1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 49 int push_one, gfp_t gfp); 50 51 /* Account for new data that has been sent to the network. */ 52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 53 { 54 struct inet_connection_sock *icsk = inet_csk(sk); 55 struct tcp_sock *tp = tcp_sk(sk); 56 unsigned int prior_packets = tp->packets_out; 57 58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 59 60 __skb_unlink(skb, &sk->sk_write_queue); 61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 62 63 tp->packets_out += tcp_skb_pcount(skb); 64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 65 tcp_rearm_rto(sk); 66 67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 68 tcp_skb_pcount(skb)); 69 } 70 71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 72 * window scaling factor due to loss of precision. 73 * If window has been shrunk, what should we make? It is not clear at all. 74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 76 * invalid. OK, let's make this for now: 77 */ 78 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 79 { 80 const struct tcp_sock *tp = tcp_sk(sk); 81 82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 83 (tp->rx_opt.wscale_ok && 84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 85 return tp->snd_nxt; 86 else 87 return tcp_wnd_end(tp); 88 } 89 90 /* Calculate mss to advertise in SYN segment. 91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 92 * 93 * 1. It is independent of path mtu. 94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 96 * attached devices, because some buggy hosts are confused by 97 * large MSS. 98 * 4. We do not make 3, we advertise MSS, calculated from first 99 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 100 * This may be overridden via information stored in routing table. 101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 102 * probably even Jumbo". 103 */ 104 static __u16 tcp_advertise_mss(struct sock *sk) 105 { 106 struct tcp_sock *tp = tcp_sk(sk); 107 const struct dst_entry *dst = __sk_dst_get(sk); 108 int mss = tp->advmss; 109 110 if (dst) { 111 unsigned int metric = dst_metric_advmss(dst); 112 113 if (metric < mss) { 114 mss = metric; 115 tp->advmss = mss; 116 } 117 } 118 119 return (__u16)mss; 120 } 121 122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 123 * This is the first part of cwnd validation mechanism. 124 */ 125 void tcp_cwnd_restart(struct sock *sk, s32 delta) 126 { 127 struct tcp_sock *tp = tcp_sk(sk); 128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 129 u32 cwnd = tp->snd_cwnd; 130 131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 132 133 tp->snd_ssthresh = tcp_current_ssthresh(sk); 134 restart_cwnd = min(restart_cwnd, cwnd); 135 136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 137 cwnd >>= 1; 138 tp->snd_cwnd = max(cwnd, restart_cwnd); 139 tp->snd_cwnd_stamp = tcp_jiffies32; 140 tp->snd_cwnd_used = 0; 141 } 142 143 /* Congestion state accounting after a packet has been sent. */ 144 static void tcp_event_data_sent(struct tcp_sock *tp, 145 struct sock *sk) 146 { 147 struct inet_connection_sock *icsk = inet_csk(sk); 148 const u32 now = tcp_jiffies32; 149 150 if (tcp_packets_in_flight(tp) == 0) 151 tcp_ca_event(sk, CA_EVENT_TX_START); 152 153 tp->lsndtime = now; 154 155 /* If it is a reply for ato after last received 156 * packet, enter pingpong mode. 157 */ 158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 159 icsk->icsk_ack.pingpong = 1; 160 } 161 162 /* Account for an ACK we sent. */ 163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 164 { 165 struct tcp_sock *tp = tcp_sk(sk); 166 167 if (unlikely(tp->compressed_ack)) { 168 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 169 tp->compressed_ack); 170 tp->compressed_ack = 0; 171 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 172 __sock_put(sk); 173 } 174 tcp_dec_quickack_mode(sk, pkts); 175 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 176 } 177 178 179 u32 tcp_default_init_rwnd(u32 mss) 180 { 181 /* Initial receive window should be twice of TCP_INIT_CWND to 182 * enable proper sending of new unsent data during fast recovery 183 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 184 * limit when mss is larger than 1460. 185 */ 186 u32 init_rwnd = TCP_INIT_CWND * 2; 187 188 if (mss > 1460) 189 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 190 return init_rwnd; 191 } 192 193 /* Determine a window scaling and initial window to offer. 194 * Based on the assumption that the given amount of space 195 * will be offered. Store the results in the tp structure. 196 * NOTE: for smooth operation initial space offering should 197 * be a multiple of mss if possible. We assume here that mss >= 1. 198 * This MUST be enforced by all callers. 199 */ 200 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 201 __u32 *rcv_wnd, __u32 *window_clamp, 202 int wscale_ok, __u8 *rcv_wscale, 203 __u32 init_rcv_wnd) 204 { 205 unsigned int space = (__space < 0 ? 0 : __space); 206 207 /* If no clamp set the clamp to the max possible scaled window */ 208 if (*window_clamp == 0) 209 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 210 space = min(*window_clamp, space); 211 212 /* Quantize space offering to a multiple of mss if possible. */ 213 if (space > mss) 214 space = rounddown(space, mss); 215 216 /* NOTE: offering an initial window larger than 32767 217 * will break some buggy TCP stacks. If the admin tells us 218 * it is likely we could be speaking with such a buggy stack 219 * we will truncate our initial window offering to 32K-1 220 * unless the remote has sent us a window scaling option, 221 * which we interpret as a sign the remote TCP is not 222 * misinterpreting the window field as a signed quantity. 223 */ 224 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 225 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 226 else 227 (*rcv_wnd) = space; 228 229 (*rcv_wscale) = 0; 230 if (wscale_ok) { 231 /* Set window scaling on max possible window */ 232 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 233 space = max_t(u32, space, sysctl_rmem_max); 234 space = min_t(u32, space, *window_clamp); 235 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 236 space >>= 1; 237 (*rcv_wscale)++; 238 } 239 } 240 241 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 242 init_rcv_wnd = tcp_default_init_rwnd(mss); 243 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 244 245 /* Set the clamp no higher than max representable value */ 246 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 247 } 248 EXPORT_SYMBOL(tcp_select_initial_window); 249 250 /* Chose a new window to advertise, update state in tcp_sock for the 251 * socket, and return result with RFC1323 scaling applied. The return 252 * value can be stuffed directly into th->window for an outgoing 253 * frame. 254 */ 255 static u16 tcp_select_window(struct sock *sk) 256 { 257 struct tcp_sock *tp = tcp_sk(sk); 258 u32 old_win = tp->rcv_wnd; 259 u32 cur_win = tcp_receive_window(tp); 260 u32 new_win = __tcp_select_window(sk); 261 262 /* Never shrink the offered window */ 263 if (new_win < cur_win) { 264 /* Danger Will Robinson! 265 * Don't update rcv_wup/rcv_wnd here or else 266 * we will not be able to advertise a zero 267 * window in time. --DaveM 268 * 269 * Relax Will Robinson. 270 */ 271 if (new_win == 0) 272 NET_INC_STATS(sock_net(sk), 273 LINUX_MIB_TCPWANTZEROWINDOWADV); 274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 275 } 276 tp->rcv_wnd = new_win; 277 tp->rcv_wup = tp->rcv_nxt; 278 279 /* Make sure we do not exceed the maximum possible 280 * scaled window. 281 */ 282 if (!tp->rx_opt.rcv_wscale && 283 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 284 new_win = min(new_win, MAX_TCP_WINDOW); 285 else 286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 287 288 /* RFC1323 scaling applied */ 289 new_win >>= tp->rx_opt.rcv_wscale; 290 291 /* If we advertise zero window, disable fast path. */ 292 if (new_win == 0) { 293 tp->pred_flags = 0; 294 if (old_win) 295 NET_INC_STATS(sock_net(sk), 296 LINUX_MIB_TCPTOZEROWINDOWADV); 297 } else if (old_win == 0) { 298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 299 } 300 301 return new_win; 302 } 303 304 /* Packet ECN state for a SYN-ACK */ 305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 306 { 307 const struct tcp_sock *tp = tcp_sk(sk); 308 309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 310 if (!(tp->ecn_flags & TCP_ECN_OK)) 311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 312 else if (tcp_ca_needs_ecn(sk) || 313 tcp_bpf_ca_needs_ecn(sk)) 314 INET_ECN_xmit(sk); 315 } 316 317 /* Packet ECN state for a SYN. */ 318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 319 { 320 struct tcp_sock *tp = tcp_sk(sk); 321 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 322 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 323 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 324 325 if (!use_ecn) { 326 const struct dst_entry *dst = __sk_dst_get(sk); 327 328 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 329 use_ecn = true; 330 } 331 332 tp->ecn_flags = 0; 333 334 if (use_ecn) { 335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 336 tp->ecn_flags = TCP_ECN_OK; 337 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 338 INET_ECN_xmit(sk); 339 } 340 } 341 342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 343 { 344 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 345 /* tp->ecn_flags are cleared at a later point in time when 346 * SYN ACK is ultimatively being received. 347 */ 348 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 349 } 350 351 static void 352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 353 { 354 if (inet_rsk(req)->ecn_ok) 355 th->ece = 1; 356 } 357 358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 359 * be sent. 360 */ 361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 362 struct tcphdr *th, int tcp_header_len) 363 { 364 struct tcp_sock *tp = tcp_sk(sk); 365 366 if (tp->ecn_flags & TCP_ECN_OK) { 367 /* Not-retransmitted data segment: set ECT and inject CWR. */ 368 if (skb->len != tcp_header_len && 369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 370 INET_ECN_xmit(sk); 371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 373 th->cwr = 1; 374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 375 } 376 } else if (!tcp_ca_needs_ecn(sk)) { 377 /* ACK or retransmitted segment: clear ECT|CE */ 378 INET_ECN_dontxmit(sk); 379 } 380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 381 th->ece = 1; 382 } 383 } 384 385 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 386 * auto increment end seqno. 387 */ 388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 389 { 390 skb->ip_summed = CHECKSUM_PARTIAL; 391 392 TCP_SKB_CB(skb)->tcp_flags = flags; 393 TCP_SKB_CB(skb)->sacked = 0; 394 395 tcp_skb_pcount_set(skb, 1); 396 397 TCP_SKB_CB(skb)->seq = seq; 398 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 399 seq++; 400 TCP_SKB_CB(skb)->end_seq = seq; 401 } 402 403 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 404 { 405 return tp->snd_una != tp->snd_up; 406 } 407 408 #define OPTION_SACK_ADVERTISE (1 << 0) 409 #define OPTION_TS (1 << 1) 410 #define OPTION_MD5 (1 << 2) 411 #define OPTION_WSCALE (1 << 3) 412 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 413 #define OPTION_SMC (1 << 9) 414 415 static void smc_options_write(__be32 *ptr, u16 *options) 416 { 417 #if IS_ENABLED(CONFIG_SMC) 418 if (static_branch_unlikely(&tcp_have_smc)) { 419 if (unlikely(OPTION_SMC & *options)) { 420 *ptr++ = htonl((TCPOPT_NOP << 24) | 421 (TCPOPT_NOP << 16) | 422 (TCPOPT_EXP << 8) | 423 (TCPOLEN_EXP_SMC_BASE)); 424 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 425 } 426 } 427 #endif 428 } 429 430 struct tcp_out_options { 431 u16 options; /* bit field of OPTION_* */ 432 u16 mss; /* 0 to disable */ 433 u8 ws; /* window scale, 0 to disable */ 434 u8 num_sack_blocks; /* number of SACK blocks to include */ 435 u8 hash_size; /* bytes in hash_location */ 436 __u8 *hash_location; /* temporary pointer, overloaded */ 437 __u32 tsval, tsecr; /* need to include OPTION_TS */ 438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 439 }; 440 441 /* Write previously computed TCP options to the packet. 442 * 443 * Beware: Something in the Internet is very sensitive to the ordering of 444 * TCP options, we learned this through the hard way, so be careful here. 445 * Luckily we can at least blame others for their non-compliance but from 446 * inter-operability perspective it seems that we're somewhat stuck with 447 * the ordering which we have been using if we want to keep working with 448 * those broken things (not that it currently hurts anybody as there isn't 449 * particular reason why the ordering would need to be changed). 450 * 451 * At least SACK_PERM as the first option is known to lead to a disaster 452 * (but it may well be that other scenarios fail similarly). 