xref: /linux/net/ipv4/tcp_output.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 			   int push_one, gfp_t gfp);
50 
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 	struct inet_connection_sock *icsk = inet_csk(sk);
55 	struct tcp_sock *tp = tcp_sk(sk);
56 	unsigned int prior_packets = tp->packets_out;
57 
58 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59 
60 	__skb_unlink(skb, &sk->sk_write_queue);
61 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62 
63 	tp->packets_out += tcp_skb_pcount(skb);
64 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
65 		tcp_rearm_rto(sk);
66 
67 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
68 		      tcp_skb_pcount(skb));
69 }
70 
71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
72  * window scaling factor due to loss of precision.
73  * If window has been shrunk, what should we make? It is not clear at all.
74  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76  * invalid. OK, let's make this for now:
77  */
78 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
79 {
80 	const struct tcp_sock *tp = tcp_sk(sk);
81 
82 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
83 	    (tp->rx_opt.wscale_ok &&
84 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
85 		return tp->snd_nxt;
86 	else
87 		return tcp_wnd_end(tp);
88 }
89 
90 /* Calculate mss to advertise in SYN segment.
91  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
92  *
93  * 1. It is independent of path mtu.
94  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
95  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
96  *    attached devices, because some buggy hosts are confused by
97  *    large MSS.
98  * 4. We do not make 3, we advertise MSS, calculated from first
99  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
100  *    This may be overridden via information stored in routing table.
101  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
102  *    probably even Jumbo".
103  */
104 static __u16 tcp_advertise_mss(struct sock *sk)
105 {
106 	struct tcp_sock *tp = tcp_sk(sk);
107 	const struct dst_entry *dst = __sk_dst_get(sk);
108 	int mss = tp->advmss;
109 
110 	if (dst) {
111 		unsigned int metric = dst_metric_advmss(dst);
112 
113 		if (metric < mss) {
114 			mss = metric;
115 			tp->advmss = mss;
116 		}
117 	}
118 
119 	return (__u16)mss;
120 }
121 
122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
123  * This is the first part of cwnd validation mechanism.
124  */
125 void tcp_cwnd_restart(struct sock *sk, s32 delta)
126 {
127 	struct tcp_sock *tp = tcp_sk(sk);
128 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
129 	u32 cwnd = tp->snd_cwnd;
130 
131 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
132 
133 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
134 	restart_cwnd = min(restart_cwnd, cwnd);
135 
136 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
137 		cwnd >>= 1;
138 	tp->snd_cwnd = max(cwnd, restart_cwnd);
139 	tp->snd_cwnd_stamp = tcp_jiffies32;
140 	tp->snd_cwnd_used = 0;
141 }
142 
143 /* Congestion state accounting after a packet has been sent. */
144 static void tcp_event_data_sent(struct tcp_sock *tp,
145 				struct sock *sk)
146 {
147 	struct inet_connection_sock *icsk = inet_csk(sk);
148 	const u32 now = tcp_jiffies32;
149 
150 	if (tcp_packets_in_flight(tp) == 0)
151 		tcp_ca_event(sk, CA_EVENT_TX_START);
152 
153 	tp->lsndtime = now;
154 
155 	/* If it is a reply for ato after last received
156 	 * packet, enter pingpong mode.
157 	 */
158 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
159 		icsk->icsk_ack.pingpong = 1;
160 }
161 
162 /* Account for an ACK we sent. */
163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
164 				      u32 rcv_nxt)
165 {
166 	struct tcp_sock *tp = tcp_sk(sk);
167 
168 	if (unlikely(tp->compressed_ack)) {
169 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
170 			      tp->compressed_ack);
171 		tp->compressed_ack = 0;
172 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
173 			__sock_put(sk);
174 	}
175 
176 	if (unlikely(rcv_nxt != tp->rcv_nxt))
177 		return;  /* Special ACK sent by DCTCP to reflect ECN */
178 	tcp_dec_quickack_mode(sk, pkts);
179 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
180 }
181 
182 
183 u32 tcp_default_init_rwnd(u32 mss)
184 {
185 	/* Initial receive window should be twice of TCP_INIT_CWND to
186 	 * enable proper sending of new unsent data during fast recovery
187 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
188 	 * limit when mss is larger than 1460.
189 	 */
190 	u32 init_rwnd = TCP_INIT_CWND * 2;
191 
192 	if (mss > 1460)
193 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
194 	return init_rwnd;
195 }
196 
197 /* Determine a window scaling and initial window to offer.
198  * Based on the assumption that the given amount of space
199  * will be offered. Store the results in the tp structure.
200  * NOTE: for smooth operation initial space offering should
201  * be a multiple of mss if possible. We assume here that mss >= 1.
202  * This MUST be enforced by all callers.
203  */
204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
205 			       __u32 *rcv_wnd, __u32 *window_clamp,
206 			       int wscale_ok, __u8 *rcv_wscale,
207 			       __u32 init_rcv_wnd)
208 {
209 	unsigned int space = (__space < 0 ? 0 : __space);
210 
211 	/* If no clamp set the clamp to the max possible scaled window */
212 	if (*window_clamp == 0)
213 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
214 	space = min(*window_clamp, space);
215 
216 	/* Quantize space offering to a multiple of mss if possible. */
217 	if (space > mss)
218 		space = rounddown(space, mss);
219 
220 	/* NOTE: offering an initial window larger than 32767
221 	 * will break some buggy TCP stacks. If the admin tells us
222 	 * it is likely we could be speaking with such a buggy stack
223 	 * we will truncate our initial window offering to 32K-1
224 	 * unless the remote has sent us a window scaling option,
225 	 * which we interpret as a sign the remote TCP is not
226 	 * misinterpreting the window field as a signed quantity.
227 	 */
228 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
229 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
230 	else
231 		(*rcv_wnd) = space;
232 
233 	(*rcv_wscale) = 0;
234 	if (wscale_ok) {
235 		/* Set window scaling on max possible window */
236 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
237 		space = max_t(u32, space, sysctl_rmem_max);
238 		space = min_t(u32, space, *window_clamp);
239 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
240 			space >>= 1;
241 			(*rcv_wscale)++;
242 		}
243 	}
244 
245 	if (!init_rcv_wnd) /* Use default unless specified otherwise */
246 		init_rcv_wnd = tcp_default_init_rwnd(mss);
247 	*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
248 
249 	/* Set the clamp no higher than max representable value */
250 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253 
254 /* Chose a new window to advertise, update state in tcp_sock for the
255  * socket, and return result with RFC1323 scaling applied.  The return
256  * value can be stuffed directly into th->window for an outgoing
257  * frame.
258  */
259 static u16 tcp_select_window(struct sock *sk)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 	u32 old_win = tp->rcv_wnd;
263 	u32 cur_win = tcp_receive_window(tp);
264 	u32 new_win = __tcp_select_window(sk);
265 
266 	/* Never shrink the offered window */
267 	if (new_win < cur_win) {
268 		/* Danger Will Robinson!
269 		 * Don't update rcv_wup/rcv_wnd here or else
270 		 * we will not be able to advertise a zero
271 		 * window in time.  --DaveM
272 		 *
273 		 * Relax Will Robinson.
274 		 */
275 		if (new_win == 0)
276 			NET_INC_STATS(sock_net(sk),
277 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
278 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
279 	}
280 	tp->rcv_wnd = new_win;
281 	tp->rcv_wup = tp->rcv_nxt;
282 
283 	/* Make sure we do not exceed the maximum possible
284 	 * scaled window.
285 	 */
286 	if (!tp->rx_opt.rcv_wscale &&
287 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 		new_win = min(new_win, MAX_TCP_WINDOW);
289 	else
290 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291 
292 	/* RFC1323 scaling applied */
293 	new_win >>= tp->rx_opt.rcv_wscale;
294 
295 	/* If we advertise zero window, disable fast path. */
296 	if (new_win == 0) {
297 		tp->pred_flags = 0;
298 		if (old_win)
299 			NET_INC_STATS(sock_net(sk),
300 				      LINUX_MIB_TCPTOZEROWINDOWADV);
301 	} else if (old_win == 0) {
302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303 	}
304 
305 	return new_win;
306 }
307 
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310 {
311 	const struct tcp_sock *tp = tcp_sk(sk);
312 
313 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 	if (!(tp->ecn_flags & TCP_ECN_OK))
315 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 	else if (tcp_ca_needs_ecn(sk) ||
317 		 tcp_bpf_ca_needs_ecn(sk))
318 		INET_ECN_xmit(sk);
319 }
320 
321 /* Packet ECN state for a SYN.  */
322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328 
329 	if (!use_ecn) {
330 		const struct dst_entry *dst = __sk_dst_get(sk);
331 
332 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 			use_ecn = true;
334 	}
335 
336 	tp->ecn_flags = 0;
337 
338 	if (use_ecn) {
339 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 		tp->ecn_flags = TCP_ECN_OK;
341 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 			INET_ECN_xmit(sk);
343 	}
344 }
345 
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 		/* tp->ecn_flags are cleared at a later point in time when
350 		 * SYN ACK is ultimatively being received.
351 		 */
352 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354 
355 static void
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 	if (inet_rsk(req)->ecn_ok)
359 		th->ece = 1;
360 }
361 
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363  * be sent.
364  */
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 			 struct tcphdr *th, int tcp_header_len)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 
370 	if (tp->ecn_flags & TCP_ECN_OK) {
371 		/* Not-retransmitted data segment: set ECT and inject CWR. */
372 		if (skb->len != tcp_header_len &&
373 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 			INET_ECN_xmit(sk);
375 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 				th->cwr = 1;
378 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 			}
380 		} else if (!tcp_ca_needs_ecn(sk)) {
381 			/* ACK or retransmitted segment: clear ECT|CE */
382 			INET_ECN_dontxmit(sk);
383 		}
384 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 			th->ece = 1;
386 	}
387 }
388 
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390  * auto increment end seqno.
391  */
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 	skb->ip_summed = CHECKSUM_PARTIAL;
395 
396 	TCP_SKB_CB(skb)->tcp_flags = flags;
397 	TCP_SKB_CB(skb)->sacked = 0;
398 
399 	tcp_skb_pcount_set(skb, 1);
400 
401 	TCP_SKB_CB(skb)->seq = seq;
402 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 		seq++;
404 	TCP_SKB_CB(skb)->end_seq = seq;
405 }
406 
407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408 {
409 	return tp->snd_una != tp->snd_up;
410 }
411 
412 #define OPTION_SACK_ADVERTISE	(1 << 0)
413 #define OPTION_TS		(1 << 1)
414 #define OPTION_MD5		(1 << 2)
415 #define OPTION_WSCALE		(1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
417 #define OPTION_SMC		(1 << 9)
418 
419 static void smc_options_write(__be32 *ptr, u16 *options)
420 {
421 #if IS_ENABLED(CONFIG_SMC)
422 	if (static_branch_unlikely(&tcp_have_smc)) {
423 		if (unlikely(OPTION_SMC & *options)) {
424 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
425 				       (TCPOPT_NOP  << 16) |
426 				       (TCPOPT_EXP <<  8) |
427 				       (TCPOLEN_EXP_SMC_BASE));
428 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
429 		}
430 	}
431 #endif
432 }
433 
434 struct tcp_out_options {
435 	u16 options;		/* bit field of OPTION_* */
436 	u16 mss;		/* 0 to disable */
437 	u8 ws;			/* window scale, 0 to disable */
438 	u8 num_sack_blocks;	/* number of SACK blocks to include */
439 	u8 hash_size;		/* bytes in hash_location */
440 	__u8 *hash_location;	/* temporary pointer, overloaded */
441 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
442 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
443 };
444 
445 /* Write previously computed TCP options to the packet.
446  *
447  * Beware: Something in the Internet is very sensitive to the ordering of
448  * TCP options, we learned this through the hard way, so be careful here.
449  * Luckily we can at least blame others for their non-compliance but from
450  * inter-operability perspective it seems that we're somewhat stuck with
451  * the ordering which we have been using if we want to keep working with
452  * those broken things (not that it currently hurts anybody as there isn't
453  * particular reason why the ordering would need to be changed).
454  *
455  * At least SACK_PERM as the first option is known to lead to a disaster
456  * (but it may well be that other scenarios fail similarly).
457  */
458 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
459 			      struct tcp_out_options *opts)
460 {
461 	u16 options = opts->options;	/* mungable copy */
462 
463 	if (unlikely(OPTION_MD5 & options)) {
464 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
465 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
466 		/* overload cookie hash location */
467 		opts->hash_location = (__u8 *)ptr;
468 		ptr += 4;
469 	}
470 
471 	if (unlikely(opts->mss)) {
472 		*ptr++ = htonl((TCPOPT_MSS << 24) |
473 			       (TCPOLEN_MSS << 16) |
474 			       opts->mss);
475 	}
476 
477 	if (likely(OPTION_TS & options)) {
478 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
479 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
480 				       (TCPOLEN_SACK_PERM << 16) |
481 				       (TCPOPT_TIMESTAMP << 8) |
482 				       TCPOLEN_TIMESTAMP);
483 			options &= ~OPTION_SACK_ADVERTISE;
484 		} else {
485 			*ptr++ = htonl((TCPOPT_NOP << 24) |
486 				       (TCPOPT_NOP << 16) |
487 				       (TCPOPT_TIMESTAMP << 8) |
488 				       TCPOLEN_TIMESTAMP);
489 		}
490 		*ptr++ = htonl(opts->tsval);
491 		*ptr++ = htonl(opts->tsecr);
492 	}
493 
494 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
495 		*ptr++ = htonl((TCPOPT_NOP << 24) |
496 			       (TCPOPT_NOP << 16) |
497 			       (TCPOPT_SACK_PERM << 8) |
498 			       TCPOLEN_SACK_PERM);
499 	}
500 
501 	if (unlikely(OPTION_WSCALE & options)) {
502 		*ptr++ = htonl((TCPOPT_NOP << 24) |
503 			       (TCPOPT_WINDOW << 16) |
504 			       (TCPOLEN_WINDOW << 8) |
505 			       opts->ws);
506 	}
507 
508 	if (unlikely(opts->num_sack_blocks)) {
509 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
510 			tp->duplicate_sack : tp->selective_acks;
511 		int this_sack;
512 
513 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
514 			       (TCPOPT_NOP  << 16) |
515 			       (TCPOPT_SACK <<  8) |
516 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
517 						     TCPOLEN_SACK_PERBLOCK)));
518 
519 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
520 		     ++this_sack) {
521 			*ptr++ = htonl(sp[this_sack].start_seq);
522 			*ptr++ = htonl(sp[this_sack].end_seq);
523 		}
524 
525 		tp->rx_opt.dsack = 0;
526 	}
527 
528 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
529 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
530 		u8 *p = (u8 *)ptr;
531 		u32 len; /* Fast Open option length */
532 
533 		if (foc->exp) {
534 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
535 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
536 				     TCPOPT_FASTOPEN_MAGIC);
537 			p += TCPOLEN_EXP_FASTOPEN_BASE;
538 		} else {
539 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
540 			*p++ = TCPOPT_FASTOPEN;
541 			*p++ = len;
542 		}
543 
544 		memcpy(p, foc->val, foc->len);
545 		if ((len & 3) == 2) {
546 			p[foc->len] = TCPOPT_NOP;
547 			p[foc->len + 1] = TCPOPT_NOP;
548 		}
549 		ptr += (len + 3) >> 2;
550 	}
551 
552 	smc_options_write(ptr, &options);
553 }
554 
555 static void smc_set_option(const struct tcp_sock *tp,
556 			   struct tcp_out_options *opts,
557 			   unsigned int *remaining)
558 {
559 #if IS_ENABLED(CONFIG_SMC)
560 	if (static_branch_unlikely(&tcp_have_smc)) {
561 		if (tp->syn_smc) {
562 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
563 				opts->options |= OPTION_SMC;
564 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
565 			}
566 		}
567 	}
568 #endif
569 }
570 
571 static void smc_set_option_cond(const struct tcp_sock *tp,
572 				const struct inet_request_sock *ireq,
573 				struct tcp_out_options *opts,
574 				unsigned int *remaining)
575 {
576 #if IS_ENABLED(CONFIG_SMC)
577 	if (static_branch_unlikely(&tcp_have_smc)) {
578 		if (tp->syn_smc && ireq->smc_ok) {
579 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
580 				opts->options |= OPTION_SMC;
581 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
582 			}
583 		}
584 	}
585 #endif
586 }
587 
588 /* Compute TCP options for SYN packets. This is not the final
589  * network wire format yet.
