1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 49 int push_one, gfp_t gfp); 50 51 /* Account for new data that has been sent to the network. */ 52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 53 { 54 struct inet_connection_sock *icsk = inet_csk(sk); 55 struct tcp_sock *tp = tcp_sk(sk); 56 unsigned int prior_packets = tp->packets_out; 57 58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 59 60 __skb_unlink(skb, &sk->sk_write_queue); 61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 62 63 tp->packets_out += tcp_skb_pcount(skb); 64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 65 tcp_rearm_rto(sk); 66 67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 68 tcp_skb_pcount(skb)); 69 } 70 71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 72 * window scaling factor due to loss of precision. 73 * If window has been shrunk, what should we make? It is not clear at all. 74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 76 * invalid. OK, let's make this for now: 77 */ 78 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 79 { 80 const struct tcp_sock *tp = tcp_sk(sk); 81 82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 83 (tp->rx_opt.wscale_ok && 84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 85 return tp->snd_nxt; 86 else 87 return tcp_wnd_end(tp); 88 } 89 90 /* Calculate mss to advertise in SYN segment. 91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 92 * 93 * 1. It is independent of path mtu. 94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 96 * attached devices, because some buggy hosts are confused by 97 * large MSS. 98 * 4. We do not make 3, we advertise MSS, calculated from first 99 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 100 * This may be overridden via information stored in routing table. 101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 102 * probably even Jumbo". 103 */ 104 static __u16 tcp_advertise_mss(struct sock *sk) 105 { 106 struct tcp_sock *tp = tcp_sk(sk); 107 const struct dst_entry *dst = __sk_dst_get(sk); 108 int mss = tp->advmss; 109 110 if (dst) { 111 unsigned int metric = dst_metric_advmss(dst); 112 113 if (metric < mss) { 114 mss = metric; 115 tp->advmss = mss; 116 } 117 } 118 119 return (__u16)mss; 120 } 121 122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 123 * This is the first part of cwnd validation mechanism. 124 */ 125 void tcp_cwnd_restart(struct sock *sk, s32 delta) 126 { 127 struct tcp_sock *tp = tcp_sk(sk); 128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 129 u32 cwnd = tp->snd_cwnd; 130 131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 132 133 tp->snd_ssthresh = tcp_current_ssthresh(sk); 134 restart_cwnd = min(restart_cwnd, cwnd); 135 136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 137 cwnd >>= 1; 138 tp->snd_cwnd = max(cwnd, restart_cwnd); 139 tp->snd_cwnd_stamp = tcp_jiffies32; 140 tp->snd_cwnd_used = 0; 141 } 142 143 /* Congestion state accounting after a packet has been sent. */ 144 static void tcp_event_data_sent(struct tcp_sock *tp, 145 struct sock *sk) 146 { 147 struct inet_connection_sock *icsk = inet_csk(sk); 148 const u32 now = tcp_jiffies32; 149 150 if (tcp_packets_in_flight(tp) == 0) 151 tcp_ca_event(sk, CA_EVENT_TX_START); 152 153 tp->lsndtime = now; 154 155 /* If it is a reply for ato after last received 156 * packet, enter pingpong mode. 157 */ 158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 159 icsk->icsk_ack.pingpong = 1; 160 } 161 162 /* Account for an ACK we sent. */ 163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 164 u32 rcv_nxt) 165 { 166 struct tcp_sock *tp = tcp_sk(sk); 167 168 if (unlikely(tp->compressed_ack)) { 169 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 170 tp->compressed_ack); 171 tp->compressed_ack = 0; 172 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 173 __sock_put(sk); 174 } 175 176 if (unlikely(rcv_nxt != tp->rcv_nxt)) 177 return; /* Special ACK sent by DCTCP to reflect ECN */ 178 tcp_dec_quickack_mode(sk, pkts); 179 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 180 } 181 182 183 u32 tcp_default_init_rwnd(u32 mss) 184 { 185 /* Initial receive window should be twice of TCP_INIT_CWND to 186 * enable proper sending of new unsent data during fast recovery 187 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 188 * limit when mss is larger than 1460. 189 */ 190 u32 init_rwnd = TCP_INIT_CWND * 2; 191 192 if (mss > 1460) 193 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 194 return init_rwnd; 195 } 196 197 /* Determine a window scaling and initial window to offer. 198 * Based on the assumption that the given amount of space 199 * will be offered. Store the results in the tp structure. 200 * NOTE: for smooth operation initial space offering should 201 * be a multiple of mss if possible. We assume here that mss >= 1. 202 * This MUST be enforced by all callers. 203 */ 204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 205 __u32 *rcv_wnd, __u32 *window_clamp, 206 int wscale_ok, __u8 *rcv_wscale, 207 __u32 init_rcv_wnd) 208 { 209 unsigned int space = (__space < 0 ? 0 : __space); 210 211 /* If no clamp set the clamp to the max possible scaled window */ 212 if (*window_clamp == 0) 213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 214 space = min(*window_clamp, space); 215 216 /* Quantize space offering to a multiple of mss if possible. */ 217 if (space > mss) 218 space = rounddown(space, mss); 219 220 /* NOTE: offering an initial window larger than 32767 221 * will break some buggy TCP stacks. If the admin tells us 222 * it is likely we could be speaking with such a buggy stack 223 * we will truncate our initial window offering to 32K-1 224 * unless the remote has sent us a window scaling option, 225 * which we interpret as a sign the remote TCP is not 226 * misinterpreting the window field as a signed quantity. 227 */ 228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 230 else 231 (*rcv_wnd) = space; 232 233 (*rcv_wscale) = 0; 234 if (wscale_ok) { 235 /* Set window scaling on max possible window */ 236 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 237 space = max_t(u32, space, sysctl_rmem_max); 238 space = min_t(u32, space, *window_clamp); 239 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 240 space >>= 1; 241 (*rcv_wscale)++; 242 } 243 } 244 245 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 246 init_rcv_wnd = tcp_default_init_rwnd(mss); 247 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 248 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 419 static void smc_options_write(__be32 *ptr, u16 *options) 420 { 421 #if IS_ENABLED(CONFIG_SMC) 422 if (static_branch_unlikely(&tcp_have_smc)) { 423 if (unlikely(OPTION_SMC & *options)) { 424 *ptr++ = htonl((TCPOPT_NOP << 24) | 425 (TCPOPT_NOP << 16) | 426 (TCPOPT_EXP << 8) | 427 (TCPOLEN_EXP_SMC_BASE)); 428 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 429 } 430 } 431 #endif 432 } 433 434 struct tcp_out_options { 435 u16 options; /* bit field of OPTION_* */ 436 u16 mss; /* 0 to disable */ 437 u8 ws; /* window scale, 0 to disable */ 438 u8 num_sack_blocks; /* number of SACK blocks to include */ 439 u8 hash_size; /* bytes in hash_location */ 440 __u8 *hash_location; /* temporary pointer, overloaded */ 441 __u32 tsval, tsecr; /* need to include OPTION_TS */ 442 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 443 }; 444 445 /* Write previously computed TCP options to the packet. 446 * 447 * Beware: Something in the Internet is very sensitive to the ordering of 448 * TCP options, we learned this through the hard way, so be careful here. 449 * Luckily we can at least blame others for their non-compliance but from 450 * inter-operability perspective it seems that we're somewhat stuck with 451 * the ordering which we have been using if we want to keep working with 452 * those broken things (not that it currently hurts anybody as there isn't 453 * particular reason why the ordering would need to be changed). 454 * 455 * At least SACK_PERM as the first option is known to lead to a disaster 456 * (but it may well be that other scenarios fail similarly). 457 */ 458 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 459 struct tcp_out_options *opts) 460 { 461 u16 options = opts->options; /* mungable copy */ 462 463 if (unlikely(OPTION_MD5 & options)) { 464 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 465 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 466 /* overload cookie hash location */ 467 opts->hash_location = (__u8 *)ptr; 468 ptr += 4; 469 } 470 471 if (unlikely(opts->mss)) { 472 *ptr++ = htonl((TCPOPT_MSS << 24) | 473 (TCPOLEN_MSS << 16) | 474 opts->mss); 475 } 476 477 if (likely(OPTION_TS & options)) { 478 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 479 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 480 (TCPOLEN_SACK_PERM << 16) | 481 (TCPOPT_TIMESTAMP << 8) | 482 TCPOLEN_TIMESTAMP); 483 options &= ~OPTION_SACK_ADVERTISE; 484 } else { 485 *ptr++ = htonl((TCPOPT_NOP << 24) | 486 (TCPOPT_NOP << 16) | 487 (TCPOPT_TIMESTAMP << 8) | 488 TCPOLEN_TIMESTAMP); 489 } 490 *ptr++ = htonl(opts->tsval); 491 *ptr++ = htonl(opts->tsecr); 492 } 493 494 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 495 *ptr++ = htonl((TCPOPT_NOP << 24) | 496 (TCPOPT_NOP << 16) | 497 (TCPOPT_SACK_PERM << 8) | 498 TCPOLEN_SACK_PERM); 499 } 500 501 if (unlikely(OPTION_WSCALE & options)) { 502 *ptr++ = htonl((TCPOPT_NOP << 24) | 503 (TCPOPT_WINDOW << 16) | 504 (TCPOLEN_WINDOW << 8) | 505 opts->ws); 506 } 507 508 if (unlikely(opts->num_sack_blocks)) { 509 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 510 tp->duplicate_sack : tp->selective_acks; 511 int this_sack; 512 513 *ptr++ = htonl((TCPOPT_NOP << 24) | 514 (TCPOPT_NOP << 16) | 515 (TCPOPT_SACK << 8) | 516 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 517 TCPOLEN_SACK_PERBLOCK))); 518 519 for (this_sack = 0; this_sack < opts->num_sack_blocks; 520 ++this_sack) { 521 *ptr++ = htonl(sp[this_sack].start_seq); 522 *ptr++ = htonl(sp[this_sack].end_seq); 523 } 524 525 tp->rx_opt.dsack = 0; 526 } 527 528 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 529 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 530 u8 *p = (u8 *)ptr; 531 u32 len; /* Fast Open option length */ 532 533 if (foc->exp) { 534 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 535 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 536 TCPOPT_FASTOPEN_MAGIC); 537 p += TCPOLEN_EXP_FASTOPEN_BASE; 538 } else { 539 len = TCPOLEN_FASTOPEN_BASE + foc->len; 540 *p++ = TCPOPT_FASTOPEN; 541 *p++ = len; 542 } 543 544 memcpy(p, foc->val, foc->len); 545 if ((len & 3) == 2) { 546 p[foc->len] = TCPOPT_NOP; 547 p[foc->len + 1] = TCPOPT_NOP; 548 } 549 ptr += (len + 3) >> 2; 550 } 551 552 smc_options_write(ptr, &options); 553 } 554 555 static void smc_set_option(const struct tcp_sock *tp, 556 struct tcp_out_options *opts, 557 unsigned int *remaining) 558 { 559 #if IS_ENABLED(CONFIG_SMC) 560 if (static_branch_unlikely(&tcp_have_smc)) { 561 if (tp->syn_smc) { 562 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 563 opts->options |= OPTION_SMC; 564 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 565 } 566 } 567 } 568 #endif 569 } 570 571 static void smc_set_option_cond(const struct tcp_sock *tp, 572 const struct inet_request_sock *ireq, 573 struct tcp_out_options *opts, 574 unsigned int *remaining) 575 { 576 #if IS_ENABLED(CONFIG_SMC) 577 if (static_branch_unlikely(&tcp_have_smc)) { 578 if (tp->syn_smc && ireq->smc_ok) { 579 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 580 opts->options |= OPTION_SMC; 581 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 582 } 583 } 584 } 585 #endif 586 } 587 588 /* Compute TCP options for SYN packets. This is not the final 589 * network wire format yet. 590 */ 591 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 592 struct tcp_out_options *opts, 593 struct tcp_md5sig_key **md5) 594 { 595 struct tcp_sock *tp = tcp_sk(sk); 596 unsigned int remaining = MAX_TCP_OPTION_SPACE; 597 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 598 599 *md5 = NULL; 600 #ifdef CONFIG_TCP_MD5SIG 601 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 602 *md5 = tp->af_specific->md5_lookup(sk, sk); 603 if (*md5) { 604 opts->options |= OPTION_MD5; 605 remaining -= TCPOLEN_MD5SIG_ALIGNED; 606 } 607 } 608 #endif 609 610 /* We always get an MSS option. The option bytes which will be seen in 611 * normal data packets should timestamps be used, must be in the MSS 612 * advertised. But we subtract them from tp->mss_cache so that 613 * calculations in tcp_sendmsg are simpler etc. So account for this 614 * fact here if necessary. If we don't do this correctly, as a 615 * receiver we won't recognize data packets as being full sized when we 616 * should, and thus we won't abide by the delayed ACK rules correctly. 617 * SACKs don't matter, we never delay an ACK when we have any of those 618 * going out. */ 619 opts->mss = tcp_advertise_mss(sk); 620 remaining -= TCPOLEN_MSS_ALIGNED; 621 622 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 623 opts->options |= OPTION_TS; 624 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 625 opts->tsecr = tp->rx_opt.ts_recent; 626 remaining -= TCPOLEN_TSTAMP_ALIGNED; 627 } 628 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 629 opts->ws = tp->rx_opt.rcv_wscale; 630 opts->options |= OPTION_WSCALE; 631 remaining -= TCPOLEN_WSCALE_ALIGNED; 632 } 633 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 634 opts->options |= OPTION_SACK_ADVERTISE; 635 if (unlikely(!