xref: /linux/net/ipv4/tcp_output.c (revision f412eed9dfdeeb6becd7de2ffe8b5d0a8b3f81ca)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 			   int push_one, gfp_t gfp);
50 
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 	struct inet_connection_sock *icsk = inet_csk(sk);
55 	struct tcp_sock *tp = tcp_sk(sk);
56 	unsigned int prior_packets = tp->packets_out;
57 
58 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59 
60 	__skb_unlink(skb, &sk->sk_write_queue);
61 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62 
63 	tp->packets_out += tcp_skb_pcount(skb);
64 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
65 		tcp_rearm_rto(sk);
66 
67 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
68 		      tcp_skb_pcount(skb));
69 }
70 
71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
72  * window scaling factor due to loss of precision.
73  * If window has been shrunk, what should we make? It is not clear at all.
74  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76  * invalid. OK, let's make this for now:
77  */
78 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
79 {
80 	const struct tcp_sock *tp = tcp_sk(sk);
81 
82 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
83 	    (tp->rx_opt.wscale_ok &&
84 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
85 		return tp->snd_nxt;
86 	else
87 		return tcp_wnd_end(tp);
88 }
89 
90 /* Calculate mss to advertise in SYN segment.
91  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
92  *
93  * 1. It is independent of path mtu.
94  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
95  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
96  *    attached devices, because some buggy hosts are confused by
97  *    large MSS.
98  * 4. We do not make 3, we advertise MSS, calculated from first
99  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
100  *    This may be overridden via information stored in routing table.
101  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
102  *    probably even Jumbo".
103  */
104 static __u16 tcp_advertise_mss(struct sock *sk)
105 {
106 	struct tcp_sock *tp = tcp_sk(sk);
107 	const struct dst_entry *dst = __sk_dst_get(sk);
108 	int mss = tp->advmss;
109 
110 	if (dst) {
111 		unsigned int metric = dst_metric_advmss(dst);
112 
113 		if (metric < mss) {
114 			mss = metric;
115 			tp->advmss = mss;
116 		}
117 	}
118 
119 	return (__u16)mss;
120 }
121 
122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
123  * This is the first part of cwnd validation mechanism.
124  */
125 void tcp_cwnd_restart(struct sock *sk, s32 delta)
126 {
127 	struct tcp_sock *tp = tcp_sk(sk);
128 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
129 	u32 cwnd = tp->snd_cwnd;
130 
131 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
132 
133 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
134 	restart_cwnd = min(restart_cwnd, cwnd);
135 
136 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
137 		cwnd >>= 1;
138 	tp->snd_cwnd = max(cwnd, restart_cwnd);
139 	tp->snd_cwnd_stamp = tcp_jiffies32;
140 	tp->snd_cwnd_used = 0;
141 }
142 
143 /* Congestion state accounting after a packet has been sent. */
144 static void tcp_event_data_sent(struct tcp_sock *tp,
145 				struct sock *sk)
146 {
147 	struct inet_connection_sock *icsk = inet_csk(sk);
148 	const u32 now = tcp_jiffies32;
149 
150 	if (tcp_packets_in_flight(tp) == 0)
151 		tcp_ca_event(sk, CA_EVENT_TX_START);
152 
153 	tp->lsndtime = now;
154 
155 	/* If it is a reply for ato after last received
156 	 * packet, enter pingpong mode.
157 	 */
158 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
159 		icsk->icsk_ack.pingpong = 1;
160 }
161 
162 /* Account for an ACK we sent. */
163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
164 {
165 	tcp_dec_quickack_mode(sk, pkts);
166 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
167 }
168 
169 
170 u32 tcp_default_init_rwnd(u32 mss)
171 {
172 	/* Initial receive window should be twice of TCP_INIT_CWND to
173 	 * enable proper sending of new unsent data during fast recovery
174 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
175 	 * limit when mss is larger than 1460.
176 	 */
177 	u32 init_rwnd = TCP_INIT_CWND * 2;
178 
179 	if (mss > 1460)
180 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
181 	return init_rwnd;
182 }
183 
184 /* Determine a window scaling and initial window to offer.
185  * Based on the assumption that the given amount of space
186  * will be offered. Store the results in the tp structure.
187  * NOTE: for smooth operation initial space offering should
188  * be a multiple of mss if possible. We assume here that mss >= 1.
189  * This MUST be enforced by all callers.
190  */
191 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
192 			       __u32 *rcv_wnd, __u32 *window_clamp,
193 			       int wscale_ok, __u8 *rcv_wscale,
194 			       __u32 init_rcv_wnd)
195 {
196 	unsigned int space = (__space < 0 ? 0 : __space);
197 
198 	/* If no clamp set the clamp to the max possible scaled window */
199 	if (*window_clamp == 0)
200 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
201 	space = min(*window_clamp, space);
202 
203 	/* Quantize space offering to a multiple of mss if possible. */
204 	if (space > mss)
205 		space = rounddown(space, mss);
206 
207 	/* NOTE: offering an initial window larger than 32767
208 	 * will break some buggy TCP stacks. If the admin tells us
209 	 * it is likely we could be speaking with such a buggy stack
210 	 * we will truncate our initial window offering to 32K-1
211 	 * unless the remote has sent us a window scaling option,
212 	 * which we interpret as a sign the remote TCP is not
213 	 * misinterpreting the window field as a signed quantity.
214 	 */
215 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
216 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
217 	else
218 		(*rcv_wnd) = space;
219 
220 	(*rcv_wscale) = 0;
221 	if (wscale_ok) {
222 		/* Set window scaling on max possible window */
223 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
224 		space = max_t(u32, space, sysctl_rmem_max);
225 		space = min_t(u32, space, *window_clamp);
226 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
227 			space >>= 1;
228 			(*rcv_wscale)++;
229 		}
230 	}
231 
232 	if (mss > (1 << *rcv_wscale)) {
233 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
234 			init_rcv_wnd = tcp_default_init_rwnd(mss);
235 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 	}
237 
238 	/* Set the clamp no higher than max representable value */
239 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
240 }
241 EXPORT_SYMBOL(tcp_select_initial_window);
242 
243 /* Chose a new window to advertise, update state in tcp_sock for the
244  * socket, and return result with RFC1323 scaling applied.  The return
245  * value can be stuffed directly into th->window for an outgoing
246  * frame.
247  */
248 static u16 tcp_select_window(struct sock *sk)
249 {
250 	struct tcp_sock *tp = tcp_sk(sk);
251 	u32 old_win = tp->rcv_wnd;
252 	u32 cur_win = tcp_receive_window(tp);
253 	u32 new_win = __tcp_select_window(sk);
254 
255 	/* Never shrink the offered window */
256 	if (new_win < cur_win) {
257 		/* Danger Will Robinson!
258 		 * Don't update rcv_wup/rcv_wnd here or else
259 		 * we will not be able to advertise a zero
260 		 * window in time.  --DaveM
261 		 *
262 		 * Relax Will Robinson.
263 		 */
264 		if (new_win == 0)
265 			NET_INC_STATS(sock_net(sk),
266 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
267 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
268 	}
269 	tp->rcv_wnd = new_win;
270 	tp->rcv_wup = tp->rcv_nxt;
271 
272 	/* Make sure we do not exceed the maximum possible
273 	 * scaled window.
274 	 */
275 	if (!tp->rx_opt.rcv_wscale &&
276 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
277 		new_win = min(new_win, MAX_TCP_WINDOW);
278 	else
279 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
280 
281 	/* RFC1323 scaling applied */
282 	new_win >>= tp->rx_opt.rcv_wscale;
283 
284 	/* If we advertise zero window, disable fast path. */
285 	if (new_win == 0) {
286 		tp->pred_flags = 0;
287 		if (old_win)
288 			NET_INC_STATS(sock_net(sk),
289 				      LINUX_MIB_TCPTOZEROWINDOWADV);
290 	} else if (old_win == 0) {
291 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
292 	}
293 
294 	return new_win;
295 }
296 
297 /* Packet ECN state for a SYN-ACK */
298 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
299 {
300 	const struct tcp_sock *tp = tcp_sk(sk);
301 
302 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
303 	if (!(tp->ecn_flags & TCP_ECN_OK))
304 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
305 	else if (tcp_ca_needs_ecn(sk) ||
306 		 tcp_bpf_ca_needs_ecn(sk))
307 		INET_ECN_xmit(sk);
308 }
309 
310 /* Packet ECN state for a SYN.  */
311 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
312 {
313 	struct tcp_sock *tp = tcp_sk(sk);
314 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
315 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
316 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
317 
318 	if (!use_ecn) {
319 		const struct dst_entry *dst = __sk_dst_get(sk);
320 
321 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
322 			use_ecn = true;
323 	}
324 
325 	tp->ecn_flags = 0;
326 
327 	if (use_ecn) {
328 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
329 		tp->ecn_flags = TCP_ECN_OK;
330 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
331 			INET_ECN_xmit(sk);
332 	}
333 }
334 
335 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
336 {
337 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
338 		/* tp->ecn_flags are cleared at a later point in time when
339 		 * SYN ACK is ultimatively being received.
340 		 */
341 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
342 }
343 
344 static void
345 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
346 {
347 	if (inet_rsk(req)->ecn_ok)
348 		th->ece = 1;
349 }
350 
351 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
352  * be sent.
353  */
354 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
355 			 struct tcphdr *th, int tcp_header_len)
356 {
357 	struct tcp_sock *tp = tcp_sk(sk);
358 
359 	if (tp->ecn_flags & TCP_ECN_OK) {
360 		/* Not-retransmitted data segment: set ECT and inject CWR. */
361 		if (skb->len != tcp_header_len &&
362 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
363 			INET_ECN_xmit(sk);
364 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
365 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
366 				th->cwr = 1;
367 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
368 			}
369 		} else if (!tcp_ca_needs_ecn(sk)) {
370 			/* ACK or retransmitted segment: clear ECT|CE */
371 			INET_ECN_dontxmit(sk);
372 		}
373 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
374 			th->ece = 1;
375 	}
376 }
377 
378 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
379  * auto increment end seqno.
380  */
381 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
382 {
383 	skb->ip_summed = CHECKSUM_PARTIAL;
384 
385 	TCP_SKB_CB(skb)->tcp_flags = flags;
386 	TCP_SKB_CB(skb)->sacked = 0;
387 
388 	tcp_skb_pcount_set(skb, 1);
389 
390 	TCP_SKB_CB(skb)->seq = seq;
391 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
392 		seq++;
393 	TCP_SKB_CB(skb)->end_seq = seq;
394 }
395 
396 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
397 {
398 	return tp->snd_una != tp->snd_up;
399 }
400 
401 #define OPTION_SACK_ADVERTISE	(1 << 0)
402 #define OPTION_TS		(1 << 1)
403 #define OPTION_MD5		(1 << 2)
404 #define OPTION_WSCALE		(1 << 3)
405 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
406 #define OPTION_SMC		(1 << 9)
407 
408 static void smc_options_write(__be32 *ptr, u16 *options)
409 {
410 #if IS_ENABLED(CONFIG_SMC)
411 	if (static_branch_unlikely(&tcp_have_smc)) {
412 		if (unlikely(OPTION_SMC & *options)) {
413 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
414 				       (TCPOPT_NOP  << 16) |
415 				       (TCPOPT_EXP <<  8) |
416 				       (TCPOLEN_EXP_SMC_BASE));
417 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
418 		}
419 	}
420 #endif
421 }
422 
423 struct tcp_out_options {
424 	u16 options;		/* bit field of OPTION_* */
425 	u16 mss;		/* 0 to disable */
426 	u8 ws;			/* window scale, 0 to disable */
427 	u8 num_sack_blocks;	/* number of SACK blocks to include */
428 	u8 hash_size;		/* bytes in hash_location */
429 	__u8 *hash_location;	/* temporary pointer, overloaded */
430 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
431 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
432 };
433 
434 /* Write previously computed TCP options to the packet.
435  *
436  * Beware: Something in the Internet is very sensitive to the ordering of
437  * TCP options, we learned this through the hard way, so be careful here.
438  * Luckily we can at least blame others for their non-compliance but from
439  * inter-operability perspective it seems that we're somewhat stuck with
440  * the ordering which we have been using if we want to keep working with
441  * those broken things (not that it currently hurts anybody as there isn't
442  * particular reason why the ordering would need to be changed).
443  *
444  * At least SACK_PERM as the first option is known to lead to a disaster
445  * (but it may well be that other scenarios fail similarly).
446  */
447 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
448 			      struct tcp_out_options *opts)
449 {
450 	u16 options = opts->options;	/* mungable copy */
451 
452 	if (unlikely(OPTION_MD5 & options)) {
453 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
454 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
455 		/* overload cookie hash location */
456 		opts->hash_location = (__u8 *)ptr;
457 		ptr += 4;
458 	}
459 
460 	if (unlikely(opts->mss)) {
461 		*ptr++ = htonl((TCPOPT_MSS << 24) |
462 			       (TCPOLEN_MSS << 16) |
463 			       opts->mss);
464 	}
465 
466 	if (likely(OPTION_TS & options)) {
467 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
468 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
469 				       (TCPOLEN_SACK_PERM << 16) |
470 				       (TCPOPT_TIMESTAMP << 8) |
471 				       TCPOLEN_TIMESTAMP);
472 			options &= ~OPTION_SACK_ADVERTISE;
473 		} else {
474 			*ptr++ = htonl((TCPOPT_NOP << 24) |
475 				       (TCPOPT_NOP << 16) |
476 				       (TCPOPT_TIMESTAMP << 8) |
477 				       TCPOLEN_TIMESTAMP);
478 		}
479 		*ptr++ = htonl(opts->tsval);
480 		*ptr++ = htonl(opts->tsecr);
481 	}
482 
483 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
484 		*ptr++ = htonl((TCPOPT_NOP << 24) |
485 			       (TCPOPT_NOP << 16) |
486 			       (TCPOPT_SACK_PERM << 8) |
487 			       TCPOLEN_SACK_PERM);
488 	}
489 
490 	if (unlikely(OPTION_WSCALE & options)) {
491 		*ptr++ = htonl((TCPOPT_NOP << 24) |
492 			       (TCPOPT_WINDOW << 16) |
493 			       (TCPOLEN_WINDOW << 8) |
494 			       opts->ws);
495 	}
496 
497 	if (unlikely(opts->num_sack_blocks)) {
498 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
499 			tp->duplicate_sack : tp->selective_acks;
500 		int this_sack;
501 
502 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
503 			       (TCPOPT_NOP  << 16) |
504 			       (TCPOPT_SACK <<  8) |
505 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
506 						     TCPOLEN_SACK_PERBLOCK)));
507 
508 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
509 		     ++this_sack) {
510 			*ptr++ = htonl(sp[this_sack].start_seq);
511 			*ptr++ = htonl(sp[this_sack].end_seq);
512 		}
513 
514 		tp->rx_opt.dsack = 0;
515 	}
516 
517 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
518 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
519 		u8 *p = (u8 *)ptr;
520 		u32 len; /* Fast Open option length */
521 
522 		if (foc->exp) {
523 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
524 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
525 				     TCPOPT_FASTOPEN_MAGIC);
526 			p += TCPOLEN_EXP_FASTOPEN_BASE;
527 		} else {
528 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
529 			*p++ = TCPOPT_FASTOPEN;
530 			*p++ = len;
531 		}
532 
533 		memcpy(p, foc->val, foc->len);
534 		if ((len & 3) == 2) {
535 			p[foc->len] = TCPOPT_NOP;
536 			p[foc->len + 1] = TCPOPT_NOP;
537 		}
538 		ptr += (len + 3) >> 2;
539 	}
540 
541 	smc_options_write(ptr, &options);
542 }
543 
544 static void smc_set_option(const struct tcp_sock *tp,
545 			   struct tcp_out_options *opts,
546 			   unsigned int *remaining)
547 {
548 #if IS_ENABLED(CONFIG_SMC)
549 	if (static_branch_unlikely(&tcp_have_smc)) {
550 		if (tp->syn_smc) {
551 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
552 				opts->options |= OPTION_SMC;
553 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
554 			}
555 		}
556 	}
557 #endif
558 }
559 
560 static void smc_set_option_cond(const struct tcp_sock *tp,
561 				const struct inet_request_sock *ireq,
562 				struct tcp_out_options *opts,
563 				unsigned int *remaining)
564 {
565 #if IS_ENABLED(CONFIG_SMC)
566 	if (static_branch_unlikely(&tcp_have_smc)) {
567 		if (tp->syn_smc && ireq->smc_ok) {
568 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
569 				opts->options |= OPTION_SMC;
570 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
571 			}
572 		}
573 	}
574 #endif
575 }
576 
577 /* Compute TCP options for SYN packets. This is not the final
578  * network wire format yet.
