xref: /linux/net/ipv4/tcp_output.c (revision ef347a340b1a8507c22ee3cf981cd5cd64188431)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 			   int push_one, gfp_t gfp);
50 
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 	struct inet_connection_sock *icsk = inet_csk(sk);
55 	struct tcp_sock *tp = tcp_sk(sk);
56 	unsigned int prior_packets = tp->packets_out;
57 
58 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59 
60 	__skb_unlink(skb, &sk->sk_write_queue);
61 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62 
63 	tp->packets_out += tcp_skb_pcount(skb);
64 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
65 		tcp_rearm_rto(sk);
66 
67 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
68 		      tcp_skb_pcount(skb));
69 }
70 
71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
72  * window scaling factor due to loss of precision.
73  * If window has been shrunk, what should we make? It is not clear at all.
74  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76  * invalid. OK, let's make this for now:
77  */
78 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
79 {
80 	const struct tcp_sock *tp = tcp_sk(sk);
81 
82 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
83 	    (tp->rx_opt.wscale_ok &&
84 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
85 		return tp->snd_nxt;
86 	else
87 		return tcp_wnd_end(tp);
88 }
89 
90 /* Calculate mss to advertise in SYN segment.
91  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
92  *
93  * 1. It is independent of path mtu.
94  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
95  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
96  *    attached devices, because some buggy hosts are confused by
97  *    large MSS.
98  * 4. We do not make 3, we advertise MSS, calculated from first
99  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
100  *    This may be overridden via information stored in routing table.
101  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
102  *    probably even Jumbo".
103  */
104 static __u16 tcp_advertise_mss(struct sock *sk)
105 {
106 	struct tcp_sock *tp = tcp_sk(sk);
107 	const struct dst_entry *dst = __sk_dst_get(sk);
108 	int mss = tp->advmss;
109 
110 	if (dst) {
111 		unsigned int metric = dst_metric_advmss(dst);
112 
113 		if (metric < mss) {
114 			mss = metric;
115 			tp->advmss = mss;
116 		}
117 	}
118 
119 	return (__u16)mss;
120 }
121 
122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
123  * This is the first part of cwnd validation mechanism.
124  */
125 void tcp_cwnd_restart(struct sock *sk, s32 delta)
126 {
127 	struct tcp_sock *tp = tcp_sk(sk);
128 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
129 	u32 cwnd = tp->snd_cwnd;
130 
131 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
132 
133 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
134 	restart_cwnd = min(restart_cwnd, cwnd);
135 
136 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
137 		cwnd >>= 1;
138 	tp->snd_cwnd = max(cwnd, restart_cwnd);
139 	tp->snd_cwnd_stamp = tcp_jiffies32;
140 	tp->snd_cwnd_used = 0;
141 }
142 
143 /* Congestion state accounting after a packet has been sent. */
144 static void tcp_event_data_sent(struct tcp_sock *tp,
145 				struct sock *sk)
146 {
147 	struct inet_connection_sock *icsk = inet_csk(sk);
148 	const u32 now = tcp_jiffies32;
149 
150 	if (tcp_packets_in_flight(tp) == 0)
151 		tcp_ca_event(sk, CA_EVENT_TX_START);
152 
153 	tp->lsndtime = now;
154 
155 	/* If it is a reply for ato after last received
156 	 * packet, enter pingpong mode.
157 	 */
158 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
159 		icsk->icsk_ack.pingpong = 1;
160 }
161 
162 /* Account for an ACK we sent. */
163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
164 {
165 	struct tcp_sock *tp = tcp_sk(sk);
166 
167 	if (unlikely(tp->compressed_ack)) {
168 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
169 			      tp->compressed_ack);
170 		tp->compressed_ack = 0;
171 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
172 			__sock_put(sk);
173 	}
174 	tcp_dec_quickack_mode(sk, pkts);
175 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
176 }
177 
178 
179 u32 tcp_default_init_rwnd(u32 mss)
180 {
181 	/* Initial receive window should be twice of TCP_INIT_CWND to
182 	 * enable proper sending of new unsent data during fast recovery
183 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
184 	 * limit when mss is larger than 1460.
185 	 */
186 	u32 init_rwnd = TCP_INIT_CWND * 2;
187 
188 	if (mss > 1460)
189 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
190 	return init_rwnd;
191 }
192 
193 /* Determine a window scaling and initial window to offer.
194  * Based on the assumption that the given amount of space
195  * will be offered. Store the results in the tp structure.
196  * NOTE: for smooth operation initial space offering should
197  * be a multiple of mss if possible. We assume here that mss >= 1.
198  * This MUST be enforced by all callers.
199  */
200 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
201 			       __u32 *rcv_wnd, __u32 *window_clamp,
202 			       int wscale_ok, __u8 *rcv_wscale,
203 			       __u32 init_rcv_wnd)
204 {
205 	unsigned int space = (__space < 0 ? 0 : __space);
206 
207 	/* If no clamp set the clamp to the max possible scaled window */
208 	if (*window_clamp == 0)
209 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
210 	space = min(*window_clamp, space);
211 
212 	/* Quantize space offering to a multiple of mss if possible. */
213 	if (space > mss)
214 		space = rounddown(space, mss);
215 
216 	/* NOTE: offering an initial window larger than 32767
217 	 * will break some buggy TCP stacks. If the admin tells us
218 	 * it is likely we could be speaking with such a buggy stack
219 	 * we will truncate our initial window offering to 32K-1
220 	 * unless the remote has sent us a window scaling option,
221 	 * which we interpret as a sign the remote TCP is not
222 	 * misinterpreting the window field as a signed quantity.
223 	 */
224 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
225 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
226 	else
227 		(*rcv_wnd) = space;
228 
229 	(*rcv_wscale) = 0;
230 	if (wscale_ok) {
231 		/* Set window scaling on max possible window */
232 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
233 		space = max_t(u32, space, sysctl_rmem_max);
234 		space = min_t(u32, space, *window_clamp);
235 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
236 			space >>= 1;
237 			(*rcv_wscale)++;
238 		}
239 	}
240 
241 	if (!init_rcv_wnd) /* Use default unless specified otherwise */
242 		init_rcv_wnd = tcp_default_init_rwnd(mss);
243 	*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
244 
245 	/* Set the clamp no higher than max representable value */
246 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
247 }
248 EXPORT_SYMBOL(tcp_select_initial_window);
249 
250 /* Chose a new window to advertise, update state in tcp_sock for the
251  * socket, and return result with RFC1323 scaling applied.  The return
252  * value can be stuffed directly into th->window for an outgoing
253  * frame.
254  */
255 static u16 tcp_select_window(struct sock *sk)
256 {
257 	struct tcp_sock *tp = tcp_sk(sk);
258 	u32 old_win = tp->rcv_wnd;
259 	u32 cur_win = tcp_receive_window(tp);
260 	u32 new_win = __tcp_select_window(sk);
261 
262 	/* Never shrink the offered window */
263 	if (new_win < cur_win) {
264 		/* Danger Will Robinson!
265 		 * Don't update rcv_wup/rcv_wnd here or else
266 		 * we will not be able to advertise a zero
267 		 * window in time.  --DaveM
268 		 *
269 		 * Relax Will Robinson.
270 		 */
271 		if (new_win == 0)
272 			NET_INC_STATS(sock_net(sk),
273 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
274 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
275 	}
276 	tp->rcv_wnd = new_win;
277 	tp->rcv_wup = tp->rcv_nxt;
278 
279 	/* Make sure we do not exceed the maximum possible
280 	 * scaled window.
281 	 */
282 	if (!tp->rx_opt.rcv_wscale &&
283 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
284 		new_win = min(new_win, MAX_TCP_WINDOW);
285 	else
286 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
287 
288 	/* RFC1323 scaling applied */
289 	new_win >>= tp->rx_opt.rcv_wscale;
290 
291 	/* If we advertise zero window, disable fast path. */
292 	if (new_win == 0) {
293 		tp->pred_flags = 0;
294 		if (old_win)
295 			NET_INC_STATS(sock_net(sk),
296 				      LINUX_MIB_TCPTOZEROWINDOWADV);
297 	} else if (old_win == 0) {
298 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
299 	}
300 
301 	return new_win;
302 }
303 
304 /* Packet ECN state for a SYN-ACK */
305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
306 {
307 	const struct tcp_sock *tp = tcp_sk(sk);
308 
309 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
310 	if (!(tp->ecn_flags & TCP_ECN_OK))
311 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
312 	else if (tcp_ca_needs_ecn(sk) ||
313 		 tcp_bpf_ca_needs_ecn(sk))
314 		INET_ECN_xmit(sk);
315 }
316 
317 /* Packet ECN state for a SYN.  */
318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
319 {
320 	struct tcp_sock *tp = tcp_sk(sk);
321 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
322 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
323 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
324 
325 	if (!use_ecn) {
326 		const struct dst_entry *dst = __sk_dst_get(sk);
327 
328 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
329 			use_ecn = true;
330 	}
331 
332 	tp->ecn_flags = 0;
333 
334 	if (use_ecn) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
338 			INET_ECN_xmit(sk);
339 	}
340 }
341 
342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
345 		/* tp->ecn_flags are cleared at a later point in time when
346 		 * SYN ACK is ultimatively being received.
347 		 */
348 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
349 }
350 
351 static void
352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
353 {
354 	if (inet_rsk(req)->ecn_ok)
355 		th->ece = 1;
356 }
357 
358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
359  * be sent.
360  */
361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
362 			 struct tcphdr *th, int tcp_header_len)
363 {
364 	struct tcp_sock *tp = tcp_sk(sk);
365 
366 	if (tp->ecn_flags & TCP_ECN_OK) {
367 		/* Not-retransmitted data segment: set ECT and inject CWR. */
368 		if (skb->len != tcp_header_len &&
369 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
370 			INET_ECN_xmit(sk);
371 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
372 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
373 				th->cwr = 1;
374 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
375 			}
376 		} else if (!tcp_ca_needs_ecn(sk)) {
377 			/* ACK or retransmitted segment: clear ECT|CE */
378 			INET_ECN_dontxmit(sk);
379 		}
380 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
381 			th->ece = 1;
382 	}
383 }
384 
385 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
386  * auto increment end seqno.
387  */
388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
389 {
390 	skb->ip_summed = CHECKSUM_PARTIAL;
391 
392 	TCP_SKB_CB(skb)->tcp_flags = flags;
393 	TCP_SKB_CB(skb)->sacked = 0;
394 
395 	tcp_skb_pcount_set(skb, 1);
396 
397 	TCP_SKB_CB(skb)->seq = seq;
398 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
399 		seq++;
400 	TCP_SKB_CB(skb)->end_seq = seq;
401 }
402 
403 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
404 {
405 	return tp->snd_una != tp->snd_up;
406 }
407 
408 #define OPTION_SACK_ADVERTISE	(1 << 0)
409 #define OPTION_TS		(1 << 1)
410 #define OPTION_MD5		(1 << 2)
411 #define OPTION_WSCALE		(1 << 3)
412 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
413 #define OPTION_SMC		(1 << 9)
414 
415 static void smc_options_write(__be32 *ptr, u16 *options)
416 {
417 #if IS_ENABLED(CONFIG_SMC)
418 	if (static_branch_unlikely(&tcp_have_smc)) {
419 		if (unlikely(OPTION_SMC & *options)) {
420 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
421 				       (TCPOPT_NOP  << 16) |
422 				       (TCPOPT_EXP <<  8) |
423 				       (TCPOLEN_EXP_SMC_BASE));
424 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
425 		}
426 	}
427 #endif
428 }
429 
430 struct tcp_out_options {
431 	u16 options;		/* bit field of OPTION_* */
432 	u16 mss;		/* 0 to disable */
433 	u8 ws;			/* window scale, 0 to disable */
434 	u8 num_sack_blocks;	/* number of SACK blocks to include */
435 	u8 hash_size;		/* bytes in hash_location */
436 	__u8 *hash_location;	/* temporary pointer, overloaded */
437 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
438 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
439 };
440 
441 /* Write previously computed TCP options to the packet.
442  *
443  * Beware: Something in the Internet is very sensitive to the ordering of
444  * TCP options, we learned this through the hard way, so be careful here.
445  * Luckily we can at least blame others for their non-compliance but from
446  * inter-operability perspective it seems that we're somewhat stuck with
447  * the ordering which we have been using if we want to keep working with
448  * those broken things (not that it currently hurts anybody as there isn't
449  * particular reason why the ordering would need to be changed).
450  *
451  * At least SACK_PERM as the first option is known to lead to a disaster
452  * (but it may well be that other scenarios fail similarly).