590  */
591 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
592 				struct tcp_out_options *opts,
593 				struct tcp_md5sig_key **md5)
594 {
595 	struct tcp_sock *tp = tcp_sk(sk);
596 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
597 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
598 
599 	*md5 = NULL;
600 #ifdef CONFIG_TCP_MD5SIG
601 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
602 		*md5 = tp->af_specific->md5_lookup(sk, sk);
603 		if (*md5) {
604 			opts->options |= OPTION_MD5;
605 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
606 		}
607 	}
608 #endif
609 
610 	/* We always get an MSS option.  The option bytes which will be seen in
611 	 * normal data packets should timestamps be used, must be in the MSS
612 	 * advertised.  But we subtract them from tp->mss_cache so that
613 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
614 	 * fact here if necessary.  If we don't do this correctly, as a
615 	 * receiver we won't recognize data packets as being full sized when we
616 	 * should, and thus we won't abide by the delayed ACK rules correctly.
617 	 * SACKs don't matter, we never delay an ACK when we have any of those
618 	 * going out.  */
619 	opts->mss = tcp_advertise_mss(sk);
620 	remaining -= TCPOLEN_MSS_ALIGNED;
621 
622 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
623 		opts->options |= OPTION_TS;
624 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
625 		opts->tsecr = tp->rx_opt.ts_recent;
626 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
627 	}
628 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
629 		opts->ws = tp->rx_opt.rcv_wscale;
630 		opts->options |= OPTION_WSCALE;
631 		remaining -= TCPOLEN_WSCALE_ALIGNED;
632 	}
633 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
634 		opts->options |= OPTION_SACK_ADVERTISE;
635 		if (unlikely(!(OPTION_TS & opts->options)))
636 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
637 	}
638 
639 	if (fastopen && fastopen->cookie.len >= 0) {
640 		u32 need = fastopen->cookie.len;
641 
642 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
643 					       TCPOLEN_FASTOPEN_BASE;
644 		need = (need + 3) & ~3U;  /* Align to 32 bits */
645 		if (remaining >= need) {
646 			opts->options |= OPTION_FAST_OPEN_COOKIE;
647 			opts->fastopen_cookie = &fastopen->cookie;
648 			remaining -= need;
649 			tp->syn_fastopen = 1;
650 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
651 		}
652 	}
653 
654 	smc_set_option(tp, opts, &remaining);
655 
656 	return MAX_TCP_OPTION_SPACE - remaining;
657 }
658 
659 /* Set up TCP options for SYN-ACKs. */
660 static unsigned int tcp_synack_options(const struct sock *sk,
661 				       struct request_sock *req,
662 				       unsigned int mss, struct sk_buff *skb,
663 				       struct tcp_out_options *opts,
664 				       const struct tcp_md5sig_key *md5,
665 				       struct tcp_fastopen_cookie *foc)
666 {
667 	struct inet_request_sock *ireq = inet_rsk(req);
668 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
669 
670 #ifdef CONFIG_TCP_MD5SIG
671 	if (md5) {
672 		opts->options |= OPTION_MD5;
673 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
674 
675 		/* We can't fit any SACK blocks in a packet with MD5 + TS
676 		 * options. There was discussion about disabling SACK
677 		 * rather than TS in order to fit in better with old,
678 		 * buggy kernels, but that was deemed to be unnecessary.
679 		 */
680 		ireq->tstamp_ok &= !ireq->sack_ok;
681 	}
682 #endif
683 
684 	/* We always send an MSS option. */
685 	opts->mss = mss;
686 	remaining -= TCPOLEN_MSS_ALIGNED;
687 
688 	if (likely(ireq->wscale_ok)) {
689 		opts->ws = ireq->rcv_wscale;
690 		opts->options |= OPTION_WSCALE;
691 		remaining -= TCPOLEN_WSCALE_ALIGNED;
692 	}
693 	if (likely(ireq->tstamp_ok)) {
694 		opts->options |= OPTION_TS;
695 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
696 		opts->tsecr = req->ts_recent;
697 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
698 	}
699 	if (likely(ireq->sack_ok)) {
700 		opts->options |= OPTION_SACK_ADVERTISE;
701 		if (unlikely(!ireq->tstamp_ok))
702 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
703 	}
704 	if (foc != NULL && foc->len >= 0) {
705 		u32 need = foc->len;
706 
707 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
708 				   TCPOLEN_FASTOPEN_BASE;
709 		need = (need + 3) & ~3U;  /* Align to 32 bits */
710 		if (remaining >= need) {
711 			opts->options |= OPTION_FAST_OPEN_COOKIE;
712 			opts->fastopen_cookie = foc;
713 			remaining -= need;
714 		}
715 	}
716 
717 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
718 
719 	return MAX_TCP_OPTION_SPACE - remaining;
720 }
721 
722 /* Compute TCP options for ESTABLISHED sockets. This is not the
723  * final wire format yet.
724  */
725 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
726 					struct tcp_out_options *opts,
727 					struct tcp_md5sig_key **md5)
728 {
729 	struct tcp_sock *tp = tcp_sk(sk);
730 	unsigned int size = 0;
731 	unsigned int eff_sacks;
732 
733 	opts->options = 0;
734 
735 	*md5 = NULL;
736 #ifdef CONFIG_TCP_MD5SIG
737 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
738 		*md5 = tp->af_specific->md5_lookup(sk, sk);
739 		if (*md5) {
740 			opts->options |= OPTION_MD5;
741 			size += TCPOLEN_MD5SIG_ALIGNED;
742 		}
743 	}
744 #endif
745 
746 	if (likely(tp->rx_opt.tstamp_ok)) {
747 		opts->options |= OPTION_TS;
748 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
749 		opts->tsecr = tp->rx_opt.ts_recent;
750 		size += TCPOLEN_TSTAMP_ALIGNED;
751 	}
752 
753 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
754 	if (unlikely(eff_sacks)) {
755 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
756 		opts->num_sack_blocks =
757 			min_t(unsigned int, eff_sacks,
758 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
759 			      TCPOLEN_SACK_PERBLOCK);
760 		size += TCPOLEN_SACK_BASE_ALIGNED +
761 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
762 	}
763 
764 	return size;
765 }
766 
767 
768 /* TCP SMALL QUEUES (TSQ)
769  *
770  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
771  * to reduce RTT and bufferbloat.
772  * We do this using a special skb destructor (tcp_wfree).
773  *
774  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
775  * needs to be reallocated in a driver.
776  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
777  *
778  * Since transmit from skb destructor is forbidden, we use a tasklet
779  * to process all sockets that eventually need to send more skbs.
780  * We use one tasklet per cpu, with its own queue of sockets.
781  */
782 struct tsq_tasklet {
783 	struct tasklet_struct	tasklet;
784 	struct list_head	head; /* queue of tcp sockets */
785 };
786 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
787 
788 static void tcp_tsq_write(struct sock *sk)
789 {
790 	if ((1 << sk->sk_state) &
791 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
792 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
793 		struct tcp_sock *tp = tcp_sk(sk);
794 
795 		if (tp->lost_out > tp->retrans_out &&
796 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
797 			tcp_mstamp_refresh(tp);
798 			tcp_xmit_retransmit_queue(sk);
799 		}
800 
801 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
802 			       0, GFP_ATOMIC);
803 	}
804 }
805 
806 static void tcp_tsq_handler(struct sock *sk)
807 {
808 	bh_lock_sock(sk);
809 	if (!sock_owned_by_user(sk))
810 		tcp_tsq_write(sk);
811 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
812 		sock_hold(sk);
813 	bh_unlock_sock(sk);
814 }
815 /*
816  * One tasklet per cpu tries to send more skbs.
817  * We run in tasklet context but need to disable irqs when
818  * transferring tsq->head because tcp_wfree() might
819  * interrupt us (non NAPI drivers)
820  */
821 static void tcp_tasklet_func(unsigned long data)
822 {
823 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
824 	LIST_HEAD(list);
825 	unsigned long flags;
826 	struct list_head *q, *n;
827 	struct tcp_sock *tp;
828 	struct sock *sk;
829 
830 	local_irq_save(flags);
831 	list_splice_init(&tsq->head, &list);
832 	local_irq_restore(flags);
833 
834 	list_for_each_safe(q, n, &list) {
835 		tp = list_entry(q, struct tcp_sock, tsq_node);
836 		list_del(&tp->tsq_node);
837 
838 		sk = (struct sock *)tp;
839 		smp_mb__before_atomic();
840 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
841 
842 		tcp_tsq_handler(sk);
843 		sk_free(sk);
844 	}
845 }
846 
847 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
848 			  TCPF_WRITE_TIMER_DEFERRED |	\
849 			  TCPF_DELACK_TIMER_DEFERRED |	\
850 			  TCPF_MTU_REDUCED_DEFERRED)
851 /**
852  * tcp_release_cb - tcp release_sock() callback
853  * @sk: socket
854  *
855  * called from release_sock() to perform protocol dependent
856  * actions before socket release.
857  */
858 void tcp_release_cb(struct sock *sk)
859 {
860 	unsigned long flags, nflags;
861 
862 	/* perform an atomic operation only if at least one flag is set */
863 	do {
864 		flags = sk->sk_tsq_flags;
865 		if (!(flags & TCP_DEFERRED_ALL))
866 			return;
867 		nflags = flags & ~TCP_DEFERRED_ALL;
868 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
869 
870 	if (flags & TCPF_TSQ_DEFERRED) {
871 		tcp_tsq_write(sk);
872 		__sock_put(sk);
873 	}
874 	/* Here begins the tricky part :
875 	 * We are called from release_sock() with :
876 	 * 1) BH disabled
877 	 * 2) sk_lock.slock spinlock held
878 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
879 	 *
880 	 * But following code is meant to be called from BH handlers,
881 	 * so we should keep BH disabled, but early release socket ownership
882 	 */
883 	sock_release_ownership(sk);
884 
885 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
886 		tcp_write_timer_handler(sk);
887 		__sock_put(sk);
888 	}
889 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
890 		tcp_delack_timer_handler(sk);
891 		__sock_put(sk);
892 	}
893 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
894 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
895 		__sock_put(sk);
896 	}
897 }
898 EXPORT_SYMBOL(tcp_release_cb);
899 
900 void __init tcp_tasklet_init(void)
901 {
902 	int i;
903 
904 	for_each_possible_cpu(i) {
905 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
906 
907 		INIT_LIST_HEAD(&tsq->head);
908 		tasklet_init(&tsq->tasklet,
909 			     tcp_tasklet_func,
910 			     (unsigned long)tsq);
911 	}
912 }
913 
914 /*
915  * Write buffer destructor automatically called from kfree_skb.
916  * We can't xmit new skbs from this context, as we might already
917  * hold qdisc lock.
918  */
919 void tcp_wfree(struct sk_buff *skb)
920 {
921 	struct sock *sk = skb->sk;
922 	struct tcp_sock *tp = tcp_sk(sk);
923 	unsigned long flags, nval, oval;
924 
925 	/* Keep one reference on sk_wmem_alloc.
926 	 * Will be released by sk_free() from here or tcp_tasklet_func()
927 	 */
928 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
929 
930 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
931 	 * Wait until our queues (qdisc + devices) are drained.
932 	 * This gives :
933 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
934 	 * - chance for incoming ACK (processed by another cpu maybe)
935 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
936 	 */
937 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
938 		goto out;
939 
940 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
941 		struct tsq_tasklet *tsq;
942 		bool empty;
943 
944 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
945 			goto out;
946 
947 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
948 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
949 		if (nval != oval)
950 			continue;
951 
952 		/* queue this socket to tasklet queue */
953 		local_irq_save(flags);
954 		tsq = this_cpu_ptr(&tsq_tasklet);
955 		empty = list_empty(&tsq->head);
956 		list_add(&tp->tsq_node, &tsq->head);
957 		if (empty)
958 			tasklet_schedule(&tsq->tasklet);
959 		local_irq_restore(flags);
960 		return;
961 	}
962 out:
963 	sk_free(sk);
964 }
965 
966 /* Note: Called under soft irq.
967  * We can call TCP stack right away, unless socket is owned by user.
968  */
969 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
970 {
971 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
972 	struct sock *sk = (struct sock *)tp;
973 
974 	tcp_tsq_handler(sk);
975 	sock_put(sk);
976 
977 	return HRTIMER_NORESTART;
978 }
979 
980 /* BBR congestion control needs pacing.
981  * Same remark for SO_MAX_PACING_RATE.
982  * sch_fq packet scheduler is efficiently handling pacing,
983  * but is not always installed/used.
984  * Return true if TCP stack should pace packets itself.
985  */
986 static bool tcp_needs_internal_pacing(const struct sock *sk)
987 {
988 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
989 }
990 
991 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
992 {
993 	u64 len_ns;
994 	u32 rate;
995 
996 	if (!tcp_needs_internal_pacing(sk))
997 		return;
998 	rate = sk->sk_pacing_rate;
999 	if (!rate || rate == ~0U)
1000 		return;
1001 
1002 	/* Should account for header sizes as sch_fq does,
1003 	 * but lets make things simple.