579  */
580 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
581 				struct tcp_out_options *opts,
582 				struct tcp_md5sig_key **md5)
583 {
584 	struct tcp_sock *tp = tcp_sk(sk);
585 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
586 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
587 
588 	*md5 = NULL;
589 #ifdef CONFIG_TCP_MD5SIG
590 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
591 		*md5 = tp->af_specific->md5_lookup(sk, sk);
592 		if (*md5) {
593 			opts->options |= OPTION_MD5;
594 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
595 		}
596 	}
597 #endif
598 
599 	/* We always get an MSS option.  The option bytes which will be seen in
600 	 * normal data packets should timestamps be used, must be in the MSS
601 	 * advertised.  But we subtract them from tp->mss_cache so that
602 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
603 	 * fact here if necessary.  If we don't do this correctly, as a
604 	 * receiver we won't recognize data packets as being full sized when we
605 	 * should, and thus we won't abide by the delayed ACK rules correctly.
606 	 * SACKs don't matter, we never delay an ACK when we have any of those
607 	 * going out.  */
608 	opts->mss = tcp_advertise_mss(sk);
609 	remaining -= TCPOLEN_MSS_ALIGNED;
610 
611 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
612 		opts->options |= OPTION_TS;
613 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
614 		opts->tsecr = tp->rx_opt.ts_recent;
615 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
616 	}
617 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
618 		opts->ws = tp->rx_opt.rcv_wscale;
619 		opts->options |= OPTION_WSCALE;
620 		remaining -= TCPOLEN_WSCALE_ALIGNED;
621 	}
622 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
623 		opts->options |= OPTION_SACK_ADVERTISE;
624 		if (unlikely(!(OPTION_TS & opts->options)))
625 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
626 	}
627 
628 	if (fastopen && fastopen->cookie.len >= 0) {
629 		u32 need = fastopen->cookie.len;
630 
631 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
632 					       TCPOLEN_FASTOPEN_BASE;
633 		need = (need + 3) & ~3U;  /* Align to 32 bits */
634 		if (remaining >= need) {
635 			opts->options |= OPTION_FAST_OPEN_COOKIE;
636 			opts->fastopen_cookie = &fastopen->cookie;
637 			remaining -= need;
638 			tp->syn_fastopen = 1;
639 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
640 		}
641 	}
642 
643 	smc_set_option(tp, opts, &remaining);
644 
645 	return MAX_TCP_OPTION_SPACE - remaining;
646 }
647 
648 /* Set up TCP options for SYN-ACKs. */
649 static unsigned int tcp_synack_options(const struct sock *sk,
650 				       struct request_sock *req,
651 				       unsigned int mss, struct sk_buff *skb,
652 				       struct tcp_out_options *opts,
653 				       const struct tcp_md5sig_key *md5,
654 				       struct tcp_fastopen_cookie *foc)
655 {
656 	struct inet_request_sock *ireq = inet_rsk(req);
657 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
658 
659 #ifdef CONFIG_TCP_MD5SIG
660 	if (md5) {
661 		opts->options |= OPTION_MD5;
662 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
663 
664 		/* We can't fit any SACK blocks in a packet with MD5 + TS
665 		 * options. There was discussion about disabling SACK
666 		 * rather than TS in order to fit in better with old,
667 		 * buggy kernels, but that was deemed to be unnecessary.
668 		 */
669 		ireq->tstamp_ok &= !ireq->sack_ok;
670 	}
671 #endif
672 
673 	/* We always send an MSS option. */
674 	opts->mss = mss;
675 	remaining -= TCPOLEN_MSS_ALIGNED;
676 
677 	if (likely(ireq->wscale_ok)) {
678 		opts->ws = ireq->rcv_wscale;
679 		opts->options |= OPTION_WSCALE;
680 		remaining -= TCPOLEN_WSCALE_ALIGNED;
681 	}
682 	if (likely(ireq->tstamp_ok)) {
683 		opts->options |= OPTION_TS;
684 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
685 		opts->tsecr = req->ts_recent;
686 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
687 	}
688 	if (likely(ireq->sack_ok)) {
689 		opts->options |= OPTION_SACK_ADVERTISE;
690 		if (unlikely(!ireq->tstamp_ok))
691 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
692 	}
693 	if (foc != NULL && foc->len >= 0) {
694 		u32 need = foc->len;
695 
696 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
697 				   TCPOLEN_FASTOPEN_BASE;
698 		need = (need + 3) & ~3U;  /* Align to 32 bits */
699 		if (remaining >= need) {
700 			opts->options |= OPTION_FAST_OPEN_COOKIE;
701 			opts->fastopen_cookie = foc;
702 			remaining -= need;
703 		}
704 	}
705 
706 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
707 
708 	return MAX_TCP_OPTION_SPACE - remaining;
709 }
710 
711 /* Compute TCP options for ESTABLISHED sockets. This is not the
712  * final wire format yet.
713  */
714 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
715 					struct tcp_out_options *opts,
716 					struct tcp_md5sig_key **md5)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 	unsigned int size = 0;
720 	unsigned int eff_sacks;
721 
722 	opts->options = 0;
723 
724 	*md5 = NULL;
725 #ifdef CONFIG_TCP_MD5SIG
726 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
727 		*md5 = tp->af_specific->md5_lookup(sk, sk);
728 		if (*md5) {
729 			opts->options |= OPTION_MD5;
730 			size += TCPOLEN_MD5SIG_ALIGNED;
731 		}
732 	}
733 #endif
734 
735 	if (likely(tp->rx_opt.tstamp_ok)) {
736 		opts->options |= OPTION_TS;
737 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
738 		opts->tsecr = tp->rx_opt.ts_recent;
739 		size += TCPOLEN_TSTAMP_ALIGNED;
740 	}
741 
742 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
743 	if (unlikely(eff_sacks)) {
744 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
745 		opts->num_sack_blocks =
746 			min_t(unsigned int, eff_sacks,
747 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
748 			      TCPOLEN_SACK_PERBLOCK);
749 		size += TCPOLEN_SACK_BASE_ALIGNED +
750 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
751 	}
752 
753 	return size;
754 }
755 
756 
757 /* TCP SMALL QUEUES (TSQ)
758  *
759  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
760  * to reduce RTT and bufferbloat.
761  * We do this using a special skb destructor (tcp_wfree).
762  *
763  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
764  * needs to be reallocated in a driver.
765  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
766  *
767  * Since transmit from skb destructor is forbidden, we use a tasklet
768  * to process all sockets that eventually need to send more skbs.
769  * We use one tasklet per cpu, with its own queue of sockets.
770  */
771 struct tsq_tasklet {
772 	struct tasklet_struct	tasklet;
773 	struct list_head	head; /* queue of tcp sockets */
774 };
775 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
776 
777 static void tcp_tsq_handler(struct sock *sk)
778 {
779 	if ((1 << sk->sk_state) &
780 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
781 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
782 		struct tcp_sock *tp = tcp_sk(sk);
783 
784 		if (tp->lost_out > tp->retrans_out &&
785 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
786 			tcp_mstamp_refresh(tp);
787 			tcp_xmit_retransmit_queue(sk);
788 		}
789 
790 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
791 			       0, GFP_ATOMIC);
792 	}
793 }
794 /*
795  * One tasklet per cpu tries to send more skbs.
796  * We run in tasklet context but need to disable irqs when
797  * transferring tsq->head because tcp_wfree() might
798  * interrupt us (non NAPI drivers)
799  */
800 static void tcp_tasklet_func(unsigned long data)
801 {
802 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
803 	LIST_HEAD(list);
804 	unsigned long flags;
805 	struct list_head *q, *n;
806 	struct tcp_sock *tp;
807 	struct sock *sk;
808 
809 	local_irq_save(flags);
810 	list_splice_init(&tsq->head, &list);
811 	local_irq_restore(flags);
812 
813 	list_for_each_safe(q, n, &list) {
814 		tp = list_entry(q, struct tcp_sock, tsq_node);
815 		list_del(&tp->tsq_node);
816 
817 		sk = (struct sock *)tp;
818 		smp_mb__before_atomic();
819 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
820 
821 		if (!sk->sk_lock.owned &&
822 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
823 			bh_lock_sock(sk);
824 			if (!sock_owned_by_user(sk)) {
825 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
826 				tcp_tsq_handler(sk);
827 			}
828 			bh_unlock_sock(sk);
829 		}
830 
831 		sk_free(sk);
832 	}
833 }
834 
835 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
836 			  TCPF_WRITE_TIMER_DEFERRED |	\
837 			  TCPF_DELACK_TIMER_DEFERRED |	\
838 			  TCPF_MTU_REDUCED_DEFERRED)
839 /**
840  * tcp_release_cb - tcp release_sock() callback
841  * @sk: socket
842  *
843  * called from release_sock() to perform protocol dependent
844  * actions before socket release.
845  */
846 void tcp_release_cb(struct sock *sk)
847 {
848 	unsigned long flags, nflags;
849 
850 	/* perform an atomic operation only if at least one flag is set */
851 	do {
852 		flags = sk->sk_tsq_flags;
853 		if (!(flags & TCP_DEFERRED_ALL))
854 			return;
855 		nflags = flags & ~TCP_DEFERRED_ALL;
856 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
857 
858 	if (flags & TCPF_TSQ_DEFERRED)
859 		tcp_tsq_handler(sk);
860 
861 	/* Here begins the tricky part :
862 	 * We are called from release_sock() with :
863 	 * 1) BH disabled
864 	 * 2) sk_lock.slock spinlock held
865 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
866 	 *
867 	 * But following code is meant to be called from BH handlers,
868 	 * so we should keep BH disabled, but early release socket ownership
869 	 */
870 	sock_release_ownership(sk);
871 
872 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
873 		tcp_write_timer_handler(sk);
874 		__sock_put(sk);
875 	}
876 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
877 		tcp_delack_timer_handler(sk);
878 		__sock_put(sk);
879 	}
880 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
881 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
882 		__sock_put(sk);
883 	}
884 }
885 EXPORT_SYMBOL(tcp_release_cb);
886 
887 void __init tcp_tasklet_init(void)
888 {
889 	int i;
890 
891 	for_each_possible_cpu(i) {
892 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
893 
894 		INIT_LIST_HEAD(&tsq->head);
895 		tasklet_init(&tsq->tasklet,
896 			     tcp_tasklet_func,
897 			     (unsigned long)tsq);
898 	}
899 }
900 
901 /*
902  * Write buffer destructor automatically called from kfree_skb.
903  * We can't xmit new skbs from this context, as we might already
904  * hold qdisc lock.
905  */
906 void tcp_wfree(struct sk_buff *skb)
907 {
908 	struct sock *sk = skb->sk;
909 	struct tcp_sock *tp = tcp_sk(sk);
910 	unsigned long flags, nval, oval;
911 
912 	/* Keep one reference on sk_wmem_alloc.
913 	 * Will be released by sk_free() from here or tcp_tasklet_func()
914 	 */
915 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
916 
917 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
918 	 * Wait until our queues (qdisc + devices) are drained.
919 	 * This gives :
920 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
921 	 * - chance for incoming ACK (processed by another cpu maybe)
922 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
923 	 */
924 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
925 		goto out;
926 
927 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
928 		struct tsq_tasklet *tsq;
929 		bool empty;
930 
931 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
932 			goto out;
933 
934 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
935 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
936 		if (nval != oval)
937 			continue;
938 
939 		/* queue this socket to tasklet queue */
940 		local_irq_save(flags);
941 		tsq = this_cpu_ptr(&tsq_tasklet);
942 		empty = list_empty(&tsq->head);
943 		list_add(&tp->tsq_node, &tsq->head);
944 		if (empty)
945 			tasklet_schedule(&tsq->tasklet);
946 		local_irq_restore(flags);
947 		return;
948 	}
949 out:
950 	sk_free(sk);
951 }
952 
953 /* Note: Called under hard irq.
954  * We can not call TCP stack right away.
955  */
956 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
957 {
958 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
959 	struct sock *sk = (struct sock *)tp;
960 	unsigned long nval, oval;
961 
962 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
963 		struct tsq_tasklet *tsq;
964 		bool empty;
965 
966 		if (oval & TSQF_QUEUED)
967 			break;
968 
969 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
970 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
971 		if (nval != oval)
972 			continue;
973 
974 		if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
975 			break;
976 		/* queue this socket to tasklet queue */
977 		tsq = this_cpu_ptr(&tsq_tasklet);
978 		empty = list_empty(&tsq->head);
979 		list_add(&tp->tsq_node, &tsq->head);
980 		if (empty)
981 			tasklet_schedule(&tsq->tasklet);
982 		break;
983 	}
984 	return HRTIMER_NORESTART;
985 }
986 
987 /* BBR congestion control needs pacing.