(OPTION_TS & opts->options))) 636 remaining -= TCPOLEN_SACKPERM_ALIGNED; 637 } 638 639 if (fastopen && fastopen->cookie.len >= 0) { 640 u32 need = fastopen->cookie.len; 641 642 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 643 TCPOLEN_FASTOPEN_BASE; 644 need = (need + 3) & ~3U; /* Align to 32 bits */ 645 if (remaining >= need) { 646 opts->options |= OPTION_FAST_OPEN_COOKIE; 647 opts->fastopen_cookie = &fastopen->cookie; 648 remaining -= need; 649 tp->syn_fastopen = 1; 650 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 651 } 652 } 653 654 smc_set_option(tp, opts, &remaining); 655 656 return MAX_TCP_OPTION_SPACE - remaining; 657 } 658 659 /* Set up TCP options for SYN-ACKs. */ 660 static unsigned int tcp_synack_options(const struct sock *sk, 661 struct request_sock *req, 662 unsigned int mss, struct sk_buff *skb, 663 struct tcp_out_options *opts, 664 const struct tcp_md5sig_key *md5, 665 struct tcp_fastopen_cookie *foc) 666 { 667 struct inet_request_sock *ireq = inet_rsk(req); 668 unsigned int remaining = MAX_TCP_OPTION_SPACE; 669 670 #ifdef CONFIG_TCP_MD5SIG 671 if (md5) { 672 opts->options |= OPTION_MD5; 673 remaining -= TCPOLEN_MD5SIG_ALIGNED; 674 675 /* We can't fit any SACK blocks in a packet with MD5 + TS 676 * options. There was discussion about disabling SACK 677 * rather than TS in order to fit in better with old, 678 * buggy kernels, but that was deemed to be unnecessary. 679 */ 680 ireq->tstamp_ok &= !ireq->sack_ok; 681 } 682 #endif 683 684 /* We always send an MSS option. */ 685 opts->mss = mss; 686 remaining -= TCPOLEN_MSS_ALIGNED; 687 688 if (likely(ireq->wscale_ok)) { 689 opts->ws = ireq->rcv_wscale; 690 opts->options |= OPTION_WSCALE; 691 remaining -= TCPOLEN_WSCALE_ALIGNED; 692 } 693 if (likely(ireq->tstamp_ok)) { 694 opts->options |= OPTION_TS; 695 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 696 opts->tsecr = req->ts_recent; 697 remaining -= TCPOLEN_TSTAMP_ALIGNED; 698 } 699 if (likely(ireq->sack_ok)) { 700 opts->options |= OPTION_SACK_ADVERTISE; 701 if (unlikely(!ireq->tstamp_ok)) 702 remaining -= TCPOLEN_SACKPERM_ALIGNED; 703 } 704 if (foc != NULL && foc->len >= 0) { 705 u32 need = foc->len; 706 707 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 708 TCPOLEN_FASTOPEN_BASE; 709 need = (need + 3) & ~3U; /* Align to 32 bits */ 710 if (remaining >= need) { 711 opts->options |= OPTION_FAST_OPEN_COOKIE; 712 opts->fastopen_cookie = foc; 713 remaining -= need; 714 } 715 } 716 717 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 718 719 return MAX_TCP_OPTION_SPACE - remaining; 720 } 721 722 /* Compute TCP options for ESTABLISHED sockets. This is not the 723 * final wire format yet. 724 */ 725 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 726 struct tcp_out_options *opts, 727 struct tcp_md5sig_key **md5) 728 { 729 struct tcp_sock *tp = tcp_sk(sk); 730 unsigned int size = 0; 731 unsigned int eff_sacks; 732 733 opts->options = 0; 734 735 *md5 = NULL; 736 #ifdef CONFIG_TCP_MD5SIG 737 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 738 *md5 = tp->af_specific->md5_lookup(sk, sk); 739 if (*md5) { 740 opts->options |= OPTION_MD5; 741 size += TCPOLEN_MD5SIG_ALIGNED; 742 } 743 } 744 #endif 745 746 if (likely(tp->rx_opt.tstamp_ok)) { 747 opts->options |= OPTION_TS; 748 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 749 opts->tsecr = tp->rx_opt.ts_recent; 750 size += TCPOLEN_TSTAMP_ALIGNED; 751 } 752 753 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 754 if (unlikely(eff_sacks)) { 755 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 756 opts->num_sack_blocks = 757 min_t(unsigned int, eff_sacks, 758 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 759 TCPOLEN_SACK_PERBLOCK); 760 size += TCPOLEN_SACK_BASE_ALIGNED + 761 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 762 } 763 764 return size; 765 } 766 767 768 /* TCP SMALL QUEUES (TSQ) 769 * 770 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 771 * to reduce RTT and bufferbloat. 772 * We do this using a special skb destructor (tcp_wfree). 773 * 774 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 775 * needs to be reallocated in a driver. 776 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 777 * 778 * Since transmit from skb destructor is forbidden, we use a tasklet 779 * to process all sockets that eventually need to send more skbs. 780 * We use one tasklet per cpu, with its own queue of sockets. 781 */ 782 struct tsq_tasklet { 783 struct tasklet_struct tasklet; 784 struct list_head head; /* queue of tcp sockets */ 785 }; 786 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 787 788 static void tcp_tsq_write(struct sock *sk) 789 { 790 if ((1 << sk->sk_state) & 791 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 792 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 793 struct tcp_sock *tp = tcp_sk(sk); 794 795 if (tp->lost_out > tp->retrans_out && 796 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 797 tcp_mstamp_refresh(tp); 798 tcp_xmit_retransmit_queue(sk); 799 } 800 801 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 802 0, GFP_ATOMIC); 803 } 804 } 805 806 static void tcp_tsq_handler(struct sock *sk) 807 { 808 bh_lock_sock(sk); 809 if (!sock_owned_by_user(sk)) 810 tcp_tsq_write(sk); 811 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 812 sock_hold(sk); 813 bh_unlock_sock(sk); 814 } 815 /* 816 * One tasklet per cpu tries to send more skbs. 817 * We run in tasklet context but need to disable irqs when 818 * transferring tsq->head because tcp_wfree() might 819 * interrupt us (non NAPI drivers) 820 */ 821 static void tcp_tasklet_func(unsigned long data) 822 { 823 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 824 LIST_HEAD(list); 825 unsigned long flags; 826 struct list_head *q, *n; 827 struct tcp_sock *tp; 828 struct sock *sk; 829 830 local_irq_save(flags); 831 list_splice_init(&tsq->head, &list); 832 local_irq_restore(flags); 833 834 list_for_each_safe(q, n, &list) { 835 tp = list_entry(q, struct tcp_sock, tsq_node); 836 list_del(&tp->tsq_node); 837 838 sk = (struct sock *)tp; 839 smp_mb__before_atomic(); 840 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 841 842 tcp_tsq_handler(sk); 843 sk_free(sk); 844 } 845 } 846 847 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 848 TCPF_WRITE_TIMER_DEFERRED | \ 849 TCPF_DELACK_TIMER_DEFERRED | \ 850 TCPF_MTU_REDUCED_DEFERRED) 851 /** 852 * tcp_release_cb - tcp release_sock() callback 853 * @sk: socket 854 * 855 * called from release_sock() to perform protocol dependent 856 * actions before socket release. 857 */ 858 void tcp_release_cb(struct sock *sk) 859 { 860 unsigned long flags, nflags; 861 862 /* perform an atomic operation only if at least one flag is set */ 863 do { 864 flags = sk->sk_tsq_flags; 865 if (!(flags & TCP_DEFERRED_ALL)) 866 return; 867 nflags = flags & ~TCP_DEFERRED_ALL; 868 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 869 870 if (flags & TCPF_TSQ_DEFERRED) { 871 tcp_tsq_write(sk); 872 __sock_put(sk); 873 } 874 /* Here begins the tricky part : 875 * We are called from release_sock() with : 876 * 1) BH disabled 877 * 2) sk_lock.slock spinlock held 878 * 3) socket owned by us (sk->sk_lock.owned == 1) 879 * 880 * But following code is meant to be called from BH handlers, 881 * so we should keep BH disabled, but early release socket ownership 882 */ 883 sock_release_ownership(sk); 884 885 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 886 tcp_write_timer_handler(sk); 887 __sock_put(sk); 888 } 889 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 890 tcp_delack_timer_handler(sk); 891 __sock_put(sk); 892 } 893 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 894 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 895 __sock_put(sk); 896 } 897 } 898 EXPORT_SYMBOL(tcp_release_cb); 899 900 void __init tcp_tasklet_init(void) 901 { 902 int i; 903 904 for_each_possible_cpu(i) { 905 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 906 907 INIT_LIST_HEAD(&tsq->head); 908 tasklet_init(&tsq->tasklet, 909 tcp_tasklet_func, 910 (unsigned long)tsq); 911 } 912 } 913 914 /* 915 * Write buffer destructor automatically called from kfree_skb. 916 * We can't xmit new skbs from this context, as we might already 917 * hold qdisc lock. 918 */ 919 void tcp_wfree(struct sk_buff *skb) 920 { 921 struct sock *sk = skb->sk; 922 struct tcp_sock *tp = tcp_sk(sk); 923 unsigned long flags, nval, oval; 924 925 /* Keep one reference on sk_wmem_alloc. 926 * Will be released by sk_free() from here or tcp_tasklet_func() 927 */ 928 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 929 930 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 931 * Wait until our queues (qdisc + devices) are drained. 932 * This gives : 933 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 934 * - chance for incoming ACK (processed by another cpu maybe) 935 * to migrate this flow (skb->ooo_okay will be eventually set) 936 */ 937 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 938 goto out; 939 940 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 941 struct tsq_tasklet *tsq; 942 bool empty; 943 944 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 945 goto out; 946 947 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 948 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 949 if (nval != oval) 950 continue; 951 952 /* queue this socket to tasklet queue */ 953 local_irq_save(flags); 954 tsq = this_cpu_ptr(&tsq_tasklet); 955 empty = list_empty(&tsq->head); 956 list_add(&tp->tsq_node, &tsq->head); 957 if (empty) 958 tasklet_schedule(&tsq->tasklet); 959 local_irq_restore(flags); 960 return; 961 } 962 out: 963 sk_free(sk); 964 } 965 966 /* Note: Called under soft irq. 967 * We can call TCP stack right away, unless socket is owned by user. 968 */ 969 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 970 { 971 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 972 struct sock *sk = (struct sock *)tp; 973 974 tcp_tsq_handler(sk); 975 sock_put(sk); 976 977 return HRTIMER_NORESTART; 978 } 979 980 /* BBR congestion control needs pacing. 981 * Same remark for SO_MAX_PACING_RATE. 982 * sch_fq packet scheduler is efficiently handling pacing, 983 * but is not always installed/used. 984 * Return true if TCP stack should pace packets itself. 985 */ 986 static bool tcp_needs_internal_pacing(const struct sock *sk) 987 { 988 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 989 } 990 991 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 992 { 993 u64 len_ns; 994 u32 rate; 995 996 if (!tcp_needs_internal_pacing(sk)) 997 return; 998 rate = sk->sk_pacing_rate; 999 if (!rate || rate == ~0U) 1000 return; 1001 1002 /* Should account for header sizes as sch_fq does, 1003 * but lets make things simple. 1004 */ 1005 len_ns = (u64)skb->len * NSEC_PER_SEC; 1006 do_div(len_ns, rate); 1007 hrtimer_start(&tcp_sk(sk)->pacing_timer, 1008 ktime_add_ns(ktime_get(), len_ns), 1009 HRTIMER_MODE_ABS_PINNED_SOFT); 1010 sock_hold(sk); 1011 } 1012 1013 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 1014 { 1015 skb->skb_mstamp = tp->tcp_mstamp; 1016 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1017 } 1018 1019 /* This routine actually transmits TCP packets queued in by 1020 * tcp_do_sendmsg(). This is used by both the initial 1021 * transmission and possible later retransmissions. 1022 * All SKB's seen here are completely headerless. It is our 1023 * job to build the TCP header, and pass the packet down to 1024 * IP so it can do the same plus pass the packet off to the 1025 * device. 1026 * 1027 * We are working here with either a clone of the original 1028 * SKB, or a fresh unique copy made by the retransmit engine. 1029 */ 1030 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1031 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1032 { 1033 const struct inet_connection_sock *icsk = inet_csk(sk); 1034 struct inet_sock *inet; 1035 struct tcp_sock *tp; 1036 struct tcp_skb_cb *tcb; 1037 struct tcp_out_options opts; 1038 unsigned int tcp_options_size, tcp_header_size; 1039 struct sk_buff *oskb = NULL; 1040 struct tcp_md5sig_key *md5; 1041 struct tcphdr *th; 1042 int err; 1043 1044 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1045 tp = tcp_sk(sk); 1046 1047 if (clone_it) { 1048 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1049 - tp->snd_una; 1050 oskb = skb; 1051 1052 tcp_skb_tsorted_save(oskb) { 1053 if (unlikely(skb_cloned(oskb))) 1054 skb = pskb_copy(oskb, gfp_mask); 1055 else 1056 skb = skb_clone(oskb, gfp_mask); 1057 } tcp_skb_tsorted_restore(oskb); 1058 1059 if (unlikely(!skb)) 1060 return -ENOBUFS; 1061 } 1062 skb->skb_mstamp = tp->tcp_mstamp; 1063 1064 inet = inet_sk(sk); 1065 tcb = TCP_SKB_CB(skb); 1066 memset(&opts, 0, sizeof(opts)); 1067 1068 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1069 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1070 else 1071 tcp_options_size = tcp_established_options(sk, skb, &opts, 1072 &md5); 1073 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1074 1075 /* if no packet is in qdisc/device queue, then allow XPS to select 1076 * another queue. We can be called from tcp_tsq_handler() 1077 * which holds one reference to sk. 1078 * 1079 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1080 * One way to get this would be to set skb->truesize = 2 on them. 1081 */ 1082 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1083 1084 /* If we had to use memory reserve to allocate this skb, 1085 * this might cause drops if packet is looped back : 1086 * Other socket might not have SOCK_MEMALLOC. 1087 * Packets not looped back do not care about pfmemalloc. 1088 */ 1089 skb->pfmemalloc = 0; 1090 1091 skb_push(skb, tcp_header_size); 1092 skb_reset_transport_header(skb); 1093 1094 skb_orphan(skb); 1095 skb->sk = sk; 1096 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1097 skb_set_hash_from_sk(skb, sk); 1098 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1099 1100 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1101 1102 /* Build TCP header and checksum it. */ 1103 th = (struct tcphdr *)skb->data; 1104 th->source = inet->inet_sport; 1105 th->dest = inet->inet_dport; 1106 th->seq = htonl(tcb->seq); 1107 th->ack_seq = htonl(rcv_nxt); 1108 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1109 tcb->tcp_flags); 1110 1111 th->check = 0; 1112 th->urg_ptr = 0; 1113 1114 /* The urg_mode check is necessary during a below snd_una win probe */ 1115 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1116 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1117 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1118 th->urg = 1; 1119 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1120 th->urg_ptr = htons(0xFFFF); 1121 th->urg = 1; 1122 } 1123 } 1124 1125 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1126 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1127 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1128 th->window = htons(tcp_select_window(sk)); 1129 tcp_ecn_send(sk, skb, th, tcp_header_size); 1130 } else { 1131 /* RFC1323: The window in SYN & SYN/ACK segments 1132 * is never scaled. 