns the portion of skb which can be sent right away */ 1751 static unsigned int tcp_mss_split_point(const struct sock *sk, 1752 const struct sk_buff *skb, 1753 unsigned int mss_now, 1754 unsigned int max_segs, 1755 int nonagle) 1756 { 1757 const struct tcp_sock *tp = tcp_sk(sk); 1758 u32 partial, needed, window, max_len; 1759 1760 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1761 max_len = mss_now * max_segs; 1762 1763 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1764 return max_len; 1765 1766 needed = min(skb->len, window); 1767 1768 if (max_len <= needed) 1769 return max_len; 1770 1771 partial = needed % mss_now; 1772 /* If last segment is not a full MSS, check if Nagle rules allow us 1773 * to include this last segment in this skb. 1774 * Otherwise, we'll split the skb at last MSS boundary 1775 */ 1776 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1777 return needed - partial; 1778 1779 return needed; 1780 } 1781 1782 /* Can at least one segment of SKB be sent right now, according to the 1783 * congestion window rules? If so, return how many segments are allowed. 1784 */ 1785 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1786 const struct sk_buff *skb) 1787 { 1788 u32 in_flight, cwnd, halfcwnd; 1789 1790 /* Don't be strict about the congestion window for the final FIN. */ 1791 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1792 tcp_skb_pcount(skb) == 1) 1793 return 1; 1794 1795 in_flight = tcp_packets_in_flight(tp); 1796 cwnd = tp->snd_cwnd; 1797 if (in_flight >= cwnd) 1798 return 0; 1799 1800 /* For better scheduling, ensure we have at least 1801 * 2 GSO packets in flight. 1802 */ 1803 halfcwnd = max(cwnd >> 1, 1U); 1804 return min(halfcwnd, cwnd - in_flight); 1805 } 1806 1807 /* Initialize TSO state of a skb. 1808 * This must be invoked the first time we consider transmitting 1809 * SKB onto the wire. 1810 */ 1811 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1812 { 1813 int tso_segs = tcp_skb_pcount(skb); 1814 1815 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1816 tcp_set_skb_tso_segs(skb, mss_now); 1817 tso_segs = tcp_skb_pcount(skb); 1818 } 1819 return tso_segs; 1820 } 1821 1822 1823 /* Return true if the Nagle test allows this packet to be 1824 * sent now. 1825 */ 1826 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1827 unsigned int cur_mss, int nonagle) 1828 { 1829 /* Nagle rule does not apply to frames, which sit in the middle of the 1830 * write_queue (they have no chances to get new data). 1831 * 1832 * This is implemented in the callers, where they modify the 'nonagle' 1833 * argument based upon the location of SKB in the send queue. 1834 */ 1835 if (nonagle & TCP_NAGLE_PUSH) 1836 return true; 1837 1838 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1839 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1840 return true; 1841 1842 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1843 return true; 1844 1845 return false; 1846 } 1847 1848 /* Does at least the first segment of SKB fit into the send window? */ 1849 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1850 const struct sk_buff *skb, 1851 unsigned int cur_mss) 1852 { 1853 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1854 1855 if (skb->len > cur_mss) 1856 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1857 1858 return !after(end_seq, tcp_wnd_end(tp)); 1859 } 1860 1861 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1862 * which is put after SKB on the list. It is very much like 1863 * tcp_fragment() except that it may make several kinds of assumptions 1864 * in order to speed up the splitting operation. In particular, we 1865 * know that all the data is in scatter-gather pages, and that the 1866 * packet has never been sent out before (and thus is not cloned). 1867 */ 1868 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1869 struct sk_buff *skb, unsigned int len, 1870 unsigned int mss_now, gfp_t gfp) 1871 { 1872 struct sk_buff *buff; 1873 int nlen = skb->len - len; 1874 u8 flags; 1875 1876 /* All of a TSO frame must be composed of paged data. */ 1877 if (skb->len != skb->data_len) 1878 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1879 1880 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1881 if (unlikely(!buff)) 1882 return -ENOMEM; 1883 1884 sk->sk_wmem_queued += buff->truesize; 1885 sk_mem_charge(sk, buff->truesize); 1886 buff->truesize += nlen; 1887 skb->truesize -= nlen; 1888 1889 /* Correct the sequence numbers. */ 1890 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1891 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1892 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1893 1894 /* PSH and FIN should only be set in the second packet. */ 1895 flags = TCP_SKB_CB(skb)->tcp_flags; 1896 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1897 TCP_SKB_CB(buff)->tcp_flags = flags; 1898 1899 /* This packet was never sent out yet, so no SACK bits. */ 1900 TCP_SKB_CB(buff)->sacked = 0; 1901 1902 tcp_skb_fragment_eor(skb, buff); 1903 1904 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1905 skb_split(skb, buff, len); 1906 tcp_fragment_tstamp(skb, buff); 1907 1908 /* Fix up tso_factor for both original and new SKB. */ 1909 tcp_set_skb_tso_segs(skb, mss_now); 1910 tcp_set_skb_tso_segs(buff, mss_now); 1911 1912 /* Link BUFF into the send queue. */ 1913 __skb_header_release(buff); 1914 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1915 1916 return 0; 1917 } 1918 1919 /* Try to defer sending, if possible, in order to minimize the amount 1920 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1921 * 1922 * This algorithm is from John Heffner. 1923 */ 1924 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1925 bool *is_cwnd_limited, u32 max_segs) 1926 { 1927 const struct inet_connection_sock *icsk = inet_csk(sk); 1928 u32 age, send_win, cong_win, limit, in_flight; 1929 struct tcp_sock *tp = tcp_sk(sk); 1930 struct sk_buff *head; 1931 int win_divisor; 1932 1933 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1934 goto send_now; 1935 1936 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1937 goto send_now; 1938 1939 /* Avoid bursty behavior by allowing defer 1940 * only if the last write was recent. 1941 */ 1942 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1943 goto send_now; 1944 1945 in_flight = tcp_packets_in_flight(tp); 1946 1947 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1948 1949 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1950 1951 /* From in_flight test above, we know that cwnd > in_flight. */ 1952 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1953 1954 limit = min(send_win, cong_win); 1955 1956 /* If a full-sized TSO skb can be sent, do it. */ 1957 if (limit >= max_segs * tp->mss_cache) 1958 goto send_now; 1959 1960 /* Middle in queue won't get any more data, full sendable already? */ 1961 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1962 goto send_now; 1963 1964 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1965 if (win_divisor) { 1966 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1967 1968 /* If at least some fraction of a window is available, 1969 * just use it. 1970 */ 1971 chunk /= win_divisor; 1972 if (limit >= chunk) 1973 goto send_now; 1974 } else { 1975 /* Different approach, try not to defer past a single 1976 * ACK. Receiver should ACK every other full sized 1977 * frame, so if we have space for more than 3 frames 1978 * then send now. 1979 */ 1980 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1981 goto send_now; 1982 } 1983 1984 /* TODO : use tsorted_sent_queue ? */ 1985 head = tcp_rtx_queue_head(sk); 1986 if (!head) 1987 goto send_now; 1988 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1989 /* If next ACK is likely to come too late (half srtt), do not defer */ 1990 if (age < (tp->srtt_us >> 4)) 1991 goto send_now; 1992 1993 /* Ok, it looks like it is advisable to defer. */ 1994 1995 if (cong_win < send_win && cong_win <= skb->len) 1996 *is_cwnd_limited = true; 1997 1998 return true; 1999 2000 send_now: 2001 return false; 2002 } 2003 2004 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2005 { 2006 struct inet_connection_sock *icsk = inet_csk(sk); 2007 struct tcp_sock *tp = tcp_sk(sk); 2008 struct net *net = sock_net(sk); 2009 u32 interval; 2010 s32 delta; 2011 2012 interval = net->ipv4.sysctl_tcp_probe_interval; 2013 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2014 if (unlikely(delta >= interval * HZ)) { 2015 int mss = tcp_current_mss(sk); 2016 2017 /* Update current search range */ 2018 icsk->icsk_mtup.probe_size = 0; 2019 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2020 sizeof(struct tcphdr) + 2021 icsk->icsk_af_ops->net_header_len; 2022 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2023 2024 /* Update probe time stamp */ 2025 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2026 } 2027 } 2028 2029 /* Create a new MTU probe if we are ready. 