988  * Same remark for SO_MAX_PACING_RATE.
989  * sch_fq packet scheduler is efficiently handling pacing,
990  * but is not always installed/used.
991  * Return true if TCP stack should pace packets itself.
992  */
993 static bool tcp_needs_internal_pacing(const struct sock *sk)
994 {
995 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
996 }
997 
998 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
999 {
1000 	u64 len_ns;
1001 	u32 rate;
1002 
1003 	if (!tcp_needs_internal_pacing(sk))
1004 		return;
1005 	rate = sk->sk_pacing_rate;
1006 	if (!rate || rate == ~0U)
1007 		return;
1008 
1009 	/* Should account for header sizes as sch_fq does,
1010 	 * but lets make things simple.
1011 	 */
1012 	len_ns = (u64)skb->len * NSEC_PER_SEC;
1013 	do_div(len_ns, rate);
1014 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
1015 		      ktime_add_ns(ktime_get(), len_ns),
1016 		      HRTIMER_MODE_ABS_PINNED);
1017 }
1018 
1019 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1020 {
1021 	skb->skb_mstamp = tp->tcp_mstamp;
1022 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1023 }
1024 
1025 /* This routine actually transmits TCP packets queued in by
1026  * tcp_do_sendmsg().  This is used by both the initial
1027  * transmission and possible later retransmissions.
1028  * All SKB's seen here are completely headerless.  It is our
1029  * job to build the TCP header, and pass the packet down to
1030  * IP so it can do the same plus pass the packet off to the
1031  * device.
1032  *
1033  * We are working here with either a clone of the original
1034  * SKB, or a fresh unique copy made by the retransmit engine.
1035  */
1036 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1037 			    gfp_t gfp_mask)
1038 {
1039 	const struct inet_connection_sock *icsk = inet_csk(sk);
1040 	struct inet_sock *inet;
1041 	struct tcp_sock *tp;
1042 	struct tcp_skb_cb *tcb;
1043 	struct tcp_out_options opts;
1044 	unsigned int tcp_options_size, tcp_header_size;
1045 	struct sk_buff *oskb = NULL;
1046 	struct tcp_md5sig_key *md5;
1047 	struct tcphdr *th;
1048 	int err;
1049 
1050 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1051 	tp = tcp_sk(sk);
1052 
1053 	if (clone_it) {
1054 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1055 			- tp->snd_una;
1056 		oskb = skb;
1057 
1058 		tcp_skb_tsorted_save(oskb) {
1059 			if (unlikely(skb_cloned(oskb)))
1060 				skb = pskb_copy(oskb, gfp_mask);
1061 			else
1062 				skb = skb_clone(oskb, gfp_mask);
1063 		} tcp_skb_tsorted_restore(oskb);
1064 
1065 		if (unlikely(!skb))
1066 			return -ENOBUFS;
1067 	}
1068 	skb->skb_mstamp = tp->tcp_mstamp;
1069 
1070 	inet = inet_sk(sk);
1071 	tcb = TCP_SKB_CB(skb);
1072 	memset(&opts, 0, sizeof(opts));
1073 
1074 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1075 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1076 	else
1077 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1078 							   &md5);
1079 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1080 
1081 	/* if no packet is in qdisc/device queue, then allow XPS to select
1082 	 * another queue. We can be called from tcp_tsq_handler()
1083 	 * which holds one reference to sk_wmem_alloc.
1084 	 *
1085 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1086 	 * One way to get this would be to set skb->truesize = 2 on them.
1087 	 */
1088 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1089 
1090 	/* If we had to use memory reserve to allocate this skb,
1091 	 * this might cause drops if packet is looped back :
1092 	 * Other socket might not have SOCK_MEMALLOC.
1093 	 * Packets not looped back do not care about pfmemalloc.
1094 	 */
1095 	skb->pfmemalloc = 0;
1096 
1097 	skb_push(skb, tcp_header_size);
1098 	skb_reset_transport_header(skb);
1099 
1100 	skb_orphan(skb);
1101 	skb->sk = sk;
1102 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1103 	skb_set_hash_from_sk(skb, sk);
1104 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1105 
1106 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1107 
1108 	/* Build TCP header and checksum it. */
1109 	th = (struct tcphdr *)skb->data;
1110 	th->source		= inet->inet_sport;
1111 	th->dest		= inet->inet_dport;
1112 	th->seq			= htonl(tcb->seq);
1113 	th->ack_seq		= htonl(tp->rcv_nxt);
1114 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1115 					tcb->tcp_flags);
1116 
1117 	th->check		= 0;
1118 	th->urg_ptr		= 0;
1119 
1120 	/* The urg_mode check is necessary during a below snd_una win probe */
1121 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1122 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1123 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1124 			th->urg = 1;
1125 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1126 			th->urg_ptr = htons(0xFFFF);
1127 			th->urg = 1;
1128 		}
1129 	}
1130 
1131 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1132 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1133 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1134 		th->window      = htons(tcp_select_window(sk));
1135 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1136 	} else {
1137 		/* RFC1323: The window in SYN & SYN/ACK segments
1138 		 * is never scaled.
1139 		 */
1140 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1141 	}
1142 #ifdef CONFIG_TCP_MD5SIG
1143 	/* Calculate the MD5 hash, as we have all we need now */
1144 	if (md5) {
1145 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1146 		tp->af_specific->calc_md5_hash(opts.hash_location,
1147 					       md5, sk, skb);
1148 	}
1149 #endif
1150 
1151 	icsk->icsk_af_ops->send_check(sk, skb);
1152 
1153 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1154 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1155 
1156 	if (skb->len != tcp_header_size) {
1157 		tcp_event_data_sent(tp, sk);
1158 		tp->data_segs_out += tcp_skb_pcount(skb);
1159 		tcp_internal_pacing(sk, skb);
1160 	}
1161 
1162 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1163 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1164 			      tcp_skb_pcount(skb));
1165 
1166 	tp->segs_out += tcp_skb_pcount(skb);
1167 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1168 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1169 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1170 
1171 	/* Our usage of tstamp should remain private */
1172 	skb->tstamp = 0;
1173 
1174 	/* Cleanup our debris for IP stacks */
1175 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1176 			       sizeof(struct inet6_skb_parm)));
1177 
1178 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1179 
1180 	if (unlikely(err > 0)) {
1181 		tcp_enter_cwr(sk);
1182 		err = net_xmit_eval(err);
1183 	}
1184 	if (!err && oskb) {
1185 		tcp_update_skb_after_send(tp, oskb);
1186 		tcp_rate_skb_sent(sk, oskb);
1187 	}
1188 	return err;
1189 }
1190 
1191 /* This routine just queues the buffer for sending.
1192  *
1193  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1194  * otherwise socket can stall.
1195  */
1196 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1197 {
1198 	struct tcp_sock *tp = tcp_sk(sk);
1199 
1200 	/* Advance write_seq and place onto the write_queue. */
1201 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1202 	__skb_header_release(skb);
1203 	tcp_add_write_queue_tail(sk, skb);
1204 	sk->sk_wmem_queued += skb->truesize;
1205 	sk_mem_charge(sk, skb->truesize);
1206 }
1207 
1208 /* Initialize TSO segments for a packet. */
1209 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1210 {
1211 	if (skb->len <= mss_now) {
1212 		/* Avoid the costly divide in the normal
1213 		 * non-TSO case.
1214 		 */
1215 		tcp_skb_pcount_set(skb, 1);
1216 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1217 	} else {
1218 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1219 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1220 	}
1221 }
1222 
1223 /* Pcount in the middle of the write queue got changed, we need to do various
1224  * tweaks to fix counters
1225  */
1226 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1227 {
1228 	struct tcp_sock *tp = tcp_sk(sk);
1229 
1230 	tp->packets_out -= decr;
1231 
1232 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1233 		tp->sacked_out -= decr;
1234 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1235 		tp->retrans_out -= decr;
1236 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1237 		tp->lost_out -= decr;
1238 
1239 	/* Reno case is special. Sigh... */
1240 	if (tcp_is_reno(tp) && decr > 0)
1241 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1242 
1243 	if (tp->lost_skb_hint &&
1244 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1245 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1246 		tp->lost_cnt_hint -= decr;
1247 
1248 	tcp_verify_left_out(tp);
1249 }
1250 
1251 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1252 {
1253 	return TCP_SKB_CB(skb)->txstamp_ack ||
1254 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1255 }
1256 
1257 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1258 {
1259 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1260 
1261 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1262 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1263 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1264 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1265 
1266 		shinfo->tx_flags &= ~tsflags;
1267 		shinfo2->tx_flags |= tsflags;
1268 		swap(shinfo->tskey, shinfo2->tskey);
1269 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1270 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1271 	}
1272 }
1273 
1274 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1275 {
1276 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1277 	TCP_SKB_CB(skb)->eor = 0;
1278 }
1279 
1280 /* Insert buff after skb on the write or rtx queue of sk.  */
1281 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1282 					 struct sk_buff *buff,
1283 					 struct sock *sk,
1284 					 enum tcp_queue tcp_queue)
1285 {
1286 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1287 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1288 	else
1289 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1290 }
1291 
1292 /* Function to create two new TCP segments.  Shrinks the given segment
1293  * to the specified size and appends a new segment with the rest of the
1294  * packet to the list.  This won't be called frequently, I hope.
1295  * Remember, these are still headerless SKBs at this point.
1296  */
1297 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1298 		 struct sk_buff *skb, u32 len,
1299 		 unsigned int mss_now, gfp_t gfp)
1300 {
1301 	struct tcp_sock *tp = tcp_sk(sk);
1302 	struct sk_buff *buff;
1303 	int nsize, old_factor;
1304 	int nlen;
1305 	u8 flags;
1306 
1307 	if (WARN_ON(len > skb->len))
1308 		return -EINVAL;
1309 
1310 	nsize = skb_headlen(skb) - len;
1311 	if (nsize < 0)
1312 		nsize = 0;
1313 
1314 	if (skb_unclone(skb, gfp))
1315 		return -ENOMEM;
1316 
1317 	/* Get a new skb... force flag on. */
1318 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1319 	if (!buff)
1320 		return -ENOMEM; /* We'll just try again later. */
1321 
1322 	sk->sk_wmem_queued += buff->truesize;
1323 	sk_mem_charge(sk, buff->truesize);
1324 	nlen = skb->len - len - nsize;
1325 	buff->truesize += nlen;
1326 	skb->truesize -= nlen;
1327 
1328 	/* Correct the sequence numbers. */
1329 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1330 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1331 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1332 
1333 	/* PSH and FIN should only be set in the second packet. */
1334 	flags = TCP_SKB_CB(skb)->tcp_flags;
1335 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1336 	TCP_SKB_CB(buff)->tcp_flags = flags;
1337 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1338 	tcp_skb_fragment_eor(skb, buff);
1339 
1340 	skb_split(skb, buff, len);
1341 
1342 	buff->ip_summed = CHECKSUM_PARTIAL;
1343 
1344 	buff->tstamp = skb->tstamp;
1345 	tcp_fragment_tstamp(skb, buff);
1346 
1347 	old_factor = tcp_skb_pcount(skb);
1348 
1349 	/* Fix up tso_factor for both original and new SKB.  */
1350 	tcp_set_skb_tso_segs(skb, mss_now);
1351 	tcp_set_skb_tso_segs(buff, mss_now);
1352 
1353 	/* Update delivered info for the new segment */
1354 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1355 
1356 	/* If this packet has been sent out already, we must
1357 	 * adjust the various packet counters.
1358 	 */
1359 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1360 		int diff = old_factor - tcp_skb_pcount(skb) -
1361 			tcp_skb_pcount(buff);
1362 
1363 		if (diff)
1364 			tcp_adjust_pcount(sk, skb, diff);
1365 	}
1366 
1367 	/* Link BUFF into the send queue. */
1368 	__skb_header_release(buff);
1369 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1370 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1371 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1372 
1373 	return 0;
1374 }
1375 
1376 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1377  * data is not copied, but immediately discarded.
1378  */
1379 static int __pskb_trim_head(struct sk_buff *skb, int len)
1380 {
1381 	struct skb_shared_info *shinfo;
1382 	int i, k, eat;
1383 
1384 	eat = min_t(int, len, skb_headlen(skb));
1385 	if (eat) {
1386 		__skb_pull(skb, eat);
1387 		len -= eat;
1388 		if (!len)
1389 			return 0;
1390 	}
1391 	eat = len;
1392 	k = 0;
1393 	shinfo = skb_shinfo(skb);
1394 	for (i = 0; i < shinfo->nr_frags; i++) {
1395 		int size = skb_frag_size(&shinfo->frags[i]);
1396 
1397 		if (size <= eat) {
1398 			skb_frag_unref(skb, i);
1399 			eat -= size;
1400 		} else {
1401 			shinfo->frags[k] = shinfo->frags[i];
1402 			if (eat) {
1403 				shinfo->frags[k].page_offset += eat;
1404 				skb_frag_size_sub(&shinfo->frags[k], eat);
1405 				eat = 0;
1406 			}
1407 			k++;
1408 		}
1409 	}
1410 	shinfo->nr_frags = k;
1411 
1412 	skb->data_len -= len;
1413 	skb->len = skb->data_len;
1414 	return len;
1415 }
1416 
1417 /* Remove acked data from a packet in the transmit queue. */
1418 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1419 {
1420 	u32 delta_truesize;
1421 
1422 	if (skb_unclone(skb, GFP_ATOMIC))
1423 		return -ENOMEM;
1424 
1425 	delta_truesize = __pskb_trim_head(skb, len);
1426 
1427 	TCP_SKB_CB(skb)->seq += len;
1428 	skb->ip_summed = CHECKSUM_PARTIAL;
1429 
1430 	if (delta_truesize) {
1431 		skb->truesize	   -= delta_truesize;
1432 		sk->sk_wmem_queued -= delta_truesize;
1433 		sk_mem_uncharge(sk, delta_truesize);
1434 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1435 	}
1436 
1437 	/* Any change of skb->len requires recalculation of tso factor. */
1438 	if (tcp_skb_pcount(skb) > 1)
1439 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1440 
1441 	return 0;
1442 }
1443 
1444 /* Calculate MSS not accounting any TCP options.  */
1445 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1446 {
1447 	const struct tcp_sock *tp = tcp_sk(sk);
1448 	const struct inet_connection_sock *icsk = inet_csk(sk);
1449 	int mss_now;
1450 
1451 	/* Calculate base mss without TCP options:
1452 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1453 	 */
1454 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1455 
1456 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1457 	if (icsk->icsk_af_ops->net_frag_header_len) {
1458 		const struct dst_entry *dst = __sk_dst_get(sk);
1459 
1460 		if (dst && dst_allfrag(dst))
1461 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1462 	}
1463 
1464 	/* Clamp it (mss_clamp does not include tcp options) */
1465 	if (mss_now > tp->rx_opt.mss_clamp)
1466 		mss_now = tp->rx_opt.mss_clamp;
1467 
1468 	/* Now subtract optional transport overhead */
1469 	mss_now -= icsk->icsk_ext_hdr_len;
1470 
1471 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1472 	if (mss_now < 48)
1473 		mss_now = 48;
1474 	return mss_now;
1475 }
1476 
1477 /* Calculate MSS. Not accounting for SACKs here.  */
1478 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1479 {
1480 	/* Subtract TCP options size, not including SACKs */
1481 	return __tcp_mtu_to_mss(sk, pmtu) -
1482 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1483 }
1484 
1485 /* Inverse of above */
1486 int tcp_mss_to_mtu(struct sock *sk, int mss)
1487 {
1488 	const struct tcp_sock *tp = tcp_sk(sk);
1489 	const struct inet_connection_sock *icsk = inet_csk(sk);
1490 	int mtu;
1491 
1492 	mtu = mss +
1493 	      tp->tcp_header_len +
1494 	      icsk->icsk_ext_hdr_len +
1495 	      icsk->icsk_af_ops->net_header_len;
1496 
1497 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1498 	if (icsk->icsk_af_ops->net_frag_header_len) {
1499 		const struct dst_entry *dst = __sk_dst_get(sk);
1500 
1501 		if (dst && dst_allfrag(dst))
1502 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1503 	}
1504 	return mtu;
1505 }
1506 EXPORT_SYMBOL(tcp_mss_to_mtu);
1507 
1508 /* MTU probing init per socket */
1509 void tcp_mtup_init(struct sock *sk)
1510 {
1511 	struct tcp_sock *tp = tcp_sk(sk);
1512 	struct inet_connection_sock *icsk = inet_csk(sk);
1513 	struct net *net = sock_net(sk);
1514 
1515 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1516 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1517 			       icsk->icsk_af_ops->net_header_len;
1518 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1519 	icsk->icsk_mtup.probe_size = 0;
1520 	if (icsk->icsk_mtup.enabled)
1521 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1522 }
1523 EXPORT_SYMBOL(tcp_mtup_init);
1524 
1525 /* This function synchronize snd mss to current pmtu/exthdr set.