453 */ 454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 455 struct tcp_out_options *opts) 456 { 457 u16 options = opts->options; /* mungable copy */ 458 459 if (unlikely(OPTION_MD5 & options)) { 460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 462 /* overload cookie hash location */ 463 opts->hash_location = (__u8 *)ptr; 464 ptr += 4; 465 } 466 467 if (unlikely(opts->mss)) { 468 *ptr++ = htonl((TCPOPT_MSS << 24) | 469 (TCPOLEN_MSS << 16) | 470 opts->mss); 471 } 472 473 if (likely(OPTION_TS & options)) { 474 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 476 (TCPOLEN_SACK_PERM << 16) | 477 (TCPOPT_TIMESTAMP << 8) | 478 TCPOLEN_TIMESTAMP); 479 options &= ~OPTION_SACK_ADVERTISE; 480 } else { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_TIMESTAMP << 8) | 484 TCPOLEN_TIMESTAMP); 485 } 486 *ptr++ = htonl(opts->tsval); 487 *ptr++ = htonl(opts->tsecr); 488 } 489 490 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_NOP << 16) | 493 (TCPOPT_SACK_PERM << 8) | 494 TCPOLEN_SACK_PERM); 495 } 496 497 if (unlikely(OPTION_WSCALE & options)) { 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_WINDOW << 16) | 500 (TCPOLEN_WINDOW << 8) | 501 opts->ws); 502 } 503 504 if (unlikely(opts->num_sack_blocks)) { 505 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 506 tp->duplicate_sack : tp->selective_acks; 507 int this_sack; 508 509 *ptr++ = htonl((TCPOPT_NOP << 24) | 510 (TCPOPT_NOP << 16) | 511 (TCPOPT_SACK << 8) | 512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 513 TCPOLEN_SACK_PERBLOCK))); 514 515 for (this_sack = 0; this_sack < opts->num_sack_blocks; 516 ++this_sack) { 517 *ptr++ = htonl(sp[this_sack].start_seq); 518 *ptr++ = htonl(sp[this_sack].end_seq); 519 } 520 521 tp->rx_opt.dsack = 0; 522 } 523 524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 526 u8 *p = (u8 *)ptr; 527 u32 len; /* Fast Open option length */ 528 529 if (foc->exp) { 530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 532 TCPOPT_FASTOPEN_MAGIC); 533 p += TCPOLEN_EXP_FASTOPEN_BASE; 534 } else { 535 len = TCPOLEN_FASTOPEN_BASE + foc->len; 536 *p++ = TCPOPT_FASTOPEN; 537 *p++ = len; 538 } 539 540 memcpy(p, foc->val, foc->len); 541 if ((len & 3) == 2) { 542 p[foc->len] = TCPOPT_NOP; 543 p[foc->len + 1] = TCPOPT_NOP; 544 } 545 ptr += (len + 3) >> 2; 546 } 547 548 smc_options_write(ptr, &options); 549 } 550 551 static void smc_set_option(const struct tcp_sock *tp, 552 struct tcp_out_options *opts, 553 unsigned int *remaining) 554 { 555 #if IS_ENABLED(CONFIG_SMC) 556 if (static_branch_unlikely(&tcp_have_smc)) { 557 if (tp->syn_smc) { 558 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 559 opts->options |= OPTION_SMC; 560 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 561 } 562 } 563 } 564 #endif 565 } 566 567 static void smc_set_option_cond(const struct tcp_sock *tp, 568 const struct inet_request_sock *ireq, 569 struct tcp_out_options *opts, 570 unsigned int *remaining) 571 { 572 #if IS_ENABLED(CONFIG_SMC) 573 if (static_branch_unlikely(&tcp_have_smc)) { 574 if (tp->syn_smc && ireq->smc_ok) { 575 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 576 opts->options |= OPTION_SMC; 577 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 578 } 579 } 580 } 581 #endif 582 } 583 584 /* Compute TCP options for SYN packets. This is not the final 585 * network wire format yet. 586 */ 587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 588 struct tcp_out_options *opts, 589 struct tcp_md5sig_key **md5) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 unsigned int remaining = MAX_TCP_OPTION_SPACE; 593 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 594 595 *md5 = NULL; 596 #ifdef CONFIG_TCP_MD5SIG 597 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 598 *md5 = tp->af_specific->md5_lookup(sk, sk); 599 if (*md5) { 600 opts->options |= OPTION_MD5; 601 remaining -= TCPOLEN_MD5SIG_ALIGNED; 602 } 603 } 604 #endif 605 606 /* We always get an MSS option. The option bytes which will be seen in 607 * normal data packets should timestamps be used, must be in the MSS 608 * advertised. But we subtract them from tp->mss_cache so that 609 * calculations in tcp_sendmsg are simpler etc. So account for this 610 * fact here if necessary. If we don't do this correctly, as a 611 * receiver we won't recognize data packets as being full sized when we 612 * should, and thus we won't abide by the delayed ACK rules correctly. 613 * SACKs don't matter, we never delay an ACK when we have any of those 614 * going out. */ 615 opts->mss = tcp_advertise_mss(sk); 616 remaining -= TCPOLEN_MSS_ALIGNED; 617 618 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 619 opts->options |= OPTION_TS; 620 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 621 opts->tsecr = tp->rx_opt.ts_recent; 622 remaining -= TCPOLEN_TSTAMP_ALIGNED; 623 } 624 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 625 opts->ws = tp->rx_opt.rcv_wscale; 626 opts->options |= OPTION_WSCALE; 627 remaining -= TCPOLEN_WSCALE_ALIGNED; 628 } 629 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 630 opts->options |= OPTION_SACK_ADVERTISE; 631 if (unlikely(!(OPTION_TS & opts->options))) 632 remaining -= TCPOLEN_SACKPERM_ALIGNED; 633 } 634 635 if (fastopen && fastopen->cookie.len >= 0) { 636 u32 need = fastopen->cookie.len; 637 638 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 639 TCPOLEN_FASTOPEN_BASE; 640 need = (need + 3) & ~3U; /* Align to 32 bits */ 641 if (remaining >= need) { 642 opts->options |= OPTION_FAST_OPEN_COOKIE; 643 opts->fastopen_cookie = &fastopen->cookie; 644 remaining -= need; 645 tp->syn_fastopen = 1; 646 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 647 } 648 } 649 650 smc_set_option(tp, opts, &remaining); 651 652 return MAX_TCP_OPTION_SPACE - remaining; 653 } 654 655 /* Set up TCP options for SYN-ACKs. */ 656 static unsigned int tcp_synack_options(const struct sock *sk, 657 struct request_sock *req, 658 unsigned int mss, struct sk_buff *skb, 659 struct tcp_out_options *opts, 660 const struct tcp_md5sig_key *md5, 661 struct tcp_fastopen_cookie *foc) 662 { 663 struct inet_request_sock *ireq = inet_rsk(req); 664 unsigned int remaining = MAX_TCP_OPTION_SPACE; 665 666 #ifdef CONFIG_TCP_MD5SIG 667 if (md5) { 668 opts->options |= OPTION_MD5; 669 remaining -= TCPOLEN_MD5SIG_ALIGNED; 670 671 /* We can't fit any SACK blocks in a packet with MD5 + TS 672 * options. There was discussion about disabling SACK 673 * rather than TS in order to fit in better with old, 674 * buggy kernels, but that was deemed to be unnecessary. 675 */ 676 ireq->tstamp_ok &= !ireq->sack_ok; 677 } 678 #endif 679 680 /* We always send an MSS option. */ 681 opts->mss = mss; 682 remaining -= TCPOLEN_MSS_ALIGNED; 683 684 if (likely(ireq->wscale_ok)) { 685 opts->ws = ireq->rcv_wscale; 686 opts->options |= OPTION_WSCALE; 687 remaining -= TCPOLEN_WSCALE_ALIGNED; 688 } 689 if (likely(ireq->tstamp_ok)) { 690 opts->options |= OPTION_TS; 691 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 692 opts->tsecr = req->ts_recent; 693 remaining -= TCPOLEN_TSTAMP_ALIGNED; 694 } 695 if (likely(ireq->sack_ok)) { 696 opts->options |= OPTION_SACK_ADVERTISE; 697 if (unlikely(!ireq->tstamp_ok)) 698 remaining -= TCPOLEN_SACKPERM_ALIGNED; 699 } 700 if (foc != NULL && foc->len >= 0) { 701 u32 need = foc->len; 702 703 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 704 TCPOLEN_FASTOPEN_BASE; 705 need = (need + 3) & ~3U; /* Align to 32 bits */ 706 if (remaining >= need) { 707 opts->options |= OPTION_FAST_OPEN_COOKIE; 708 opts->fastopen_cookie = foc; 709 remaining -= need; 710 } 711 } 712 713 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 714 715 return MAX_TCP_OPTION_SPACE - remaining; 716 } 717 718 /* Compute TCP options for ESTABLISHED sockets. This is not the 719 * final wire format yet. 720 */ 721 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 722 struct tcp_out_options *opts, 723 struct tcp_md5sig_key **md5) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 unsigned int size = 0; 727 unsigned int eff_sacks; 728 729 opts->options = 0; 730 731 *md5 = NULL; 732 #ifdef CONFIG_TCP_MD5SIG 733 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 734 *md5 = tp->af_specific->md5_lookup(sk, sk); 735 if (*md5) { 736 opts->options |= OPTION_MD5; 737 size += TCPOLEN_MD5SIG_ALIGNED; 738 } 739 } 740 #endif 741 742 if (likely(tp->rx_opt.tstamp_ok)) { 743 opts->options |= OPTION_TS; 744 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 745 opts->tsecr = tp->rx_opt.ts_recent; 746 size += TCPOLEN_TSTAMP_ALIGNED; 747 } 748 749 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 750 if (unlikely(eff_sacks)) { 751 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 752 opts->num_sack_blocks = 753 min_t(unsigned int, eff_sacks, 754 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 755 TCPOLEN_SACK_PERBLOCK); 756 size += TCPOLEN_SACK_BASE_ALIGNED + 757 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 758 } 759 760 return size; 761 } 762 763 764 /* TCP SMALL QUEUES (TSQ) 765 * 766 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 767 * to reduce RTT and bufferbloat. 768 * We do this using a special skb destructor (tcp_wfree). 769 * 770 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 771 * needs to be reallocated in a driver. 772 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 773 * 774 * Since transmit from skb destructor is forbidden, we use a tasklet 775 * to process all sockets that eventually need to send more skbs. 776 * We use one tasklet per cpu, with its own queue of sockets. 777 */ 778 struct tsq_tasklet { 779 struct tasklet_struct tasklet; 780 struct list_head head; /* queue of tcp sockets */ 781 }; 782 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 783 784 static void tcp_tsq_write(struct sock *sk) 785 { 786 if ((1 << sk->sk_state) & 787 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 788 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 789 struct tcp_sock *tp = tcp_sk(sk); 790 791 if (tp->lost_out > tp->retrans_out && 792 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 793 tcp_mstamp_refresh(tp); 794 tcp_xmit_retransmit_queue(sk); 795 } 796 797 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 798 0, GFP_ATOMIC); 799 } 800 } 801 802 static void tcp_tsq_handler(struct sock *sk) 803 { 804 bh_lock_sock(sk); 805 if (!sock_owned_by_user(sk)) 806 tcp_tsq_write(sk); 807 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 808 sock_hold(sk); 809 bh_unlock_sock(sk); 810 } 811 /* 812 * One tasklet per cpu tries to send more skbs. 813 * We run in tasklet context but need to disable irqs when 814 * transferring tsq->head because tcp_wfree() might 815 * interrupt us (non NAPI drivers) 816 */ 817 static void tcp_tasklet_func(unsigned long data) 818 { 819 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 820 LIST_HEAD(list); 821 unsigned long flags; 822 struct list_head *q, *n; 823 struct tcp_sock *tp; 824 struct sock *sk; 825 826 local_irq_save(flags); 827 list_splice_init(&tsq->head, &list); 828 local_irq_restore(flags); 829 830 list_for_each_safe(q, n, &list) { 831 tp = list_entry(q, struct tcp_sock, tsq_node); 832 list_del(&tp->tsq_node); 833 834 sk = (struct sock *)tp; 835 smp_mb__before_atomic(); 836 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 837 838 tcp_tsq_handler(sk); 839 sk_free(sk); 840 } 841 } 842 843 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 844 TCPF_WRITE_TIMER_DEFERRED | \ 845 TCPF_DELACK_TIMER_DEFERRED | \ 846 TCPF_MTU_REDUCED_DEFERRED) 847 /** 848 * tcp_release_cb - tcp release_sock() callback 849 * @sk: socket 850 * 851 * called from release_sock() to perform protocol dependent 852 * actions before socket release. 853 */ 854 void tcp_release_cb(struct sock *sk) 855 { 856 unsigned long flags, nflags; 857 858 /* perform an atomic operation only if at least one flag is set */ 859 do { 860 flags = sk->sk_tsq_flags; 861 if (!(flags & TCP_DEFERRED_ALL)) 862 return; 863 nflags = flags & ~TCP_DEFERRED_ALL; 864 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 865 866 if (flags & TCPF_TSQ_DEFERRED) { 867 tcp_tsq_write(sk); 868 __sock_put(sk); 869 } 870 /* Here begins the tricky part : 871 * We are called from release_sock() with : 872 * 1) BH disabled 873 * 2) sk_lock.slock spinlock held 874 * 3) socket owned by us (sk->sk_lock.owned == 1) 875 * 876 * But following code is meant to be called from BH handlers, 877 * so we should keep BH disabled, but early release socket ownership 878 */ 879 sock_release_ownership(sk); 880 881 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 882 tcp_write_timer_handler(sk); 883 __sock_put(sk); 884 } 885 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 886 tcp_delack_timer_handler(sk); 887 __sock_put(sk); 888 } 889 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 890 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 891 __sock_put(sk); 892 } 893 } 894 EXPORT_SYMBOL(tcp_release_cb); 895 896 void __init tcp_tasklet_init(void) 897 { 898 int i; 899 900 for_each_possible_cpu(i) { 901 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 902 903 INIT_LIST_HEAD(&tsq->head); 904 tasklet_init(&tsq->tasklet, 905 tcp_tasklet_func, 906 (unsigned long)tsq); 907 } 908 } 909 910 /* 911 * Write buffer destructor automatically called from kfree_skb. 912 * We can't xmit new skbs from this context, as we might already 913 * hold qdisc lock. 914 */ 915 void tcp_wfree(struct sk_buff *skb) 916 { 917 struct sock *sk = skb->sk; 918 struct tcp_sock *tp = tcp_sk(sk); 919 unsigned long flags, nval, oval; 920 921 /* Keep one reference on sk_wmem_alloc. 922 * Will be released by sk_free() from here or tcp_tasklet_func() 923 */ 924 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 925 926 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 927 * Wait until our queues (qdisc + devices) are drained. 928 * This gives : 929 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 930 * - chance for incoming ACK (processed by another cpu maybe) 931 * to migrate this flow (skb->ooo_okay will be eventually set) 932 */ 933 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 934 goto out; 935 936 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 937 struct tsq_tasklet *tsq; 938 bool empty; 939 940 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 941 goto out; 942 943 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 944 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 945 if (nval != oval) 946 continue; 947 948 /* queue this socket to tasklet queue */ 949 local_irq_save(flags); 950 tsq = this_cpu_ptr(&tsq_tasklet); 951 empty = list_empty(&tsq->head); 952 list_add(&tp->tsq_node, &tsq->head); 953 if (empty) 954 tasklet_schedule(&tsq->tasklet); 955 local_irq_restore(flags); 956 return; 957 } 958 out: 959 sk_free(sk); 960 } 961 962 /* Note: Called under soft irq. 963 * We can call TCP stack right away, unless socket is owned by user. 964 */ 965 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 966 { 967 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 968 struct sock *sk = (struct sock *)tp; 969 970 tcp_tsq_handler(sk); 971 sock_put(sk); 972 973 return HRTIMER_NORESTART; 974 } 975 976 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 977 { 978 u64 len_ns; 979 u32 rate; 980 981 if (!tcp_needs_internal_pacing(sk)) 982 return; 983 rate = sk->sk_pacing_rate; 984 if (!rate || rate == ~0U) 985 return; 986 987 len_ns = (u64)skb->len * NSEC_PER_SEC; 988 do_div(len_ns, rate); 989 hrtimer_start(&tcp_sk(sk)->pacing_timer, 990 ktime_add_ns(ktime_get(), len_ns), 991 HRTIMER_MODE_ABS_PINNED_SOFT); 992 sock_hold(sk); 993 } 994 995 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 996 { 997 skb->skb_mstamp = tp->tcp_mstamp; 998 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 999 } 1000 1001 /* This routine actually transmits TCP packets queued in by 1002 * tcp_do_sendmsg(). This is used by both the initial 1003 * transmission and possible later retransmissions. 1004 * All SKB's seen here are completely headerless. It is our 1005 * job to build the TCP header, and pass the packet down to 1006 * IP so it can do the same plus pass the packet off to the 1007 * device. 1008 * 1009 * We are working here with either a clone of the original 1010 * SKB, or a fresh unique copy made by the retransmit engine. 