1004 	 */
1005 	len_ns = (u64)skb->len * NSEC_PER_SEC;
1006 	do_div(len_ns, rate);
1007 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
1008 		      ktime_add_ns(ktime_get(), len_ns),
1009 		      HRTIMER_MODE_ABS_PINNED_SOFT);
1010 	sock_hold(sk);
1011 }
1012 
1013 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1014 {
1015 	skb->skb_mstamp = tp->tcp_mstamp;
1016 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1017 }
1018 
1019 /* This routine actually transmits TCP packets queued in by
1020  * tcp_do_sendmsg().  This is used by both the initial
1021  * transmission and possible later retransmissions.
1022  * All SKB's seen here are completely headerless.  It is our
1023  * job to build the TCP header, and pass the packet down to
1024  * IP so it can do the same plus pass the packet off to the
1025  * device.
1026  *
1027  * We are working here with either a clone of the original
1028  * SKB, or a fresh unique copy made by the retransmit engine.
1029  */
1030 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1031 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1032 {
1033 	const struct inet_connection_sock *icsk = inet_csk(sk);
1034 	struct inet_sock *inet;
1035 	struct tcp_sock *tp;
1036 	struct tcp_skb_cb *tcb;
1037 	struct tcp_out_options opts;
1038 	unsigned int tcp_options_size, tcp_header_size;
1039 	struct sk_buff *oskb = NULL;
1040 	struct tcp_md5sig_key *md5;
1041 	struct tcphdr *th;
1042 	int err;
1043 
1044 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1045 	tp = tcp_sk(sk);
1046 
1047 	if (clone_it) {
1048 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1049 			- tp->snd_una;
1050 		oskb = skb;
1051 
1052 		tcp_skb_tsorted_save(oskb) {
1053 			if (unlikely(skb_cloned(oskb)))
1054 				skb = pskb_copy(oskb, gfp_mask);
1055 			else
1056 				skb = skb_clone(oskb, gfp_mask);
1057 		} tcp_skb_tsorted_restore(oskb);
1058 
1059 		if (unlikely(!skb))
1060 			return -ENOBUFS;
1061 	}
1062 	skb->skb_mstamp = tp->tcp_mstamp;
1063 
1064 	inet = inet_sk(sk);
1065 	tcb = TCP_SKB_CB(skb);
1066 	memset(&opts, 0, sizeof(opts));
1067 
1068 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1069 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1070 	else
1071 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1072 							   &md5);
1073 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1074 
1075 	/* if no packet is in qdisc/device queue, then allow XPS to select
1076 	 * another queue. We can be called from tcp_tsq_handler()
1077 	 * which holds one reference to sk.
1078 	 *
1079 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1080 	 * One way to get this would be to set skb->truesize = 2 on them.
1081 	 */
1082 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1083 
1084 	/* If we had to use memory reserve to allocate this skb,
1085 	 * this might cause drops if packet is looped back :
1086 	 * Other socket might not have SOCK_MEMALLOC.
1087 	 * Packets not looped back do not care about pfmemalloc.
1088 	 */
1089 	skb->pfmemalloc = 0;
1090 
1091 	skb_push(skb, tcp_header_size);
1092 	skb_reset_transport_header(skb);
1093 
1094 	skb_orphan(skb);
1095 	skb->sk = sk;
1096 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1097 	skb_set_hash_from_sk(skb, sk);
1098 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1099 
1100 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1101 
1102 	/* Build TCP header and checksum it. */
1103 	th = (struct tcphdr *)skb->data;
1104 	th->source		= inet->inet_sport;
1105 	th->dest		= inet->inet_dport;
1106 	th->seq			= htonl(tcb->seq);
1107 	th->ack_seq		= htonl(rcv_nxt);
1108 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1109 					tcb->tcp_flags);
1110 
1111 	th->check		= 0;
1112 	th->urg_ptr		= 0;
1113 
1114 	/* The urg_mode check is necessary during a below snd_una win probe */
1115 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1116 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1117 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1118 			th->urg = 1;
1119 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1120 			th->urg_ptr = htons(0xFFFF);
1121 			th->urg = 1;
1122 		}
1123 	}
1124 
1125 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1126 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1127 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1128 		th->window      = htons(tcp_select_window(sk));
1129 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1130 	} else {
1131 		/* RFC1323: The window in SYN & SYN/ACK segments
1132 		 * is never scaled.
1133 		 */
1134 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1135 	}
1136 #ifdef CONFIG_TCP_MD5SIG
1137 	/* Calculate the MD5 hash, as we have all we need now */
1138 	if (md5) {
1139 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1140 		tp->af_specific->calc_md5_hash(opts.hash_location,
1141 					       md5, sk, skb);
1142 	}
1143 #endif
1144 
1145 	icsk->icsk_af_ops->send_check(sk, skb);
1146 
1147 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1148 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1149 
1150 	if (skb->len != tcp_header_size) {
1151 		tcp_event_data_sent(tp, sk);
1152 		tp->data_segs_out += tcp_skb_pcount(skb);
1153 		tcp_internal_pacing(sk, skb);
1154 	}
1155 
1156 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1157 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1158 			      tcp_skb_pcount(skb));
1159 
1160 	tp->segs_out += tcp_skb_pcount(skb);
1161 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1162 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1163 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1164 
1165 	/* Our usage of tstamp should remain private */
1166 	skb->tstamp = 0;
1167 
1168 	/* Cleanup our debris for IP stacks */
1169 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1170 			       sizeof(struct inet6_skb_parm)));
1171 
1172 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1173 
1174 	if (unlikely(err > 0)) {
1175 		tcp_enter_cwr(sk);
1176 		err = net_xmit_eval(err);
1177 	}
1178 	if (!err && oskb) {
1179 		tcp_update_skb_after_send(tp, oskb);
1180 		tcp_rate_skb_sent(sk, oskb);
1181 	}
1182 	return err;
1183 }
1184 
1185 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1186 			    gfp_t gfp_mask)
1187 {
1188 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1189 				  tcp_sk(sk)->rcv_nxt);
1190 }
1191 
1192 /* This routine just queues the buffer for sending.
1193  *
1194  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1195  * otherwise socket can stall.
1196  */
1197 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1198 {
1199 	struct tcp_sock *tp = tcp_sk(sk);
1200 
1201 	/* Advance write_seq and place onto the write_queue. */
1202 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1203 	__skb_header_release(skb);
1204 	tcp_add_write_queue_tail(sk, skb);
1205 	sk->sk_wmem_queued += skb->truesize;
1206 	sk_mem_charge(sk, skb->truesize);
1207 }
1208 
1209 /* Initialize TSO segments for a packet. */
1210 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1211 {
1212 	if (skb->len <= mss_now) {
1213 		/* Avoid the costly divide in the normal
1214 		 * non-TSO case.
1215 		 */
1216 		tcp_skb_pcount_set(skb, 1);
1217 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1218 	} else {
1219 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1220 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1221 	}
1222 }
1223 
1224 /* Pcount in the middle of the write queue got changed, we need to do various
1225  * tweaks to fix counters
1226  */
1227 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1228 {
1229 	struct tcp_sock *tp = tcp_sk(sk);
1230 
1231 	tp->packets_out -= decr;
1232 
1233 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1234 		tp->sacked_out -= decr;
1235 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1236 		tp->retrans_out -= decr;
1237 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1238 		tp->lost_out -= decr;
1239 
1240 	/* Reno case is special. Sigh... */
1241 	if (tcp_is_reno(tp) && decr > 0)
1242 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1243 
1244 	if (tp->lost_skb_hint &&
1245 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1246 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1247 		tp->lost_cnt_hint -= decr;
1248 
1249 	tcp_verify_left_out(tp);
1250 }
1251 
1252 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1253 {
1254 	return TCP_SKB_CB(skb)->txstamp_ack ||
1255 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1256 }
1257 
1258 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1259 {
1260 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1261 
1262 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1263 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1264 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1265 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1266 
1267 		shinfo->tx_flags &= ~tsflags;
1268 		shinfo2->tx_flags |= tsflags;
1269 		swap(shinfo->tskey, shinfo2->tskey);
1270 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1271 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1272 	}
1273 }
1274 
1275 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1276 {
1277 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1278 	TCP_SKB_CB(skb)->eor = 0;
1279 }
1280 
1281 /* Insert buff after skb on the write or rtx queue of sk.  */
1282 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1283 					 struct sk_buff *buff,
1284 					 struct sock *sk,
1285 					 enum tcp_queue tcp_queue)
1286 {
1287 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1288 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1289 	else
1290 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1291 }
1292 
1293 /* Function to create two new TCP segments.  Shrinks the given segment
1294  * to the specified size and appends a new segment with the rest of the
1295  * packet to the list.  This won't be called frequently, I hope.
1296  * Remember, these are still headerless SKBs at this point.
1297  */
1298 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1299 		 struct sk_buff *skb, u32 len,
1300 		 unsigned int mss_now, gfp_t gfp)
1301 {
1302 	struct tcp_sock *tp = tcp_sk(sk);
1303 	struct sk_buff *buff;
1304 	int nsize, old_factor;
1305 	int nlen;
1306 	u8 flags;
1307 
1308 	if (WARN_ON(len > skb->len))
1309 		return -EINVAL;
1310 
1311 	nsize = skb_headlen(skb) - len;
1312 	if (nsize < 0)
1313 		nsize = 0;
1314 
1315 	if (skb_unclone(skb, gfp))
1316 		return -ENOMEM;
1317 
1318 	/* Get a new skb... force flag on. */
1319 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1320 	if (!buff)
1321 		return -ENOMEM; /* We'll just try again later. */
1322 
1323 	sk->sk_wmem_queued += buff->truesize;
1324 	sk_mem_charge(sk, buff->truesize);
1325 	nlen = skb->len - len - nsize;
1326 	buff->truesize += nlen;
1327 	skb->truesize -= nlen;
1328 
1329 	/* Correct the sequence numbers. */
1330 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1331 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1332 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1333 
1334 	/* PSH and FIN should only be set in the second packet. */
1335 	flags = TCP_SKB_CB(skb)->tcp_flags;
1336 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1337 	TCP_SKB_CB(buff)->tcp_flags = flags;
1338 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1339 	tcp_skb_fragment_eor(skb, buff);
1340 
1341 	skb_split(skb, buff, len);
1342 
1343 	buff->ip_summed = CHECKSUM_PARTIAL;
1344 
1345 	buff->tstamp = skb->tstamp;
1346 	tcp_fragment_tstamp(skb, buff);
1347 
1348 	old_factor = tcp_skb_pcount(skb);
1349 
1350 	/* Fix up tso_factor for both original and new SKB.  */
1351 	tcp_set_skb_tso_segs(skb, mss_now);
1352 	tcp_set_skb_tso_segs(buff, mss_now);
1353 
1354 	/* Update delivered info for the new segment */
1355 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1356 
1357 	/* If this packet has been sent out already, we must
1358 	 * adjust the various packet counters.
1359 	 */
1360 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1361 		int diff = old_factor - tcp_skb_pcount(skb) -
1362 			tcp_skb_pcount(buff);
1363 
1364 		if (diff)
1365 			tcp_adjust_pcount(sk, skb, diff);
1366 	}
1367 
1368 	/* Link BUFF into the send queue. */
1369 	__skb_header_release(buff);
1370 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1371 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1372 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1373 
1374 	return 0;
1375 }
1376 
1377 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1378  * data is not copied, but immediately discarded.
1379  */
1380 static int __pskb_trim_head(struct sk_buff *skb, int len)
1381 {
1382 	struct skb_shared_info *shinfo;
1383 	int i, k, eat;
1384 
1385 	eat = min_t(int, len, skb_headlen(skb));
1386 	if (eat) {
1387 		__skb_pull(skb, eat);
1388 		len -= eat;
1389 		if (!len)
1390 			return 0;
1391 	}
1392 	eat = len;
1393 	k = 0;
1394 	shinfo = skb_shinfo(skb);
1395 	for (i = 0; i < shinfo->nr_frags; i++) {
1396 		int size = skb_frag_size(&shinfo->frags[i]);
1397 
1398 		if (size <= eat) {
1399 			skb_frag_unref(skb, i);
1400 			eat -= size;
1401 		} else {
1402 			shinfo->frags[k] = shinfo->frags[i];
1403 			if (eat) {
1404 				shinfo->frags[k].page_offset += eat;
1405 				skb_frag_size_sub(&shinfo->frags[k], eat);
1406 				eat = 0;
1407 			}
1408 			k++;
1409 		}
1410 	}
1411 	shinfo->nr_frags = k;
1412 
1413 	skb->data_len -= len;
1414 	skb->len = skb->data_len;
1415 	return len;
1416 }
1417 
1418 /* Remove acked data from a packet in the transmit queue. */
1419 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1420 {
1421 	u32 delta_truesize;
1422 
1423 	if (skb_unclone(skb, GFP_ATOMIC))
1424 		return -ENOMEM;
1425 
1426 	delta_truesize = __pskb_trim_head(skb, len);
1427 
1428 	TCP_SKB_CB(skb)->seq += len;
1429 	skb->ip_summed = CHECKSUM_PARTIAL;
1430 
1431 	if (delta_truesize) {
1432 		skb->truesize	   -= delta_truesize;
1433 		sk->sk_wmem_queued -= delta_truesize;
1434 		sk_mem_uncharge(sk, delta_truesize);
1435 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1436 	}
1437 
1438 	/* Any change of skb->len requires recalculation of tso factor. */
1439 	if (tcp_skb_pcount(skb) > 1)
1440 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1441 
1442 	return 0;
1443 }
1444 
1445 /* Calculate MSS not accounting any TCP options.  */
1446 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1447 {
1448 	const struct tcp_sock *tp = tcp_sk(sk);
1449 	const struct inet_connection_sock *icsk = inet_csk(sk);
1450 	int mss_now;
1451 
1452 	/* Calculate base mss without TCP options:
1453 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1454 	 */
1455 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1456 
1457 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1458 	if (icsk->icsk_af_ops->net_frag_header_len) {
1459 		const struct dst_entry *dst = __sk_dst_get(sk);
1460 
1461 		if (dst && dst_allfrag(dst))
1462 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1463 	}
1464 
1465 	/* Clamp it (mss_clamp does not include tcp options) */
1466 	if (mss_now > tp->rx_opt.mss_clamp)
1467 		mss_now = tp->rx_opt.mss_clamp;
1468 
1469 	/* Now subtract optional transport overhead */
1470 	mss_now -= icsk->icsk_ext_hdr_len;
1471 
1472 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1473 	if (mss_now < 48)
1474 		mss_now = 48;
1475 	return mss_now;
1476 }
1477 
1478 /* Calculate MSS. Not accounting for SACKs here.  */
1479 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1480 {
1481 	/* Subtract TCP options size, not including SACKs */
1482 	return __tcp_mtu_to_mss(sk, pmtu) -
1483 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1484 }
1485 
1486 /* Inverse of above */
1487 int tcp_mss_to_mtu(struct sock *sk, int mss)
1488 {
1489 	const struct tcp_sock *tp = tcp_sk(sk);
1490 	const struct inet_connection_sock *icsk = inet_csk(sk);
1491 	int mtu;
1492 
1493 	mtu = mss +
1494 	      tp->tcp_header_len +
1495 	      icsk->icsk_ext_hdr_len +
1496 	      icsk->icsk_af_ops->net_header_len;
1497 
1498 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1499 	if (icsk->icsk_af_ops->net_frag_header_len) {
1500 		const struct dst_entry *dst = __sk_dst_get(sk);
1501 
1502 		if (dst && dst_allfrag(dst))
1503 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1504 	}
1505 	return mtu;
1506 }
1507 EXPORT_SYMBOL(tcp_mss_to_mtu);
1508 
1509 /* MTU probing init per socket */
1510 void tcp_mtup_init(struct sock *sk)
1511 {
1512 	struct tcp_sock *tp = tcp_sk(sk);
1513 	struct inet_connection_sock *icsk = inet_csk(sk);
1514 	struct net *net = sock_net(sk);
1515 
1516 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1517 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1518 			       icsk->icsk_af_ops->net_header_len;
1519 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1520 	icsk->icsk_mtup.probe_size = 0;
1521 	if (icsk->icsk_mtup.enabled)
1522 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1523 }
1524 EXPORT_SYMBOL(tcp_mtup_init);
1525 
1526 /* This function synchronize snd mss to current pmtu/exthdr set.