453  */
454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
455 			      struct tcp_out_options *opts)
456 {
457 	u16 options = opts->options;	/* mungable copy */
458 
459 	if (unlikely(OPTION_MD5 & options)) {
460 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
461 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
462 		/* overload cookie hash location */
463 		opts->hash_location = (__u8 *)ptr;
464 		ptr += 4;
465 	}
466 
467 	if (unlikely(opts->mss)) {
468 		*ptr++ = htonl((TCPOPT_MSS << 24) |
469 			       (TCPOLEN_MSS << 16) |
470 			       opts->mss);
471 	}
472 
473 	if (likely(OPTION_TS & options)) {
474 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
475 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
476 				       (TCPOLEN_SACK_PERM << 16) |
477 				       (TCPOPT_TIMESTAMP << 8) |
478 				       TCPOLEN_TIMESTAMP);
479 			options &= ~OPTION_SACK_ADVERTISE;
480 		} else {
481 			*ptr++ = htonl((TCPOPT_NOP << 24) |
482 				       (TCPOPT_NOP << 16) |
483 				       (TCPOPT_TIMESTAMP << 8) |
484 				       TCPOLEN_TIMESTAMP);
485 		}
486 		*ptr++ = htonl(opts->tsval);
487 		*ptr++ = htonl(opts->tsecr);
488 	}
489 
490 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
491 		*ptr++ = htonl((TCPOPT_NOP << 24) |
492 			       (TCPOPT_NOP << 16) |
493 			       (TCPOPT_SACK_PERM << 8) |
494 			       TCPOLEN_SACK_PERM);
495 	}
496 
497 	if (unlikely(OPTION_WSCALE & options)) {
498 		*ptr++ = htonl((TCPOPT_NOP << 24) |
499 			       (TCPOPT_WINDOW << 16) |
500 			       (TCPOLEN_WINDOW << 8) |
501 			       opts->ws);
502 	}
503 
504 	if (unlikely(opts->num_sack_blocks)) {
505 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
506 			tp->duplicate_sack : tp->selective_acks;
507 		int this_sack;
508 
509 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
510 			       (TCPOPT_NOP  << 16) |
511 			       (TCPOPT_SACK <<  8) |
512 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
513 						     TCPOLEN_SACK_PERBLOCK)));
514 
515 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
516 		     ++this_sack) {
517 			*ptr++ = htonl(sp[this_sack].start_seq);
518 			*ptr++ = htonl(sp[this_sack].end_seq);
519 		}
520 
521 		tp->rx_opt.dsack = 0;
522 	}
523 
524 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
525 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
526 		u8 *p = (u8 *)ptr;
527 		u32 len; /* Fast Open option length */
528 
529 		if (foc->exp) {
530 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
531 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
532 				     TCPOPT_FASTOPEN_MAGIC);
533 			p += TCPOLEN_EXP_FASTOPEN_BASE;
534 		} else {
535 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
536 			*p++ = TCPOPT_FASTOPEN;
537 			*p++ = len;
538 		}
539 
540 		memcpy(p, foc->val, foc->len);
541 		if ((len & 3) == 2) {
542 			p[foc->len] = TCPOPT_NOP;
543 			p[foc->len + 1] = TCPOPT_NOP;
544 		}
545 		ptr += (len + 3) >> 2;
546 	}
547 
548 	smc_options_write(ptr, &options);
549 }
550 
551 static void smc_set_option(const struct tcp_sock *tp,
552 			   struct tcp_out_options *opts,
553 			   unsigned int *remaining)
554 {
555 #if IS_ENABLED(CONFIG_SMC)
556 	if (static_branch_unlikely(&tcp_have_smc)) {
557 		if (tp->syn_smc) {
558 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
559 				opts->options |= OPTION_SMC;
560 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
561 			}
562 		}
563 	}
564 #endif
565 }
566 
567 static void smc_set_option_cond(const struct tcp_sock *tp,
568 				const struct inet_request_sock *ireq,
569 				struct tcp_out_options *opts,
570 				unsigned int *remaining)
571 {
572 #if IS_ENABLED(CONFIG_SMC)
573 	if (static_branch_unlikely(&tcp_have_smc)) {
574 		if (tp->syn_smc && ireq->smc_ok) {
575 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
576 				opts->options |= OPTION_SMC;
577 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
578 			}
579 		}
580 	}
581 #endif
582 }
583 
584 /* Compute TCP options for SYN packets. This is not the final
585  * network wire format yet.
586  */
587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
588 				struct tcp_out_options *opts,
589 				struct tcp_md5sig_key **md5)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
593 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
594 
595 	*md5 = NULL;
596 #ifdef CONFIG_TCP_MD5SIG
597 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
598 		*md5 = tp->af_specific->md5_lookup(sk, sk);
599 		if (*md5) {
600 			opts->options |= OPTION_MD5;
601 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
602 		}
603 	}
604 #endif
605 
606 	/* We always get an MSS option.  The option bytes which will be seen in
607 	 * normal data packets should timestamps be used, must be in the MSS
608 	 * advertised.  But we subtract them from tp->mss_cache so that
609 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
610 	 * fact here if necessary.  If we don't do this correctly, as a
611 	 * receiver we won't recognize data packets as being full sized when we
612 	 * should, and thus we won't abide by the delayed ACK rules correctly.
613 	 * SACKs don't matter, we never delay an ACK when we have any of those
614 	 * going out.  */
615 	opts->mss = tcp_advertise_mss(sk);
616 	remaining -= TCPOLEN_MSS_ALIGNED;
617 
618 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
619 		opts->options |= OPTION_TS;
620 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
621 		opts->tsecr = tp->rx_opt.ts_recent;
622 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
623 	}
624 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
625 		opts->ws = tp->rx_opt.rcv_wscale;
626 		opts->options |= OPTION_WSCALE;
627 		remaining -= TCPOLEN_WSCALE_ALIGNED;
628 	}
629 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
630 		opts->options |= OPTION_SACK_ADVERTISE;
631 		if (unlikely(!(OPTION_TS & opts->options)))
632 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
633 	}
634 
635 	if (fastopen && fastopen->cookie.len >= 0) {
636 		u32 need = fastopen->cookie.len;
637 
638 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
639 					       TCPOLEN_FASTOPEN_BASE;
640 		need = (need + 3) & ~3U;  /* Align to 32 bits */
641 		if (remaining >= need) {
642 			opts->options |= OPTION_FAST_OPEN_COOKIE;
643 			opts->fastopen_cookie = &fastopen->cookie;
644 			remaining -= need;
645 			tp->syn_fastopen = 1;
646 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
647 		}
648 	}
649 
650 	smc_set_option(tp, opts, &remaining);
651 
652 	return MAX_TCP_OPTION_SPACE - remaining;
653 }
654 
655 /* Set up TCP options for SYN-ACKs. */
656 static unsigned int tcp_synack_options(const struct sock *sk,
657 				       struct request_sock *req,
658 				       unsigned int mss, struct sk_buff *skb,
659 				       struct tcp_out_options *opts,
660 				       const struct tcp_md5sig_key *md5,
661 				       struct tcp_fastopen_cookie *foc)
662 {
663 	struct inet_request_sock *ireq = inet_rsk(req);
664 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
665 
666 #ifdef CONFIG_TCP_MD5SIG
667 	if (md5) {
668 		opts->options |= OPTION_MD5;
669 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
670 
671 		/* We can't fit any SACK blocks in a packet with MD5 + TS
672 		 * options. There was discussion about disabling SACK
673 		 * rather than TS in order to fit in better with old,
674 		 * buggy kernels, but that was deemed to be unnecessary.
675 		 */
676 		ireq->tstamp_ok &= !ireq->sack_ok;
677 	}
678 #endif
679 
680 	/* We always send an MSS option. */
681 	opts->mss = mss;
682 	remaining -= TCPOLEN_MSS_ALIGNED;
683 
684 	if (likely(ireq->wscale_ok)) {
685 		opts->ws = ireq->rcv_wscale;
686 		opts->options |= OPTION_WSCALE;
687 		remaining -= TCPOLEN_WSCALE_ALIGNED;
688 	}
689 	if (likely(ireq->tstamp_ok)) {
690 		opts->options |= OPTION_TS;
691 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
692 		opts->tsecr = req->ts_recent;
693 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
694 	}
695 	if (likely(ireq->sack_ok)) {
696 		opts->options |= OPTION_SACK_ADVERTISE;
697 		if (unlikely(!ireq->tstamp_ok))
698 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
699 	}
700 	if (foc != NULL && foc->len >= 0) {
701 		u32 need = foc->len;
702 
703 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
704 				   TCPOLEN_FASTOPEN_BASE;
705 		need = (need + 3) & ~3U;  /* Align to 32 bits */
706 		if (remaining >= need) {
707 			opts->options |= OPTION_FAST_OPEN_COOKIE;
708 			opts->fastopen_cookie = foc;
709 			remaining -= need;
710 		}
711 	}
712 
713 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
714 
715 	return MAX_TCP_OPTION_SPACE - remaining;
716 }
717 
718 /* Compute TCP options for ESTABLISHED sockets. This is not the
719  * final wire format yet.
720  */
721 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
722 					struct tcp_out_options *opts,
723 					struct tcp_md5sig_key **md5)
724 {
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	unsigned int size = 0;
727 	unsigned int eff_sacks;
728 
729 	opts->options = 0;
730 
731 	*md5 = NULL;
732 #ifdef CONFIG_TCP_MD5SIG
733 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
734 		*md5 = tp->af_specific->md5_lookup(sk, sk);
735 		if (*md5) {
736 			opts->options |= OPTION_MD5;
737 			size += TCPOLEN_MD5SIG_ALIGNED;
738 		}
739 	}
740 #endif
741 
742 	if (likely(tp->rx_opt.tstamp_ok)) {
743 		opts->options |= OPTION_TS;
744 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
745 		opts->tsecr = tp->rx_opt.ts_recent;
746 		size += TCPOLEN_TSTAMP_ALIGNED;
747 	}
748 
749 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
750 	if (unlikely(eff_sacks)) {
751 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
752 		opts->num_sack_blocks =
753 			min_t(unsigned int, eff_sacks,
754 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
755 			      TCPOLEN_SACK_PERBLOCK);
756 		size += TCPOLEN_SACK_BASE_ALIGNED +
757 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
758 	}
759 
760 	return size;
761 }
762 
763 
764 /* TCP SMALL QUEUES (TSQ)
765  *
766  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
767  * to reduce RTT and bufferbloat.
768  * We do this using a special skb destructor (tcp_wfree).
769  *
770  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
771  * needs to be reallocated in a driver.
772  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
773  *
774  * Since transmit from skb destructor is forbidden, we use a tasklet
775  * to process all sockets that eventually need to send more skbs.
776  * We use one tasklet per cpu, with its own queue of sockets.
777  */
778 struct tsq_tasklet {
779 	struct tasklet_struct	tasklet;
780 	struct list_head	head; /* queue of tcp sockets */
781 };
782 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
783 
784 static void tcp_tsq_write(struct sock *sk)
785 {
786 	if ((1 << sk->sk_state) &
787 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
788 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
789 		struct tcp_sock *tp = tcp_sk(sk);
790 
791 		if (tp->lost_out > tp->retrans_out &&
792 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
793 			tcp_mstamp_refresh(tp);
794 			tcp_xmit_retransmit_queue(sk);
795 		}
796 
797 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
798 			       0, GFP_ATOMIC);
799 	}
800 }
801 
802 static void tcp_tsq_handler(struct sock *sk)
803 {
804 	bh_lock_sock(sk);
805 	if (!sock_owned_by_user(sk))
806 		tcp_tsq_write(sk);
807 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
808 		sock_hold(sk);
809 	bh_unlock_sock(sk);
810 }
811 /*
812  * One tasklet per cpu tries to send more skbs.
813  * We run in tasklet context but need to disable irqs when
814  * transferring tsq->head because tcp_wfree() might
815  * interrupt us (non NAPI drivers)
816  */
817 static void tcp_tasklet_func(unsigned long data)
818 {
819 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
820 	LIST_HEAD(list);
821 	unsigned long flags;
822 	struct list_head *q, *n;
823 	struct tcp_sock *tp;
824 	struct sock *sk;
825 
826 	local_irq_save(flags);
827 	list_splice_init(&tsq->head, &list);
828 	local_irq_restore(flags);
829 
830 	list_for_each_safe(q, n, &list) {
831 		tp = list_entry(q, struct tcp_sock, tsq_node);
832 		list_del(&tp->tsq_node);
833 
834 		sk = (struct sock *)tp;
835 		smp_mb__before_atomic();
836 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
837 
838 		tcp_tsq_handler(sk);
839 		sk_free(sk);
840 	}
841 }
842 
843 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
844 			  TCPF_WRITE_TIMER_DEFERRED |	\
845 			  TCPF_DELACK_TIMER_DEFERRED |	\
846 			  TCPF_MTU_REDUCED_DEFERRED)
847 /**
848  * tcp_release_cb - tcp release_sock() callback
849  * @sk: socket
850  *
851  * called from release_sock() to perform protocol dependent
852  * actions before socket release.
853  */
854 void tcp_release_cb(struct sock *sk)
855 {
856 	unsigned long flags, nflags;
857 
858 	/* perform an atomic operation only if at least one flag is set */
859 	do {
860 		flags = sk->sk_tsq_flags;
861 		if (!(flags & TCP_DEFERRED_ALL))
862 			return;
863 		nflags = flags & ~TCP_DEFERRED_ALL;
864 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
865 
866 	if (flags & TCPF_TSQ_DEFERRED) {
867 		tcp_tsq_write(sk);
868 		__sock_put(sk);
869 	}
870 	/* Here begins the tricky part :
871 	 * We are called from release_sock() with :
872 	 * 1) BH disabled
873 	 * 2) sk_lock.slock spinlock held
874 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
875 	 *
876 	 * But following code is meant to be called from BH handlers,
877 	 * so we should keep BH disabled, but early release socket ownership
878 	 */
879 	sock_release_ownership(sk);
880 
881 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
882 		tcp_write_timer_handler(sk);
883 		__sock_put(sk);
884 	}
885 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
886 		tcp_delack_timer_handler(sk);
887 		__sock_put(sk);
888 	}
889 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
890 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
891 		__sock_put(sk);
892 	}
893 }
894 EXPORT_SYMBOL(tcp_release_cb);
895 
896 void __init tcp_tasklet_init(void)
897 {
898 	int i;
899 
900 	for_each_possible_cpu(i) {
901 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
902 
903 		INIT_LIST_HEAD(&tsq->head);
904 		tasklet_init(&tsq->tasklet,
905 			     tcp_tasklet_func,
906 			     (unsigned long)tsq);
907 	}
908 }
909 
910 /*
911  * Write buffer destructor automatically called from kfree_skb.
912  * We can't xmit new skbs from this context, as we might already
913  * hold qdisc lock.
914  */
915 void tcp_wfree(struct sk_buff *skb)
916 {
917 	struct sock *sk = skb->sk;
918 	struct tcp_sock *tp = tcp_sk(sk);
919 	unsigned long flags, nval, oval;
920 
921 	/* Keep one reference on sk_wmem_alloc.
922 	 * Will be released by sk_free() from here or tcp_tasklet_func()
923 	 */
924 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
925 
926 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
927 	 * Wait until our queues (qdisc + devices) are drained.
928 	 * This gives :
929 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
930 	 * - chance for incoming ACK (processed by another cpu maybe)
931 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
932 	 */
933 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
934 		goto out;
935 
936 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
937 		struct tsq_tasklet *tsq;
938 		bool empty;
939 
940 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
941 			goto out;
942 
943 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
944 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
945 		if (nval != oval)
946 			continue;
947 
948 		/* queue this socket to tasklet queue */
949 		local_irq_save(flags);
950 		tsq = this_cpu_ptr(&tsq_tasklet);
951 		empty = list_empty(&tsq->head);
952 		list_add(&tp->tsq_node, &tsq->head);
953 		if (empty)
954 			tasklet_schedule(&tsq->tasklet);
955 		local_irq_restore(flags);
956 		return;
957 	}
958 out:
959 	sk_free(sk);
960 }
961 
962 /* Note: Called under soft irq.