1526 
1527    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1528    for TCP options, but includes only bare TCP header.
1529 
1530    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1531    It is minimum of user_mss and mss received with SYN.
1532    It also does not include TCP options.
1533 
1534    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1535 
1536    tp->mss_cache is current effective sending mss, including
1537    all tcp options except for SACKs. It is evaluated,
1538    taking into account current pmtu, but never exceeds
1539    tp->rx_opt.mss_clamp.
1540 
1541    NOTE1. rfc1122 clearly states that advertised MSS
1542    DOES NOT include either tcp or ip options.
1543 
1544    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1545    are READ ONLY outside this function.		--ANK (980731)
1546  */
1547 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1548 {
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	struct inet_connection_sock *icsk = inet_csk(sk);
1551 	int mss_now;
1552 
1553 	if (icsk->icsk_mtup.search_high > pmtu)
1554 		icsk->icsk_mtup.search_high = pmtu;
1555 
1556 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1557 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1558 
1559 	/* And store cached results */
1560 	icsk->icsk_pmtu_cookie = pmtu;
1561 	if (icsk->icsk_mtup.enabled)
1562 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1563 	tp->mss_cache = mss_now;
1564 
1565 	return mss_now;
1566 }
1567 EXPORT_SYMBOL(tcp_sync_mss);
1568 
1569 /* Compute the current effective MSS, taking SACKs and IP options,
1570  * and even PMTU discovery events into account.
1571  */
1572 unsigned int tcp_current_mss(struct sock *sk)
1573 {
1574 	const struct tcp_sock *tp = tcp_sk(sk);
1575 	const struct dst_entry *dst = __sk_dst_get(sk);
1576 	u32 mss_now;
1577 	unsigned int header_len;
1578 	struct tcp_out_options opts;
1579 	struct tcp_md5sig_key *md5;
1580 
1581 	mss_now = tp->mss_cache;
1582 
1583 	if (dst) {
1584 		u32 mtu = dst_mtu(dst);
1585 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1586 			mss_now = tcp_sync_mss(sk, mtu);
1587 	}
1588 
1589 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1590 		     sizeof(struct tcphdr);
1591 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1592 	 * some common options. If this is an odd packet (because we have SACK
1593 	 * blocks etc) then our calculated header_len will be different, and
1594 	 * we have to adjust mss_now correspondingly */
1595 	if (header_len != tp->tcp_header_len) {
1596 		int delta = (int) header_len - tp->tcp_header_len;
1597 		mss_now -= delta;
1598 	}
1599 
1600 	return mss_now;
1601 }
1602 
1603 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1604  * As additional protections, we do not touch cwnd in retransmission phases,
1605  * and if application hit its sndbuf limit recently.
1606  */
1607 static void tcp_cwnd_application_limited(struct sock *sk)
1608 {
1609 	struct tcp_sock *tp = tcp_sk(sk);
1610 
1611 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1612 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1613 		/* Limited by application or receiver window. */
1614 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1615 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1616 		if (win_used < tp->snd_cwnd) {
1617 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1618 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1619 		}
1620 		tp->snd_cwnd_used = 0;
1621 	}
1622 	tp->snd_cwnd_stamp = tcp_jiffies32;
1623 }
1624 
1625 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1626 {
1627 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1628 	struct tcp_sock *tp = tcp_sk(sk);
1629 
1630 	/* Track the maximum number of outstanding packets in each
1631 	 * window, and remember whether we were cwnd-limited then.
1632 	 */
1633 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1634 	    tp->packets_out > tp->max_packets_out) {
1635 		tp->max_packets_out = tp->packets_out;
1636 		tp->max_packets_seq = tp->snd_nxt;
1637 		tp->is_cwnd_limited = is_cwnd_limited;
1638 	}
1639 
1640 	if (tcp_is_cwnd_limited(sk)) {
1641 		/* Network is feed fully. */
1642 		tp->snd_cwnd_used = 0;
1643 		tp->snd_cwnd_stamp = tcp_jiffies32;
1644 	} else {
1645 		/* Network starves. */
1646 		if (tp->packets_out > tp->snd_cwnd_used)
1647 			tp->snd_cwnd_used = tp->packets_out;
1648 
1649 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1650 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1651 		    !ca_ops->cong_control)
1652 			tcp_cwnd_application_limited(sk);
1653 
1654 		/* The following conditions together indicate the starvation
1655 		 * is caused by insufficient sender buffer:
1656 		 * 1) just sent some data (see tcp_write_xmit)
1657 		 * 2) not cwnd limited (this else condition)
1658 		 * 3) no more data to send (tcp_write_queue_empty())
1659 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1660 		 */
1661 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1662 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1663 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1664 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1665 	}
1666 }
1667 
1668 /* Minshall's variant of the Nagle send check. */
1669 static bool tcp_minshall_check(const struct tcp_sock *tp)
1670 {
1671 	return after(tp->snd_sml, tp->snd_una) &&
1672 		!after(tp->snd_sml, tp->snd_nxt);
1673 }
1674 
1675 /* Update snd_sml if this skb is under mss
1676  * Note that a TSO packet might end with a sub-mss segment
1677  * The test is really :
1678  * if ((skb->len % mss) != 0)
1679  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1680  * But we can avoid doing the divide again given we already have
1681  *  skb_pcount = skb->len / mss_now
1682  */
1683 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1684 				const struct sk_buff *skb)
1685 {
1686 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1687 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1688 }
1689 
1690 /* Return false, if packet can be sent now without violation Nagle's rules:
1691  * 1. It is full sized. (provided by caller in %partial bool)
1692  * 2. Or it contains FIN. (already checked by caller)
1693  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1694  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1695  *    With Minshall's modification: all sent small packets are ACKed.
1696  */
1697 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1698 			    int nonagle)
1699 {
1700 	return partial &&
1701 		((nonagle & TCP_NAGLE_CORK) ||
1702 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1703 }
1704 
1705 /* Return how many segs we'd like on a TSO packet,
1706  * to send one TSO packet per ms
1707  */
1708 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1709 			    int min_tso_segs)
1710 {
1711 	u32 bytes, segs;
1712 
1713 	bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1714 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1715 
1716 	/* Goal is to send at least one packet per ms,
1717 	 * not one big TSO packet every 100 ms.
1718 	 * This preserves ACK clocking and is consistent
1719 	 * with tcp_tso_should_defer() heuristic.
1720 	 */
1721 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1722 
1723 	return segs;
1724 }
1725 
1726 /* Return the number of segments we want in the skb we are transmitting.
1727  * See if congestion control module wants to decide; otherwise, autosize.
1728  */
1729 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1730 {
1731 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1732 	u32 min_tso, tso_segs;
1733 
1734 	min_tso = ca_ops->min_tso_segs ?
1735 			ca_ops->min_tso_segs(sk) :
1736 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1737 
1738 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1739 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1740 }
1741 
1742 /* Returns the portion of skb which can be sent right away */
1743 static unsigned int tcp_mss_split_point(const struct sock *sk,
1744 					const struct sk_buff *skb,
1745 					unsigned int mss_now,
1746 					unsigned int max_segs,
1747 					int nonagle)
1748 {
1749 	const struct tcp_sock *tp = tcp_sk(sk);
1750 	u32 partial, needed, window, max_len;
1751 
1752 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1753 	max_len = mss_now * max_segs;
1754 
1755 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1756 		return max_len;
1757 
1758 	needed = min(skb->len, window);
1759 
1760 	if (max_len <= needed)
1761 		return max_len;
1762 
1763 	partial = needed % mss_now;
1764 	/* If last segment is not a full MSS, check if Nagle rules allow us
1765 	 * to include this last segment in this skb.
1766 	 * Otherwise, we'll split the skb at last MSS boundary
1767 	 */
1768 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1769 		return needed - partial;
1770 
1771 	return needed;
1772 }
1773 
1774 /* Can at least one segment of SKB be sent right now, according to the
1775  * congestion window rules?  If so, return how many segments are allowed.
1776  */
1777 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1778 					 const struct sk_buff *skb)
1779 {
1780 	u32 in_flight, cwnd, halfcwnd;
1781 
1782 	/* Don't be strict about the congestion window for the final FIN.  */
1783 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1784 	    tcp_skb_pcount(skb) == 1)
1785 		return 1;
1786 
1787 	in_flight = tcp_packets_in_flight(tp);
1788 	cwnd = tp->snd_cwnd;
1789 	if (in_flight >= cwnd)
1790 		return 0;
1791 
1792 	/* For better scheduling, ensure we have at least
1793 	 * 2 GSO packets in flight.
1794 	 */
1795 	halfcwnd = max(cwnd >> 1, 1U);
1796 	return min(halfcwnd, cwnd - in_flight);
1797 }
1798 
1799 /* Initialize TSO state of a skb.
1800  * This must be invoked the first time we consider transmitting
1801  * SKB onto the wire.
1802  */
1803 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1804 {
1805 	int tso_segs = tcp_skb_pcount(skb);
1806 
1807 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1808 		tcp_set_skb_tso_segs(skb, mss_now);
1809 		tso_segs = tcp_skb_pcount(skb);
1810 	}
1811 	return tso_segs;
1812 }
1813 
1814 
1815 /* Return true if the Nagle test allows this packet to be
1816  * sent now.
1817  */
1818 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1819 				  unsigned int cur_mss, int nonagle)
1820 {
1821 	/* Nagle rule does not apply to frames, which sit in the middle of the
1822 	 * write_queue (they have no chances to get new data).
1823 	 *
1824 	 * This is implemented in the callers, where they modify the 'nonagle'
1825 	 * argument based upon the location of SKB in the send queue.
1826 	 */
1827 	if (nonagle & TCP_NAGLE_PUSH)
1828 		return true;
1829 
1830 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1831 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1832 		return true;
1833 
1834 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1835 		return true;
1836 
1837 	return false;
1838 }
1839 
1840 /* Does at least the first segment of SKB fit into the send window? */
1841 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1842 			     const struct sk_buff *skb,
1843 			     unsigned int cur_mss)
1844 {
1845 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1846 
1847 	if (skb->len > cur_mss)
1848 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1849 
1850 	return !after(end_seq, tcp_wnd_end(tp));
1851 }
1852 
1853 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1854  * which is put after SKB on the list.  It is very much like
1855  * tcp_fragment() except that it may make several kinds of assumptions
1856  * in order to speed up the splitting operation.  In particular, we
1857  * know that all the data is in scatter-gather pages, and that the
1858  * packet has never been sent out before (and thus is not cloned).
1859  */
1860 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1861 			struct sk_buff *skb, unsigned int len,
1862 			unsigned int mss_now, gfp_t gfp)
1863 {
1864 	struct sk_buff *buff;
1865 	int nlen = skb->len - len;
1866 	u8 flags;
1867 
1868 	/* All of a TSO frame must be composed of paged data.  */
1869 	if (skb->len != skb->data_len)
1870 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1871 
1872 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1873 	if (unlikely(!buff))
1874 		return -ENOMEM;
1875 
1876 	sk->sk_wmem_queued += buff->truesize;
1877 	sk_mem_charge(sk, buff->truesize);
1878 	buff->truesize += nlen;
1879 	skb->truesize -= nlen;
1880 
1881 	/* Correct the sequence numbers. */
1882 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1883 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1884 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1885 
1886 	/* PSH and FIN should only be set in the second packet. */
1887 	flags = TCP_SKB_CB(skb)->tcp_flags;
1888 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1889 	TCP_SKB_CB(buff)->tcp_flags = flags;
1890 
1891 	/* This packet was never sent out yet, so no SACK bits. */
1892 	TCP_SKB_CB(buff)->sacked = 0;
1893 
1894 	tcp_skb_fragment_eor(skb, buff);
1895 
1896 	buff->ip_summed = CHECKSUM_PARTIAL;
1897 	skb_split(skb, buff, len);
1898 	tcp_fragment_tstamp(skb, buff);
1899 
1900 	/* Fix up tso_factor for both original and new SKB.  */
1901 	tcp_set_skb_tso_segs(skb, mss_now);
1902 	tcp_set_skb_tso_segs(buff, mss_now);
1903 
1904 	/* Link BUFF into the send queue. */
1905 	__skb_header_release(buff);
1906 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1907 
1908 	return 0;
1909 }
1910 
1911 /* Try to defer sending, if possible, in order to minimize the amount
1912  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1913  *
1914  * This algorithm is from John Heffner.