1011 */ 1012 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1013 gfp_t gfp_mask) 1014 { 1015 const struct inet_connection_sock *icsk = inet_csk(sk); 1016 struct inet_sock *inet; 1017 struct tcp_sock *tp; 1018 struct tcp_skb_cb *tcb; 1019 struct tcp_out_options opts; 1020 unsigned int tcp_options_size, tcp_header_size; 1021 struct sk_buff *oskb = NULL; 1022 struct tcp_md5sig_key *md5; 1023 struct tcphdr *th; 1024 int err; 1025 1026 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1027 tp = tcp_sk(sk); 1028 1029 if (clone_it) { 1030 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1031 - tp->snd_una; 1032 oskb = skb; 1033 1034 tcp_skb_tsorted_save(oskb) { 1035 if (unlikely(skb_cloned(oskb))) 1036 skb = pskb_copy(oskb, gfp_mask); 1037 else 1038 skb = skb_clone(oskb, gfp_mask); 1039 } tcp_skb_tsorted_restore(oskb); 1040 1041 if (unlikely(!skb)) 1042 return -ENOBUFS; 1043 } 1044 skb->skb_mstamp = tp->tcp_mstamp; 1045 1046 inet = inet_sk(sk); 1047 tcb = TCP_SKB_CB(skb); 1048 memset(&opts, 0, sizeof(opts)); 1049 1050 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1051 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1052 else 1053 tcp_options_size = tcp_established_options(sk, skb, &opts, 1054 &md5); 1055 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1056 1057 /* if no packet is in qdisc/device queue, then allow XPS to select 1058 * another queue. We can be called from tcp_tsq_handler() 1059 * which holds one reference to sk. 1060 * 1061 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1062 * One way to get this would be to set skb->truesize = 2 on them. 1063 */ 1064 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1065 1066 /* If we had to use memory reserve to allocate this skb, 1067 * this might cause drops if packet is looped back : 1068 * Other socket might not have SOCK_MEMALLOC. 1069 * Packets not looped back do not care about pfmemalloc. 1070 */ 1071 skb->pfmemalloc = 0; 1072 1073 skb_push(skb, tcp_header_size); 1074 skb_reset_transport_header(skb); 1075 1076 skb_orphan(skb); 1077 skb->sk = sk; 1078 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1079 skb_set_hash_from_sk(skb, sk); 1080 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1081 1082 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1083 1084 /* Build TCP header and checksum it. */ 1085 th = (struct tcphdr *)skb->data; 1086 th->source = inet->inet_sport; 1087 th->dest = inet->inet_dport; 1088 th->seq = htonl(tcb->seq); 1089 th->ack_seq = htonl(tp->rcv_nxt); 1090 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1091 tcb->tcp_flags); 1092 1093 th->check = 0; 1094 th->urg_ptr = 0; 1095 1096 /* The urg_mode check is necessary during a below snd_una win probe */ 1097 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1098 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1099 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1100 th->urg = 1; 1101 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1102 th->urg_ptr = htons(0xFFFF); 1103 th->urg = 1; 1104 } 1105 } 1106 1107 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1108 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1109 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1110 th->window = htons(tcp_select_window(sk)); 1111 tcp_ecn_send(sk, skb, th, tcp_header_size); 1112 } else { 1113 /* RFC1323: The window in SYN & SYN/ACK segments 1114 * is never scaled. 1115 */ 1116 th->window = htons(min(tp->rcv_wnd, 65535U)); 1117 } 1118 #ifdef CONFIG_TCP_MD5SIG 1119 /* Calculate the MD5 hash, as we have all we need now */ 1120 if (md5) { 1121 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1122 tp->af_specific->calc_md5_hash(opts.hash_location, 1123 md5, sk, skb); 1124 } 1125 #endif 1126 1127 icsk->icsk_af_ops->send_check(sk, skb); 1128 1129 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1130 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1131 1132 if (skb->len != tcp_header_size) { 1133 tcp_event_data_sent(tp, sk); 1134 tp->data_segs_out += tcp_skb_pcount(skb); 1135 tcp_internal_pacing(sk, skb); 1136 } 1137 1138 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1139 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1140 tcp_skb_pcount(skb)); 1141 1142 tp->segs_out += tcp_skb_pcount(skb); 1143 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1144 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1145 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1146 1147 /* Our usage of tstamp should remain private */ 1148 skb->tstamp = 0; 1149 1150 /* Cleanup our debris for IP stacks */ 1151 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1152 sizeof(struct inet6_skb_parm))); 1153 1154 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1155 1156 if (unlikely(err > 0)) { 1157 tcp_enter_cwr(sk); 1158 err = net_xmit_eval(err); 1159 } 1160 if (!err && oskb) { 1161 tcp_update_skb_after_send(tp, oskb); 1162 tcp_rate_skb_sent(sk, oskb); 1163 } 1164 return err; 1165 } 1166 1167 /* This routine just queues the buffer for sending. 1168 * 1169 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1170 * otherwise socket can stall. 1171 */ 1172 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1173 { 1174 struct tcp_sock *tp = tcp_sk(sk); 1175 1176 /* Advance write_seq and place onto the write_queue. */ 1177 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1178 __skb_header_release(skb); 1179 tcp_add_write_queue_tail(sk, skb); 1180 sk->sk_wmem_queued += skb->truesize; 1181 sk_mem_charge(sk, skb->truesize); 1182 } 1183 1184 /* Initialize TSO segments for a packet. */ 1185 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1186 { 1187 if (skb->len <= mss_now) { 1188 /* Avoid the costly divide in the normal 1189 * non-TSO case. 1190 */ 1191 tcp_skb_pcount_set(skb, 1); 1192 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1193 } else { 1194 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1195 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1196 } 1197 } 1198 1199 /* Pcount in the middle of the write queue got changed, we need to do various 1200 * tweaks to fix counters 1201 */ 1202 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1203 { 1204 struct tcp_sock *tp = tcp_sk(sk); 1205 1206 tp->packets_out -= decr; 1207 1208 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1209 tp->sacked_out -= decr; 1210 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1211 tp->retrans_out -= decr; 1212 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1213 tp->lost_out -= decr; 1214 1215 /* Reno case is special. Sigh... */ 1216 if (tcp_is_reno(tp) && decr > 0) 1217 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1218 1219 if (tp->lost_skb_hint && 1220 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1221 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1222 tp->lost_cnt_hint -= decr; 1223 1224 tcp_verify_left_out(tp); 1225 } 1226 1227 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1228 { 1229 return TCP_SKB_CB(skb)->txstamp_ack || 1230 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1231 } 1232 1233 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1234 { 1235 struct skb_shared_info *shinfo = skb_shinfo(skb); 1236 1237 if (unlikely(tcp_has_tx_tstamp(skb)) && 1238 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1239 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1240 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1241 1242 shinfo->tx_flags &= ~tsflags; 1243 shinfo2->tx_flags |= tsflags; 1244 swap(shinfo->tskey, shinfo2->tskey); 1245 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1246 TCP_SKB_CB(skb)->txstamp_ack = 0; 1247 } 1248 } 1249 1250 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1251 { 1252 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1253 TCP_SKB_CB(skb)->eor = 0; 1254 } 1255 1256 /* Insert buff after skb on the write or rtx queue of sk. */ 1257 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1258 struct sk_buff *buff, 1259 struct sock *sk, 1260 enum tcp_queue tcp_queue) 1261 { 1262 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1263 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1264 else 1265 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1266 } 1267 1268 /* Function to create two new TCP segments. Shrinks the given segment 1269 * to the specified size and appends a new segment with the rest of the 1270 * packet to the list. This won't be called frequently, I hope. 1271 * Remember, these are still headerless SKBs at this point. 1272 */ 1273 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1274 struct sk_buff *skb, u32 len, 1275 unsigned int mss_now, gfp_t gfp) 1276 { 1277 struct tcp_sock *tp = tcp_sk(sk); 1278 struct sk_buff *buff; 1279 int nsize, old_factor; 1280 int nlen; 1281 u8 flags; 1282 1283 if (WARN_ON(len > skb->len)) 1284 return -EINVAL; 1285 1286 nsize = skb_headlen(skb) - len; 1287 if (nsize < 0) 1288 nsize = 0; 1289 1290 if (skb_unclone(skb, gfp)) 1291 return -ENOMEM; 1292 1293 /* Get a new skb... force flag on. */ 1294 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1295 if (!buff) 1296 return -ENOMEM; /* We'll just try again later. */ 1297 1298 sk->sk_wmem_queued += buff->truesize; 1299 sk_mem_charge(sk, buff->truesize); 1300 nlen = skb->len - len - nsize; 1301 buff->truesize += nlen; 1302 skb->truesize -= nlen; 1303 1304 /* Correct the sequence numbers. */ 1305 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1306 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1307 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1308 1309 /* PSH and FIN should only be set in the second packet. */ 1310 flags = TCP_SKB_CB(skb)->tcp_flags; 1311 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1312 TCP_SKB_CB(buff)->tcp_flags = flags; 1313 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1314 tcp_skb_fragment_eor(skb, buff); 1315 1316 skb_split(skb, buff, len); 1317 1318 buff->ip_summed = CHECKSUM_PARTIAL; 1319 1320 buff->tstamp = skb->tstamp; 1321 tcp_fragment_tstamp(skb, buff); 1322 1323 old_factor = tcp_skb_pcount(skb); 1324 1325 /* Fix up tso_factor for both original and new SKB. */ 1326 tcp_set_skb_tso_segs(skb, mss_now); 1327 tcp_set_skb_tso_segs(buff, mss_now); 1328 1329 /* Update delivered info for the new segment */ 1330 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1331 1332 /* If this packet has been sent out already, we must 1333 * adjust the various packet counters. 1334 */ 1335 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1336 int diff = old_factor - tcp_skb_pcount(skb) - 1337 tcp_skb_pcount(buff); 1338 1339 if (diff) 1340 tcp_adjust_pcount(sk, skb, diff); 1341 } 1342 1343 /* Link BUFF into the send queue. */ 1344 __skb_header_release(buff); 1345 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1346 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1347 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1348 1349 return 0; 1350 } 1351 1352 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1353 * data is not copied, but immediately discarded. 1354 */ 1355 static int __pskb_trim_head(struct sk_buff *skb, int len) 1356 { 1357 struct skb_shared_info *shinfo; 1358 int i, k, eat; 1359 1360 eat = min_t(int, len, skb_headlen(skb)); 1361 if (eat) { 1362 __skb_pull(skb, eat); 1363 len -= eat; 1364 if (!len) 1365 return 0; 1366 } 1367 eat = len; 1368 k = 0; 1369 shinfo = skb_shinfo(skb); 1370 for (i = 0; i < shinfo->nr_frags; i++) { 1371 int size = skb_frag_size(&shinfo->frags[i]); 1372 1373 if (size <= eat) { 1374 skb_frag_unref(skb, i); 1375 eat -= size; 1376 } else { 1377 shinfo->frags[k] = shinfo->frags[i]; 1378 if (eat) { 1379 shinfo->frags[k].page_offset += eat; 1380 skb_frag_size_sub(&shinfo->frags[k], eat); 1381 eat = 0; 1382 } 1383 k++; 1384 } 1385 } 1386 shinfo->nr_frags = k; 1387 1388 skb->data_len -= len; 1389 skb->len = skb->data_len; 1390 return len; 1391 } 1392 1393 /* Remove acked data from a packet in the transmit queue. */ 1394 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1395 { 1396 u32 delta_truesize; 1397 1398 if (skb_unclone(skb, GFP_ATOMIC)) 1399 return -ENOMEM; 1400 1401 delta_truesize = __pskb_trim_head(skb, len); 1402 1403 TCP_SKB_CB(skb)->seq += len; 1404 skb->ip_summed = CHECKSUM_PARTIAL; 1405 1406 if (delta_truesize) { 1407 skb->truesize -= delta_truesize; 1408 sk->sk_wmem_queued -= delta_truesize; 1409 sk_mem_uncharge(sk, delta_truesize); 1410 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1411 } 1412 1413 /* Any change of skb->len requires recalculation of tso factor. */ 1414 if (tcp_skb_pcount(skb) > 1) 1415 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1416 1417 return 0; 1418 } 1419 1420 /* Calculate MSS not accounting any TCP options. */ 1421 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1422 { 1423 const struct tcp_sock *tp = tcp_sk(sk); 1424 const struct inet_connection_sock *icsk = inet_csk(sk); 1425 int mss_now; 1426 1427 /* Calculate base mss without TCP options: 1428 It is MMS_S - sizeof(tcphdr) of rfc1122 1429 */ 1430 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1431 1432 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1433 if (icsk->icsk_af_ops->net_frag_header_len) { 1434 const struct dst_entry *dst = __sk_dst_get(sk); 1435 1436 if (dst && dst_allfrag(dst)) 1437 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1438 } 1439 1440 /* Clamp it (mss_clamp does not include tcp options) */ 1441 if (mss_now > tp->rx_opt.mss_clamp) 1442 mss_now = tp->rx_opt.mss_clamp; 1443 1444 /* Now subtract optional transport overhead */ 1445 mss_now -= icsk->icsk_ext_hdr_len; 1446 1447 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1448 if (mss_now < 48) 1449 mss_now = 48; 1450 return mss_now; 1451 } 1452 1453 /* Calculate MSS. Not accounting for SACKs here. */ 1454 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1455 { 1456 /* Subtract TCP options size, not including SACKs */ 1457 return __tcp_mtu_to_mss(sk, pmtu) - 1458 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1459 } 1460 1461 /* Inverse of above */ 1462 int tcp_mss_to_mtu(struct sock *sk, int mss) 1463 { 1464 const struct tcp_sock *tp = tcp_sk(sk); 1465 const struct inet_connection_sock *icsk = inet_csk(sk); 1466 int mtu; 1467 1468 mtu = mss + 1469 tp->tcp_header_len + 1470 icsk->icsk_ext_hdr_len + 1471 icsk->icsk_af_ops->net_header_len; 1472 1473 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1474 if (icsk->icsk_af_ops->net_frag_header_len) { 1475 const struct dst_entry *dst = __sk_dst_get(sk); 1476 1477 if (dst && dst_allfrag(dst)) 1478 mtu += icsk->icsk_af_ops->net_frag_header_len; 1479 } 1480 return mtu; 1481 } 1482 EXPORT_SYMBOL(tcp_mss_to_mtu); 1483 1484 /* MTU probing init per socket */ 1485 void tcp_mtup_init(struct sock *sk) 1486 { 1487 struct tcp_sock *tp = tcp_sk(sk); 1488 struct inet_connection_sock *icsk = inet_csk(sk); 1489 struct net *net = sock_net(sk); 1490 1491 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1492 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1493 icsk->icsk_af_ops->net_header_len; 1494 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1495 icsk->icsk_mtup.probe_size = 0; 1496 if (icsk->icsk_mtup.enabled) 1497 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1498 } 1499 EXPORT_SYMBOL(tcp_mtup_init); 1500 1501 /* This function synchronize snd mss to current pmtu/exthdr set. 1502 1503 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1504 for TCP options, but includes only bare TCP header. 