963  * We can call TCP stack right away, unless socket is owned by user.
964  */
965 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
966 {
967 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
968 	struct sock *sk = (struct sock *)tp;
969 
970 	tcp_tsq_handler(sk);
971 	sock_put(sk);
972 
973 	return HRTIMER_NORESTART;
974 }
975 
976 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
977 {
978 	u64 len_ns;
979 	u32 rate;
980 
981 	if (!tcp_needs_internal_pacing(sk))
982 		return;
983 	rate = sk->sk_pacing_rate;
984 	if (!rate || rate == ~0U)
985 		return;
986 
987 	len_ns = (u64)skb->len * NSEC_PER_SEC;
988 	do_div(len_ns, rate);
989 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
990 		      ktime_add_ns(ktime_get(), len_ns),
991 		      HRTIMER_MODE_ABS_PINNED_SOFT);
992 	sock_hold(sk);
993 }
994 
995 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
996 {
997 	skb->skb_mstamp = tp->tcp_mstamp;
998 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
999 }
1000 
1001 /* This routine actually transmits TCP packets queued in by
1002  * tcp_do_sendmsg().  This is used by both the initial
1003  * transmission and possible later retransmissions.
1004  * All SKB's seen here are completely headerless.  It is our
1005  * job to build the TCP header, and pass the packet down to
1006  * IP so it can do the same plus pass the packet off to the
1007  * device.
1008  *
1009  * We are working here with either a clone of the original
1010  * SKB, or a fresh unique copy made by the retransmit engine.
1011  */
1012 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1013 			    gfp_t gfp_mask)
1014 {
1015 	const struct inet_connection_sock *icsk = inet_csk(sk);
1016 	struct inet_sock *inet;
1017 	struct tcp_sock *tp;
1018 	struct tcp_skb_cb *tcb;
1019 	struct tcp_out_options opts;
1020 	unsigned int tcp_options_size, tcp_header_size;
1021 	struct sk_buff *oskb = NULL;
1022 	struct tcp_md5sig_key *md5;
1023 	struct tcphdr *th;
1024 	int err;
1025 
1026 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1027 	tp = tcp_sk(sk);
1028 
1029 	if (clone_it) {
1030 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1031 			- tp->snd_una;
1032 		oskb = skb;
1033 
1034 		tcp_skb_tsorted_save(oskb) {
1035 			if (unlikely(skb_cloned(oskb)))
1036 				skb = pskb_copy(oskb, gfp_mask);
1037 			else
1038 				skb = skb_clone(oskb, gfp_mask);
1039 		} tcp_skb_tsorted_restore(oskb);
1040 
1041 		if (unlikely(!skb))
1042 			return -ENOBUFS;
1043 	}
1044 	skb->skb_mstamp = tp->tcp_mstamp;
1045 
1046 	inet = inet_sk(sk);
1047 	tcb = TCP_SKB_CB(skb);
1048 	memset(&opts, 0, sizeof(opts));
1049 
1050 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1051 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1052 	else
1053 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1054 							   &md5);
1055 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1056 
1057 	/* if no packet is in qdisc/device queue, then allow XPS to select
1058 	 * another queue. We can be called from tcp_tsq_handler()
1059 	 * which holds one reference to sk.
1060 	 *
1061 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1062 	 * One way to get this would be to set skb->truesize = 2 on them.
1063 	 */
1064 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1065 
1066 	/* If we had to use memory reserve to allocate this skb,
1067 	 * this might cause drops if packet is looped back :
1068 	 * Other socket might not have SOCK_MEMALLOC.
1069 	 * Packets not looped back do not care about pfmemalloc.
1070 	 */
1071 	skb->pfmemalloc = 0;
1072 
1073 	skb_push(skb, tcp_header_size);
1074 	skb_reset_transport_header(skb);
1075 
1076 	skb_orphan(skb);
1077 	skb->sk = sk;
1078 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1079 	skb_set_hash_from_sk(skb, sk);
1080 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1081 
1082 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1083 
1084 	/* Build TCP header and checksum it. */
1085 	th = (struct tcphdr *)skb->data;
1086 	th->source		= inet->inet_sport;
1087 	th->dest		= inet->inet_dport;
1088 	th->seq			= htonl(tcb->seq);
1089 	th->ack_seq		= htonl(tp->rcv_nxt);
1090 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1091 					tcb->tcp_flags);
1092 
1093 	th->check		= 0;
1094 	th->urg_ptr		= 0;
1095 
1096 	/* The urg_mode check is necessary during a below snd_una win probe */
1097 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1098 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1099 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1100 			th->urg = 1;
1101 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1102 			th->urg_ptr = htons(0xFFFF);
1103 			th->urg = 1;
1104 		}
1105 	}
1106 
1107 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1108 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1109 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1110 		th->window      = htons(tcp_select_window(sk));
1111 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1112 	} else {
1113 		/* RFC1323: The window in SYN & SYN/ACK segments
1114 		 * is never scaled.
1115 		 */
1116 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1117 	}
1118 #ifdef CONFIG_TCP_MD5SIG
1119 	/* Calculate the MD5 hash, as we have all we need now */
1120 	if (md5) {
1121 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1122 		tp->af_specific->calc_md5_hash(opts.hash_location,
1123 					       md5, sk, skb);
1124 	}
1125 #endif
1126 
1127 	icsk->icsk_af_ops->send_check(sk, skb);
1128 
1129 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1130 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1131 
1132 	if (skb->len != tcp_header_size) {
1133 		tcp_event_data_sent(tp, sk);
1134 		tp->data_segs_out += tcp_skb_pcount(skb);
1135 		tcp_internal_pacing(sk, skb);
1136 	}
1137 
1138 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1139 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1140 			      tcp_skb_pcount(skb));
1141 
1142 	tp->segs_out += tcp_skb_pcount(skb);
1143 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1144 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1145 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1146 
1147 	/* Our usage of tstamp should remain private */
1148 	skb->tstamp = 0;
1149 
1150 	/* Cleanup our debris for IP stacks */
1151 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1152 			       sizeof(struct inet6_skb_parm)));
1153 
1154 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1155 
1156 	if (unlikely(err > 0)) {
1157 		tcp_enter_cwr(sk);
1158 		err = net_xmit_eval(err);
1159 	}
1160 	if (!err && oskb) {
1161 		tcp_update_skb_after_send(tp, oskb);
1162 		tcp_rate_skb_sent(sk, oskb);
1163 	}
1164 	return err;
1165 }
1166 
1167 /* This routine just queues the buffer for sending.
1168  *
1169  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1170  * otherwise socket can stall.
1171  */
1172 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1173 {
1174 	struct tcp_sock *tp = tcp_sk(sk);
1175 
1176 	/* Advance write_seq and place onto the write_queue. */
1177 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1178 	__skb_header_release(skb);
1179 	tcp_add_write_queue_tail(sk, skb);
1180 	sk->sk_wmem_queued += skb->truesize;
1181 	sk_mem_charge(sk, skb->truesize);
1182 }
1183 
1184 /* Initialize TSO segments for a packet. */
1185 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1186 {
1187 	if (skb->len <= mss_now) {
1188 		/* Avoid the costly divide in the normal
1189 		 * non-TSO case.
1190 		 */
1191 		tcp_skb_pcount_set(skb, 1);
1192 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1193 	} else {
1194 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1195 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1196 	}
1197 }
1198 
1199 /* Pcount in the middle of the write queue got changed, we need to do various
1200  * tweaks to fix counters
1201  */
1202 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1203 {
1204 	struct tcp_sock *tp = tcp_sk(sk);
1205 
1206 	tp->packets_out -= decr;
1207 
1208 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1209 		tp->sacked_out -= decr;
1210 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1211 		tp->retrans_out -= decr;
1212 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1213 		tp->lost_out -= decr;
1214 
1215 	/* Reno case is special. Sigh... */
1216 	if (tcp_is_reno(tp) && decr > 0)
1217 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1218 
1219 	if (tp->lost_skb_hint &&
1220 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1221 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1222 		tp->lost_cnt_hint -= decr;
1223 
1224 	tcp_verify_left_out(tp);
1225 }
1226 
1227 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1228 {
1229 	return TCP_SKB_CB(skb)->txstamp_ack ||
1230 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1231 }
1232 
1233 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1234 {
1235 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1236 
1237 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1238 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1239 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1240 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1241 
1242 		shinfo->tx_flags &= ~tsflags;
1243 		shinfo2->tx_flags |= tsflags;
1244 		swap(shinfo->tskey, shinfo2->tskey);
1245 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1246 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1247 	}
1248 }
1249 
1250 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1251 {
1252 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1253 	TCP_SKB_CB(skb)->eor = 0;
1254 }
1255 
1256 /* Insert buff after skb on the write or rtx queue of sk.  */
1257 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1258 					 struct sk_buff *buff,
1259 					 struct sock *sk,
1260 					 enum tcp_queue tcp_queue)
1261 {
1262 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1263 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1264 	else
1265 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1266 }
1267 
1268 /* Function to create two new TCP segments.  Shrinks the given segment
1269  * to the specified size and appends a new segment with the rest of the
1270  * packet to the list.  This won't be called frequently, I hope.
1271  * Remember, these are still headerless SKBs at this point.
1272  */
1273 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1274 		 struct sk_buff *skb, u32 len,
1275 		 unsigned int mss_now, gfp_t gfp)
1276 {
1277 	struct tcp_sock *tp = tcp_sk(sk);
1278 	struct sk_buff *buff;
1279 	int nsize, old_factor;
1280 	int nlen;
1281 	u8 flags;
1282 
1283 	if (WARN_ON(len > skb->len))
1284 		return -EINVAL;
1285 
1286 	nsize = skb_headlen(skb) - len;
1287 	if (nsize < 0)
1288 		nsize = 0;
1289 
1290 	if (skb_unclone(skb, gfp))
1291 		return -ENOMEM;
1292 
1293 	/* Get a new skb... force flag on. */
1294 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1295 	if (!buff)
1296 		return -ENOMEM; /* We'll just try again later. */
1297 
1298 	sk->sk_wmem_queued += buff->truesize;
1299 	sk_mem_charge(sk, buff->truesize);
1300 	nlen = skb->len - len - nsize;
1301 	buff->truesize += nlen;
1302 	skb->truesize -= nlen;
1303 
1304 	/* Correct the sequence numbers. */
1305 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1306 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1307 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1308 
1309 	/* PSH and FIN should only be set in the second packet. */
1310 	flags = TCP_SKB_CB(skb)->tcp_flags;
1311 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1312 	TCP_SKB_CB(buff)->tcp_flags = flags;
1313 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1314 	tcp_skb_fragment_eor(skb, buff);
1315 
1316 	skb_split(skb, buff, len);
1317 
1318 	buff->ip_summed = CHECKSUM_PARTIAL;
1319 
1320 	buff->tstamp = skb->tstamp;
1321 	tcp_fragment_tstamp(skb, buff);
1322 
1323 	old_factor = tcp_skb_pcount(skb);
1324 
1325 	/* Fix up tso_factor for both original and new SKB.  */
1326 	tcp_set_skb_tso_segs(skb, mss_now);
1327 	tcp_set_skb_tso_segs(buff, mss_now);
1328 
1329 	/* Update delivered info for the new segment */
1330 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1331 
1332 	/* If this packet has been sent out already, we must
1333 	 * adjust the various packet counters.
1334 	 */
1335 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1336 		int diff = old_factor - tcp_skb_pcount(skb) -
1337 			tcp_skb_pcount(buff);
1338 
1339 		if (diff)
1340 			tcp_adjust_pcount(sk, skb, diff);
1341 	}
1342 
1343 	/* Link BUFF into the send queue. */
1344 	__skb_header_release(buff);
1345 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1346 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1347 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1348 
1349 	return 0;
1350 }
1351 
1352 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1353  * data is not copied, but immediately discarded.