1915  */
1916 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1917 				 bool *is_cwnd_limited, u32 max_segs)
1918 {
1919 	const struct inet_connection_sock *icsk = inet_csk(sk);
1920 	u32 age, send_win, cong_win, limit, in_flight;
1921 	struct tcp_sock *tp = tcp_sk(sk);
1922 	struct sk_buff *head;
1923 	int win_divisor;
1924 
1925 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1926 		goto send_now;
1927 
1928 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1929 		goto send_now;
1930 
1931 	/* Avoid bursty behavior by allowing defer
1932 	 * only if the last write was recent.
1933 	 */
1934 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1935 		goto send_now;
1936 
1937 	in_flight = tcp_packets_in_flight(tp);
1938 
1939 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1940 	BUG_ON(tp->snd_cwnd <= in_flight);
1941 
1942 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1943 
1944 	/* From in_flight test above, we know that cwnd > in_flight.  */
1945 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1946 
1947 	limit = min(send_win, cong_win);
1948 
1949 	/* If a full-sized TSO skb can be sent, do it. */
1950 	if (limit >= max_segs * tp->mss_cache)
1951 		goto send_now;
1952 
1953 	/* Middle in queue won't get any more data, full sendable already? */
1954 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1955 		goto send_now;
1956 
1957 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1958 	if (win_divisor) {
1959 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1960 
1961 		/* If at least some fraction of a window is available,
1962 		 * just use it.
1963 		 */
1964 		chunk /= win_divisor;
1965 		if (limit >= chunk)
1966 			goto send_now;
1967 	} else {
1968 		/* Different approach, try not to defer past a single
1969 		 * ACK.  Receiver should ACK every other full sized
1970 		 * frame, so if we have space for more than 3 frames
1971 		 * then send now.
1972 		 */
1973 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1974 			goto send_now;
1975 	}
1976 
1977 	/* TODO : use tsorted_sent_queue ? */
1978 	head = tcp_rtx_queue_head(sk);
1979 	if (!head)
1980 		goto send_now;
1981 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1982 	/* If next ACK is likely to come too late (half srtt), do not defer */
1983 	if (age < (tp->srtt_us >> 4))
1984 		goto send_now;
1985 
1986 	/* Ok, it looks like it is advisable to defer. */
1987 
1988 	if (cong_win < send_win && cong_win <= skb->len)
1989 		*is_cwnd_limited = true;
1990 
1991 	return true;
1992 
1993 send_now:
1994 	return false;
1995 }
1996 
1997 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1998 {
1999 	struct inet_connection_sock *icsk = inet_csk(sk);
2000 	struct tcp_sock *tp = tcp_sk(sk);
2001 	struct net *net = sock_net(sk);
2002 	u32 interval;
2003 	s32 delta;
2004 
2005 	interval = net->ipv4.sysctl_tcp_probe_interval;
2006 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2007 	if (unlikely(delta >= interval * HZ)) {
2008 		int mss = tcp_current_mss(sk);
2009 
2010 		/* Update current search range */
2011 		icsk->icsk_mtup.probe_size = 0;
2012 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2013 			sizeof(struct tcphdr) +
2014 			icsk->icsk_af_ops->net_header_len;
2015 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2016 
2017 		/* Update probe time stamp */
2018 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2019 	}
2020 }
2021 
2022 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2023 {
2024 	struct sk_buff *skb, *next;
2025 
2026 	skb = tcp_send_head(sk);
2027 	tcp_for_write_queue_from_safe(skb, next, sk) {
2028 		if (len <= skb->len)
2029 			break;
2030 
2031 		if (unlikely(TCP_SKB_CB(skb)->eor))
2032 			return false;
2033 
2034 		len -= skb->len;
2035 	}
2036 
2037 	return true;
2038 }
2039 
2040 /* Create a new MTU probe if we are ready.
2041  * MTU probe is regularly attempting to increase the path MTU by
2042  * deliberately sending larger packets.  This discovers routing
2043  * changes resulting in larger path MTUs.
2044  *
2045  * Returns 0 if we should wait to probe (no cwnd available),
2046  *         1 if a probe was sent,
2047  *         -1 otherwise
2048  */
2049 static int tcp_mtu_probe(struct sock *sk)
2050 {
2051 	struct inet_connection_sock *icsk = inet_csk(sk);
2052 	struct tcp_sock *tp = tcp_sk(sk);
2053 	struct sk_buff *skb, *nskb, *next;
2054 	struct net *net = sock_net(sk);
2055 	int probe_size;
2056 	int size_needed;
2057 	int copy, len;
2058 	int mss_now;
2059 	int interval;
2060 
2061 	/* Not currently probing/verifying,
2062 	 * not in recovery,
2063 	 * have enough cwnd, and
2064 	 * not SACKing (the variable headers throw things off)
2065 	 */
2066 	if (likely(!icsk->icsk_mtup.enabled ||
2067 		   icsk->icsk_mtup.probe_size ||
2068 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2069 		   tp->snd_cwnd < 11 ||
2070 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2071 		return -1;
2072 
2073 	/* Use binary search for probe_size between tcp_mss_base,
2074 	 * and current mss_clamp. if (search_high - search_low)
2075 	 * smaller than a threshold, backoff from probing.
2076 	 */
2077 	mss_now = tcp_current_mss(sk);
2078 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2079 				    icsk->icsk_mtup.search_low) >> 1);
2080 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2081 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2082 	/* When misfortune happens, we are reprobing actively,
2083 	 * and then reprobe timer has expired. We stick with current
2084 	 * probing process by not resetting search range to its orignal.
2085 	 */
2086 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2087 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2088 		/* Check whether enough time has elaplased for
2089 		 * another round of probing.
2090 		 */
2091 		tcp_mtu_check_reprobe(sk);
2092 		return -1;
2093 	}
2094 
2095 	/* Have enough data in the send queue to probe? */
2096 	if (tp->write_seq - tp->snd_nxt < size_needed)
2097 		return -1;
2098 
2099 	if (tp->snd_wnd < size_needed)
2100 		return -1;
2101 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2102 		return 0;
2103 
2104 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2105 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2106 		if (!tcp_packets_in_flight(tp))
2107 			return -1;
2108 		else
2109 			return 0;
2110 	}
2111 
2112 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2113 		return -1;
2114 
2115 	/* We're allowed to probe.  Build it now. */
2116 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2117 	if (!nskb)
2118 		return -1;
2119 	sk->sk_wmem_queued += nskb->truesize;
2120 	sk_mem_charge(sk, nskb->truesize);
2121 
2122 	skb = tcp_send_head(sk);
2123 
2124 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2125 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2126 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2127 	TCP_SKB_CB(nskb)->sacked = 0;
2128 	nskb->csum = 0;
2129 	nskb->ip_summed = CHECKSUM_PARTIAL;
2130 
2131 	tcp_insert_write_queue_before(nskb, skb, sk);
2132 	tcp_highest_sack_replace(sk, skb, nskb);
2133 
2134 	len = 0;
2135 	tcp_for_write_queue_from_safe(skb, next, sk) {
2136 		copy = min_t(int, skb->len, probe_size - len);
2137 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2138 
2139 		if (skb->len <= copy) {
2140 			/* We've eaten all the data from this skb.
2141 			 * Throw it away. */
2142 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2143 			/* If this is the last SKB we copy and eor is set
2144 			 * we need to propagate it to the new skb.
2145 			 */
2146 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2147 			tcp_unlink_write_queue(skb, sk);
2148 			sk_wmem_free_skb(sk, skb);
2149 		} else {
2150 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2151 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2152 			if (!skb_shinfo(skb)->nr_frags) {
2153 				skb_pull(skb, copy);
2154 			} else {
2155 				__pskb_trim_head(skb, copy);
2156 				tcp_set_skb_tso_segs(skb, mss_now);
2157 			}
2158 			TCP_SKB_CB(skb)->seq += copy;
2159 		}
2160 
2161 		len += copy;
2162 
2163 		if (len >= probe_size)
2164 			break;
2165 	}
2166 	tcp_init_tso_segs(nskb, nskb->len);
2167 
2168 	/* We're ready to send.  If this fails, the probe will
2169 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2170 	 */
2171 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2172 		/* Decrement cwnd here because we are sending
2173 		 * effectively two packets. */
2174 		tp->snd_cwnd--;
2175 		tcp_event_new_data_sent(sk, nskb);
2176 
2177 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2178 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2179 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2180 
2181 		return 1;
2182 	}
2183 
2184 	return -1;
2185 }
2186 
2187 static bool tcp_pacing_check(const struct sock *sk)
2188 {
2189 	return tcp_needs_internal_pacing(sk) &&
2190 	       hrtimer_active(&tcp_sk(sk)->pacing_timer);
2191 }
2192 
2193 /* TCP Small Queues :
2194  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2195  * (These limits are doubled for retransmits)
2196  * This allows for :
2197  *  - better RTT estimation and ACK scheduling
2198  *  - faster recovery
2199  *  - high rates
2200  * Alas, some drivers / subsystems require a fair amount
2201  * of queued bytes to ensure line rate.
2202  * One example is wifi aggregation (802.11 AMPDU)
2203  */
2204 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2205 				  unsigned int factor)
2206 {
2207 	unsigned int limit;
2208 
2209 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2210 	limit = min_t(u32, limit,
2211 		      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2212 	limit <<= factor;
2213 
2214 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2215 		/* Always send skb if rtx queue is empty.
2216 		 * No need to wait for TX completion to call us back,
2217 		 * after softirq/tasklet schedule.
2218 		 * This helps when TX completions are delayed too much.
2219 		 */
2220 		if (tcp_rtx_queue_empty(sk))
2221 			return false;
2222 
2223 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2224 		/* It is possible TX completion already happened
2225 		 * before we set TSQ_THROTTLED, so we must
2226 		 * test again the condition.
2227 		 */
2228 		smp_mb__after_atomic();
2229 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2230 			return true;
2231 	}
2232 	return false;
2233 }
2234 
2235 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2236 {
2237 	const u32 now = tcp_jiffies32;
2238 	enum tcp_chrono old = tp->chrono_type;
2239 
2240 	if (old > TCP_CHRONO_UNSPEC)
2241 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2242 	tp->chrono_start = now;
2243 	tp->chrono_type = new;
2244 }
2245 
2246 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2247 {
2248 	struct tcp_sock *tp = tcp_sk(sk);
2249 
2250 	/* If there are multiple conditions worthy of tracking in a
2251 	 * chronograph then the highest priority enum takes precedence
2252 	 * over the other conditions. So that if something "more interesting"
2253 	 * starts happening, stop the previous chrono and start a new one.
2254 	 */
2255 	if (type > tp->chrono_type)
2256 		tcp_chrono_set(tp, type);
2257 }
2258 
2259 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2260 {
2261 	struct tcp_sock *tp = tcp_sk(sk);
2262 
2263 
2264 	/* There are multiple conditions worthy of tracking in a
2265 	 * chronograph, so that the highest priority enum takes
2266 	 * precedence over the other conditions (see tcp_chrono_start).
2267 	 * If a condition stops, we only stop chrono tracking if
2268 	 * it's the "most interesting" or current chrono we are
2269 	 * tracking and starts busy chrono if we have pending data.
2270 	 */
2271 	if (tcp_rtx_and_write_queues_empty(sk))
2272 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2273 	else if (type == tp->chrono_type)
2274 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2275 }
2276 
2277 /* This routine writes packets to the network.  It advances the
2278  * send_head.  This happens as incoming acks open up the remote
2279  * window for us.
2280  *
2281  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2282  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2283  * account rare use of URG, this is not a big flaw.
2284  *
2285  * Send at most one packet when push_one > 0. Temporarily ignore
2286  * cwnd limit to force at most one packet out when push_one == 2.
2287 
2288  * Returns true, if no segments are in flight and we have queued segments,
2289  * but cannot send anything now because of SWS or another problem.
2290  */
2291 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2292 			   int push_one, gfp_t gfp)
2293 {
2294 	struct tcp_sock *tp = tcp_sk(sk);
2295 	struct sk_buff *skb;
2296 	unsigned int tso_segs, sent_pkts;
2297 	int cwnd_quota;
2298 	int result;
2299 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2300 	u32 max_segs;
2301 
2302 	sent_pkts = 0;
2303 
2304 	tcp_mstamp_refresh(tp);
2305 	if (!push_one) {
2306 		/* Do MTU probing. */
2307 		result = tcp_mtu_probe(sk);
2308 		if (!result) {
2309 			return false;
2310 		} else if (result > 0) {
2311 			sent_pkts = 1;
2312 		}
2313 	}
2314 
2315 	max_segs = tcp_tso_segs(sk, mss_now);
2316 	while ((skb = tcp_send_head(sk))) {
2317 		unsigned int limit;
2318 
2319 		if (tcp_pacing_check(sk))
2320 			break;
2321 
2322 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2323 		BUG_ON(!tso_segs);
2324 
2325 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2326 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2327 			tcp_update_skb_after_send(tp, skb);
2328 			goto repair; /* Skip network transmission */
2329 		}
2330 
2331 		cwnd_quota = tcp_cwnd_test(tp, skb);
2332 		if (!cwnd_quota) {
2333 			if (push_one == 2)
2334 				/* Force out a loss probe pkt. */
2335 				cwnd_quota = 1;
2336 			else
2337 				break;
2338 		}
2339 
2340 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2341 			is_rwnd_limited = true;
2342 			break;
2343 		}
2344 
2345 		if (tso_segs == 1) {
2346 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2347 						     (tcp_skb_is_last(sk, skb) ?
2348 						      nonagle : TCP_NAGLE_PUSH))))
2349 				break;
2350 		} else {
2351 			if (!push_one &&
2352 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2353 						 max_segs))
2354 				break;
2355 		}
2356 
2357 		limit = mss_now;
2358 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2359 			limit = tcp_mss_split_point(sk, skb, mss_now,
2360 						    min_t(unsigned int,
2361 							  cwnd_quota,
2362 							  max_segs),
2363 						    nonagle);
2364 
2365 		if (skb->len > limit &&
2366 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2367 					  skb, limit, mss_now, gfp)))
2368 			break;
2369 
2370 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2371 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2372 		if (tcp_small_queue_check(sk, skb, 0))
2373 			break;
2374 
2375 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2376 			break;
2377 
2378 repair:
2379 		/* Advance the send_head.  This one is sent out.
2380 		 * This call will increment packets_out.