1505 1506 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1507 It is minimum of user_mss and mss received with SYN. 1508 It also does not include TCP options. 1509 1510 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1511 1512 tp->mss_cache is current effective sending mss, including 1513 all tcp options except for SACKs. It is evaluated, 1514 taking into account current pmtu, but never exceeds 1515 tp->rx_opt.mss_clamp. 1516 1517 NOTE1. rfc1122 clearly states that advertised MSS 1518 DOES NOT include either tcp or ip options. 1519 1520 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1521 are READ ONLY outside this function. --ANK (980731) 1522 */ 1523 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1524 { 1525 struct tcp_sock *tp = tcp_sk(sk); 1526 struct inet_connection_sock *icsk = inet_csk(sk); 1527 int mss_now; 1528 1529 if (icsk->icsk_mtup.search_high > pmtu) 1530 icsk->icsk_mtup.search_high = pmtu; 1531 1532 mss_now = tcp_mtu_to_mss(sk, pmtu); 1533 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1534 1535 /* And store cached results */ 1536 icsk->icsk_pmtu_cookie = pmtu; 1537 if (icsk->icsk_mtup.enabled) 1538 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1539 tp->mss_cache = mss_now; 1540 1541 return mss_now; 1542 } 1543 EXPORT_SYMBOL(tcp_sync_mss); 1544 1545 /* Compute the current effective MSS, taking SACKs and IP options, 1546 * and even PMTU discovery events into account. 1547 */ 1548 unsigned int tcp_current_mss(struct sock *sk) 1549 { 1550 const struct tcp_sock *tp = tcp_sk(sk); 1551 const struct dst_entry *dst = __sk_dst_get(sk); 1552 u32 mss_now; 1553 unsigned int header_len; 1554 struct tcp_out_options opts; 1555 struct tcp_md5sig_key *md5; 1556 1557 mss_now = tp->mss_cache; 1558 1559 if (dst) { 1560 u32 mtu = dst_mtu(dst); 1561 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1562 mss_now = tcp_sync_mss(sk, mtu); 1563 } 1564 1565 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1566 sizeof(struct tcphdr); 1567 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1568 * some common options. If this is an odd packet (because we have SACK 1569 * blocks etc) then our calculated header_len will be different, and 1570 * we have to adjust mss_now correspondingly */ 1571 if (header_len != tp->tcp_header_len) { 1572 int delta = (int) header_len - tp->tcp_header_len; 1573 mss_now -= delta; 1574 } 1575 1576 return mss_now; 1577 } 1578 1579 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1580 * As additional protections, we do not touch cwnd in retransmission phases, 1581 * and if application hit its sndbuf limit recently. 1582 */ 1583 static void tcp_cwnd_application_limited(struct sock *sk) 1584 { 1585 struct tcp_sock *tp = tcp_sk(sk); 1586 1587 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1588 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1589 /* Limited by application or receiver window. */ 1590 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1591 u32 win_used = max(tp->snd_cwnd_used, init_win); 1592 if (win_used < tp->snd_cwnd) { 1593 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1594 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1595 } 1596 tp->snd_cwnd_used = 0; 1597 } 1598 tp->snd_cwnd_stamp = tcp_jiffies32; 1599 } 1600 1601 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1602 { 1603 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1604 struct tcp_sock *tp = tcp_sk(sk); 1605 1606 /* Track the maximum number of outstanding packets in each 1607 * window, and remember whether we were cwnd-limited then. 1608 */ 1609 if (!before(tp->snd_una, tp->max_packets_seq) || 1610 tp->packets_out > tp->max_packets_out) { 1611 tp->max_packets_out = tp->packets_out; 1612 tp->max_packets_seq = tp->snd_nxt; 1613 tp->is_cwnd_limited = is_cwnd_limited; 1614 } 1615 1616 if (tcp_is_cwnd_limited(sk)) { 1617 /* Network is feed fully. */ 1618 tp->snd_cwnd_used = 0; 1619 tp->snd_cwnd_stamp = tcp_jiffies32; 1620 } else { 1621 /* Network starves. */ 1622 if (tp->packets_out > tp->snd_cwnd_used) 1623 tp->snd_cwnd_used = tp->packets_out; 1624 1625 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1626 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1627 !ca_ops->cong_control) 1628 tcp_cwnd_application_limited(sk); 1629 1630 /* The following conditions together indicate the starvation 1631 * is caused by insufficient sender buffer: 1632 * 1) just sent some data (see tcp_write_xmit) 1633 * 2) not cwnd limited (this else condition) 1634 * 3) no more data to send (tcp_write_queue_empty()) 1635 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1636 */ 1637 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1638 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1639 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1640 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1641 } 1642 } 1643 1644 /* Minshall's variant of the Nagle send check. */ 1645 static bool tcp_minshall_check(const struct tcp_sock *tp) 1646 { 1647 return after(tp->snd_sml, tp->snd_una) && 1648 !after(tp->snd_sml, tp->snd_nxt); 1649 } 1650 1651 /* Update snd_sml if this skb is under mss 1652 * Note that a TSO packet might end with a sub-mss segment 1653 * The test is really : 1654 * if ((skb->len % mss) != 0) 1655 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1656 * But we can avoid doing the divide again given we already have 1657 * skb_pcount = skb->len / mss_now 1658 */ 1659 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1660 const struct sk_buff *skb) 1661 { 1662 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1663 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1664 } 1665 1666 /* Return false, if packet can be sent now without violation Nagle's rules: 1667 * 1. It is full sized. (provided by caller in %partial bool) 1668 * 2. Or it contains FIN. (already checked by caller) 1669 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1670 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1671 * With Minshall's modification: all sent small packets are ACKed. 1672 */ 1673 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1674 int nonagle) 1675 { 1676 return partial && 1677 ((nonagle & TCP_NAGLE_CORK) || 1678 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1679 } 1680 1681 /* Return how many segs we'd like on a TSO packet, 1682 * to send one TSO packet per ms 1683 */ 1684 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1685 int min_tso_segs) 1686 { 1687 u32 bytes, segs; 1688 1689 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, 1690 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1691 1692 /* Goal is to send at least one packet per ms, 1693 * not one big TSO packet every 100 ms. 1694 * This preserves ACK clocking and is consistent 1695 * with tcp_tso_should_defer() heuristic. 1696 */ 1697 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1698 1699 return segs; 1700 } 1701 1702 /* Return the number of segments we want in the skb we are transmitting. 1703 * See if congestion control module wants to decide; otherwise, autosize. 1704 */ 1705 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1706 { 1707 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1708 u32 min_tso, tso_segs; 1709 1710 min_tso = ca_ops->min_tso_segs ? 1711 ca_ops->min_tso_segs(sk) : 1712 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1713 1714 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1715 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1716 } 1717 1718 /* Returns the portion of skb which can be sent right away */ 1719 static unsigned int tcp_mss_split_point(const struct sock *sk, 1720 const struct sk_buff *skb, 1721 unsigned int mss_now, 1722 unsigned int max_segs, 1723 int nonagle) 1724 { 1725 const struct tcp_sock *tp = tcp_sk(sk); 1726 u32 partial, needed, window, max_len; 1727 1728 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1729 max_len = mss_now * max_segs; 1730 1731 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1732 return max_len; 1733 1734 needed = min(skb->len, window); 1735 1736 if (max_len <= needed) 1737 return max_len; 1738 1739 partial = needed % mss_now; 1740 /* If last segment is not a full MSS, check if Nagle rules allow us 1741 * to include this last segment in this skb. 1742 * Otherwise, we'll split the skb at last MSS boundary 1743 */ 1744 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1745 return needed - partial; 1746 1747 return needed; 1748 } 1749 1750 /* Can at least one segment of SKB be sent right now, according to the 1751 * congestion window rules? If so, return how many segments are allowed. 1752 */ 1753 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1754 const struct sk_buff *skb) 1755 { 1756 u32 in_flight, cwnd, halfcwnd; 1757 1758 /* Don't be strict about the congestion window for the final FIN. */ 1759 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1760 tcp_skb_pcount(skb) == 1) 1761 return 1; 1762 1763 in_flight = tcp_packets_in_flight(tp); 1764 cwnd = tp->snd_cwnd; 1765 if (in_flight >= cwnd) 1766 return 0; 1767 1768 /* For better scheduling, ensure we have at least 1769 * 2 GSO packets in flight. 1770 */ 1771 halfcwnd = max(cwnd >> 1, 1U); 1772 return min(halfcwnd, cwnd - in_flight); 1773 } 1774 1775 /* Initialize TSO state of a skb. 1776 * This must be invoked the first time we consider transmitting 1777 * SKB onto the wire. 1778 */ 1779 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1780 { 1781 int tso_segs = tcp_skb_pcount(skb); 1782 1783 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1784 tcp_set_skb_tso_segs(skb, mss_now); 1785 tso_segs = tcp_skb_pcount(skb); 1786 } 1787 return tso_segs; 1788 } 1789 1790 1791 /* Return true if the Nagle test allows this packet to be 1792 * sent now. 1793 */ 1794 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1795 unsigned int cur_mss, int nonagle) 1796 { 1797 /* Nagle rule does not apply to frames, which sit in the middle of the 1798 * write_queue (they have no chances to get new data). 1799 * 1800 * This is implemented in the callers, where they modify the 'nonagle' 1801 * argument based upon the location of SKB in the send queue. 1802 */ 1803 if (nonagle & TCP_NAGLE_PUSH) 1804 return true; 1805 1806 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1807 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1808 return true; 1809 1810 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1811 return true; 1812 1813 return false; 1814 } 1815 1816 /* Does at least the first segment of SKB fit into the send window? */ 1817 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1818 const struct sk_buff *skb, 1819 unsigned int cur_mss) 1820 { 1821 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1822 1823 if (skb->len > cur_mss) 1824 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1825 1826 return !after(end_seq, tcp_wnd_end(tp)); 1827 } 1828 1829 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1830 * which is put after SKB on the list. It is very much like 1831 * tcp_fragment() except that it may make several kinds of assumptions 1832 * in order to speed up the splitting operation. In particular, we 1833 * know that all the data is in scatter-gather pages, and that the 1834 * packet has never been sent out before (and thus is not cloned). 1835 */ 1836 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1837 struct sk_buff *skb, unsigned int len, 1838 unsigned int mss_now, gfp_t gfp) 1839 { 1840 struct sk_buff *buff; 1841 int nlen = skb->len - len; 1842 u8 flags; 1843 1844 /* All of a TSO frame must be composed of paged data. */ 1845 if (skb->len != skb->data_len) 1846 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1847 1848 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1849 if (unlikely(!buff)) 1850 return -ENOMEM; 1851 1852 sk->sk_wmem_queued += buff->truesize; 1853 sk_mem_charge(sk, buff->truesize); 1854 buff->truesize += nlen; 1855 skb->truesize -= nlen; 1856 1857 /* Correct the sequence numbers. */ 1858 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1859 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1860 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1861 1862 /* PSH and FIN should only be set in the second packet. */ 1863 flags = TCP_SKB_CB(skb)->tcp_flags; 1864 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1865 TCP_SKB_CB(buff)->tcp_flags = flags; 1866 1867 /* This packet was never sent out yet, so no SACK bits. */ 1868 TCP_SKB_CB(buff)->sacked = 0; 1869 1870 tcp_skb_fragment_eor(skb, buff); 1871 1872 buff->ip_summed = CHECKSUM_PARTIAL; 1873 skb_split(skb, buff, len); 1874 tcp_fragment_tstamp(skb, buff); 1875 1876 /* Fix up tso_factor for both original and new SKB. */ 1877 tcp_set_skb_tso_segs(skb, mss_now); 1878 tcp_set_skb_tso_segs(buff, mss_now); 1879 1880 /* Link BUFF into the send queue. */ 1881 __skb_header_release(buff); 1882 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1883 1884 return 0; 1885 } 1886 1887 /* Try to defer sending, if possible, in order to minimize the amount 1888 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1889 * 1890 * This algorithm is from John Heffner. 1891 */ 1892 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1893 bool *is_cwnd_limited, u32 max_segs) 1894 { 1895 const struct inet_connection_sock *icsk = inet_csk(sk); 1896 u32 age, send_win, cong_win, limit, in_flight; 1897 struct tcp_sock *tp = tcp_sk(sk); 1898 struct sk_buff *head; 1899 int win_divisor; 1900 1901 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1902 goto send_now; 1903 1904 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1905 goto send_now; 1906 1907 /* Avoid bursty behavior by allowing defer 1908 * only if the last write was recent. 