1354  */
1355 static int __pskb_trim_head(struct sk_buff *skb, int len)
1356 {
1357 	struct skb_shared_info *shinfo;
1358 	int i, k, eat;
1359 
1360 	eat = min_t(int, len, skb_headlen(skb));
1361 	if (eat) {
1362 		__skb_pull(skb, eat);
1363 		len -= eat;
1364 		if (!len)
1365 			return 0;
1366 	}
1367 	eat = len;
1368 	k = 0;
1369 	shinfo = skb_shinfo(skb);
1370 	for (i = 0; i < shinfo->nr_frags; i++) {
1371 		int size = skb_frag_size(&shinfo->frags[i]);
1372 
1373 		if (size <= eat) {
1374 			skb_frag_unref(skb, i);
1375 			eat -= size;
1376 		} else {
1377 			shinfo->frags[k] = shinfo->frags[i];
1378 			if (eat) {
1379 				shinfo->frags[k].page_offset += eat;
1380 				skb_frag_size_sub(&shinfo->frags[k], eat);
1381 				eat = 0;
1382 			}
1383 			k++;
1384 		}
1385 	}
1386 	shinfo->nr_frags = k;
1387 
1388 	skb->data_len -= len;
1389 	skb->len = skb->data_len;
1390 	return len;
1391 }
1392 
1393 /* Remove acked data from a packet in the transmit queue. */
1394 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1395 {
1396 	u32 delta_truesize;
1397 
1398 	if (skb_unclone(skb, GFP_ATOMIC))
1399 		return -ENOMEM;
1400 
1401 	delta_truesize = __pskb_trim_head(skb, len);
1402 
1403 	TCP_SKB_CB(skb)->seq += len;
1404 	skb->ip_summed = CHECKSUM_PARTIAL;
1405 
1406 	if (delta_truesize) {
1407 		skb->truesize	   -= delta_truesize;
1408 		sk->sk_wmem_queued -= delta_truesize;
1409 		sk_mem_uncharge(sk, delta_truesize);
1410 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1411 	}
1412 
1413 	/* Any change of skb->len requires recalculation of tso factor. */
1414 	if (tcp_skb_pcount(skb) > 1)
1415 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1416 
1417 	return 0;
1418 }
1419 
1420 /* Calculate MSS not accounting any TCP options.  */
1421 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1422 {
1423 	const struct tcp_sock *tp = tcp_sk(sk);
1424 	const struct inet_connection_sock *icsk = inet_csk(sk);
1425 	int mss_now;
1426 
1427 	/* Calculate base mss without TCP options:
1428 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1429 	 */
1430 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1431 
1432 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1433 	if (icsk->icsk_af_ops->net_frag_header_len) {
1434 		const struct dst_entry *dst = __sk_dst_get(sk);
1435 
1436 		if (dst && dst_allfrag(dst))
1437 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1438 	}
1439 
1440 	/* Clamp it (mss_clamp does not include tcp options) */
1441 	if (mss_now > tp->rx_opt.mss_clamp)
1442 		mss_now = tp->rx_opt.mss_clamp;
1443 
1444 	/* Now subtract optional transport overhead */
1445 	mss_now -= icsk->icsk_ext_hdr_len;
1446 
1447 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1448 	if (mss_now < 48)
1449 		mss_now = 48;
1450 	return mss_now;
1451 }
1452 
1453 /* Calculate MSS. Not accounting for SACKs here.  */
1454 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1455 {
1456 	/* Subtract TCP options size, not including SACKs */
1457 	return __tcp_mtu_to_mss(sk, pmtu) -
1458 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1459 }
1460 
1461 /* Inverse of above */
1462 int tcp_mss_to_mtu(struct sock *sk, int mss)
1463 {
1464 	const struct tcp_sock *tp = tcp_sk(sk);
1465 	const struct inet_connection_sock *icsk = inet_csk(sk);
1466 	int mtu;
1467 
1468 	mtu = mss +
1469 	      tp->tcp_header_len +
1470 	      icsk->icsk_ext_hdr_len +
1471 	      icsk->icsk_af_ops->net_header_len;
1472 
1473 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1474 	if (icsk->icsk_af_ops->net_frag_header_len) {
1475 		const struct dst_entry *dst = __sk_dst_get(sk);
1476 
1477 		if (dst && dst_allfrag(dst))
1478 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1479 	}
1480 	return mtu;
1481 }
1482 EXPORT_SYMBOL(tcp_mss_to_mtu);
1483 
1484 /* MTU probing init per socket */
1485 void tcp_mtup_init(struct sock *sk)
1486 {
1487 	struct tcp_sock *tp = tcp_sk(sk);
1488 	struct inet_connection_sock *icsk = inet_csk(sk);
1489 	struct net *net = sock_net(sk);
1490 
1491 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1492 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1493 			       icsk->icsk_af_ops->net_header_len;
1494 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1495 	icsk->icsk_mtup.probe_size = 0;
1496 	if (icsk->icsk_mtup.enabled)
1497 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1498 }
1499 EXPORT_SYMBOL(tcp_mtup_init);
1500 
1501 /* This function synchronize snd mss to current pmtu/exthdr set.
1502 
1503    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1504    for TCP options, but includes only bare TCP header.
1505 
1506    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1507    It is minimum of user_mss and mss received with SYN.
1508    It also does not include TCP options.
1509 
1510    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1511 
1512    tp->mss_cache is current effective sending mss, including
1513    all tcp options except for SACKs. It is evaluated,
1514    taking into account current pmtu, but never exceeds
1515    tp->rx_opt.mss_clamp.
1516 
1517    NOTE1. rfc1122 clearly states that advertised MSS
1518    DOES NOT include either tcp or ip options.
1519 
1520    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1521    are READ ONLY outside this function.		--ANK (980731)
1522  */
1523 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1524 {
1525 	struct tcp_sock *tp = tcp_sk(sk);
1526 	struct inet_connection_sock *icsk = inet_csk(sk);
1527 	int mss_now;
1528 
1529 	if (icsk->icsk_mtup.search_high > pmtu)
1530 		icsk->icsk_mtup.search_high = pmtu;
1531 
1532 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1533 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1534 
1535 	/* And store cached results */
1536 	icsk->icsk_pmtu_cookie = pmtu;
1537 	if (icsk->icsk_mtup.enabled)
1538 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1539 	tp->mss_cache = mss_now;
1540 
1541 	return mss_now;
1542 }
1543 EXPORT_SYMBOL(tcp_sync_mss);
1544 
1545 /* Compute the current effective MSS, taking SACKs and IP options,
1546  * and even PMTU discovery events into account.
1547  */
1548 unsigned int tcp_current_mss(struct sock *sk)
1549 {
1550 	const struct tcp_sock *tp = tcp_sk(sk);
1551 	const struct dst_entry *dst = __sk_dst_get(sk);
1552 	u32 mss_now;
1553 	unsigned int header_len;
1554 	struct tcp_out_options opts;
1555 	struct tcp_md5sig_key *md5;
1556 
1557 	mss_now = tp->mss_cache;
1558 
1559 	if (dst) {
1560 		u32 mtu = dst_mtu(dst);
1561 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1562 			mss_now = tcp_sync_mss(sk, mtu);
1563 	}
1564 
1565 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1566 		     sizeof(struct tcphdr);
1567 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1568 	 * some common options. If this is an odd packet (because we have SACK
1569 	 * blocks etc) then our calculated header_len will be different, and
1570 	 * we have to adjust mss_now correspondingly */
1571 	if (header_len != tp->tcp_header_len) {
1572 		int delta = (int) header_len - tp->tcp_header_len;
1573 		mss_now -= delta;
1574 	}
1575 
1576 	return mss_now;
1577 }
1578 
1579 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1580  * As additional protections, we do not touch cwnd in retransmission phases,
1581  * and if application hit its sndbuf limit recently.
1582  */
1583 static void tcp_cwnd_application_limited(struct sock *sk)
1584 {
1585 	struct tcp_sock *tp = tcp_sk(sk);
1586 
1587 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1588 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1589 		/* Limited by application or receiver window. */
1590 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1591 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1592 		if (win_used < tp->snd_cwnd) {
1593 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1594 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1595 		}
1596 		tp->snd_cwnd_used = 0;
1597 	}
1598 	tp->snd_cwnd_stamp = tcp_jiffies32;
1599 }
1600 
1601 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1602 {
1603 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1604 	struct tcp_sock *tp = tcp_sk(sk);
1605 
1606 	/* Track the maximum number of outstanding packets in each
1607 	 * window, and remember whether we were cwnd-limited then.
1608 	 */
1609 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1610 	    tp->packets_out > tp->max_packets_out) {
1611 		tp->max_packets_out = tp->packets_out;
1612 		tp->max_packets_seq = tp->snd_nxt;
1613 		tp->is_cwnd_limited = is_cwnd_limited;
1614 	}
1615 
1616 	if (tcp_is_cwnd_limited(sk)) {
1617 		/* Network is feed fully. */
1618 		tp->snd_cwnd_used = 0;
1619 		tp->snd_cwnd_stamp = tcp_jiffies32;
1620 	} else {
1621 		/* Network starves. */
1622 		if (tp->packets_out > tp->snd_cwnd_used)
1623 			tp->snd_cwnd_used = tp->packets_out;
1624 
1625 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1626 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1627 		    !ca_ops->cong_control)
1628 			tcp_cwnd_application_limited(sk);
1629 
1630 		/* The following conditions together indicate the starvation
1631 		 * is caused by insufficient sender buffer:
1632 		 * 1) just sent some data (see tcp_write_xmit)
1633 		 * 2) not cwnd limited (this else condition)
1634 		 * 3) no more data to send (tcp_write_queue_empty())
1635 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1636 		 */
1637 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1638 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1639 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1640 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1641 	}
1642 }
1643 
1644 /* Minshall's variant of the Nagle send check. */
1645 static bool tcp_minshall_check(const struct tcp_sock *tp)
1646 {
1647 	return after(tp->snd_sml, tp->snd_una) &&
1648 		!after(tp->snd_sml, tp->snd_nxt);
1649 }
1650 
1651 /* Update snd_sml if this skb is under mss
1652  * Note that a TSO packet might end with a sub-mss segment
1653  * The test is really :
1654  * if ((skb->len % mss) != 0)
1655  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1656  * But we can avoid doing the divide again given we already have
1657  *  skb_pcount = skb->len / mss_now
1658  */
1659 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1660 				const struct sk_buff *skb)
1661 {
1662 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1663 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1664 }
1665 
1666 /* Return false, if packet can be sent now without violation Nagle's rules:
1667  * 1. It is full sized. (provided by caller in %partial bool)
1668  * 2. Or it contains FIN. (already checked by caller)
1669  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1670  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1671  *    With Minshall's modification: all sent small packets are ACKed.
1672  */
1673 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1674 			    int nonagle)
1675 {
1676 	return partial &&
1677 		((nonagle & TCP_NAGLE_CORK) ||
1678 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1679 }
1680 
1681 /* Return how many segs we'd like on a TSO packet,
1682  * to send one TSO packet per ms
1683  */
1684 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1685 			    int min_tso_segs)
1686 {
1687 	u32 bytes, segs;
1688 
1689 	bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1690 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1691 
1692 	/* Goal is to send at least one packet per ms,
1693 	 * not one big TSO packet every 100 ms.
1694 	 * This preserves ACK clocking and is consistent
1695 	 * with tcp_tso_should_defer() heuristic.
1696 	 */
1697 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1698 
1699 	return segs;
1700 }
1701 
1702 /* Return the number of segments we want in the skb we are transmitting.
1703  * See if congestion control module wants to decide; otherwise, autosize.
1704  */
1705 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1706 {
1707 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1708 	u32 min_tso, tso_segs;
1709 
1710 	min_tso = ca_ops->min_tso_segs ?
1711 			ca_ops->min_tso_segs(sk) :
1712 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1713 
1714 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1715 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1716 }
1717 
1718 /* Returns the portion of skb which can be sent right away */
1719 static unsigned int tcp_mss_split_point(const struct sock *sk,
1720 					const struct sk_buff *skb,
1721 					unsigned int mss_now,
1722 					unsigned int max_segs,
1723 					int nonagle)
1724 {
1725 	const struct tcp_sock *tp = tcp_sk(sk);
1726 	u32 partial, needed, window, max_len;
1727 
1728 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1729 	max_len = mss_now * max_segs;
1730 
1731 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1732 		return max_len;
1733 
1734 	needed = min(skb->len, window);
1735 
1736 	if (max_len <= needed)
1737 		return max_len;
1738 
1739 	partial = needed % mss_now;
1740 	/* If last segment is not a full MSS, check if Nagle rules allow us
1741 	 * to include this last segment in this skb.
1742 	 * Otherwise, we'll split the skb at last MSS boundary
1743 	 */
1744 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1745 		return needed - partial;
1746 
1747 	return needed;
1748 }
1749 
1750 /* Can at least one segment of SKB be sent right now, according to the
1751  * congestion window rules?  If so, return how many segments are allowed.
1752  */
1753 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1754 					 const struct sk_buff *skb)
1755 {
1756 	u32 in_flight, cwnd, halfcwnd;
1757 
1758 	/* Don't be strict about the congestion window for the final FIN.  */
1759 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1760 	    tcp_skb_pcount(skb) == 1)
1761 		return 1;
1762 
1763 	in_flight = tcp_packets_in_flight(tp);
1764 	cwnd = tp->snd_cwnd;
1765 	if (in_flight >= cwnd)
1766 		return 0;
1767 
1768 	/* For better scheduling, ensure we have at least
1769 	 * 2 GSO packets in flight.
1770 	 */
1771 	halfcwnd = max(cwnd >> 1, 1U);
1772 	return min(halfcwnd, cwnd - in_flight);
1773 }
1774 
1775 /* Initialize TSO state of a skb.
1776  * This must be invoked the first time we consider transmitting
1777  * SKB onto the wire.
1778  */
1779 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1780 {
1781 	int tso_segs = tcp_skb_pcount(skb);
1782 
1783 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1784 		tcp_set_skb_tso_segs(skb, mss_now);
1785 		tso_segs = tcp_skb_pcount(skb);
1786 	}
1787 	return tso_segs;
1788 }
1789 
1790 
1791 /* Return true if the Nagle test allows this packet to be
1792  * sent now.
1793  */
1794 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1795 				  unsigned int cur_mss, int nonagle)
1796 {
1797 	/* Nagle rule does not apply to frames, which sit in the middle of the
1798 	 * write_queue (they have no chances to get new data).
1799 	 *
1800 	 * This is implemented in the callers, where they modify the 'nonagle'
1801 	 * argument based upon the location of SKB in the send queue.
1802 	 */
1803 	if (nonagle & TCP_NAGLE_PUSH)
1804 		return true;
1805 
1806 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1807 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1808 		return true;
1809 
1810 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1811 		return true;
1812 
1813 	return false;
1814 }
1815 
1816 /* Does at least the first segment of SKB fit into the send window? */
1817 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1818 			     const struct sk_buff *skb,
1819 			     unsigned int cur_mss)
1820 {
1821 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1822 
1823 	if (skb->len > cur_mss)
1824 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1825 
1826 	return !after(end_seq, tcp_wnd_end(tp));
1827 }
1828 
1829 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1830  * which is put after SKB on the list.  It is very much like
1831  * tcp_fragment() except that it may make several kinds of assumptions
1832  * in order to speed up the splitting operation.  In particular, we
1833  * know that all the data is in scatter-gather pages, and that the
1834  * packet has never been sent out before (and thus is not cloned).
1835  */
1836 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1837 			struct sk_buff *skb, unsigned int len,
1838 			unsigned int mss_now, gfp_t gfp)
1839 {
1840 	struct sk_buff *buff;
1841 	int nlen = skb->len - len;
1842 	u8 flags;
1843 
1844 	/* All of a TSO frame must be composed of paged data.  */
1845 	if (skb->len != skb->data_len)
1846 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1847 
1848 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1849 	if (unlikely(!buff))
1850 		return -ENOMEM;
1851 
1852 	sk->sk_wmem_queued += buff->truesize;
1853 	sk_mem_charge(sk, buff->truesize);
1854 	buff->truesize += nlen;
1855 	skb->truesize -= nlen;
1856 
1857 	/* Correct the sequence numbers. */
1858 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1859 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1860 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1861 
1862 	/* PSH and FIN should only be set in the second packet. */
1863 	flags = TCP_SKB_CB(skb)->tcp_flags;
1864 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1865 	TCP_SKB_CB(buff)->tcp_flags = flags;
1866 
1867 	/* This packet was never sent out yet, so no SACK bits. */
1868 	TCP_SKB_CB(buff)->sacked = 0;
1869 
1870 	tcp_skb_fragment_eor(skb, buff);
1871 
1872 	buff->ip_summed = CHECKSUM_PARTIAL;
1873 	skb_split(skb, buff, len);
1874 	tcp_fragment_tstamp(skb, buff);
1875 
1876 	/* Fix up tso_factor for both original and new SKB.  */
1877 	tcp_set_skb_tso_segs(skb, mss_now);
1878 	tcp_set_skb_tso_segs(buff, mss_now);
1879 
1880 	/* Link BUFF into the send queue. */
1881 	__skb_header_release(buff);
1882 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1883 
1884 	return 0;
1885 }
1886 
1887 /* Try to defer sending, if possible, in order to minimize the amount
1888  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1889  *
1890  * This algorithm is from John Heffner.
