1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 49 int push_one, gfp_t gfp); 50 51 /* Account for new data that has been sent to the network. */ 52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 53 { 54 struct inet_connection_sock *icsk = inet_csk(sk); 55 struct tcp_sock *tp = tcp_sk(sk); 56 unsigned int prior_packets = tp->packets_out; 57 58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 59 60 __skb_unlink(skb, &sk->sk_write_queue); 61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 62 63 tp->packets_out += tcp_skb_pcount(skb); 64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 65 tcp_rearm_rto(sk); 66 67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 68 tcp_skb_pcount(skb)); 69 } 70 71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 72 * window scaling factor due to loss of precision. 73 * If window has been shrunk, what should we make? It is not clear at all. 74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 76 * invalid. OK, let's make this for now: 77 */ 78 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 79 { 80 const struct tcp_sock *tp = tcp_sk(sk); 81 82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 83 (tp->rx_opt.wscale_ok && 84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 85 return tp->snd_nxt; 86 else 87 return tcp_wnd_end(tp); 88 } 89 90 /* Calculate mss to advertise in SYN segment. 91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 92 * 93 * 1. It is independent of path mtu. 94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 96 * attached devices, because some buggy hosts are confused by 97 * large MSS. 98 * 4. We do not make 3, we advertise MSS, calculated from first 99 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 100 * This may be overridden via information stored in routing table. 101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 102 * probably even Jumbo". 103 */ 104 static __u16 tcp_advertise_mss(struct sock *sk) 105 { 106 struct tcp_sock *tp = tcp_sk(sk); 107 const struct dst_entry *dst = __sk_dst_get(sk); 108 int mss = tp->advmss; 109 110 if (dst) { 111 unsigned int metric = dst_metric_advmss(dst); 112 113 if (metric < mss) { 114 mss = metric; 115 tp->advmss = mss; 116 } 117 } 118 119 return (__u16)mss; 120 } 121 122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 123 * This is the first part of cwnd validation mechanism. 124 */ 125 void tcp_cwnd_restart(struct sock *sk, s32 delta) 126 { 127 struct tcp_sock *tp = tcp_sk(sk); 128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 129 u32 cwnd = tp->snd_cwnd; 130 131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 132 133 tp->snd_ssthresh = tcp_current_ssthresh(sk); 134 restart_cwnd = min(restart_cwnd, cwnd); 135 136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 137 cwnd >>= 1; 138 tp->snd_cwnd = max(cwnd, restart_cwnd); 139 tp->snd_cwnd_stamp = tcp_jiffies32; 140 tp->snd_cwnd_used = 0; 141 } 142 143 /* Congestion state accounting after a packet has been sent. */ 144 static void tcp_event_data_sent(struct tcp_sock *tp, 145 struct sock *sk) 146 { 147 struct inet_connection_sock *icsk = inet_csk(sk); 148 const u32 now = tcp_jiffies32; 149 150 if (tcp_packets_in_flight(tp) == 0) 151 tcp_ca_event(sk, CA_EVENT_TX_START); 152 153 tp->lsndtime = now; 154 155 /* If it is a reply for ato after last received 156 * packet, enter pingpong mode. 157 */ 158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 159 icsk->icsk_ack.pingpong = 1; 160 } 161 162 /* Account for an ACK we sent. */ 163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 164 { 165 tcp_dec_quickack_mode(sk, pkts); 166 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 167 } 168 169 170 u32 tcp_default_init_rwnd(u32 mss) 171 { 172 /* Initial receive window should be twice of TCP_INIT_CWND to 173 * enable proper sending of new unsent data during fast recovery 174 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 175 * limit when mss is larger than 1460. 176 */ 177 u32 init_rwnd = TCP_INIT_CWND * 2; 178 179 if (mss > 1460) 180 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 181 return init_rwnd; 182 } 183 184 /* Determine a window scaling and initial window to offer. 185 * Based on the assumption that the given amount of space 186 * will be offered. Store the results in the tp structure. 187 * NOTE: for smooth operation initial space offering should 188 * be a multiple of mss if possible. We assume here that mss >= 1. 189 * This MUST be enforced by all callers. 190 */ 191 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 192 __u32 *rcv_wnd, __u32 *window_clamp, 193 int wscale_ok, __u8 *rcv_wscale, 194 __u32 init_rcv_wnd) 195 { 196 unsigned int space = (__space < 0 ? 0 : __space); 197 198 /* If no clamp set the clamp to the max possible scaled window */ 199 if (*window_clamp == 0) 200 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 201 space = min(*window_clamp, space); 202 203 /* Quantize space offering to a multiple of mss if possible. */ 204 if (space > mss) 205 space = rounddown(space, mss); 206 207 /* NOTE: offering an initial window larger than 32767 208 * will break some buggy TCP stacks. If the admin tells us 209 * it is likely we could be speaking with such a buggy stack 210 * we will truncate our initial window offering to 32K-1 211 * unless the remote has sent us a window scaling option, 212 * which we interpret as a sign the remote TCP is not 213 * misinterpreting the window field as a signed quantity. 214 */ 215 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 217 else 218 (*rcv_wnd) = space; 219 220 (*rcv_wscale) = 0; 221 if (wscale_ok) { 222 /* Set window scaling on max possible window */ 223 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 224 space = max_t(u32, space, sysctl_rmem_max); 225 space = min_t(u32, space, *window_clamp); 226 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 227 space >>= 1; 228 (*rcv_wscale)++; 229 } 230 } 231 232 if (mss > (1 << *rcv_wscale)) { 233 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 234 init_rcv_wnd = tcp_default_init_rwnd(mss); 235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 236 } 237 238 /* Set the clamp no higher than max representable value */ 239 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 240 } 241 EXPORT_SYMBOL(tcp_select_initial_window); 242 243 /* Chose a new window to advertise, update state in tcp_sock for the 244 * socket, and return result with RFC1323 scaling applied. The return 245 * value can be stuffed directly into th->window for an outgoing 246 * frame. 247 */ 248 static u16 tcp_select_window(struct sock *sk) 249 { 250 struct tcp_sock *tp = tcp_sk(sk); 251 u32 old_win = tp->rcv_wnd; 252 u32 cur_win = tcp_receive_window(tp); 253 u32 new_win = __tcp_select_window(sk); 254 255 /* Never shrink the offered window */ 256 if (new_win < cur_win) { 257 /* Danger Will Robinson! 258 * Don't update rcv_wup/rcv_wnd here or else 259 * we will not be able to advertise a zero 260 * window in time. --DaveM 261 * 262 * Relax Will Robinson. 263 */ 264 if (new_win == 0) 265 NET_INC_STATS(sock_net(sk), 266 LINUX_MIB_TCPWANTZEROWINDOWADV); 267 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 268 } 269 tp->rcv_wnd = new_win; 270 tp->rcv_wup = tp->rcv_nxt; 271 272 /* Make sure we do not exceed the maximum possible 273 * scaled window. 274 */ 275 if (!tp->rx_opt.rcv_wscale && 276 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 277 new_win = min(new_win, MAX_TCP_WINDOW); 278 else 279 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 280 281 /* RFC1323 scaling applied */ 282 new_win >>= tp->rx_opt.rcv_wscale; 283 284 /* If we advertise zero window, disable fast path. */ 285 if (new_win == 0) { 286 tp->pred_flags = 0; 287 if (old_win) 288 NET_INC_STATS(sock_net(sk), 289 LINUX_MIB_TCPTOZEROWINDOWADV); 290 } else if (old_win == 0) { 291 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 292 } 293 294 return new_win; 295 } 296 297 /* Packet ECN state for a SYN-ACK */ 298 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 299 { 300 const struct tcp_sock *tp = tcp_sk(sk); 301 302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 303 if (!(tp->ecn_flags & TCP_ECN_OK)) 304 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 305 else if (tcp_ca_needs_ecn(sk) || 306 tcp_bpf_ca_needs_ecn(sk)) 307 INET_ECN_xmit(sk); 308 } 309 310 /* Packet ECN state for a SYN. */ 311 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 312 { 313 struct tcp_sock *tp = tcp_sk(sk); 314 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 315 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 316 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 317 318 if (!use_ecn) { 319 const struct dst_entry *dst = __sk_dst_get(sk); 320 321 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 322 use_ecn = true; 323 } 324 325 tp->ecn_flags = 0; 326 327 if (use_ecn) { 328 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 329 tp->ecn_flags = TCP_ECN_OK; 330 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 331 INET_ECN_xmit(sk); 332 } 333 } 334 335 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 336 { 337 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 338 /* tp->ecn_flags are cleared at a later point in time when 339 * SYN ACK is ultimatively being received. 340 */ 341 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 342 } 343 344 static void 345 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 346 { 347 if (inet_rsk(req)->ecn_ok) 348 th->ece = 1; 349 } 350 351 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 352 * be sent. 353 */ 354 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 355 struct tcphdr *th, int tcp_header_len) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 359 if (tp->ecn_flags & TCP_ECN_OK) { 360 /* Not-retransmitted data segment: set ECT and inject CWR. */ 361 if (skb->len != tcp_header_len && 362 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 363 INET_ECN_xmit(sk); 364 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 365 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 366 th->cwr = 1; 367 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 368 } 369 } else if (!tcp_ca_needs_ecn(sk)) { 370 /* ACK or retransmitted segment: clear ECT|CE */ 371 INET_ECN_dontxmit(sk); 372 } 373 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 374 th->ece = 1; 375 } 376 } 377 378 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 379 * auto increment end seqno. 380 */ 381 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 382 { 383 skb->ip_summed = CHECKSUM_PARTIAL; 384 385 TCP_SKB_CB(skb)->tcp_flags = flags; 386 TCP_SKB_CB(skb)->sacked = 0; 387 388 tcp_skb_pcount_set(skb, 1); 389 390 TCP_SKB_CB(skb)->seq = seq; 391 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 392 seq++; 393 TCP_SKB_CB(skb)->end_seq = seq; 394 } 395 396 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 397 { 398 return tp->snd_una != tp->snd_up; 399 } 400 401 #define OPTION_SACK_ADVERTISE (1 << 0) 402 #define OPTION_TS (1 << 1) 403 #define OPTION_MD5 (1 << 2) 404 #define OPTION_WSCALE (1 << 3) 405 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 406 #define OPTION_SMC (1 << 9) 407 408 static void smc_options_write(__be32 *ptr, u16 *options) 409 { 410 #if IS_ENABLED(CONFIG_SMC) 411 if (static_branch_unlikely(&tcp_have_smc)) { 412 if (unlikely(OPTION_SMC & *options)) { 413 *ptr++ = htonl((TCPOPT_NOP << 24) | 414 (TCPOPT_NOP << 16) | 415 (TCPOPT_EXP << 8) | 416 (TCPOLEN_EXP_SMC_BASE)); 417 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 418 } 419 } 420 #endif 421 } 422 423 struct tcp_out_options { 424 u16 options; /* bit field of OPTION_* */ 425 u16 mss; /* 0 to disable */ 426 u8 ws; /* window scale, 0 to disable */ 427 u8 num_sack_blocks; /* number of SACK blocks to include */ 428 u8 hash_size; /* bytes in hash_location */ 429 __u8 *hash_location; /* temporary pointer, overloaded */ 430 __u32 tsval, tsecr; /* need to include OPTION_TS */ 431 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 432 }; 433 434 /* Write previously computed TCP options to the packet. 435 * 436 * Beware: Something in the Internet is very sensitive to the ordering of 437 * TCP options, we learned this through the hard way, so be careful here. 438 * Luckily we can at least blame others for their non-compliance but from 439 * inter-operability perspective it seems that we're somewhat stuck with 440 * the ordering which we have been using if we want to keep working with 441 * those broken things (not that it currently hurts anybody as there isn't 442 * particular reason why the ordering would need to be changed). 443 * 444 * At least SACK_PERM as the first option is known to lead to a disaster 445 * (but it may well be that other scenarios fail similarly). 