2030 * MTU probe is regularly attempting to increase the path MTU by 2031 * deliberately sending larger packets. This discovers routing 2032 * changes resulting in larger path MTUs. 2033 * 2034 * Returns 0 if we should wait to probe (no cwnd available), 2035 * 1 if a probe was sent, 2036 * -1 otherwise 2037 */ 2038 static int tcp_mtu_probe(struct sock *sk) 2039 { 2040 struct inet_connection_sock *icsk = inet_csk(sk); 2041 struct tcp_sock *tp = tcp_sk(sk); 2042 struct sk_buff *skb, *nskb, *next; 2043 struct net *net = sock_net(sk); 2044 int probe_size; 2045 int size_needed; 2046 int copy, len; 2047 int mss_now; 2048 int interval; 2049 2050 /* Not currently probing/verifying, 2051 * not in recovery, 2052 * have enough cwnd, and 2053 * not SACKing (the variable headers throw things off) 2054 */ 2055 if (likely(!icsk->icsk_mtup.enabled || 2056 icsk->icsk_mtup.probe_size || 2057 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2058 tp->snd_cwnd < 11 || 2059 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2060 return -1; 2061 2062 /* Use binary search for probe_size between tcp_mss_base, 2063 * and current mss_clamp. if (search_high - search_low) 2064 * smaller than a threshold, backoff from probing. 2065 */ 2066 mss_now = tcp_current_mss(sk); 2067 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2068 icsk->icsk_mtup.search_low) >> 1); 2069 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2070 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2071 /* When misfortune happens, we are reprobing actively, 2072 * and then reprobe timer has expired. We stick with current 2073 * probing process by not resetting search range to its orignal. 2074 */ 2075 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2076 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2077 /* Check whether enough time has elaplased for 2078 * another round of probing. 2079 */ 2080 tcp_mtu_check_reprobe(sk); 2081 return -1; 2082 } 2083 2084 /* Have enough data in the send queue to probe? */ 2085 if (tp->write_seq - tp->snd_nxt < size_needed) 2086 return -1; 2087 2088 if (tp->snd_wnd < size_needed) 2089 return -1; 2090 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2091 return 0; 2092 2093 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2094 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2095 if (!tcp_packets_in_flight(tp)) 2096 return -1; 2097 else 2098 return 0; 2099 } 2100 2101 /* We're allowed to probe. Build it now. */ 2102 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2103 if (!nskb) 2104 return -1; 2105 sk->sk_wmem_queued += nskb->truesize; 2106 sk_mem_charge(sk, nskb->truesize); 2107 2108 skb = tcp_send_head(sk); 2109 2110 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2111 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2112 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2113 TCP_SKB_CB(nskb)->sacked = 0; 2114 nskb->csum = 0; 2115 nskb->ip_summed = skb->ip_summed; 2116 2117 tcp_insert_write_queue_before(nskb, skb, sk); 2118 tcp_highest_sack_replace(sk, skb, nskb); 2119 2120 len = 0; 2121 tcp_for_write_queue_from_safe(skb, next, sk) { 2122 copy = min_t(int, skb->len, probe_size - len); 2123 if (nskb->ip_summed) { 2124 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2125 } else { 2126 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2127 skb_put(nskb, copy), 2128 copy, 0); 2129 nskb->csum = csum_block_add(nskb->csum, csum, len); 2130 } 2131 2132 if (skb->len <= copy) { 2133 /* We've eaten all the data from this skb. 2134 * Throw it away. */ 2135 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2136 tcp_unlink_write_queue(skb, sk); 2137 sk_wmem_free_skb(sk, skb); 2138 } else { 2139 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2140 ~(TCPHDR_FIN|TCPHDR_PSH); 2141 if (!skb_shinfo(skb)->nr_frags) { 2142 skb_pull(skb, copy); 2143 if (skb->ip_summed != CHECKSUM_PARTIAL) 2144 skb->csum = csum_partial(skb->data, 2145 skb->len, 0); 2146 } else { 2147 __pskb_trim_head(skb, copy); 2148 tcp_set_skb_tso_segs(skb, mss_now); 2149 } 2150 TCP_SKB_CB(skb)->seq += copy; 2151 } 2152 2153 len += copy; 2154 2155 if (len >= probe_size) 2156 break; 2157 } 2158 tcp_init_tso_segs(nskb, nskb->len); 2159 2160 /* We're ready to send. If this fails, the probe will 2161 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2162 */ 2163 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2164 /* Decrement cwnd here because we are sending 2165 * effectively two packets. */ 2166 tp->snd_cwnd--; 2167 tcp_event_new_data_sent(sk, nskb); 2168 2169 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2170 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2171 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2172 2173 return 1; 2174 } 2175 2176 return -1; 2177 } 2178 2179 static bool tcp_pacing_check(const struct sock *sk) 2180 { 2181 return tcp_needs_internal_pacing(sk) && 2182 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2183 } 2184 2185 /* TCP Small Queues : 2186 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2187 * (These limits are doubled for retransmits) 2188 * This allows for : 2189 * - better RTT estimation and ACK scheduling 2190 * - faster recovery 2191 * - high rates 2192 * Alas, some drivers / subsystems require a fair amount 2193 * of queued bytes to ensure line rate. 2194 * One example is wifi aggregation (802.11 AMPDU) 2195 */ 2196 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2197 unsigned int factor) 2198 { 2199 unsigned int limit; 2200 2201 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); 2202 limit = min_t(u32, limit, 2203 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2204 limit <<= factor; 2205 2206 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2207 /* Always send skb if rtx queue is empty. 2208 * No need to wait for TX completion to call us back, 2209 * after softirq/tasklet schedule. 2210 * This helps when TX completions are delayed too much. 2211 */ 2212 if (tcp_rtx_queue_empty(sk)) 2213 return false; 2214 2215 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2216 /* It is possible TX completion already happened 2217 * before we set TSQ_THROTTLED, so we must 2218 * test again the condition. 2219 */ 2220 smp_mb__after_atomic(); 2221 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2222 return true; 2223 } 2224 return false; 2225 } 2226 2227 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2228 { 2229 const u32 now = tcp_jiffies32; 2230 enum tcp_chrono old = tp->chrono_type; 2231 2232 if (old > TCP_CHRONO_UNSPEC) 2233 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2234 tp->chrono_start = now; 2235 tp->chrono_type = new; 2236 } 2237 2238 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2239 { 2240 struct tcp_sock *tp = tcp_sk(sk); 2241 2242 /* If there are multiple conditions worthy of tracking in a 2243 * chronograph then the highest priority enum takes precedence 2244 * over the other conditions. So that if something "more interesting" 2245 * starts happening, stop the previous chrono and start a new one. 2246 */ 2247 if (type > tp->chrono_type) 2248 tcp_chrono_set(tp, type); 2249 } 2250 2251 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2252 { 2253 struct tcp_sock *tp = tcp_sk(sk); 2254 2255 2256 /* There are multiple conditions worthy of tracking in a 2257 * chronograph, so that the highest priority enum takes 2258 * precedence over the other conditions (see tcp_chrono_start). 