1527 
1528    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1529    for TCP options, but includes only bare TCP header.
1530 
1531    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1532    It is minimum of user_mss and mss received with SYN.
1533    It also does not include TCP options.
1534 
1535    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1536 
1537    tp->mss_cache is current effective sending mss, including
1538    all tcp options except for SACKs. It is evaluated,
1539    taking into account current pmtu, but never exceeds
1540    tp->rx_opt.mss_clamp.
1541 
1542    NOTE1. rfc1122 clearly states that advertised MSS
1543    DOES NOT include either tcp or ip options.
1544 
1545    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1546    are READ ONLY outside this function.		--ANK (980731)
1547  */
1548 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1549 {
1550 	struct tcp_sock *tp = tcp_sk(sk);
1551 	struct inet_connection_sock *icsk = inet_csk(sk);
1552 	int mss_now;
1553 
1554 	if (icsk->icsk_mtup.search_high > pmtu)
1555 		icsk->icsk_mtup.search_high = pmtu;
1556 
1557 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1558 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1559 
1560 	/* And store cached results */
1561 	icsk->icsk_pmtu_cookie = pmtu;
1562 	if (icsk->icsk_mtup.enabled)
1563 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1564 	tp->mss_cache = mss_now;
1565 
1566 	return mss_now;
1567 }
1568 EXPORT_SYMBOL(tcp_sync_mss);
1569 
1570 /* Compute the current effective MSS, taking SACKs and IP options,
1571  * and even PMTU discovery events into account.
1572  */
1573 unsigned int tcp_current_mss(struct sock *sk)
1574 {
1575 	const struct tcp_sock *tp = tcp_sk(sk);
1576 	const struct dst_entry *dst = __sk_dst_get(sk);
1577 	u32 mss_now;
1578 	unsigned int header_len;
1579 	struct tcp_out_options opts;
1580 	struct tcp_md5sig_key *md5;
1581 
1582 	mss_now = tp->mss_cache;
1583 
1584 	if (dst) {
1585 		u32 mtu = dst_mtu(dst);
1586 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1587 			mss_now = tcp_sync_mss(sk, mtu);
1588 	}
1589 
1590 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1591 		     sizeof(struct tcphdr);
1592 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1593 	 * some common options. If this is an odd packet (because we have SACK
1594 	 * blocks etc) then our calculated header_len will be different, and
1595 	 * we have to adjust mss_now correspondingly */
1596 	if (header_len != tp->tcp_header_len) {
1597 		int delta = (int) header_len - tp->tcp_header_len;
1598 		mss_now -= delta;
1599 	}
1600 
1601 	return mss_now;
1602 }
1603 
1604 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1605  * As additional protections, we do not touch cwnd in retransmission phases,
1606  * and if application hit its sndbuf limit recently.
1607  */
1608 static void tcp_cwnd_application_limited(struct sock *sk)
1609 {
1610 	struct tcp_sock *tp = tcp_sk(sk);
1611 
1612 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1613 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1614 		/* Limited by application or receiver window. */
1615 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1616 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1617 		if (win_used < tp->snd_cwnd) {
1618 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1619 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1620 		}
1621 		tp->snd_cwnd_used = 0;
1622 	}
1623 	tp->snd_cwnd_stamp = tcp_jiffies32;
1624 }
1625 
1626 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1627 {
1628 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1629 	struct tcp_sock *tp = tcp_sk(sk);
1630 
1631 	/* Track the maximum number of outstanding packets in each
1632 	 * window, and remember whether we were cwnd-limited then.
1633 	 */
1634 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1635 	    tp->packets_out > tp->max_packets_out) {
1636 		tp->max_packets_out = tp->packets_out;
1637 		tp->max_packets_seq = tp->snd_nxt;
1638 		tp->is_cwnd_limited = is_cwnd_limited;
1639 	}
1640 
1641 	if (tcp_is_cwnd_limited(sk)) {
1642 		/* Network is feed fully. */
1643 		tp->snd_cwnd_used = 0;
1644 		tp->snd_cwnd_stamp = tcp_jiffies32;
1645 	} else {
1646 		/* Network starves. */
1647 		if (tp->packets_out > tp->snd_cwnd_used)
1648 			tp->snd_cwnd_used = tp->packets_out;
1649 
1650 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1651 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1652 		    !ca_ops->cong_control)
1653 			tcp_cwnd_application_limited(sk);
1654 
1655 		/* The following conditions together indicate the starvation
1656 		 * is caused by insufficient sender buffer:
1657 		 * 1) just sent some data (see tcp_write_xmit)
1658 		 * 2) not cwnd limited (this else condition)
1659 		 * 3) no more data to send (tcp_write_queue_empty())
1660 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1661 		 */
1662 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1663 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1664 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1665 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1666 	}
1667 }
1668 
1669 /* Minshall's variant of the Nagle send check. */
1670 static bool tcp_minshall_check(const struct tcp_sock *tp)
1671 {
1672 	return after(tp->snd_sml, tp->snd_una) &&
1673 		!after(tp->snd_sml, tp->snd_nxt);
1674 }
1675 
1676 /* Update snd_sml if this skb is under mss
1677  * Note that a TSO packet might end with a sub-mss segment
1678  * The test is really :
1679  * if ((skb->len % mss) != 0)
1680  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1681  * But we can avoid doing the divide again given we already have
1682  *  skb_pcount = skb->len / mss_now
1683  */
1684 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1685 				const struct sk_buff *skb)
1686 {
1687 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1688 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1689 }
1690 
1691 /* Return false, if packet can be sent now without violation Nagle's rules:
1692  * 1. It is full sized. (provided by caller in %partial bool)
1693  * 2. Or it contains FIN. (already checked by caller)
1694  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1695  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1696  *    With Minshall's modification: all sent small packets are ACKed.
1697  */
1698 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1699 			    int nonagle)
1700 {
1701 	return partial &&
1702 		((nonagle & TCP_NAGLE_CORK) ||
1703 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1704 }
1705 
1706 /* Return how many segs we'd like on a TSO packet,
1707  * to send one TSO packet per ms
1708  */
1709 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1710 			    int min_tso_segs)
1711 {
1712 	u32 bytes, segs;
1713 
1714 	bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1715 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1716 
1717 	/* Goal is to send at least one packet per ms,
1718 	 * not one big TSO packet every 100 ms.
1719 	 * This preserves ACK clocking and is consistent
1720 	 * with tcp_tso_should_defer() heuristic.
1721 	 */
1722 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1723 
1724 	return segs;
1725 }
1726 
1727 /* Return the number of segments we want in the skb we are transmitting.
1728  * See if congestion control module wants to decide; otherwise, autosize.
1729  */
1730 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1731 {
1732 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1733 	u32 min_tso, tso_segs;
1734 
1735 	min_tso = ca_ops->min_tso_segs ?
1736 			ca_ops->min_tso_segs(sk) :
1737 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1738 
1739 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1740 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1741 }
1742 
1743 /* Returns the portion of skb which can be sent right away */
1744 static unsigned int tcp_mss_split_point(const struct sock *sk,
1745 					const struct sk_buff *skb,
1746 					unsigned int mss_now,
1747 					unsigned int max_segs,
1748 					int nonagle)
1749 {
1750 	const struct tcp_sock *tp = tcp_sk(sk);
1751 	u32 partial, needed, window, max_len;
1752 
1753 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1754 	max_len = mss_now * max_segs;
1755 
1756 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1757 		return max_len;
1758 
1759 	needed = min(skb->len, window);
1760 
1761 	if (max_len <= needed)
1762 		return max_len;
1763 
1764 	partial = needed % mss_now;
1765 	/* If last segment is not a full MSS, check if Nagle rules allow us
1766 	 * to include this last segment in this skb.
1767 	 * Otherwise, we'll split the skb at last MSS boundary
1768 	 */
1769 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1770 		return needed - partial;
1771 
1772 	return needed;
1773 }
1774 
1775 /* Can at least one segment of SKB be sent right now, according to the
1776  * congestion window rules?  If so, return how many segments are allowed.
1777  */
1778 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1779 					 const struct sk_buff *skb)
1780 {
1781 	u32 in_flight, cwnd, halfcwnd;
1782 
1783 	/* Don't be strict about the congestion window for the final FIN.  */
1784 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1785 	    tcp_skb_pcount(skb) == 1)
1786 		return 1;
1787 
1788 	in_flight = tcp_packets_in_flight(tp);
1789 	cwnd = tp->snd_cwnd;
1790 	if (in_flight >= cwnd)
1791 		return 0;
1792 
1793 	/* For better scheduling, ensure we have at least
1794 	 * 2 GSO packets in flight.
1795 	 */
1796 	halfcwnd = max(cwnd >> 1, 1U);
1797 	return min(halfcwnd, cwnd - in_flight);
1798 }
1799 
1800 /* Initialize TSO state of a skb.
1801  * This must be invoked the first time we consider transmitting
1802  * SKB onto the wire.
1803  */
1804 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1805 {
1806 	int tso_segs = tcp_skb_pcount(skb);
1807 
1808 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1809 		tcp_set_skb_tso_segs(skb, mss_now);
1810 		tso_segs = tcp_skb_pcount(skb);
1811 	}
1812 	return tso_segs;
1813 }
1814 
1815 
1816 /* Return true if the Nagle test allows this packet to be
1817  * sent now.
1818  */
1819 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1820 				  unsigned int cur_mss, int nonagle)
1821 {
1822 	/* Nagle rule does not apply to frames, which sit in the middle of the
1823 	 * write_queue (they have no chances to get new data).
1824 	 *
1825 	 * This is implemented in the callers, where they modify the 'nonagle'
1826 	 * argument based upon the location of SKB in the send queue.
1827 	 */
1828 	if (nonagle & TCP_NAGLE_PUSH)
1829 		return true;
1830 
1831 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1832 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1833 		return true;
1834 
1835 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1836 		return true;
1837 
1838 	return false;
1839 }
1840 
1841 /* Does at least the first segment of SKB fit into the send window? */
1842 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1843 			     const struct sk_buff *skb,
1844 			     unsigned int cur_mss)
1845 {
1846 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1847 
1848 	if (skb->len > cur_mss)
1849 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1850 
1851 	return !after(end_seq, tcp_wnd_end(tp));
1852 }
1853 
1854 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1855  * which is put after SKB on the list.  It is very much like
1856  * tcp_fragment() except that it may make several kinds of assumptions
1857  * in order to speed up the splitting operation.  In particular, we
1858  * know that all the data is in scatter-gather pages, and that the
1859  * packet has never been sent out before (and thus is not cloned).
1860  */
1861 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1862 			struct sk_buff *skb, unsigned int len,
1863 			unsigned int mss_now, gfp_t gfp)
1864 {
1865 	struct sk_buff *buff;
1866 	int nlen = skb->len - len;
1867 	u8 flags;
1868 
1869 	/* All of a TSO frame must be composed of paged data.  */
1870 	if (skb->len != skb->data_len)
1871 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1872 
1873 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1874 	if (unlikely(!buff))
1875 		return -ENOMEM;
1876 
1877 	sk->sk_wmem_queued += buff->truesize;
1878 	sk_mem_charge(sk, buff->truesize);
1879 	buff->truesize += nlen;
1880 	skb->truesize -= nlen;
1881 
1882 	/* Correct the sequence numbers. */
1883 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1884 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1885 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1886 
1887 	/* PSH and FIN should only be set in the second packet. */
1888 	flags = TCP_SKB_CB(skb)->tcp_flags;
1889 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1890 	TCP_SKB_CB(buff)->tcp_flags = flags;
1891 
1892 	/* This packet was never sent out yet, so no SACK bits. */
1893 	TCP_SKB_CB(buff)->sacked = 0;
1894 
1895 	tcp_skb_fragment_eor(skb, buff);
1896 
1897 	buff->ip_summed = CHECKSUM_PARTIAL;
1898 	skb_split(skb, buff, len);
1899 	tcp_fragment_tstamp(skb, buff);
1900 
1901 	/* Fix up tso_factor for both original and new SKB.  */
1902 	tcp_set_skb_tso_segs(skb, mss_now);
1903 	tcp_set_skb_tso_segs(buff, mss_now);
1904 
1905 	/* Link BUFF into the send queue. */
1906 	__skb_header_release(buff);
1907 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1908 
1909 	return 0;
1910 }
1911 
1912 /* Try to defer sending, if possible, in order to minimize the amount
1913  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1914  *
1915  * This algorithm is from John Heffner.
1916  */
1917 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1918 				 bool *is_cwnd_limited, u32 max_segs)
1919 {
1920 	const struct inet_connection_sock *icsk = inet_csk(sk);
1921 	u32 age, send_win, cong_win, limit, in_flight;
1922 	struct tcp_sock *tp = tcp_sk(sk);
1923 	struct sk_buff *head;
1924 	int win_divisor;
1925 
1926 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1927 		goto send_now;
1928 
1929 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1930 		goto send_now;
1931 
1932 	/* Avoid bursty behavior by allowing defer
1933 	 * only if the last write was recent.