1891  */
1892 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1893 				 bool *is_cwnd_limited, u32 max_segs)
1894 {
1895 	const struct inet_connection_sock *icsk = inet_csk(sk);
1896 	u32 age, send_win, cong_win, limit, in_flight;
1897 	struct tcp_sock *tp = tcp_sk(sk);
1898 	struct sk_buff *head;
1899 	int win_divisor;
1900 
1901 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1902 		goto send_now;
1903 
1904 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1905 		goto send_now;
1906 
1907 	/* Avoid bursty behavior by allowing defer
1908 	 * only if the last write was recent.
1909 	 */
1910 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1911 		goto send_now;
1912 
1913 	in_flight = tcp_packets_in_flight(tp);
1914 
1915 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1916 	BUG_ON(tp->snd_cwnd <= in_flight);
1917 
1918 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1919 
1920 	/* From in_flight test above, we know that cwnd > in_flight.  */
1921 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1922 
1923 	limit = min(send_win, cong_win);
1924 
1925 	/* If a full-sized TSO skb can be sent, do it. */
1926 	if (limit >= max_segs * tp->mss_cache)
1927 		goto send_now;
1928 
1929 	/* Middle in queue won't get any more data, full sendable already? */
1930 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1931 		goto send_now;
1932 
1933 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1934 	if (win_divisor) {
1935 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1936 
1937 		/* If at least some fraction of a window is available,
1938 		 * just use it.
1939 		 */
1940 		chunk /= win_divisor;
1941 		if (limit >= chunk)
1942 			goto send_now;
1943 	} else {
1944 		/* Different approach, try not to defer past a single
1945 		 * ACK.  Receiver should ACK every other full sized
1946 		 * frame, so if we have space for more than 3 frames
1947 		 * then send now.
1948 		 */
1949 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1950 			goto send_now;
1951 	}
1952 
1953 	/* TODO : use tsorted_sent_queue ? */
1954 	head = tcp_rtx_queue_head(sk);
1955 	if (!head)
1956 		goto send_now;
1957 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1958 	/* If next ACK is likely to come too late (half srtt), do not defer */
1959 	if (age < (tp->srtt_us >> 4))
1960 		goto send_now;
1961 
1962 	/* Ok, it looks like it is advisable to defer. */
1963 
1964 	if (cong_win < send_win && cong_win <= skb->len)
1965 		*is_cwnd_limited = true;
1966 
1967 	return true;
1968 
1969 send_now:
1970 	return false;
1971 }
1972 
1973 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1974 {
1975 	struct inet_connection_sock *icsk = inet_csk(sk);
1976 	struct tcp_sock *tp = tcp_sk(sk);
1977 	struct net *net = sock_net(sk);
1978 	u32 interval;
1979 	s32 delta;
1980 
1981 	interval = net->ipv4.sysctl_tcp_probe_interval;
1982 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1983 	if (unlikely(delta >= interval * HZ)) {
1984 		int mss = tcp_current_mss(sk);
1985 
1986 		/* Update current search range */
1987 		icsk->icsk_mtup.probe_size = 0;
1988 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1989 			sizeof(struct tcphdr) +
1990 			icsk->icsk_af_ops->net_header_len;
1991 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1992 
1993 		/* Update probe time stamp */
1994 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1995 	}
1996 }
1997 
1998 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
1999 {
2000 	struct sk_buff *skb, *next;
2001 
2002 	skb = tcp_send_head(sk);
2003 	tcp_for_write_queue_from_safe(skb, next, sk) {
2004 		if (len <= skb->len)
2005 			break;
2006 
2007 		if (unlikely(TCP_SKB_CB(skb)->eor))
2008 			return false;
2009 
2010 		len -= skb->len;
2011 	}
2012 
2013 	return true;
2014 }
2015 
2016 /* Create a new MTU probe if we are ready.
2017  * MTU probe is regularly attempting to increase the path MTU by
2018  * deliberately sending larger packets.  This discovers routing
2019  * changes resulting in larger path MTUs.
2020  *
2021  * Returns 0 if we should wait to probe (no cwnd available),
2022  *         1 if a probe was sent,
2023  *         -1 otherwise
2024  */
2025 static int tcp_mtu_probe(struct sock *sk)
2026 {
2027 	struct inet_connection_sock *icsk = inet_csk(sk);
2028 	struct tcp_sock *tp = tcp_sk(sk);
2029 	struct sk_buff *skb, *nskb, *next;
2030 	struct net *net = sock_net(sk);
2031 	int probe_size;
2032 	int size_needed;
2033 	int copy, len;
2034 	int mss_now;
2035 	int interval;
2036 
2037 	/* Not currently probing/verifying,
2038 	 * not in recovery,
2039 	 * have enough cwnd, and
2040 	 * not SACKing (the variable headers throw things off)
2041 	 */
2042 	if (likely(!icsk->icsk_mtup.enabled ||
2043 		   icsk->icsk_mtup.probe_size ||
2044 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2045 		   tp->snd_cwnd < 11 ||
2046 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2047 		return -1;
2048 
2049 	/* Use binary search for probe_size between tcp_mss_base,
2050 	 * and current mss_clamp. if (search_high - search_low)
2051 	 * smaller than a threshold, backoff from probing.
2052 	 */
2053 	mss_now = tcp_current_mss(sk);
2054 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2055 				    icsk->icsk_mtup.search_low) >> 1);
2056 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2057 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2058 	/* When misfortune happens, we are reprobing actively,
2059 	 * and then reprobe timer has expired. We stick with current
2060 	 * probing process by not resetting search range to its orignal.
2061 	 */
2062 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2063 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2064 		/* Check whether enough time has elaplased for
2065 		 * another round of probing.
2066 		 */
2067 		tcp_mtu_check_reprobe(sk);
2068 		return -1;
2069 	}
2070 
2071 	/* Have enough data in the send queue to probe? */
2072 	if (tp->write_seq - tp->snd_nxt < size_needed)
2073 		return -1;
2074 
2075 	if (tp->snd_wnd < size_needed)
2076 		return -1;
2077 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2078 		return 0;
2079 
2080 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2081 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2082 		if (!tcp_packets_in_flight(tp))
2083 			return -1;
2084 		else
2085 			return 0;
2086 	}
2087 
2088 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2089 		return -1;
2090 
2091 	/* We're allowed to probe.  Build it now. */
2092 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2093 	if (!nskb)
2094 		return -1;
2095 	sk->sk_wmem_queued += nskb->truesize;
2096 	sk_mem_charge(sk, nskb->truesize);
2097 
2098 	skb = tcp_send_head(sk);
2099 
2100 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2101 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2102 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2103 	TCP_SKB_CB(nskb)->sacked = 0;
2104 	nskb->csum = 0;
2105 	nskb->ip_summed = CHECKSUM_PARTIAL;
2106 
2107 	tcp_insert_write_queue_before(nskb, skb, sk);
2108 	tcp_highest_sack_replace(sk, skb, nskb);
2109 
2110 	len = 0;
2111 	tcp_for_write_queue_from_safe(skb, next, sk) {
2112 		copy = min_t(int, skb->len, probe_size - len);
2113 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2114 
2115 		if (skb->len <= copy) {
2116 			/* We've eaten all the data from this skb.
2117 			 * Throw it away. */
2118 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2119 			/* If this is the last SKB we copy and eor is set
2120 			 * we need to propagate it to the new skb.
2121 			 */
2122 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2123 			tcp_unlink_write_queue(skb, sk);
2124 			sk_wmem_free_skb(sk, skb);
2125 		} else {
2126 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2127 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2128 			if (!skb_shinfo(skb)->nr_frags) {
2129 				skb_pull(skb, copy);
2130 			} else {
2131 				__pskb_trim_head(skb, copy);
2132 				tcp_set_skb_tso_segs(skb, mss_now);
2133 			}
2134 			TCP_SKB_CB(skb)->seq += copy;
2135 		}
2136 
2137 		len += copy;
2138 
2139 		if (len >= probe_size)
2140 			break;
2141 	}
2142 	tcp_init_tso_segs(nskb, nskb->len);
2143 
2144 	/* We're ready to send.  If this fails, the probe will
2145 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2146 	 */
2147 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2148 		/* Decrement cwnd here because we are sending
2149 		 * effectively two packets. */
2150 		tp->snd_cwnd--;
2151 		tcp_event_new_data_sent(sk, nskb);
2152 
2153 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2154 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2155 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2156 
2157 		return 1;
2158 	}
2159 
2160 	return -1;
2161 }
2162 
2163 static bool tcp_pacing_check(const struct sock *sk)
2164 {
2165 	return tcp_needs_internal_pacing(sk) &&
2166 	       hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
2167 }
2168 
2169 /* TCP Small Queues :
2170  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2171  * (These limits are doubled for retransmits)
2172  * This allows for :
2173  *  - better RTT estimation and ACK scheduling
2174  *  - faster recovery
2175  *  - high rates
2176  * Alas, some drivers / subsystems require a fair amount
2177  * of queued bytes to ensure line rate.
2178  * One example is wifi aggregation (802.11 AMPDU)
2179  */
2180 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2181 				  unsigned int factor)
2182 {
2183 	unsigned int limit;
2184 
2185 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2186 	limit = min_t(u32, limit,
2187 		      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2188 	limit <<= factor;
2189 
2190 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2191 		/* Always send skb if rtx queue is empty.
2192 		 * No need to wait for TX completion to call us back,
2193 		 * after softirq/tasklet schedule.
2194 		 * This helps when TX completions are delayed too much.
2195 		 */
2196 		if (tcp_rtx_queue_empty(sk))
2197 			return false;
2198 
2199 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2200 		/* It is possible TX completion already happened
2201 		 * before we set TSQ_THROTTLED, so we must
2202 		 * test again the condition.
2203 		 */
2204 		smp_mb__after_atomic();
2205 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2206 			return true;
2207 	}
2208 	return false;
2209 }
2210 
2211 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2212 {
2213 	const u32 now = tcp_jiffies32;
2214 	enum tcp_chrono old = tp->chrono_type;
2215 
2216 	if (old > TCP_CHRONO_UNSPEC)
2217 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2218 	tp->chrono_start = now;
2219 	tp->chrono_type = new;
2220 }
2221 
2222 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2223 {
2224 	struct tcp_sock *tp = tcp_sk(sk);
2225 
2226 	/* If there are multiple conditions worthy of tracking in a
2227 	 * chronograph then the highest priority enum takes precedence
2228 	 * over the other conditions. So that if something "more interesting"
2229 	 * starts happening, stop the previous chrono and start a new one.
2230 	 */
2231 	if (type > tp->chrono_type)
2232 		tcp_chrono_set(tp, type);
2233 }
2234 
2235 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2236 {
2237 	struct tcp_sock *tp = tcp_sk(sk);
2238 
2239 
2240 	/* There are multiple conditions worthy of tracking in a
2241 	 * chronograph, so that the highest priority enum takes
2242 	 * precedence over the other conditions (see tcp_chrono_start).
2243 	 * If a condition stops, we only stop chrono tracking if
2244 	 * it's the "most interesting" or current chrono we are
2245 	 * tracking and starts busy chrono if we have pending data.
2246 	 */
2247 	if (tcp_rtx_and_write_queues_empty(sk))
2248 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2249 	else if (type == tp->chrono_type)
2250 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2251 }
2252 
2253 /* This routine writes packets to the network.  It advances the
2254  * send_head.  This happens as incoming acks open up the remote
2255  * window for us.
2256  *
2257  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2258  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2259  * account rare use of URG, this is not a big flaw.
2260  *
2261  * Send at most one packet when push_one > 0. Temporarily ignore
2262  * cwnd limit to force at most one packet out when push_one == 2.
2263 
2264  * Returns true, if no segments are in flight and we have queued segments,
2265  * but cannot send anything now because of SWS or another problem.
2266  */
2267 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2268 			   int push_one, gfp_t gfp)
2269 {
2270 	struct tcp_sock *tp = tcp_sk(sk);
2271 	struct sk_buff *skb;
2272 	unsigned int tso_segs, sent_pkts;
2273 	int cwnd_quota;
2274 	int result;
2275 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2276 	u32 max_segs;
2277 
2278 	sent_pkts = 0;
2279 
2280 	tcp_mstamp_refresh(tp);
2281 	if (!push_one) {
2282 		/* Do MTU probing. */
2283 		result = tcp_mtu_probe(sk);
2284 		if (!result) {
2285 			return false;
2286 		} else if (result > 0) {
2287 			sent_pkts = 1;
2288 		}
2289 	}
2290 
2291 	max_segs = tcp_tso_segs(sk, mss_now);
2292 	while ((skb = tcp_send_head(sk))) {
2293 		unsigned int limit;
2294 
2295 		if (tcp_pacing_check(sk))
2296 			break;
2297 
2298 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2299 		BUG_ON(!tso_segs);
2300 
2301 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2302 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2303 			tcp_update_skb_after_send(tp, skb);
2304 			goto repair; /* Skip network transmission */
2305 		}
2306 
2307 		cwnd_quota = tcp_cwnd_test(tp, skb);
2308 		if (!cwnd_quota) {
2309 			if (push_one == 2)
2310 				/* Force out a loss probe pkt. */
2311 				cwnd_quota = 1;
2312 			else
2313 				break;
2314 		}
2315 
2316 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2317 			is_rwnd_limited = true;
2318 			break;
2319 		}
2320 
2321 		if (tso_segs == 1) {
2322 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2323 						     (tcp_skb_is_last(sk, skb) ?