2259 * If a condition stops, we only stop chrono tracking if 2260 * it's the "most interesting" or current chrono we are 2261 * tracking and starts busy chrono if we have pending data. 2262 */ 2263 if (tcp_rtx_and_write_queues_empty(sk)) 2264 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2265 else if (type == tp->chrono_type) 2266 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2267 } 2268 2269 /* This routine writes packets to the network. It advances the 2270 * send_head. This happens as incoming acks open up the remote 2271 * window for us. 2272 * 2273 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2274 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2275 * account rare use of URG, this is not a big flaw. 2276 * 2277 * Send at most one packet when push_one > 0. Temporarily ignore 2278 * cwnd limit to force at most one packet out when push_one == 2. 2279 2280 * Returns true, if no segments are in flight and we have queued segments, 2281 * but cannot send anything now because of SWS or another problem. 2282 */ 2283 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2284 int push_one, gfp_t gfp) 2285 { 2286 struct tcp_sock *tp = tcp_sk(sk); 2287 struct sk_buff *skb; 2288 unsigned int tso_segs, sent_pkts; 2289 int cwnd_quota; 2290 int result; 2291 bool is_cwnd_limited = false, is_rwnd_limited = false; 2292 u32 max_segs; 2293 2294 sent_pkts = 0; 2295 2296 tcp_mstamp_refresh(tp); 2297 if (!push_one) { 2298 /* Do MTU probing. */ 2299 result = tcp_mtu_probe(sk); 2300 if (!result) { 2301 return false; 2302 } else if (result > 0) { 2303 sent_pkts = 1; 2304 } 2305 } 2306 2307 max_segs = tcp_tso_segs(sk, mss_now); 2308 while ((skb = tcp_send_head(sk))) { 2309 unsigned int limit; 2310 2311 if (tcp_pacing_check(sk)) 2312 break; 2313 2314 tso_segs = tcp_init_tso_segs(skb, mss_now); 2315 BUG_ON(!tso_segs); 2316 2317 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2318 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2319 tcp_update_skb_after_send(tp, skb); 2320 goto repair; /* Skip network transmission */ 2321 } 2322 2323 cwnd_quota = tcp_cwnd_test(tp, skb); 2324 if (!cwnd_quota) { 2325 if (push_one == 2) 2326 /* Force out a loss probe pkt. */ 2327 cwnd_quota = 1; 2328 else 2329 break; 2330 } 2331 2332 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2333 is_rwnd_limited = true; 2334 break; 2335 } 2336 2337 if (tso_segs == 1) { 2338 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2339 (tcp_skb_is_last(sk, skb) ? 2340 nonagle : TCP_NAGLE_PUSH)))) 2341 break; 2342 } else { 2343 if (!push_one && 2344 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2345 max_segs)) 2346 break; 2347 } 2348 2349 limit = mss_now; 2350 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2351 limit = tcp_mss_split_point(sk, skb, mss_now, 2352 min_t(unsigned int, 2353 cwnd_quota, 2354 max_segs), 2355 nonagle); 2356 2357 if (skb->len > limit && 2358 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2359 skb, limit, mss_now, gfp))) 2360 break; 2361 2362 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2363 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2364 if (tcp_small_queue_check(sk, skb, 0)) 2365 break; 2366 2367 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2368 break; 2369 2370 repair: 2371 /* Advance the send_head. This one is sent out. 2372 * This call will increment packets_out. 2373 */ 2374 tcp_event_new_data_sent(sk, skb); 2375 2376 tcp_minshall_update(tp, mss_now, skb); 2377 sent_pkts += tcp_skb_pcount(skb); 2378 2379 if (push_one) 2380 break; 2381 } 2382 2383 if (is_rwnd_limited) 2384 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2385 else 2386 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2387 2388 if (likely(sent_pkts)) { 2389 if (tcp_in_cwnd_reduction(sk)) 2390 tp->prr_out += sent_pkts; 2391 2392 /* Send one loss probe per tail loss episode. */ 2393 if (push_one != 2) 2394 tcp_schedule_loss_probe(sk, false); 2395 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2396 tcp_cwnd_validate(sk, is_cwnd_limited); 2397 return false; 2398 } 2399 return !tp->packets_out && !tcp_write_queue_empty(sk); 2400 } 2401 2402 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2403 { 2404 struct inet_connection_sock *icsk = inet_csk(sk); 2405 struct tcp_sock *tp = tcp_sk(sk); 2406 u32 timeout, rto_delta_us; 2407 int early_retrans; 2408 2409 /* Don't do any loss probe on a Fast Open connection before 3WHS 2410 * finishes. 2411 */ 2412 if (tp->fastopen_rsk) 2413 return false; 2414 2415 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2416 /* Schedule a loss probe in 2*RTT for SACK capable connections 2417 * in Open state, that are either limited by cwnd or application. 2418 */ 2419 if ((early_retrans != 3 && early_retrans != 4) || 2420 !tp->packets_out || !tcp_is_sack(tp) || 2421 icsk->icsk_ca_state != TCP_CA_Open) 2422 return false; 2423 2424 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2425 !tcp_write_queue_empty(sk)) 2426 return false; 2427 2428 /* Probe timeout is 2*rtt. Add minimum RTO to account 2429 * for delayed ack when there's one outstanding packet. If no RTT 2430 * sample is available then probe after TCP_TIMEOUT_INIT. 2431 */ 2432 if (tp->srtt_us) { 2433 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2434 if (tp->packets_out == 1) 2435 timeout += TCP_RTO_MIN; 2436 else 2437 timeout += TCP_TIMEOUT_MIN; 2438 } else { 2439 timeout = TCP_TIMEOUT_INIT; 2440 } 2441 2442 /* If the RTO formula yields an earlier time, then use that time. */ 2443 rto_delta_us = advancing_rto ? 2444 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2445 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2446 if (rto_delta_us > 0) 2447 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2448 2449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2450 TCP_RTO_MAX); 2451 return true; 2452 } 2453 2454 /* Thanks to skb fast clones, we can detect if a prior transmit of 2455 * a packet is still in a qdisc or driver queue. 2456 * In this case, there is very little point doing a retransmit ! 2457 */ 2458 static bool skb_still_in_host_queue(const struct sock *sk, 2459 const struct sk_buff *skb) 2460 { 2461 if (unlikely(skb_fclone_busy(sk, skb))) { 2462 NET_INC_STATS(sock_net(sk), 2463 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2464 return true; 2465 } 2466 return false; 2467 } 2468 2469 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2470 * retransmit the last segment. 2471 */ 2472 void tcp_send_loss_probe(struct sock *sk) 2473 { 2474 struct tcp_sock *tp = tcp_sk(sk); 2475 struct sk_buff *skb; 2476 int pcount; 2477 int mss = tcp_current_mss(sk); 2478 2479 skb = tcp_send_head(sk); 2480 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2481 pcount = tp->packets_out; 2482 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2483 if (tp->packets_out > pcount) 2484 goto probe_sent; 2485 goto rearm_timer; 2486 } 2487 skb = skb_rb_last(&sk->tcp_rtx_queue); 2488 2489 /* At most one outstanding TLP retransmission. */ 2490 if (tp->tlp_high_seq) 2491 goto rearm_timer; 2492 2493 /* Retransmit last segment. */ 2494 if (WARN_ON(!skb)) 2495 goto rearm_timer; 2496 2497 if (skb_still_in_host_queue(sk, skb)) 2498 goto rearm_timer; 2499 2500 pcount = tcp_skb_pcount(skb); 2501 if (WARN_ON(!pcount)) 2502 goto rearm_timer; 2503 2504 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2505 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2506 (pcount - 1) * mss, mss, 2507 GFP_ATOMIC))) 2508 goto rearm_timer; 2509 skb = skb_rb_next(skb); 2510 } 2511 2512 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2513 goto rearm_timer; 2514 2515 if (__tcp_retransmit_skb(sk, skb, 1)) 2516 goto rearm_timer; 2517 2518 /* Record snd_nxt for loss detection. */ 2519 tp->tlp_high_seq = tp->snd_nxt; 2520 2521 probe_sent: 2522 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2523 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2524 inet_csk(sk)->icsk_pending = 0; 2525 rearm_timer: 2526 tcp_rearm_rto(sk); 2527 } 2528 2529 /* Push out any pending frames which were held back due to 2530 * TCP_CORK or attempt at coalescing tiny packets. 