1909 */ 1910 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1911 goto send_now; 1912 1913 in_flight = tcp_packets_in_flight(tp); 1914 1915 BUG_ON(tcp_skb_pcount(skb) <= 1); 1916 BUG_ON(tp->snd_cwnd <= in_flight); 1917 1918 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1919 1920 /* From in_flight test above, we know that cwnd > in_flight. */ 1921 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1922 1923 limit = min(send_win, cong_win); 1924 1925 /* If a full-sized TSO skb can be sent, do it. */ 1926 if (limit >= max_segs * tp->mss_cache) 1927 goto send_now; 1928 1929 /* Middle in queue won't get any more data, full sendable already? */ 1930 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1931 goto send_now; 1932 1933 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1934 if (win_divisor) { 1935 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1936 1937 /* If at least some fraction of a window is available, 1938 * just use it. 1939 */ 1940 chunk /= win_divisor; 1941 if (limit >= chunk) 1942 goto send_now; 1943 } else { 1944 /* Different approach, try not to defer past a single 1945 * ACK. Receiver should ACK every other full sized 1946 * frame, so if we have space for more than 3 frames 1947 * then send now. 1948 */ 1949 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1950 goto send_now; 1951 } 1952 1953 /* TODO : use tsorted_sent_queue ? */ 1954 head = tcp_rtx_queue_head(sk); 1955 if (!head) 1956 goto send_now; 1957 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1958 /* If next ACK is likely to come too late (half srtt), do not defer */ 1959 if (age < (tp->srtt_us >> 4)) 1960 goto send_now; 1961 1962 /* Ok, it looks like it is advisable to defer. */ 1963 1964 if (cong_win < send_win && cong_win <= skb->len) 1965 *is_cwnd_limited = true; 1966 1967 return true; 1968 1969 send_now: 1970 return false; 1971 } 1972 1973 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1974 { 1975 struct inet_connection_sock *icsk = inet_csk(sk); 1976 struct tcp_sock *tp = tcp_sk(sk); 1977 struct net *net = sock_net(sk); 1978 u32 interval; 1979 s32 delta; 1980 1981 interval = net->ipv4.sysctl_tcp_probe_interval; 1982 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1983 if (unlikely(delta >= interval * HZ)) { 1984 int mss = tcp_current_mss(sk); 1985 1986 /* Update current search range */ 1987 icsk->icsk_mtup.probe_size = 0; 1988 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1989 sizeof(struct tcphdr) + 1990 icsk->icsk_af_ops->net_header_len; 1991 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1992 1993 /* Update probe time stamp */ 1994 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1995 } 1996 } 1997 1998 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 1999 { 2000 struct sk_buff *skb, *next; 2001 2002 skb = tcp_send_head(sk); 2003 tcp_for_write_queue_from_safe(skb, next, sk) { 2004 if (len <= skb->len) 2005 break; 2006 2007 if (unlikely(TCP_SKB_CB(skb)->eor)) 2008 return false; 2009 2010 len -= skb->len; 2011 } 2012 2013 return true; 2014 } 2015 2016 /* Create a new MTU probe if we are ready. 2017 * MTU probe is regularly attempting to increase the path MTU by 2018 * deliberately sending larger packets. This discovers routing 2019 * changes resulting in larger path MTUs. 2020 * 2021 * Returns 0 if we should wait to probe (no cwnd available), 2022 * 1 if a probe was sent, 2023 * -1 otherwise 2024 */ 2025 static int tcp_mtu_probe(struct sock *sk) 2026 { 2027 struct inet_connection_sock *icsk = inet_csk(sk); 2028 struct tcp_sock *tp = tcp_sk(sk); 2029 struct sk_buff *skb, *nskb, *next; 2030 struct net *net = sock_net(sk); 2031 int probe_size; 2032 int size_needed; 2033 int copy, len; 2034 int mss_now; 2035 int interval; 2036 2037 /* Not currently probing/verifying, 2038 * not in recovery, 2039 * have enough cwnd, and 2040 * not SACKing (the variable headers throw things off) 2041 */ 2042 if (likely(!icsk->icsk_mtup.enabled || 2043 icsk->icsk_mtup.probe_size || 2044 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2045 tp->snd_cwnd < 11 || 2046 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2047 return -1; 2048 2049 /* Use binary search for probe_size between tcp_mss_base, 2050 * and current mss_clamp. if (search_high - search_low) 2051 * smaller than a threshold, backoff from probing. 2052 */ 2053 mss_now = tcp_current_mss(sk); 2054 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2055 icsk->icsk_mtup.search_low) >> 1); 2056 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2057 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2058 /* When misfortune happens, we are reprobing actively, 2059 * and then reprobe timer has expired. We stick with current 2060 * probing process by not resetting search range to its orignal. 2061 */ 2062 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2063 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2064 /* Check whether enough time has elaplased for 2065 * another round of probing. 2066 */ 2067 tcp_mtu_check_reprobe(sk); 2068 return -1; 2069 } 2070 2071 /* Have enough data in the send queue to probe? */ 2072 if (tp->write_seq - tp->snd_nxt < size_needed) 2073 return -1; 2074 2075 if (tp->snd_wnd < size_needed) 2076 return -1; 2077 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2078 return 0; 2079 2080 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2081 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2082 if (!tcp_packets_in_flight(tp)) 2083 return -1; 2084 else 2085 return 0; 2086 } 2087 2088 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2089 return -1; 2090 2091 /* We're allowed to probe. Build it now. */ 2092 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2093 if (!nskb) 2094 return -1; 2095 sk->sk_wmem_queued += nskb->truesize; 2096 sk_mem_charge(sk, nskb->truesize); 2097 2098 skb = tcp_send_head(sk); 2099 2100 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2101 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2102 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2103 TCP_SKB_CB(nskb)->sacked = 0; 2104 nskb->csum = 0; 2105 nskb->ip_summed = CHECKSUM_PARTIAL; 2106 2107 tcp_insert_write_queue_before(nskb, skb, sk); 2108 tcp_highest_sack_replace(sk, skb, nskb); 2109 2110 len = 0; 2111 tcp_for_write_queue_from_safe(skb, next, sk) { 2112 copy = min_t(int, skb->len, probe_size - len); 2113 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2114 2115 if (skb->len <= copy) { 2116 /* We've eaten all the data from this skb. 2117 * Throw it away. */ 2118 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2119 /* If this is the last SKB we copy and eor is set 2120 * we need to propagate it to the new skb. 2121 */ 2122 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2123 tcp_unlink_write_queue(skb, sk); 2124 sk_wmem_free_skb(sk, skb); 2125 } else { 2126 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2127 ~(TCPHDR_FIN|TCPHDR_PSH); 2128 if (!skb_shinfo(skb)->nr_frags) { 2129 skb_pull(skb, copy); 2130 } else { 2131 __pskb_trim_head(skb, copy); 2132 tcp_set_skb_tso_segs(skb, mss_now); 2133 } 2134 TCP_SKB_CB(skb)->seq += copy; 2135 } 2136 2137 len += copy; 2138 2139 if (len >= probe_size) 2140 break; 2141 } 2142 tcp_init_tso_segs(nskb, nskb->len); 2143 2144 /* We're ready to send. If this fails, the probe will 2145 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2146 */ 2147 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2148 /* Decrement cwnd here because we are sending 2149 * effectively two packets. */ 2150 tp->snd_cwnd--; 2151 tcp_event_new_data_sent(sk, nskb); 2152 2153 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2154 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2155 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2156 2157 return 1; 2158 } 2159 2160 return -1; 2161 } 2162 2163 static bool tcp_pacing_check(const struct sock *sk) 2164 { 2165 return tcp_needs_internal_pacing(sk) && 2166 hrtimer_is_queued(&tcp_sk(sk)->pacing_timer); 2167 } 2168 2169 /* TCP Small Queues : 2170 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2171 * (These limits are doubled for retransmits) 2172 * This allows for : 2173 * - better RTT estimation and ACK scheduling 2174 * - faster recovery 2175 * - high rates 2176 * Alas, some drivers / subsystems require a fair amount 2177 * of queued bytes to ensure line rate. 2178 * One example is wifi aggregation (802.11 AMPDU) 2179 */ 2180 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2181 unsigned int factor) 2182 { 2183 unsigned int limit; 2184 2185 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); 2186 limit = min_t(u32, limit, 2187 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2188 limit <<= factor; 2189 2190 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2191 /* Always send skb if rtx queue is empty. 2192 * No need to wait for TX completion to call us back, 2193 * after softirq/tasklet schedule. 2194 * This helps when TX completions are delayed too much. 2195 */ 2196 if (tcp_rtx_queue_empty(sk)) 2197 return false; 2198 2199 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2200 /* It is possible TX completion already happened 2201 * before we set TSQ_THROTTLED, so we must 2202 * test again the condition. 2203 */ 2204 smp_mb__after_atomic(); 2205 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2206 return true; 2207 } 2208 return false; 2209 } 2210 2211 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2212 { 2213 const u32 now = tcp_jiffies32; 2214 enum tcp_chrono old = tp->chrono_type; 2215 2216 if (old > TCP_CHRONO_UNSPEC) 2217 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2218 tp->chrono_start = now; 2219 tp->chrono_type = new; 2220 } 2221 2222 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2223 { 2224 struct tcp_sock *tp = tcp_sk(sk); 2225 2226 /* If there are multiple conditions worthy of tracking in a 2227 * chronograph then the highest priority enum takes precedence 2228 * over the other conditions. So that if something "more interesting" 2229 * starts happening, stop the previous chrono and start a new one. 2230 */ 2231 if (type > tp->chrono_type) 2232 tcp_chrono_set(tp, type); 2233 } 2234 2235 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2236 { 2237 struct tcp_sock *tp = tcp_sk(sk); 2238 2239 2240 /* There are multiple conditions worthy of tracking in a 2241 * chronograph, so that the highest priority enum takes 2242 * precedence over the other conditions (see tcp_chrono_start). 2243 * If a condition stops, we only stop chrono tracking if 2244 * it's the "most interesting" or current chrono we are 2245 * tracking and starts busy chrono if we have pending data. 2246 */ 2247 if (tcp_rtx_and_write_queues_empty(sk)) 2248 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2249 else if (type == tp->chrono_type) 2250 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2251 } 2252 2253 /* This routine writes packets to the network. It advances the 2254 * send_head. This happens as incoming acks open up the remote 2255 * window for us. 2256 * 2257 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2258 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2259 * account rare use of URG, this is not a big flaw. 2260 * 2261 * Send at most one packet when push_one > 0. Temporarily ignore 2262 * cwnd limit to force at most one packet out when push_one == 2. 2263 2264 * Returns true, if no segments are in flight and we have queued segments, 2265 * but cannot send anything now because of SWS or another problem. 2266 */ 2267 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2268 int push_one, gfp_t gfp) 2269 { 2270 struct tcp_sock *tp = tcp_sk(sk); 2271 struct sk_buff *skb; 2272 unsigned int tso_segs, sent_pkts; 2273 int cwnd_quota; 2274 int result; 2275 bool is_cwnd_limited = false, is_rwnd_limited = false; 2276 u32 max_segs; 2277 2278 sent_pkts = 0; 2279 2280 tcp_mstamp_refresh(tp); 2281 if (!push_one) { 2282 /* Do MTU probing. */ 2283 result = tcp_mtu_probe(sk); 2284 if (!result) { 2285 return false; 2286 } else if (result > 0) { 2287 sent_pkts = 1; 2288 } 2289 } 2290 2291 max_segs = tcp_tso_segs(sk, mss_now); 2292 while ((skb = tcp_send_head(sk))) { 2293 unsigned int limit; 2294 2295 if (tcp_pacing_check(sk)) 2296 break; 2297 2298 tso_segs = tcp_init_tso_segs(skb, mss_now); 2299 BUG_ON(!tso_segs); 2300 2301 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2302 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2303 tcp_update_skb_after_send(tp, skb); 2304 goto repair; /* Skip network transmission */ 2305 } 2306 2307 cwnd_quota = tcp_cwnd_test(tp, skb); 2308 if (!cwnd_quota) { 2309 if (push_one == 2) 2310 /* Force out a loss probe pkt. */ 2311 cwnd_quota = 1; 2312 else 2313 break; 2314 } 2315 2316 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2317 is_rwnd_limited = true; 2318 break; 2319 } 2320 2321 if (tso_segs == 1) { 2322 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2323 (tcp_skb_is_last(sk, skb) ? 2324 nonagle : TCP_NAGLE_PUSH)))) 2325 break; 2326 } else { 2327 if (!push_one && 2328 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2329 max_segs)) 2330 break; 2331 } 2332 2333 limit = mss_now; 2334 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2335 limit = tcp_mss_split_point(sk, skb, mss_now, 2336 min_t(unsigned int, 2337 cwnd_quota, 2338 max_segs), 2339 nonagle); 2340 2341 if (skb->len > limit && 2342 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2343 skb, limit, mss_now, gfp))) 2344 break; 2345 2346 if (tcp_small_queue_check(sk, skb, 0)) 2347 break; 2348 2349 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2350 break; 2351 2352 repair: 2353 /* Advance the send_head. This one is sent out. 2354 * This call will increment packets_out. 2355 */ 2356 tcp_event_new_data_sent(sk, skb); 2357 2358 tcp_minshall_update(tp, mss_now, skb); 2359 sent_pkts += tcp_skb_pcount(skb); 2360 2361 if (push_one) 2362 break; 2363 } 2364 2365 if (is_rwnd_limited) 2366 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2367 else 2368 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2369 2370 if (likely(sent_pkts)) { 2371 if (tcp_in_cwnd_reduction(sk)) 2372 tp->prr_out += sent_pkts; 2373 2374 /* Send one loss probe per tail loss episode. */ 2375 if (push_one != 2) 2376 tcp_schedule_loss_probe(sk, false); 2377 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2378 tcp_cwnd_validate(sk, is_cwnd_limited); 2379 return false; 2380 } 2381 return !tp->packets_out && !tcp_write_queue_empty(sk); 2382 } 2383 2384 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2385 { 2386 struct inet_connection_sock *icsk = inet_csk(sk); 2387 struct tcp_sock *tp = tcp_sk(sk); 2388 u32 timeout, rto_delta_us; 2389 int early_retrans; 2390 2391 /* Don't do any loss probe on a Fast Open connection before 3WHS 2392 * finishes. 2393 */ 2394 if (tp->fastopen_rsk) 2395 return false; 2396 2397 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2398 /* Schedule a loss probe in 2*RTT for SACK capable connections 2399 * not in loss recovery, that are either limited by cwnd or application. 