1934 	 */
1935 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1936 		goto send_now;
1937 
1938 	in_flight = tcp_packets_in_flight(tp);
1939 
1940 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1941 	BUG_ON(tp->snd_cwnd <= in_flight);
1942 
1943 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1944 
1945 	/* From in_flight test above, we know that cwnd > in_flight.  */
1946 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1947 
1948 	limit = min(send_win, cong_win);
1949 
1950 	/* If a full-sized TSO skb can be sent, do it. */
1951 	if (limit >= max_segs * tp->mss_cache)
1952 		goto send_now;
1953 
1954 	/* Middle in queue won't get any more data, full sendable already? */
1955 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1956 		goto send_now;
1957 
1958 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1959 	if (win_divisor) {
1960 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1961 
1962 		/* If at least some fraction of a window is available,
1963 		 * just use it.
1964 		 */
1965 		chunk /= win_divisor;
1966 		if (limit >= chunk)
1967 			goto send_now;
1968 	} else {
1969 		/* Different approach, try not to defer past a single
1970 		 * ACK.  Receiver should ACK every other full sized
1971 		 * frame, so if we have space for more than 3 frames
1972 		 * then send now.
1973 		 */
1974 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1975 			goto send_now;
1976 	}
1977 
1978 	/* TODO : use tsorted_sent_queue ? */
1979 	head = tcp_rtx_queue_head(sk);
1980 	if (!head)
1981 		goto send_now;
1982 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1983 	/* If next ACK is likely to come too late (half srtt), do not defer */
1984 	if (age < (tp->srtt_us >> 4))
1985 		goto send_now;
1986 
1987 	/* Ok, it looks like it is advisable to defer. */
1988 
1989 	if (cong_win < send_win && cong_win <= skb->len)
1990 		*is_cwnd_limited = true;
1991 
1992 	return true;
1993 
1994 send_now:
1995 	return false;
1996 }
1997 
1998 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1999 {
2000 	struct inet_connection_sock *icsk = inet_csk(sk);
2001 	struct tcp_sock *tp = tcp_sk(sk);
2002 	struct net *net = sock_net(sk);
2003 	u32 interval;
2004 	s32 delta;
2005 
2006 	interval = net->ipv4.sysctl_tcp_probe_interval;
2007 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2008 	if (unlikely(delta >= interval * HZ)) {
2009 		int mss = tcp_current_mss(sk);
2010 
2011 		/* Update current search range */
2012 		icsk->icsk_mtup.probe_size = 0;
2013 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2014 			sizeof(struct tcphdr) +
2015 			icsk->icsk_af_ops->net_header_len;
2016 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2017 
2018 		/* Update probe time stamp */
2019 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2020 	}
2021 }
2022 
2023 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2024 {
2025 	struct sk_buff *skb, *next;
2026 
2027 	skb = tcp_send_head(sk);
2028 	tcp_for_write_queue_from_safe(skb, next, sk) {
2029 		if (len <= skb->len)
2030 			break;
2031 
2032 		if (unlikely(TCP_SKB_CB(skb)->eor))
2033 			return false;
2034 
2035 		len -= skb->len;
2036 	}
2037 
2038 	return true;
2039 }
2040 
2041 /* Create a new MTU probe if we are ready.
2042  * MTU probe is regularly attempting to increase the path MTU by
2043  * deliberately sending larger packets.  This discovers routing
2044  * changes resulting in larger path MTUs.
2045  *
2046  * Returns 0 if we should wait to probe (no cwnd available),
2047  *         1 if a probe was sent,
2048  *         -1 otherwise
2049  */
2050 static int tcp_mtu_probe(struct sock *sk)
2051 {
2052 	struct inet_connection_sock *icsk = inet_csk(sk);
2053 	struct tcp_sock *tp = tcp_sk(sk);
2054 	struct sk_buff *skb, *nskb, *next;
2055 	struct net *net = sock_net(sk);
2056 	int probe_size;
2057 	int size_needed;
2058 	int copy, len;
2059 	int mss_now;
2060 	int interval;
2061 
2062 	/* Not currently probing/verifying,
2063 	 * not in recovery,
2064 	 * have enough cwnd, and
2065 	 * not SACKing (the variable headers throw things off)
2066 	 */
2067 	if (likely(!icsk->icsk_mtup.enabled ||
2068 		   icsk->icsk_mtup.probe_size ||
2069 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2070 		   tp->snd_cwnd < 11 ||
2071 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2072 		return -1;
2073 
2074 	/* Use binary search for probe_size between tcp_mss_base,
2075 	 * and current mss_clamp. if (search_high - search_low)
2076 	 * smaller than a threshold, backoff from probing.
2077 	 */
2078 	mss_now = tcp_current_mss(sk);
2079 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2080 				    icsk->icsk_mtup.search_low) >> 1);
2081 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2082 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2083 	/* When misfortune happens, we are reprobing actively,
2084 	 * and then reprobe timer has expired. We stick with current
2085 	 * probing process by not resetting search range to its orignal.
2086 	 */
2087 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2088 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2089 		/* Check whether enough time has elaplased for
2090 		 * another round of probing.
2091 		 */
2092 		tcp_mtu_check_reprobe(sk);
2093 		return -1;
2094 	}
2095 
2096 	/* Have enough data in the send queue to probe? */
2097 	if (tp->write_seq - tp->snd_nxt < size_needed)
2098 		return -1;
2099 
2100 	if (tp->snd_wnd < size_needed)
2101 		return -1;
2102 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2103 		return 0;
2104 
2105 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2106 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2107 		if (!tcp_packets_in_flight(tp))
2108 			return -1;
2109 		else
2110 			return 0;
2111 	}
2112 
2113 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2114 		return -1;
2115 
2116 	/* We're allowed to probe.  Build it now. */
2117 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2118 	if (!nskb)
2119 		return -1;
2120 	sk->sk_wmem_queued += nskb->truesize;
2121 	sk_mem_charge(sk, nskb->truesize);
2122 
2123 	skb = tcp_send_head(sk);
2124 
2125 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2126 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2127 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2128 	TCP_SKB_CB(nskb)->sacked = 0;
2129 	nskb->csum = 0;
2130 	nskb->ip_summed = CHECKSUM_PARTIAL;
2131 
2132 	tcp_insert_write_queue_before(nskb, skb, sk);
2133 	tcp_highest_sack_replace(sk, skb, nskb);
2134 
2135 	len = 0;
2136 	tcp_for_write_queue_from_safe(skb, next, sk) {
2137 		copy = min_t(int, skb->len, probe_size - len);
2138 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2139 
2140 		if (skb->len <= copy) {
2141 			/* We've eaten all the data from this skb.
2142 			 * Throw it away. */
2143 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2144 			/* If this is the last SKB we copy and eor is set
2145 			 * we need to propagate it to the new skb.
2146 			 */
2147 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2148 			tcp_unlink_write_queue(skb, sk);
2149 			sk_wmem_free_skb(sk, skb);
2150 		} else {
2151 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2152 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2153 			if (!skb_shinfo(skb)->nr_frags) {
2154 				skb_pull(skb, copy);
2155 			} else {
2156 				__pskb_trim_head(skb, copy);
2157 				tcp_set_skb_tso_segs(skb, mss_now);
2158 			}
2159 			TCP_SKB_CB(skb)->seq += copy;
2160 		}
2161 
2162 		len += copy;
2163 
2164 		if (len >= probe_size)
2165 			break;
2166 	}
2167 	tcp_init_tso_segs(nskb, nskb->len);
2168 
2169 	/* We're ready to send.  If this fails, the probe will
2170 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2171 	 */
2172 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2173 		/* Decrement cwnd here because we are sending
2174 		 * effectively two packets. */
2175 		tp->snd_cwnd--;
2176 		tcp_event_new_data_sent(sk, nskb);
2177 
2178 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2179 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2180 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2181 
2182 		return 1;
2183 	}
2184 
2185 	return -1;
2186 }
2187 
2188 static bool tcp_pacing_check(const struct sock *sk)
2189 {
2190 	return tcp_needs_internal_pacing(sk) &&
2191 	       hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
2192 }
2193 
2194 /* TCP Small Queues :
2195  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2196  * (These limits are doubled for retransmits)
2197  * This allows for :
2198  *  - better RTT estimation and ACK scheduling
2199  *  - faster recovery
2200  *  - high rates
2201  * Alas, some drivers / subsystems require a fair amount
2202  * of queued bytes to ensure line rate.
2203  * One example is wifi aggregation (802.11 AMPDU)
2204  */
2205 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2206 				  unsigned int factor)
2207 {
2208 	unsigned int limit;
2209 
2210 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2211 	limit = min_t(u32, limit,
2212 		      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2213 	limit <<= factor;
2214 
2215 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2216 		/* Always send skb if rtx queue is empty.
2217 		 * No need to wait for TX completion to call us back,
2218 		 * after softirq/tasklet schedule.
2219 		 * This helps when TX completions are delayed too much.
2220 		 */
2221 		if (tcp_rtx_queue_empty(sk))
2222 			return false;
2223 
2224 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2225 		/* It is possible TX completion already happened
2226 		 * before we set TSQ_THROTTLED, so we must
2227 		 * test again the condition.
2228 		 */
2229 		smp_mb__after_atomic();
2230 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2231 			return true;
2232 	}
2233 	return false;
2234 }
2235 
2236 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2237 {
2238 	const u32 now = tcp_jiffies32;
2239 	enum tcp_chrono old = tp->chrono_type;
2240 
2241 	if (old > TCP_CHRONO_UNSPEC)
2242 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2243 	tp->chrono_start = now;
2244 	tp->chrono_type = new;
2245 }
2246 
2247 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2248 {
2249 	struct tcp_sock *tp = tcp_sk(sk);
2250 
2251 	/* If there are multiple conditions worthy of tracking in a
2252 	 * chronograph then the highest priority enum takes precedence
2253 	 * over the other conditions. So that if something "more interesting"
2254 	 * starts happening, stop the previous chrono and start a new one.
2255 	 */
2256 	if (type > tp->chrono_type)
2257 		tcp_chrono_set(tp, type);
2258 }
2259 
2260 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2261 {
2262 	struct tcp_sock *tp = tcp_sk(sk);
2263 
2264 
2265 	/* There are multiple conditions worthy of tracking in a
2266 	 * chronograph, so that the highest priority enum takes
2267 	 * precedence over the other conditions (see tcp_chrono_start).
2268 	 * If a condition stops, we only stop chrono tracking if
2269 	 * it's the "most interesting" or current chrono we are
2270 	 * tracking and starts busy chrono if we have pending data.
2271 	 */
2272 	if (tcp_rtx_and_write_queues_empty(sk))
2273 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2274 	else if (type == tp->chrono_type)
2275 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2276 }
2277 
2278 /* This routine writes packets to the network.  It advances the
2279  * send_head.  This happens as incoming acks open up the remote
2280  * window for us.
2281  *
2282  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2283  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2284  * account rare use of URG, this is not a big flaw.
2285  *
2286  * Send at most one packet when push_one > 0. Temporarily ignore
2287  * cwnd limit to force at most one packet out when push_one == 2.
2288 
2289  * Returns true, if no segments are in flight and we have queued segments,
2290  * but cannot send anything now because of SWS or another problem.
2291  */
2292 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2293 			   int push_one, gfp_t gfp)
2294 {
2295 	struct tcp_sock *tp = tcp_sk(sk);
2296 	struct sk_buff *skb;
2297 	unsigned int tso_segs, sent_pkts;
2298 	int cwnd_quota;
2299 	int result;
2300 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2301 	u32 max_segs;
2302 
2303 	sent_pkts = 0;
2304 
2305 	tcp_mstamp_refresh(tp);
2306 	if (!push_one) {
2307 		/* Do MTU probing. */
2308 		result = tcp_mtu_probe(sk);
2309 		if (!result) {
2310 			return false;
2311 		} else if (result > 0) {
2312 			sent_pkts = 1;
2313 		}
2314 	}
2315 
2316 	max_segs = tcp_tso_segs(sk, mss_now);
2317 	while ((skb = tcp_send_head(sk))) {
2318 		unsigned int limit;
2319 
2320 		if (tcp_pacing_check(sk))
2321 			break;
2322 
2323 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2324 		BUG_ON(!tso_segs);
2325 
2326 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2327 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2328 			tcp_update_skb_after_send(tp, skb);
2329 			goto repair; /* Skip network transmission */
2330 		}
2331 
2332 		cwnd_quota = tcp_cwnd_test(tp, skb);
2333 		if (!cwnd_quota) {
2334 			if (push_one == 2)
2335 				/* Force out a loss probe pkt. */
2336 				cwnd_quota = 1;
2337 			else
2338 				break;
2339 		}
2340 
2341 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2342 			is_rwnd_limited = true;
2343 			break;
2344 		}
2345 
2346 		if (tso_segs == 1) {
2347 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2348 						     (tcp_skb_is_last(sk, skb) ?
2349 						      nonagle : TCP_NAGLE_PUSH))))
2350 				break;
2351 		} else {
2352 			if (!push_one &&
2353 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2354 						 max_segs))
2355 				break;
2356 		}
2357 
2358 		limit = mss_now;
2359 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2360 			limit = tcp_mss_split_point(sk, skb, mss_now,
2361 						    min_t(unsigned int,
2362 							  cwnd_quota,
2363 							  max_segs),
2364 						    nonagle);
2365 
2366 		if (skb->len > limit &&
2367 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2368 					  skb, limit, mss_now, gfp)))
2369 			break;
2370 
2371 		if (tcp_small_queue_check(sk, skb, 0))
2372 			break;
2373 
2374 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2375 			break;
2376 
2377 repair:
2378 		/* Advance the send_head.  This one is sent out.
2379 		 * This call will increment packets_out.
2380 		 */
2381 		tcp_event_new_data_sent(sk, skb);
2382 
2383 		tcp_minshall_update(tp, mss_now, skb);
2384 		sent_pkts += tcp_skb_pcount(skb);
2385 
2386 		if (push_one)
2387 			break;
2388 	}
2389 
2390 	if (is_rwnd_limited)
2391 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2392 	else
2393 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2394 
2395 	if (likely(sent_pkts)) {
2396 		if (tcp_in_cwnd_reduction(sk))
2397 			tp->prr_out += sent_pkts;
2398 
2399 		/* Send one loss probe per tail loss episode. */
2400 		if (push_one != 2)
2401 			tcp_schedule_loss_probe(sk, false);
2402 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2403 		tcp_cwnd_validate(sk, is_cwnd_limited);
2404 		return false;
2405 	}
2406 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2407 }
2408 
2409 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2410 {
2411 	struct inet_connection_sock *icsk = inet_csk(sk);
2412 	struct tcp_sock *tp = tcp_sk(sk);
2413 	u32 timeout, rto_delta_us;
2414 	int early_retrans;
2415 
2416 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2417 	 * finishes.