446 */ 447 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 448 struct tcp_out_options *opts) 449 { 450 u16 options = opts->options; /* mungable copy */ 451 452 if (unlikely(OPTION_MD5 & options)) { 453 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 454 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 455 /* overload cookie hash location */ 456 opts->hash_location = (__u8 *)ptr; 457 ptr += 4; 458 } 459 460 if (unlikely(opts->mss)) { 461 *ptr++ = htonl((TCPOPT_MSS << 24) | 462 (TCPOLEN_MSS << 16) | 463 opts->mss); 464 } 465 466 if (likely(OPTION_TS & options)) { 467 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 468 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 469 (TCPOLEN_SACK_PERM << 16) | 470 (TCPOPT_TIMESTAMP << 8) | 471 TCPOLEN_TIMESTAMP); 472 options &= ~OPTION_SACK_ADVERTISE; 473 } else { 474 *ptr++ = htonl((TCPOPT_NOP << 24) | 475 (TCPOPT_NOP << 16) | 476 (TCPOPT_TIMESTAMP << 8) | 477 TCPOLEN_TIMESTAMP); 478 } 479 *ptr++ = htonl(opts->tsval); 480 *ptr++ = htonl(opts->tsecr); 481 } 482 483 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 484 *ptr++ = htonl((TCPOPT_NOP << 24) | 485 (TCPOPT_NOP << 16) | 486 (TCPOPT_SACK_PERM << 8) | 487 TCPOLEN_SACK_PERM); 488 } 489 490 if (unlikely(OPTION_WSCALE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_WINDOW << 16) | 493 (TCPOLEN_WINDOW << 8) | 494 opts->ws); 495 } 496 497 if (unlikely(opts->num_sack_blocks)) { 498 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 499 tp->duplicate_sack : tp->selective_acks; 500 int this_sack; 501 502 *ptr++ = htonl((TCPOPT_NOP << 24) | 503 (TCPOPT_NOP << 16) | 504 (TCPOPT_SACK << 8) | 505 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 506 TCPOLEN_SACK_PERBLOCK))); 507 508 for (this_sack = 0; this_sack < opts->num_sack_blocks; 509 ++this_sack) { 510 *ptr++ = htonl(sp[this_sack].start_seq); 511 *ptr++ = htonl(sp[this_sack].end_seq); 512 } 513 514 tp->rx_opt.dsack = 0; 515 } 516 517 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 518 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 519 u8 *p = (u8 *)ptr; 520 u32 len; /* Fast Open option length */ 521 522 if (foc->exp) { 523 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 524 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 525 TCPOPT_FASTOPEN_MAGIC); 526 p += TCPOLEN_EXP_FASTOPEN_BASE; 527 } else { 528 len = TCPOLEN_FASTOPEN_BASE + foc->len; 529 *p++ = TCPOPT_FASTOPEN; 530 *p++ = len; 531 } 532 533 memcpy(p, foc->val, foc->len); 534 if ((len & 3) == 2) { 535 p[foc->len] = TCPOPT_NOP; 536 p[foc->len + 1] = TCPOPT_NOP; 537 } 538 ptr += (len + 3) >> 2; 539 } 540 541 smc_options_write(ptr, &options); 542 } 543 544 static void smc_set_option(const struct tcp_sock *tp, 545 struct tcp_out_options *opts, 546 unsigned int *remaining) 547 { 548 #if IS_ENABLED(CONFIG_SMC) 549 if (static_branch_unlikely(&tcp_have_smc)) { 550 if (tp->syn_smc) { 551 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 552 opts->options |= OPTION_SMC; 553 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 554 } 555 } 556 } 557 #endif 558 } 559 560 static void smc_set_option_cond(const struct tcp_sock *tp, 561 const struct inet_request_sock *ireq, 562 struct tcp_out_options *opts, 563 unsigned int *remaining) 564 { 565 #if IS_ENABLED(CONFIG_SMC) 566 if (static_branch_unlikely(&tcp_have_smc)) { 567 if (tp->syn_smc && ireq->smc_ok) { 568 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 569 opts->options |= OPTION_SMC; 570 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 571 } 572 } 573 } 574 #endif 575 } 576 577 /* Compute TCP options for SYN packets. This is not the final 578 * network wire format yet. 579 */ 580 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 581 struct tcp_out_options *opts, 582 struct tcp_md5sig_key **md5) 583 { 584 struct tcp_sock *tp = tcp_sk(sk); 585 unsigned int remaining = MAX_TCP_OPTION_SPACE; 586 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 587 588 *md5 = NULL; 589 #ifdef CONFIG_TCP_MD5SIG 590 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 591 *md5 = tp->af_specific->md5_lookup(sk, sk); 592 if (*md5) { 593 opts->options |= OPTION_MD5; 594 remaining -= TCPOLEN_MD5SIG_ALIGNED; 595 } 596 } 597 #endif 598 599 /* We always get an MSS option. The option bytes which will be seen in 600 * normal data packets should timestamps be used, must be in the MSS 601 * advertised. But we subtract them from tp->mss_cache so that 602 * calculations in tcp_sendmsg are simpler etc. So account for this 603 * fact here if necessary. If we don't do this correctly, as a 604 * receiver we won't recognize data packets as being full sized when we 605 * should, and thus we won't abide by the delayed ACK rules correctly. 606 * SACKs don't matter, we never delay an ACK when we have any of those 607 * going out. */ 608 opts->mss = tcp_advertise_mss(sk); 609 remaining -= TCPOLEN_MSS_ALIGNED; 610 611 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 612 opts->options |= OPTION_TS; 613 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 614 opts->tsecr = tp->rx_opt.ts_recent; 615 remaining -= TCPOLEN_TSTAMP_ALIGNED; 616 } 617 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 618 opts->ws = tp->rx_opt.rcv_wscale; 619 opts->options |= OPTION_WSCALE; 620 remaining -= TCPOLEN_WSCALE_ALIGNED; 621 } 622 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 623 opts->options |= OPTION_SACK_ADVERTISE; 624 if (unlikely(!(OPTION_TS & opts->options))) 625 remaining -= TCPOLEN_SACKPERM_ALIGNED; 626 } 627 628 if (fastopen && fastopen->cookie.len >= 0) { 629 u32 need = fastopen->cookie.len; 630 631 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 632 TCPOLEN_FASTOPEN_BASE; 633 need = (need + 3) & ~3U; /* Align to 32 bits */ 634 if (remaining >= need) { 635 opts->options |= OPTION_FAST_OPEN_COOKIE; 636 opts->fastopen_cookie = &fastopen->cookie; 637 remaining -= need; 638 tp->syn_fastopen = 1; 639 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 640 } 641 } 642 643 smc_set_option(tp, opts, &remaining); 644 645 return MAX_TCP_OPTION_SPACE - remaining; 646 } 647 648 /* Set up TCP options for SYN-ACKs. */ 649 static unsigned int tcp_synack_options(const struct sock *sk, 650 struct request_sock *req, 651 unsigned int mss, struct sk_buff *skb, 652 struct tcp_out_options *opts, 653 const struct tcp_md5sig_key *md5, 654 struct tcp_fastopen_cookie *foc) 655 { 656 struct inet_request_sock *ireq = inet_rsk(req); 657 unsigned int remaining = MAX_TCP_OPTION_SPACE; 658 659 #ifdef CONFIG_TCP_MD5SIG 660 if (md5) { 661 opts->options |= OPTION_MD5; 662 remaining -= TCPOLEN_MD5SIG_ALIGNED; 663 664 /* We can't fit any SACK blocks in a packet with MD5 + TS 665 * options. There was discussion about disabling SACK 666 * rather than TS in order to fit in better with old, 667 * buggy kernels, but that was deemed to be unnecessary. 668 */ 669 ireq->tstamp_ok &= !ireq->sack_ok; 670 } 671 #endif 672 673 /* We always send an MSS option. */ 674 opts->mss = mss; 675 remaining -= TCPOLEN_MSS_ALIGNED; 676 677 if (likely(ireq->wscale_ok)) { 678 opts->ws = ireq->rcv_wscale; 679 opts->options |= OPTION_WSCALE; 680 remaining -= TCPOLEN_WSCALE_ALIGNED; 681 } 682 if (likely(ireq->tstamp_ok)) { 683 opts->options |= OPTION_TS; 684 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 685 opts->tsecr = req->ts_recent; 686 remaining -= TCPOLEN_TSTAMP_ALIGNED; 687 } 688 if (likely(ireq->sack_ok)) { 689 opts->options |= OPTION_SACK_ADVERTISE; 690 if (unlikely(!ireq->tstamp_ok)) 691 remaining -= TCPOLEN_SACKPERM_ALIGNED; 692 } 693 if (foc != NULL && foc->len >= 0) { 694 u32 need = foc->len; 695 696 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 697 TCPOLEN_FASTOPEN_BASE; 698 need = (need + 3) & ~3U; /* Align to 32 bits */ 699 if (remaining >= need) { 700 opts->options |= OPTION_FAST_OPEN_COOKIE; 701 opts->fastopen_cookie = foc; 702 remaining -= need; 703 } 704 } 705 706 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 707 708 return MAX_TCP_OPTION_SPACE - remaining; 709 } 710 711 /* Compute TCP options for ESTABLISHED sockets. This is not the 712 * final wire format yet. 713 */ 714 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 715 struct tcp_out_options *opts, 716 struct tcp_md5sig_key **md5) 717 { 718 struct tcp_sock *tp = tcp_sk(sk); 719 unsigned int size = 0; 720 unsigned int eff_sacks; 721 722 opts->options = 0; 723 724 *md5 = NULL; 725 #ifdef CONFIG_TCP_MD5SIG 726 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 727 *md5 = tp->af_specific->md5_lookup(sk, sk); 728 if (*md5) { 729 opts->options |= OPTION_MD5; 730 size += TCPOLEN_MD5SIG_ALIGNED; 731 } 732 } 733 #endif 734 735 if (likely(tp->rx_opt.tstamp_ok)) { 736 opts->options |= OPTION_TS; 737 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 738 opts->tsecr = tp->rx_opt.ts_recent; 739 size += TCPOLEN_TSTAMP_ALIGNED; 740 } 741 742 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 743 if (unlikely(eff_sacks)) { 744 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 745 opts->num_sack_blocks = 746 min_t(unsigned int, eff_sacks, 747 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 748 TCPOLEN_SACK_PERBLOCK); 749 size += TCPOLEN_SACK_BASE_ALIGNED + 750 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 751 } 752 753 return size; 754 } 755 756 757 /* TCP SMALL QUEUES (TSQ) 758 * 759 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 760 * to reduce RTT and bufferbloat. 761 * We do this using a special skb destructor (tcp_wfree). 762 * 763 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 764 * needs to be reallocated in a driver. 765 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 766 * 767 * Since transmit from skb destructor is forbidden, we use a tasklet 768 * to process all sockets that eventually need to send more skbs. 769 * We use one tasklet per cpu, with its own queue of sockets. 770 */ 771 struct tsq_tasklet { 772 struct tasklet_struct tasklet; 773 struct list_head head; /* queue of tcp sockets */ 774 }; 775 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 776 777 static void tcp_tsq_handler(struct sock *sk) 778 { 779 if ((1 << sk->sk_state) & 780 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 781 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 782 struct tcp_sock *tp = tcp_sk(sk); 783 784 if (tp->lost_out > tp->retrans_out && 785 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 786 tcp_mstamp_refresh(tp); 787 tcp_xmit_retransmit_queue(sk); 788 } 789 790 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 791 0, GFP_ATOMIC); 792 } 793 } 794 /* 795 * One tasklet per cpu tries to send more skbs. 796 * We run in tasklet context but need to disable irqs when 797 * transferring tsq->head because tcp_wfree() might 798 * interrupt us (non NAPI drivers) 799 */ 800 static void tcp_tasklet_func(unsigned long data) 801 { 802 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 803 LIST_HEAD(list); 804 unsigned long flags; 805 struct list_head *q, *n; 806 struct tcp_sock *tp; 807 struct sock *sk; 808 809 local_irq_save(flags); 810 list_splice_init(&tsq->head, &list); 811 local_irq_restore(flags); 812 813 list_for_each_safe(q, n, &list) { 814 tp = list_entry(q, struct tcp_sock, tsq_node); 815 list_del(&tp->tsq_node); 816 817 sk = (struct sock *)tp; 818 smp_mb__before_atomic(); 819 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 820 821 if (!sk->sk_lock.owned && 822 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 823 bh_lock_sock(sk); 824 if (!sock_owned_by_user(sk)) { 825 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 826 tcp_tsq_handler(sk); 827 } 828 bh_unlock_sock(sk); 829 } 830 831 sk_free(sk); 832 } 833 } 834 835 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 836 TCPF_WRITE_TIMER_DEFERRED | \ 837 TCPF_DELACK_TIMER_DEFERRED | \ 838 TCPF_MTU_REDUCED_DEFERRED) 839 /** 840 * tcp_release_cb - tcp release_sock() callback 841 * @sk: socket 842 * 843 * called from release_sock() to perform protocol dependent 844 * actions before socket release. 845 */ 846 void tcp_release_cb(struct sock *sk) 847 { 848 unsigned long flags, nflags; 849 850 /* perform an atomic operation only if at least one flag is set */ 851 do { 852 flags = sk->sk_tsq_flags; 853 if (!(flags & TCP_DEFERRED_ALL)) 854 return; 855 nflags = flags & ~TCP_DEFERRED_ALL; 856 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 857 858 if (flags & TCPF_TSQ_DEFERRED) 859 tcp_tsq_handler(sk); 860 861 /* Here begins the tricky part : 862 * We are called from release_sock() with : 863 * 1) BH disabled 864 * 2) sk_lock.slock spinlock held 865 * 3) socket owned by us (sk->sk_lock.owned == 1) 866 * 867 * But following code is meant to be called from BH handlers, 868 * so we should keep BH disabled, but early release socket ownership 869 */ 870 sock_release_ownership(sk); 871 872 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 873 tcp_write_timer_handler(sk); 874 __sock_put(sk); 875 } 876 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 877 tcp_delack_timer_handler(sk); 878 __sock_put(sk); 879 } 880 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 881 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 882 __sock_put(sk); 883 } 884 } 885 EXPORT_SYMBOL(tcp_release_cb); 886 887 void __init tcp_tasklet_init(void) 888 { 889 int i; 890 891 for_each_possible_cpu(i) { 892 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 893 894 INIT_LIST_HEAD(&tsq->head); 895 tasklet_init(&tsq->tasklet, 896 tcp_tasklet_func, 897 (unsigned long)tsq); 898 } 899 } 900 901 /* 902 * Write buffer destructor automatically called from kfree_skb. 903 * We can't xmit new skbs from this context, as we might already 904 * hold qdisc lock. 905 */ 906 void tcp_wfree(struct sk_buff *skb) 907 { 908 struct sock *sk = skb->sk; 909 struct tcp_sock *tp = tcp_sk(sk); 910 unsigned long flags, nval, oval; 911 912 /* Keep one reference on sk_wmem_alloc. 913 * Will be released by sk_free() from here or tcp_tasklet_func() 914 */ 915 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 916 917 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 918 * Wait until our queues (qdisc + devices) are drained. 919 * This gives : 920 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 921 * - chance for incoming ACK (processed by another cpu maybe) 922 * to migrate this flow (skb->ooo_okay will be eventually set) 923 */ 924 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 925 goto out; 926 927 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 928 struct tsq_tasklet *tsq; 929 bool empty; 930 931 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 932 goto out; 933 934 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 935 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 936 if (nval != oval) 937 continue; 938 939 /* queue this socket to tasklet queue */ 940 local_irq_save(flags); 941 tsq = this_cpu_ptr(&tsq_tasklet); 942 empty = list_empty(&tsq->head); 943 list_add(&tp->tsq_node, &tsq->head); 944 if (empty) 945 tasklet_schedule(&tsq->tasklet); 946 local_irq_restore(flags); 947 return; 948 } 949 out: 950 sk_free(sk); 951 } 952 953 /* Note: Called under hard irq. 954 * We can not call TCP stack right away. 955 */ 956 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 957 { 958 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 959 struct sock *sk = (struct sock *)tp; 960 unsigned long nval, oval; 961 962 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 963 struct tsq_tasklet *tsq; 964 bool empty; 965 966 if (oval & TSQF_QUEUED) 967 break; 968 969 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 970 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 971 if (nval != oval) 972 continue; 973 974 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc)) 975 break; 976 /* queue this socket to tasklet queue */ 977 tsq = this_cpu_ptr(&tsq_tasklet); 978 empty = list_empty(&tsq->head); 979 list_add(&tp->tsq_node, &tsq->head); 980 if (empty) 981 tasklet_schedule(&tsq->tasklet); 982 break; 983 } 984 return HRTIMER_NORESTART; 985 } 986 987 /* BBR congestion control needs pacing. 988 * Same remark for SO_MAX_PACING_RATE. 989 * sch_fq packet scheduler is efficiently handling pacing, 990 * but is not always installed/used. 991 * Return true if TCP stack should pace packets itself. 992 */ 993 static bool tcp_needs_internal_pacing(const struct sock *sk) 994 { 995 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 996 } 997 998 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 999 { 1000 u64 len_ns; 1001 u32 rate; 1002 1003 if (!tcp_needs_internal_pacing(sk)) 1004 return; 1005 rate = sk->sk_pacing_rate; 1006 if (!rate || rate == ~0U) 1007 return; 1008 1009 /* Should account for header sizes as sch_fq does, 1010 * but lets make things simple. 