1133 */ 1134 th->window = htons(min(tp->rcv_wnd, 65535U)); 1135 } 1136 #ifdef CONFIG_TCP_MD5SIG 1137 /* Calculate the MD5 hash, as we have all we need now */ 1138 if (md5) { 1139 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1140 tp->af_specific->calc_md5_hash(opts.hash_location, 1141 md5, sk, skb); 1142 } 1143 #endif 1144 1145 icsk->icsk_af_ops->send_check(sk, skb); 1146 1147 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1148 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1149 1150 if (skb->len != tcp_header_size) { 1151 tcp_event_data_sent(tp, sk); 1152 tp->data_segs_out += tcp_skb_pcount(skb); 1153 tcp_internal_pacing(sk, skb); 1154 } 1155 1156 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1157 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1158 tcp_skb_pcount(skb)); 1159 1160 tp->segs_out += tcp_skb_pcount(skb); 1161 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1162 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1163 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1164 1165 /* Our usage of tstamp should remain private */ 1166 skb->tstamp = 0; 1167 1168 /* Cleanup our debris for IP stacks */ 1169 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1170 sizeof(struct inet6_skb_parm))); 1171 1172 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1173 1174 if (unlikely(err > 0)) { 1175 tcp_enter_cwr(sk); 1176 err = net_xmit_eval(err); 1177 } 1178 if (!err && oskb) { 1179 tcp_update_skb_after_send(tp, oskb); 1180 tcp_rate_skb_sent(sk, oskb); 1181 } 1182 return err; 1183 } 1184 1185 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1186 gfp_t gfp_mask) 1187 { 1188 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1189 tcp_sk(sk)->rcv_nxt); 1190 } 1191 1192 /* This routine just queues the buffer for sending. 1193 * 1194 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1195 * otherwise socket can stall. 1196 */ 1197 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1198 { 1199 struct tcp_sock *tp = tcp_sk(sk); 1200 1201 /* Advance write_seq and place onto the write_queue. */ 1202 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1203 __skb_header_release(skb); 1204 tcp_add_write_queue_tail(sk, skb); 1205 sk->sk_wmem_queued += skb->truesize; 1206 sk_mem_charge(sk, skb->truesize); 1207 } 1208 1209 /* Initialize TSO segments for a packet. */ 1210 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1211 { 1212 if (skb->len <= mss_now) { 1213 /* Avoid the costly divide in the normal 1214 * non-TSO case. 1215 */ 1216 tcp_skb_pcount_set(skb, 1); 1217 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1218 } else { 1219 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1220 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1221 } 1222 } 1223 1224 /* Pcount in the middle of the write queue got changed, we need to do various 1225 * tweaks to fix counters 1226 */ 1227 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1228 { 1229 struct tcp_sock *tp = tcp_sk(sk); 1230 1231 tp->packets_out -= decr; 1232 1233 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1234 tp->sacked_out -= decr; 1235 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1236 tp->retrans_out -= decr; 1237 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1238 tp->lost_out -= decr; 1239 1240 /* Reno case is special. Sigh... */ 1241 if (tcp_is_reno(tp) && decr > 0) 1242 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1243 1244 if (tp->lost_skb_hint && 1245 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1246 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1247 tp->lost_cnt_hint -= decr; 1248 1249 tcp_verify_left_out(tp); 1250 } 1251 1252 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1253 { 1254 return TCP_SKB_CB(skb)->txstamp_ack || 1255 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1256 } 1257 1258 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1259 { 1260 struct skb_shared_info *shinfo = skb_shinfo(skb); 1261 1262 if (unlikely(tcp_has_tx_tstamp(skb)) && 1263 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1264 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1265 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1266 1267 shinfo->tx_flags &= ~tsflags; 1268 shinfo2->tx_flags |= tsflags; 1269 swap(shinfo->tskey, shinfo2->tskey); 1270 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1271 TCP_SKB_CB(skb)->txstamp_ack = 0; 1272 } 1273 } 1274 1275 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1276 { 1277 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1278 TCP_SKB_CB(skb)->eor = 0; 1279 } 1280 1281 /* Insert buff after skb on the write or rtx queue of sk. */ 1282 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1283 struct sk_buff *buff, 1284 struct sock *sk, 1285 enum tcp_queue tcp_queue) 1286 { 1287 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1288 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1289 else 1290 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1291 } 1292 1293 /* Function to create two new TCP segments. Shrinks the given segment 1294 * to the specified size and appends a new segment with the rest of the 1295 * packet to the list. This won't be called frequently, I hope. 1296 * Remember, these are still headerless SKBs at this point. 1297 */ 1298 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1299 struct sk_buff *skb, u32 len, 1300 unsigned int mss_now, gfp_t gfp) 1301 { 1302 struct tcp_sock *tp = tcp_sk(sk); 1303 struct sk_buff *buff; 1304 int nsize, old_factor; 1305 int nlen; 1306 u8 flags; 1307 1308 if (WARN_ON(len > skb->len)) 1309 return -EINVAL; 1310 1311 nsize = skb_headlen(skb) - len; 1312 if (nsize < 0) 1313 nsize = 0; 1314 1315 if (skb_unclone(skb, gfp)) 1316 return -ENOMEM; 1317 1318 /* Get a new skb... force flag on. */ 1319 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1320 if (!buff) 1321 return -ENOMEM; /* We'll just try again later. */ 1322 1323 sk->sk_wmem_queued += buff->truesize; 1324 sk_mem_charge(sk, buff->truesize); 1325 nlen = skb->len - len - nsize; 1326 buff->truesize += nlen; 1327 skb->truesize -= nlen; 1328 1329 /* Correct the sequence numbers. */ 1330 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1331 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1332 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1333 1334 /* PSH and FIN should only be set in the second packet. */ 1335 flags = TCP_SKB_CB(skb)->tcp_flags; 1336 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1337 TCP_SKB_CB(buff)->tcp_flags = flags; 1338 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1339 tcp_skb_fragment_eor(skb, buff); 1340 1341 skb_split(skb, buff, len); 1342 1343 buff->ip_summed = CHECKSUM_PARTIAL; 1344 1345 buff->tstamp = skb->tstamp; 1346 tcp_fragment_tstamp(skb, buff); 1347 1348 old_factor = tcp_skb_pcount(skb); 1349 1350 /* Fix up tso_factor for both original and new SKB. */ 1351 tcp_set_skb_tso_segs(skb, mss_now); 1352 tcp_set_skb_tso_segs(buff, mss_now); 1353 1354 /* Update delivered info for the new segment */ 1355 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1356 1357 /* If this packet has been sent out already, we must 1358 * adjust the various packet counters. 1359 */ 1360 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1361 int diff = old_factor - tcp_skb_pcount(skb) - 1362 tcp_skb_pcount(buff); 1363 1364 if (diff) 1365 tcp_adjust_pcount(sk, skb, diff); 1366 } 1367 1368 /* Link BUFF into the send queue. */ 1369 __skb_header_release(buff); 1370 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1371 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1372 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1373 1374 return 0; 1375 } 1376 1377 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1378 * data is not copied, but immediately discarded. 1379 */ 1380 static int __pskb_trim_head(struct sk_buff *skb, int len) 1381 { 1382 struct skb_shared_info *shinfo; 1383 int i, k, eat; 1384 1385 eat = min_t(int, len, skb_headlen(skb)); 1386 if (eat) { 1387 __skb_pull(skb, eat); 1388 len -= eat; 1389 if (!len) 1390 return 0; 1391 } 1392 eat = len; 1393 k = 0; 1394 shinfo = skb_shinfo(skb); 1395 for (i = 0; i < shinfo->nr_frags; i++) { 1396 int size = skb_frag_size(&shinfo->frags[i]); 1397 1398 if (size <= eat) { 1399 skb_frag_unref(skb, i); 1400 eat -= size; 1401 } else { 1402 shinfo->frags[k] = shinfo->frags[i]; 1403 if (eat) { 1404 shinfo->frags[k].page_offset += eat; 1405 skb_frag_size_sub(&shinfo->frags[k], eat); 1406 eat = 0; 1407 } 1408 k++; 1409 } 1410 } 1411 shinfo->nr_frags = k; 1412 1413 skb->data_len -= len; 1414 skb->len = skb->data_len; 1415 return len; 1416 } 1417 1418 /* Remove acked data from a packet in the transmit queue. */ 1419 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1420 { 1421 u32 delta_truesize; 1422 1423 if (skb_unclone(skb, GFP_ATOMIC)) 1424 return -ENOMEM; 1425 1426 delta_truesize = __pskb_trim_head(skb, len); 1427 1428 TCP_SKB_CB(skb)->seq += len; 1429 skb->ip_summed = CHECKSUM_PARTIAL; 1430 1431 if (delta_truesize) { 1432 skb->truesize -= delta_truesize; 1433 sk->sk_wmem_queued -= delta_truesize; 1434 sk_mem_uncharge(sk, delta_truesize); 1435 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1436 } 1437 1438 /* Any change of skb->len requires recalculation of tso factor. */ 1439 if (tcp_skb_pcount(skb) > 1) 1440 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1441 1442 return 0; 1443 } 1444 1445 /* Calculate MSS not accounting any TCP options. */ 1446 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1447 { 1448 const struct tcp_sock *tp = tcp_sk(sk); 1449 const struct inet_connection_sock *icsk = inet_csk(sk); 1450 int mss_now; 1451 1452 /* Calculate base mss without TCP options: 1453 It is MMS_S - sizeof(tcphdr) of rfc1122 1454 */ 1455 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1456 1457 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1458 if (icsk->icsk_af_ops->net_frag_header_len) { 1459 const struct dst_entry *dst = __sk_dst_get(sk); 1460 1461 if (dst && dst_allfrag(dst)) 1462 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1463 } 1464 1465 /* Clamp it (mss_clamp does not include tcp options) */ 1466 if (mss_now > tp->rx_opt.mss_clamp) 1467 mss_now = tp->rx_opt.mss_clamp; 1468 1469 /* Now subtract optional transport overhead */ 1470 mss_now -= icsk->icsk_ext_hdr_len; 1471 1472 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1473 if (mss_now < 48) 1474 mss_now = 48; 1475 return mss_now; 1476 } 1477 1478 /* Calculate MSS. Not accounting for SACKs here. */ 1479 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1480 { 1481 /* Subtract TCP options size, not including SACKs */ 1482 return __tcp_mtu_to_mss(sk, pmtu) - 1483 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1484 } 1485 1486 /* Inverse of above */ 1487 int tcp_mss_to_mtu(struct sock *sk, int mss) 1488 { 1489 const struct tcp_sock *tp = tcp_sk(sk); 1490 const struct inet_connection_sock *icsk = inet_csk(sk); 1491 int mtu; 1492 1493 mtu = mss + 1494 tp->tcp_header_len + 1495 icsk->icsk_ext_hdr_len + 1496 icsk->icsk_af_ops->net_header_len; 1497 1498 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1499 if (icsk->icsk_af_ops->net_frag_header_len) { 1500 const struct dst_entry *dst = __sk_dst_get(sk); 1501 1502 if (dst && dst_allfrag(dst)) 1503 mtu += icsk->icsk_af_ops->net_frag_header_len; 1504 } 1505 return mtu; 1506 } 1507 EXPORT_SYMBOL(tcp_mss_to_mtu); 1508 1509 /* MTU probing init per socket */ 1510 void tcp_mtup_init(struct sock *sk) 1511 { 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 struct inet_connection_sock *icsk = inet_csk(sk); 1514 struct net *net = sock_net(sk); 1515 1516 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1517 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1518 icsk->icsk_af_ops->net_header_len; 1519 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1520 icsk->icsk_mtup.probe_size = 0; 1521 if (icsk->icsk_mtup.enabled) 1522 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1523 } 1524 EXPORT_SYMBOL(tcp_mtup_init); 1525 1526 /* This function synchronize snd mss to current pmtu/exthdr set. 1527 1528 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1529 for TCP options, but includes only bare TCP header. 1530 1531 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1532 It is minimum of user_mss and mss received with SYN. 1533 It also does not include TCP options. 1534 1535 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1536 1537 tp->mss_cache is current effective sending mss, including 1538 all tcp options except for SACKs. It is evaluated, 1539 taking into account current pmtu, but never exceeds 1540 tp->rx_opt.mss_clamp. 1541 1542 NOTE1. rfc1122 clearly states that advertised MSS 1543 DOES NOT include either tcp or ip options. 1544 1545 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1546 are READ ONLY outside this function. --ANK (980731) 1547 */ 1548 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1549 { 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 struct inet_connection_sock *icsk = inet_csk(sk); 1552 int mss_now; 1553 1554 if (icsk->icsk_mtup.search_high > pmtu) 1555 icsk->icsk_mtup.search_high = pmtu; 1556 1557 mss_now = tcp_mtu_to_mss(sk, pmtu); 1558 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1559 1560 /* And store cached results */ 1561 icsk->icsk_pmtu_cookie = pmtu; 1562 if (icsk->icsk_mtup.enabled) 1563 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1564 tp->mss_cache = mss_now; 1565 1566 return mss_now; 1567 } 1568 EXPORT_SYMBOL(tcp_sync_mss); 1569 1570 /* Compute the current effective MSS, taking SACKs and IP options, 1571 * and even PMTU discovery events into account. 