2418 	 */
2419 	if (tp->fastopen_rsk)
2420 		return false;
2421 
2422 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2423 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2424 	 * not in loss recovery, that are either limited by cwnd or application.
2425 	 */
2426 	if ((early_retrans != 3 && early_retrans != 4) ||
2427 	    !tp->packets_out || !tcp_is_sack(tp) ||
2428 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2429 	     icsk->icsk_ca_state != TCP_CA_CWR))
2430 		return false;
2431 
2432 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2433 	 * for delayed ack when there's one outstanding packet. If no RTT
2434 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2435 	 */
2436 	if (tp->srtt_us) {
2437 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2438 		if (tp->packets_out == 1)
2439 			timeout += TCP_RTO_MIN;
2440 		else
2441 			timeout += TCP_TIMEOUT_MIN;
2442 	} else {
2443 		timeout = TCP_TIMEOUT_INIT;
2444 	}
2445 
2446 	/* If the RTO formula yields an earlier time, then use that time. */
2447 	rto_delta_us = advancing_rto ?
2448 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2449 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2450 	if (rto_delta_us > 0)
2451 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2452 
2453 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2454 				  TCP_RTO_MAX);
2455 	return true;
2456 }
2457 
2458 /* Thanks to skb fast clones, we can detect if a prior transmit of
2459  * a packet is still in a qdisc or driver queue.
2460  * In this case, there is very little point doing a retransmit !
2461  */
2462 static bool skb_still_in_host_queue(const struct sock *sk,
2463 				    const struct sk_buff *skb)
2464 {
2465 	if (unlikely(skb_fclone_busy(sk, skb))) {
2466 		NET_INC_STATS(sock_net(sk),
2467 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2468 		return true;
2469 	}
2470 	return false;
2471 }
2472 
2473 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2474  * retransmit the last segment.
2475  */
2476 void tcp_send_loss_probe(struct sock *sk)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 	struct sk_buff *skb;
2480 	int pcount;
2481 	int mss = tcp_current_mss(sk);
2482 
2483 	skb = tcp_send_head(sk);
2484 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2485 		pcount = tp->packets_out;
2486 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2487 		if (tp->packets_out > pcount)
2488 			goto probe_sent;
2489 		goto rearm_timer;
2490 	}
2491 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2492 
2493 	/* At most one outstanding TLP retransmission. */
2494 	if (tp->tlp_high_seq)
2495 		goto rearm_timer;
2496 
2497 	/* Retransmit last segment. */
2498 	if (WARN_ON(!skb))
2499 		goto rearm_timer;
2500 
2501 	if (skb_still_in_host_queue(sk, skb))
2502 		goto rearm_timer;
2503 
2504 	pcount = tcp_skb_pcount(skb);
2505 	if (WARN_ON(!pcount))
2506 		goto rearm_timer;
2507 
2508 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2509 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2510 					  (pcount - 1) * mss, mss,
2511 					  GFP_ATOMIC)))
2512 			goto rearm_timer;
2513 		skb = skb_rb_next(skb);
2514 	}
2515 
2516 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2517 		goto rearm_timer;
2518 
2519 	if (__tcp_retransmit_skb(sk, skb, 1))
2520 		goto rearm_timer;
2521 
2522 	/* Record snd_nxt for loss detection. */
2523 	tp->tlp_high_seq = tp->snd_nxt;
2524 
2525 probe_sent:
2526 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2527 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2528 	inet_csk(sk)->icsk_pending = 0;
2529 rearm_timer:
2530 	tcp_rearm_rto(sk);
2531 }
2532 
2533 /* Push out any pending frames which were held back due to
2534  * TCP_CORK or attempt at coalescing tiny packets.
2535  * The socket must be locked by the caller.
2536  */
2537 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2538 			       int nonagle)
2539 {
2540 	/* If we are closed, the bytes will have to remain here.
2541 	 * In time closedown will finish, we empty the write queue and
2542 	 * all will be happy.
2543 	 */
2544 	if (unlikely(sk->sk_state == TCP_CLOSE))
2545 		return;
2546 
2547 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2548 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2549 		tcp_check_probe_timer(sk);
2550 }
2551 
2552 /* Send _single_ skb sitting at the send head. This function requires
2553  * true push pending frames to setup probe timer etc.
2554  */
2555 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2556 {
2557 	struct sk_buff *skb = tcp_send_head(sk);
2558 
2559 	BUG_ON(!skb || skb->len < mss_now);
2560 
2561 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2562 }
2563 
2564 /* This function returns the amount that we can raise the
2565  * usable window based on the following constraints
2566  *
2567  * 1. The window can never be shrunk once it is offered (RFC 793)
2568  * 2. We limit memory per socket
2569  *
2570  * RFC 1122:
2571  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2572  *  RECV.NEXT + RCV.WIN fixed until:
2573  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2574  *
2575  * i.e. don't raise the right edge of the window until you can raise
2576  * it at least MSS bytes.
2577  *
2578  * Unfortunately, the recommended algorithm breaks header prediction,
2579  * since header prediction assumes th->window stays fixed.
2580  *
2581  * Strictly speaking, keeping th->window fixed violates the receiver
2582  * side SWS prevention criteria. The problem is that under this rule
2583  * a stream of single byte packets will cause the right side of the
2584  * window to always advance by a single byte.
2585  *
2586  * Of course, if the sender implements sender side SWS prevention
2587  * then this will not be a problem.
2588  *
2589  * BSD seems to make the following compromise:
2590  *
2591  *	If the free space is less than the 1/4 of the maximum
2592  *	space available and the free space is less than 1/2 mss,
2593  *	then set the window to 0.
2594  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2595  *	Otherwise, just prevent the window from shrinking
2596  *	and from being larger than the largest representable value.
2597  *
2598  * This prevents incremental opening of the window in the regime
2599  * where TCP is limited by the speed of the reader side taking
2600  * data out of the TCP receive queue. It does nothing about
2601  * those cases where the window is constrained on the sender side
2602  * because the pipeline is full.
2603  *
2604  * BSD also seems to "accidentally" limit itself to windows that are a
2605  * multiple of MSS, at least until the free space gets quite small.
2606  * This would appear to be a side effect of the mbuf implementation.
2607  * Combining these two algorithms results in the observed behavior
2608  * of having a fixed window size at almost all times.
2609  *
2610  * Below we obtain similar behavior by forcing the offered window to
2611  * a multiple of the mss when it is feasible to do so.
2612  *
2613  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2614  * Regular options like TIMESTAMP are taken into account.
2615  */
2616 u32 __tcp_select_window(struct sock *sk)
2617 {
2618 	struct inet_connection_sock *icsk = inet_csk(sk);
2619 	struct tcp_sock *tp = tcp_sk(sk);
2620 	/* MSS for the peer's data.  Previous versions used mss_clamp
2621 	 * here.  I don't know if the value based on our guesses
2622 	 * of peer's MSS is better for the performance.  It's more correct
2623 	 * but may be worse for the performance because of rcv_mss
2624 	 * fluctuations.  --SAW  1998/11/1
2625 	 */
2626 	int mss = icsk->icsk_ack.rcv_mss;
2627 	int free_space = tcp_space(sk);
2628 	int allowed_space = tcp_full_space(sk);
2629 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2630 	int window;
2631 
2632 	if (unlikely(mss > full_space)) {
2633 		mss = full_space;
2634 		if (mss <= 0)
2635 			return 0;
2636 	}
2637 	if (free_space < (full_space >> 1)) {
2638 		icsk->icsk_ack.quick = 0;
2639 
2640 		if (tcp_under_memory_pressure(sk))
2641 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2642 					       4U * tp->advmss);
2643 
2644 		/* free_space might become our new window, make sure we don't
2645 		 * increase it due to wscale.
2646 		 */
2647 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2648 
2649 		/* if free space is less than mss estimate, or is below 1/16th
2650 		 * of the maximum allowed, try to move to zero-window, else
2651 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2652 		 * new incoming data is dropped due to memory limits.
2653 		 * With large window, mss test triggers way too late in order
2654 		 * to announce zero window in time before rmem limit kicks in.
2655 		 */
2656 		if (free_space < (allowed_space >> 4) || free_space < mss)
2657 			return 0;
2658 	}
2659 
2660 	if (free_space > tp->rcv_ssthresh)
2661 		free_space = tp->rcv_ssthresh;
2662 
2663 	/* Don't do rounding if we are using window scaling, since the
2664 	 * scaled window will not line up with the MSS boundary anyway.
2665 	 */
2666 	if (tp->rx_opt.rcv_wscale) {
2667 		window = free_space;
2668 
2669 		/* Advertise enough space so that it won't get scaled away.
2670 		 * Import case: prevent zero window announcement if
2671 		 * 1<<rcv_wscale > mss.
2672 		 */
2673 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2674 	} else {
2675 		window = tp->rcv_wnd;
2676 		/* Get the largest window that is a nice multiple of mss.
2677 		 * Window clamp already applied above.
2678 		 * If our current window offering is within 1 mss of the
2679 		 * free space we just keep it. This prevents the divide
2680 		 * and multiply from happening most of the time.
2681 		 * We also don't do any window rounding when the free space
2682 		 * is too small.
2683 		 */
2684 		if (window <= free_space - mss || window > free_space)
2685 			window = rounddown(free_space, mss);
2686 		else if (mss == full_space &&
2687 			 free_space > window + (full_space >> 1))
2688 			window = free_space;
2689 	}
2690 
2691 	return window;
2692 }
2693 
2694 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2695 			     const struct sk_buff *next_skb)
2696 {
2697 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2698 		const struct skb_shared_info *next_shinfo =
2699 			skb_shinfo(next_skb);
2700 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2701 
2702 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2703 		shinfo->tskey = next_shinfo->tskey;
2704 		TCP_SKB_CB(skb)->txstamp_ack |=
2705 			TCP_SKB_CB(next_skb)->txstamp_ack;
2706 	}
2707 }
2708 
2709 /* Collapses two adjacent SKB's during retransmission. */
2710 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2711 {
2712 	struct tcp_sock *tp = tcp_sk(sk);
2713 	struct sk_buff *next_skb = skb_rb_next(skb);
2714 	int skb_size, next_skb_size;
2715 
2716 	skb_size = skb->len;
2717 	next_skb_size = next_skb->len;
2718 
2719 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2720 
2721 	if (next_skb_size) {
2722 		if (next_skb_size <= skb_availroom(skb))
2723 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2724 				      next_skb_size);
2725 		else if (!skb_shift(skb, next_skb, next_skb_size))
2726 			return false;
2727 	}
2728 	tcp_highest_sack_replace(sk, next_skb, skb);
2729 
2730 	/* Update sequence range on original skb. */
2731 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2732 
2733 	/* Merge over control information. This moves PSH/FIN etc. over */
2734 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2735 
2736 	/* All done, get rid of second SKB and account for it so
2737 	 * packet counting does not break.
2738 	 */
2739 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2740 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2741 
2742 	/* changed transmit queue under us so clear hints */
2743 	tcp_clear_retrans_hints_partial(tp);
2744 	if (next_skb == tp->retransmit_skb_hint)
2745 		tp->retransmit_skb_hint = skb;
2746 
2747 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2748 
2749 	tcp_skb_collapse_tstamp(skb, next_skb);
2750 
2751 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2752 	return true;
2753 }
2754 
2755 /* Check if coalescing SKBs is legal. */
2756 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2757 {
2758 	if (tcp_skb_pcount(skb) > 1)
2759 		return false;
2760 	if (skb_cloned(skb))
2761 		return false;
2762 	/* Some heuristics for collapsing over SACK'd could be invented */
2763 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2764 		return false;
2765 
2766 	return true;
2767 }
2768 
2769 /* Collapse packets in the retransmit queue to make to create
2770  * less packets on the wire. This is only done on retransmission.
2771  */
2772 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2773 				     int space)
2774 {
2775 	struct tcp_sock *tp = tcp_sk(sk);
2776 	struct sk_buff *skb = to, *tmp;
2777 	bool first = true;
2778 
2779 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2780 		return;
2781 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2782 		return;
2783 
2784 	skb_rbtree_walk_from_safe(skb, tmp) {
2785 		if (!tcp_can_collapse(sk, skb))
2786 			break;
2787 
2788 		if (!tcp_skb_can_collapse_to(to))
2789 			break;
2790 
2791 		space -= skb->len;
2792 
2793 		if (first) {
2794 			first = false;
2795 			continue;
2796 		}
2797 
2798 		if (space < 0)
2799 			break;
2800 
2801 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2802 			break;
2803 
2804 		if (!tcp_collapse_retrans(sk, to))
2805 			break;
2806 	}
2807 }
2808 
2809 /* This retransmits one SKB.  Policy decisions and retransmit queue
2810  * state updates are done by the caller.  Returns non-zero if an
2811  * error occurred which prevented the send.
2812  */
2813 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2814 {
2815 	struct inet_connection_sock *icsk = inet_csk(sk);
2816 	struct tcp_sock *tp = tcp_sk(sk);
2817 	unsigned int cur_mss;
2818 	int diff, len, err;
2819 
2820 
2821 	/* Inconclusive MTU probe */
2822 	if (icsk->icsk_mtup.probe_size)
2823 		icsk->icsk_mtup.probe_size = 0;
2824 
2825 	/* Do not sent more than we queued. 1/4 is reserved for possible
2826 	 * copying overhead: fragmentation, tunneling, mangling etc.
2827 	 */
2828 	if (refcount_read(&sk->sk_wmem_alloc) >
2829 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2830 		  sk->sk_sndbuf))
2831 		return -EAGAIN;
2832 
2833 	if (skb_still_in_host_queue(sk, skb))
2834 		return -EBUSY;
2835 
2836 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2837 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2838 			WARN_ON_ONCE(1);
2839 			return -EINVAL;
2840 		}
2841 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2842 			return -ENOMEM;
2843 	}
2844 
2845 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2846 		return -EHOSTUNREACH; /* Routing failure or similar. */
2847 
2848 	cur_mss = tcp_current_mss(sk);
2849 
2850 	/* If receiver has shrunk his window, and skb is out of
2851 	 * new window, do not retransmit it. The exception is the
2852 	 * case, when window is shrunk to zero. In this case
2853 	 * our retransmit serves as a zero window probe.