1011 */ 1012 len_ns = (u64)skb->len * NSEC_PER_SEC; 1013 do_div(len_ns, rate); 1014 hrtimer_start(&tcp_sk(sk)->pacing_timer, 1015 ktime_add_ns(ktime_get(), len_ns), 1016 HRTIMER_MODE_ABS_PINNED); 1017 } 1018 1019 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 1020 { 1021 skb->skb_mstamp = tp->tcp_mstamp; 1022 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1023 } 1024 1025 /* This routine actually transmits TCP packets queued in by 1026 * tcp_do_sendmsg(). This is used by both the initial 1027 * transmission and possible later retransmissions. 1028 * All SKB's seen here are completely headerless. It is our 1029 * job to build the TCP header, and pass the packet down to 1030 * IP so it can do the same plus pass the packet off to the 1031 * device. 1032 * 1033 * We are working here with either a clone of the original 1034 * SKB, or a fresh unique copy made by the retransmit engine. 1035 */ 1036 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1037 gfp_t gfp_mask) 1038 { 1039 const struct inet_connection_sock *icsk = inet_csk(sk); 1040 struct inet_sock *inet; 1041 struct tcp_sock *tp; 1042 struct tcp_skb_cb *tcb; 1043 struct tcp_out_options opts; 1044 unsigned int tcp_options_size, tcp_header_size; 1045 struct sk_buff *oskb = NULL; 1046 struct tcp_md5sig_key *md5; 1047 struct tcphdr *th; 1048 int err; 1049 1050 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1051 tp = tcp_sk(sk); 1052 1053 if (clone_it) { 1054 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1055 - tp->snd_una; 1056 oskb = skb; 1057 1058 tcp_skb_tsorted_save(oskb) { 1059 if (unlikely(skb_cloned(oskb))) 1060 skb = pskb_copy(oskb, gfp_mask); 1061 else 1062 skb = skb_clone(oskb, gfp_mask); 1063 } tcp_skb_tsorted_restore(oskb); 1064 1065 if (unlikely(!skb)) 1066 return -ENOBUFS; 1067 } 1068 skb->skb_mstamp = tp->tcp_mstamp; 1069 1070 inet = inet_sk(sk); 1071 tcb = TCP_SKB_CB(skb); 1072 memset(&opts, 0, sizeof(opts)); 1073 1074 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1075 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1076 else 1077 tcp_options_size = tcp_established_options(sk, skb, &opts, 1078 &md5); 1079 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1080 1081 /* if no packet is in qdisc/device queue, then allow XPS to select 1082 * another queue. We can be called from tcp_tsq_handler() 1083 * which holds one reference to sk_wmem_alloc. 1084 * 1085 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1086 * One way to get this would be to set skb->truesize = 2 on them. 1087 */ 1088 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1089 1090 /* If we had to use memory reserve to allocate this skb, 1091 * this might cause drops if packet is looped back : 1092 * Other socket might not have SOCK_MEMALLOC. 1093 * Packets not looped back do not care about pfmemalloc. 1094 */ 1095 skb->pfmemalloc = 0; 1096 1097 skb_push(skb, tcp_header_size); 1098 skb_reset_transport_header(skb); 1099 1100 skb_orphan(skb); 1101 skb->sk = sk; 1102 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1103 skb_set_hash_from_sk(skb, sk); 1104 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1105 1106 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1107 1108 /* Build TCP header and checksum it. */ 1109 th = (struct tcphdr *)skb->data; 1110 th->source = inet->inet_sport; 1111 th->dest = inet->inet_dport; 1112 th->seq = htonl(tcb->seq); 1113 th->ack_seq = htonl(tp->rcv_nxt); 1114 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1115 tcb->tcp_flags); 1116 1117 th->check = 0; 1118 th->urg_ptr = 0; 1119 1120 /* The urg_mode check is necessary during a below snd_una win probe */ 1121 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1122 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1123 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1124 th->urg = 1; 1125 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1126 th->urg_ptr = htons(0xFFFF); 1127 th->urg = 1; 1128 } 1129 } 1130 1131 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1132 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1133 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1134 th->window = htons(tcp_select_window(sk)); 1135 tcp_ecn_send(sk, skb, th, tcp_header_size); 1136 } else { 1137 /* RFC1323: The window in SYN & SYN/ACK segments 1138 * is never scaled. 1139 */ 1140 th->window = htons(min(tp->rcv_wnd, 65535U)); 1141 } 1142 #ifdef CONFIG_TCP_MD5SIG 1143 /* Calculate the MD5 hash, as we have all we need now */ 1144 if (md5) { 1145 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1146 tp->af_specific->calc_md5_hash(opts.hash_location, 1147 md5, sk, skb); 1148 } 1149 #endif 1150 1151 icsk->icsk_af_ops->send_check(sk, skb); 1152 1153 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1154 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1155 1156 if (skb->len != tcp_header_size) { 1157 tcp_event_data_sent(tp, sk); 1158 tp->data_segs_out += tcp_skb_pcount(skb); 1159 tcp_internal_pacing(sk, skb); 1160 } 1161 1162 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1163 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1164 tcp_skb_pcount(skb)); 1165 1166 tp->segs_out += tcp_skb_pcount(skb); 1167 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1168 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1169 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1170 1171 /* Our usage of tstamp should remain private */ 1172 skb->tstamp = 0; 1173 1174 /* Cleanup our debris for IP stacks */ 1175 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1176 sizeof(struct inet6_skb_parm))); 1177 1178 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1179 1180 if (unlikely(err > 0)) { 1181 tcp_enter_cwr(sk); 1182 err = net_xmit_eval(err); 1183 } 1184 if (!err && oskb) { 1185 tcp_update_skb_after_send(tp, oskb); 1186 tcp_rate_skb_sent(sk, oskb); 1187 } 1188 return err; 1189 } 1190 1191 /* This routine just queues the buffer for sending. 1192 * 1193 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1194 * otherwise socket can stall. 1195 */ 1196 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1197 { 1198 struct tcp_sock *tp = tcp_sk(sk); 1199 1200 /* Advance write_seq and place onto the write_queue. */ 1201 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1202 __skb_header_release(skb); 1203 tcp_add_write_queue_tail(sk, skb); 1204 sk->sk_wmem_queued += skb->truesize; 1205 sk_mem_charge(sk, skb->truesize); 1206 } 1207 1208 /* Initialize TSO segments for a packet. */ 1209 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1210 { 1211 if (skb->len <= mss_now) { 1212 /* Avoid the costly divide in the normal 1213 * non-TSO case. 1214 */ 1215 tcp_skb_pcount_set(skb, 1); 1216 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1217 } else { 1218 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1219 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1220 } 1221 } 1222 1223 /* Pcount in the middle of the write queue got changed, we need to do various 1224 * tweaks to fix counters 1225 */ 1226 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1227 { 1228 struct tcp_sock *tp = tcp_sk(sk); 1229 1230 tp->packets_out -= decr; 1231 1232 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1233 tp->sacked_out -= decr; 1234 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1235 tp->retrans_out -= decr; 1236 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1237 tp->lost_out -= decr; 1238 1239 /* Reno case is special. Sigh... */ 1240 if (tcp_is_reno(tp) && decr > 0) 1241 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1242 1243 if (tp->lost_skb_hint && 1244 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1245 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1246 tp->lost_cnt_hint -= decr; 1247 1248 tcp_verify_left_out(tp); 1249 } 1250 1251 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1252 { 1253 return TCP_SKB_CB(skb)->txstamp_ack || 1254 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1255 } 1256 1257 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1258 { 1259 struct skb_shared_info *shinfo = skb_shinfo(skb); 1260 1261 if (unlikely(tcp_has_tx_tstamp(skb)) && 1262 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1263 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1264 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1265 1266 shinfo->tx_flags &= ~tsflags; 1267 shinfo2->tx_flags |= tsflags; 1268 swap(shinfo->tskey, shinfo2->tskey); 1269 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1270 TCP_SKB_CB(skb)->txstamp_ack = 0; 1271 } 1272 } 1273 1274 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1275 { 1276 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1277 TCP_SKB_CB(skb)->eor = 0; 1278 } 1279 1280 /* Insert buff after skb on the write or rtx queue of sk. */ 1281 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1282 struct sk_buff *buff, 1283 struct sock *sk, 1284 enum tcp_queue tcp_queue) 1285 { 1286 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1287 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1288 else 1289 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1290 } 1291 1292 /* Function to create two new TCP segments. Shrinks the given segment 1293 * to the specified size and appends a new segment with the rest of the 1294 * packet to the list. This won't be called frequently, I hope. 1295 * Remember, these are still headerless SKBs at this point. 1296 */ 1297 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1298 struct sk_buff *skb, u32 len, 1299 unsigned int mss_now, gfp_t gfp) 1300 { 1301 struct tcp_sock *tp = tcp_sk(sk); 1302 struct sk_buff *buff; 1303 int nsize, old_factor; 1304 int nlen; 1305 u8 flags; 1306 1307 if (WARN_ON(len > skb->len)) 1308 return -EINVAL; 1309 1310 nsize = skb_headlen(skb) - len; 1311 if (nsize < 0) 1312 nsize = 0; 1313 1314 if (skb_unclone(skb, gfp)) 1315 return -ENOMEM; 1316 1317 /* Get a new skb... force flag on. */ 1318 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1319 if (!buff) 1320 return -ENOMEM; /* We'll just try again later. */ 1321 1322 sk->sk_wmem_queued += buff->truesize; 1323 sk_mem_charge(sk, buff->truesize); 1324 nlen = skb->len - len - nsize; 1325 buff->truesize += nlen; 1326 skb->truesize -= nlen; 1327 1328 /* Correct the sequence numbers. */ 1329 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1330 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1331 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1332 1333 /* PSH and FIN should only be set in the second packet. */ 1334 flags = TCP_SKB_CB(skb)->tcp_flags; 1335 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1336 TCP_SKB_CB(buff)->tcp_flags = flags; 1337 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1338 tcp_skb_fragment_eor(skb, buff); 1339 1340 skb_split(skb, buff, len); 1341 1342 buff->ip_summed = CHECKSUM_PARTIAL; 1343 1344 buff->tstamp = skb->tstamp; 1345 tcp_fragment_tstamp(skb, buff); 1346 1347 old_factor = tcp_skb_pcount(skb); 1348 1349 /* Fix up tso_factor for both original and new SKB. */ 1350 tcp_set_skb_tso_segs(skb, mss_now); 1351 tcp_set_skb_tso_segs(buff, mss_now); 1352 1353 /* Update delivered info for the new segment */ 1354 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1355 1356 /* If this packet has been sent out already, we must 1357 * adjust the various packet counters. 1358 */ 1359 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1360 int diff = old_factor - tcp_skb_pcount(skb) - 1361 tcp_skb_pcount(buff); 1362 1363 if (diff) 1364 tcp_adjust_pcount(sk, skb, diff); 1365 } 1366 1367 /* Link BUFF into the send queue. */ 1368 __skb_header_release(buff); 1369 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1370 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1371 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1372 1373 return 0; 1374 } 1375 1376 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1377 * data is not copied, but immediately discarded. 1378 */ 1379 static int __pskb_trim_head(struct sk_buff *skb, int len) 1380 { 1381 struct skb_shared_info *shinfo; 1382 int i, k, eat; 1383 1384 eat = min_t(int, len, skb_headlen(skb)); 1385 if (eat) { 1386 __skb_pull(skb, eat); 1387 len -= eat; 1388 if (!len) 1389 return 0; 1390 } 1391 eat = len; 1392 k = 0; 1393 shinfo = skb_shinfo(skb); 1394 for (i = 0; i < shinfo->nr_frags; i++) { 1395 int size = skb_frag_size(&shinfo->frags[i]); 1396 1397 if (size <= eat) { 1398 skb_frag_unref(skb, i); 1399 eat -= size; 1400 } else { 1401 shinfo->frags[k] = shinfo->frags[i]; 1402 if (eat) { 1403 shinfo->frags[k].page_offset += eat; 1404 skb_frag_size_sub(&shinfo->frags[k], eat); 1405 eat = 0; 1406 } 1407 k++; 1408 } 1409 } 1410 shinfo->nr_frags = k; 1411 1412 skb->data_len -= len; 1413 skb->len = skb->data_len; 1414 return len; 1415 } 1416 1417 /* Remove acked data from a packet in the transmit queue. */ 1418 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1419 { 1420 u32 delta_truesize; 1421 1422 if (skb_unclone(skb, GFP_ATOMIC)) 1423 return -ENOMEM; 1424 1425 delta_truesize = __pskb_trim_head(skb, len); 1426 1427 TCP_SKB_CB(skb)->seq += len; 1428 skb->ip_summed = CHECKSUM_PARTIAL; 1429 1430 if (delta_truesize) { 1431 skb->truesize -= delta_truesize; 1432 sk->sk_wmem_queued -= delta_truesize; 1433 sk_mem_uncharge(sk, delta_truesize); 1434 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1435 } 1436 1437 /* Any change of skb->len requires recalculation of tso factor. */ 1438 if (tcp_skb_pcount(skb) > 1) 1439 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1440 1441 return 0; 1442 } 1443 1444 /* Calculate MSS not accounting any TCP options. */ 1445 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1446 { 1447 const struct tcp_sock *tp = tcp_sk(sk); 1448 const struct inet_connection_sock *icsk = inet_csk(sk); 1449 int mss_now; 1450 1451 /* Calculate base mss without TCP options: 1452 It is MMS_S - sizeof(tcphdr) of rfc1122 1453 */ 1454 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1455 1456 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1457 if (icsk->icsk_af_ops->net_frag_header_len) { 1458 const struct dst_entry *dst = __sk_dst_get(sk); 1459 1460 if (dst && dst_allfrag(dst)) 1461 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1462 } 1463 1464 /* Clamp it (mss_clamp does not include tcp options) */ 1465 if (mss_now > tp->rx_opt.mss_clamp) 1466 mss_now = tp->rx_opt.mss_clamp; 1467 1468 /* Now subtract optional transport overhead */ 1469 mss_now -= icsk->icsk_ext_hdr_len; 1470 1471 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1472 if (mss_now < 48) 1473 mss_now = 48; 1474 return mss_now; 1475 } 1476 1477 /* Calculate MSS. Not accounting for SACKs here. */ 1478 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1479 { 1480 /* Subtract TCP options size, not including SACKs */ 1481 return __tcp_mtu_to_mss(sk, pmtu) - 1482 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1483 } 1484 1485 /* Inverse of above */ 1486 int tcp_mss_to_mtu(struct sock *sk, int mss) 1487 { 1488 const struct tcp_sock *tp = tcp_sk(sk); 1489 const struct inet_connection_sock *icsk = inet_csk(sk); 1490 int mtu; 1491 1492 mtu = mss + 1493 tp->tcp_header_len + 1494 icsk->icsk_ext_hdr_len + 1495 icsk->icsk_af_ops->net_header_len; 1496 1497 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1498 if (icsk->icsk_af_ops->net_frag_header_len) { 1499 const struct dst_entry *dst = __sk_dst_get(sk); 1500 1501 if (dst && dst_allfrag(dst)) 1502 mtu += icsk->icsk_af_ops->net_frag_header_len; 1503 } 1504 return mtu; 1505 } 1506 EXPORT_SYMBOL(tcp_mss_to_mtu); 1507 1508 /* MTU probing init per socket */ 1509 void tcp_mtup_init(struct sock *sk) 1510 { 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 struct inet_connection_sock *icsk = inet_csk(sk); 1513 struct net *net = sock_net(sk); 1514 1515 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1516 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1517 icsk->icsk_af_ops->net_header_len; 1518 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1519 icsk->icsk_mtup.probe_size = 0; 1520 if (icsk->icsk_mtup.enabled) 1521 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1522 } 1523 EXPORT_SYMBOL(tcp_mtup_init); 1524 1525 /* This function synchronize snd mss to current pmtu/exthdr set. 1526 1527 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1528 for TCP options, but includes only bare TCP header. 