2324 						      nonagle : TCP_NAGLE_PUSH))))
2325 				break;
2326 		} else {
2327 			if (!push_one &&
2328 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2329 						 max_segs))
2330 				break;
2331 		}
2332 
2333 		limit = mss_now;
2334 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2335 			limit = tcp_mss_split_point(sk, skb, mss_now,
2336 						    min_t(unsigned int,
2337 							  cwnd_quota,
2338 							  max_segs),
2339 						    nonagle);
2340 
2341 		if (skb->len > limit &&
2342 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2343 					  skb, limit, mss_now, gfp)))
2344 			break;
2345 
2346 		if (tcp_small_queue_check(sk, skb, 0))
2347 			break;
2348 
2349 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2350 			break;
2351 
2352 repair:
2353 		/* Advance the send_head.  This one is sent out.
2354 		 * This call will increment packets_out.
2355 		 */
2356 		tcp_event_new_data_sent(sk, skb);
2357 
2358 		tcp_minshall_update(tp, mss_now, skb);
2359 		sent_pkts += tcp_skb_pcount(skb);
2360 
2361 		if (push_one)
2362 			break;
2363 	}
2364 
2365 	if (is_rwnd_limited)
2366 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2367 	else
2368 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2369 
2370 	if (likely(sent_pkts)) {
2371 		if (tcp_in_cwnd_reduction(sk))
2372 			tp->prr_out += sent_pkts;
2373 
2374 		/* Send one loss probe per tail loss episode. */
2375 		if (push_one != 2)
2376 			tcp_schedule_loss_probe(sk, false);
2377 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2378 		tcp_cwnd_validate(sk, is_cwnd_limited);
2379 		return false;
2380 	}
2381 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2382 }
2383 
2384 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2385 {
2386 	struct inet_connection_sock *icsk = inet_csk(sk);
2387 	struct tcp_sock *tp = tcp_sk(sk);
2388 	u32 timeout, rto_delta_us;
2389 	int early_retrans;
2390 
2391 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2392 	 * finishes.
2393 	 */
2394 	if (tp->fastopen_rsk)
2395 		return false;
2396 
2397 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2398 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2399 	 * not in loss recovery, that are either limited by cwnd or application.
2400 	 */
2401 	if ((early_retrans != 3 && early_retrans != 4) ||
2402 	    !tp->packets_out || !tcp_is_sack(tp) ||
2403 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2404 	     icsk->icsk_ca_state != TCP_CA_CWR))
2405 		return false;
2406 
2407 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2408 	 * for delayed ack when there's one outstanding packet. If no RTT
2409 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2410 	 */
2411 	if (tp->srtt_us) {
2412 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2413 		if (tp->packets_out == 1)
2414 			timeout += TCP_RTO_MIN;
2415 		else
2416 			timeout += TCP_TIMEOUT_MIN;
2417 	} else {
2418 		timeout = TCP_TIMEOUT_INIT;
2419 	}
2420 
2421 	/* If the RTO formula yields an earlier time, then use that time. */
2422 	rto_delta_us = advancing_rto ?
2423 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2424 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2425 	if (rto_delta_us > 0)
2426 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2427 
2428 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2429 				  TCP_RTO_MAX);
2430 	return true;
2431 }
2432 
2433 /* Thanks to skb fast clones, we can detect if a prior transmit of
2434  * a packet is still in a qdisc or driver queue.
2435  * In this case, there is very little point doing a retransmit !
2436  */
2437 static bool skb_still_in_host_queue(const struct sock *sk,
2438 				    const struct sk_buff *skb)
2439 {
2440 	if (unlikely(skb_fclone_busy(sk, skb))) {
2441 		NET_INC_STATS(sock_net(sk),
2442 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2443 		return true;
2444 	}
2445 	return false;
2446 }
2447 
2448 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2449  * retransmit the last segment.
2450  */
2451 void tcp_send_loss_probe(struct sock *sk)
2452 {
2453 	struct tcp_sock *tp = tcp_sk(sk);
2454 	struct sk_buff *skb;
2455 	int pcount;
2456 	int mss = tcp_current_mss(sk);
2457 
2458 	skb = tcp_send_head(sk);
2459 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2460 		pcount = tp->packets_out;
2461 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2462 		if (tp->packets_out > pcount)
2463 			goto probe_sent;
2464 		goto rearm_timer;
2465 	}
2466 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2467 
2468 	/* At most one outstanding TLP retransmission. */
2469 	if (tp->tlp_high_seq)
2470 		goto rearm_timer;
2471 
2472 	/* Retransmit last segment. */
2473 	if (WARN_ON(!skb))
2474 		goto rearm_timer;
2475 
2476 	if (skb_still_in_host_queue(sk, skb))
2477 		goto rearm_timer;
2478 
2479 	pcount = tcp_skb_pcount(skb);
2480 	if (WARN_ON(!pcount))
2481 		goto rearm_timer;
2482 
2483 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2484 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2485 					  (pcount - 1) * mss, mss,
2486 					  GFP_ATOMIC)))
2487 			goto rearm_timer;
2488 		skb = skb_rb_next(skb);
2489 	}
2490 
2491 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2492 		goto rearm_timer;
2493 
2494 	if (__tcp_retransmit_skb(sk, skb, 1))
2495 		goto rearm_timer;
2496 
2497 	/* Record snd_nxt for loss detection. */
2498 	tp->tlp_high_seq = tp->snd_nxt;
2499 
2500 probe_sent:
2501 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2502 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2503 	inet_csk(sk)->icsk_pending = 0;
2504 rearm_timer:
2505 	tcp_rearm_rto(sk);
2506 }
2507 
2508 /* Push out any pending frames which were held back due to
2509  * TCP_CORK or attempt at coalescing tiny packets.
2510  * The socket must be locked by the caller.
2511  */
2512 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2513 			       int nonagle)
2514 {
2515 	/* If we are closed, the bytes will have to remain here.
2516 	 * In time closedown will finish, we empty the write queue and
2517 	 * all will be happy.
2518 	 */
2519 	if (unlikely(sk->sk_state == TCP_CLOSE))
2520 		return;
2521 
2522 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2523 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2524 		tcp_check_probe_timer(sk);
2525 }
2526 
2527 /* Send _single_ skb sitting at the send head. This function requires
2528  * true push pending frames to setup probe timer etc.
2529  */
2530 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2531 {
2532 	struct sk_buff *skb = tcp_send_head(sk);
2533 
2534 	BUG_ON(!skb || skb->len < mss_now);
2535 
2536 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2537 }
2538 
2539 /* This function returns the amount that we can raise the
2540  * usable window based on the following constraints
2541  *
2542  * 1. The window can never be shrunk once it is offered (RFC 793)
2543  * 2. We limit memory per socket
2544  *
2545  * RFC 1122:
2546  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2547  *  RECV.NEXT + RCV.WIN fixed until:
2548  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2549  *
2550  * i.e. don't raise the right edge of the window until you can raise
2551  * it at least MSS bytes.
2552  *
2553  * Unfortunately, the recommended algorithm breaks header prediction,
2554  * since header prediction assumes th->window stays fixed.
2555  *
2556  * Strictly speaking, keeping th->window fixed violates the receiver
2557  * side SWS prevention criteria. The problem is that under this rule
2558  * a stream of single byte packets will cause the right side of the
2559  * window to always advance by a single byte.
2560  *
2561  * Of course, if the sender implements sender side SWS prevention
2562  * then this will not be a problem.
2563  *
2564  * BSD seems to make the following compromise:
2565  *
2566  *	If the free space is less than the 1/4 of the maximum
2567  *	space available and the free space is less than 1/2 mss,
2568  *	then set the window to 0.
2569  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2570  *	Otherwise, just prevent the window from shrinking
2571  *	and from being larger than the largest representable value.
2572  *
2573  * This prevents incremental opening of the window in the regime
2574  * where TCP is limited by the speed of the reader side taking
2575  * data out of the TCP receive queue. It does nothing about
2576  * those cases where the window is constrained on the sender side
2577  * because the pipeline is full.
2578  *
2579  * BSD also seems to "accidentally" limit itself to windows that are a
2580  * multiple of MSS, at least until the free space gets quite small.
2581  * This would appear to be a side effect of the mbuf implementation.
2582  * Combining these two algorithms results in the observed behavior
2583  * of having a fixed window size at almost all times.
2584  *
2585  * Below we obtain similar behavior by forcing the offered window to
2586  * a multiple of the mss when it is feasible to do so.
2587  *
2588  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2589  * Regular options like TIMESTAMP are taken into account.
2590  */
2591 u32 __tcp_select_window(struct sock *sk)
2592 {
2593 	struct inet_connection_sock *icsk = inet_csk(sk);
2594 	struct tcp_sock *tp = tcp_sk(sk);
2595 	/* MSS for the peer's data.  Previous versions used mss_clamp
2596 	 * here.  I don't know if the value based on our guesses
2597 	 * of peer's MSS is better for the performance.  It's more correct
2598 	 * but may be worse for the performance because of rcv_mss
2599 	 * fluctuations.  --SAW  1998/11/1
2600 	 */
2601 	int mss = icsk->icsk_ack.rcv_mss;
2602 	int free_space = tcp_space(sk);
2603 	int allowed_space = tcp_full_space(sk);
2604 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2605 	int window;
2606 
2607 	if (unlikely(mss > full_space)) {
2608 		mss = full_space;
2609 		if (mss <= 0)
2610 			return 0;
2611 	}
2612 	if (free_space < (full_space >> 1)) {
2613 		icsk->icsk_ack.quick = 0;
2614 
2615 		if (tcp_under_memory_pressure(sk))
2616 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2617 					       4U * tp->advmss);
2618 
2619 		/* free_space might become our new window, make sure we don't
2620 		 * increase it due to wscale.
2621 		 */
2622 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2623 
2624 		/* if free space is less than mss estimate, or is below 1/16th
2625 		 * of the maximum allowed, try to move to zero-window, else
2626 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2627 		 * new incoming data is dropped due to memory limits.
2628 		 * With large window, mss test triggers way too late in order
2629 		 * to announce zero window in time before rmem limit kicks in.
2630 		 */
2631 		if (free_space < (allowed_space >> 4) || free_space < mss)
2632 			return 0;
2633 	}
2634 
2635 	if (free_space > tp->rcv_ssthresh)
2636 		free_space = tp->rcv_ssthresh;
2637 
2638 	/* Don't do rounding if we are using window scaling, since the
2639 	 * scaled window will not line up with the MSS boundary anyway.
2640 	 */
2641 	if (tp->rx_opt.rcv_wscale) {
2642 		window = free_space;
2643 
2644 		/* Advertise enough space so that it won't get scaled away.
2645 		 * Import case: prevent zero window announcement if
2646 		 * 1<<rcv_wscale > mss.
2647 		 */
2648 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2649 	} else {
2650 		window = tp->rcv_wnd;
2651 		/* Get the largest window that is a nice multiple of mss.
2652 		 * Window clamp already applied above.
2653 		 * If our current window offering is within 1 mss of the
2654 		 * free space we just keep it. This prevents the divide
2655 		 * and multiply from happening most of the time.
2656 		 * We also don't do any window rounding when the free space
2657 		 * is too small.
2658 		 */
2659 		if (window <= free_space - mss || window > free_space)
2660 			window = rounddown(free_space, mss);
2661 		else if (mss == full_space &&
2662 			 free_space > window + (full_space >> 1))
2663 			window = free_space;
2664 	}
2665 
2666 	return window;
2667 }
2668 
2669 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2670 			     const struct sk_buff *next_skb)
2671 {
2672 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2673 		const struct skb_shared_info *next_shinfo =
2674 			skb_shinfo(next_skb);
2675 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2676 
2677 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2678 		shinfo->tskey = next_shinfo->tskey;
2679 		TCP_SKB_CB(skb)->txstamp_ack |=
2680 			TCP_SKB_CB(next_skb)->txstamp_ack;
2681 	}
2682 }
2683 
2684 /* Collapses two adjacent SKB's during retransmission. */
2685 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2686 {
2687 	struct tcp_sock *tp = tcp_sk(sk);
2688 	struct sk_buff *next_skb = skb_rb_next(skb);
2689 	int skb_size, next_skb_size;
2690 
2691 	skb_size = skb->len;
2692 	next_skb_size = next_skb->len;
2693 
2694 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2695 
2696 	if (next_skb_size) {
2697 		if (next_skb_size <= skb_availroom(skb))
2698 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2699 				      next_skb_size);
2700 		else if (!skb_shift(skb, next_skb, next_skb_size))
2701 			return false;
2702 	}
2703 	tcp_highest_sack_replace(sk, next_skb, skb);
2704 
2705 	/* Update sequence range on original skb. */
2706 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2707 
2708 	/* Merge over control information. This moves PSH/FIN etc. over */
2709 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2710 
2711 	/* All done, get rid of second SKB and account for it so
2712 	 * packet counting does not break.
2713 	 */
2714 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2715 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2716 
2717 	/* changed transmit queue under us so clear hints */
2718 	tcp_clear_retrans_hints_partial(tp);
2719 	if (next_skb == tp->retransmit_skb_hint)
2720 		tp->retransmit_skb_hint = skb;
2721 
2722 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2723 
2724 	tcp_skb_collapse_tstamp(skb, next_skb);
2725 
2726 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2727 	return true;
2728 }
2729 
2730 /* Check if coalescing SKBs is legal. */
2731 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2732 {
2733 	if (tcp_skb_pcount(skb) > 1)
2734 		return false;
2735 	if (skb_cloned(skb))
2736 		return false;
2737 	/* Some heuristics for collapsing over SACK'd could be invented */
2738 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2739 		return false;
2740 
2741 	return true;
2742 }
2743 
2744 /* Collapse packets in the retransmit queue to make to create
2745  * less packets on the wire. This is only done on retransmission.