2381 		 */
2382 		tcp_event_new_data_sent(sk, skb);
2383 
2384 		tcp_minshall_update(tp, mss_now, skb);
2385 		sent_pkts += tcp_skb_pcount(skb);
2386 
2387 		if (push_one)
2388 			break;
2389 	}
2390 
2391 	if (is_rwnd_limited)
2392 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2393 	else
2394 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2395 
2396 	if (likely(sent_pkts)) {
2397 		if (tcp_in_cwnd_reduction(sk))
2398 			tp->prr_out += sent_pkts;
2399 
2400 		/* Send one loss probe per tail loss episode. */
2401 		if (push_one != 2)
2402 			tcp_schedule_loss_probe(sk, false);
2403 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2404 		tcp_cwnd_validate(sk, is_cwnd_limited);
2405 		return false;
2406 	}
2407 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2408 }
2409 
2410 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2411 {
2412 	struct inet_connection_sock *icsk = inet_csk(sk);
2413 	struct tcp_sock *tp = tcp_sk(sk);
2414 	u32 timeout, rto_delta_us;
2415 	int early_retrans;
2416 
2417 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2418 	 * finishes.
2419 	 */
2420 	if (tp->fastopen_rsk)
2421 		return false;
2422 
2423 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2424 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2425 	 * not in loss recovery, that are either limited by cwnd or application.
2426 	 */
2427 	if ((early_retrans != 3 && early_retrans != 4) ||
2428 	    !tp->packets_out || !tcp_is_sack(tp) ||
2429 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2430 	     icsk->icsk_ca_state != TCP_CA_CWR))
2431 		return false;
2432 
2433 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2434 	 * for delayed ack when there's one outstanding packet. If no RTT
2435 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2436 	 */
2437 	if (tp->srtt_us) {
2438 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2439 		if (tp->packets_out == 1)
2440 			timeout += TCP_RTO_MIN;
2441 		else
2442 			timeout += TCP_TIMEOUT_MIN;
2443 	} else {
2444 		timeout = TCP_TIMEOUT_INIT;
2445 	}
2446 
2447 	/* If the RTO formula yields an earlier time, then use that time. */
2448 	rto_delta_us = advancing_rto ?
2449 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2450 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2451 	if (rto_delta_us > 0)
2452 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2453 
2454 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2455 				  TCP_RTO_MAX);
2456 	return true;
2457 }
2458 
2459 /* Thanks to skb fast clones, we can detect if a prior transmit of
2460  * a packet is still in a qdisc or driver queue.
2461  * In this case, there is very little point doing a retransmit !
2462  */
2463 static bool skb_still_in_host_queue(const struct sock *sk,
2464 				    const struct sk_buff *skb)
2465 {
2466 	if (unlikely(skb_fclone_busy(sk, skb))) {
2467 		NET_INC_STATS(sock_net(sk),
2468 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2469 		return true;
2470 	}
2471 	return false;
2472 }
2473 
2474 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2475  * retransmit the last segment.
2476  */
2477 void tcp_send_loss_probe(struct sock *sk)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 	struct sk_buff *skb;
2481 	int pcount;
2482 	int mss = tcp_current_mss(sk);
2483 
2484 	skb = tcp_send_head(sk);
2485 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2486 		pcount = tp->packets_out;
2487 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2488 		if (tp->packets_out > pcount)
2489 			goto probe_sent;
2490 		goto rearm_timer;
2491 	}
2492 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2493 
2494 	/* At most one outstanding TLP retransmission. */
2495 	if (tp->tlp_high_seq)
2496 		goto rearm_timer;
2497 
2498 	/* Retransmit last segment. */
2499 	if (WARN_ON(!skb))
2500 		goto rearm_timer;
2501 
2502 	if (skb_still_in_host_queue(sk, skb))
2503 		goto rearm_timer;
2504 
2505 	pcount = tcp_skb_pcount(skb);
2506 	if (WARN_ON(!pcount))
2507 		goto rearm_timer;
2508 
2509 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2510 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2511 					  (pcount - 1) * mss, mss,
2512 					  GFP_ATOMIC)))
2513 			goto rearm_timer;
2514 		skb = skb_rb_next(skb);
2515 	}
2516 
2517 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2518 		goto rearm_timer;
2519 
2520 	if (__tcp_retransmit_skb(sk, skb, 1))
2521 		goto rearm_timer;
2522 
2523 	/* Record snd_nxt for loss detection. */
2524 	tp->tlp_high_seq = tp->snd_nxt;
2525 
2526 probe_sent:
2527 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2528 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2529 	inet_csk(sk)->icsk_pending = 0;
2530 rearm_timer:
2531 	tcp_rearm_rto(sk);
2532 }
2533 
2534 /* Push out any pending frames which were held back due to
2535  * TCP_CORK or attempt at coalescing tiny packets.
2536  * The socket must be locked by the caller.
2537  */
2538 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2539 			       int nonagle)
2540 {
2541 	/* If we are closed, the bytes will have to remain here.
2542 	 * In time closedown will finish, we empty the write queue and
2543 	 * all will be happy.
2544 	 */
2545 	if (unlikely(sk->sk_state == TCP_CLOSE))
2546 		return;
2547 
2548 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2549 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2550 		tcp_check_probe_timer(sk);
2551 }
2552 
2553 /* Send _single_ skb sitting at the send head. This function requires
2554  * true push pending frames to setup probe timer etc.
2555  */
2556 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2557 {
2558 	struct sk_buff *skb = tcp_send_head(sk);
2559 
2560 	BUG_ON(!skb || skb->len < mss_now);
2561 
2562 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2563 }
2564 
2565 /* This function returns the amount that we can raise the
2566  * usable window based on the following constraints
2567  *
2568  * 1. The window can never be shrunk once it is offered (RFC 793)
2569  * 2. We limit memory per socket
2570  *
2571  * RFC 1122:
2572  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2573  *  RECV.NEXT + RCV.WIN fixed until:
2574  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2575  *
2576  * i.e. don't raise the right edge of the window until you can raise
2577  * it at least MSS bytes.
2578  *
2579  * Unfortunately, the recommended algorithm breaks header prediction,
2580  * since header prediction assumes th->window stays fixed.
2581  *
2582  * Strictly speaking, keeping th->window fixed violates the receiver
2583  * side SWS prevention criteria. The problem is that under this rule
2584  * a stream of single byte packets will cause the right side of the
2585  * window to always advance by a single byte.
2586  *
2587  * Of course, if the sender implements sender side SWS prevention
2588  * then this will not be a problem.
2589  *
2590  * BSD seems to make the following compromise:
2591  *
2592  *	If the free space is less than the 1/4 of the maximum
2593  *	space available and the free space is less than 1/2 mss,
2594  *	then set the window to 0.
2595  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2596  *	Otherwise, just prevent the window from shrinking
2597  *	and from being larger than the largest representable value.
2598  *
2599  * This prevents incremental opening of the window in the regime
2600  * where TCP is limited by the speed of the reader side taking
2601  * data out of the TCP receive queue. It does nothing about
2602  * those cases where the window is constrained on the sender side
2603  * because the pipeline is full.
2604  *
2605  * BSD also seems to "accidentally" limit itself to windows that are a
2606  * multiple of MSS, at least until the free space gets quite small.
2607  * This would appear to be a side effect of the mbuf implementation.
2608  * Combining these two algorithms results in the observed behavior
2609  * of having a fixed window size at almost all times.
2610  *
2611  * Below we obtain similar behavior by forcing the offered window to
2612  * a multiple of the mss when it is feasible to do so.
2613  *
2614  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2615  * Regular options like TIMESTAMP are taken into account.
2616  */
2617 u32 __tcp_select_window(struct sock *sk)
2618 {
2619 	struct inet_connection_sock *icsk = inet_csk(sk);
2620 	struct tcp_sock *tp = tcp_sk(sk);
2621 	/* MSS for the peer's data.  Previous versions used mss_clamp
2622 	 * here.  I don't know if the value based on our guesses
2623 	 * of peer's MSS is better for the performance.  It's more correct
2624 	 * but may be worse for the performance because of rcv_mss
2625 	 * fluctuations.  --SAW  1998/11/1
2626 	 */
2627 	int mss = icsk->icsk_ack.rcv_mss;
2628 	int free_space = tcp_space(sk);
2629 	int allowed_space = tcp_full_space(sk);
2630 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2631 	int window;
2632 
2633 	if (unlikely(mss > full_space)) {
2634 		mss = full_space;
2635 		if (mss <= 0)
2636 			return 0;
2637 	}
2638 	if (free_space < (full_space >> 1)) {
2639 		icsk->icsk_ack.quick = 0;
2640 
2641 		if (tcp_under_memory_pressure(sk))
2642 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2643 					       4U * tp->advmss);
2644 
2645 		/* free_space might become our new window, make sure we don't
2646 		 * increase it due to wscale.
2647 		 */
2648 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2649 
2650 		/* if free space is less than mss estimate, or is below 1/16th
2651 		 * of the maximum allowed, try to move to zero-window, else
2652 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2653 		 * new incoming data is dropped due to memory limits.
2654 		 * With large window, mss test triggers way too late in order
2655 		 * to announce zero window in time before rmem limit kicks in.
2656 		 */
2657 		if (free_space < (allowed_space >> 4) || free_space < mss)
2658 			return 0;
2659 	}
2660 
2661 	if (free_space > tp->rcv_ssthresh)
2662 		free_space = tp->rcv_ssthresh;
2663 
2664 	/* Don't do rounding if we are using window scaling, since the
2665 	 * scaled window will not line up with the MSS boundary anyway.
2666 	 */
2667 	if (tp->rx_opt.rcv_wscale) {
2668 		window = free_space;
2669 
2670 		/* Advertise enough space so that it won't get scaled away.
2671 		 * Import case: prevent zero window announcement if
2672 		 * 1<<rcv_wscale > mss.
2673 		 */
2674 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2675 	} else {
2676 		window = tp->rcv_wnd;
2677 		/* Get the largest window that is a nice multiple of mss.
2678 		 * Window clamp already applied above.
2679 		 * If our current window offering is within 1 mss of the
2680 		 * free space we just keep it. This prevents the divide
2681 		 * and multiply from happening most of the time.
2682 		 * We also don't do any window rounding when the free space
2683 		 * is too small.
2684 		 */
2685 		if (window <= free_space - mss || window > free_space)
2686 			window = rounddown(free_space, mss);
2687 		else if (mss == full_space &&
2688 			 free_space > window + (full_space >> 1))
2689 			window = free_space;
2690 	}
2691 
2692 	return window;
2693 }
2694 
2695 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2696 			     const struct sk_buff *next_skb)
2697 {
2698 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2699 		const struct skb_shared_info *next_shinfo =
2700 			skb_shinfo(next_skb);
2701 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2702 
2703 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2704 		shinfo->tskey = next_shinfo->tskey;
2705 		TCP_SKB_CB(skb)->txstamp_ack |=
2706 			TCP_SKB_CB(next_skb)->txstamp_ack;
2707 	}
2708 }
2709 
2710 /* Collapses two adjacent SKB's during retransmission. */
2711 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2712 {
2713 	struct tcp_sock *tp = tcp_sk(sk);
2714 	struct sk_buff *next_skb = skb_rb_next(skb);
2715 	int skb_size, next_skb_size;
2716 
2717 	skb_size = skb->len;
2718 	next_skb_size = next_skb->len;
2719 
2720 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2721 
2722 	if (next_skb_size) {
2723 		if (next_skb_size <= skb_availroom(skb))
2724 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2725 				      next_skb_size);
2726 		else if (!skb_shift(skb, next_skb, next_skb_size))
2727 			return false;
2728 	}
2729 	tcp_highest_sack_replace(sk, next_skb, skb);
2730 
2731 	/* Update sequence range on original skb. */
2732 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2733 
2734 	/* Merge over control information. This moves PSH/FIN etc. over */
2735 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2736 
2737 	/* All done, get rid of second SKB and account for it so
2738 	 * packet counting does not break.
2739 	 */
2740 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2741 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2742 
2743 	/* changed transmit queue under us so clear hints */
2744 	tcp_clear_retrans_hints_partial(tp);
2745 	if (next_skb == tp->retransmit_skb_hint)
2746 		tp->retransmit_skb_hint = skb;
2747 
2748 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2749 
2750 	tcp_skb_collapse_tstamp(skb, next_skb);
2751 
2752 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2753 	return true;
2754 }
2755 
2756 /* Check if coalescing SKBs is legal. */
2757 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2758 {
2759 	if (tcp_skb_pcount(skb) > 1)
2760 		return false;
2761 	if (skb_cloned(skb))
2762 		return false;
2763 	/* Some heuristics for collapsing over SACK'd could be invented */
2764 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2765 		return false;
2766 
2767 	return true;
2768 }
2769 
2770 /* Collapse packets in the retransmit queue to make to create
2771  * less packets on the wire. This is only done on retransmission.
2772  */
2773 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2774 				     int space)
2775 {
2776 	struct tcp_sock *tp = tcp_sk(sk);
2777 	struct sk_buff *skb = to, *tmp;
2778 	bool first = true;
2779 
2780 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2781 		return;
2782 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2783 		return;
2784 
2785 	skb_rbtree_walk_from_safe(skb, tmp) {
2786 		if (!tcp_can_collapse(sk, skb))
2787 			break;
2788 
2789 		if (!tcp_skb_can_collapse_to(to))
2790 			break;
2791 
2792 		space -= skb->len;
2793 
2794 		if (first) {
2795 			first = false;
2796 			continue;
2797 		}
2798 
2799 		if (space < 0)
2800 			break;
2801 
2802 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2803 			break;
2804 
2805 		if (!tcp_collapse_retrans(sk, to))
2806 			break;
2807 	}
2808 }
2809 
2810 /* This retransmits one SKB.  Policy decisions and retransmit queue
2811  * state updates are done by the caller.  Returns non-zero if an
2812  * error occurred which prevented the send.
2813  */
2814 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2815 {
2816 	struct inet_connection_sock *icsk = inet_csk(sk);
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 	unsigned int cur_mss;
2819 	int diff, len, err;
2820 
2821 
2822 	/* Inconclusive MTU probe */
2823 	if (icsk->icsk_mtup.probe_size)
2824 		icsk->icsk_mtup.probe_size = 0;
2825 
2826 	/* Do not sent more than we queued. 1/4 is reserved for possible
2827 	 * copying overhead: fragmentation, tunneling, mangling etc.
2828 	 */
2829 	if (refcount_read(&sk->sk_wmem_alloc) >
2830 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2831 		  sk->sk_sndbuf))
2832 		return -EAGAIN;
2833 
2834 	if (skb_still_in_host_queue(sk, skb))
2835 		return -EBUSY;
2836 
2837 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2838 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2839 			BUG();
2840 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2841 			return -ENOMEM;
2842 	}
2843 
2844 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2845 		return -EHOSTUNREACH; /* Routing failure or similar. */
2846 
2847 	cur_mss = tcp_current_mss(sk);
2848 
2849 	/* If receiver has shrunk his window, and skb is out of
2850 	 * new window, do not retransmit it. The exception is the
2851 	 * case, when window is shrunk to zero. In this case
2852 	 * our retransmit serves as a zero window probe.