1572 */ 1573 unsigned int tcp_current_mss(struct sock *sk) 1574 { 1575 const struct tcp_sock *tp = tcp_sk(sk); 1576 const struct dst_entry *dst = __sk_dst_get(sk); 1577 u32 mss_now; 1578 unsigned int header_len; 1579 struct tcp_out_options opts; 1580 struct tcp_md5sig_key *md5; 1581 1582 mss_now = tp->mss_cache; 1583 1584 if (dst) { 1585 u32 mtu = dst_mtu(dst); 1586 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1587 mss_now = tcp_sync_mss(sk, mtu); 1588 } 1589 1590 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1591 sizeof(struct tcphdr); 1592 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1593 * some common options. If this is an odd packet (because we have SACK 1594 * blocks etc) then our calculated header_len will be different, and 1595 * we have to adjust mss_now correspondingly */ 1596 if (header_len != tp->tcp_header_len) { 1597 int delta = (int) header_len - tp->tcp_header_len; 1598 mss_now -= delta; 1599 } 1600 1601 return mss_now; 1602 } 1603 1604 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1605 * As additional protections, we do not touch cwnd in retransmission phases, 1606 * and if application hit its sndbuf limit recently. 1607 */ 1608 static void tcp_cwnd_application_limited(struct sock *sk) 1609 { 1610 struct tcp_sock *tp = tcp_sk(sk); 1611 1612 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1613 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1614 /* Limited by application or receiver window. */ 1615 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1616 u32 win_used = max(tp->snd_cwnd_used, init_win); 1617 if (win_used < tp->snd_cwnd) { 1618 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1619 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1620 } 1621 tp->snd_cwnd_used = 0; 1622 } 1623 tp->snd_cwnd_stamp = tcp_jiffies32; 1624 } 1625 1626 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1627 { 1628 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1629 struct tcp_sock *tp = tcp_sk(sk); 1630 1631 /* Track the maximum number of outstanding packets in each 1632 * window, and remember whether we were cwnd-limited then. 1633 */ 1634 if (!before(tp->snd_una, tp->max_packets_seq) || 1635 tp->packets_out > tp->max_packets_out) { 1636 tp->max_packets_out = tp->packets_out; 1637 tp->max_packets_seq = tp->snd_nxt; 1638 tp->is_cwnd_limited = is_cwnd_limited; 1639 } 1640 1641 if (tcp_is_cwnd_limited(sk)) { 1642 /* Network is feed fully. */ 1643 tp->snd_cwnd_used = 0; 1644 tp->snd_cwnd_stamp = tcp_jiffies32; 1645 } else { 1646 /* Network starves. */ 1647 if (tp->packets_out > tp->snd_cwnd_used) 1648 tp->snd_cwnd_used = tp->packets_out; 1649 1650 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1651 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1652 !ca_ops->cong_control) 1653 tcp_cwnd_application_limited(sk); 1654 1655 /* The following conditions together indicate the starvation 1656 * is caused by insufficient sender buffer: 1657 * 1) just sent some data (see tcp_write_xmit) 1658 * 2) not cwnd limited (this else condition) 1659 * 3) no more data to send (tcp_write_queue_empty()) 1660 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1661 */ 1662 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1663 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1664 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1665 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1666 } 1667 } 1668 1669 /* Minshall's variant of the Nagle send check. */ 1670 static bool tcp_minshall_check(const struct tcp_sock *tp) 1671 { 1672 return after(tp->snd_sml, tp->snd_una) && 1673 !after(tp->snd_sml, tp->snd_nxt); 1674 } 1675 1676 /* Update snd_sml if this skb is under mss 1677 * Note that a TSO packet might end with a sub-mss segment 1678 * The test is really : 1679 * if ((skb->len % mss) != 0) 1680 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1681 * But we can avoid doing the divide again given we already have 1682 * skb_pcount = skb->len / mss_now 1683 */ 1684 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1685 const struct sk_buff *skb) 1686 { 1687 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1688 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1689 } 1690 1691 /* Return false, if packet can be sent now without violation Nagle's rules: 1692 * 1. It is full sized. (provided by caller in %partial bool) 1693 * 2. Or it contains FIN. (already checked by caller) 1694 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1695 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1696 * With Minshall's modification: all sent small packets are ACKed. 1697 */ 1698 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1699 int nonagle) 1700 { 1701 return partial && 1702 ((nonagle & TCP_NAGLE_CORK) || 1703 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1704 } 1705 1706 /* Return how many segs we'd like on a TSO packet, 1707 * to send one TSO packet per ms 1708 */ 1709 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1710 int min_tso_segs) 1711 { 1712 u32 bytes, segs; 1713 1714 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, 1715 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1716 1717 /* Goal is to send at least one packet per ms, 1718 * not one big TSO packet every 100 ms. 1719 * This preserves ACK clocking and is consistent 1720 * with tcp_tso_should_defer() heuristic. 1721 */ 1722 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1723 1724 return segs; 1725 } 1726 1727 /* Return the number of segments we want in the skb we are transmitting. 1728 * See if congestion control module wants to decide; otherwise, autosize. 1729 */ 1730 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1731 { 1732 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1733 u32 min_tso, tso_segs; 1734 1735 min_tso = ca_ops->min_tso_segs ? 1736 ca_ops->min_tso_segs(sk) : 1737 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1738 1739 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1740 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1741 } 1742 1743 /* Returns the portion of skb which can be sent right away */ 1744 static unsigned int tcp_mss_split_point(const struct sock *sk, 1745 const struct sk_buff *skb, 1746 unsigned int mss_now, 1747 unsigned int max_segs, 1748 int nonagle) 1749 { 1750 const struct tcp_sock *tp = tcp_sk(sk); 1751 u32 partial, needed, window, max_len; 1752 1753 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1754 max_len = mss_now * max_segs; 1755 1756 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1757 return max_len; 1758 1759 needed = min(skb->len, window); 1760 1761 if (max_len <= needed) 1762 return max_len; 1763 1764 partial = needed % mss_now; 1765 /* If last segment is not a full MSS, check if Nagle rules allow us 1766 * to include this last segment in this skb. 1767 * Otherwise, we'll split the skb at last MSS boundary 1768 */ 1769 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1770 return needed - partial; 1771 1772 return needed; 1773 } 1774 1775 /* Can at least one segment of SKB be sent right now, according to the 1776 * congestion window rules? If so, return how many segments are allowed. 1777 */ 1778 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1779 const struct sk_buff *skb) 1780 { 1781 u32 in_flight, cwnd, halfcwnd; 1782 1783 /* Don't be strict about the congestion window for the final FIN. */ 1784 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1785 tcp_skb_pcount(skb) == 1) 1786 return 1; 1787 1788 in_flight = tcp_packets_in_flight(tp); 1789 cwnd = tp->snd_cwnd; 1790 if (in_flight >= cwnd) 1791 return 0; 1792 1793 /* For better scheduling, ensure we have at least 1794 * 2 GSO packets in flight. 1795 */ 1796 halfcwnd = max(cwnd >> 1, 1U); 1797 return min(halfcwnd, cwnd - in_flight); 1798 } 1799 1800 /* Initialize TSO state of a skb. 1801 * This must be invoked the first time we consider transmitting 1802 * SKB onto the wire. 1803 */ 1804 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1805 { 1806 int tso_segs = tcp_skb_pcount(skb); 1807 1808 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1809 tcp_set_skb_tso_segs(skb, mss_now); 1810 tso_segs = tcp_skb_pcount(skb); 1811 } 1812 return tso_segs; 1813 } 1814 1815 1816 /* Return true if the Nagle test allows this packet to be 1817 * sent now. 1818 */ 1819 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1820 unsigned int cur_mss, int nonagle) 1821 { 1822 /* Nagle rule does not apply to frames, which sit in the middle of the 1823 * write_queue (they have no chances to get new data). 1824 * 1825 * This is implemented in the callers, where they modify the 'nonagle' 1826 * argument based upon the location of SKB in the send queue. 1827 */ 1828 if (nonagle & TCP_NAGLE_PUSH) 1829 return true; 1830 1831 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1832 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1833 return true; 1834 1835 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1836 return true; 1837 1838 return false; 1839 } 1840 1841 /* Does at least the first segment of SKB fit into the send window? */ 1842 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1843 const struct sk_buff *skb, 1844 unsigned int cur_mss) 1845 { 1846 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1847 1848 if (skb->len > cur_mss) 1849 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1850 1851 return !after(end_seq, tcp_wnd_end(tp)); 1852 } 1853 1854 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1855 * which is put after SKB on the list. It is very much like 1856 * tcp_fragment() except that it may make several kinds of assumptions 1857 * in order to speed up the splitting operation. In particular, we 1858 * know that all the data is in scatter-gather pages, and that the 1859 * packet has never been sent out before (and thus is not cloned). 1860 */ 1861 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1862 struct sk_buff *skb, unsigned int len, 1863 unsigned int mss_now, gfp_t gfp) 1864 { 1865 struct sk_buff *buff; 1866 int nlen = skb->len - len; 1867 u8 flags; 1868 1869 /* All of a TSO frame must be composed of paged data. */ 1870 if (skb->len != skb->data_len) 1871 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1872 1873 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1874 if (unlikely(!buff)) 1875 return -ENOMEM; 1876 1877 sk->sk_wmem_queued += buff->truesize; 1878 sk_mem_charge(sk, buff->truesize); 1879 buff->truesize += nlen; 1880 skb->truesize -= nlen; 1881 1882 /* Correct the sequence numbers. */ 1883 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1884 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1885 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1886 1887 /* PSH and FIN should only be set in the second packet. */ 1888 flags = TCP_SKB_CB(skb)->tcp_flags; 1889 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1890 TCP_SKB_CB(buff)->tcp_flags = flags; 1891 1892 /* This packet was never sent out yet, so no SACK bits. */ 1893 TCP_SKB_CB(buff)->sacked = 0; 1894 1895 tcp_skb_fragment_eor(skb, buff); 1896 1897 buff->ip_summed = CHECKSUM_PARTIAL; 1898 skb_split(skb, buff, len); 1899 tcp_fragment_tstamp(skb, buff); 1900 1901 /* Fix up tso_factor for both original and new SKB. */ 1902 tcp_set_skb_tso_segs(skb, mss_now); 1903 tcp_set_skb_tso_segs(buff, mss_now); 1904 1905 /* Link BUFF into the send queue. */ 1906 __skb_header_release(buff); 1907 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1908 1909 return 0; 1910 } 1911 1912 /* Try to defer sending, if possible, in order to minimize the amount 1913 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1914 * 1915 * This algorithm is from John Heffner. 1916 */ 1917 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1918 bool *is_cwnd_limited, u32 max_segs) 1919 { 1920 const struct inet_connection_sock *icsk = inet_csk(sk); 1921 u32 age, send_win, cong_win, limit, in_flight; 1922 struct tcp_sock *tp = tcp_sk(sk); 1923 struct sk_buff *head; 1924 int win_divisor; 1925 1926 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1927 goto send_now; 1928 1929 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1930 goto send_now; 1931 1932 /* Avoid bursty behavior by allowing defer 1933 * only if the last write was recent. 1934 */ 1935 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1936 goto send_now; 1937 1938 in_flight = tcp_packets_in_flight(tp); 1939 1940 BUG_ON(tcp_skb_pcount(skb) <= 1); 1941 BUG_ON(tp->snd_cwnd <= in_flight); 1942 1943 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1944 1945 /* From in_flight test above, we know that cwnd > in_flight. */ 1946 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1947 1948 limit = min(send_win, cong_win); 1949 1950 /* If a full-sized TSO skb can be sent, do it. */ 1951 if (limit >= max_segs * tp->mss_cache) 1952 goto send_now; 1953 1954 /* Middle in queue won't get any more data, full sendable already? */ 1955 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1956 goto send_now; 1957 1958 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1959 if (win_divisor) { 1960 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1961 1962 /* If at least some fraction of a window is available, 1963 * just use it. 1964 */ 1965 chunk /= win_divisor; 1966 if (limit >= chunk) 1967 goto send_now; 1968 } else { 1969 /* Different approach, try not to defer past a single 1970 * ACK. Receiver should ACK every other full sized 1971 * frame, so if we have space for more than 3 frames 1972 * then send now. 1973 */ 1974 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1975 goto send_now; 1976 } 1977 1978 /* TODO : use tsorted_sent_queue ? */ 1979 head = tcp_rtx_queue_head(sk); 1980 if (!head) 1981 goto send_now; 1982 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1983 /* If next ACK is likely to come too late (half srtt), do not defer */ 1984 if (age < (tp->srtt_us >> 4)) 1985 goto send_now; 1986 1987 /* Ok, it looks like it is advisable to defer. */ 1988 1989 if (cong_win < send_win && cong_win <= skb->len) 1990 *is_cwnd_limited = true; 1991 1992 return true; 1993 1994 send_now: 1995 return false; 1996 } 1997 1998 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1999 { 2000 struct inet_connection_sock *icsk = inet_csk(sk); 2001 struct tcp_sock *tp = tcp_sk(sk); 2002 struct net *net = sock_net(sk); 2003 u32 interval; 2004 s32 delta; 2005 2006 interval = net->ipv4.sysctl_tcp_probe_interval; 2007 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2008 if (unlikely(delta >= interval * HZ)) { 2009 int mss = tcp_current_mss(sk); 2010 2011 /* Update current search range */ 2012 icsk->icsk_mtup.probe_size = 0; 2013 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2014 sizeof(struct tcphdr) + 2015 icsk->icsk_af_ops->net_header_len; 2016 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2017 2018 /* Update probe time stamp */ 2019 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2020 } 2021 } 2022 2023 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2024 { 2025 struct sk_buff *skb, *next; 2026 2027 skb = tcp_send_head(sk); 2028 tcp_for_write_queue_from_safe(skb, next, sk) { 2029 if (len <= skb->len) 2030 break; 2031 2032 if (unlikely(TCP_SKB_CB(skb)->eor)) 2033 return false; 2034 2035 len -= skb->len; 2036 } 2037 2038 return true; 2039 } 2040 2041 /* Create a new MTU probe if we are ready. 