2746  */
2747 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2748 				     int space)
2749 {
2750 	struct tcp_sock *tp = tcp_sk(sk);
2751 	struct sk_buff *skb = to, *tmp;
2752 	bool first = true;
2753 
2754 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2755 		return;
2756 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2757 		return;
2758 
2759 	skb_rbtree_walk_from_safe(skb, tmp) {
2760 		if (!tcp_can_collapse(sk, skb))
2761 			break;
2762 
2763 		if (!tcp_skb_can_collapse_to(to))
2764 			break;
2765 
2766 		space -= skb->len;
2767 
2768 		if (first) {
2769 			first = false;
2770 			continue;
2771 		}
2772 
2773 		if (space < 0)
2774 			break;
2775 
2776 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2777 			break;
2778 
2779 		if (!tcp_collapse_retrans(sk, to))
2780 			break;
2781 	}
2782 }
2783 
2784 /* This retransmits one SKB.  Policy decisions and retransmit queue
2785  * state updates are done by the caller.  Returns non-zero if an
2786  * error occurred which prevented the send.
2787  */
2788 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2789 {
2790 	struct inet_connection_sock *icsk = inet_csk(sk);
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	unsigned int cur_mss;
2793 	int diff, len, err;
2794 
2795 
2796 	/* Inconclusive MTU probe */
2797 	if (icsk->icsk_mtup.probe_size)
2798 		icsk->icsk_mtup.probe_size = 0;
2799 
2800 	/* Do not sent more than we queued. 1/4 is reserved for possible
2801 	 * copying overhead: fragmentation, tunneling, mangling etc.
2802 	 */
2803 	if (refcount_read(&sk->sk_wmem_alloc) >
2804 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2805 		  sk->sk_sndbuf))
2806 		return -EAGAIN;
2807 
2808 	if (skb_still_in_host_queue(sk, skb))
2809 		return -EBUSY;
2810 
2811 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2812 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2813 			WARN_ON_ONCE(1);
2814 			return -EINVAL;
2815 		}
2816 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2817 			return -ENOMEM;
2818 	}
2819 
2820 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2821 		return -EHOSTUNREACH; /* Routing failure or similar. */
2822 
2823 	cur_mss = tcp_current_mss(sk);
2824 
2825 	/* If receiver has shrunk his window, and skb is out of
2826 	 * new window, do not retransmit it. The exception is the
2827 	 * case, when window is shrunk to zero. In this case
2828 	 * our retransmit serves as a zero window probe.
2829 	 */
2830 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2831 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2832 		return -EAGAIN;
2833 
2834 	len = cur_mss * segs;
2835 	if (skb->len > len) {
2836 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2837 				 cur_mss, GFP_ATOMIC))
2838 			return -ENOMEM; /* We'll try again later. */
2839 	} else {
2840 		if (skb_unclone(skb, GFP_ATOMIC))
2841 			return -ENOMEM;
2842 
2843 		diff = tcp_skb_pcount(skb);
2844 		tcp_set_skb_tso_segs(skb, cur_mss);
2845 		diff -= tcp_skb_pcount(skb);
2846 		if (diff)
2847 			tcp_adjust_pcount(sk, skb, diff);
2848 		if (skb->len < cur_mss)
2849 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2850 	}
2851 
2852 	/* RFC3168, section 6.1.1.1. ECN fallback */
2853 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2854 		tcp_ecn_clear_syn(sk, skb);
2855 
2856 	/* Update global and local TCP statistics. */
2857 	segs = tcp_skb_pcount(skb);
2858 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2859 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2860 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2861 	tp->total_retrans += segs;
2862 
2863 	/* make sure skb->data is aligned on arches that require it
2864 	 * and check if ack-trimming & collapsing extended the headroom
2865 	 * beyond what csum_start can cover.
2866 	 */
2867 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2868 		     skb_headroom(skb) >= 0xFFFF)) {
2869 		struct sk_buff *nskb;
2870 
2871 		tcp_skb_tsorted_save(skb) {
2872 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2873 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2874 				     -ENOBUFS;
2875 		} tcp_skb_tsorted_restore(skb);
2876 
2877 		if (!err) {
2878 			tcp_update_skb_after_send(tp, skb);
2879 			tcp_rate_skb_sent(sk, skb);
2880 		}
2881 	} else {
2882 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2883 	}
2884 
2885 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2886 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2887 				  TCP_SKB_CB(skb)->seq, segs, err);
2888 
2889 	if (likely(!err)) {
2890 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2891 		trace_tcp_retransmit_skb(sk, skb);
2892 	} else if (err != -EBUSY) {
2893 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2894 	}
2895 	return err;
2896 }
2897 
2898 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2899 {
2900 	struct tcp_sock *tp = tcp_sk(sk);
2901 	int err = __tcp_retransmit_skb(sk, skb, segs);
2902 
2903 	if (err == 0) {
2904 #if FASTRETRANS_DEBUG > 0
2905 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2906 			net_dbg_ratelimited("retrans_out leaked\n");
2907 		}
2908 #endif
2909 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2910 		tp->retrans_out += tcp_skb_pcount(skb);
2911 
2912 		/* Save stamp of the first retransmit. */
2913 		if (!tp->retrans_stamp)
2914 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2915 
2916 	}
2917 
2918 	if (tp->undo_retrans < 0)
2919 		tp->undo_retrans = 0;
2920 	tp->undo_retrans += tcp_skb_pcount(skb);
2921 	return err;
2922 }
2923 
2924 /* This gets called after a retransmit timeout, and the initially
2925  * retransmitted data is acknowledged.  It tries to continue
2926  * resending the rest of the retransmit queue, until either
2927  * we've sent it all or the congestion window limit is reached.
2928  */
2929 void tcp_xmit_retransmit_queue(struct sock *sk)
2930 {
2931 	const struct inet_connection_sock *icsk = inet_csk(sk);
2932 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2933 	struct tcp_sock *tp = tcp_sk(sk);
2934 	u32 max_segs;
2935 	int mib_idx;
2936 
2937 	if (!tp->packets_out)
2938 		return;
2939 
2940 	rtx_head = tcp_rtx_queue_head(sk);
2941 	skb = tp->retransmit_skb_hint ?: rtx_head;
2942 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2943 	skb_rbtree_walk_from(skb) {
2944 		__u8 sacked;
2945 		int segs;
2946 
2947 		if (tcp_pacing_check(sk))
2948 			break;
2949 
2950 		/* we could do better than to assign each time */
2951 		if (!hole)
2952 			tp->retransmit_skb_hint = skb;
2953 
2954 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2955 		if (segs <= 0)
2956 			return;
2957 		sacked = TCP_SKB_CB(skb)->sacked;
2958 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2959 		 * we need to make sure not sending too bigs TSO packets
2960 		 */
2961 		segs = min_t(int, segs, max_segs);
2962 
2963 		if (tp->retrans_out >= tp->lost_out) {
2964 			break;
2965 		} else if (!(sacked & TCPCB_LOST)) {
2966 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2967 				hole = skb;
2968 			continue;
2969 
2970 		} else {
2971 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2972 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2973 			else
2974 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2975 		}
2976 
2977 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2978 			continue;
2979 
2980 		if (tcp_small_queue_check(sk, skb, 1))
2981 			return;
2982 
2983 		if (tcp_retransmit_skb(sk, skb, segs))
2984 			return;
2985 
2986 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2987 
2988 		if (tcp_in_cwnd_reduction(sk))
2989 			tp->prr_out += tcp_skb_pcount(skb);
2990 
2991 		if (skb == rtx_head &&
2992 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2993 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2994 						  inet_csk(sk)->icsk_rto,
2995 						  TCP_RTO_MAX);
2996 	}
2997 }
2998 
2999 /* We allow to exceed memory limits for FIN packets to expedite
3000  * connection tear down and (memory) recovery.
3001  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3002  * or even be forced to close flow without any FIN.
3003  * In general, we want to allow one skb per socket to avoid hangs
3004  * with edge trigger epoll()
3005  */
3006 void sk_forced_mem_schedule(struct sock *sk, int size)
3007 {
3008 	int amt;
3009 
3010 	if (size <= sk->sk_forward_alloc)
3011 		return;
3012 	amt = sk_mem_pages(size);
3013 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3014 	sk_memory_allocated_add(sk, amt);
3015 
3016 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3017 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3018 }
3019 
3020 /* Send a FIN. The caller locks the socket for us.
3021  * We should try to send a FIN packet really hard, but eventually give up.
3022  */
3023 void tcp_send_fin(struct sock *sk)
3024 {
3025 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3026 	struct tcp_sock *tp = tcp_sk(sk);
3027 
3028 	/* Optimization, tack on the FIN if we have one skb in write queue and
3029 	 * this skb was not yet sent, or we are under memory pressure.
3030 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3031 	 * as TCP stack thinks it has already been transmitted.
3032 	 */
3033 	if (!tskb && tcp_under_memory_pressure(sk))
3034 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3035 
3036 	if (tskb) {
3037 coalesce:
3038 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3039 		TCP_SKB_CB(tskb)->end_seq++;
3040 		tp->write_seq++;
3041 		if (tcp_write_queue_empty(sk)) {
3042 			/* This means tskb was already sent.
3043 			 * Pretend we included the FIN on previous transmit.
3044 			 * We need to set tp->snd_nxt to the value it would have
3045 			 * if FIN had been sent. This is because retransmit path
3046 			 * does not change tp->snd_nxt.
3047 			 */
3048 			tp->snd_nxt++;
3049 			return;
3050 		}
3051 	} else {
3052 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3053 		if (unlikely(!skb)) {
3054 			if (tskb)
3055 				goto coalesce;
3056 			return;
3057 		}
3058 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3059 		skb_reserve(skb, MAX_TCP_HEADER);
3060 		sk_forced_mem_schedule(sk, skb->truesize);
3061 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3062 		tcp_init_nondata_skb(skb, tp->write_seq,
3063 				     TCPHDR_ACK | TCPHDR_FIN);
3064 		tcp_queue_skb(sk, skb);
3065 	}
3066 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3067 }
3068 
3069 /* We get here when a process closes a file descriptor (either due to
3070  * an explicit close() or as a byproduct of exit()'ing) and there
3071  * was unread data in the receive queue.  This behavior is recommended
3072  * by RFC 2525, section 2.17.  -DaveM
3073  */
3074 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3075 {
3076 	struct sk_buff *skb;
3077 
3078 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3079 
3080 	/* NOTE: No TCP options attached and we never retransmit this. */
3081 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3082 	if (!skb) {
3083 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3084 		return;
3085 	}
3086 
3087 	/* Reserve space for headers and prepare control bits. */
3088 	skb_reserve(skb, MAX_TCP_HEADER);
3089 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3090 			     TCPHDR_ACK | TCPHDR_RST);
3091 	tcp_mstamp_refresh(tcp_sk(sk));
3092 	/* Send it off. */
3093 	if (tcp_transmit_skb(sk, skb, 0, priority))
3094 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3095 
3096 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3097 	 * skb here is different to the troublesome skb, so use NULL
3098 	 */
3099 	trace_tcp_send_reset(sk, NULL);
3100 }
3101 
3102 /* Send a crossed SYN-ACK during socket establishment.
3103  * WARNING: This routine must only be called when we have already sent
3104  * a SYN packet that crossed the incoming SYN that caused this routine
3105  * to get called. If this assumption fails then the initial rcv_wnd
3106  * and rcv_wscale values will not be correct.
3107  */
3108 int tcp_send_synack(struct sock *sk)
3109 {
3110 	struct sk_buff *skb;
3111 
3112 	skb = tcp_rtx_queue_head(sk);
3113 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3114 		pr_err("%s: wrong queue state\n", __func__);
3115 		return -EFAULT;
3116 	}
3117 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3118 		if (skb_cloned(skb)) {
3119 			struct sk_buff *nskb;
3120 
3121 			tcp_skb_tsorted_save(skb) {
3122 				nskb = skb_copy(skb, GFP_ATOMIC);
3123 			} tcp_skb_tsorted_restore(skb);
3124 			if (!nskb)
3125 				return -ENOMEM;
3126 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3127 			tcp_rtx_queue_unlink_and_free(skb, sk);
3128 			__skb_header_release(nskb);
3129 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3130 			sk->sk_wmem_queued += nskb->truesize;
3131 			sk_mem_charge(sk, nskb->truesize);
3132 			skb = nskb;
3133 		}
3134 
3135 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3136 		tcp_ecn_send_synack(sk, skb);
3137 	}
3138 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3139 }
3140 
3141 /**
3142  * tcp_make_synack - Prepare a SYN-ACK.
3143  * sk: listener socket
3144  * dst: dst entry attached to the SYNACK
3145  * req: request_sock pointer
3146  *
3147  * Allocate one skb and build a SYNACK packet.
3148  * @dst is consumed : Caller should not use it again.
3149  */
3150 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3151 				struct request_sock *req,
3152 				struct tcp_fastopen_cookie *foc,
3153 				enum tcp_synack_type synack_type)
3154 {
3155 	struct inet_request_sock *ireq = inet_rsk(req);
3156 	const struct tcp_sock *tp = tcp_sk(sk);
3157 	struct tcp_md5sig_key *md5 = NULL;
3158 	struct tcp_out_options opts;
3159 	struct sk_buff *skb;
3160 	int tcp_header_size;
3161 	struct tcphdr *th;
3162 	int mss;
3163 
3164 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3165 	if (unlikely(!skb)) {
3166 		dst_release(dst);
3167 		return NULL;
3168 	}
3169 	/* Reserve space for headers. */
3170 	skb_reserve(skb, MAX_TCP_HEADER);
3171 
3172 	switch (synack_type) {
3173 	case TCP_SYNACK_NORMAL:
3174 		skb_set_owner_w(skb, req_to_sk(req));
3175 		break;
3176 	case TCP_SYNACK_COOKIE:
3177 		/* Under synflood, we do not attach skb to a socket,
3178 		 * to avoid false sharing.
3179 		 */
3180 		break;
3181 	case TCP_SYNACK_FASTOPEN:
3182 		/* sk is a const pointer, because we want to express multiple
3183 		 * cpu might call us concurrently.