1529 1530 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1531 It is minimum of user_mss and mss received with SYN. 1532 It also does not include TCP options. 1533 1534 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1535 1536 tp->mss_cache is current effective sending mss, including 1537 all tcp options except for SACKs. It is evaluated, 1538 taking into account current pmtu, but never exceeds 1539 tp->rx_opt.mss_clamp. 1540 1541 NOTE1. rfc1122 clearly states that advertised MSS 1542 DOES NOT include either tcp or ip options. 1543 1544 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1545 are READ ONLY outside this function. --ANK (980731) 1546 */ 1547 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1548 { 1549 struct tcp_sock *tp = tcp_sk(sk); 1550 struct inet_connection_sock *icsk = inet_csk(sk); 1551 int mss_now; 1552 1553 if (icsk->icsk_mtup.search_high > pmtu) 1554 icsk->icsk_mtup.search_high = pmtu; 1555 1556 mss_now = tcp_mtu_to_mss(sk, pmtu); 1557 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1558 1559 /* And store cached results */ 1560 icsk->icsk_pmtu_cookie = pmtu; 1561 if (icsk->icsk_mtup.enabled) 1562 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1563 tp->mss_cache = mss_now; 1564 1565 return mss_now; 1566 } 1567 EXPORT_SYMBOL(tcp_sync_mss); 1568 1569 /* Compute the current effective MSS, taking SACKs and IP options, 1570 * and even PMTU discovery events into account. 1571 */ 1572 unsigned int tcp_current_mss(struct sock *sk) 1573 { 1574 const struct tcp_sock *tp = tcp_sk(sk); 1575 const struct dst_entry *dst = __sk_dst_get(sk); 1576 u32 mss_now; 1577 unsigned int header_len; 1578 struct tcp_out_options opts; 1579 struct tcp_md5sig_key *md5; 1580 1581 mss_now = tp->mss_cache; 1582 1583 if (dst) { 1584 u32 mtu = dst_mtu(dst); 1585 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1586 mss_now = tcp_sync_mss(sk, mtu); 1587 } 1588 1589 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1590 sizeof(struct tcphdr); 1591 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1592 * some common options. If this is an odd packet (because we have SACK 1593 * blocks etc) then our calculated header_len will be different, and 1594 * we have to adjust mss_now correspondingly */ 1595 if (header_len != tp->tcp_header_len) { 1596 int delta = (int) header_len - tp->tcp_header_len; 1597 mss_now -= delta; 1598 } 1599 1600 return mss_now; 1601 } 1602 1603 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1604 * As additional protections, we do not touch cwnd in retransmission phases, 1605 * and if application hit its sndbuf limit recently. 1606 */ 1607 static void tcp_cwnd_application_limited(struct sock *sk) 1608 { 1609 struct tcp_sock *tp = tcp_sk(sk); 1610 1611 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1612 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1613 /* Limited by application or receiver window. */ 1614 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1615 u32 win_used = max(tp->snd_cwnd_used, init_win); 1616 if (win_used < tp->snd_cwnd) { 1617 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1618 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1619 } 1620 tp->snd_cwnd_used = 0; 1621 } 1622 tp->snd_cwnd_stamp = tcp_jiffies32; 1623 } 1624 1625 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1626 { 1627 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1628 struct tcp_sock *tp = tcp_sk(sk); 1629 1630 /* Track the maximum number of outstanding packets in each 1631 * window, and remember whether we were cwnd-limited then. 1632 */ 1633 if (!before(tp->snd_una, tp->max_packets_seq) || 1634 tp->packets_out > tp->max_packets_out) { 1635 tp->max_packets_out = tp->packets_out; 1636 tp->max_packets_seq = tp->snd_nxt; 1637 tp->is_cwnd_limited = is_cwnd_limited; 1638 } 1639 1640 if (tcp_is_cwnd_limited(sk)) { 1641 /* Network is feed fully. */ 1642 tp->snd_cwnd_used = 0; 1643 tp->snd_cwnd_stamp = tcp_jiffies32; 1644 } else { 1645 /* Network starves. */ 1646 if (tp->packets_out > tp->snd_cwnd_used) 1647 tp->snd_cwnd_used = tp->packets_out; 1648 1649 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1650 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1651 !ca_ops->cong_control) 1652 tcp_cwnd_application_limited(sk); 1653 1654 /* The following conditions together indicate the starvation 1655 * is caused by insufficient sender buffer: 1656 * 1) just sent some data (see tcp_write_xmit) 1657 * 2) not cwnd limited (this else condition) 1658 * 3) no more data to send (tcp_write_queue_empty()) 1659 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1660 */ 1661 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1662 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1663 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1664 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1665 } 1666 } 1667 1668 /* Minshall's variant of the Nagle send check. */ 1669 static bool tcp_minshall_check(const struct tcp_sock *tp) 1670 { 1671 return after(tp->snd_sml, tp->snd_una) && 1672 !after(tp->snd_sml, tp->snd_nxt); 1673 } 1674 1675 /* Update snd_sml if this skb is under mss 1676 * Note that a TSO packet might end with a sub-mss segment 1677 * The test is really : 1678 * if ((skb->len % mss) != 0) 1679 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1680 * But we can avoid doing the divide again given we already have 1681 * skb_pcount = skb->len / mss_now 1682 */ 1683 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1684 const struct sk_buff *skb) 1685 { 1686 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1687 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1688 } 1689 1690 /* Return false, if packet can be sent now without violation Nagle's rules: 1691 * 1. It is full sized. (provided by caller in %partial bool) 1692 * 2. Or it contains FIN. (already checked by caller) 1693 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1694 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1695 * With Minshall's modification: all sent small packets are ACKed. 1696 */ 1697 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1698 int nonagle) 1699 { 1700 return partial && 1701 ((nonagle & TCP_NAGLE_CORK) || 1702 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1703 } 1704 1705 /* Return how many segs we'd like on a TSO packet, 1706 * to send one TSO packet per ms 1707 */ 1708 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1709 int min_tso_segs) 1710 { 1711 u32 bytes, segs; 1712 1713 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, 1714 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1715 1716 /* Goal is to send at least one packet per ms, 1717 * not one big TSO packet every 100 ms. 1718 * This preserves ACK clocking and is consistent 1719 * with tcp_tso_should_defer() heuristic. 1720 */ 1721 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1722 1723 return segs; 1724 } 1725 1726 /* Return the number of segments we want in the skb we are transmitting. 1727 * See if congestion control module wants to decide; otherwise, autosize. 1728 */ 1729 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1730 { 1731 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1732 u32 min_tso, tso_segs; 1733 1734 min_tso = ca_ops->min_tso_segs ? 1735 ca_ops->min_tso_segs(sk) : 1736 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1737 1738 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1739 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1740 } 1741 1742 /* Returns the portion of skb which can be sent right away */ 1743 static unsigned int tcp_mss_split_point(const struct sock *sk, 1744 const struct sk_buff *skb, 1745 unsigned int mss_now, 1746 unsigned int max_segs, 1747 int nonagle) 1748 { 1749 const struct tcp_sock *tp = tcp_sk(sk); 1750 u32 partial, needed, window, max_len; 1751 1752 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1753 max_len = mss_now * max_segs; 1754 1755 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1756 return max_len; 1757 1758 needed = min(skb->len, window); 1759 1760 if (max_len <= needed) 1761 return max_len; 1762 1763 partial = needed % mss_now; 1764 /* If last segment is not a full MSS, check if Nagle rules allow us 1765 * to include this last segment in this skb. 1766 * Otherwise, we'll split the skb at last MSS boundary 1767 */ 1768 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1769 return needed - partial; 1770 1771 return needed; 1772 } 1773 1774 /* Can at least one segment of SKB be sent right now, according to the 1775 * congestion window rules? If so, return how many segments are allowed. 1776 */ 1777 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1778 const struct sk_buff *skb) 1779 { 1780 u32 in_flight, cwnd, halfcwnd; 1781 1782 /* Don't be strict about the congestion window for the final FIN. */ 1783 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1784 tcp_skb_pcount(skb) == 1) 1785 return 1; 1786 1787 in_flight = tcp_packets_in_flight(tp); 1788 cwnd = tp->snd_cwnd; 1789 if (in_flight >= cwnd) 1790 return 0; 1791 1792 /* For better scheduling, ensure we have at least 1793 * 2 GSO packets in flight. 1794 */ 1795 halfcwnd = max(cwnd >> 1, 1U); 1796 return min(halfcwnd, cwnd - in_flight); 1797 } 1798 1799 /* Initialize TSO state of a skb. 1800 * This must be invoked the first time we consider transmitting 1801 * SKB onto the wire. 1802 */ 1803 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1804 { 1805 int tso_segs = tcp_skb_pcount(skb); 1806 1807 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1808 tcp_set_skb_tso_segs(skb, mss_now); 1809 tso_segs = tcp_skb_pcount(skb); 1810 } 1811 return tso_segs; 1812 } 1813 1814 1815 /* Return true if the Nagle test allows this packet to be 1816 * sent now. 1817 */ 1818 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1819 unsigned int cur_mss, int nonagle) 1820 { 1821 /* Nagle rule does not apply to frames, which sit in the middle of the 1822 * write_queue (they have no chances to get new data). 1823 * 1824 * This is implemented in the callers, where they modify the 'nonagle' 1825 * argument based upon the location of SKB in the send queue. 1826 */ 1827 if (nonagle & TCP_NAGLE_PUSH) 1828 return true; 1829 1830 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1831 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1832 return true; 1833 1834 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1835 return true; 1836 1837 return false; 1838 } 1839 1840 /* Does at least the first segment of SKB fit into the send window? */ 1841 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1842 const struct sk_buff *skb, 1843 unsigned int cur_mss) 1844 { 1845 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1846 1847 if (skb->len > cur_mss) 1848 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1849 1850 return !after(end_seq, tcp_wnd_end(tp)); 1851 } 1852 1853 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1854 * which is put after SKB on the list. It is very much like 1855 * tcp_fragment() except that it may make several kinds of assumptions 1856 * in order to speed up the splitting operation. In particular, we 1857 * know that all the data is in scatter-gather pages, and that the 1858 * packet has never been sent out before (and thus is not cloned). 1859 */ 1860 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1861 struct sk_buff *skb, unsigned int len, 1862 unsigned int mss_now, gfp_t gfp) 1863 { 1864 struct sk_buff *buff; 1865 int nlen = skb->len - len; 1866 u8 flags; 1867 1868 /* All of a TSO frame must be composed of paged data. */ 1869 if (skb->len != skb->data_len) 1870 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1871 1872 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1873 if (unlikely(!buff)) 1874 return -ENOMEM; 1875 1876 sk->sk_wmem_queued += buff->truesize; 1877 sk_mem_charge(sk, buff->truesize); 1878 buff->truesize += nlen; 1879 skb->truesize -= nlen; 1880 1881 /* Correct the sequence numbers. */ 1882 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1883 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1884 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1885 1886 /* PSH and FIN should only be set in the second packet. */ 1887 flags = TCP_SKB_CB(skb)->tcp_flags; 1888 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1889 TCP_SKB_CB(buff)->tcp_flags = flags; 1890 1891 /* This packet was never sent out yet, so no SACK bits. */ 1892 TCP_SKB_CB(buff)->sacked = 0; 1893 1894 tcp_skb_fragment_eor(skb, buff); 1895 1896 buff->ip_summed = CHECKSUM_PARTIAL; 1897 skb_split(skb, buff, len); 1898 tcp_fragment_tstamp(skb, buff); 1899 1900 /* Fix up tso_factor for both original and new SKB. */ 1901 tcp_set_skb_tso_segs(skb, mss_now); 1902 tcp_set_skb_tso_segs(buff, mss_now); 1903 1904 /* Link BUFF into the send queue. */ 1905 __skb_header_release(buff); 1906 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1907 1908 return 0; 1909 } 1910 1911 /* Try to defer sending, if possible, in order to minimize the amount 1912 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1913 * 1914 * This algorithm is from John Heffner. 1915 */ 1916 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1917 bool *is_cwnd_limited, u32 max_segs) 1918 { 1919 const struct inet_connection_sock *icsk = inet_csk(sk); 1920 u32 age, send_win, cong_win, limit, in_flight; 1921 struct tcp_sock *tp = tcp_sk(sk); 1922 struct sk_buff *head; 1923 int win_divisor; 1924 1925 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1926 goto send_now; 1927 1928 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1929 goto send_now; 1930 1931 /* Avoid bursty behavior by allowing defer 1932 * only if the last write was recent. 