2400 */ 2401 if ((early_retrans != 3 && early_retrans != 4) || 2402 !tp->packets_out || !tcp_is_sack(tp) || 2403 (icsk->icsk_ca_state != TCP_CA_Open && 2404 icsk->icsk_ca_state != TCP_CA_CWR)) 2405 return false; 2406 2407 /* Probe timeout is 2*rtt. Add minimum RTO to account 2408 * for delayed ack when there's one outstanding packet. If no RTT 2409 * sample is available then probe after TCP_TIMEOUT_INIT. 2410 */ 2411 if (tp->srtt_us) { 2412 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2413 if (tp->packets_out == 1) 2414 timeout += TCP_RTO_MIN; 2415 else 2416 timeout += TCP_TIMEOUT_MIN; 2417 } else { 2418 timeout = TCP_TIMEOUT_INIT; 2419 } 2420 2421 /* If the RTO formula yields an earlier time, then use that time. */ 2422 rto_delta_us = advancing_rto ? 2423 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2424 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2425 if (rto_delta_us > 0) 2426 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2427 2428 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2429 TCP_RTO_MAX); 2430 return true; 2431 } 2432 2433 /* Thanks to skb fast clones, we can detect if a prior transmit of 2434 * a packet is still in a qdisc or driver queue. 2435 * In this case, there is very little point doing a retransmit ! 2436 */ 2437 static bool skb_still_in_host_queue(const struct sock *sk, 2438 const struct sk_buff *skb) 2439 { 2440 if (unlikely(skb_fclone_busy(sk, skb))) { 2441 NET_INC_STATS(sock_net(sk), 2442 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2443 return true; 2444 } 2445 return false; 2446 } 2447 2448 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2449 * retransmit the last segment. 2450 */ 2451 void tcp_send_loss_probe(struct sock *sk) 2452 { 2453 struct tcp_sock *tp = tcp_sk(sk); 2454 struct sk_buff *skb; 2455 int pcount; 2456 int mss = tcp_current_mss(sk); 2457 2458 skb = tcp_send_head(sk); 2459 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2460 pcount = tp->packets_out; 2461 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2462 if (tp->packets_out > pcount) 2463 goto probe_sent; 2464 goto rearm_timer; 2465 } 2466 skb = skb_rb_last(&sk->tcp_rtx_queue); 2467 2468 /* At most one outstanding TLP retransmission. */ 2469 if (tp->tlp_high_seq) 2470 goto rearm_timer; 2471 2472 /* Retransmit last segment. */ 2473 if (WARN_ON(!skb)) 2474 goto rearm_timer; 2475 2476 if (skb_still_in_host_queue(sk, skb)) 2477 goto rearm_timer; 2478 2479 pcount = tcp_skb_pcount(skb); 2480 if (WARN_ON(!pcount)) 2481 goto rearm_timer; 2482 2483 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2484 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2485 (pcount - 1) * mss, mss, 2486 GFP_ATOMIC))) 2487 goto rearm_timer; 2488 skb = skb_rb_next(skb); 2489 } 2490 2491 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2492 goto rearm_timer; 2493 2494 if (__tcp_retransmit_skb(sk, skb, 1)) 2495 goto rearm_timer; 2496 2497 /* Record snd_nxt for loss detection. */ 2498 tp->tlp_high_seq = tp->snd_nxt; 2499 2500 probe_sent: 2501 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2502 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2503 inet_csk(sk)->icsk_pending = 0; 2504 rearm_timer: 2505 tcp_rearm_rto(sk); 2506 } 2507 2508 /* Push out any pending frames which were held back due to 2509 * TCP_CORK or attempt at coalescing tiny packets. 2510 * The socket must be locked by the caller. 2511 */ 2512 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2513 int nonagle) 2514 { 2515 /* If we are closed, the bytes will have to remain here. 2516 * In time closedown will finish, we empty the write queue and 2517 * all will be happy. 2518 */ 2519 if (unlikely(sk->sk_state == TCP_CLOSE)) 2520 return; 2521 2522 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2523 sk_gfp_mask(sk, GFP_ATOMIC))) 2524 tcp_check_probe_timer(sk); 2525 } 2526 2527 /* Send _single_ skb sitting at the send head. This function requires 2528 * true push pending frames to setup probe timer etc. 2529 */ 2530 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2531 { 2532 struct sk_buff *skb = tcp_send_head(sk); 2533 2534 BUG_ON(!skb || skb->len < mss_now); 2535 2536 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2537 } 2538 2539 /* This function returns the amount that we can raise the 2540 * usable window based on the following constraints 2541 * 2542 * 1. The window can never be shrunk once it is offered (RFC 793) 2543 * 2. We limit memory per socket 2544 * 2545 * RFC 1122: 2546 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2547 * RECV.NEXT + RCV.WIN fixed until: 2548 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2549 * 2550 * i.e. don't raise the right edge of the window until you can raise 2551 * it at least MSS bytes. 2552 * 2553 * Unfortunately, the recommended algorithm breaks header prediction, 2554 * since header prediction assumes th->window stays fixed. 2555 * 2556 * Strictly speaking, keeping th->window fixed violates the receiver 2557 * side SWS prevention criteria. The problem is that under this rule 2558 * a stream of single byte packets will cause the right side of the 2559 * window to always advance by a single byte. 2560 * 2561 * Of course, if the sender implements sender side SWS prevention 2562 * then this will not be a problem. 2563 * 2564 * BSD seems to make the following compromise: 2565 * 2566 * If the free space is less than the 1/4 of the maximum 2567 * space available and the free space is less than 1/2 mss, 2568 * then set the window to 0. 2569 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2570 * Otherwise, just prevent the window from shrinking 2571 * and from being larger than the largest representable value. 2572 * 2573 * This prevents incremental opening of the window in the regime 2574 * where TCP is limited by the speed of the reader side taking 2575 * data out of the TCP receive queue. It does nothing about 2576 * those cases where the window is constrained on the sender side 2577 * because the pipeline is full. 2578 * 2579 * BSD also seems to "accidentally" limit itself to windows that are a 2580 * multiple of MSS, at least until the free space gets quite small. 2581 * This would appear to be a side effect of the mbuf implementation. 2582 * Combining these two algorithms results in the observed behavior 2583 * of having a fixed window size at almost all times. 2584 * 2585 * Below we obtain similar behavior by forcing the offered window to 2586 * a multiple of the mss when it is feasible to do so. 2587 * 2588 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2589 * Regular options like TIMESTAMP are taken into account. 2590 */ 2591 u32 __tcp_select_window(struct sock *sk) 2592 { 2593 struct inet_connection_sock *icsk = inet_csk(sk); 2594 struct tcp_sock *tp = tcp_sk(sk); 2595 /* MSS for the peer's data. Previous versions used mss_clamp 2596 * here. I don't know if the value based on our guesses 2597 * of peer's MSS is better for the performance. It's more correct 2598 * but may be worse for the performance because of rcv_mss 2599 * fluctuations. --SAW 1998/11/1 2600 */ 2601 int mss = icsk->icsk_ack.rcv_mss; 2602 int free_space = tcp_space(sk); 2603 int allowed_space = tcp_full_space(sk); 2604 int full_space = min_t(int, tp->window_clamp, allowed_space); 2605 int window; 2606 2607 if (unlikely(mss > full_space)) { 2608 mss = full_space; 2609 if (mss <= 0) 2610 return 0; 2611 } 2612 if (free_space < (full_space >> 1)) { 2613 icsk->icsk_ack.quick = 0; 2614 2615 if (tcp_under_memory_pressure(sk)) 2616 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2617 4U * tp->advmss); 2618 2619 /* free_space might become our new window, make sure we don't 2620 * increase it due to wscale. 2621 */ 2622 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2623 2624 /* if free space is less than mss estimate, or is below 1/16th 2625 * of the maximum allowed, try to move to zero-window, else 2626 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2627 * new incoming data is dropped due to memory limits. 2628 * With large window, mss test triggers way too late in order 2629 * to announce zero window in time before rmem limit kicks in. 2630 */ 2631 if (free_space < (allowed_space >> 4) || free_space < mss) 2632 return 0; 2633 } 2634 2635 if (free_space > tp->rcv_ssthresh) 2636 free_space = tp->rcv_ssthresh; 2637 2638 /* Don't do rounding if we are using window scaling, since the 2639 * scaled window will not line up with the MSS boundary anyway. 2640 */ 2641 if (tp->rx_opt.rcv_wscale) { 2642 window = free_space; 2643 2644 /* Advertise enough space so that it won't get scaled away. 2645 * Import case: prevent zero window announcement if 2646 * 1<<rcv_wscale > mss. 2647 */ 2648 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2649 } else { 2650 window = tp->rcv_wnd; 2651 /* Get the largest window that is a nice multiple of mss. 2652 * Window clamp already applied above. 2653 * If our current window offering is within 1 mss of the 2654 * free space we just keep it. This prevents the divide 2655 * and multiply from happening most of the time. 2656 * We also don't do any window rounding when the free space 2657 * is too small. 2658 */ 2659 if (window <= free_space - mss || window > free_space) 2660 window = rounddown(free_space, mss); 2661 else if (mss == full_space && 2662 free_space > window + (full_space >> 1)) 2663 window = free_space; 2664 } 2665 2666 return window; 2667 } 2668 2669 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2670 const struct sk_buff *next_skb) 2671 { 2672 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2673 const struct skb_shared_info *next_shinfo = 2674 skb_shinfo(next_skb); 2675 struct skb_shared_info *shinfo = skb_shinfo(skb); 2676 2677 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2678 shinfo->tskey = next_shinfo->tskey; 2679 TCP_SKB_CB(skb)->txstamp_ack |= 2680 TCP_SKB_CB(next_skb)->txstamp_ack; 2681 } 2682 } 2683 2684 /* Collapses two adjacent SKB's during retransmission. */ 2685 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2686 { 2687 struct tcp_sock *tp = tcp_sk(sk); 2688 struct sk_buff *next_skb = skb_rb_next(skb); 2689 int skb_size, next_skb_size; 2690 2691 skb_size = skb->len; 2692 next_skb_size = next_skb->len; 2693 2694 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2695 2696 if (next_skb_size) { 2697 if (next_skb_size <= skb_availroom(skb)) 2698 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2699 next_skb_size); 2700 else if (!skb_shift(skb, next_skb, next_skb_size)) 2701 return false; 2702 } 2703 tcp_highest_sack_replace(sk, next_skb, skb); 2704 2705 /* Update sequence range on original skb. */ 2706 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2707 2708 /* Merge over control information. This moves PSH/FIN etc. over */ 2709 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2710 2711 /* All done, get rid of second SKB and account for it so 2712 * packet counting does not break. 2713 */ 2714 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2715 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2716 2717 /* changed transmit queue under us so clear hints */ 2718 tcp_clear_retrans_hints_partial(tp); 2719 if (next_skb == tp->retransmit_skb_hint) 2720 tp->retransmit_skb_hint = skb; 2721 2722 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2723 2724 tcp_skb_collapse_tstamp(skb, next_skb); 2725 2726 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2727 return true; 2728 } 2729 2730 /* Check if coalescing SKBs is legal. */ 2731 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2732 { 2733 if (tcp_skb_pcount(skb) > 1) 2734 return false; 2735 if (skb_cloned(skb)) 2736 return false; 2737 /* Some heuristics for collapsing over SACK'd could be invented */ 2738 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2739 return false; 2740 2741 return true; 2742 } 2743 2744 /* Collapse packets in the retransmit queue to make to create 2745 * less packets on the wire. This is only done on retransmission. 2746 */ 2747 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2748 int space) 2749 { 2750 struct tcp_sock *tp = tcp_sk(sk); 2751 struct sk_buff *skb = to, *tmp; 2752 bool first = true; 2753 2754 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2755 return; 2756 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2757 return; 2758 2759 skb_rbtree_walk_from_safe(skb, tmp) { 2760 if (!tcp_can_collapse(sk, skb)) 2761 break; 2762 2763 if (!tcp_skb_can_collapse_to(to)) 2764 break; 2765 2766 space -= skb->len; 2767 2768 if (first) { 2769 first = false; 2770 continue; 2771 } 2772 2773 if (space < 0) 2774 break; 2775 2776 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2777 break; 2778 2779 if (!tcp_collapse_retrans(sk, to)) 2780 break; 2781 } 2782 } 2783 2784 /* This retransmits one SKB. Policy decisions and retransmit queue 2785 * state updates are done by the caller. Returns non-zero if an 2786 * error occurred which prevented the send. 2787 */ 2788 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2789 { 2790 struct inet_connection_sock *icsk = inet_csk(sk); 2791 struct tcp_sock *tp = tcp_sk(sk); 2792 unsigned int cur_mss; 2793 int diff, len, err; 2794 2795 2796 /* Inconclusive MTU probe */ 2797 if (icsk->icsk_mtup.probe_size) 2798 icsk->icsk_mtup.probe_size = 0; 2799 2800 /* Do not sent more than we queued. 1/4 is reserved for possible 2801 * copying overhead: fragmentation, tunneling, mangling etc. 2802 */ 2803 if (refcount_read(&sk->sk_wmem_alloc) > 2804 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2805 sk->sk_sndbuf)) 2806 return -EAGAIN; 2807 2808 if (skb_still_in_host_queue(sk, skb)) 2809 return -EBUSY; 2810 2811 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2812 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2813 WARN_ON_ONCE(1); 2814 return -EINVAL; 2815 } 2816 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2817 return -ENOMEM; 2818 } 2819 2820 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2821 return -EHOSTUNREACH; /* Routing failure or similar. */ 2822 2823 cur_mss = tcp_current_mss(sk); 2824 2825 /* If receiver has shrunk his window, and skb is out of 2826 * new window, do not retransmit it. The exception is the 2827 * case, when window is shrunk to zero. In this case 2828 * our retransmit serves as a zero window probe. 