2042 * MTU probe is regularly attempting to increase the path MTU by 2043 * deliberately sending larger packets. This discovers routing 2044 * changes resulting in larger path MTUs. 2045 * 2046 * Returns 0 if we should wait to probe (no cwnd available), 2047 * 1 if a probe was sent, 2048 * -1 otherwise 2049 */ 2050 static int tcp_mtu_probe(struct sock *sk) 2051 { 2052 struct inet_connection_sock *icsk = inet_csk(sk); 2053 struct tcp_sock *tp = tcp_sk(sk); 2054 struct sk_buff *skb, *nskb, *next; 2055 struct net *net = sock_net(sk); 2056 int probe_size; 2057 int size_needed; 2058 int copy, len; 2059 int mss_now; 2060 int interval; 2061 2062 /* Not currently probing/verifying, 2063 * not in recovery, 2064 * have enough cwnd, and 2065 * not SACKing (the variable headers throw things off) 2066 */ 2067 if (likely(!icsk->icsk_mtup.enabled || 2068 icsk->icsk_mtup.probe_size || 2069 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2070 tp->snd_cwnd < 11 || 2071 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2072 return -1; 2073 2074 /* Use binary search for probe_size between tcp_mss_base, 2075 * and current mss_clamp. if (search_high - search_low) 2076 * smaller than a threshold, backoff from probing. 2077 */ 2078 mss_now = tcp_current_mss(sk); 2079 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2080 icsk->icsk_mtup.search_low) >> 1); 2081 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2082 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2083 /* When misfortune happens, we are reprobing actively, 2084 * and then reprobe timer has expired. We stick with current 2085 * probing process by not resetting search range to its orignal. 2086 */ 2087 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2088 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2089 /* Check whether enough time has elaplased for 2090 * another round of probing. 2091 */ 2092 tcp_mtu_check_reprobe(sk); 2093 return -1; 2094 } 2095 2096 /* Have enough data in the send queue to probe? */ 2097 if (tp->write_seq - tp->snd_nxt < size_needed) 2098 return -1; 2099 2100 if (tp->snd_wnd < size_needed) 2101 return -1; 2102 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2103 return 0; 2104 2105 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2106 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2107 if (!tcp_packets_in_flight(tp)) 2108 return -1; 2109 else 2110 return 0; 2111 } 2112 2113 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2114 return -1; 2115 2116 /* We're allowed to probe. Build it now. */ 2117 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2118 if (!nskb) 2119 return -1; 2120 sk->sk_wmem_queued += nskb->truesize; 2121 sk_mem_charge(sk, nskb->truesize); 2122 2123 skb = tcp_send_head(sk); 2124 2125 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2126 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2127 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2128 TCP_SKB_CB(nskb)->sacked = 0; 2129 nskb->csum = 0; 2130 nskb->ip_summed = CHECKSUM_PARTIAL; 2131 2132 tcp_insert_write_queue_before(nskb, skb, sk); 2133 tcp_highest_sack_replace(sk, skb, nskb); 2134 2135 len = 0; 2136 tcp_for_write_queue_from_safe(skb, next, sk) { 2137 copy = min_t(int, skb->len, probe_size - len); 2138 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2139 2140 if (skb->len <= copy) { 2141 /* We've eaten all the data from this skb. 2142 * Throw it away. */ 2143 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2144 /* If this is the last SKB we copy and eor is set 2145 * we need to propagate it to the new skb. 2146 */ 2147 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2148 tcp_unlink_write_queue(skb, sk); 2149 sk_wmem_free_skb(sk, skb); 2150 } else { 2151 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2152 ~(TCPHDR_FIN|TCPHDR_PSH); 2153 if (!skb_shinfo(skb)->nr_frags) { 2154 skb_pull(skb, copy); 2155 } else { 2156 __pskb_trim_head(skb, copy); 2157 tcp_set_skb_tso_segs(skb, mss_now); 2158 } 2159 TCP_SKB_CB(skb)->seq += copy; 2160 } 2161 2162 len += copy; 2163 2164 if (len >= probe_size) 2165 break; 2166 } 2167 tcp_init_tso_segs(nskb, nskb->len); 2168 2169 /* We're ready to send. If this fails, the probe will 2170 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2171 */ 2172 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2173 /* Decrement cwnd here because we are sending 2174 * effectively two packets. */ 2175 tp->snd_cwnd--; 2176 tcp_event_new_data_sent(sk, nskb); 2177 2178 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2179 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2180 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2181 2182 return 1; 2183 } 2184 2185 return -1; 2186 } 2187 2188 static bool tcp_pacing_check(const struct sock *sk) 2189 { 2190 return tcp_needs_internal_pacing(sk) && 2191 hrtimer_is_queued(&tcp_sk(sk)->pacing_timer); 2192 } 2193 2194 /* TCP Small Queues : 2195 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2196 * (These limits are doubled for retransmits) 2197 * This allows for : 2198 * - better RTT estimation and ACK scheduling 2199 * - faster recovery 2200 * - high rates 2201 * Alas, some drivers / subsystems require a fair amount 2202 * of queued bytes to ensure line rate. 2203 * One example is wifi aggregation (802.11 AMPDU) 2204 */ 2205 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2206 unsigned int factor) 2207 { 2208 unsigned int limit; 2209 2210 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); 2211 limit = min_t(u32, limit, 2212 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2213 limit <<= factor; 2214 2215 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2216 /* Always send skb if rtx queue is empty. 2217 * No need to wait for TX completion to call us back, 2218 * after softirq/tasklet schedule. 2219 * This helps when TX completions are delayed too much. 2220 */ 2221 if (tcp_rtx_queue_empty(sk)) 2222 return false; 2223 2224 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2225 /* It is possible TX completion already happened 2226 * before we set TSQ_THROTTLED, so we must 2227 * test again the condition. 2228 */ 2229 smp_mb__after_atomic(); 2230 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2231 return true; 2232 } 2233 return false; 2234 } 2235 2236 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2237 { 2238 const u32 now = tcp_jiffies32; 2239 enum tcp_chrono old = tp->chrono_type; 2240 2241 if (old > TCP_CHRONO_UNSPEC) 2242 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2243 tp->chrono_start = now; 2244 tp->chrono_type = new; 2245 } 2246 2247 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2248 { 2249 struct tcp_sock *tp = tcp_sk(sk); 2250 2251 /* If there are multiple conditions worthy of tracking in a 2252 * chronograph then the highest priority enum takes precedence 2253 * over the other conditions. So that if something "more interesting" 2254 * starts happening, stop the previous chrono and start a new one. 2255 */ 2256 if (type > tp->chrono_type) 2257 tcp_chrono_set(tp, type); 2258 } 2259 2260 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2261 { 2262 struct tcp_sock *tp = tcp_sk(sk); 2263 2264 2265 /* There are multiple conditions worthy of tracking in a 2266 * chronograph, so that the highest priority enum takes 2267 * precedence over the other conditions (see tcp_chrono_start). 2268 * If a condition stops, we only stop chrono tracking if 2269 * it's the "most interesting" or current chrono we are 2270 * tracking and starts busy chrono if we have pending data. 2271 */ 2272 if (tcp_rtx_and_write_queues_empty(sk)) 2273 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2274 else if (type == tp->chrono_type) 2275 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2276 } 2277 2278 /* This routine writes packets to the network. It advances the 2279 * send_head. This happens as incoming acks open up the remote 2280 * window for us. 2281 * 2282 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2283 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2284 * account rare use of URG, this is not a big flaw. 2285 * 2286 * Send at most one packet when push_one > 0. Temporarily ignore 2287 * cwnd limit to force at most one packet out when push_one == 2. 2288 2289 * Returns true, if no segments are in flight and we have queued segments, 2290 * but cannot send anything now because of SWS or another problem. 2291 */ 2292 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2293 int push_one, gfp_t gfp) 2294 { 2295 struct tcp_sock *tp = tcp_sk(sk); 2296 struct sk_buff *skb; 2297 unsigned int tso_segs, sent_pkts; 2298 int cwnd_quota; 2299 int result; 2300 bool is_cwnd_limited = false, is_rwnd_limited = false; 2301 u32 max_segs; 2302 2303 sent_pkts = 0; 2304 2305 tcp_mstamp_refresh(tp); 2306 if (!push_one) { 2307 /* Do MTU probing. */ 2308 result = tcp_mtu_probe(sk); 2309 if (!result) { 2310 return false; 2311 } else if (result > 0) { 2312 sent_pkts = 1; 2313 } 2314 } 2315 2316 max_segs = tcp_tso_segs(sk, mss_now); 2317 while ((skb = tcp_send_head(sk))) { 2318 unsigned int limit; 2319 2320 if (tcp_pacing_check(sk)) 2321 break; 2322 2323 tso_segs = tcp_init_tso_segs(skb, mss_now); 2324 BUG_ON(!tso_segs); 2325 2326 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2327 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2328 tcp_update_skb_after_send(tp, skb); 2329 goto repair; /* Skip network transmission */ 2330 } 2331 2332 cwnd_quota = tcp_cwnd_test(tp, skb); 2333 if (!cwnd_quota) { 2334 if (push_one == 2) 2335 /* Force out a loss probe pkt. */ 2336 cwnd_quota = 1; 2337 else 2338 break; 2339 } 2340 2341 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2342 is_rwnd_limited = true; 2343 break; 2344 } 2345 2346 if (tso_segs == 1) { 2347 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2348 (tcp_skb_is_last(sk, skb) ? 2349 nonagle : TCP_NAGLE_PUSH)))) 2350 break; 2351 } else { 2352 if (!push_one && 2353 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2354 max_segs)) 2355 break; 2356 } 2357 2358 limit = mss_now; 2359 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2360 limit = tcp_mss_split_point(sk, skb, mss_now, 2361 min_t(unsigned int, 2362 cwnd_quota, 2363 max_segs), 2364 nonagle); 2365 2366 if (skb->len > limit && 2367 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2368 skb, limit, mss_now, gfp))) 2369 break; 2370 2371 if (tcp_small_queue_check(sk, skb, 0)) 2372 break; 2373 2374 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2375 break; 2376 2377 repair: 2378 /* Advance the send_head. This one is sent out. 2379 * This call will increment packets_out. 2380 */ 2381 tcp_event_new_data_sent(sk, skb); 2382 2383 tcp_minshall_update(tp, mss_now, skb); 2384 sent_pkts += tcp_skb_pcount(skb); 2385 2386 if (push_one) 2387 break; 2388 } 2389 2390 if (is_rwnd_limited) 2391 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2392 else 2393 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2394 2395 if (likely(sent_pkts)) { 2396 if (tcp_in_cwnd_reduction(sk)) 2397 tp->prr_out += sent_pkts; 2398 2399 /* Send one loss probe per tail loss episode. */ 2400 if (push_one != 2) 2401 tcp_schedule_loss_probe(sk, false); 2402 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2403 tcp_cwnd_validate(sk, is_cwnd_limited); 2404 return false; 2405 } 2406 return !tp->packets_out && !tcp_write_queue_empty(sk); 2407 } 2408 2409 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2410 { 2411 struct inet_connection_sock *icsk = inet_csk(sk); 2412 struct tcp_sock *tp = tcp_sk(sk); 2413 u32 timeout, rto_delta_us; 2414 int early_retrans; 2415 2416 /* Don't do any loss probe on a Fast Open connection before 3WHS 2417 * finishes. 2418 */ 2419 if (tp->fastopen_rsk) 2420 return false; 2421 2422 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2423 /* Schedule a loss probe in 2*RTT for SACK capable connections 2424 * not in loss recovery, that are either limited by cwnd or application. 2425 */ 2426 if ((early_retrans != 3 && early_retrans != 4) || 2427 !tp->packets_out || !tcp_is_sack(tp) || 2428 (icsk->icsk_ca_state != TCP_CA_Open && 2429 icsk->icsk_ca_state != TCP_CA_CWR)) 2430 return false; 2431 2432 /* Probe timeout is 2*rtt. Add minimum RTO to account 2433 * for delayed ack when there's one outstanding packet. If no RTT 2434 * sample is available then probe after TCP_TIMEOUT_INIT. 2435 */ 2436 if (tp->srtt_us) { 2437 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2438 if (tp->packets_out == 1) 2439 timeout += TCP_RTO_MIN; 2440 else 2441 timeout += TCP_TIMEOUT_MIN; 2442 } else { 2443 timeout = TCP_TIMEOUT_INIT; 2444 } 2445 2446 /* If the RTO formula yields an earlier time, then use that time. */ 2447 rto_delta_us = advancing_rto ? 2448 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2449 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2450 if (rto_delta_us > 0) 2451 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2452 2453 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2454 TCP_RTO_MAX); 2455 return true; 2456 } 2457 2458 /* Thanks to skb fast clones, we can detect if a prior transmit of 2459 * a packet is still in a qdisc or driver queue. 2460 * In this case, there is very little point doing a retransmit ! 