1933 */ 1934 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1935 goto send_now; 1936 1937 in_flight = tcp_packets_in_flight(tp); 1938 1939 BUG_ON(tcp_skb_pcount(skb) <= 1); 1940 BUG_ON(tp->snd_cwnd <= in_flight); 1941 1942 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1943 1944 /* From in_flight test above, we know that cwnd > in_flight. */ 1945 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1946 1947 limit = min(send_win, cong_win); 1948 1949 /* If a full-sized TSO skb can be sent, do it. */ 1950 if (limit >= max_segs * tp->mss_cache) 1951 goto send_now; 1952 1953 /* Middle in queue won't get any more data, full sendable already? */ 1954 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1955 goto send_now; 1956 1957 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1958 if (win_divisor) { 1959 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1960 1961 /* If at least some fraction of a window is available, 1962 * just use it. 1963 */ 1964 chunk /= win_divisor; 1965 if (limit >= chunk) 1966 goto send_now; 1967 } else { 1968 /* Different approach, try not to defer past a single 1969 * ACK. Receiver should ACK every other full sized 1970 * frame, so if we have space for more than 3 frames 1971 * then send now. 1972 */ 1973 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1974 goto send_now; 1975 } 1976 1977 /* TODO : use tsorted_sent_queue ? */ 1978 head = tcp_rtx_queue_head(sk); 1979 if (!head) 1980 goto send_now; 1981 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1982 /* If next ACK is likely to come too late (half srtt), do not defer */ 1983 if (age < (tp->srtt_us >> 4)) 1984 goto send_now; 1985 1986 /* Ok, it looks like it is advisable to defer. */ 1987 1988 if (cong_win < send_win && cong_win <= skb->len) 1989 *is_cwnd_limited = true; 1990 1991 return true; 1992 1993 send_now: 1994 return false; 1995 } 1996 1997 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1998 { 1999 struct inet_connection_sock *icsk = inet_csk(sk); 2000 struct tcp_sock *tp = tcp_sk(sk); 2001 struct net *net = sock_net(sk); 2002 u32 interval; 2003 s32 delta; 2004 2005 interval = net->ipv4.sysctl_tcp_probe_interval; 2006 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2007 if (unlikely(delta >= interval * HZ)) { 2008 int mss = tcp_current_mss(sk); 2009 2010 /* Update current search range */ 2011 icsk->icsk_mtup.probe_size = 0; 2012 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2013 sizeof(struct tcphdr) + 2014 icsk->icsk_af_ops->net_header_len; 2015 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2016 2017 /* Update probe time stamp */ 2018 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2019 } 2020 } 2021 2022 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2023 { 2024 struct sk_buff *skb, *next; 2025 2026 skb = tcp_send_head(sk); 2027 tcp_for_write_queue_from_safe(skb, next, sk) { 2028 if (len <= skb->len) 2029 break; 2030 2031 if (unlikely(TCP_SKB_CB(skb)->eor)) 2032 return false; 2033 2034 len -= skb->len; 2035 } 2036 2037 return true; 2038 } 2039 2040 /* Create a new MTU probe if we are ready. 2041 * MTU probe is regularly attempting to increase the path MTU by 2042 * deliberately sending larger packets. This discovers routing 2043 * changes resulting in larger path MTUs. 2044 * 2045 * Returns 0 if we should wait to probe (no cwnd available), 2046 * 1 if a probe was sent, 2047 * -1 otherwise 2048 */ 2049 static int tcp_mtu_probe(struct sock *sk) 2050 { 2051 struct inet_connection_sock *icsk = inet_csk(sk); 2052 struct tcp_sock *tp = tcp_sk(sk); 2053 struct sk_buff *skb, *nskb, *next; 2054 struct net *net = sock_net(sk); 2055 int probe_size; 2056 int size_needed; 2057 int copy, len; 2058 int mss_now; 2059 int interval; 2060 2061 /* Not currently probing/verifying, 2062 * not in recovery, 2063 * have enough cwnd, and 2064 * not SACKing (the variable headers throw things off) 2065 */ 2066 if (likely(!icsk->icsk_mtup.enabled || 2067 icsk->icsk_mtup.probe_size || 2068 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2069 tp->snd_cwnd < 11 || 2070 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2071 return -1; 2072 2073 /* Use binary search for probe_size between tcp_mss_base, 2074 * and current mss_clamp. if (search_high - search_low) 2075 * smaller than a threshold, backoff from probing. 2076 */ 2077 mss_now = tcp_current_mss(sk); 2078 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2079 icsk->icsk_mtup.search_low) >> 1); 2080 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2081 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2082 /* When misfortune happens, we are reprobing actively, 2083 * and then reprobe timer has expired. We stick with current 2084 * probing process by not resetting search range to its orignal. 2085 */ 2086 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2087 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2088 /* Check whether enough time has elaplased for 2089 * another round of probing. 2090 */ 2091 tcp_mtu_check_reprobe(sk); 2092 return -1; 2093 } 2094 2095 /* Have enough data in the send queue to probe? */ 2096 if (tp->write_seq - tp->snd_nxt < size_needed) 2097 return -1; 2098 2099 if (tp->snd_wnd < size_needed) 2100 return -1; 2101 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2102 return 0; 2103 2104 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2105 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2106 if (!tcp_packets_in_flight(tp)) 2107 return -1; 2108 else 2109 return 0; 2110 } 2111 2112 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2113 return -1; 2114 2115 /* We're allowed to probe. Build it now. */ 2116 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2117 if (!nskb) 2118 return -1; 2119 sk->sk_wmem_queued += nskb->truesize; 2120 sk_mem_charge(sk, nskb->truesize); 2121 2122 skb = tcp_send_head(sk); 2123 2124 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2125 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2126 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2127 TCP_SKB_CB(nskb)->sacked = 0; 2128 nskb->csum = 0; 2129 nskb->ip_summed = CHECKSUM_PARTIAL; 2130 2131 tcp_insert_write_queue_before(nskb, skb, sk); 2132 tcp_highest_sack_replace(sk, skb, nskb); 2133 2134 len = 0; 2135 tcp_for_write_queue_from_safe(skb, next, sk) { 2136 copy = min_t(int, skb->len, probe_size - len); 2137 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2138 2139 if (skb->len <= copy) { 2140 /* We've eaten all the data from this skb. 2141 * Throw it away. */ 2142 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2143 /* If this is the last SKB we copy and eor is set 2144 * we need to propagate it to the new skb. 2145 */ 2146 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2147 tcp_unlink_write_queue(skb, sk); 2148 sk_wmem_free_skb(sk, skb); 2149 } else { 2150 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2151 ~(TCPHDR_FIN|TCPHDR_PSH); 2152 if (!skb_shinfo(skb)->nr_frags) { 2153 skb_pull(skb, copy); 2154 } else { 2155 __pskb_trim_head(skb, copy); 2156 tcp_set_skb_tso_segs(skb, mss_now); 2157 } 2158 TCP_SKB_CB(skb)->seq += copy; 2159 } 2160 2161 len += copy; 2162 2163 if (len >= probe_size) 2164 break; 2165 } 2166 tcp_init_tso_segs(nskb, nskb->len); 2167 2168 /* We're ready to send. If this fails, the probe will 2169 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2170 */ 2171 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2172 /* Decrement cwnd here because we are sending 2173 * effectively two packets. */ 2174 tp->snd_cwnd--; 2175 tcp_event_new_data_sent(sk, nskb); 2176 2177 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2178 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2179 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2180 2181 return 1; 2182 } 2183 2184 return -1; 2185 } 2186 2187 static bool tcp_pacing_check(const struct sock *sk) 2188 { 2189 return tcp_needs_internal_pacing(sk) && 2190 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2191 } 2192 2193 /* TCP Small Queues : 2194 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2195 * (These limits are doubled for retransmits) 2196 * This allows for : 2197 * - better RTT estimation and ACK scheduling 2198 * - faster recovery 2199 * - high rates 2200 * Alas, some drivers / subsystems require a fair amount 2201 * of queued bytes to ensure line rate. 2202 * One example is wifi aggregation (802.11 AMPDU) 2203 */ 2204 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2205 unsigned int factor) 2206 { 2207 unsigned int limit; 2208 2209 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); 2210 limit = min_t(u32, limit, 2211 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2212 limit <<= factor; 2213 2214 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2215 /* Always send skb if rtx queue is empty. 2216 * No need to wait for TX completion to call us back, 2217 * after softirq/tasklet schedule. 2218 * This helps when TX completions are delayed too much. 2219 */ 2220 if (tcp_rtx_queue_empty(sk)) 2221 return false; 2222 2223 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2224 /* It is possible TX completion already happened 2225 * before we set TSQ_THROTTLED, so we must 2226 * test again the condition. 2227 */ 2228 smp_mb__after_atomic(); 2229 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2230 return true; 2231 } 2232 return false; 2233 } 2234 2235 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2236 { 2237 const u32 now = tcp_jiffies32; 2238 enum tcp_chrono old = tp->chrono_type; 2239 2240 if (old > TCP_CHRONO_UNSPEC) 2241 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2242 tp->chrono_start = now; 2243 tp->chrono_type = new; 2244 } 2245 2246 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2247 { 2248 struct tcp_sock *tp = tcp_sk(sk); 2249 2250 /* If there are multiple conditions worthy of tracking in a 2251 * chronograph then the highest priority enum takes precedence 2252 * over the other conditions. So that if something "more interesting" 2253 * starts happening, stop the previous chrono and start a new one. 2254 */ 2255 if (type > tp->chrono_type) 2256 tcp_chrono_set(tp, type); 2257 } 2258 2259 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2260 { 2261 struct tcp_sock *tp = tcp_sk(sk); 2262 2263 2264 /* There are multiple conditions worthy of tracking in a 2265 * chronograph, so that the highest priority enum takes 2266 * precedence over the other conditions (see tcp_chrono_start). 2267 * If a condition stops, we only stop chrono tracking if 2268 * it's the "most interesting" or current chrono we are 2269 * tracking and starts busy chrono if we have pending data. 2270 */ 2271 if (tcp_rtx_and_write_queues_empty(sk)) 2272 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2273 else if (type == tp->chrono_type) 2274 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2275 } 2276 2277 /* This routine writes packets to the network. It advances the 2278 * send_head. This happens as incoming acks open up the remote 2279 * window for us. 2280 * 2281 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2282 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2283 * account rare use of URG, this is not a big flaw. 2284 * 2285 * Send at most one packet when push_one > 0. Temporarily ignore 2286 * cwnd limit to force at most one packet out when push_one == 2. 2287 2288 * Returns true, if no segments are in flight and we have queued segments, 2289 * but cannot send anything now because of SWS or another problem. 2290 */ 2291 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2292 int push_one, gfp_t gfp) 2293 { 2294 struct tcp_sock *tp = tcp_sk(sk); 2295 struct sk_buff *skb; 2296 unsigned int tso_segs, sent_pkts; 2297 int cwnd_quota; 2298 int result; 2299 bool is_cwnd_limited = false, is_rwnd_limited = false; 2300 u32 max_segs; 2301 2302 sent_pkts = 0; 2303 2304 tcp_mstamp_refresh(tp); 2305 if (!push_one) { 2306 /* Do MTU probing. */ 2307 result = tcp_mtu_probe(sk); 2308 if (!result) { 2309 return false; 2310 } else if (result > 0) { 2311 sent_pkts = 1; 2312 } 2313 } 2314 2315 max_segs = tcp_tso_segs(sk, mss_now); 2316 while ((skb = tcp_send_head(sk))) { 2317 unsigned int limit; 2318 2319 if (tcp_pacing_check(sk)) 2320 break; 2321 2322 tso_segs = tcp_init_tso_segs(skb, mss_now); 2323 BUG_ON(!tso_segs); 2324 2325 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2326 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2327 tcp_update_skb_after_send(tp, skb); 2328 goto repair; /* Skip network transmission */ 2329 } 2330 2331 cwnd_quota = tcp_cwnd_test(tp, skb); 2332 if (!cwnd_quota) { 2333 if (push_one == 2) 2334 /* Force out a loss probe pkt. */ 2335 cwnd_quota = 1; 2336 else 2337 break; 2338 } 2339 2340 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2341 is_rwnd_limited = true; 2342 break; 2343 } 2344 2345 if (tso_segs == 1) { 2346 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2347 (tcp_skb_is_last(sk, skb) ? 2348 nonagle : TCP_NAGLE_PUSH)))) 2349 break; 2350 } else { 2351 if (!push_one && 2352 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2353 max_segs)) 2354 break; 2355 } 2356 2357 limit = mss_now; 2358 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2359 limit = tcp_mss_split_point(sk, skb, mss_now, 2360 min_t(unsigned int, 2361 cwnd_quota, 2362 max_segs), 2363 nonagle); 2364 2365 if (skb->len > limit && 2366 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2367 skb, limit, mss_now, gfp))) 2368 break; 2369 2370 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2371 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2372 if (tcp_small_queue_check(sk, skb, 0)) 2373 break; 2374 2375 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2376 break; 2377 2378 repair: 2379 /* Advance the send_head. This one is sent out. 2380 * This call will increment packets_out. 2381 */ 2382 tcp_event_new_data_sent(sk, skb); 2383 2384 tcp_minshall_update(tp, mss_now, skb); 2385 sent_pkts += tcp_skb_pcount(skb); 2386 2387 if (push_one) 2388 break; 2389 } 2390 2391 if (is_rwnd_limited) 2392 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2393 else 2394 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2395 2396 if (likely(sent_pkts)) { 2397 if (tcp_in_cwnd_reduction(sk)) 2398 tp->prr_out += sent_pkts; 2399 2400 /* Send one loss probe per tail loss episode. */ 2401 if (push_one != 2) 2402 tcp_schedule_loss_probe(sk, false); 2403 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2404 tcp_cwnd_validate(sk, is_cwnd_limited); 2405 return false; 2406 } 2407 return !tp->packets_out && !tcp_write_queue_empty(sk); 2408 } 2409 2410 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2411 { 2412 struct inet_connection_sock *icsk = inet_csk(sk); 2413 struct tcp_sock *tp = tcp_sk(sk); 2414 u32 timeout, rto_delta_us; 2415 int early_retrans; 2416 2417 /* Don't do any loss probe on a Fast Open connection before 3WHS 2418 * finishes. 