2829 */ 2830 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2831 TCP_SKB_CB(skb)->seq != tp->snd_una) 2832 return -EAGAIN; 2833 2834 len = cur_mss * segs; 2835 if (skb->len > len) { 2836 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2837 cur_mss, GFP_ATOMIC)) 2838 return -ENOMEM; /* We'll try again later. */ 2839 } else { 2840 if (skb_unclone(skb, GFP_ATOMIC)) 2841 return -ENOMEM; 2842 2843 diff = tcp_skb_pcount(skb); 2844 tcp_set_skb_tso_segs(skb, cur_mss); 2845 diff -= tcp_skb_pcount(skb); 2846 if (diff) 2847 tcp_adjust_pcount(sk, skb, diff); 2848 if (skb->len < cur_mss) 2849 tcp_retrans_try_collapse(sk, skb, cur_mss); 2850 } 2851 2852 /* RFC3168, section 6.1.1.1. ECN fallback */ 2853 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2854 tcp_ecn_clear_syn(sk, skb); 2855 2856 /* Update global and local TCP statistics. */ 2857 segs = tcp_skb_pcount(skb); 2858 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2859 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2860 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2861 tp->total_retrans += segs; 2862 2863 /* make sure skb->data is aligned on arches that require it 2864 * and check if ack-trimming & collapsing extended the headroom 2865 * beyond what csum_start can cover. 2866 */ 2867 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2868 skb_headroom(skb) >= 0xFFFF)) { 2869 struct sk_buff *nskb; 2870 2871 tcp_skb_tsorted_save(skb) { 2872 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2873 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2874 -ENOBUFS; 2875 } tcp_skb_tsorted_restore(skb); 2876 2877 if (!err) { 2878 tcp_update_skb_after_send(tp, skb); 2879 tcp_rate_skb_sent(sk, skb); 2880 } 2881 } else { 2882 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2883 } 2884 2885 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2886 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2887 TCP_SKB_CB(skb)->seq, segs, err); 2888 2889 if (likely(!err)) { 2890 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2891 trace_tcp_retransmit_skb(sk, skb); 2892 } else if (err != -EBUSY) { 2893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2894 } 2895 return err; 2896 } 2897 2898 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2899 { 2900 struct tcp_sock *tp = tcp_sk(sk); 2901 int err = __tcp_retransmit_skb(sk, skb, segs); 2902 2903 if (err == 0) { 2904 #if FASTRETRANS_DEBUG > 0 2905 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2906 net_dbg_ratelimited("retrans_out leaked\n"); 2907 } 2908 #endif 2909 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2910 tp->retrans_out += tcp_skb_pcount(skb); 2911 2912 /* Save stamp of the first retransmit. */ 2913 if (!tp->retrans_stamp) 2914 tp->retrans_stamp = tcp_skb_timestamp(skb); 2915 2916 } 2917 2918 if (tp->undo_retrans < 0) 2919 tp->undo_retrans = 0; 2920 tp->undo_retrans += tcp_skb_pcount(skb); 2921 return err; 2922 } 2923 2924 /* This gets called after a retransmit timeout, and the initially 2925 * retransmitted data is acknowledged. It tries to continue 2926 * resending the rest of the retransmit queue, until either 2927 * we've sent it all or the congestion window limit is reached. 2928 */ 2929 void tcp_xmit_retransmit_queue(struct sock *sk) 2930 { 2931 const struct inet_connection_sock *icsk = inet_csk(sk); 2932 struct sk_buff *skb, *rtx_head, *hole = NULL; 2933 struct tcp_sock *tp = tcp_sk(sk); 2934 u32 max_segs; 2935 int mib_idx; 2936 2937 if (!tp->packets_out) 2938 return; 2939 2940 rtx_head = tcp_rtx_queue_head(sk); 2941 skb = tp->retransmit_skb_hint ?: rtx_head; 2942 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2943 skb_rbtree_walk_from(skb) { 2944 __u8 sacked; 2945 int segs; 2946 2947 if (tcp_pacing_check(sk)) 2948 break; 2949 2950 /* we could do better than to assign each time */ 2951 if (!hole) 2952 tp->retransmit_skb_hint = skb; 2953 2954 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2955 if (segs <= 0) 2956 return; 2957 sacked = TCP_SKB_CB(skb)->sacked; 2958 /* In case tcp_shift_skb_data() have aggregated large skbs, 2959 * we need to make sure not sending too bigs TSO packets 2960 */ 2961 segs = min_t(int, segs, max_segs); 2962 2963 if (tp->retrans_out >= tp->lost_out) { 2964 break; 2965 } else if (!(sacked & TCPCB_LOST)) { 2966 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2967 hole = skb; 2968 continue; 2969 2970 } else { 2971 if (icsk->icsk_ca_state != TCP_CA_Loss) 2972 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2973 else 2974 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2975 } 2976 2977 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2978 continue; 2979 2980 if (tcp_small_queue_check(sk, skb, 1)) 2981 return; 2982 2983 if (tcp_retransmit_skb(sk, skb, segs)) 2984 return; 2985 2986 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2987 2988 if (tcp_in_cwnd_reduction(sk)) 2989 tp->prr_out += tcp_skb_pcount(skb); 2990 2991 if (skb == rtx_head && 2992 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 2993 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2994 inet_csk(sk)->icsk_rto, 2995 TCP_RTO_MAX); 2996 } 2997 } 2998 2999 /* We allow to exceed memory limits for FIN packets to expedite 3000 * connection tear down and (memory) recovery. 3001 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3002 * or even be forced to close flow without any FIN. 3003 * In general, we want to allow one skb per socket to avoid hangs 3004 * with edge trigger epoll() 3005 */ 3006 void sk_forced_mem_schedule(struct sock *sk, int size) 3007 { 3008 int amt; 3009 3010 if (size <= sk->sk_forward_alloc) 3011 return; 3012 amt = sk_mem_pages(size); 3013 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3014 sk_memory_allocated_add(sk, amt); 3015 3016 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3017 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3018 } 3019 3020 /* Send a FIN. The caller locks the socket for us. 3021 * We should try to send a FIN packet really hard, but eventually give up. 3022 */ 3023 void tcp_send_fin(struct sock *sk) 3024 { 3025 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3026 struct tcp_sock *tp = tcp_sk(sk); 3027 3028 /* Optimization, tack on the FIN if we have one skb in write queue and 3029 * this skb was not yet sent, or we are under memory pressure. 3030 * Note: in the latter case, FIN packet will be sent after a timeout, 3031 * as TCP stack thinks it has already been transmitted. 3032 */ 3033 if (!tskb && tcp_under_memory_pressure(sk)) 3034 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3035 3036 if (tskb) { 3037 coalesce: 3038 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3039 TCP_SKB_CB(tskb)->end_seq++; 3040 tp->write_seq++; 3041 if (tcp_write_queue_empty(sk)) { 3042 /* This means tskb was already sent. 3043 * Pretend we included the FIN on previous transmit. 3044 * We need to set tp->snd_nxt to the value it would have 3045 * if FIN had been sent. This is because retransmit path 3046 * does not change tp->snd_nxt. 3047 */ 3048 tp->snd_nxt++; 3049 return; 3050 } 3051 } else { 3052 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3053 if (unlikely(!skb)) { 3054 if (tskb) 3055 goto coalesce; 3056 return; 3057 } 3058 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3059 skb_reserve(skb, MAX_TCP_HEADER); 3060 sk_forced_mem_schedule(sk, skb->truesize); 3061 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3062 tcp_init_nondata_skb(skb, tp->write_seq, 3063 TCPHDR_ACK | TCPHDR_FIN); 3064 tcp_queue_skb(sk, skb); 3065 } 3066 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3067 } 3068 3069 /* We get here when a process closes a file descriptor (either due to 3070 * an explicit close() or as a byproduct of exit()'ing) and there 3071 * was unread data in the receive queue. This behavior is recommended 3072 * by RFC 2525, section 2.17. -DaveM 3073 */ 3074 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3075 { 3076 struct sk_buff *skb; 3077 3078 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3079 3080 /* NOTE: No TCP options attached and we never retransmit this. */ 3081 skb = alloc_skb(MAX_TCP_HEADER, priority); 3082 if (!skb) { 3083 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3084 return; 3085 } 3086 3087 /* Reserve space for headers and prepare control bits. */ 3088 skb_reserve(skb, MAX_TCP_HEADER); 3089 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3090 TCPHDR_ACK | TCPHDR_RST); 3091 tcp_mstamp_refresh(tcp_sk(sk)); 3092 /* Send it off. */ 3093 if (tcp_transmit_skb(sk, skb, 0, priority)) 3094 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3095 3096 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3097 * skb here is different to the troublesome skb, so use NULL 3098 */ 3099 trace_tcp_send_reset(sk, NULL); 3100 } 3101 3102 /* Send a crossed SYN-ACK during socket establishment. 3103 * WARNING: This routine must only be called when we have already sent 3104 * a SYN packet that crossed the incoming SYN that caused this routine 3105 * to get called. If this assumption fails then the initial rcv_wnd 3106 * and rcv_wscale values will not be correct. 3107 */ 3108 int tcp_send_synack(struct sock *sk) 3109 { 3110 struct sk_buff *skb; 3111 3112 skb = tcp_rtx_queue_head(sk); 3113 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3114 pr_err("%s: wrong queue state\n", __func__); 3115 return -EFAULT; 3116 } 3117 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3118 if (skb_cloned(skb)) { 3119 struct sk_buff *nskb; 3120 3121 tcp_skb_tsorted_save(skb) { 3122 nskb = skb_copy(skb, GFP_ATOMIC); 3123 } tcp_skb_tsorted_restore(skb); 3124 if (!nskb) 3125 return -ENOMEM; 3126 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3127 tcp_rtx_queue_unlink_and_free(skb, sk); 3128 __skb_header_release(nskb); 3129 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3130 sk->sk_wmem_queued += nskb->truesize; 3131 sk_mem_charge(sk, nskb->truesize); 3132 skb = nskb; 3133 } 3134 3135 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3136 tcp_ecn_send_synack(sk, skb); 3137 } 3138 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3139 } 3140 3141 /** 3142 * tcp_make_synack - Prepare a SYN-ACK. 3143 * sk: listener socket 3144 * dst: dst entry attached to the SYNACK 3145 * req: request_sock pointer 3146 * 3147 * Allocate one skb and build a SYNACK packet. 3148 * @dst is consumed : Caller should not use it again. 3149 */ 3150 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3151 struct request_sock *req, 3152 struct tcp_fastopen_cookie *foc, 3153 enum tcp_synack_type synack_type) 3154 { 3155 struct inet_request_sock *ireq = inet_rsk(req); 3156 const struct tcp_sock *tp = tcp_sk(sk); 3157 struct tcp_md5sig_key *md5 = NULL; 3158 struct tcp_out_options opts; 3159 struct sk_buff *skb; 3160 int tcp_header_size; 3161 struct tcphdr *th; 3162 int mss; 3163 3164 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3165 if (unlikely(!skb)) { 3166 dst_release(dst); 3167 return NULL; 3168 } 3169 /* Reserve space for headers. */ 3170 skb_reserve(skb, MAX_TCP_HEADER); 3171 3172 switch (synack_type) { 3173 case TCP_SYNACK_NORMAL: 3174 skb_set_owner_w(skb, req_to_sk(req)); 3175 break; 3176 case TCP_SYNACK_COOKIE: 3177 /* Under synflood, we do not attach skb to a socket, 3178 * to avoid false sharing. 3179 */ 3180 break; 3181 case TCP_SYNACK_FASTOPEN: 3182 /* sk is a const pointer, because we want to express multiple 3183 * cpu might call us concurrently. 3184 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3185 */ 3186 skb_set_owner_w(skb, (struct sock *)sk); 3187 break; 3188 } 3189 skb_dst_set(skb, dst); 3190 3191 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3192 3193 memset(&opts, 0, sizeof(opts)); 3194 #ifdef CONFIG_SYN_COOKIES 3195 if (unlikely(req->cookie_ts)) 3196 skb->skb_mstamp = cookie_init_timestamp(req); 3197 else 3198 #endif 3199 skb->skb_mstamp = tcp_clock_us(); 3200 3201 #ifdef CONFIG_TCP_MD5SIG 3202 rcu_read_lock(); 3203 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3204 #endif 3205 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3206 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3207 foc) + sizeof(*th); 3208 3209 skb_push(skb, tcp_header_size); 3210 skb_reset_transport_header(skb); 3211 3212 th = (struct tcphdr *)skb->data; 3213 memset(th, 0, sizeof(struct tcphdr)); 3214 th->syn = 1; 3215 th->ack = 1; 3216 tcp_ecn_make_synack(req, th); 3217 th->source = htons(ireq->ir_num); 3218 th->dest = ireq->ir_rmt_port; 3219 skb->mark = ireq->ir_mark; 3220 skb->ip_summed = CHECKSUM_PARTIAL; 3221 th->seq = htonl(tcp_rsk(req)->snt_isn); 3222 /* XXX data is queued and acked as is. No buffer/window check */ 3223 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3224 3225 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3226 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3227 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3228 th->doff = (tcp_header_size >> 2); 3229 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3230 3231 #ifdef CONFIG_TCP_MD5SIG 3232 /* Okay, we have all we need - do the md5 hash if needed */ 3233 if (md5) 3234 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3235 md5, req_to_sk(req), skb); 3236 rcu_read_unlock(); 3237 #endif 3238 3239 /* Do not fool tcpdump (if any), clean our debris */ 3240 skb->tstamp = 0; 3241 return skb; 3242 } 3243 EXPORT_SYMBOL(tcp_make_synack); 3244 3245 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3246 { 3247 struct inet_connection_sock *icsk = inet_csk(sk); 3248 const struct tcp_congestion_ops *ca; 3249 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3250 3251 if (ca_key == TCP_CA_UNSPEC) 3252 return; 3253 3254 rcu_read_lock(); 3255 ca = tcp_ca_find_key(ca_key); 3256 if (likely(ca && try_module_get(ca->owner))) { 3257 module_put(icsk->icsk_ca_ops->owner); 3258 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3259 icsk->icsk_ca_ops = ca; 3260 } 3261 rcu_read_unlock(); 3262 } 3263 3264 /* Do all connect socket setups that can be done AF independent. */ 3265 static void tcp_connect_init(struct sock *sk) 3266 { 3267 const struct dst_entry *dst = __sk_dst_get(sk); 3268 struct tcp_sock *tp = tcp_sk(sk); 3269 __u8 rcv_wscale; 3270 u32 rcv_wnd; 3271 3272 /* We'll fix this up when we get a response from the other end. 3273 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3274 */ 3275 tp->tcp_header_len = sizeof(struct tcphdr); 3276 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3277 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3278 3279 #ifdef CONFIG_TCP_MD5SIG 3280 if (tp->af_specific->md5_lookup(sk, sk)) 3281 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3282 #endif 3283 3284 /* If user gave his TCP_MAXSEG, record it to clamp */ 3285 if (tp->rx_opt.user_mss) 3286 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3287 tp->max_window = 0; 3288 tcp_mtup_init(sk); 3289 tcp_sync_mss(sk, dst_mtu(dst)); 3290 3291 tcp_ca_dst_init(sk, dst); 3292 3293 if (!tp->window_clamp) 3294 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3295 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3296 3297 tcp_initialize_rcv_mss(sk); 3298 3299 /* limit the window selection if the user enforce a smaller rx buffer */ 3300 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3301 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3302 tp->window_clamp = tcp_full_space(sk); 3303 3304 rcv_wnd = tcp_rwnd_init_bpf(sk); 3305 if (rcv_wnd == 0) 3306 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3307 3308 tcp_select_initial_window(sk, tcp_full_space(sk), 3309 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3310 &tp->rcv_wnd, 3311 &tp->window_clamp, 3312 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3313 &rcv_wscale, 3314 rcv_wnd); 3315 3316 tp->rx_opt.rcv_wscale = rcv_wscale; 3317 tp->rcv_ssthresh = tp->rcv_wnd; 3318 3319 sk->sk_err = 0; 3320 sock_reset_flag(sk, SOCK_DONE); 3321 tp->snd_wnd = 0; 3322 tcp_init_wl(tp, 0); 3323 tcp_write_queue_purge(sk); 3324 tp->snd_una = tp->write_seq; 3325 tp->snd_sml = tp->write_seq; 3326 tp->snd_up = tp->write_seq; 3327 tp->snd_nxt = tp->write_seq; 3328 3329 if (likely(!tp->repair)) 3330 tp->rcv_nxt = 0; 3331 else 3332 tp->rcv_tstamp = tcp_jiffies32; 3333 tp->rcv_wup = tp->rcv_nxt; 3334 tp->copied_seq = tp->rcv_nxt; 3335 3336 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3337 inet_csk(sk)->icsk_retransmits = 0; 3338 tcp_clear_retrans(tp); 3339 } 3340 3341 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3342 { 3343 struct tcp_sock *tp = tcp_sk(sk); 3344 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3345 3346 tcb->end_seq += skb->len; 3347 __skb_header_release(skb); 3348 sk->sk_wmem_queued += skb->truesize; 3349 sk_mem_charge(sk, skb->truesize); 3350 tp->write_seq = tcb->end_seq; 3351 tp->packets_out += tcp_skb_pcount(skb); 3352 } 3353 3354 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3355 * queue a data-only packet after the regular SYN, such that regular SYNs 3356 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3357 * only the SYN sequence, the data are retransmitted in the first ACK. 3358 * If cookie is not cached or other error occurs, falls back to send a 3359 * regular SYN with Fast Open cookie request option. 