2461 */ 2462 static bool skb_still_in_host_queue(const struct sock *sk, 2463 const struct sk_buff *skb) 2464 { 2465 if (unlikely(skb_fclone_busy(sk, skb))) { 2466 NET_INC_STATS(sock_net(sk), 2467 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2468 return true; 2469 } 2470 return false; 2471 } 2472 2473 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2474 * retransmit the last segment. 2475 */ 2476 void tcp_send_loss_probe(struct sock *sk) 2477 { 2478 struct tcp_sock *tp = tcp_sk(sk); 2479 struct sk_buff *skb; 2480 int pcount; 2481 int mss = tcp_current_mss(sk); 2482 2483 skb = tcp_send_head(sk); 2484 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2485 pcount = tp->packets_out; 2486 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2487 if (tp->packets_out > pcount) 2488 goto probe_sent; 2489 goto rearm_timer; 2490 } 2491 skb = skb_rb_last(&sk->tcp_rtx_queue); 2492 2493 /* At most one outstanding TLP retransmission. */ 2494 if (tp->tlp_high_seq) 2495 goto rearm_timer; 2496 2497 /* Retransmit last segment. */ 2498 if (WARN_ON(!skb)) 2499 goto rearm_timer; 2500 2501 if (skb_still_in_host_queue(sk, skb)) 2502 goto rearm_timer; 2503 2504 pcount = tcp_skb_pcount(skb); 2505 if (WARN_ON(!pcount)) 2506 goto rearm_timer; 2507 2508 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2509 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2510 (pcount - 1) * mss, mss, 2511 GFP_ATOMIC))) 2512 goto rearm_timer; 2513 skb = skb_rb_next(skb); 2514 } 2515 2516 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2517 goto rearm_timer; 2518 2519 if (__tcp_retransmit_skb(sk, skb, 1)) 2520 goto rearm_timer; 2521 2522 /* Record snd_nxt for loss detection. */ 2523 tp->tlp_high_seq = tp->snd_nxt; 2524 2525 probe_sent: 2526 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2527 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2528 inet_csk(sk)->icsk_pending = 0; 2529 rearm_timer: 2530 tcp_rearm_rto(sk); 2531 } 2532 2533 /* Push out any pending frames which were held back due to 2534 * TCP_CORK or attempt at coalescing tiny packets. 2535 * The socket must be locked by the caller. 2536 */ 2537 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2538 int nonagle) 2539 { 2540 /* If we are closed, the bytes will have to remain here. 2541 * In time closedown will finish, we empty the write queue and 2542 * all will be happy. 2543 */ 2544 if (unlikely(sk->sk_state == TCP_CLOSE)) 2545 return; 2546 2547 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2548 sk_gfp_mask(sk, GFP_ATOMIC))) 2549 tcp_check_probe_timer(sk); 2550 } 2551 2552 /* Send _single_ skb sitting at the send head. This function requires 2553 * true push pending frames to setup probe timer etc. 2554 */ 2555 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2556 { 2557 struct sk_buff *skb = tcp_send_head(sk); 2558 2559 BUG_ON(!skb || skb->len < mss_now); 2560 2561 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2562 } 2563 2564 /* This function returns the amount that we can raise the 2565 * usable window based on the following constraints 2566 * 2567 * 1. The window can never be shrunk once it is offered (RFC 793) 2568 * 2. We limit memory per socket 2569 * 2570 * RFC 1122: 2571 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2572 * RECV.NEXT + RCV.WIN fixed until: 2573 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2574 * 2575 * i.e. don't raise the right edge of the window until you can raise 2576 * it at least MSS bytes. 2577 * 2578 * Unfortunately, the recommended algorithm breaks header prediction, 2579 * since header prediction assumes th->window stays fixed. 2580 * 2581 * Strictly speaking, keeping th->window fixed violates the receiver 2582 * side SWS prevention criteria. The problem is that under this rule 2583 * a stream of single byte packets will cause the right side of the 2584 * window to always advance by a single byte. 2585 * 2586 * Of course, if the sender implements sender side SWS prevention 2587 * then this will not be a problem. 2588 * 2589 * BSD seems to make the following compromise: 2590 * 2591 * If the free space is less than the 1/4 of the maximum 2592 * space available and the free space is less than 1/2 mss, 2593 * then set the window to 0. 2594 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2595 * Otherwise, just prevent the window from shrinking 2596 * and from being larger than the largest representable value. 2597 * 2598 * This prevents incremental opening of the window in the regime 2599 * where TCP is limited by the speed of the reader side taking 2600 * data out of the TCP receive queue. It does nothing about 2601 * those cases where the window is constrained on the sender side 2602 * because the pipeline is full. 2603 * 2604 * BSD also seems to "accidentally" limit itself to windows that are a 2605 * multiple of MSS, at least until the free space gets quite small. 2606 * This would appear to be a side effect of the mbuf implementation. 2607 * Combining these two algorithms results in the observed behavior 2608 * of having a fixed window size at almost all times. 2609 * 2610 * Below we obtain similar behavior by forcing the offered window to 2611 * a multiple of the mss when it is feasible to do so. 2612 * 2613 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2614 * Regular options like TIMESTAMP are taken into account. 2615 */ 2616 u32 __tcp_select_window(struct sock *sk) 2617 { 2618 struct inet_connection_sock *icsk = inet_csk(sk); 2619 struct tcp_sock *tp = tcp_sk(sk); 2620 /* MSS for the peer's data. Previous versions used mss_clamp 2621 * here. I don't know if the value based on our guesses 2622 * of peer's MSS is better for the performance. It's more correct 2623 * but may be worse for the performance because of rcv_mss 2624 * fluctuations. --SAW 1998/11/1 2625 */ 2626 int mss = icsk->icsk_ack.rcv_mss; 2627 int free_space = tcp_space(sk); 2628 int allowed_space = tcp_full_space(sk); 2629 int full_space = min_t(int, tp->window_clamp, allowed_space); 2630 int window; 2631 2632 if (unlikely(mss > full_space)) { 2633 mss = full_space; 2634 if (mss <= 0) 2635 return 0; 2636 } 2637 if (free_space < (full_space >> 1)) { 2638 icsk->icsk_ack.quick = 0; 2639 2640 if (tcp_under_memory_pressure(sk)) 2641 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2642 4U * tp->advmss); 2643 2644 /* free_space might become our new window, make sure we don't 2645 * increase it due to wscale. 2646 */ 2647 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2648 2649 /* if free space is less than mss estimate, or is below 1/16th 2650 * of the maximum allowed, try to move to zero-window, else 2651 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2652 * new incoming data is dropped due to memory limits. 2653 * With large window, mss test triggers way too late in order 2654 * to announce zero window in time before rmem limit kicks in. 2655 */ 2656 if (free_space < (allowed_space >> 4) || free_space < mss) 2657 return 0; 2658 } 2659 2660 if (free_space > tp->rcv_ssthresh) 2661 free_space = tp->rcv_ssthresh; 2662 2663 /* Don't do rounding if we are using window scaling, since the 2664 * scaled window will not line up with the MSS boundary anyway. 2665 */ 2666 if (tp->rx_opt.rcv_wscale) { 2667 window = free_space; 2668 2669 /* Advertise enough space so that it won't get scaled away. 2670 * Import case: prevent zero window announcement if 2671 * 1<<rcv_wscale > mss. 2672 */ 2673 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2674 } else { 2675 window = tp->rcv_wnd; 2676 /* Get the largest window that is a nice multiple of mss. 2677 * Window clamp already applied above. 2678 * If our current window offering is within 1 mss of the 2679 * free space we just keep it. This prevents the divide 2680 * and multiply from happening most of the time. 2681 * We also don't do any window rounding when the free space 2682 * is too small. 2683 */ 2684 if (window <= free_space - mss || window > free_space) 2685 window = rounddown(free_space, mss); 2686 else if (mss == full_space && 2687 free_space > window + (full_space >> 1)) 2688 window = free_space; 2689 } 2690 2691 return window; 2692 } 2693 2694 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2695 const struct sk_buff *next_skb) 2696 { 2697 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2698 const struct skb_shared_info *next_shinfo = 2699 skb_shinfo(next_skb); 2700 struct skb_shared_info *shinfo = skb_shinfo(skb); 2701 2702 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2703 shinfo->tskey = next_shinfo->tskey; 2704 TCP_SKB_CB(skb)->txstamp_ack |= 2705 TCP_SKB_CB(next_skb)->txstamp_ack; 2706 } 2707 } 2708 2709 /* Collapses two adjacent SKB's during retransmission. */ 2710 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2711 { 2712 struct tcp_sock *tp = tcp_sk(sk); 2713 struct sk_buff *next_skb = skb_rb_next(skb); 2714 int skb_size, next_skb_size; 2715 2716 skb_size = skb->len; 2717 next_skb_size = next_skb->len; 2718 2719 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2720 2721 if (next_skb_size) { 2722 if (next_skb_size <= skb_availroom(skb)) 2723 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2724 next_skb_size); 2725 else if (!skb_shift(skb, next_skb, next_skb_size)) 2726 return false; 2727 } 2728 tcp_highest_sack_replace(sk, next_skb, skb); 2729 2730 /* Update sequence range on original skb. */ 2731 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2732 2733 /* Merge over control information. This moves PSH/FIN etc. over */ 2734 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2735 2736 /* All done, get rid of second SKB and account for it so 2737 * packet counting does not break. 2738 */ 2739 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2740 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2741 2742 /* changed transmit queue under us so clear hints */ 2743 tcp_clear_retrans_hints_partial(tp); 2744 if (next_skb == tp->retransmit_skb_hint) 2745 tp->retransmit_skb_hint = skb; 2746 2747 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2748 2749 tcp_skb_collapse_tstamp(skb, next_skb); 2750 2751 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2752 return true; 2753 } 2754 2755 /* Check if coalescing SKBs is legal. */ 2756 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2757 { 2758 if (tcp_skb_pcount(skb) > 1) 2759 return false; 2760 if (skb_cloned(skb)) 2761 return false; 2762 /* Some heuristics for collapsing over SACK'd could be invented */ 2763 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2764 return false; 2765 2766 return true; 2767 } 2768 2769 /* Collapse packets in the retransmit queue to make to create 2770 * less packets on the wire. This is only done on retransmission. 2771 */ 2772 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2773 int space) 2774 { 2775 struct tcp_sock *tp = tcp_sk(sk); 2776 struct sk_buff *skb = to, *tmp; 2777 bool first = true; 2778 2779 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2780 return; 2781 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2782 return; 2783 2784 skb_rbtree_walk_from_safe(skb, tmp) { 2785 if (!tcp_can_collapse(sk, skb)) 2786 break; 2787 2788 if (!tcp_skb_can_collapse_to(to)) 2789 break; 2790 2791 space -= skb->len; 2792 2793 if (first) { 2794 first = false; 2795 continue; 2796 } 2797 2798 if (space < 0) 2799 break; 2800 2801 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2802 break; 2803 2804 if (!tcp_collapse_retrans(sk, to)) 2805 break; 2806 } 2807 } 2808 2809 /* This retransmits one SKB. Policy decisions and retransmit queue 2810 * state updates are done by the caller. Returns non-zero if an 2811 * error occurred which prevented the send. 2812 */ 2813 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2814 { 2815 struct inet_connection_sock *icsk = inet_csk(sk); 2816 struct tcp_sock *tp = tcp_sk(sk); 2817 unsigned int cur_mss; 2818 int diff, len, err; 2819 2820 2821 /* Inconclusive MTU probe */ 2822 if (icsk->icsk_mtup.probe_size) 2823 icsk->icsk_mtup.probe_size = 0; 2824 2825 /* Do not sent more than we queued. 1/4 is reserved for possible 2826 * copying overhead: fragmentation, tunneling, mangling etc. 2827 */ 2828 if (refcount_read(&sk->sk_wmem_alloc) > 2829 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2830 sk->sk_sndbuf)) 2831 return -EAGAIN; 2832 2833 if (skb_still_in_host_queue(sk, skb)) 2834 return -EBUSY; 2835 2836 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2837 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2838 WARN_ON_ONCE(1); 2839 return -EINVAL; 2840 } 2841 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2842 return -ENOMEM; 2843 } 2844 2845 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2846 return -EHOSTUNREACH; /* Routing failure or similar. */ 2847 2848 cur_mss = tcp_current_mss(sk); 2849 2850 /* If receiver has shrunk his window, and skb is out of 2851 * new window, do not retransmit it. The exception is the 2852 * case, when window is shrunk to zero. In this case 2853 * our retransmit serves as a zero window probe. 2854 */ 2855 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2856 TCP_SKB_CB(skb)->seq != tp->snd_una) 2857 return -EAGAIN; 2858 2859 len = cur_mss * segs; 2860 if (skb->len > len) { 2861 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2862 cur_mss, GFP_ATOMIC)) 2863 return -ENOMEM; /* We'll try again later. */ 2864 } else { 2865 if (skb_unclone(skb, GFP_ATOMIC)) 2866 return -ENOMEM; 2867 2868 diff = tcp_skb_pcount(skb); 2869 tcp_set_skb_tso_segs(skb, cur_mss); 2870 diff -= tcp_skb_pcount(skb); 2871 if (diff) 2872 tcp_adjust_pcount(sk, skb, diff); 2873 if (skb->len < cur_mss) 2874 tcp_retrans_try_collapse(sk, skb, cur_mss); 2875 } 2876 2877 /* RFC3168, section 6.1.1.1. ECN fallback */ 2878 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2879 tcp_ecn_clear_syn(sk, skb); 2880 2881 /* Update global and local TCP statistics. */ 2882 segs = tcp_skb_pcount(skb); 2883 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2884 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2885 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2886 tp->total_retrans += segs; 2887 2888 /* make sure skb->data is aligned on arches that require it 2889 * and check if ack-trimming & collapsing extended the headroom 2890 * beyond what csum_start can cover. 