2531 * The socket must be locked by the caller. 2532 */ 2533 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2534 int nonagle) 2535 { 2536 /* If we are closed, the bytes will have to remain here. 2537 * In time closedown will finish, we empty the write queue and 2538 * all will be happy. 2539 */ 2540 if (unlikely(sk->sk_state == TCP_CLOSE)) 2541 return; 2542 2543 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2544 sk_gfp_mask(sk, GFP_ATOMIC))) 2545 tcp_check_probe_timer(sk); 2546 } 2547 2548 /* Send _single_ skb sitting at the send head. This function requires 2549 * true push pending frames to setup probe timer etc. 2550 */ 2551 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2552 { 2553 struct sk_buff *skb = tcp_send_head(sk); 2554 2555 BUG_ON(!skb || skb->len < mss_now); 2556 2557 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2558 } 2559 2560 /* This function returns the amount that we can raise the 2561 * usable window based on the following constraints 2562 * 2563 * 1. The window can never be shrunk once it is offered (RFC 793) 2564 * 2. We limit memory per socket 2565 * 2566 * RFC 1122: 2567 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2568 * RECV.NEXT + RCV.WIN fixed until: 2569 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2570 * 2571 * i.e. don't raise the right edge of the window until you can raise 2572 * it at least MSS bytes. 2573 * 2574 * Unfortunately, the recommended algorithm breaks header prediction, 2575 * since header prediction assumes th->window stays fixed. 2576 * 2577 * Strictly speaking, keeping th->window fixed violates the receiver 2578 * side SWS prevention criteria. The problem is that under this rule 2579 * a stream of single byte packets will cause the right side of the 2580 * window to always advance by a single byte. 2581 * 2582 * Of course, if the sender implements sender side SWS prevention 2583 * then this will not be a problem. 2584 * 2585 * BSD seems to make the following compromise: 2586 * 2587 * If the free space is less than the 1/4 of the maximum 2588 * space available and the free space is less than 1/2 mss, 2589 * then set the window to 0. 2590 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2591 * Otherwise, just prevent the window from shrinking 2592 * and from being larger than the largest representable value. 2593 * 2594 * This prevents incremental opening of the window in the regime 2595 * where TCP is limited by the speed of the reader side taking 2596 * data out of the TCP receive queue. It does nothing about 2597 * those cases where the window is constrained on the sender side 2598 * because the pipeline is full. 2599 * 2600 * BSD also seems to "accidentally" limit itself to windows that are a 2601 * multiple of MSS, at least until the free space gets quite small. 2602 * This would appear to be a side effect of the mbuf implementation. 2603 * Combining these two algorithms results in the observed behavior 2604 * of having a fixed window size at almost all times. 2605 * 2606 * Below we obtain similar behavior by forcing the offered window to 2607 * a multiple of the mss when it is feasible to do so. 2608 * 2609 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2610 * Regular options like TIMESTAMP are taken into account. 2611 */ 2612 u32 __tcp_select_window(struct sock *sk) 2613 { 2614 struct inet_connection_sock *icsk = inet_csk(sk); 2615 struct tcp_sock *tp = tcp_sk(sk); 2616 /* MSS for the peer's data. Previous versions used mss_clamp 2617 * here. I don't know if the value based on our guesses 2618 * of peer's MSS is better for the performance. It's more correct 2619 * but may be worse for the performance because of rcv_mss 2620 * fluctuations. --SAW 1998/11/1 2621 */ 2622 int mss = icsk->icsk_ack.rcv_mss; 2623 int free_space = tcp_space(sk); 2624 int allowed_space = tcp_full_space(sk); 2625 int full_space = min_t(int, tp->window_clamp, allowed_space); 2626 int window; 2627 2628 if (unlikely(mss > full_space)) { 2629 mss = full_space; 2630 if (mss <= 0) 2631 return 0; 2632 } 2633 if (free_space < (full_space >> 1)) { 2634 icsk->icsk_ack.quick = 0; 2635 2636 if (tcp_under_memory_pressure(sk)) 2637 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2638 4U * tp->advmss); 2639 2640 /* free_space might become our new window, make sure we don't 2641 * increase it due to wscale. 2642 */ 2643 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2644 2645 /* if free space is less than mss estimate, or is below 1/16th 2646 * of the maximum allowed, try to move to zero-window, else 2647 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2648 * new incoming data is dropped due to memory limits. 2649 * With large window, mss test triggers way too late in order 2650 * to announce zero window in time before rmem limit kicks in. 2651 */ 2652 if (free_space < (allowed_space >> 4) || free_space < mss) 2653 return 0; 2654 } 2655 2656 if (free_space > tp->rcv_ssthresh) 2657 free_space = tp->rcv_ssthresh; 2658 2659 /* Don't do rounding if we are using window scaling, since the 2660 * scaled window will not line up with the MSS boundary anyway. 2661 */ 2662 if (tp->rx_opt.rcv_wscale) { 2663 window = free_space; 2664 2665 /* Advertise enough space so that it won't get scaled away. 2666 * Import case: prevent zero window announcement if 2667 * 1<<rcv_wscale > mss. 2668 */ 2669 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2670 } else { 2671 window = tp->rcv_wnd; 2672 /* Get the largest window that is a nice multiple of mss. 2673 * Window clamp already applied above. 2674 * If our current window offering is within 1 mss of the 2675 * free space we just keep it. This prevents the divide 2676 * and multiply from happening most of the time. 2677 * We also don't do any window rounding when the free space 2678 * is too small. 2679 */ 2680 if (window <= free_space - mss || window > free_space) 2681 window = rounddown(free_space, mss); 2682 else if (mss == full_space && 2683 free_space > window + (full_space >> 1)) 2684 window = free_space; 2685 } 2686 2687 return window; 2688 } 2689 2690 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2691 const struct sk_buff *next_skb) 2692 { 2693 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2694 const struct skb_shared_info *next_shinfo = 2695 skb_shinfo(next_skb); 2696 struct skb_shared_info *shinfo = skb_shinfo(skb); 2697 2698 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2699 shinfo->tskey = next_shinfo->tskey; 2700 TCP_SKB_CB(skb)->txstamp_ack |= 2701 TCP_SKB_CB(next_skb)->txstamp_ack; 2702 } 2703 } 2704 2705 /* Collapses two adjacent SKB's during retransmission. */ 2706 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2707 { 2708 struct tcp_sock *tp = tcp_sk(sk); 2709 struct sk_buff *next_skb = skb_rb_next(skb); 2710 int skb_size, next_skb_size; 2711 2712 skb_size = skb->len; 2713 next_skb_size = next_skb->len; 2714 2715 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2716 2717 if (next_skb_size) { 2718 if (next_skb_size <= skb_availroom(skb)) 2719 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2720 next_skb_size); 2721 else if (!skb_shift(skb, next_skb, next_skb_size)) 2722 return false; 2723 } 2724 tcp_highest_sack_replace(sk, next_skb, skb); 2725 2726 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2727 skb->ip_summed = CHECKSUM_PARTIAL; 2728 2729 if (skb->ip_summed != CHECKSUM_PARTIAL) 2730 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2731 2732 /* Update sequence range on original skb. */ 2733 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2734 2735 /* Merge over control information. This moves PSH/FIN etc. over */ 2736 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2737 2738 /* All done, get rid of second SKB and account for it so 2739 * packet counting does not break. 