3360 */ 3361 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3362 { 3363 struct tcp_sock *tp = tcp_sk(sk); 3364 struct tcp_fastopen_request *fo = tp->fastopen_req; 3365 int space, err = 0; 3366 struct sk_buff *syn_data; 3367 3368 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3369 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3370 goto fallback; 3371 3372 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3373 * user-MSS. Reserve maximum option space for middleboxes that add 3374 * private TCP options. The cost is reduced data space in SYN :( 3375 */ 3376 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3377 3378 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3379 MAX_TCP_OPTION_SPACE; 3380 3381 space = min_t(size_t, space, fo->size); 3382 3383 /* limit to order-0 allocations */ 3384 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3385 3386 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3387 if (!syn_data) 3388 goto fallback; 3389 syn_data->ip_summed = CHECKSUM_PARTIAL; 3390 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3391 if (space) { 3392 int copied = copy_from_iter(skb_put(syn_data, space), space, 3393 &fo->data->msg_iter); 3394 if (unlikely(!copied)) { 3395 tcp_skb_tsorted_anchor_cleanup(syn_data); 3396 kfree_skb(syn_data); 3397 goto fallback; 3398 } 3399 if (copied != space) { 3400 skb_trim(syn_data, copied); 3401 space = copied; 3402 } 3403 } 3404 /* No more data pending in inet_wait_for_connect() */ 3405 if (space == fo->size) 3406 fo->data = NULL; 3407 fo->copied = space; 3408 3409 tcp_connect_queue_skb(sk, syn_data); 3410 if (syn_data->len) 3411 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3412 3413 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3414 3415 syn->skb_mstamp = syn_data->skb_mstamp; 3416 3417 /* Now full SYN+DATA was cloned and sent (or not), 3418 * remove the SYN from the original skb (syn_data) 3419 * we keep in write queue in case of a retransmit, as we 3420 * also have the SYN packet (with no data) in the same queue. 3421 */ 3422 TCP_SKB_CB(syn_data)->seq++; 3423 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3424 if (!err) { 3425 tp->syn_data = (fo->copied > 0); 3426 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3427 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3428 goto done; 3429 } 3430 3431 /* data was not sent, put it in write_queue */ 3432 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3433 tp->packets_out -= tcp_skb_pcount(syn_data); 3434 3435 fallback: 3436 /* Send a regular SYN with Fast Open cookie request option */ 3437 if (fo->cookie.len > 0) 3438 fo->cookie.len = 0; 3439 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3440 if (err) 3441 tp->syn_fastopen = 0; 3442 done: 3443 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3444 return err; 3445 } 3446 3447 /* Build a SYN and send it off. */ 3448 int tcp_connect(struct sock *sk) 3449 { 3450 struct tcp_sock *tp = tcp_sk(sk); 3451 struct sk_buff *buff; 3452 int err; 3453 3454 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3455 3456 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3457 return -EHOSTUNREACH; /* Routing failure or similar. */ 3458 3459 tcp_connect_init(sk); 3460 3461 if (unlikely(tp->repair)) { 3462 tcp_finish_connect(sk, NULL); 3463 return 0; 3464 } 3465 3466 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3467 if (unlikely(!buff)) 3468 return -ENOBUFS; 3469 3470 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3471 tcp_mstamp_refresh(tp); 3472 tp->retrans_stamp = tcp_time_stamp(tp); 3473 tcp_connect_queue_skb(sk, buff); 3474 tcp_ecn_send_syn(sk, buff); 3475 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3476 3477 /* Send off SYN; include data in Fast Open. */ 3478 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3479 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3480 if (err == -ECONNREFUSED) 3481 return err; 3482 3483 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3484 * in order to make this packet get counted in tcpOutSegs. 3485 */ 3486 tp->snd_nxt = tp->write_seq; 3487 tp->pushed_seq = tp->write_seq; 3488 buff = tcp_send_head(sk); 3489 if (unlikely(buff)) { 3490 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3491 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3492 } 3493 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3494 3495 /* Timer for repeating the SYN until an answer. */ 3496 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3497 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3498 return 0; 3499 } 3500 EXPORT_SYMBOL(tcp_connect); 3501 3502 /* Send out a delayed ack, the caller does the policy checking 3503 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3504 * for details. 3505 */ 3506 void tcp_send_delayed_ack(struct sock *sk) 3507 { 3508 struct inet_connection_sock *icsk = inet_csk(sk); 3509 int ato = icsk->icsk_ack.ato; 3510 unsigned long timeout; 3511 3512 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3513 3514 if (ato > TCP_DELACK_MIN) { 3515 const struct tcp_sock *tp = tcp_sk(sk); 3516 int max_ato = HZ / 2; 3517 3518 if (icsk->icsk_ack.pingpong || 3519 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3520 max_ato = TCP_DELACK_MAX; 3521 3522 /* Slow path, intersegment interval is "high". */ 3523 3524 /* If some rtt estimate is known, use it to bound delayed ack. 3525 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3526 * directly. 3527 */ 3528 if (tp->srtt_us) { 3529 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3530 TCP_DELACK_MIN); 3531 3532 if (rtt < max_ato) 3533 max_ato = rtt; 3534 } 3535 3536 ato = min(ato, max_ato); 3537 } 3538 3539 /* Stay within the limit we were given */ 3540 timeout = jiffies + ato; 3541 3542 /* Use new timeout only if there wasn't a older one earlier. */ 3543 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3544 /* If delack timer was blocked or is about to expire, 3545 * send ACK now. 3546 */ 3547 if (icsk->icsk_ack.blocked || 3548 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3549 tcp_send_ack(sk); 3550 return; 3551 } 3552 3553 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3554 timeout = icsk->icsk_ack.timeout; 3555 } 3556 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3557 icsk->icsk_ack.timeout = timeout; 3558 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3559 } 3560 3561 /* This routine sends an ack and also updates the window. */ 3562 void tcp_send_ack(struct sock *sk) 3563 { 3564 struct sk_buff *buff; 3565 3566 /* If we have been reset, we may not send again. */ 3567 if (sk->sk_state == TCP_CLOSE) 3568 return; 3569 3570 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3571 3572 /* We are not putting this on the write queue, so 3573 * tcp_transmit_skb() will set the ownership to this 3574 * sock. 3575 */ 3576 buff = alloc_skb(MAX_TCP_HEADER, 3577 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3578 if (unlikely(!buff)) { 3579 inet_csk_schedule_ack(sk); 3580 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3581 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3582 TCP_DELACK_MAX, TCP_RTO_MAX); 3583 return; 3584 } 3585 3586 /* Reserve space for headers and prepare control bits. */ 3587 skb_reserve(buff, MAX_TCP_HEADER); 3588 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3589 3590 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3591 * too much. 3592 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3593 */ 3594 skb_set_tcp_pure_ack(buff); 3595 3596 /* Send it off, this clears delayed acks for us. */ 3597 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3598 } 3599 EXPORT_SYMBOL_GPL(tcp_send_ack); 3600 3601 /* This routine sends a packet with an out of date sequence 3602 * number. It assumes the other end will try to ack it. 3603 * 3604 * Question: what should we make while urgent mode? 3605 * 4.4BSD forces sending single byte of data. We cannot send 3606 * out of window data, because we have SND.NXT==SND.MAX... 3607 * 3608 * Current solution: to send TWO zero-length segments in urgent mode: 3609 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3610 * out-of-date with SND.UNA-1 to probe window. 3611 */ 3612 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3613 { 3614 struct tcp_sock *tp = tcp_sk(sk); 3615 struct sk_buff *skb; 3616 3617 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3618 skb = alloc_skb(MAX_TCP_HEADER, 3619 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3620 if (!skb) 3621 return -1; 3622 3623 /* Reserve space for headers and set control bits. */ 3624 skb_reserve(skb, MAX_TCP_HEADER); 3625 /* Use a previous sequence. This should cause the other 3626 * end to send an ack. Don't queue or clone SKB, just 3627 * send it. 3628 */ 3629 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3630 NET_INC_STATS(sock_net(sk), mib); 3631 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3632 } 3633 3634 /* Called from setsockopt( ... TCP_REPAIR ) */ 3635 void tcp_send_window_probe(struct sock *sk) 3636 { 3637 if (sk->sk_state == TCP_ESTABLISHED) { 3638 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3639 tcp_mstamp_refresh(tcp_sk(sk)); 3640 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3641 } 3642 } 3643 3644 /* Initiate keepalive or window probe from timer. */ 3645 int tcp_write_wakeup(struct sock *sk, int mib) 3646 { 3647 struct tcp_sock *tp = tcp_sk(sk); 3648 struct sk_buff *skb; 3649 3650 if (sk->sk_state == TCP_CLOSE) 3651 return -1; 3652 3653 skb = tcp_send_head(sk); 3654 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3655 int err; 3656 unsigned int mss = tcp_current_mss(sk); 3657 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3658 3659 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3660 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3661 3662 /* We are probing the opening of a window 3663 * but the window size is != 0 3664 * must have been a result SWS avoidance ( sender ) 3665 */ 3666 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3667 skb->len > mss) { 3668 seg_size = min(seg_size, mss); 3669 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3670 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3671 skb, seg_size, mss, GFP_ATOMIC)) 3672 return -1; 3673 } else if (!tcp_skb_pcount(skb)) 3674 tcp_set_skb_tso_segs(skb, mss); 3675 3676 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3677 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3678 if (!err) 3679 tcp_event_new_data_sent(sk, skb); 3680 return err; 3681 } else { 3682 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3683 tcp_xmit_probe_skb(sk, 1, mib); 3684 return tcp_xmit_probe_skb(sk, 0, mib); 3685 } 3686 } 3687 3688 /* A window probe timeout has occurred. If window is not closed send 3689 * a partial packet else a zero probe. 3690 */ 3691 void tcp_send_probe0(struct sock *sk) 3692 { 3693 struct inet_connection_sock *icsk = inet_csk(sk); 3694 struct tcp_sock *tp = tcp_sk(sk); 3695 struct net *net = sock_net(sk); 3696 unsigned long probe_max; 3697 int err; 3698 3699 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3700 3701 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3702 /* Cancel probe timer, if it is not required. */ 3703 icsk->icsk_probes_out = 0; 3704 icsk->icsk_backoff = 0; 3705 return; 3706 } 3707 3708 if (err <= 0) { 3709 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3710 icsk->icsk_backoff++; 3711 icsk->icsk_probes_out++; 3712 probe_max = TCP_RTO_MAX; 3713 } else { 3714 /* If packet was not sent due to local congestion, 3715 * do not backoff and do not remember icsk_probes_out. 3716 * Let local senders to fight for local resources. 3717 * 3718 * Use accumulated backoff yet. 3719 */ 3720 if (!icsk->icsk_probes_out) 3721 icsk->icsk_probes_out = 1; 3722 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3723 } 3724 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3725 tcp_probe0_when(sk, probe_max), 3726 TCP_RTO_MAX); 3727 } 3728 3729 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3730 { 3731 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3732 struct flowi fl; 3733 int res; 3734 3735 tcp_rsk(req)->txhash = net_tx_rndhash(); 3736 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3737 if (!res) { 3738 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3739 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3740 if (unlikely(tcp_passive_fastopen(sk))) 3741 tcp_sk(sk)->total_retrans++; 3742 trace_tcp_retransmit_synack(sk, req); 3743 } 3744 return res; 3745 } 3746 EXPORT_SYMBOL(tcp_rtx_synack); 3747