2853 	 */
2854 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2855 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2856 		return -EAGAIN;
2857 
2858 	len = cur_mss * segs;
2859 	if (skb->len > len) {
2860 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2861 				 cur_mss, GFP_ATOMIC))
2862 			return -ENOMEM; /* We'll try again later. */
2863 	} else {
2864 		if (skb_unclone(skb, GFP_ATOMIC))
2865 			return -ENOMEM;
2866 
2867 		diff = tcp_skb_pcount(skb);
2868 		tcp_set_skb_tso_segs(skb, cur_mss);
2869 		diff -= tcp_skb_pcount(skb);
2870 		if (diff)
2871 			tcp_adjust_pcount(sk, skb, diff);
2872 		if (skb->len < cur_mss)
2873 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2874 	}
2875 
2876 	/* RFC3168, section 6.1.1.1. ECN fallback */
2877 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2878 		tcp_ecn_clear_syn(sk, skb);
2879 
2880 	/* Update global and local TCP statistics. */
2881 	segs = tcp_skb_pcount(skb);
2882 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2883 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2884 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2885 	tp->total_retrans += segs;
2886 
2887 	/* make sure skb->data is aligned on arches that require it
2888 	 * and check if ack-trimming & collapsing extended the headroom
2889 	 * beyond what csum_start can cover.
2890 	 */
2891 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2892 		     skb_headroom(skb) >= 0xFFFF)) {
2893 		struct sk_buff *nskb;
2894 
2895 		tcp_skb_tsorted_save(skb) {
2896 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2897 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2898 				     -ENOBUFS;
2899 		} tcp_skb_tsorted_restore(skb);
2900 
2901 		if (!err) {
2902 			tcp_update_skb_after_send(tp, skb);
2903 			tcp_rate_skb_sent(sk, skb);
2904 		}
2905 	} else {
2906 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2907 	}
2908 
2909 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2910 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2911 				  TCP_SKB_CB(skb)->seq, segs, err);
2912 
2913 	if (likely(!err)) {
2914 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2915 		trace_tcp_retransmit_skb(sk, skb);
2916 	} else if (err != -EBUSY) {
2917 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2918 	}
2919 	return err;
2920 }
2921 
2922 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2923 {
2924 	struct tcp_sock *tp = tcp_sk(sk);
2925 	int err = __tcp_retransmit_skb(sk, skb, segs);
2926 
2927 	if (err == 0) {
2928 #if FASTRETRANS_DEBUG > 0
2929 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2930 			net_dbg_ratelimited("retrans_out leaked\n");
2931 		}
2932 #endif
2933 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2934 		tp->retrans_out += tcp_skb_pcount(skb);
2935 
2936 		/* Save stamp of the first retransmit. */
2937 		if (!tp->retrans_stamp)
2938 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2939 
2940 	}
2941 
2942 	if (tp->undo_retrans < 0)
2943 		tp->undo_retrans = 0;
2944 	tp->undo_retrans += tcp_skb_pcount(skb);
2945 	return err;
2946 }
2947 
2948 /* This gets called after a retransmit timeout, and the initially
2949  * retransmitted data is acknowledged.  It tries to continue
2950  * resending the rest of the retransmit queue, until either
2951  * we've sent it all or the congestion window limit is reached.
2952  */
2953 void tcp_xmit_retransmit_queue(struct sock *sk)
2954 {
2955 	const struct inet_connection_sock *icsk = inet_csk(sk);
2956 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2957 	struct tcp_sock *tp = tcp_sk(sk);
2958 	u32 max_segs;
2959 	int mib_idx;
2960 
2961 	if (!tp->packets_out)
2962 		return;
2963 
2964 	rtx_head = tcp_rtx_queue_head(sk);
2965 	skb = tp->retransmit_skb_hint ?: rtx_head;
2966 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2967 	skb_rbtree_walk_from(skb) {
2968 		__u8 sacked;
2969 		int segs;
2970 
2971 		if (tcp_pacing_check(sk))
2972 			break;
2973 
2974 		/* we could do better than to assign each time */
2975 		if (!hole)
2976 			tp->retransmit_skb_hint = skb;
2977 
2978 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2979 		if (segs <= 0)
2980 			return;
2981 		sacked = TCP_SKB_CB(skb)->sacked;
2982 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2983 		 * we need to make sure not sending too bigs TSO packets
2984 		 */
2985 		segs = min_t(int, segs, max_segs);
2986 
2987 		if (tp->retrans_out >= tp->lost_out) {
2988 			break;
2989 		} else if (!(sacked & TCPCB_LOST)) {
2990 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2991 				hole = skb;
2992 			continue;
2993 
2994 		} else {
2995 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2996 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2997 			else
2998 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2999 		}
3000 
3001 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3002 			continue;
3003 
3004 		if (tcp_small_queue_check(sk, skb, 1))
3005 			return;
3006 
3007 		if (tcp_retransmit_skb(sk, skb, segs))
3008 			return;
3009 
3010 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3011 
3012 		if (tcp_in_cwnd_reduction(sk))
3013 			tp->prr_out += tcp_skb_pcount(skb);
3014 
3015 		if (skb == rtx_head &&
3016 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3017 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3018 						  inet_csk(sk)->icsk_rto,
3019 						  TCP_RTO_MAX);
3020 	}
3021 }
3022 
3023 /* We allow to exceed memory limits for FIN packets to expedite
3024  * connection tear down and (memory) recovery.
3025  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3026  * or even be forced to close flow without any FIN.
3027  * In general, we want to allow one skb per socket to avoid hangs
3028  * with edge trigger epoll()
3029  */
3030 void sk_forced_mem_schedule(struct sock *sk, int size)
3031 {
3032 	int amt;
3033 
3034 	if (size <= sk->sk_forward_alloc)
3035 		return;
3036 	amt = sk_mem_pages(size);
3037 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3038 	sk_memory_allocated_add(sk, amt);
3039 
3040 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3041 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3042 }
3043 
3044 /* Send a FIN. The caller locks the socket for us.
3045  * We should try to send a FIN packet really hard, but eventually give up.
3046  */
3047 void tcp_send_fin(struct sock *sk)
3048 {
3049 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3050 	struct tcp_sock *tp = tcp_sk(sk);
3051 
3052 	/* Optimization, tack on the FIN if we have one skb in write queue and
3053 	 * this skb was not yet sent, or we are under memory pressure.
3054 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3055 	 * as TCP stack thinks it has already been transmitted.
3056 	 */
3057 	if (!tskb && tcp_under_memory_pressure(sk))
3058 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3059 
3060 	if (tskb) {
3061 coalesce:
3062 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3063 		TCP_SKB_CB(tskb)->end_seq++;
3064 		tp->write_seq++;
3065 		if (tcp_write_queue_empty(sk)) {
3066 			/* This means tskb was already sent.
3067 			 * Pretend we included the FIN on previous transmit.
3068 			 * We need to set tp->snd_nxt to the value it would have
3069 			 * if FIN had been sent. This is because retransmit path
3070 			 * does not change tp->snd_nxt.
3071 			 */
3072 			tp->snd_nxt++;
3073 			return;
3074 		}
3075 	} else {
3076 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3077 		if (unlikely(!skb)) {
3078 			if (tskb)
3079 				goto coalesce;
3080 			return;
3081 		}
3082 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3083 		skb_reserve(skb, MAX_TCP_HEADER);
3084 		sk_forced_mem_schedule(sk, skb->truesize);
3085 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3086 		tcp_init_nondata_skb(skb, tp->write_seq,
3087 				     TCPHDR_ACK | TCPHDR_FIN);
3088 		tcp_queue_skb(sk, skb);
3089 	}
3090 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3091 }
3092 
3093 /* We get here when a process closes a file descriptor (either due to
3094  * an explicit close() or as a byproduct of exit()'ing) and there
3095  * was unread data in the receive queue.  This behavior is recommended
3096  * by RFC 2525, section 2.17.  -DaveM
3097  */
3098 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3099 {
3100 	struct sk_buff *skb;
3101 
3102 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3103 
3104 	/* NOTE: No TCP options attached and we never retransmit this. */
3105 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3106 	if (!skb) {
3107 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3108 		return;
3109 	}
3110 
3111 	/* Reserve space for headers and prepare control bits. */
3112 	skb_reserve(skb, MAX_TCP_HEADER);
3113 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3114 			     TCPHDR_ACK | TCPHDR_RST);
3115 	tcp_mstamp_refresh(tcp_sk(sk));
3116 	/* Send it off. */
3117 	if (tcp_transmit_skb(sk, skb, 0, priority))
3118 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3119 
3120 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3121 	 * skb here is different to the troublesome skb, so use NULL
3122 	 */
3123 	trace_tcp_send_reset(sk, NULL);
3124 }
3125 
3126 /* Send a crossed SYN-ACK during socket establishment.
3127  * WARNING: This routine must only be called when we have already sent
3128  * a SYN packet that crossed the incoming SYN that caused this routine
3129  * to get called. If this assumption fails then the initial rcv_wnd
3130  * and rcv_wscale values will not be correct.
3131  */
3132 int tcp_send_synack(struct sock *sk)
3133 {
3134 	struct sk_buff *skb;
3135 
3136 	skb = tcp_rtx_queue_head(sk);
3137 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3138 		pr_err("%s: wrong queue state\n", __func__);
3139 		return -EFAULT;
3140 	}
3141 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3142 		if (skb_cloned(skb)) {
3143 			struct sk_buff *nskb;
3144 
3145 			tcp_skb_tsorted_save(skb) {
3146 				nskb = skb_copy(skb, GFP_ATOMIC);
3147 			} tcp_skb_tsorted_restore(skb);
3148 			if (!nskb)
3149 				return -ENOMEM;
3150 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3151 			tcp_rtx_queue_unlink_and_free(skb, sk);
3152 			__skb_header_release(nskb);
3153 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3154 			sk->sk_wmem_queued += nskb->truesize;
3155 			sk_mem_charge(sk, nskb->truesize);
3156 			skb = nskb;
3157 		}
3158 
3159 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3160 		tcp_ecn_send_synack(sk, skb);
3161 	}
3162 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3163 }
3164 
3165 /**
3166  * tcp_make_synack - Prepare a SYN-ACK.
3167  * sk: listener socket
3168  * dst: dst entry attached to the SYNACK
3169  * req: request_sock pointer
3170  *
3171  * Allocate one skb and build a SYNACK packet.
3172  * @dst is consumed : Caller should not use it again.
3173  */
3174 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3175 				struct request_sock *req,
3176 				struct tcp_fastopen_cookie *foc,
3177 				enum tcp_synack_type synack_type)
3178 {
3179 	struct inet_request_sock *ireq = inet_rsk(req);
3180 	const struct tcp_sock *tp = tcp_sk(sk);
3181 	struct tcp_md5sig_key *md5 = NULL;
3182 	struct tcp_out_options opts;
3183 	struct sk_buff *skb;
3184 	int tcp_header_size;
3185 	struct tcphdr *th;
3186 	int mss;
3187 
3188 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3189 	if (unlikely(!skb)) {
3190 		dst_release(dst);
3191 		return NULL;
3192 	}
3193 	/* Reserve space for headers. */
3194 	skb_reserve(skb, MAX_TCP_HEADER);
3195 
3196 	switch (synack_type) {
3197 	case TCP_SYNACK_NORMAL:
3198 		skb_set_owner_w(skb, req_to_sk(req));
3199 		break;
3200 	case TCP_SYNACK_COOKIE:
3201 		/* Under synflood, we do not attach skb to a socket,
3202 		 * to avoid false sharing.
3203 		 */
3204 		break;
3205 	case TCP_SYNACK_FASTOPEN:
3206 		/* sk is a const pointer, because we want to express multiple
3207 		 * cpu might call us concurrently.
3208 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3209 		 */
3210 		skb_set_owner_w(skb, (struct sock *)sk);
3211 		break;
3212 	}
3213 	skb_dst_set(skb, dst);
3214 
3215 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3216 
3217 	memset(&opts, 0, sizeof(opts));
3218 #ifdef CONFIG_SYN_COOKIES
3219 	if (unlikely(req->cookie_ts))
3220 		skb->skb_mstamp = cookie_init_timestamp(req);
3221 	else
3222 #endif
3223 		skb->skb_mstamp = tcp_clock_us();
3224 
3225 #ifdef CONFIG_TCP_MD5SIG
3226 	rcu_read_lock();
3227 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3228 #endif
3229 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3230 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3231 					     foc) + sizeof(*th);
3232 
3233 	skb_push(skb, tcp_header_size);
3234 	skb_reset_transport_header(skb);
3235 
3236 	th = (struct tcphdr *)skb->data;
3237 	memset(th, 0, sizeof(struct tcphdr));
3238 	th->syn = 1;
3239 	th->ack = 1;
3240 	tcp_ecn_make_synack(req, th);
3241 	th->source = htons(ireq->ir_num);
3242 	th->dest = ireq->ir_rmt_port;
3243 	skb->mark = ireq->ir_mark;
3244 	skb->ip_summed = CHECKSUM_PARTIAL;
3245 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3246 	/* XXX data is queued and acked as is. No buffer/window check */
3247 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3248 
3249 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3250 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3251 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3252 	th->doff = (tcp_header_size >> 2);
3253 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3254 
3255 #ifdef CONFIG_TCP_MD5SIG
3256 	/* Okay, we have all we need - do the md5 hash if needed */
3257 	if (md5)
3258 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3259 					       md5, req_to_sk(req), skb);
3260 	rcu_read_unlock();
3261 #endif
3262 
3263 	/* Do not fool tcpdump (if any), clean our debris */
3264 	skb->tstamp = 0;
3265 	return skb;
3266 }
3267 EXPORT_SYMBOL(tcp_make_synack);
3268 
3269 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3270 {
3271 	struct inet_connection_sock *icsk = inet_csk(sk);
3272 	const struct tcp_congestion_ops *ca;
3273 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3274 
3275 	if (ca_key == TCP_CA_UNSPEC)
3276 		return;
3277 
3278 	rcu_read_lock();
3279 	ca = tcp_ca_find_key(ca_key);
3280 	if (likely(ca && try_module_get(ca->owner))) {
3281 		module_put(icsk->icsk_ca_ops->owner);
3282 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3283 		icsk->icsk_ca_ops = ca;
3284 	}
3285 	rcu_read_unlock();
3286 }
3287 
3288 /* Do all connect socket setups that can be done AF independent. */
3289 static void tcp_connect_init(struct sock *sk)
3290 {
3291 	const struct dst_entry *dst = __sk_dst_get(sk);
3292 	struct tcp_sock *tp = tcp_sk(sk);
3293 	__u8 rcv_wscale;
3294 	u32 rcv_wnd;
3295 
3296 	/* We'll fix this up when we get a response from the other end.