2740 */ 2741 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2742 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2743 2744 /* changed transmit queue under us so clear hints */ 2745 tcp_clear_retrans_hints_partial(tp); 2746 if (next_skb == tp->retransmit_skb_hint) 2747 tp->retransmit_skb_hint = skb; 2748 2749 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2750 2751 tcp_skb_collapse_tstamp(skb, next_skb); 2752 2753 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2754 return true; 2755 } 2756 2757 /* Check if coalescing SKBs is legal. */ 2758 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2759 { 2760 if (tcp_skb_pcount(skb) > 1) 2761 return false; 2762 if (skb_cloned(skb)) 2763 return false; 2764 /* Some heuristics for collapsing over SACK'd could be invented */ 2765 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2766 return false; 2767 2768 return true; 2769 } 2770 2771 /* Collapse packets in the retransmit queue to make to create 2772 * less packets on the wire. This is only done on retransmission. 2773 */ 2774 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2775 int space) 2776 { 2777 struct tcp_sock *tp = tcp_sk(sk); 2778 struct sk_buff *skb = to, *tmp; 2779 bool first = true; 2780 2781 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2782 return; 2783 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2784 return; 2785 2786 skb_rbtree_walk_from_safe(skb, tmp) { 2787 if (!tcp_can_collapse(sk, skb)) 2788 break; 2789 2790 if (!tcp_skb_can_collapse_to(to)) 2791 break; 2792 2793 space -= skb->len; 2794 2795 if (first) { 2796 first = false; 2797 continue; 2798 } 2799 2800 if (space < 0) 2801 break; 2802 2803 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2804 break; 2805 2806 if (!tcp_collapse_retrans(sk, to)) 2807 break; 2808 } 2809 } 2810 2811 /* This retransmits one SKB. Policy decisions and retransmit queue 2812 * state updates are done by the caller. Returns non-zero if an 2813 * error occurred which prevented the send. 2814 */ 2815 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2816 { 2817 struct inet_connection_sock *icsk = inet_csk(sk); 2818 struct tcp_sock *tp = tcp_sk(sk); 2819 unsigned int cur_mss; 2820 int diff, len, err; 2821 2822 2823 /* Inconclusive MTU probe */ 2824 if (icsk->icsk_mtup.probe_size) 2825 icsk->icsk_mtup.probe_size = 0; 2826 2827 /* Do not sent more than we queued. 1/4 is reserved for possible 2828 * copying overhead: fragmentation, tunneling, mangling etc. 2829 */ 2830 if (refcount_read(&sk->sk_wmem_alloc) > 2831 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2832 sk->sk_sndbuf)) 2833 return -EAGAIN; 2834 2835 if (skb_still_in_host_queue(sk, skb)) 2836 return -EBUSY; 2837 2838 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2839 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2840 BUG(); 2841 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2842 return -ENOMEM; 2843 } 2844 2845 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2846 return -EHOSTUNREACH; /* Routing failure or similar. */ 2847 2848 cur_mss = tcp_current_mss(sk); 2849 2850 /* If receiver has shrunk his window, and skb is out of 2851 * new window, do not retransmit it. The exception is the 2852 * case, when window is shrunk to zero. In this case 2853 * our retransmit serves as a zero window probe. 2854 */ 2855 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2856 TCP_SKB_CB(skb)->seq != tp->snd_una) 2857 return -EAGAIN; 2858 2859 len = cur_mss * segs; 2860 if (skb->len > len) { 2861 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2862 cur_mss, GFP_ATOMIC)) 2863 return -ENOMEM; /* We'll try again later. */ 2864 } else { 2865 if (skb_unclone(skb, GFP_ATOMIC)) 2866 return -ENOMEM; 2867 2868 diff = tcp_skb_pcount(skb); 2869 tcp_set_skb_tso_segs(skb, cur_mss); 2870 diff -= tcp_skb_pcount(skb); 2871 if (diff) 2872 tcp_adjust_pcount(sk, skb, diff); 2873 if (skb->len < cur_mss) 2874 tcp_retrans_try_collapse(sk, skb, cur_mss); 2875 } 2876 2877 /* RFC3168, section 6.1.1.1. ECN fallback */ 2878 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2879 tcp_ecn_clear_syn(sk, skb); 2880 2881 /* Update global and local TCP statistics. */ 2882 segs = tcp_skb_pcount(skb); 2883 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2884 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2885 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2886 tp->total_retrans += segs; 2887 2888 /* make sure skb->data is aligned on arches that require it 2889 * and check if ack-trimming & collapsing extended the headroom 2890 * beyond what csum_start can cover. 2891 */ 2892 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2893 skb_headroom(skb) >= 0xFFFF)) { 2894 struct sk_buff *nskb; 2895 2896 tcp_skb_tsorted_save(skb) { 2897 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2898 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2899 -ENOBUFS; 2900 } tcp_skb_tsorted_restore(skb); 2901 2902 if (!err) { 2903 tcp_update_skb_after_send(tp, skb); 2904 tcp_rate_skb_sent(sk, skb); 2905 } 2906 } else { 2907 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2908 } 2909 2910 if (likely(!err)) { 2911 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2912 trace_tcp_retransmit_skb(sk, skb); 2913 } else if (err != -EBUSY) { 2914 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2915 } 2916 return err; 2917 } 2918 2919 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2920 { 2921 struct tcp_sock *tp = tcp_sk(sk); 2922 int err = __tcp_retransmit_skb(sk, skb, segs); 2923 2924 if (err == 0) { 2925 #if FASTRETRANS_DEBUG > 0 2926 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2927 net_dbg_ratelimited("retrans_out leaked\n"); 2928 } 2929 #endif 2930 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2931 tp->retrans_out += tcp_skb_pcount(skb); 2932 2933 /* Save stamp of the first retransmit. */ 2934 if (!tp->retrans_stamp) 2935 tp->retrans_stamp = tcp_skb_timestamp(skb); 2936 2937 } 2938 2939 if (tp->undo_retrans < 0) 2940 tp->undo_retrans = 0; 2941 tp->undo_retrans += tcp_skb_pcount(skb); 2942 return err; 2943 } 2944 2945 /* This gets called after a retransmit timeout, and the initially 2946 * retransmitted data is acknowledged. It tries to continue 2947 * resending the rest of the retransmit queue, until either 2948 * we've sent it all or the congestion window limit is reached. 2949 */ 2950 void tcp_xmit_retransmit_queue(struct sock *sk) 2951 { 2952 const struct inet_connection_sock *icsk = inet_csk(sk); 2953 struct sk_buff *skb, *rtx_head, *hole = NULL; 2954 struct tcp_sock *tp = tcp_sk(sk); 2955 u32 max_segs; 2956 int mib_idx; 2957 2958 if (!tp->packets_out) 2959 return; 2960 2961 rtx_head = tcp_rtx_queue_head(sk); 2962 skb = tp->retransmit_skb_hint ?: rtx_head; 2963 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2964 skb_rbtree_walk_from(skb) { 2965 __u8 sacked; 2966 int segs; 2967 2968 if (tcp_pacing_check(sk)) 2969 break; 2970 2971 /* we could do better than to assign each time */ 2972 if (!hole) 2973 tp->retransmit_skb_hint = skb; 2974 2975 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2976 if (segs <= 0) 2977 return; 2978 sacked = TCP_SKB_CB(skb)->sacked; 2979 /* In case tcp_shift_skb_data() have aggregated large skbs, 2980 * we need to make sure not sending too bigs TSO packets 2981 */ 2982 segs = min_t(int, segs, max_segs); 2983 2984 if (tp->retrans_out >= tp->lost_out) { 2985 break; 2986 } else if (!(sacked & TCPCB_LOST)) { 2987 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2988 hole = skb; 2989 continue; 2990 2991 } else { 2992 if (icsk->icsk_ca_state != TCP_CA_Loss) 2993 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2994 else 2995 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2996 } 2997 2998 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2999 continue; 3000 3001 if (tcp_small_queue_check(sk, skb, 1)) 3002 return; 3003 3004 if (tcp_retransmit_skb(sk, skb, segs)) 3005 return; 3006 3007 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3008 3009 if (tcp_in_cwnd_reduction(sk)) 3010 tp->prr_out += tcp_skb_pcount(skb); 3011 3012 if (skb == rtx_head && 3013 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3014 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3015 inet_csk(sk)->icsk_rto, 3016 TCP_RTO_MAX); 3017 } 3018 } 3019 3020 /* We allow to exceed memory limits for FIN packets to expedite 3021 * connection tear down and (memory) recovery. 