2419 */ 2420 if (tp->fastopen_rsk) 2421 return false; 2422 2423 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2424 /* Schedule a loss probe in 2*RTT for SACK capable connections 2425 * not in loss recovery, that are either limited by cwnd or application. 2426 */ 2427 if ((early_retrans != 3 && early_retrans != 4) || 2428 !tp->packets_out || !tcp_is_sack(tp) || 2429 (icsk->icsk_ca_state != TCP_CA_Open && 2430 icsk->icsk_ca_state != TCP_CA_CWR)) 2431 return false; 2432 2433 /* Probe timeout is 2*rtt. Add minimum RTO to account 2434 * for delayed ack when there's one outstanding packet. If no RTT 2435 * sample is available then probe after TCP_TIMEOUT_INIT. 2436 */ 2437 if (tp->srtt_us) { 2438 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2439 if (tp->packets_out == 1) 2440 timeout += TCP_RTO_MIN; 2441 else 2442 timeout += TCP_TIMEOUT_MIN; 2443 } else { 2444 timeout = TCP_TIMEOUT_INIT; 2445 } 2446 2447 /* If the RTO formula yields an earlier time, then use that time. */ 2448 rto_delta_us = advancing_rto ? 2449 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2450 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2451 if (rto_delta_us > 0) 2452 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2453 2454 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2455 TCP_RTO_MAX); 2456 return true; 2457 } 2458 2459 /* Thanks to skb fast clones, we can detect if a prior transmit of 2460 * a packet is still in a qdisc or driver queue. 2461 * In this case, there is very little point doing a retransmit ! 2462 */ 2463 static bool skb_still_in_host_queue(const struct sock *sk, 2464 const struct sk_buff *skb) 2465 { 2466 if (unlikely(skb_fclone_busy(sk, skb))) { 2467 NET_INC_STATS(sock_net(sk), 2468 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2469 return true; 2470 } 2471 return false; 2472 } 2473 2474 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2475 * retransmit the last segment. 2476 */ 2477 void tcp_send_loss_probe(struct sock *sk) 2478 { 2479 struct tcp_sock *tp = tcp_sk(sk); 2480 struct sk_buff *skb; 2481 int pcount; 2482 int mss = tcp_current_mss(sk); 2483 2484 skb = tcp_send_head(sk); 2485 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2486 pcount = tp->packets_out; 2487 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2488 if (tp->packets_out > pcount) 2489 goto probe_sent; 2490 goto rearm_timer; 2491 } 2492 skb = skb_rb_last(&sk->tcp_rtx_queue); 2493 2494 /* At most one outstanding TLP retransmission. */ 2495 if (tp->tlp_high_seq) 2496 goto rearm_timer; 2497 2498 /* Retransmit last segment. */ 2499 if (WARN_ON(!skb)) 2500 goto rearm_timer; 2501 2502 if (skb_still_in_host_queue(sk, skb)) 2503 goto rearm_timer; 2504 2505 pcount = tcp_skb_pcount(skb); 2506 if (WARN_ON(!pcount)) 2507 goto rearm_timer; 2508 2509 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2510 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2511 (pcount - 1) * mss, mss, 2512 GFP_ATOMIC))) 2513 goto rearm_timer; 2514 skb = skb_rb_next(skb); 2515 } 2516 2517 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2518 goto rearm_timer; 2519 2520 if (__tcp_retransmit_skb(sk, skb, 1)) 2521 goto rearm_timer; 2522 2523 /* Record snd_nxt for loss detection. */ 2524 tp->tlp_high_seq = tp->snd_nxt; 2525 2526 probe_sent: 2527 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2528 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2529 inet_csk(sk)->icsk_pending = 0; 2530 rearm_timer: 2531 tcp_rearm_rto(sk); 2532 } 2533 2534 /* Push out any pending frames which were held back due to 2535 * TCP_CORK or attempt at coalescing tiny packets. 2536 * The socket must be locked by the caller. 2537 */ 2538 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2539 int nonagle) 2540 { 2541 /* If we are closed, the bytes will have to remain here. 2542 * In time closedown will finish, we empty the write queue and 2543 * all will be happy. 2544 */ 2545 if (unlikely(sk->sk_state == TCP_CLOSE)) 2546 return; 2547 2548 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2549 sk_gfp_mask(sk, GFP_ATOMIC))) 2550 tcp_check_probe_timer(sk); 2551 } 2552 2553 /* Send _single_ skb sitting at the send head. This function requires 2554 * true push pending frames to setup probe timer etc. 2555 */ 2556 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2557 { 2558 struct sk_buff *skb = tcp_send_head(sk); 2559 2560 BUG_ON(!skb || skb->len < mss_now); 2561 2562 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2563 } 2564 2565 /* This function returns the amount that we can raise the 2566 * usable window based on the following constraints 2567 * 2568 * 1. The window can never be shrunk once it is offered (RFC 793) 2569 * 2. We limit memory per socket 2570 * 2571 * RFC 1122: 2572 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2573 * RECV.NEXT + RCV.WIN fixed until: 2574 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2575 * 2576 * i.e. don't raise the right edge of the window until you can raise 2577 * it at least MSS bytes. 2578 * 2579 * Unfortunately, the recommended algorithm breaks header prediction, 2580 * since header prediction assumes th->window stays fixed. 2581 * 2582 * Strictly speaking, keeping th->window fixed violates the receiver 2583 * side SWS prevention criteria. The problem is that under this rule 2584 * a stream of single byte packets will cause the right side of the 2585 * window to always advance by a single byte. 2586 * 2587 * Of course, if the sender implements sender side SWS prevention 2588 * then this will not be a problem. 2589 * 2590 * BSD seems to make the following compromise: 2591 * 2592 * If the free space is less than the 1/4 of the maximum 2593 * space available and the free space is less than 1/2 mss, 2594 * then set the window to 0. 2595 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2596 * Otherwise, just prevent the window from shrinking 2597 * and from being larger than the largest representable value. 2598 * 2599 * This prevents incremental opening of the window in the regime 2600 * where TCP is limited by the speed of the reader side taking 2601 * data out of the TCP receive queue. It does nothing about 2602 * those cases where the window is constrained on the sender side 2603 * because the pipeline is full. 2604 * 2605 * BSD also seems to "accidentally" limit itself to windows that are a 2606 * multiple of MSS, at least until the free space gets quite small. 2607 * This would appear to be a side effect of the mbuf implementation. 2608 * Combining these two algorithms results in the observed behavior 2609 * of having a fixed window size at almost all times. 2610 * 2611 * Below we obtain similar behavior by forcing the offered window to 2612 * a multiple of the mss when it is feasible to do so. 2613 * 2614 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2615 * Regular options like TIMESTAMP are taken into account. 2616 */ 2617 u32 __tcp_select_window(struct sock *sk) 2618 { 2619 struct inet_connection_sock *icsk = inet_csk(sk); 2620 struct tcp_sock *tp = tcp_sk(sk); 2621 /* MSS for the peer's data. Previous versions used mss_clamp 2622 * here. I don't know if the value based on our guesses 2623 * of peer's MSS is better for the performance. It's more correct 2624 * but may be worse for the performance because of rcv_mss 2625 * fluctuations. --SAW 1998/11/1 2626 */ 2627 int mss = icsk->icsk_ack.rcv_mss; 2628 int free_space = tcp_space(sk); 2629 int allowed_space = tcp_full_space(sk); 2630 int full_space = min_t(int, tp->window_clamp, allowed_space); 2631 int window; 2632 2633 if (unlikely(mss > full_space)) { 2634 mss = full_space; 2635 if (mss <= 0) 2636 return 0; 2637 } 2638 if (free_space < (full_space >> 1)) { 2639 icsk->icsk_ack.quick = 0; 2640 2641 if (tcp_under_memory_pressure(sk)) 2642 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2643 4U * tp->advmss); 2644 2645 /* free_space might become our new window, make sure we don't 2646 * increase it due to wscale. 2647 */ 2648 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2649 2650 /* if free space is less than mss estimate, or is below 1/16th 2651 * of the maximum allowed, try to move to zero-window, else 2652 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2653 * new incoming data is dropped due to memory limits. 2654 * With large window, mss test triggers way too late in order 2655 * to announce zero window in time before rmem limit kicks in. 2656 */ 2657 if (free_space < (allowed_space >> 4) || free_space < mss) 2658 return 0; 2659 } 2660 2661 if (free_space > tp->rcv_ssthresh) 2662 free_space = tp->rcv_ssthresh; 2663 2664 /* Don't do rounding if we are using window scaling, since the 2665 * scaled window will not line up with the MSS boundary anyway. 2666 */ 2667 if (tp->rx_opt.rcv_wscale) { 2668 window = free_space; 2669 2670 /* Advertise enough space so that it won't get scaled away. 2671 * Import case: prevent zero window announcement if 2672 * 1<<rcv_wscale > mss. 2673 */ 2674 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2675 } else { 2676 window = tp->rcv_wnd; 2677 /* Get the largest window that is a nice multiple of mss. 2678 * Window clamp already applied above. 2679 * If our current window offering is within 1 mss of the 2680 * free space we just keep it. This prevents the divide 2681 * and multiply from happening most of the time. 2682 * We also don't do any window rounding when the free space 2683 * is too small. 2684 */ 2685 if (window <= free_space - mss || window > free_space) 2686 window = rounddown(free_space, mss); 2687 else if (mss == full_space && 2688 free_space > window + (full_space >> 1)) 2689 window = free_space; 2690 } 2691 2692 return window; 2693 } 2694 2695 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2696 const struct sk_buff *next_skb) 2697 { 2698 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2699 const struct skb_shared_info *next_shinfo = 2700 skb_shinfo(next_skb); 2701 struct skb_shared_info *shinfo = skb_shinfo(skb); 2702 2703 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2704 shinfo->tskey = next_shinfo->tskey; 2705 TCP_SKB_CB(skb)->txstamp_ack |= 2706 TCP_SKB_CB(next_skb)->txstamp_ack; 2707 } 2708 } 2709 2710 /* Collapses two adjacent SKB's during retransmission. */ 2711 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2712 { 2713 struct tcp_sock *tp = tcp_sk(sk); 2714 struct sk_buff *next_skb = skb_rb_next(skb); 2715 int skb_size, next_skb_size; 2716 2717 skb_size = skb->len; 2718 next_skb_size = next_skb->len; 2719 2720 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2721 2722 if (next_skb_size) { 2723 if (next_skb_size <= skb_availroom(skb)) 2724 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2725 next_skb_size); 2726 else if (!skb_shift(skb, next_skb, next_skb_size)) 2727 return false; 2728 } 2729 tcp_highest_sack_replace(sk, next_skb, skb); 2730 2731 /* Update sequence range on original skb. */ 2732 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2733 2734 /* Merge over control information. This moves PSH/FIN etc. over */ 2735 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2736 2737 /* All done, get rid of second SKB and account for it so 2738 * packet counting does not break. 2739 */ 2740 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2741 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2742 2743 /* changed transmit queue under us so clear hints */ 2744 tcp_clear_retrans_hints_partial(tp); 2745 if (next_skb == tp->retransmit_skb_hint) 2746 tp->retransmit_skb_hint = skb; 2747 2748 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2749 2750 tcp_skb_collapse_tstamp(skb, next_skb); 2751 2752 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2753 return true; 2754 } 2755 2756 /* Check if coalescing SKBs is legal. */ 2757 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2758 { 2759 if (tcp_skb_pcount(skb) > 1) 2760 return false; 2761 if (skb_cloned(skb)) 2762 return false; 2763 /* Some heuristics for collapsing over SACK'd could be invented */ 2764 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2765 return false; 2766 2767 return true; 2768 } 2769 2770 /* Collapse packets in the retransmit queue to make to create 2771 * less packets on the wire. This is only done on retransmission. 2772 */ 2773 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2774 int space) 2775 { 2776 struct tcp_sock *tp = tcp_sk(sk); 2777 struct sk_buff *skb = to, *tmp; 2778 bool first = true; 2779 2780 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2781 return; 2782 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2783 return; 2784 2785 skb_rbtree_walk_from_safe(skb, tmp) { 2786 if (!tcp_can_collapse(sk, skb)) 2787 break; 2788 2789 if (!tcp_skb_can_collapse_to(to)) 2790 break; 2791 2792 space -= skb->len; 2793 2794 if (first) { 2795 first = false; 2796 continue; 2797 } 2798 2799 if (space < 0) 2800 break; 2801 2802 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2803 break; 2804 2805 if (!tcp_collapse_retrans(sk, to)) 2806 break; 2807 } 2808 } 2809 2810 /* This retransmits one SKB. Policy decisions and retransmit queue 2811 * state updates are done by the caller. Returns non-zero if an 2812 * error occurred which prevented the send. 2813 */ 2814 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2815 { 2816 struct inet_connection_sock *icsk = inet_csk(sk); 2817 struct tcp_sock *tp = tcp_sk(sk); 2818 unsigned int cur_mss; 2819 int diff, len, err; 2820 2821 2822 /* Inconclusive MTU probe */ 2823 if (icsk->icsk_mtup.probe_size) 2824 icsk->icsk_mtup.probe_size = 0; 2825 2826 /* Do not sent more than we queued. 1/4 is reserved for possible 2827 * copying overhead: fragmentation, tunneling, mangling etc. 2828 */ 2829 if (refcount_read(&sk->sk_wmem_alloc) > 2830 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2831 sk->sk_sndbuf)) 2832 return -EAGAIN; 2833 2834 if (skb_still_in_host_queue(sk, skb)) 2835 return -EBUSY; 2836 2837 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2838 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2839 BUG(); 2840 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2841 return -ENOMEM; 2842 } 2843 2844 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2845 return -EHOSTUNREACH; /* Routing failure or similar. */ 2846 2847 cur_mss = tcp_current_mss(sk); 2848 2849 /* If receiver has shrunk his window, and skb is out of 2850 * new window, do not retransmit it. The exception is the 2851 * case, when window is shrunk to zero. In this case 2852 * our retransmit serves as a zero window probe. 