2854 	 */
2855 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2856 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2857 		return -EAGAIN;
2858 
2859 	len = cur_mss * segs;
2860 	if (skb->len > len) {
2861 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2862 				 cur_mss, GFP_ATOMIC))
2863 			return -ENOMEM; /* We'll try again later. */
2864 	} else {
2865 		if (skb_unclone(skb, GFP_ATOMIC))
2866 			return -ENOMEM;
2867 
2868 		diff = tcp_skb_pcount(skb);
2869 		tcp_set_skb_tso_segs(skb, cur_mss);
2870 		diff -= tcp_skb_pcount(skb);
2871 		if (diff)
2872 			tcp_adjust_pcount(sk, skb, diff);
2873 		if (skb->len < cur_mss)
2874 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2875 	}
2876 
2877 	/* RFC3168, section 6.1.1.1. ECN fallback */
2878 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2879 		tcp_ecn_clear_syn(sk, skb);
2880 
2881 	/* Update global and local TCP statistics. */
2882 	segs = tcp_skb_pcount(skb);
2883 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2884 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2885 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2886 	tp->total_retrans += segs;
2887 
2888 	/* make sure skb->data is aligned on arches that require it
2889 	 * and check if ack-trimming & collapsing extended the headroom
2890 	 * beyond what csum_start can cover.
2891 	 */
2892 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2893 		     skb_headroom(skb) >= 0xFFFF)) {
2894 		struct sk_buff *nskb;
2895 
2896 		tcp_skb_tsorted_save(skb) {
2897 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2898 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2899 				     -ENOBUFS;
2900 		} tcp_skb_tsorted_restore(skb);
2901 
2902 		if (!err) {
2903 			tcp_update_skb_after_send(tp, skb);
2904 			tcp_rate_skb_sent(sk, skb);
2905 		}
2906 	} else {
2907 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2908 	}
2909 
2910 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2911 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2912 				  TCP_SKB_CB(skb)->seq, segs, err);
2913 
2914 	if (likely(!err)) {
2915 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2916 		trace_tcp_retransmit_skb(sk, skb);
2917 	} else if (err != -EBUSY) {
2918 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2919 	}
2920 	return err;
2921 }
2922 
2923 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2924 {
2925 	struct tcp_sock *tp = tcp_sk(sk);
2926 	int err = __tcp_retransmit_skb(sk, skb, segs);
2927 
2928 	if (err == 0) {
2929 #if FASTRETRANS_DEBUG > 0
2930 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2931 			net_dbg_ratelimited("retrans_out leaked\n");
2932 		}
2933 #endif
2934 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2935 		tp->retrans_out += tcp_skb_pcount(skb);
2936 
2937 		/* Save stamp of the first retransmit. */
2938 		if (!tp->retrans_stamp)
2939 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2940 
2941 	}
2942 
2943 	if (tp->undo_retrans < 0)
2944 		tp->undo_retrans = 0;
2945 	tp->undo_retrans += tcp_skb_pcount(skb);
2946 	return err;
2947 }
2948 
2949 /* This gets called after a retransmit timeout, and the initially
2950  * retransmitted data is acknowledged.  It tries to continue
2951  * resending the rest of the retransmit queue, until either
2952  * we've sent it all or the congestion window limit is reached.
2953  */
2954 void tcp_xmit_retransmit_queue(struct sock *sk)
2955 {
2956 	const struct inet_connection_sock *icsk = inet_csk(sk);
2957 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2958 	struct tcp_sock *tp = tcp_sk(sk);
2959 	u32 max_segs;
2960 	int mib_idx;
2961 
2962 	if (!tp->packets_out)
2963 		return;
2964 
2965 	rtx_head = tcp_rtx_queue_head(sk);
2966 	skb = tp->retransmit_skb_hint ?: rtx_head;
2967 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2968 	skb_rbtree_walk_from(skb) {
2969 		__u8 sacked;
2970 		int segs;
2971 
2972 		if (tcp_pacing_check(sk))
2973 			break;
2974 
2975 		/* we could do better than to assign each time */
2976 		if (!hole)
2977 			tp->retransmit_skb_hint = skb;
2978 
2979 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2980 		if (segs <= 0)
2981 			return;
2982 		sacked = TCP_SKB_CB(skb)->sacked;
2983 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2984 		 * we need to make sure not sending too bigs TSO packets
2985 		 */
2986 		segs = min_t(int, segs, max_segs);
2987 
2988 		if (tp->retrans_out >= tp->lost_out) {
2989 			break;
2990 		} else if (!(sacked & TCPCB_LOST)) {
2991 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2992 				hole = skb;
2993 			continue;
2994 
2995 		} else {
2996 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2997 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2998 			else
2999 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3000 		}
3001 
3002 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3003 			continue;
3004 
3005 		if (tcp_small_queue_check(sk, skb, 1))
3006 			return;
3007 
3008 		if (tcp_retransmit_skb(sk, skb, segs))
3009 			return;
3010 
3011 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3012 
3013 		if (tcp_in_cwnd_reduction(sk))
3014 			tp->prr_out += tcp_skb_pcount(skb);
3015 
3016 		if (skb == rtx_head &&
3017 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3018 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3019 						  inet_csk(sk)->icsk_rto,
3020 						  TCP_RTO_MAX);
3021 	}
3022 }
3023 
3024 /* We allow to exceed memory limits for FIN packets to expedite
3025  * connection tear down and (memory) recovery.
3026  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3027  * or even be forced to close flow without any FIN.
3028  * In general, we want to allow one skb per socket to avoid hangs
3029  * with edge trigger epoll()
3030  */
3031 void sk_forced_mem_schedule(struct sock *sk, int size)
3032 {
3033 	int amt;
3034 
3035 	if (size <= sk->sk_forward_alloc)
3036 		return;
3037 	amt = sk_mem_pages(size);
3038 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3039 	sk_memory_allocated_add(sk, amt);
3040 
3041 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3042 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3043 }
3044 
3045 /* Send a FIN. The caller locks the socket for us.
3046  * We should try to send a FIN packet really hard, but eventually give up.
3047  */
3048 void tcp_send_fin(struct sock *sk)
3049 {
3050 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3051 	struct tcp_sock *tp = tcp_sk(sk);
3052 
3053 	/* Optimization, tack on the FIN if we have one skb in write queue and
3054 	 * this skb was not yet sent, or we are under memory pressure.
3055 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3056 	 * as TCP stack thinks it has already been transmitted.
3057 	 */
3058 	if (!tskb && tcp_under_memory_pressure(sk))
3059 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3060 
3061 	if (tskb) {
3062 coalesce:
3063 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3064 		TCP_SKB_CB(tskb)->end_seq++;
3065 		tp->write_seq++;
3066 		if (tcp_write_queue_empty(sk)) {
3067 			/* This means tskb was already sent.
3068 			 * Pretend we included the FIN on previous transmit.
3069 			 * We need to set tp->snd_nxt to the value it would have
3070 			 * if FIN had been sent. This is because retransmit path
3071 			 * does not change tp->snd_nxt.
3072 			 */
3073 			tp->snd_nxt++;
3074 			return;
3075 		}
3076 	} else {
3077 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3078 		if (unlikely(!skb)) {
3079 			if (tskb)
3080 				goto coalesce;
3081 			return;
3082 		}
3083 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3084 		skb_reserve(skb, MAX_TCP_HEADER);
3085 		sk_forced_mem_schedule(sk, skb->truesize);
3086 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3087 		tcp_init_nondata_skb(skb, tp->write_seq,
3088 				     TCPHDR_ACK | TCPHDR_FIN);
3089 		tcp_queue_skb(sk, skb);
3090 	}
3091 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3092 }
3093 
3094 /* We get here when a process closes a file descriptor (either due to
3095  * an explicit close() or as a byproduct of exit()'ing) and there
3096  * was unread data in the receive queue.  This behavior is recommended
3097  * by RFC 2525, section 2.17.  -DaveM
3098  */
3099 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3100 {
3101 	struct sk_buff *skb;
3102 
3103 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3104 
3105 	/* NOTE: No TCP options attached and we never retransmit this. */
3106 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3107 	if (!skb) {
3108 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3109 		return;
3110 	}
3111 
3112 	/* Reserve space for headers and prepare control bits. */
3113 	skb_reserve(skb, MAX_TCP_HEADER);
3114 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3115 			     TCPHDR_ACK | TCPHDR_RST);
3116 	tcp_mstamp_refresh(tcp_sk(sk));
3117 	/* Send it off. */
3118 	if (tcp_transmit_skb(sk, skb, 0, priority))
3119 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3120 
3121 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3122 	 * skb here is different to the troublesome skb, so use NULL
3123 	 */
3124 	trace_tcp_send_reset(sk, NULL);
3125 }
3126 
3127 /* Send a crossed SYN-ACK during socket establishment.
3128  * WARNING: This routine must only be called when we have already sent
3129  * a SYN packet that crossed the incoming SYN that caused this routine
3130  * to get called. If this assumption fails then the initial rcv_wnd
3131  * and rcv_wscale values will not be correct.
3132  */
3133 int tcp_send_synack(struct sock *sk)
3134 {
3135 	struct sk_buff *skb;
3136 
3137 	skb = tcp_rtx_queue_head(sk);
3138 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3139 		pr_err("%s: wrong queue state\n", __func__);
3140 		return -EFAULT;
3141 	}
3142 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3143 		if (skb_cloned(skb)) {
3144 			struct sk_buff *nskb;
3145 
3146 			tcp_skb_tsorted_save(skb) {
3147 				nskb = skb_copy(skb, GFP_ATOMIC);
3148 			} tcp_skb_tsorted_restore(skb);
3149 			if (!nskb)
3150 				return -ENOMEM;
3151 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3152 			tcp_rtx_queue_unlink_and_free(skb, sk);
3153 			__skb_header_release(nskb);
3154 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3155 			sk->sk_wmem_queued += nskb->truesize;
3156 			sk_mem_charge(sk, nskb->truesize);
3157 			skb = nskb;
3158 		}
3159 
3160 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3161 		tcp_ecn_send_synack(sk, skb);
3162 	}
3163 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3164 }
3165 
3166 /**
3167  * tcp_make_synack - Prepare a SYN-ACK.
3168  * sk: listener socket
3169  * dst: dst entry attached to the SYNACK
3170  * req: request_sock pointer
3171  *
3172  * Allocate one skb and build a SYNACK packet.
3173  * @dst is consumed : Caller should not use it again.
3174  */
3175 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3176 				struct request_sock *req,
3177 				struct tcp_fastopen_cookie *foc,
3178 				enum tcp_synack_type synack_type)
3179 {
3180 	struct inet_request_sock *ireq = inet_rsk(req);
3181 	const struct tcp_sock *tp = tcp_sk(sk);
3182 	struct tcp_md5sig_key *md5 = NULL;
3183 	struct tcp_out_options opts;
3184 	struct sk_buff *skb;
3185 	int tcp_header_size;
3186 	struct tcphdr *th;
3187 	int mss;
3188 
3189 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3190 	if (unlikely(!skb)) {
3191 		dst_release(dst);
3192 		return NULL;
3193 	}
3194 	/* Reserve space for headers. */
3195 	skb_reserve(skb, MAX_TCP_HEADER);
3196 
3197 	switch (synack_type) {
3198 	case TCP_SYNACK_NORMAL:
3199 		skb_set_owner_w(skb, req_to_sk(req));
3200 		break;
3201 	case TCP_SYNACK_COOKIE:
3202 		/* Under synflood, we do not attach skb to a socket,
3203 		 * to avoid false sharing.
3204 		 */
3205 		break;
3206 	case TCP_SYNACK_FASTOPEN:
3207 		/* sk is a const pointer, because we want to express multiple
3208 		 * cpu might call us concurrently.
3209 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3210 		 */
3211 		skb_set_owner_w(skb, (struct sock *)sk);
3212 		break;
3213 	}
3214 	skb_dst_set(skb, dst);
3215 
3216 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3217 
3218 	memset(&opts, 0, sizeof(opts));
3219 #ifdef CONFIG_SYN_COOKIES
3220 	if (unlikely(req->cookie_ts))
3221 		skb->skb_mstamp = cookie_init_timestamp(req);
3222 	else
3223 #endif
3224 		skb->skb_mstamp = tcp_clock_us();
3225 
3226 #ifdef CONFIG_TCP_MD5SIG
3227 	rcu_read_lock();
3228 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3229 #endif
3230 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3231 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3232 					     foc) + sizeof(*th);
3233 
3234 	skb_push(skb, tcp_header_size);
3235 	skb_reset_transport_header(skb);
3236 
3237 	th = (struct tcphdr *)skb->data;
3238 	memset(th, 0, sizeof(struct tcphdr));
3239 	th->syn = 1;
3240 	th->ack = 1;
3241 	tcp_ecn_make_synack(req, th);
3242 	th->source = htons(ireq->ir_num);
3243 	th->dest = ireq->ir_rmt_port;
3244 	skb->mark = ireq->ir_mark;
3245 	skb->ip_summed = CHECKSUM_PARTIAL;
3246 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3247 	/* XXX data is queued and acked as is. No buffer/window check */
3248 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3249 
3250 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3251 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3252 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3253 	th->doff = (tcp_header_size >> 2);
3254 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3255 
3256 #ifdef CONFIG_TCP_MD5SIG
3257 	/* Okay, we have all we need - do the md5 hash if needed */
3258 	if (md5)
3259 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3260 					       md5, req_to_sk(req), skb);
3261 	rcu_read_unlock();
3262 #endif
3263 
3264 	/* Do not fool tcpdump (if any), clean our debris */
3265 	skb->tstamp = 0;
3266 	return skb;
3267 }
3268 EXPORT_SYMBOL(tcp_make_synack);
3269 
3270 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3271 {
3272 	struct inet_connection_sock *icsk = inet_csk(sk);
3273 	const struct tcp_congestion_ops *ca;
3274 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3275 
3276 	if (ca_key == TCP_CA_UNSPEC)
3277 		return;
3278 
3279 	rcu_read_lock();
3280 	ca = tcp_ca_find_key(ca_key);
3281 	if (likely(ca && try_module_get(ca->owner))) {
3282 		module_put(icsk->icsk_ca_ops->owner);
3283 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3284 		icsk->icsk_ca_ops = ca;
3285 	}
3286 	rcu_read_unlock();
3287 }
3288 
3289 /* Do all connect socket setups that can be done AF independent. */
3290 static void tcp_connect_init(struct sock *sk)
3291 {
3292 	const struct dst_entry *dst = __sk_dst_get(sk);
3293 	struct tcp_sock *tp = tcp_sk(sk);
3294 	__u8 rcv_wscale;
3295 	u32 rcv_wnd;
3296 
3297 	/* We'll fix this up when we get a response from the other end.