3022 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3023 * or even be forced to close flow without any FIN. 3024 * In general, we want to allow one skb per socket to avoid hangs 3025 * with edge trigger epoll() 3026 */ 3027 void sk_forced_mem_schedule(struct sock *sk, int size) 3028 { 3029 int amt; 3030 3031 if (size <= sk->sk_forward_alloc) 3032 return; 3033 amt = sk_mem_pages(size); 3034 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3035 sk_memory_allocated_add(sk, amt); 3036 3037 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3038 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3039 } 3040 3041 /* Send a FIN. The caller locks the socket for us. 3042 * We should try to send a FIN packet really hard, but eventually give up. 3043 */ 3044 void tcp_send_fin(struct sock *sk) 3045 { 3046 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3047 struct tcp_sock *tp = tcp_sk(sk); 3048 3049 /* Optimization, tack on the FIN if we have one skb in write queue and 3050 * this skb was not yet sent, or we are under memory pressure. 3051 * Note: in the latter case, FIN packet will be sent after a timeout, 3052 * as TCP stack thinks it has already been transmitted. 3053 */ 3054 if (!tskb && tcp_under_memory_pressure(sk)) 3055 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3056 3057 if (tskb) { 3058 coalesce: 3059 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3060 TCP_SKB_CB(tskb)->end_seq++; 3061 tp->write_seq++; 3062 if (tcp_write_queue_empty(sk)) { 3063 /* This means tskb was already sent. 3064 * Pretend we included the FIN on previous transmit. 3065 * We need to set tp->snd_nxt to the value it would have 3066 * if FIN had been sent. This is because retransmit path 3067 * does not change tp->snd_nxt. 3068 */ 3069 tp->snd_nxt++; 3070 return; 3071 } 3072 } else { 3073 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3074 if (unlikely(!skb)) { 3075 if (tskb) 3076 goto coalesce; 3077 return; 3078 } 3079 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3080 skb_reserve(skb, MAX_TCP_HEADER); 3081 sk_forced_mem_schedule(sk, skb->truesize); 3082 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3083 tcp_init_nondata_skb(skb, tp->write_seq, 3084 TCPHDR_ACK | TCPHDR_FIN); 3085 tcp_queue_skb(sk, skb); 3086 } 3087 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3088 } 3089 3090 /* We get here when a process closes a file descriptor (either due to 3091 * an explicit close() or as a byproduct of exit()'ing) and there 3092 * was unread data in the receive queue. This behavior is recommended 3093 * by RFC 2525, section 2.17. -DaveM 3094 */ 3095 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3096 { 3097 struct sk_buff *skb; 3098 3099 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3100 3101 /* NOTE: No TCP options attached and we never retransmit this. */ 3102 skb = alloc_skb(MAX_TCP_HEADER, priority); 3103 if (!skb) { 3104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3105 return; 3106 } 3107 3108 /* Reserve space for headers and prepare control bits. */ 3109 skb_reserve(skb, MAX_TCP_HEADER); 3110 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3111 TCPHDR_ACK | TCPHDR_RST); 3112 tcp_mstamp_refresh(tcp_sk(sk)); 3113 /* Send it off. */ 3114 if (tcp_transmit_skb(sk, skb, 0, priority)) 3115 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3116 3117 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3118 * skb here is different to the troublesome skb, so use NULL 3119 */ 3120 trace_tcp_send_reset(sk, NULL); 3121 } 3122 3123 /* Send a crossed SYN-ACK during socket establishment. 3124 * WARNING: This routine must only be called when we have already sent 3125 * a SYN packet that crossed the incoming SYN that caused this routine 3126 * to get called. If this assumption fails then the initial rcv_wnd 3127 * and rcv_wscale values will not be correct. 3128 */ 3129 int tcp_send_synack(struct sock *sk) 3130 { 3131 struct sk_buff *skb; 3132 3133 skb = tcp_rtx_queue_head(sk); 3134 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3135 pr_err("%s: wrong queue state\n", __func__); 3136 return -EFAULT; 3137 } 3138 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3139 if (skb_cloned(skb)) { 3140 struct sk_buff *nskb; 3141 3142 tcp_skb_tsorted_save(skb) { 3143 nskb = skb_copy(skb, GFP_ATOMIC); 3144 } tcp_skb_tsorted_restore(skb); 3145 if (!nskb) 3146 return -ENOMEM; 3147 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3148 tcp_rtx_queue_unlink_and_free(skb, sk); 3149 __skb_header_release(nskb); 3150 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3151 sk->sk_wmem_queued += nskb->truesize; 3152 sk_mem_charge(sk, nskb->truesize); 3153 skb = nskb; 3154 } 3155 3156 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3157 tcp_ecn_send_synack(sk, skb); 3158 } 3159 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3160 } 3161 3162 /** 3163 * tcp_make_synack - Prepare a SYN-ACK. 3164 * sk: listener socket 3165 * dst: dst entry attached to the SYNACK 3166 * req: request_sock pointer 3167 * 3168 * Allocate one skb and build a SYNACK packet. 3169 * @dst is consumed : Caller should not use it again. 3170 */ 3171 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3172 struct request_sock *req, 3173 struct tcp_fastopen_cookie *foc, 3174 enum tcp_synack_type synack_type) 3175 { 3176 struct inet_request_sock *ireq = inet_rsk(req); 3177 const struct tcp_sock *tp = tcp_sk(sk); 3178 struct tcp_md5sig_key *md5 = NULL; 3179 struct tcp_out_options opts; 3180 struct sk_buff *skb; 3181 int tcp_header_size; 3182 struct tcphdr *th; 3183 int mss; 3184 3185 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3186 if (unlikely(!skb)) { 3187 dst_release(dst); 3188 return NULL; 3189 } 3190 /* Reserve space for headers. */ 3191 skb_reserve(skb, MAX_TCP_HEADER); 3192 3193 switch (synack_type) { 3194 case TCP_SYNACK_NORMAL: 3195 skb_set_owner_w(skb, req_to_sk(req)); 3196 break; 3197 case TCP_SYNACK_COOKIE: 3198 /* Under synflood, we do not attach skb to a socket, 3199 * to avoid false sharing. 3200 */ 3201 break; 3202 case TCP_SYNACK_FASTOPEN: 3203 /* sk is a const pointer, because we want to express multiple 3204 * cpu might call us concurrently. 3205 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3206 */ 3207 skb_set_owner_w(skb, (struct sock *)sk); 3208 break; 3209 } 3210 skb_dst_set(skb, dst); 3211 3212 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3213 3214 memset(&opts, 0, sizeof(opts)); 3215 #ifdef CONFIG_SYN_COOKIES 3216 if (unlikely(req->cookie_ts)) 3217 skb->skb_mstamp = cookie_init_timestamp(req); 3218 else 3219 #endif 3220 skb->skb_mstamp = tcp_clock_us(); 3221 3222 #ifdef CONFIG_TCP_MD5SIG 3223 rcu_read_lock(); 3224 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3225 #endif 3226 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3227 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3228 foc) + sizeof(*th); 3229 3230 skb_push(skb, tcp_header_size); 3231 skb_reset_transport_header(skb); 3232 3233 th = (struct tcphdr *)skb->data; 3234 memset(th, 0, sizeof(struct tcphdr)); 3235 th->syn = 1; 3236 th->ack = 1; 3237 tcp_ecn_make_synack(req, th); 3238 th->source = htons(ireq->ir_num); 3239 th->dest = ireq->ir_rmt_port; 3240 skb->mark = ireq->ir_mark; 3241 skb->ip_summed = CHECKSUM_PARTIAL; 3242 th->seq = htonl(tcp_rsk(req)->snt_isn); 3243 /* XXX data is queued and acked as is. No buffer/window check */ 3244 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3245 3246 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3247 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3248 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3249 th->doff = (tcp_header_size >> 2); 3250 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3251 3252 #ifdef CONFIG_TCP_MD5SIG 3253 /* Okay, we have all we need - do the md5 hash if needed */ 3254 if (md5) 3255 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3256 md5, req_to_sk(req), skb); 3257 rcu_read_unlock(); 3258 #endif 3259 3260 /* Do not fool tcpdump (if any), clean our debris */ 3261 skb->tstamp = 0; 3262 return skb; 3263 } 3264 EXPORT_SYMBOL(tcp_make_synack); 3265 3266 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3267 { 3268 struct inet_connection_sock *icsk = inet_csk(sk); 3269 const struct tcp_congestion_ops *ca; 3270 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3271 3272 if (ca_key == TCP_CA_UNSPEC) 3273 return; 3274 3275 rcu_read_lock(); 3276 ca = tcp_ca_find_key(ca_key); 3277 if (likely(ca && try_module_get(ca->owner))) { 3278 module_put(icsk->icsk_ca_ops->owner); 3279 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3280 icsk->icsk_ca_ops = ca; 3281 } 3282 rcu_read_unlock(); 3283 } 3284 3285 /* Do all connect socket setups that can be done AF independent. */ 3286 static void tcp_connect_init(struct sock *sk) 3287 { 3288 const struct dst_entry *dst = __sk_dst_get(sk); 3289 struct tcp_sock *tp = tcp_sk(sk); 3290 __u8 rcv_wscale; 3291 u32 rcv_wnd; 3292 3293 /* We'll fix this up when we get a response from the other end. 3294 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3295 */ 3296 tp->tcp_header_len = sizeof(struct tcphdr); 3297 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3298 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3299 3300 #ifdef CONFIG_TCP_MD5SIG 3301 if (tp->af_specific->md5_lookup(sk, sk)) 3302 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3303 #endif 3304 3305 /* If user gave his TCP_MAXSEG, record it to clamp */ 3306 if (tp->rx_opt.user_mss) 3307 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3308 tp->max_window = 0; 3309 tcp_mtup_init(sk); 3310 tcp_sync_mss(sk, dst_mtu(dst)); 3311 3312 tcp_ca_dst_init(sk, dst); 3313 3314 if (!tp->window_clamp) 3315 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3316 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3317 3318 tcp_initialize_rcv_mss(sk); 3319 3320 /* limit the window selection if the user enforce a smaller rx buffer */ 3321 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3322 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3323 tp->window_clamp = tcp_full_space(sk); 3324 3325 rcv_wnd = tcp_rwnd_init_bpf(sk); 3326 if (rcv_wnd == 0) 3327 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3328 3329 tcp_select_initial_window(sk, tcp_full_space(sk), 3330 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3331 &tp->rcv_wnd, 3332 &tp->window_clamp, 3333 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3334 &rcv_wscale, 3335 rcv_wnd); 3336 3337 tp->rx_opt.rcv_wscale = rcv_wscale; 3338 tp->rcv_ssthresh = tp->rcv_wnd; 3339 3340 sk->sk_err = 0; 3341 sock_reset_flag(sk, SOCK_DONE); 3342 tp->snd_wnd = 0; 3343 tcp_init_wl(tp, 0); 3344 tp->snd_una = tp->write_seq; 3345 tp->snd_sml = tp->write_seq; 3346 tp->snd_up = tp->write_seq; 3347 tp->snd_nxt = tp->write_seq; 3348 3349 if (likely(!tp->repair)) 3350 tp->rcv_nxt = 0; 3351 else 3352 tp->rcv_tstamp = tcp_jiffies32; 3353 tp->rcv_wup = tp->rcv_nxt; 3354 tp->copied_seq = tp->rcv_nxt; 3355 3356 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3357 inet_csk(sk)->icsk_retransmits = 0; 3358 tcp_clear_retrans(tp); 3359 } 3360 3361 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3362 { 3363 struct tcp_sock *tp = tcp_sk(sk); 3364 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3365 3366 tcb->end_seq += skb->len; 3367 __skb_header_release(skb); 3368 sk->sk_wmem_queued += skb->truesize; 3369 sk_mem_charge(sk, skb->truesize); 3370 tp->write_seq = tcb->end_seq; 3371 tp->packets_out += tcp_skb_pcount(skb); 3372 } 3373 3374 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3375 * queue a data-only packet after the regular SYN, such that regular SYNs 3376 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3377 * only the SYN sequence, the data are retransmitted in the first ACK. 3378 * If cookie is not cached or other error occurs, falls back to send a 3379 * regular SYN with Fast Open cookie request option. 3380 */ 3381 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3382 { 3383 struct tcp_sock *tp = tcp_sk(sk); 3384 struct tcp_fastopen_request *fo = tp->fastopen_req; 3385 int space, err = 0; 3386 struct sk_buff *syn_data; 3387 3388 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3389 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3390 goto fallback; 3391 3392 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3393 * user-MSS. Reserve maximum option space for middleboxes that add 3394 * private TCP options. The cost is reduced data space in SYN :( 3395 */ 3396 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3397 3398 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3399 MAX_TCP_OPTION_SPACE; 3400 3401 space = min_t(size_t, space, fo->size); 3402 3403 /* limit to order-0 allocations */ 3404 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3405 3406 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3407 if (!syn_data) 3408 goto fallback; 3409 syn_data->ip_summed = CHECKSUM_PARTIAL; 3410 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3411 if (space) { 3412 int copied = copy_from_iter(skb_put(syn_data, space), space, 3413 &fo->data->msg_iter); 3414 if (unlikely(!copied)) { 3415 tcp_skb_tsorted_anchor_cleanup(syn_data); 3416 kfree_skb(syn_data); 3417 goto fallback; 3418 } 3419 if (copied != space) { 3420 skb_trim(syn_data, copied); 3421 space = copied; 3422 } 3423 } 3424 /* No more data pending in inet_wait_for_connect() */ 3425 if (space == fo->size) 3426 fo->data = NULL; 3427 fo->copied = space; 3428 3429 tcp_connect_queue_skb(sk, syn_data); 3430 if (syn_data->len) 3431 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3432 3433 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3434 3435 syn->skb_mstamp = syn_data->skb_mstamp; 3436 3437 /* Now full SYN+DATA was cloned and sent (or not), 3438 * remove the SYN from the original skb (syn_data) 3439 * we keep in write queue in case of a retransmit, as we 3440 * also have the SYN packet (with no data) in the same queue. 3441 */ 3442 TCP_SKB_CB(syn_data)->seq++; 3443 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3444 if (!err) { 3445 tp->syn_data = (fo->copied > 0); 3446 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3447 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3448 goto done; 3449 } 3450 3451 /* data was not sent, put it in write_queue */ 3452 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3453 tp->packets_out -= tcp_skb_pcount(syn_data); 3454 3455 fallback: 3456 /* Send a regular SYN with Fast Open cookie request option */ 3457 if (fo->cookie.len > 0) 3458 fo->cookie.len = 0; 3459 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3460 if (err) 3461 tp->syn_fastopen = 0; 3462 done: 3463 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3464 return err; 3465 } 3466 3467 /* Build a SYN and send it off. */ 3468 int tcp_connect(struct sock *sk) 3469 { 3470 struct tcp_sock *tp = tcp_sk(sk); 3471 struct sk_buff *buff; 3472 int err; 3473 3474 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB); 3475 3476 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3477 return -EHOSTUNREACH; /* Routing failure or similar. */ 3478 3479 tcp_connect_init(sk); 3480 3481 if (unlikely(tp->repair)) { 3482 tcp_finish_connect(sk, NULL); 3483 return 0; 3484 } 3485 3486 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3487 if (unlikely(!buff)) 3488 return -ENOBUFS; 3489 3490 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3491 tcp_mstamp_refresh(tp); 3492 tp->retrans_stamp = tcp_time_stamp(tp); 3493 tcp_connect_queue_skb(sk, buff); 3494 tcp_ecn_send_syn(sk, buff); 3495 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3496 3497 /* Send off SYN; include data in Fast Open. */ 3498 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3499 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3500 if (err == -ECONNREFUSED) 3501 return err; 3502 3503 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3504 * in order to make this packet get counted in tcpOutSegs. 