2853 */ 2854 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2855 TCP_SKB_CB(skb)->seq != tp->snd_una) 2856 return -EAGAIN; 2857 2858 len = cur_mss * segs; 2859 if (skb->len > len) { 2860 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2861 cur_mss, GFP_ATOMIC)) 2862 return -ENOMEM; /* We'll try again later. */ 2863 } else { 2864 if (skb_unclone(skb, GFP_ATOMIC)) 2865 return -ENOMEM; 2866 2867 diff = tcp_skb_pcount(skb); 2868 tcp_set_skb_tso_segs(skb, cur_mss); 2869 diff -= tcp_skb_pcount(skb); 2870 if (diff) 2871 tcp_adjust_pcount(sk, skb, diff); 2872 if (skb->len < cur_mss) 2873 tcp_retrans_try_collapse(sk, skb, cur_mss); 2874 } 2875 2876 /* RFC3168, section 6.1.1.1. ECN fallback */ 2877 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2878 tcp_ecn_clear_syn(sk, skb); 2879 2880 /* Update global and local TCP statistics. */ 2881 segs = tcp_skb_pcount(skb); 2882 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2883 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2884 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2885 tp->total_retrans += segs; 2886 2887 /* make sure skb->data is aligned on arches that require it 2888 * and check if ack-trimming & collapsing extended the headroom 2889 * beyond what csum_start can cover. 2890 */ 2891 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2892 skb_headroom(skb) >= 0xFFFF)) { 2893 struct sk_buff *nskb; 2894 2895 tcp_skb_tsorted_save(skb) { 2896 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2897 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2898 -ENOBUFS; 2899 } tcp_skb_tsorted_restore(skb); 2900 2901 if (!err) { 2902 tcp_update_skb_after_send(tp, skb); 2903 tcp_rate_skb_sent(sk, skb); 2904 } 2905 } else { 2906 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2907 } 2908 2909 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2910 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2911 TCP_SKB_CB(skb)->seq, segs, err); 2912 2913 if (likely(!err)) { 2914 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2915 trace_tcp_retransmit_skb(sk, skb); 2916 } else if (err != -EBUSY) { 2917 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2918 } 2919 return err; 2920 } 2921 2922 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2923 { 2924 struct tcp_sock *tp = tcp_sk(sk); 2925 int err = __tcp_retransmit_skb(sk, skb, segs); 2926 2927 if (err == 0) { 2928 #if FASTRETRANS_DEBUG > 0 2929 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2930 net_dbg_ratelimited("retrans_out leaked\n"); 2931 } 2932 #endif 2933 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2934 tp->retrans_out += tcp_skb_pcount(skb); 2935 2936 /* Save stamp of the first retransmit. */ 2937 if (!tp->retrans_stamp) 2938 tp->retrans_stamp = tcp_skb_timestamp(skb); 2939 2940 } 2941 2942 if (tp->undo_retrans < 0) 2943 tp->undo_retrans = 0; 2944 tp->undo_retrans += tcp_skb_pcount(skb); 2945 return err; 2946 } 2947 2948 /* This gets called after a retransmit timeout, and the initially 2949 * retransmitted data is acknowledged. It tries to continue 2950 * resending the rest of the retransmit queue, until either 2951 * we've sent it all or the congestion window limit is reached. 2952 */ 2953 void tcp_xmit_retransmit_queue(struct sock *sk) 2954 { 2955 const struct inet_connection_sock *icsk = inet_csk(sk); 2956 struct sk_buff *skb, *rtx_head, *hole = NULL; 2957 struct tcp_sock *tp = tcp_sk(sk); 2958 u32 max_segs; 2959 int mib_idx; 2960 2961 if (!tp->packets_out) 2962 return; 2963 2964 rtx_head = tcp_rtx_queue_head(sk); 2965 skb = tp->retransmit_skb_hint ?: rtx_head; 2966 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2967 skb_rbtree_walk_from(skb) { 2968 __u8 sacked; 2969 int segs; 2970 2971 if (tcp_pacing_check(sk)) 2972 break; 2973 2974 /* we could do better than to assign each time */ 2975 if (!hole) 2976 tp->retransmit_skb_hint = skb; 2977 2978 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2979 if (segs <= 0) 2980 return; 2981 sacked = TCP_SKB_CB(skb)->sacked; 2982 /* In case tcp_shift_skb_data() have aggregated large skbs, 2983 * we need to make sure not sending too bigs TSO packets 2984 */ 2985 segs = min_t(int, segs, max_segs); 2986 2987 if (tp->retrans_out >= tp->lost_out) { 2988 break; 2989 } else if (!(sacked & TCPCB_LOST)) { 2990 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2991 hole = skb; 2992 continue; 2993 2994 } else { 2995 if (icsk->icsk_ca_state != TCP_CA_Loss) 2996 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2997 else 2998 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2999 } 3000 3001 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3002 continue; 3003 3004 if (tcp_small_queue_check(sk, skb, 1)) 3005 return; 3006 3007 if (tcp_retransmit_skb(sk, skb, segs)) 3008 return; 3009 3010 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3011 3012 if (tcp_in_cwnd_reduction(sk)) 3013 tp->prr_out += tcp_skb_pcount(skb); 3014 3015 if (skb == rtx_head && 3016 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3017 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3018 inet_csk(sk)->icsk_rto, 3019 TCP_RTO_MAX); 3020 } 3021 } 3022 3023 /* We allow to exceed memory limits for FIN packets to expedite 3024 * connection tear down and (memory) recovery. 3025 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3026 * or even be forced to close flow without any FIN. 3027 * In general, we want to allow one skb per socket to avoid hangs 3028 * with edge trigger epoll() 3029 */ 3030 void sk_forced_mem_schedule(struct sock *sk, int size) 3031 { 3032 int amt; 3033 3034 if (size <= sk->sk_forward_alloc) 3035 return; 3036 amt = sk_mem_pages(size); 3037 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3038 sk_memory_allocated_add(sk, amt); 3039 3040 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3041 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3042 } 3043 3044 /* Send a FIN. The caller locks the socket for us. 3045 * We should try to send a FIN packet really hard, but eventually give up. 3046 */ 3047 void tcp_send_fin(struct sock *sk) 3048 { 3049 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 3052 /* Optimization, tack on the FIN if we have one skb in write queue and 3053 * this skb was not yet sent, or we are under memory pressure. 3054 * Note: in the latter case, FIN packet will be sent after a timeout, 3055 * as TCP stack thinks it has already been transmitted. 3056 */ 3057 if (!tskb && tcp_under_memory_pressure(sk)) 3058 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3059 3060 if (tskb) { 3061 coalesce: 3062 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3063 TCP_SKB_CB(tskb)->end_seq++; 3064 tp->write_seq++; 3065 if (tcp_write_queue_empty(sk)) { 3066 /* This means tskb was already sent. 3067 * Pretend we included the FIN on previous transmit. 3068 * We need to set tp->snd_nxt to the value it would have 3069 * if FIN had been sent. This is because retransmit path 3070 * does not change tp->snd_nxt. 3071 */ 3072 tp->snd_nxt++; 3073 return; 3074 } 3075 } else { 3076 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3077 if (unlikely(!skb)) { 3078 if (tskb) 3079 goto coalesce; 3080 return; 3081 } 3082 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3083 skb_reserve(skb, MAX_TCP_HEADER); 3084 sk_forced_mem_schedule(sk, skb->truesize); 3085 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3086 tcp_init_nondata_skb(skb, tp->write_seq, 3087 TCPHDR_ACK | TCPHDR_FIN); 3088 tcp_queue_skb(sk, skb); 3089 } 3090 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3091 } 3092 3093 /* We get here when a process closes a file descriptor (either due to 3094 * an explicit close() or as a byproduct of exit()'ing) and there 3095 * was unread data in the receive queue. This behavior is recommended 3096 * by RFC 2525, section 2.17. -DaveM 3097 */ 3098 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3099 { 3100 struct sk_buff *skb; 3101 3102 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3103 3104 /* NOTE: No TCP options attached and we never retransmit this. */ 3105 skb = alloc_skb(MAX_TCP_HEADER, priority); 3106 if (!skb) { 3107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3108 return; 3109 } 3110 3111 /* Reserve space for headers and prepare control bits. */ 3112 skb_reserve(skb, MAX_TCP_HEADER); 3113 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3114 TCPHDR_ACK | TCPHDR_RST); 3115 tcp_mstamp_refresh(tcp_sk(sk)); 3116 /* Send it off. */ 3117 if (tcp_transmit_skb(sk, skb, 0, priority)) 3118 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3119 3120 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3121 * skb here is different to the troublesome skb, so use NULL 3122 */ 3123 trace_tcp_send_reset(sk, NULL); 3124 } 3125 3126 /* Send a crossed SYN-ACK during socket establishment. 3127 * WARNING: This routine must only be called when we have already sent 3128 * a SYN packet that crossed the incoming SYN that caused this routine 3129 * to get called. If this assumption fails then the initial rcv_wnd 3130 * and rcv_wscale values will not be correct. 3131 */ 3132 int tcp_send_synack(struct sock *sk) 3133 { 3134 struct sk_buff *skb; 3135 3136 skb = tcp_rtx_queue_head(sk); 3137 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3138 pr_err("%s: wrong queue state\n", __func__); 3139 return -EFAULT; 3140 } 3141 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3142 if (skb_cloned(skb)) { 3143 struct sk_buff *nskb; 3144 3145 tcp_skb_tsorted_save(skb) { 3146 nskb = skb_copy(skb, GFP_ATOMIC); 3147 } tcp_skb_tsorted_restore(skb); 3148 if (!nskb) 3149 return -ENOMEM; 3150 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3151 tcp_rtx_queue_unlink_and_free(skb, sk); 3152 __skb_header_release(nskb); 3153 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3154 sk->sk_wmem_queued += nskb->truesize; 3155 sk_mem_charge(sk, nskb->truesize); 3156 skb = nskb; 3157 } 3158 3159 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3160 tcp_ecn_send_synack(sk, skb); 3161 } 3162 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3163 } 3164 3165 /** 3166 * tcp_make_synack - Prepare a SYN-ACK. 3167 * sk: listener socket 3168 * dst: dst entry attached to the SYNACK 3169 * req: request_sock pointer 3170 * 3171 * Allocate one skb and build a SYNACK packet. 3172 * @dst is consumed : Caller should not use it again. 3173 */ 3174 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3175 struct request_sock *req, 3176 struct tcp_fastopen_cookie *foc, 3177 enum tcp_synack_type synack_type) 3178 { 3179 struct inet_request_sock *ireq = inet_rsk(req); 3180 const struct tcp_sock *tp = tcp_sk(sk); 3181 struct tcp_md5sig_key *md5 = NULL; 3182 struct tcp_out_options opts; 3183 struct sk_buff *skb; 3184 int tcp_header_size; 3185 struct tcphdr *th; 3186 int mss; 3187 3188 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3189 if (unlikely(!skb)) { 3190 dst_release(dst); 3191 return NULL; 3192 } 3193 /* Reserve space for headers. */ 3194 skb_reserve(skb, MAX_TCP_HEADER); 3195 3196 switch (synack_type) { 3197 case TCP_SYNACK_NORMAL: 3198 skb_set_owner_w(skb, req_to_sk(req)); 3199 break; 3200 case TCP_SYNACK_COOKIE: 3201 /* Under synflood, we do not attach skb to a socket, 3202 * to avoid false sharing. 3203 */ 3204 break; 3205 case TCP_SYNACK_FASTOPEN: 3206 /* sk is a const pointer, because we want to express multiple 3207 * cpu might call us concurrently. 3208 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3209 */ 3210 skb_set_owner_w(skb, (struct sock *)sk); 3211 break; 3212 } 3213 skb_dst_set(skb, dst); 3214 3215 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3216 3217 memset(&opts, 0, sizeof(opts)); 3218 #ifdef CONFIG_SYN_COOKIES 3219 if (unlikely(req->cookie_ts)) 3220 skb->skb_mstamp = cookie_init_timestamp(req); 3221 else 3222 #endif 3223 skb->skb_mstamp = tcp_clock_us(); 3224 3225 #ifdef CONFIG_TCP_MD5SIG 3226 rcu_read_lock(); 3227 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3228 #endif 3229 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3230 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3231 foc) + sizeof(*th); 3232 3233 skb_push(skb, tcp_header_size); 3234 skb_reset_transport_header(skb); 3235 3236 th = (struct tcphdr *)skb->data; 3237 memset(th, 0, sizeof(struct tcphdr)); 3238 th->syn = 1; 3239 th->ack = 1; 3240 tcp_ecn_make_synack(req, th); 3241 th->source = htons(ireq->ir_num); 3242 th->dest = ireq->ir_rmt_port; 3243 skb->mark = ireq->ir_mark; 3244 skb->ip_summed = CHECKSUM_PARTIAL; 3245 th->seq = htonl(tcp_rsk(req)->snt_isn); 3246 /* XXX data is queued and acked as is. No buffer/window check */ 3247 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3248 3249 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3250 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3251 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3252 th->doff = (tcp_header_size >> 2); 3253 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3254 3255 #ifdef CONFIG_TCP_MD5SIG 3256 /* Okay, we have all we need - do the md5 hash if needed */ 3257 if (md5) 3258 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3259 md5, req_to_sk(req), skb); 3260 rcu_read_unlock(); 3261 #endif 3262 3263 /* Do not fool tcpdump (if any), clean our debris */ 3264 skb->tstamp = 0; 3265 return skb; 3266 } 3267 EXPORT_SYMBOL(tcp_make_synack); 3268 3269 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3270 { 3271 struct inet_connection_sock *icsk = inet_csk(sk); 3272 const struct tcp_congestion_ops *ca; 3273 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3274 3275 if (ca_key == TCP_CA_UNSPEC) 3276 return; 3277 3278 rcu_read_lock(); 3279 ca = tcp_ca_find_key(ca_key); 3280 if (likely(ca && try_module_get(ca->owner))) { 3281 module_put(icsk->icsk_ca_ops->owner); 3282 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3283 icsk->icsk_ca_ops = ca; 3284 } 3285 rcu_read_unlock(); 3286 } 3287 3288 /* Do all connect socket setups that can be done AF independent. */ 3289 static void tcp_connect_init(struct sock *sk) 3290 { 3291 const struct dst_entry *dst = __sk_dst_get(sk); 3292 struct tcp_sock *tp = tcp_sk(sk); 3293 __u8 rcv_wscale; 3294 u32 rcv_wnd; 3295 3296 /* We'll fix this up when we get a response from the other end. 3297 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3298 */ 3299 tp->tcp_header_len = sizeof(struct tcphdr); 3300 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3301 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3302 3303 #ifdef CONFIG_TCP_MD5SIG 3304 if (tp->af_specific->md5_lookup(sk, sk)) 3305 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3306 #endif 3307 3308 /* If user gave his TCP_MAXSEG, record it to clamp */ 3309 if (tp->rx_opt.user_mss) 3310 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3311 tp->max_window = 0; 