3297 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3298 	 */
3299 	tp->tcp_header_len = sizeof(struct tcphdr);
3300 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3301 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3302 
3303 #ifdef CONFIG_TCP_MD5SIG
3304 	if (tp->af_specific->md5_lookup(sk, sk))
3305 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3306 #endif
3307 
3308 	/* If user gave his TCP_MAXSEG, record it to clamp */
3309 	if (tp->rx_opt.user_mss)
3310 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3311 	tp->max_window = 0;
3312 	tcp_mtup_init(sk);
3313 	tcp_sync_mss(sk, dst_mtu(dst));
3314 
3315 	tcp_ca_dst_init(sk, dst);
3316 
3317 	if (!tp->window_clamp)
3318 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3319 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3320 
3321 	tcp_initialize_rcv_mss(sk);
3322 
3323 	/* limit the window selection if the user enforce a smaller rx buffer */
3324 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3325 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3326 		tp->window_clamp = tcp_full_space(sk);
3327 
3328 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3329 	if (rcv_wnd == 0)
3330 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3331 
3332 	tcp_select_initial_window(sk, tcp_full_space(sk),
3333 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3334 				  &tp->rcv_wnd,
3335 				  &tp->window_clamp,
3336 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3337 				  &rcv_wscale,
3338 				  rcv_wnd);
3339 
3340 	tp->rx_opt.rcv_wscale = rcv_wscale;
3341 	tp->rcv_ssthresh = tp->rcv_wnd;
3342 
3343 	sk->sk_err = 0;
3344 	sock_reset_flag(sk, SOCK_DONE);
3345 	tp->snd_wnd = 0;
3346 	tcp_init_wl(tp, 0);
3347 	tp->snd_una = tp->write_seq;
3348 	tp->snd_sml = tp->write_seq;
3349 	tp->snd_up = tp->write_seq;
3350 	tp->snd_nxt = tp->write_seq;
3351 
3352 	if (likely(!tp->repair))
3353 		tp->rcv_nxt = 0;
3354 	else
3355 		tp->rcv_tstamp = tcp_jiffies32;
3356 	tp->rcv_wup = tp->rcv_nxt;
3357 	tp->copied_seq = tp->rcv_nxt;
3358 
3359 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3360 	inet_csk(sk)->icsk_retransmits = 0;
3361 	tcp_clear_retrans(tp);
3362 }
3363 
3364 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3365 {
3366 	struct tcp_sock *tp = tcp_sk(sk);
3367 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3368 
3369 	tcb->end_seq += skb->len;
3370 	__skb_header_release(skb);
3371 	sk->sk_wmem_queued += skb->truesize;
3372 	sk_mem_charge(sk, skb->truesize);
3373 	tp->write_seq = tcb->end_seq;
3374 	tp->packets_out += tcp_skb_pcount(skb);
3375 }
3376 
3377 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3378  * queue a data-only packet after the regular SYN, such that regular SYNs
3379  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3380  * only the SYN sequence, the data are retransmitted in the first ACK.
3381  * If cookie is not cached or other error occurs, falls back to send a
3382  * regular SYN with Fast Open cookie request option.
3383  */
3384 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3385 {
3386 	struct tcp_sock *tp = tcp_sk(sk);
3387 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3388 	int space, err = 0;
3389 	struct sk_buff *syn_data;
3390 
3391 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3392 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3393 		goto fallback;
3394 
3395 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3396 	 * user-MSS. Reserve maximum option space for middleboxes that add
3397 	 * private TCP options. The cost is reduced data space in SYN :(
3398 	 */
3399 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3400 
3401 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3402 		MAX_TCP_OPTION_SPACE;
3403 
3404 	space = min_t(size_t, space, fo->size);
3405 
3406 	/* limit to order-0 allocations */
3407 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3408 
3409 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3410 	if (!syn_data)
3411 		goto fallback;
3412 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3413 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3414 	if (space) {
3415 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3416 					    &fo->data->msg_iter);
3417 		if (unlikely(!copied)) {
3418 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3419 			kfree_skb(syn_data);
3420 			goto fallback;
3421 		}
3422 		if (copied != space) {
3423 			skb_trim(syn_data, copied);
3424 			space = copied;
3425 		}
3426 	}
3427 	/* No more data pending in inet_wait_for_connect() */
3428 	if (space == fo->size)
3429 		fo->data = NULL;
3430 	fo->copied = space;
3431 
3432 	tcp_connect_queue_skb(sk, syn_data);
3433 	if (syn_data->len)
3434 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3435 
3436 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3437 
3438 	syn->skb_mstamp = syn_data->skb_mstamp;
3439 
3440 	/* Now full SYN+DATA was cloned and sent (or not),
3441 	 * remove the SYN from the original skb (syn_data)
3442 	 * we keep in write queue in case of a retransmit, as we
3443 	 * also have the SYN packet (with no data) in the same queue.
3444 	 */
3445 	TCP_SKB_CB(syn_data)->seq++;
3446 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3447 	if (!err) {
3448 		tp->syn_data = (fo->copied > 0);
3449 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3450 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3451 		goto done;
3452 	}
3453 
3454 	/* data was not sent, put it in write_queue */
3455 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3456 	tp->packets_out -= tcp_skb_pcount(syn_data);
3457 
3458 fallback:
3459 	/* Send a regular SYN with Fast Open cookie request option */
3460 	if (fo->cookie.len > 0)
3461 		fo->cookie.len = 0;
3462 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3463 	if (err)
3464 		tp->syn_fastopen = 0;
3465 done:
3466 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3467 	return err;
3468 }
3469 
3470 /* Build a SYN and send it off. */
3471 int tcp_connect(struct sock *sk)
3472 {
3473 	struct tcp_sock *tp = tcp_sk(sk);
3474 	struct sk_buff *buff;
3475 	int err;
3476 
3477 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3478 
3479 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3480 		return -EHOSTUNREACH; /* Routing failure or similar. */
3481 
3482 	tcp_connect_init(sk);
3483 
3484 	if (unlikely(tp->repair)) {
3485 		tcp_finish_connect(sk, NULL);
3486 		return 0;
3487 	}
3488 
3489 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3490 	if (unlikely(!buff))
3491 		return -ENOBUFS;
3492 
3493 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3494 	tcp_mstamp_refresh(tp);
3495 	tp->retrans_stamp = tcp_time_stamp(tp);
3496 	tcp_connect_queue_skb(sk, buff);
3497 	tcp_ecn_send_syn(sk, buff);
3498 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3499 
3500 	/* Send off SYN; include data in Fast Open. */
3501 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3502 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3503 	if (err == -ECONNREFUSED)
3504 		return err;
3505 
3506 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3507 	 * in order to make this packet get counted in tcpOutSegs.
3508 	 */
3509 	tp->snd_nxt = tp->write_seq;
3510 	tp->pushed_seq = tp->write_seq;
3511 	buff = tcp_send_head(sk);
3512 	if (unlikely(buff)) {
3513 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3514 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3515 	}
3516 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3517 
3518 	/* Timer for repeating the SYN until an answer. */
3519 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3520 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3521 	return 0;
3522 }
3523 EXPORT_SYMBOL(tcp_connect);
3524 
3525 /* Send out a delayed ack, the caller does the policy checking
3526  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3527  * for details.
3528  */
3529 void tcp_send_delayed_ack(struct sock *sk)
3530 {
3531 	struct inet_connection_sock *icsk = inet_csk(sk);
3532 	int ato = icsk->icsk_ack.ato;
3533 	unsigned long timeout;
3534 
3535 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3536 
3537 	if (ato > TCP_DELACK_MIN) {
3538 		const struct tcp_sock *tp = tcp_sk(sk);
3539 		int max_ato = HZ / 2;
3540 
3541 		if (icsk->icsk_ack.pingpong ||
3542 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3543 			max_ato = TCP_DELACK_MAX;
3544 
3545 		/* Slow path, intersegment interval is "high". */
3546 
3547 		/* If some rtt estimate is known, use it to bound delayed ack.
3548 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3549 		 * directly.
3550 		 */
3551 		if (tp->srtt_us) {
3552 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3553 					TCP_DELACK_MIN);
3554 
3555 			if (rtt < max_ato)
3556 				max_ato = rtt;
3557 		}
3558 
3559 		ato = min(ato, max_ato);
3560 	}
3561 
3562 	/* Stay within the limit we were given */
3563 	timeout = jiffies + ato;
3564 
3565 	/* Use new timeout only if there wasn't a older one earlier. */
3566 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3567 		/* If delack timer was blocked or is about to expire,
3568 		 * send ACK now.
3569 		 */
3570 		if (icsk->icsk_ack.blocked ||
3571 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3572 			tcp_send_ack(sk);
3573 			return;
3574 		}
3575 
3576 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3577 			timeout = icsk->icsk_ack.timeout;
3578 	}
3579 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3580 	icsk->icsk_ack.timeout = timeout;
3581 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3582 }
3583 
3584 /* This routine sends an ack and also updates the window. */
3585 void tcp_send_ack(struct sock *sk)
3586 {
3587 	struct sk_buff *buff;
3588 
3589 	/* If we have been reset, we may not send again. */
3590 	if (sk->sk_state == TCP_CLOSE)
3591 		return;
3592 
3593 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3594 
3595 	/* We are not putting this on the write queue, so
3596 	 * tcp_transmit_skb() will set the ownership to this
3597 	 * sock.
3598 	 */
3599 	buff = alloc_skb(MAX_TCP_HEADER,
3600 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3601 	if (unlikely(!buff)) {
3602 		inet_csk_schedule_ack(sk);
3603 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3604 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3605 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3606 		return;
3607 	}
3608 
3609 	/* Reserve space for headers and prepare control bits. */
3610 	skb_reserve(buff, MAX_TCP_HEADER);
3611 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3612 
3613 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3614 	 * too much.
3615 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3616 	 */
3617 	skb_set_tcp_pure_ack(buff);
3618 
3619 	/* Send it off, this clears delayed acks for us. */
3620 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3621 }
3622 EXPORT_SYMBOL_GPL(tcp_send_ack);
3623 
3624 /* This routine sends a packet with an out of date sequence
3625  * number. It assumes the other end will try to ack it.
3626  *
3627  * Question: what should we make while urgent mode?
3628  * 4.4BSD forces sending single byte of data. We cannot send
3629  * out of window data, because we have SND.NXT==SND.MAX...
3630  *
3631  * Current solution: to send TWO zero-length segments in urgent mode:
3632  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3633  * out-of-date with SND.UNA-1 to probe window.
3634  */
3635 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3636 {
3637 	struct tcp_sock *tp = tcp_sk(sk);
3638 	struct sk_buff *skb;
3639 
3640 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3641 	skb = alloc_skb(MAX_TCP_HEADER,
3642 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3643 	if (!skb)
3644 		return -1;
3645 
3646 	/* Reserve space for headers and set control bits. */
3647 	skb_reserve(skb, MAX_TCP_HEADER);
3648 	/* Use a previous sequence.  This should cause the other
3649 	 * end to send an ack.  Don't queue or clone SKB, just
3650 	 * send it.
3651 	 */
3652 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3653 	NET_INC_STATS(sock_net(sk), mib);
3654 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3655 }
3656 
3657 /* Called from setsockopt( ... TCP_REPAIR ) */
3658 void tcp_send_window_probe(struct sock *sk)
3659 {
3660 	if (sk->sk_state == TCP_ESTABLISHED) {
3661 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3662 		tcp_mstamp_refresh(tcp_sk(sk));
3663 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3664 	}
3665 }
3666 
3667 /* Initiate keepalive or window probe from timer. */
3668 int tcp_write_wakeup(struct sock *sk, int mib)
3669 {
3670 	struct tcp_sock *tp = tcp_sk(sk);
3671 	struct sk_buff *skb;
3672 
3673 	if (sk->sk_state == TCP_CLOSE)
3674 		return -1;
3675 
3676 	skb = tcp_send_head(sk);
3677 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3678 		int err;
3679 		unsigned int mss = tcp_current_mss(sk);
3680 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3681 
3682 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3683 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3684 
3685 		/* We are probing the opening of a window
3686 		 * but the window size is != 0
3687 		 * must have been a result SWS avoidance ( sender )
3688 		 */
3689 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3690 		    skb->len > mss) {
3691 			seg_size = min(seg_size, mss);
3692 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3693 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3694 					 skb, seg_size, mss, GFP_ATOMIC))
3695 				return -1;
3696 		} else if (!tcp_skb_pcount(skb))
3697 			tcp_set_skb_tso_segs(skb, mss);
3698 
3699 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3700 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3701 		if (!err)
3702 			tcp_event_new_data_sent(sk, skb);
3703 		return err;
3704 	} else {
3705 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3706 			tcp_xmit_probe_skb(sk, 1, mib);
3707 		return tcp_xmit_probe_skb(sk, 0, mib);
3708 	}
3709 }
3710 
3711 /* A window probe timeout has occurred.  If window is not closed send
3712  * a partial packet else a zero probe.
3713  */
3714 void tcp_send_probe0(struct sock *sk)
3715 {
3716 	struct inet_connection_sock *icsk = inet_csk(sk);
3717 	struct tcp_sock *tp = tcp_sk(sk);
3718 	struct net *net = sock_net(sk);
3719 	unsigned long probe_max;
3720 	int err;
3721 
3722 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3723 
3724 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3725 		/* Cancel probe timer, if it is not required. */
3726 		icsk->icsk_probes_out = 0;
3727 		icsk->icsk_backoff = 0;
3728 		return;
3729 	}
3730 
3731 	if (err <= 0) {
3732 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3733 			icsk->icsk_backoff++;
3734 		icsk->icsk_probes_out++;
3735 		probe_max = TCP_RTO_MAX;
3736 	} else {
3737 		/* If packet was not sent due to local congestion,
3738 		 * do not backoff and do not remember icsk_probes_out.
3739 		 * Let local senders to fight for local resources.
3740 		 *
3741 		 * Use accumulated backoff yet.
3742 		 */
3743 		if (!icsk->icsk_probes_out)
3744 			icsk->icsk_probes_out = 1;
3745 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3746 	}
3747 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3748 				  tcp_probe0_when(sk, probe_max),
3749 				  TCP_RTO_MAX);
3750 }
3751 
3752 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3753 {
3754 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3755 	struct flowi fl;
3756 	int res;
3757 
3758 	tcp_rsk(req)->txhash = net_tx_rndhash();
3759 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3760 	if (!res) {
3761 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3762 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3763 		if (unlikely(tcp_passive_fastopen(sk)))
3764 			tcp_sk(sk)->total_retrans++;
3765 		trace_tcp_retransmit_synack(sk, req);
3766 	}
3767 	return res;
3768 }
3769 EXPORT_SYMBOL(tcp_rtx_synack);
3770