2891 */ 2892 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2893 skb_headroom(skb) >= 0xFFFF)) { 2894 struct sk_buff *nskb; 2895 2896 tcp_skb_tsorted_save(skb) { 2897 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2898 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2899 -ENOBUFS; 2900 } tcp_skb_tsorted_restore(skb); 2901 2902 if (!err) { 2903 tcp_update_skb_after_send(tp, skb); 2904 tcp_rate_skb_sent(sk, skb); 2905 } 2906 } else { 2907 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2908 } 2909 2910 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2911 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2912 TCP_SKB_CB(skb)->seq, segs, err); 2913 2914 if (likely(!err)) { 2915 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2916 trace_tcp_retransmit_skb(sk, skb); 2917 } else if (err != -EBUSY) { 2918 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2919 } 2920 return err; 2921 } 2922 2923 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2924 { 2925 struct tcp_sock *tp = tcp_sk(sk); 2926 int err = __tcp_retransmit_skb(sk, skb, segs); 2927 2928 if (err == 0) { 2929 #if FASTRETRANS_DEBUG > 0 2930 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2931 net_dbg_ratelimited("retrans_out leaked\n"); 2932 } 2933 #endif 2934 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2935 tp->retrans_out += tcp_skb_pcount(skb); 2936 2937 /* Save stamp of the first retransmit. */ 2938 if (!tp->retrans_stamp) 2939 tp->retrans_stamp = tcp_skb_timestamp(skb); 2940 2941 } 2942 2943 if (tp->undo_retrans < 0) 2944 tp->undo_retrans = 0; 2945 tp->undo_retrans += tcp_skb_pcount(skb); 2946 return err; 2947 } 2948 2949 /* This gets called after a retransmit timeout, and the initially 2950 * retransmitted data is acknowledged. It tries to continue 2951 * resending the rest of the retransmit queue, until either 2952 * we've sent it all or the congestion window limit is reached. 2953 */ 2954 void tcp_xmit_retransmit_queue(struct sock *sk) 2955 { 2956 const struct inet_connection_sock *icsk = inet_csk(sk); 2957 struct sk_buff *skb, *rtx_head, *hole = NULL; 2958 struct tcp_sock *tp = tcp_sk(sk); 2959 u32 max_segs; 2960 int mib_idx; 2961 2962 if (!tp->packets_out) 2963 return; 2964 2965 rtx_head = tcp_rtx_queue_head(sk); 2966 skb = tp->retransmit_skb_hint ?: rtx_head; 2967 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2968 skb_rbtree_walk_from(skb) { 2969 __u8 sacked; 2970 int segs; 2971 2972 if (tcp_pacing_check(sk)) 2973 break; 2974 2975 /* we could do better than to assign each time */ 2976 if (!hole) 2977 tp->retransmit_skb_hint = skb; 2978 2979 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2980 if (segs <= 0) 2981 return; 2982 sacked = TCP_SKB_CB(skb)->sacked; 2983 /* In case tcp_shift_skb_data() have aggregated large skbs, 2984 * we need to make sure not sending too bigs TSO packets 2985 */ 2986 segs = min_t(int, segs, max_segs); 2987 2988 if (tp->retrans_out >= tp->lost_out) { 2989 break; 2990 } else if (!(sacked & TCPCB_LOST)) { 2991 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2992 hole = skb; 2993 continue; 2994 2995 } else { 2996 if (icsk->icsk_ca_state != TCP_CA_Loss) 2997 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2998 else 2999 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3000 } 3001 3002 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3003 continue; 3004 3005 if (tcp_small_queue_check(sk, skb, 1)) 3006 return; 3007 3008 if (tcp_retransmit_skb(sk, skb, segs)) 3009 return; 3010 3011 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3012 3013 if (tcp_in_cwnd_reduction(sk)) 3014 tp->prr_out += tcp_skb_pcount(skb); 3015 3016 if (skb == rtx_head && 3017 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3018 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3019 inet_csk(sk)->icsk_rto, 3020 TCP_RTO_MAX); 3021 } 3022 } 3023 3024 /* We allow to exceed memory limits for FIN packets to expedite 3025 * connection tear down and (memory) recovery. 3026 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3027 * or even be forced to close flow without any FIN. 3028 * In general, we want to allow one skb per socket to avoid hangs 3029 * with edge trigger epoll() 3030 */ 3031 void sk_forced_mem_schedule(struct sock *sk, int size) 3032 { 3033 int amt; 3034 3035 if (size <= sk->sk_forward_alloc) 3036 return; 3037 amt = sk_mem_pages(size); 3038 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3039 sk_memory_allocated_add(sk, amt); 3040 3041 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3042 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3043 } 3044 3045 /* Send a FIN. The caller locks the socket for us. 3046 * We should try to send a FIN packet really hard, but eventually give up. 3047 */ 3048 void tcp_send_fin(struct sock *sk) 3049 { 3050 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3051 struct tcp_sock *tp = tcp_sk(sk); 3052 3053 /* Optimization, tack on the FIN if we have one skb in write queue and 3054 * this skb was not yet sent, or we are under memory pressure. 3055 * Note: in the latter case, FIN packet will be sent after a timeout, 3056 * as TCP stack thinks it has already been transmitted. 3057 */ 3058 if (!tskb && tcp_under_memory_pressure(sk)) 3059 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3060 3061 if (tskb) { 3062 coalesce: 3063 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3064 TCP_SKB_CB(tskb)->end_seq++; 3065 tp->write_seq++; 3066 if (tcp_write_queue_empty(sk)) { 3067 /* This means tskb was already sent. 3068 * Pretend we included the FIN on previous transmit. 3069 * We need to set tp->snd_nxt to the value it would have 3070 * if FIN had been sent. This is because retransmit path 3071 * does not change tp->snd_nxt. 3072 */ 3073 tp->snd_nxt++; 3074 return; 3075 } 3076 } else { 3077 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3078 if (unlikely(!skb)) { 3079 if (tskb) 3080 goto coalesce; 3081 return; 3082 } 3083 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3084 skb_reserve(skb, MAX_TCP_HEADER); 3085 sk_forced_mem_schedule(sk, skb->truesize); 3086 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3087 tcp_init_nondata_skb(skb, tp->write_seq, 3088 TCPHDR_ACK | TCPHDR_FIN); 3089 tcp_queue_skb(sk, skb); 3090 } 3091 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3092 } 3093 3094 /* We get here when a process closes a file descriptor (either due to 3095 * an explicit close() or as a byproduct of exit()'ing) and there 3096 * was unread data in the receive queue. This behavior is recommended 3097 * by RFC 2525, section 2.17. -DaveM 3098 */ 3099 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3100 { 3101 struct sk_buff *skb; 3102 3103 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3104 3105 /* NOTE: No TCP options attached and we never retransmit this. */ 3106 skb = alloc_skb(MAX_TCP_HEADER, priority); 3107 if (!skb) { 3108 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3109 return; 3110 } 3111 3112 /* Reserve space for headers and prepare control bits. */ 3113 skb_reserve(skb, MAX_TCP_HEADER); 3114 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3115 TCPHDR_ACK | TCPHDR_RST); 3116 tcp_mstamp_refresh(tcp_sk(sk)); 3117 /* Send it off. */ 3118 if (tcp_transmit_skb(sk, skb, 0, priority)) 3119 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3120 3121 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3122 * skb here is different to the troublesome skb, so use NULL 3123 */ 3124 trace_tcp_send_reset(sk, NULL); 3125 } 3126 3127 /* Send a crossed SYN-ACK during socket establishment. 3128 * WARNING: This routine must only be called when we have already sent 3129 * a SYN packet that crossed the incoming SYN that caused this routine 3130 * to get called. If this assumption fails then the initial rcv_wnd 3131 * and rcv_wscale values will not be correct. 3132 */ 3133 int tcp_send_synack(struct sock *sk) 3134 { 3135 struct sk_buff *skb; 3136 3137 skb = tcp_rtx_queue_head(sk); 3138 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3139 pr_err("%s: wrong queue state\n", __func__); 3140 return -EFAULT; 3141 } 3142 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3143 if (skb_cloned(skb)) { 3144 struct sk_buff *nskb; 3145 3146 tcp_skb_tsorted_save(skb) { 3147 nskb = skb_copy(skb, GFP_ATOMIC); 3148 } tcp_skb_tsorted_restore(skb); 3149 if (!nskb) 3150 return -ENOMEM; 3151 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3152 tcp_rtx_queue_unlink_and_free(skb, sk); 3153 __skb_header_release(nskb); 3154 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3155 sk->sk_wmem_queued += nskb->truesize; 3156 sk_mem_charge(sk, nskb->truesize); 3157 skb = nskb; 3158 } 3159 3160 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3161 tcp_ecn_send_synack(sk, skb); 3162 } 3163 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3164 } 3165 3166 /** 3167 * tcp_make_synack - Prepare a SYN-ACK. 3168 * sk: listener socket 3169 * dst: dst entry attached to the SYNACK 3170 * req: request_sock pointer 3171 * 3172 * Allocate one skb and build a SYNACK packet. 3173 * @dst is consumed : Caller should not use it again. 3174 */ 3175 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3176 struct request_sock *req, 3177 struct tcp_fastopen_cookie *foc, 3178 enum tcp_synack_type synack_type) 3179 { 3180 struct inet_request_sock *ireq = inet_rsk(req); 3181 const struct tcp_sock *tp = tcp_sk(sk); 3182 struct tcp_md5sig_key *md5 = NULL; 3183 struct tcp_out_options opts; 3184 struct sk_buff *skb; 3185 int tcp_header_size; 3186 struct tcphdr *th; 3187 int mss; 3188 3189 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3190 if (unlikely(!skb)) { 3191 dst_release(dst); 3192 return NULL; 3193 } 3194 /* Reserve space for headers. */ 3195 skb_reserve(skb, MAX_TCP_HEADER); 3196 3197 switch (synack_type) { 3198 case TCP_SYNACK_NORMAL: 3199 skb_set_owner_w(skb, req_to_sk(req)); 3200 break; 3201 case TCP_SYNACK_COOKIE: 3202 /* Under synflood, we do not attach skb to a socket, 3203 * to avoid false sharing. 3204 */ 3205 break; 3206 case TCP_SYNACK_FASTOPEN: 3207 /* sk is a const pointer, because we want to express multiple 3208 * cpu might call us concurrently. 3209 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3210 */ 3211 skb_set_owner_w(skb, (struct sock *)sk); 3212 break; 3213 } 3214 skb_dst_set(skb, dst); 3215 3216 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3217 3218 memset(&opts, 0, sizeof(opts)); 3219 #ifdef CONFIG_SYN_COOKIES 3220 if (unlikely(req->cookie_ts)) 3221 skb->skb_mstamp = cookie_init_timestamp(req); 3222 else 3223 #endif 3224 skb->skb_mstamp = tcp_clock_us(); 3225 3226 #ifdef CONFIG_TCP_MD5SIG 3227 rcu_read_lock(); 3228 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3229 #endif 3230 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3231 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3232 foc) + sizeof(*th); 3233 3234 skb_push(skb, tcp_header_size); 3235 skb_reset_transport_header(skb); 3236 3237 th = (struct tcphdr *)skb->data; 3238 memset(th, 0, sizeof(struct tcphdr)); 3239 th->syn = 1; 3240 th->ack = 1; 3241 tcp_ecn_make_synack(req, th); 3242 th->source = htons(ireq->ir_num); 3243 th->dest = ireq->ir_rmt_port; 3244 skb->mark = ireq->ir_mark; 3245 skb->ip_summed = CHECKSUM_PARTIAL; 3246 th->seq = htonl(tcp_rsk(req)->snt_isn); 3247 /* XXX data is queued and acked as is. No buffer/window check */ 3248 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3249 3250 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3251 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3252 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3253 th->doff = (tcp_header_size >> 2); 3254 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3255 3256 #ifdef CONFIG_TCP_MD5SIG 3257 /* Okay, we have all we need - do the md5 hash if needed */ 3258 if (md5) 3259 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3260 md5, req_to_sk(req), skb); 3261 rcu_read_unlock(); 3262 #endif 3263 3264 /* Do not fool tcpdump (if any), clean our debris */ 3265 skb->tstamp = 0; 3266 return skb; 3267 } 3268 EXPORT_SYMBOL(tcp_make_synack); 3269 3270 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3271 { 3272 struct inet_connection_sock *icsk = inet_csk(sk); 3273 const struct tcp_congestion_ops *ca; 3274 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3275 3276 if (ca_key == TCP_CA_UNSPEC) 3277 return; 3278 3279 rcu_read_lock(); 3280 ca = tcp_ca_find_key(ca_key); 3281 if (likely(ca && try_module_get(ca->owner))) { 3282 module_put(icsk->icsk_ca_ops->owner); 3283 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3284 icsk->icsk_ca_ops = ca; 3285 } 3286 rcu_read_unlock(); 3287 } 3288 3289 /* Do all connect socket setups that can be done AF independent. */ 3290 static void tcp_connect_init(struct sock *sk) 3291 { 3292 const struct dst_entry *dst = __sk_dst_get(sk); 3293 struct tcp_sock *tp = tcp_sk(sk); 3294 __u8 rcv_wscale; 3295 u32 rcv_wnd; 3296 3297 /* We'll fix this up when we get a response from the other end. 3298 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3299 */ 3300 tp->tcp_header_len = sizeof(struct tcphdr); 3301 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3302 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3303 3304 #ifdef CONFIG_TCP_MD5SIG 3305 if (tp->af_specific->md5_lookup(sk, sk)) 3306 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3307 #endif 3308 3309 /* If user gave his TCP_MAXSEG, record it to clamp */ 3310 if (tp->rx_opt.user_mss) 3311 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3312 tp->max_window = 0; 3313 tcp_mtup_init(sk); 3314 tcp_sync_mss(sk, dst_mtu(dst)); 3315 3316 tcp_ca_dst_init(sk, dst); 3317 3318 if (!tp->window_clamp) 3319 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3320 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3321 3322 tcp_initialize_rcv_mss(sk); 3323 3324 /* limit the window selection if the user enforce a smaller rx buffer */ 3325 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3326 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3327 tp->window_clamp = tcp_full_space(sk); 3328 3329 rcv_wnd = tcp_rwnd_init_bpf(sk); 3330 if (rcv_wnd == 0) 3331 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3332 3333 tcp_select_initial_window(sk, tcp_full_space(sk), 3334 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3335 &tp->rcv_wnd, 3336 &tp->window_clamp, 3337 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3338 &rcv_wscale, 3339 rcv_wnd); 3340 3341 tp->rx_opt.rcv_wscale = rcv_wscale; 3342 tp->rcv_ssthresh = tp->rcv_wnd; 3343 3344 sk->sk_err = 0; 3345 sock_reset_flag(sk, SOCK_DONE); 3346 tp->snd_wnd = 0; 3347 tcp_init_wl(tp, 0); 3348 tcp_write_queue_purge(sk); 3349 tp->snd_una = tp->write_seq; 3350 tp->snd_sml = tp->write_seq; 3351 tp->snd_up = tp->write_seq; 3352 tp->snd_nxt = tp->write_seq; 3353 3354 if (likely(!tp->repair)) 3355 tp->rcv_nxt = 0; 3356 else 3357 tp->rcv_tstamp = tcp_jiffies32; 3358 tp->rcv_wup = tp->rcv_nxt; 3359 tp->copied_seq = tp->rcv_nxt; 3360 3361 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3362 inet_csk(sk)->icsk_retransmits = 0; 3363 tcp_clear_retrans(tp); 3364 } 3365 3366 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3367 { 3368 struct tcp_sock *tp = tcp_sk(sk); 3369 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3370 3371 tcb->end_seq += skb->len; 3372 __skb_header_release(skb); 3373 sk->sk_wmem_queued += skb->truesize; 3374 sk_mem_charge(sk, skb->truesize); 3375 tp->write_seq = tcb->end_seq; 3376 tp->packets_out += tcp_skb_pcount(skb); 3377 } 3378 3379 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3380 * queue a data-only packet after the regular SYN, such that regular SYNs 3381 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3382 * only the SYN sequence, the data are retransmitted in the first ACK. 3383 * If cookie is not cached or other error occurs, falls back to send a 3384 * regular SYN with Fast Open cookie request option. 