3312 tcp_mtup_init(sk); 3313 tcp_sync_mss(sk, dst_mtu(dst)); 3314 3315 tcp_ca_dst_init(sk, dst); 3316 3317 if (!tp->window_clamp) 3318 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3319 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3320 3321 tcp_initialize_rcv_mss(sk); 3322 3323 /* limit the window selection if the user enforce a smaller rx buffer */ 3324 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3325 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3326 tp->window_clamp = tcp_full_space(sk); 3327 3328 rcv_wnd = tcp_rwnd_init_bpf(sk); 3329 if (rcv_wnd == 0) 3330 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3331 3332 tcp_select_initial_window(sk, tcp_full_space(sk), 3333 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3334 &tp->rcv_wnd, 3335 &tp->window_clamp, 3336 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3337 &rcv_wscale, 3338 rcv_wnd); 3339 3340 tp->rx_opt.rcv_wscale = rcv_wscale; 3341 tp->rcv_ssthresh = tp->rcv_wnd; 3342 3343 sk->sk_err = 0; 3344 sock_reset_flag(sk, SOCK_DONE); 3345 tp->snd_wnd = 0; 3346 tcp_init_wl(tp, 0); 3347 tp->snd_una = tp->write_seq; 3348 tp->snd_sml = tp->write_seq; 3349 tp->snd_up = tp->write_seq; 3350 tp->snd_nxt = tp->write_seq; 3351 3352 if (likely(!tp->repair)) 3353 tp->rcv_nxt = 0; 3354 else 3355 tp->rcv_tstamp = tcp_jiffies32; 3356 tp->rcv_wup = tp->rcv_nxt; 3357 tp->copied_seq = tp->rcv_nxt; 3358 3359 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3360 inet_csk(sk)->icsk_retransmits = 0; 3361 tcp_clear_retrans(tp); 3362 } 3363 3364 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3365 { 3366 struct tcp_sock *tp = tcp_sk(sk); 3367 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3368 3369 tcb->end_seq += skb->len; 3370 __skb_header_release(skb); 3371 sk->sk_wmem_queued += skb->truesize; 3372 sk_mem_charge(sk, skb->truesize); 3373 tp->write_seq = tcb->end_seq; 3374 tp->packets_out += tcp_skb_pcount(skb); 3375 } 3376 3377 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3378 * queue a data-only packet after the regular SYN, such that regular SYNs 3379 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3380 * only the SYN sequence, the data are retransmitted in the first ACK. 3381 * If cookie is not cached or other error occurs, falls back to send a 3382 * regular SYN with Fast Open cookie request option. 3383 */ 3384 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3385 { 3386 struct tcp_sock *tp = tcp_sk(sk); 3387 struct tcp_fastopen_request *fo = tp->fastopen_req; 3388 int space, err = 0; 3389 struct sk_buff *syn_data; 3390 3391 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3392 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3393 goto fallback; 3394 3395 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3396 * user-MSS. Reserve maximum option space for middleboxes that add 3397 * private TCP options. The cost is reduced data space in SYN :( 3398 */ 3399 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3400 3401 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3402 MAX_TCP_OPTION_SPACE; 3403 3404 space = min_t(size_t, space, fo->size); 3405 3406 /* limit to order-0 allocations */ 3407 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3408 3409 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3410 if (!syn_data) 3411 goto fallback; 3412 syn_data->ip_summed = CHECKSUM_PARTIAL; 3413 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3414 if (space) { 3415 int copied = copy_from_iter(skb_put(syn_data, space), space, 3416 &fo->data->msg_iter); 3417 if (unlikely(!copied)) { 3418 tcp_skb_tsorted_anchor_cleanup(syn_data); 3419 kfree_skb(syn_data); 3420 goto fallback; 3421 } 3422 if (copied != space) { 3423 skb_trim(syn_data, copied); 3424 space = copied; 3425 } 3426 } 3427 /* No more data pending in inet_wait_for_connect() */ 3428 if (space == fo->size) 3429 fo->data = NULL; 3430 fo->copied = space; 3431 3432 tcp_connect_queue_skb(sk, syn_data); 3433 if (syn_data->len) 3434 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3435 3436 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3437 3438 syn->skb_mstamp = syn_data->skb_mstamp; 3439 3440 /* Now full SYN+DATA was cloned and sent (or not), 3441 * remove the SYN from the original skb (syn_data) 3442 * we keep in write queue in case of a retransmit, as we 3443 * also have the SYN packet (with no data) in the same queue. 3444 */ 3445 TCP_SKB_CB(syn_data)->seq++; 3446 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3447 if (!err) { 3448 tp->syn_data = (fo->copied > 0); 3449 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3451 goto done; 3452 } 3453 3454 /* data was not sent, put it in write_queue */ 3455 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3456 tp->packets_out -= tcp_skb_pcount(syn_data); 3457 3458 fallback: 3459 /* Send a regular SYN with Fast Open cookie request option */ 3460 if (fo->cookie.len > 0) 3461 fo->cookie.len = 0; 3462 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3463 if (err) 3464 tp->syn_fastopen = 0; 3465 done: 3466 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3467 return err; 3468 } 3469 3470 /* Build a SYN and send it off. */ 3471 int tcp_connect(struct sock *sk) 3472 { 3473 struct tcp_sock *tp = tcp_sk(sk); 3474 struct sk_buff *buff; 3475 int err; 3476 3477 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3478 3479 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3480 return -EHOSTUNREACH; /* Routing failure or similar. */ 3481 3482 tcp_connect_init(sk); 3483 3484 if (unlikely(tp->repair)) { 3485 tcp_finish_connect(sk, NULL); 3486 return 0; 3487 } 3488 3489 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3490 if (unlikely(!buff)) 3491 return -ENOBUFS; 3492 3493 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3494 tcp_mstamp_refresh(tp); 3495 tp->retrans_stamp = tcp_time_stamp(tp); 3496 tcp_connect_queue_skb(sk, buff); 3497 tcp_ecn_send_syn(sk, buff); 3498 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3499 3500 /* Send off SYN; include data in Fast Open. */ 3501 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3502 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3503 if (err == -ECONNREFUSED) 3504 return err; 3505 3506 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3507 * in order to make this packet get counted in tcpOutSegs. 3508 */ 3509 tp->snd_nxt = tp->write_seq; 3510 tp->pushed_seq = tp->write_seq; 3511 buff = tcp_send_head(sk); 3512 if (unlikely(buff)) { 3513 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3514 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3515 } 3516 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3517 3518 /* Timer for repeating the SYN until an answer. */ 3519 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3520 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3521 return 0; 3522 } 3523 EXPORT_SYMBOL(tcp_connect); 3524 3525 /* Send out a delayed ack, the caller does the policy checking 3526 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3527 * for details. 3528 */ 3529 void tcp_send_delayed_ack(struct sock *sk) 3530 { 3531 struct inet_connection_sock *icsk = inet_csk(sk); 3532 int ato = icsk->icsk_ack.ato; 3533 unsigned long timeout; 3534 3535 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3536 3537 if (ato > TCP_DELACK_MIN) { 3538 const struct tcp_sock *tp = tcp_sk(sk); 3539 int max_ato = HZ / 2; 3540 3541 if (icsk->icsk_ack.pingpong || 3542 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3543 max_ato = TCP_DELACK_MAX; 3544 3545 /* Slow path, intersegment interval is "high". */ 3546 3547 /* If some rtt estimate is known, use it to bound delayed ack. 3548 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3549 * directly. 3550 */ 3551 if (tp->srtt_us) { 3552 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3553 TCP_DELACK_MIN); 3554 3555 if (rtt < max_ato) 3556 max_ato = rtt; 3557 } 3558 3559 ato = min(ato, max_ato); 3560 } 3561 3562 /* Stay within the limit we were given */ 3563 timeout = jiffies + ato; 3564 3565 /* Use new timeout only if there wasn't a older one earlier. */ 3566 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3567 /* If delack timer was blocked or is about to expire, 3568 * send ACK now. 3569 */ 3570 if (icsk->icsk_ack.blocked || 3571 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3572 tcp_send_ack(sk); 3573 return; 3574 } 3575 3576 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3577 timeout = icsk->icsk_ack.timeout; 3578 } 3579 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3580 icsk->icsk_ack.timeout = timeout; 3581 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3582 } 3583 3584 /* This routine sends an ack and also updates the window. */ 3585 void tcp_send_ack(struct sock *sk) 3586 { 3587 struct sk_buff *buff; 3588 3589 /* If we have been reset, we may not send again. */ 3590 if (sk->sk_state == TCP_CLOSE) 3591 return; 3592 3593 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3594 3595 /* We are not putting this on the write queue, so 3596 * tcp_transmit_skb() will set the ownership to this 3597 * sock. 3598 */ 3599 buff = alloc_skb(MAX_TCP_HEADER, 3600 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3601 if (unlikely(!buff)) { 3602 inet_csk_schedule_ack(sk); 3603 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3604 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3605 TCP_DELACK_MAX, TCP_RTO_MAX); 3606 return; 3607 } 3608 3609 /* Reserve space for headers and prepare control bits. */ 3610 skb_reserve(buff, MAX_TCP_HEADER); 3611 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3612 3613 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3614 * too much. 3615 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3616 */ 3617 skb_set_tcp_pure_ack(buff); 3618 3619 /* Send it off, this clears delayed acks for us. */ 3620 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3621 } 3622 EXPORT_SYMBOL_GPL(tcp_send_ack); 3623 3624 /* This routine sends a packet with an out of date sequence 3625 * number. It assumes the other end will try to ack it. 3626 * 3627 * Question: what should we make while urgent mode? 3628 * 4.4BSD forces sending single byte of data. We cannot send 3629 * out of window data, because we have SND.NXT==SND.MAX... 3630 * 3631 * Current solution: to send TWO zero-length segments in urgent mode: 3632 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3633 * out-of-date with SND.UNA-1 to probe window. 3634 */ 3635 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3636 { 3637 struct tcp_sock *tp = tcp_sk(sk); 3638 struct sk_buff *skb; 3639 3640 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3641 skb = alloc_skb(MAX_TCP_HEADER, 3642 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3643 if (!skb) 3644 return -1; 3645 3646 /* Reserve space for headers and set control bits. */ 3647 skb_reserve(skb, MAX_TCP_HEADER); 3648 /* Use a previous sequence. This should cause the other 3649 * end to send an ack. Don't queue or clone SKB, just 3650 * send it. 3651 */ 3652 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3653 NET_INC_STATS(sock_net(sk), mib); 3654 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3655 } 3656 3657 /* Called from setsockopt( ... TCP_REPAIR ) */ 3658 void tcp_send_window_probe(struct sock *sk) 3659 { 3660 if (sk->sk_state == TCP_ESTABLISHED) { 3661 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3662 tcp_mstamp_refresh(tcp_sk(sk)); 3663 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3664 } 3665 } 3666 3667 /* Initiate keepalive or window probe from timer. */ 3668 int tcp_write_wakeup(struct sock *sk, int mib) 3669 { 3670 struct tcp_sock *tp = tcp_sk(sk); 3671 struct sk_buff *skb; 3672 3673 if (sk->sk_state == TCP_CLOSE) 3674 return -1; 3675 3676 skb = tcp_send_head(sk); 3677 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3678 int err; 3679 unsigned int mss = tcp_current_mss(sk); 3680 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3681 3682 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3683 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3684 3685 /* We are probing the opening of a window 3686 * but the window size is != 0 3687 * must have been a result SWS avoidance ( sender ) 3688 */ 3689 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3690 skb->len > mss) { 3691 seg_size = min(seg_size, mss); 3692 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3693 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3694 skb, seg_size, mss, GFP_ATOMIC)) 3695 return -1; 3696 } else if (!tcp_skb_pcount(skb)) 3697 tcp_set_skb_tso_segs(skb, mss); 3698 3699 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3700 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3701 if (!err) 3702 tcp_event_new_data_sent(sk, skb); 3703 return err; 3704 } else { 3705 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3706 tcp_xmit_probe_skb(sk, 1, mib); 3707 return tcp_xmit_probe_skb(sk, 0, mib); 3708 } 3709 } 3710 3711 /* A window probe timeout has occurred. If window is not closed send 3712 * a partial packet else a zero probe. 3713 */ 3714 void tcp_send_probe0(struct sock *sk) 3715 { 3716 struct inet_connection_sock *icsk = inet_csk(sk); 3717 struct tcp_sock *tp = tcp_sk(sk); 3718 struct net *net = sock_net(sk); 3719 unsigned long probe_max; 3720 int err; 3721 3722 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3723 3724 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3725 /* Cancel probe timer, if it is not required. */ 3726 icsk->icsk_probes_out = 0; 3727 icsk->icsk_backoff = 0; 3728 return; 3729 } 3730 3731 if (err <= 0) { 3732 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3733 icsk->icsk_backoff++; 3734 icsk->icsk_probes_out++; 3735 probe_max = TCP_RTO_MAX; 3736 } else { 3737 /* If packet was not sent due to local congestion, 3738 * do not backoff and do not remember icsk_probes_out. 3739 * Let local senders to fight for local resources. 3740 * 3741 * Use accumulated backoff yet. 3742 */ 3743 if (!icsk->icsk_probes_out) 3744 icsk->icsk_probes_out = 1; 3745 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3746 } 3747 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3748 tcp_probe0_when(sk, probe_max), 3749 TCP_RTO_MAX); 3750 } 3751 3752 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3753 { 3754 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3755 struct flowi fl; 3756 int res; 3757 3758 tcp_rsk(req)->txhash = net_tx_rndhash(); 3759 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3760 if (!res) { 3761 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3762 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3763 if (unlikely(tcp_passive_fastopen(sk))) 3764 tcp_sk(sk)->total_retrans++; 3765 trace_tcp_retransmit_synack(sk, req); 3766 } 3767 return res; 3768 } 3769 EXPORT_SYMBOL(tcp_rtx_synack); 3770