3298 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3299 	 */
3300 	tp->tcp_header_len = sizeof(struct tcphdr);
3301 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3302 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3303 
3304 #ifdef CONFIG_TCP_MD5SIG
3305 	if (tp->af_specific->md5_lookup(sk, sk))
3306 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3307 #endif
3308 
3309 	/* If user gave his TCP_MAXSEG, record it to clamp */
3310 	if (tp->rx_opt.user_mss)
3311 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3312 	tp->max_window = 0;
3313 	tcp_mtup_init(sk);
3314 	tcp_sync_mss(sk, dst_mtu(dst));
3315 
3316 	tcp_ca_dst_init(sk, dst);
3317 
3318 	if (!tp->window_clamp)
3319 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3320 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3321 
3322 	tcp_initialize_rcv_mss(sk);
3323 
3324 	/* limit the window selection if the user enforce a smaller rx buffer */
3325 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3326 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3327 		tp->window_clamp = tcp_full_space(sk);
3328 
3329 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3330 	if (rcv_wnd == 0)
3331 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3332 
3333 	tcp_select_initial_window(sk, tcp_full_space(sk),
3334 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3335 				  &tp->rcv_wnd,
3336 				  &tp->window_clamp,
3337 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3338 				  &rcv_wscale,
3339 				  rcv_wnd);
3340 
3341 	tp->rx_opt.rcv_wscale = rcv_wscale;
3342 	tp->rcv_ssthresh = tp->rcv_wnd;
3343 
3344 	sk->sk_err = 0;
3345 	sock_reset_flag(sk, SOCK_DONE);
3346 	tp->snd_wnd = 0;
3347 	tcp_init_wl(tp, 0);
3348 	tcp_write_queue_purge(sk);
3349 	tp->snd_una = tp->write_seq;
3350 	tp->snd_sml = tp->write_seq;
3351 	tp->snd_up = tp->write_seq;
3352 	tp->snd_nxt = tp->write_seq;
3353 
3354 	if (likely(!tp->repair))
3355 		tp->rcv_nxt = 0;
3356 	else
3357 		tp->rcv_tstamp = tcp_jiffies32;
3358 	tp->rcv_wup = tp->rcv_nxt;
3359 	tp->copied_seq = tp->rcv_nxt;
3360 
3361 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3362 	inet_csk(sk)->icsk_retransmits = 0;
3363 	tcp_clear_retrans(tp);
3364 }
3365 
3366 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3367 {
3368 	struct tcp_sock *tp = tcp_sk(sk);
3369 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3370 
3371 	tcb->end_seq += skb->len;
3372 	__skb_header_release(skb);
3373 	sk->sk_wmem_queued += skb->truesize;
3374 	sk_mem_charge(sk, skb->truesize);
3375 	tp->write_seq = tcb->end_seq;
3376 	tp->packets_out += tcp_skb_pcount(skb);
3377 }
3378 
3379 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3380  * queue a data-only packet after the regular SYN, such that regular SYNs
3381  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3382  * only the SYN sequence, the data are retransmitted in the first ACK.
3383  * If cookie is not cached or other error occurs, falls back to send a
3384  * regular SYN with Fast Open cookie request option.
3385  */
3386 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3387 {
3388 	struct tcp_sock *tp = tcp_sk(sk);
3389 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3390 	int space, err = 0;
3391 	struct sk_buff *syn_data;
3392 
3393 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3394 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3395 		goto fallback;
3396 
3397 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3398 	 * user-MSS. Reserve maximum option space for middleboxes that add
3399 	 * private TCP options. The cost is reduced data space in SYN :(
3400 	 */
3401 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3402 
3403 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3404 		MAX_TCP_OPTION_SPACE;
3405 
3406 	space = min_t(size_t, space, fo->size);
3407 
3408 	/* limit to order-0 allocations */
3409 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3410 
3411 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3412 	if (!syn_data)
3413 		goto fallback;
3414 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3415 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3416 	if (space) {
3417 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3418 					    &fo->data->msg_iter);
3419 		if (unlikely(!copied)) {
3420 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3421 			kfree_skb(syn_data);
3422 			goto fallback;
3423 		}
3424 		if (copied != space) {
3425 			skb_trim(syn_data, copied);
3426 			space = copied;
3427 		}
3428 	}
3429 	/* No more data pending in inet_wait_for_connect() */
3430 	if (space == fo->size)
3431 		fo->data = NULL;
3432 	fo->copied = space;
3433 
3434 	tcp_connect_queue_skb(sk, syn_data);
3435 	if (syn_data->len)
3436 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3437 
3438 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3439 
3440 	syn->skb_mstamp = syn_data->skb_mstamp;
3441 
3442 	/* Now full SYN+DATA was cloned and sent (or not),
3443 	 * remove the SYN from the original skb (syn_data)
3444 	 * we keep in write queue in case of a retransmit, as we
3445 	 * also have the SYN packet (with no data) in the same queue.
3446 	 */
3447 	TCP_SKB_CB(syn_data)->seq++;
3448 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3449 	if (!err) {
3450 		tp->syn_data = (fo->copied > 0);
3451 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3452 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3453 		goto done;
3454 	}
3455 
3456 	/* data was not sent, put it in write_queue */
3457 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3458 	tp->packets_out -= tcp_skb_pcount(syn_data);
3459 
3460 fallback:
3461 	/* Send a regular SYN with Fast Open cookie request option */
3462 	if (fo->cookie.len > 0)
3463 		fo->cookie.len = 0;
3464 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3465 	if (err)
3466 		tp->syn_fastopen = 0;
3467 done:
3468 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3469 	return err;
3470 }
3471 
3472 /* Build a SYN and send it off. */
3473 int tcp_connect(struct sock *sk)
3474 {
3475 	struct tcp_sock *tp = tcp_sk(sk);
3476 	struct sk_buff *buff;
3477 	int err;
3478 
3479 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3480 
3481 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3482 		return -EHOSTUNREACH; /* Routing failure or similar. */
3483 
3484 	tcp_connect_init(sk);
3485 
3486 	if (unlikely(tp->repair)) {
3487 		tcp_finish_connect(sk, NULL);
3488 		return 0;
3489 	}
3490 
3491 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3492 	if (unlikely(!buff))
3493 		return -ENOBUFS;
3494 
3495 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3496 	tcp_mstamp_refresh(tp);
3497 	tp->retrans_stamp = tcp_time_stamp(tp);
3498 	tcp_connect_queue_skb(sk, buff);
3499 	tcp_ecn_send_syn(sk, buff);
3500 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3501 
3502 	/* Send off SYN; include data in Fast Open. */
3503 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3504 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3505 	if (err == -ECONNREFUSED)
3506 		return err;
3507 
3508 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3509 	 * in order to make this packet get counted in tcpOutSegs.
3510 	 */
3511 	tp->snd_nxt = tp->write_seq;
3512 	tp->pushed_seq = tp->write_seq;
3513 	buff = tcp_send_head(sk);
3514 	if (unlikely(buff)) {
3515 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3516 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3517 	}
3518 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3519 
3520 	/* Timer for repeating the SYN until an answer. */
3521 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3522 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3523 	return 0;
3524 }
3525 EXPORT_SYMBOL(tcp_connect);
3526 
3527 /* Send out a delayed ack, the caller does the policy checking
3528  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3529  * for details.
3530  */
3531 void tcp_send_delayed_ack(struct sock *sk)
3532 {
3533 	struct inet_connection_sock *icsk = inet_csk(sk);
3534 	int ato = icsk->icsk_ack.ato;
3535 	unsigned long timeout;
3536 
3537 	if (ato > TCP_DELACK_MIN) {
3538 		const struct tcp_sock *tp = tcp_sk(sk);
3539 		int max_ato = HZ / 2;
3540 
3541 		if (icsk->icsk_ack.pingpong ||
3542 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3543 			max_ato = TCP_DELACK_MAX;
3544 
3545 		/* Slow path, intersegment interval is "high". */
3546 
3547 		/* If some rtt estimate is known, use it to bound delayed ack.
3548 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3549 		 * directly.
3550 		 */
3551 		if (tp->srtt_us) {
3552 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3553 					TCP_DELACK_MIN);
3554 
3555 			if (rtt < max_ato)
3556 				max_ato = rtt;
3557 		}
3558 
3559 		ato = min(ato, max_ato);
3560 	}
3561 
3562 	/* Stay within the limit we were given */
3563 	timeout = jiffies + ato;
3564 
3565 	/* Use new timeout only if there wasn't a older one earlier. */
3566 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3567 		/* If delack timer was blocked or is about to expire,
3568 		 * send ACK now.
3569 		 */
3570 		if (icsk->icsk_ack.blocked ||
3571 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3572 			tcp_send_ack(sk);
3573 			return;
3574 		}
3575 
3576 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3577 			timeout = icsk->icsk_ack.timeout;
3578 	}
3579 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3580 	icsk->icsk_ack.timeout = timeout;
3581 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3582 }
3583 
3584 /* This routine sends an ack and also updates the window. */
3585 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3586 {
3587 	struct sk_buff *buff;
3588 
3589 	/* If we have been reset, we may not send again. */
3590 	if (sk->sk_state == TCP_CLOSE)
3591 		return;
3592 
3593 	/* We are not putting this on the write queue, so
3594 	 * tcp_transmit_skb() will set the ownership to this
3595 	 * sock.
3596 	 */
3597 	buff = alloc_skb(MAX_TCP_HEADER,
3598 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3599 	if (unlikely(!buff)) {
3600 		inet_csk_schedule_ack(sk);
3601 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3602 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3603 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3604 		return;
3605 	}
3606 
3607 	/* Reserve space for headers and prepare control bits. */
3608 	skb_reserve(buff, MAX_TCP_HEADER);
3609 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3610 
3611 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3612 	 * too much.
3613 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3614 	 */
3615 	skb_set_tcp_pure_ack(buff);
3616 
3617 	/* Send it off, this clears delayed acks for us. */
3618 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3619 }
3620 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3621 
3622 void tcp_send_ack(struct sock *sk)
3623 {
3624 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3625 }
3626 
3627 /* This routine sends a packet with an out of date sequence
3628  * number. It assumes the other end will try to ack it.
3629  *
3630  * Question: what should we make while urgent mode?
3631  * 4.4BSD forces sending single byte of data. We cannot send
3632  * out of window data, because we have SND.NXT==SND.MAX...
3633  *
3634  * Current solution: to send TWO zero-length segments in urgent mode:
3635  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3636  * out-of-date with SND.UNA-1 to probe window.
3637  */
3638 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3639 {
3640 	struct tcp_sock *tp = tcp_sk(sk);
3641 	struct sk_buff *skb;
3642 
3643 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3644 	skb = alloc_skb(MAX_TCP_HEADER,
3645 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3646 	if (!skb)
3647 		return -1;
3648 
3649 	/* Reserve space for headers and set control bits. */
3650 	skb_reserve(skb, MAX_TCP_HEADER);
3651 	/* Use a previous sequence.  This should cause the other
3652 	 * end to send an ack.  Don't queue or clone SKB, just
3653 	 * send it.
3654 	 */
3655 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3656 	NET_INC_STATS(sock_net(sk), mib);
3657 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3658 }
3659 
3660 /* Called from setsockopt( ... TCP_REPAIR ) */
3661 void tcp_send_window_probe(struct sock *sk)
3662 {
3663 	if (sk->sk_state == TCP_ESTABLISHED) {
3664 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3665 		tcp_mstamp_refresh(tcp_sk(sk));
3666 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3667 	}
3668 }
3669 
3670 /* Initiate keepalive or window probe from timer. */
3671 int tcp_write_wakeup(struct sock *sk, int mib)
3672 {
3673 	struct tcp_sock *tp = tcp_sk(sk);
3674 	struct sk_buff *skb;
3675 
3676 	if (sk->sk_state == TCP_CLOSE)
3677 		return -1;
3678 
3679 	skb = tcp_send_head(sk);
3680 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3681 		int err;
3682 		unsigned int mss = tcp_current_mss(sk);
3683 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3684 
3685 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3686 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3687 
3688 		/* We are probing the opening of a window
3689 		 * but the window size is != 0
3690 		 * must have been a result SWS avoidance ( sender )
3691 		 */
3692 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3693 		    skb->len > mss) {
3694 			seg_size = min(seg_size, mss);
3695 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3696 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3697 					 skb, seg_size, mss, GFP_ATOMIC))
3698 				return -1;
3699 		} else if (!tcp_skb_pcount(skb))
3700 			tcp_set_skb_tso_segs(skb, mss);
3701 
3702 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3703 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3704 		if (!err)
3705 			tcp_event_new_data_sent(sk, skb);
3706 		return err;
3707 	} else {
3708 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3709 			tcp_xmit_probe_skb(sk, 1, mib);
3710 		return tcp_xmit_probe_skb(sk, 0, mib);
3711 	}
3712 }
3713 
3714 /* A window probe timeout has occurred.  If window is not closed send
3715  * a partial packet else a zero probe.
3716  */
3717 void tcp_send_probe0(struct sock *sk)
3718 {
3719 	struct inet_connection_sock *icsk = inet_csk(sk);
3720 	struct tcp_sock *tp = tcp_sk(sk);
3721 	struct net *net = sock_net(sk);
3722 	unsigned long probe_max;
3723 	int err;
3724 
3725 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3726 
3727 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3728 		/* Cancel probe timer, if it is not required. */
3729 		icsk->icsk_probes_out = 0;
3730 		icsk->icsk_backoff = 0;
3731 		return;
3732 	}
3733 
3734 	if (err <= 0) {
3735 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3736 			icsk->icsk_backoff++;
3737 		icsk->icsk_probes_out++;
3738 		probe_max = TCP_RTO_MAX;
3739 	} else {
3740 		/* If packet was not sent due to local congestion,
3741 		 * do not backoff and do not remember icsk_probes_out.
3742 		 * Let local senders to fight for local resources.
3743 		 *
3744 		 * Use accumulated backoff yet.
3745 		 */
3746 		if (!icsk->icsk_probes_out)
3747 			icsk->icsk_probes_out = 1;
3748 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3749 	}
3750 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3751 				  tcp_probe0_when(sk, probe_max),
3752 				  TCP_RTO_MAX);
3753 }
3754 
3755 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3756 {
3757 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3758 	struct flowi fl;
3759 	int res;
3760 
3761 	tcp_rsk(req)->txhash = net_tx_rndhash();
3762 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3763 	if (!res) {
3764 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3765 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3766 		if (unlikely(tcp_passive_fastopen(sk)))
3767 			tcp_sk(sk)->total_retrans++;
3768 		trace_tcp_retransmit_synack(sk, req);
3769 	}
3770 	return res;
3771 }
3772 EXPORT_SYMBOL(tcp_rtx_synack);
3773