3505 */ 3506 tp->snd_nxt = tp->write_seq; 3507 tp->pushed_seq = tp->write_seq; 3508 buff = tcp_send_head(sk); 3509 if (unlikely(buff)) { 3510 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3511 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3512 } 3513 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3514 3515 /* Timer for repeating the SYN until an answer. */ 3516 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3517 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3518 return 0; 3519 } 3520 EXPORT_SYMBOL(tcp_connect); 3521 3522 /* Send out a delayed ack, the caller does the policy checking 3523 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3524 * for details. 3525 */ 3526 void tcp_send_delayed_ack(struct sock *sk) 3527 { 3528 struct inet_connection_sock *icsk = inet_csk(sk); 3529 int ato = icsk->icsk_ack.ato; 3530 unsigned long timeout; 3531 3532 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3533 3534 if (ato > TCP_DELACK_MIN) { 3535 const struct tcp_sock *tp = tcp_sk(sk); 3536 int max_ato = HZ / 2; 3537 3538 if (icsk->icsk_ack.pingpong || 3539 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3540 max_ato = TCP_DELACK_MAX; 3541 3542 /* Slow path, intersegment interval is "high". */ 3543 3544 /* If some rtt estimate is known, use it to bound delayed ack. 3545 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3546 * directly. 3547 */ 3548 if (tp->srtt_us) { 3549 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3550 TCP_DELACK_MIN); 3551 3552 if (rtt < max_ato) 3553 max_ato = rtt; 3554 } 3555 3556 ato = min(ato, max_ato); 3557 } 3558 3559 /* Stay within the limit we were given */ 3560 timeout = jiffies + ato; 3561 3562 /* Use new timeout only if there wasn't a older one earlier. */ 3563 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3564 /* If delack timer was blocked or is about to expire, 3565 * send ACK now. 3566 */ 3567 if (icsk->icsk_ack.blocked || 3568 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3569 tcp_send_ack(sk); 3570 return; 3571 } 3572 3573 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3574 timeout = icsk->icsk_ack.timeout; 3575 } 3576 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3577 icsk->icsk_ack.timeout = timeout; 3578 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3579 } 3580 3581 /* This routine sends an ack and also updates the window. */ 3582 void tcp_send_ack(struct sock *sk) 3583 { 3584 struct sk_buff *buff; 3585 3586 /* If we have been reset, we may not send again. */ 3587 if (sk->sk_state == TCP_CLOSE) 3588 return; 3589 3590 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3591 3592 /* We are not putting this on the write queue, so 3593 * tcp_transmit_skb() will set the ownership to this 3594 * sock. 3595 */ 3596 buff = alloc_skb(MAX_TCP_HEADER, 3597 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3598 if (unlikely(!buff)) { 3599 inet_csk_schedule_ack(sk); 3600 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3601 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3602 TCP_DELACK_MAX, TCP_RTO_MAX); 3603 return; 3604 } 3605 3606 /* Reserve space for headers and prepare control bits. */ 3607 skb_reserve(buff, MAX_TCP_HEADER); 3608 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3609 3610 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3611 * too much. 3612 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3613 */ 3614 skb_set_tcp_pure_ack(buff); 3615 3616 /* Send it off, this clears delayed acks for us. */ 3617 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3618 } 3619 EXPORT_SYMBOL_GPL(tcp_send_ack); 3620 3621 /* This routine sends a packet with an out of date sequence 3622 * number. It assumes the other end will try to ack it. 3623 * 3624 * Question: what should we make while urgent mode? 3625 * 4.4BSD forces sending single byte of data. We cannot send 3626 * out of window data, because we have SND.NXT==SND.MAX... 3627 * 3628 * Current solution: to send TWO zero-length segments in urgent mode: 3629 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3630 * out-of-date with SND.UNA-1 to probe window. 3631 */ 3632 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3633 { 3634 struct tcp_sock *tp = tcp_sk(sk); 3635 struct sk_buff *skb; 3636 3637 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3638 skb = alloc_skb(MAX_TCP_HEADER, 3639 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3640 if (!skb) 3641 return -1; 3642 3643 /* Reserve space for headers and set control bits. */ 3644 skb_reserve(skb, MAX_TCP_HEADER); 3645 /* Use a previous sequence. This should cause the other 3646 * end to send an ack. Don't queue or clone SKB, just 3647 * send it. 3648 */ 3649 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3650 NET_INC_STATS(sock_net(sk), mib); 3651 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3652 } 3653 3654 /* Called from setsockopt( ... TCP_REPAIR ) */ 3655 void tcp_send_window_probe(struct sock *sk) 3656 { 3657 if (sk->sk_state == TCP_ESTABLISHED) { 3658 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3659 tcp_mstamp_refresh(tcp_sk(sk)); 3660 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3661 } 3662 } 3663 3664 /* Initiate keepalive or window probe from timer. */ 3665 int tcp_write_wakeup(struct sock *sk, int mib) 3666 { 3667 struct tcp_sock *tp = tcp_sk(sk); 3668 struct sk_buff *skb; 3669 3670 if (sk->sk_state == TCP_CLOSE) 3671 return -1; 3672 3673 skb = tcp_send_head(sk); 3674 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3675 int err; 3676 unsigned int mss = tcp_current_mss(sk); 3677 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3678 3679 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3680 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3681 3682 /* We are probing the opening of a window 3683 * but the window size is != 0 3684 * must have been a result SWS avoidance ( sender ) 3685 */ 3686 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3687 skb->len > mss) { 3688 seg_size = min(seg_size, mss); 3689 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3690 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3691 skb, seg_size, mss, GFP_ATOMIC)) 3692 return -1; 3693 } else if (!tcp_skb_pcount(skb)) 3694 tcp_set_skb_tso_segs(skb, mss); 3695 3696 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3697 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3698 if (!err) 3699 tcp_event_new_data_sent(sk, skb); 3700 return err; 3701 } else { 3702 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3703 tcp_xmit_probe_skb(sk, 1, mib); 3704 return tcp_xmit_probe_skb(sk, 0, mib); 3705 } 3706 } 3707 3708 /* A window probe timeout has occurred. If window is not closed send 3709 * a partial packet else a zero probe. 3710 */ 3711 void tcp_send_probe0(struct sock *sk) 3712 { 3713 struct inet_connection_sock *icsk = inet_csk(sk); 3714 struct tcp_sock *tp = tcp_sk(sk); 3715 struct net *net = sock_net(sk); 3716 unsigned long probe_max; 3717 int err; 3718 3719 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3720 3721 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3722 /* Cancel probe timer, if it is not required. */ 3723 icsk->icsk_probes_out = 0; 3724 icsk->icsk_backoff = 0; 3725 return; 3726 } 3727 3728 if (err <= 0) { 3729 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3730 icsk->icsk_backoff++; 3731 icsk->icsk_probes_out++; 3732 probe_max = TCP_RTO_MAX; 3733 } else { 3734 /* If packet was not sent due to local congestion, 3735 * do not backoff and do not remember icsk_probes_out. 3736 * Let local senders to fight for local resources. 3737 * 3738 * Use accumulated backoff yet. 3739 */ 3740 if (!icsk->icsk_probes_out) 3741 icsk->icsk_probes_out = 1; 3742 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3743 } 3744 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3745 tcp_probe0_when(sk, probe_max), 3746 TCP_RTO_MAX); 3747 } 3748 3749 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3750 { 3751 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3752 struct flowi fl; 3753 int res; 3754 3755 tcp_rsk(req)->txhash = net_tx_rndhash(); 3756 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3757 if (!res) { 3758 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3759 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3760 if (unlikely(tcp_passive_fastopen(sk))) 3761 tcp_sk(sk)->total_retrans++; 3762 trace_tcp_retransmit_synack(sk, req); 3763 } 3764 return res; 3765 } 3766 EXPORT_SYMBOL(tcp_rtx_synack); 3767