3385 */ 3386 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3387 { 3388 struct tcp_sock *tp = tcp_sk(sk); 3389 struct tcp_fastopen_request *fo = tp->fastopen_req; 3390 int space, err = 0; 3391 struct sk_buff *syn_data; 3392 3393 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3394 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3395 goto fallback; 3396 3397 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3398 * user-MSS. Reserve maximum option space for middleboxes that add 3399 * private TCP options. The cost is reduced data space in SYN :( 3400 */ 3401 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3402 3403 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3404 MAX_TCP_OPTION_SPACE; 3405 3406 space = min_t(size_t, space, fo->size); 3407 3408 /* limit to order-0 allocations */ 3409 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3410 3411 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3412 if (!syn_data) 3413 goto fallback; 3414 syn_data->ip_summed = CHECKSUM_PARTIAL; 3415 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3416 if (space) { 3417 int copied = copy_from_iter(skb_put(syn_data, space), space, 3418 &fo->data->msg_iter); 3419 if (unlikely(!copied)) { 3420 tcp_skb_tsorted_anchor_cleanup(syn_data); 3421 kfree_skb(syn_data); 3422 goto fallback; 3423 } 3424 if (copied != space) { 3425 skb_trim(syn_data, copied); 3426 space = copied; 3427 } 3428 } 3429 /* No more data pending in inet_wait_for_connect() */ 3430 if (space == fo->size) 3431 fo->data = NULL; 3432 fo->copied = space; 3433 3434 tcp_connect_queue_skb(sk, syn_data); 3435 if (syn_data->len) 3436 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3437 3438 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3439 3440 syn->skb_mstamp = syn_data->skb_mstamp; 3441 3442 /* Now full SYN+DATA was cloned and sent (or not), 3443 * remove the SYN from the original skb (syn_data) 3444 * we keep in write queue in case of a retransmit, as we 3445 * also have the SYN packet (with no data) in the same queue. 3446 */ 3447 TCP_SKB_CB(syn_data)->seq++; 3448 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3449 if (!err) { 3450 tp->syn_data = (fo->copied > 0); 3451 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3452 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3453 goto done; 3454 } 3455 3456 /* data was not sent, put it in write_queue */ 3457 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3458 tp->packets_out -= tcp_skb_pcount(syn_data); 3459 3460 fallback: 3461 /* Send a regular SYN with Fast Open cookie request option */ 3462 if (fo->cookie.len > 0) 3463 fo->cookie.len = 0; 3464 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3465 if (err) 3466 tp->syn_fastopen = 0; 3467 done: 3468 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3469 return err; 3470 } 3471 3472 /* Build a SYN and send it off. */ 3473 int tcp_connect(struct sock *sk) 3474 { 3475 struct tcp_sock *tp = tcp_sk(sk); 3476 struct sk_buff *buff; 3477 int err; 3478 3479 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3480 3481 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3482 return -EHOSTUNREACH; /* Routing failure or similar. */ 3483 3484 tcp_connect_init(sk); 3485 3486 if (unlikely(tp->repair)) { 3487 tcp_finish_connect(sk, NULL); 3488 return 0; 3489 } 3490 3491 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3492 if (unlikely(!buff)) 3493 return -ENOBUFS; 3494 3495 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3496 tcp_mstamp_refresh(tp); 3497 tp->retrans_stamp = tcp_time_stamp(tp); 3498 tcp_connect_queue_skb(sk, buff); 3499 tcp_ecn_send_syn(sk, buff); 3500 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3501 3502 /* Send off SYN; include data in Fast Open. */ 3503 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3504 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3505 if (err == -ECONNREFUSED) 3506 return err; 3507 3508 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3509 * in order to make this packet get counted in tcpOutSegs. 3510 */ 3511 tp->snd_nxt = tp->write_seq; 3512 tp->pushed_seq = tp->write_seq; 3513 buff = tcp_send_head(sk); 3514 if (unlikely(buff)) { 3515 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3516 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3517 } 3518 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3519 3520 /* Timer for repeating the SYN until an answer. */ 3521 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3522 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3523 return 0; 3524 } 3525 EXPORT_SYMBOL(tcp_connect); 3526 3527 /* Send out a delayed ack, the caller does the policy checking 3528 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3529 * for details. 3530 */ 3531 void tcp_send_delayed_ack(struct sock *sk) 3532 { 3533 struct inet_connection_sock *icsk = inet_csk(sk); 3534 int ato = icsk->icsk_ack.ato; 3535 unsigned long timeout; 3536 3537 if (ato > TCP_DELACK_MIN) { 3538 const struct tcp_sock *tp = tcp_sk(sk); 3539 int max_ato = HZ / 2; 3540 3541 if (icsk->icsk_ack.pingpong || 3542 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3543 max_ato = TCP_DELACK_MAX; 3544 3545 /* Slow path, intersegment interval is "high". */ 3546 3547 /* If some rtt estimate is known, use it to bound delayed ack. 3548 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3549 * directly. 3550 */ 3551 if (tp->srtt_us) { 3552 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3553 TCP_DELACK_MIN); 3554 3555 if (rtt < max_ato) 3556 max_ato = rtt; 3557 } 3558 3559 ato = min(ato, max_ato); 3560 } 3561 3562 /* Stay within the limit we were given */ 3563 timeout = jiffies + ato; 3564 3565 /* Use new timeout only if there wasn't a older one earlier. */ 3566 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3567 /* If delack timer was blocked or is about to expire, 3568 * send ACK now. 3569 */ 3570 if (icsk->icsk_ack.blocked || 3571 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3572 tcp_send_ack(sk); 3573 return; 3574 } 3575 3576 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3577 timeout = icsk->icsk_ack.timeout; 3578 } 3579 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3580 icsk->icsk_ack.timeout = timeout; 3581 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3582 } 3583 3584 /* This routine sends an ack and also updates the window. */ 3585 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3586 { 3587 struct sk_buff *buff; 3588 3589 /* If we have been reset, we may not send again. */ 3590 if (sk->sk_state == TCP_CLOSE) 3591 return; 3592 3593 /* We are not putting this on the write queue, so 3594 * tcp_transmit_skb() will set the ownership to this 3595 * sock. 3596 */ 3597 buff = alloc_skb(MAX_TCP_HEADER, 3598 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3599 if (unlikely(!buff)) { 3600 inet_csk_schedule_ack(sk); 3601 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3602 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3603 TCP_DELACK_MAX, TCP_RTO_MAX); 3604 return; 3605 } 3606 3607 /* Reserve space for headers and prepare control bits. */ 3608 skb_reserve(buff, MAX_TCP_HEADER); 3609 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3610 3611 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3612 * too much. 3613 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3614 */ 3615 skb_set_tcp_pure_ack(buff); 3616 3617 /* Send it off, this clears delayed acks for us. */ 3618 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3619 } 3620 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3621 3622 void tcp_send_ack(struct sock *sk) 3623 { 3624 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3625 } 3626 3627 /* This routine sends a packet with an out of date sequence 3628 * number. It assumes the other end will try to ack it. 3629 * 3630 * Question: what should we make while urgent mode? 3631 * 4.4BSD forces sending single byte of data. We cannot send 3632 * out of window data, because we have SND.NXT==SND.MAX... 3633 * 3634 * Current solution: to send TWO zero-length segments in urgent mode: 3635 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3636 * out-of-date with SND.UNA-1 to probe window. 3637 */ 3638 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3639 { 3640 struct tcp_sock *tp = tcp_sk(sk); 3641 struct sk_buff *skb; 3642 3643 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3644 skb = alloc_skb(MAX_TCP_HEADER, 3645 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3646 if (!skb) 3647 return -1; 3648 3649 /* Reserve space for headers and set control bits. */ 3650 skb_reserve(skb, MAX_TCP_HEADER); 3651 /* Use a previous sequence. This should cause the other 3652 * end to send an ack. Don't queue or clone SKB, just 3653 * send it. 3654 */ 3655 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3656 NET_INC_STATS(sock_net(sk), mib); 3657 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3658 } 3659 3660 /* Called from setsockopt( ... TCP_REPAIR ) */ 3661 void tcp_send_window_probe(struct sock *sk) 3662 { 3663 if (sk->sk_state == TCP_ESTABLISHED) { 3664 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3665 tcp_mstamp_refresh(tcp_sk(sk)); 3666 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3667 } 3668 } 3669 3670 /* Initiate keepalive or window probe from timer. */ 3671 int tcp_write_wakeup(struct sock *sk, int mib) 3672 { 3673 struct tcp_sock *tp = tcp_sk(sk); 3674 struct sk_buff *skb; 3675 3676 if (sk->sk_state == TCP_CLOSE) 3677 return -1; 3678 3679 skb = tcp_send_head(sk); 3680 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3681 int err; 3682 unsigned int mss = tcp_current_mss(sk); 3683 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3684 3685 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3686 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3687 3688 /* We are probing the opening of a window 3689 * but the window size is != 0 3690 * must have been a result SWS avoidance ( sender ) 3691 */ 3692 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3693 skb->len > mss) { 3694 seg_size = min(seg_size, mss); 3695 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3696 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3697 skb, seg_size, mss, GFP_ATOMIC)) 3698 return -1; 3699 } else if (!tcp_skb_pcount(skb)) 3700 tcp_set_skb_tso_segs(skb, mss); 3701 3702 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3703 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3704 if (!err) 3705 tcp_event_new_data_sent(sk, skb); 3706 return err; 3707 } else { 3708 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3709 tcp_xmit_probe_skb(sk, 1, mib); 3710 return tcp_xmit_probe_skb(sk, 0, mib); 3711 } 3712 } 3713 3714 /* A window probe timeout has occurred. If window is not closed send 3715 * a partial packet else a zero probe. 3716 */ 3717 void tcp_send_probe0(struct sock *sk) 3718 { 3719 struct inet_connection_sock *icsk = inet_csk(sk); 3720 struct tcp_sock *tp = tcp_sk(sk); 3721 struct net *net = sock_net(sk); 3722 unsigned long probe_max; 3723 int err; 3724 3725 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3726 3727 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3728 /* Cancel probe timer, if it is not required. */ 3729 icsk->icsk_probes_out = 0; 3730 icsk->icsk_backoff = 0; 3731 return; 3732 } 3733 3734 if (err <= 0) { 3735 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3736 icsk->icsk_backoff++; 3737 icsk->icsk_probes_out++; 3738 probe_max = TCP_RTO_MAX; 3739 } else { 3740 /* If packet was not sent due to local congestion, 3741 * do not backoff and do not remember icsk_probes_out. 3742 * Let local senders to fight for local resources. 3743 * 3744 * Use accumulated backoff yet. 3745 */ 3746 if (!icsk->icsk_probes_out) 3747 icsk->icsk_probes_out = 1; 3748 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3749 } 3750 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3751 tcp_probe0_when(sk, probe_max), 3752 TCP_RTO_MAX); 3753 } 3754 3755 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3756 { 3757 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3758 struct flowi fl; 3759 int res; 3760 3761 tcp_rsk(req)->txhash = net_tx_rndhash(); 3762 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3763 if (!res) { 3764 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3765 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3766 if (unlikely(tcp_passive_fastopen(sk))) 3767 tcp_sk(sk)->total_retrans++; 3768 trace_tcp_retransmit_synack(sk, req); 3769 } 3770 return res; 3771 } 3772 EXPORT_SYMBOL(tcp_rtx_synack); 3773