3184 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3185 		 */
3186 		skb_set_owner_w(skb, (struct sock *)sk);
3187 		break;
3188 	}
3189 	skb_dst_set(skb, dst);
3190 
3191 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3192 
3193 	memset(&opts, 0, sizeof(opts));
3194 #ifdef CONFIG_SYN_COOKIES
3195 	if (unlikely(req->cookie_ts))
3196 		skb->skb_mstamp = cookie_init_timestamp(req);
3197 	else
3198 #endif
3199 		skb->skb_mstamp = tcp_clock_us();
3200 
3201 #ifdef CONFIG_TCP_MD5SIG
3202 	rcu_read_lock();
3203 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3204 #endif
3205 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3206 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3207 					     foc) + sizeof(*th);
3208 
3209 	skb_push(skb, tcp_header_size);
3210 	skb_reset_transport_header(skb);
3211 
3212 	th = (struct tcphdr *)skb->data;
3213 	memset(th, 0, sizeof(struct tcphdr));
3214 	th->syn = 1;
3215 	th->ack = 1;
3216 	tcp_ecn_make_synack(req, th);
3217 	th->source = htons(ireq->ir_num);
3218 	th->dest = ireq->ir_rmt_port;
3219 	skb->mark = ireq->ir_mark;
3220 	skb->ip_summed = CHECKSUM_PARTIAL;
3221 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3222 	/* XXX data is queued and acked as is. No buffer/window check */
3223 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3224 
3225 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3226 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3227 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3228 	th->doff = (tcp_header_size >> 2);
3229 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3230 
3231 #ifdef CONFIG_TCP_MD5SIG
3232 	/* Okay, we have all we need - do the md5 hash if needed */
3233 	if (md5)
3234 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3235 					       md5, req_to_sk(req), skb);
3236 	rcu_read_unlock();
3237 #endif
3238 
3239 	/* Do not fool tcpdump (if any), clean our debris */
3240 	skb->tstamp = 0;
3241 	return skb;
3242 }
3243 EXPORT_SYMBOL(tcp_make_synack);
3244 
3245 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3246 {
3247 	struct inet_connection_sock *icsk = inet_csk(sk);
3248 	const struct tcp_congestion_ops *ca;
3249 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3250 
3251 	if (ca_key == TCP_CA_UNSPEC)
3252 		return;
3253 
3254 	rcu_read_lock();
3255 	ca = tcp_ca_find_key(ca_key);
3256 	if (likely(ca && try_module_get(ca->owner))) {
3257 		module_put(icsk->icsk_ca_ops->owner);
3258 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3259 		icsk->icsk_ca_ops = ca;
3260 	}
3261 	rcu_read_unlock();
3262 }
3263 
3264 /* Do all connect socket setups that can be done AF independent. */
3265 static void tcp_connect_init(struct sock *sk)
3266 {
3267 	const struct dst_entry *dst = __sk_dst_get(sk);
3268 	struct tcp_sock *tp = tcp_sk(sk);
3269 	__u8 rcv_wscale;
3270 	u32 rcv_wnd;
3271 
3272 	/* We'll fix this up when we get a response from the other end.
3273 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3274 	 */
3275 	tp->tcp_header_len = sizeof(struct tcphdr);
3276 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3277 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3278 
3279 #ifdef CONFIG_TCP_MD5SIG
3280 	if (tp->af_specific->md5_lookup(sk, sk))
3281 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3282 #endif
3283 
3284 	/* If user gave his TCP_MAXSEG, record it to clamp */
3285 	if (tp->rx_opt.user_mss)
3286 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3287 	tp->max_window = 0;
3288 	tcp_mtup_init(sk);
3289 	tcp_sync_mss(sk, dst_mtu(dst));
3290 
3291 	tcp_ca_dst_init(sk, dst);
3292 
3293 	if (!tp->window_clamp)
3294 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3295 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3296 
3297 	tcp_initialize_rcv_mss(sk);
3298 
3299 	/* limit the window selection if the user enforce a smaller rx buffer */
3300 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3301 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3302 		tp->window_clamp = tcp_full_space(sk);
3303 
3304 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3305 	if (rcv_wnd == 0)
3306 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3307 
3308 	tcp_select_initial_window(sk, tcp_full_space(sk),
3309 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3310 				  &tp->rcv_wnd,
3311 				  &tp->window_clamp,
3312 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3313 				  &rcv_wscale,
3314 				  rcv_wnd);
3315 
3316 	tp->rx_opt.rcv_wscale = rcv_wscale;
3317 	tp->rcv_ssthresh = tp->rcv_wnd;
3318 
3319 	sk->sk_err = 0;
3320 	sock_reset_flag(sk, SOCK_DONE);
3321 	tp->snd_wnd = 0;
3322 	tcp_init_wl(tp, 0);
3323 	tcp_write_queue_purge(sk);
3324 	tp->snd_una = tp->write_seq;
3325 	tp->snd_sml = tp->write_seq;
3326 	tp->snd_up = tp->write_seq;
3327 	tp->snd_nxt = tp->write_seq;
3328 
3329 	if (likely(!tp->repair))
3330 		tp->rcv_nxt = 0;
3331 	else
3332 		tp->rcv_tstamp = tcp_jiffies32;
3333 	tp->rcv_wup = tp->rcv_nxt;
3334 	tp->copied_seq = tp->rcv_nxt;
3335 
3336 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3337 	inet_csk(sk)->icsk_retransmits = 0;
3338 	tcp_clear_retrans(tp);
3339 }
3340 
3341 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3342 {
3343 	struct tcp_sock *tp = tcp_sk(sk);
3344 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3345 
3346 	tcb->end_seq += skb->len;
3347 	__skb_header_release(skb);
3348 	sk->sk_wmem_queued += skb->truesize;
3349 	sk_mem_charge(sk, skb->truesize);
3350 	tp->write_seq = tcb->end_seq;
3351 	tp->packets_out += tcp_skb_pcount(skb);
3352 }
3353 
3354 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3355  * queue a data-only packet after the regular SYN, such that regular SYNs
3356  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3357  * only the SYN sequence, the data are retransmitted in the first ACK.
3358  * If cookie is not cached or other error occurs, falls back to send a
3359  * regular SYN with Fast Open cookie request option.
3360  */
3361 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3362 {
3363 	struct tcp_sock *tp = tcp_sk(sk);
3364 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3365 	int space, err = 0;
3366 	struct sk_buff *syn_data;
3367 
3368 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3369 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3370 		goto fallback;
3371 
3372 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3373 	 * user-MSS. Reserve maximum option space for middleboxes that add
3374 	 * private TCP options. The cost is reduced data space in SYN :(
3375 	 */
3376 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3377 
3378 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3379 		MAX_TCP_OPTION_SPACE;
3380 
3381 	space = min_t(size_t, space, fo->size);
3382 
3383 	/* limit to order-0 allocations */
3384 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3385 
3386 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3387 	if (!syn_data)
3388 		goto fallback;
3389 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3390 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3391 	if (space) {
3392 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3393 					    &fo->data->msg_iter);
3394 		if (unlikely(!copied)) {
3395 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3396 			kfree_skb(syn_data);
3397 			goto fallback;
3398 		}
3399 		if (copied != space) {
3400 			skb_trim(syn_data, copied);
3401 			space = copied;
3402 		}
3403 	}
3404 	/* No more data pending in inet_wait_for_connect() */
3405 	if (space == fo->size)
3406 		fo->data = NULL;
3407 	fo->copied = space;
3408 
3409 	tcp_connect_queue_skb(sk, syn_data);
3410 	if (syn_data->len)
3411 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3412 
3413 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3414 
3415 	syn->skb_mstamp = syn_data->skb_mstamp;
3416 
3417 	/* Now full SYN+DATA was cloned and sent (or not),
3418 	 * remove the SYN from the original skb (syn_data)
3419 	 * we keep in write queue in case of a retransmit, as we
3420 	 * also have the SYN packet (with no data) in the same queue.
3421 	 */
3422 	TCP_SKB_CB(syn_data)->seq++;
3423 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3424 	if (!err) {
3425 		tp->syn_data = (fo->copied > 0);
3426 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3427 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3428 		goto done;
3429 	}
3430 
3431 	/* data was not sent, put it in write_queue */
3432 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3433 	tp->packets_out -= tcp_skb_pcount(syn_data);
3434 
3435 fallback:
3436 	/* Send a regular SYN with Fast Open cookie request option */
3437 	if (fo->cookie.len > 0)
3438 		fo->cookie.len = 0;
3439 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3440 	if (err)
3441 		tp->syn_fastopen = 0;
3442 done:
3443 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3444 	return err;
3445 }
3446 
3447 /* Build a SYN and send it off. */
3448 int tcp_connect(struct sock *sk)
3449 {
3450 	struct tcp_sock *tp = tcp_sk(sk);
3451 	struct sk_buff *buff;
3452 	int err;
3453 
3454 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3455 
3456 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3457 		return -EHOSTUNREACH; /* Routing failure or similar. */
3458 
3459 	tcp_connect_init(sk);
3460 
3461 	if (unlikely(tp->repair)) {
3462 		tcp_finish_connect(sk, NULL);
3463 		return 0;
3464 	}
3465 
3466 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3467 	if (unlikely(!buff))
3468 		return -ENOBUFS;
3469 
3470 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3471 	tcp_mstamp_refresh(tp);
3472 	tp->retrans_stamp = tcp_time_stamp(tp);
3473 	tcp_connect_queue_skb(sk, buff);
3474 	tcp_ecn_send_syn(sk, buff);
3475 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3476 
3477 	/* Send off SYN; include data in Fast Open. */
3478 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3479 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3480 	if (err == -ECONNREFUSED)
3481 		return err;
3482 
3483 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3484 	 * in order to make this packet get counted in tcpOutSegs.
3485 	 */
3486 	tp->snd_nxt = tp->write_seq;
3487 	tp->pushed_seq = tp->write_seq;
3488 	buff = tcp_send_head(sk);
3489 	if (unlikely(buff)) {
3490 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3491 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3492 	}
3493 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3494 
3495 	/* Timer for repeating the SYN until an answer. */
3496 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3497 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3498 	return 0;
3499 }
3500 EXPORT_SYMBOL(tcp_connect);
3501 
3502 /* Send out a delayed ack, the caller does the policy checking
3503  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3504  * for details.
3505  */
3506 void tcp_send_delayed_ack(struct sock *sk)
3507 {
3508 	struct inet_connection_sock *icsk = inet_csk(sk);
3509 	int ato = icsk->icsk_ack.ato;
3510 	unsigned long timeout;
3511 
3512 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3513 
3514 	if (ato > TCP_DELACK_MIN) {
3515 		const struct tcp_sock *tp = tcp_sk(sk);
3516 		int max_ato = HZ / 2;
3517 
3518 		if (icsk->icsk_ack.pingpong ||
3519 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3520 			max_ato = TCP_DELACK_MAX;
3521 
3522 		/* Slow path, intersegment interval is "high". */
3523 
3524 		/* If some rtt estimate is known, use it to bound delayed ack.
3525 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3526 		 * directly.
3527 		 */
3528 		if (tp->srtt_us) {
3529 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3530 					TCP_DELACK_MIN);
3531 
3532 			if (rtt < max_ato)
3533 				max_ato = rtt;
3534 		}
3535 
3536 		ato = min(ato, max_ato);
3537 	}
3538 
3539 	/* Stay within the limit we were given */
3540 	timeout = jiffies + ato;
3541 
3542 	/* Use new timeout only if there wasn't a older one earlier. */
3543 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3544 		/* If delack timer was blocked or is about to expire,
3545 		 * send ACK now.
3546 		 */
3547 		if (icsk->icsk_ack.blocked ||
3548 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3549 			tcp_send_ack(sk);
3550 			return;
3551 		}
3552 
3553 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3554 			timeout = icsk->icsk_ack.timeout;
3555 	}
3556 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3557 	icsk->icsk_ack.timeout = timeout;
3558 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3559 }
3560 
3561 /* This routine sends an ack and also updates the window. */
3562 void tcp_send_ack(struct sock *sk)
3563 {
3564 	struct sk_buff *buff;
3565 
3566 	/* If we have been reset, we may not send again. */
3567 	if (sk->sk_state == TCP_CLOSE)
3568 		return;
3569 
3570 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3571 
3572 	/* We are not putting this on the write queue, so
3573 	 * tcp_transmit_skb() will set the ownership to this
3574 	 * sock.
3575 	 */
3576 	buff = alloc_skb(MAX_TCP_HEADER,
3577 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3578 	if (unlikely(!buff)) {
3579 		inet_csk_schedule_ack(sk);
3580 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3581 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3582 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3583 		return;
3584 	}
3585 
3586 	/* Reserve space for headers and prepare control bits. */
3587 	skb_reserve(buff, MAX_TCP_HEADER);
3588 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3589 
3590 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3591 	 * too much.
3592 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3593 	 */
3594 	skb_set_tcp_pure_ack(buff);
3595 
3596 	/* Send it off, this clears delayed acks for us. */
3597 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3598 }
3599 EXPORT_SYMBOL_GPL(tcp_send_ack);
3600 
3601 /* This routine sends a packet with an out of date sequence
3602  * number. It assumes the other end will try to ack it.
3603  *
3604  * Question: what should we make while urgent mode?
3605  * 4.4BSD forces sending single byte of data. We cannot send
3606  * out of window data, because we have SND.NXT==SND.MAX...
3607  *
3608  * Current solution: to send TWO zero-length segments in urgent mode:
3609  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3610  * out-of-date with SND.UNA-1 to probe window.
3611  */
3612 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3613 {
3614 	struct tcp_sock *tp = tcp_sk(sk);
3615 	struct sk_buff *skb;
3616 
3617 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3618 	skb = alloc_skb(MAX_TCP_HEADER,
3619 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3620 	if (!skb)
3621 		return -1;
3622 
3623 	/* Reserve space for headers and set control bits. */
3624 	skb_reserve(skb, MAX_TCP_HEADER);
3625 	/* Use a previous sequence.  This should cause the other
3626 	 * end to send an ack.  Don't queue or clone SKB, just
3627 	 * send it.
3628 	 */
3629 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3630 	NET_INC_STATS(sock_net(sk), mib);
3631 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3632 }
3633 
3634 /* Called from setsockopt( ... TCP_REPAIR ) */
3635 void tcp_send_window_probe(struct sock *sk)
3636 {
3637 	if (sk->sk_state == TCP_ESTABLISHED) {
3638 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3639 		tcp_mstamp_refresh(tcp_sk(sk));
3640 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3641 	}
3642 }
3643 
3644 /* Initiate keepalive or window probe from timer. */
3645 int tcp_write_wakeup(struct sock *sk, int mib)
3646 {
3647 	struct tcp_sock *tp = tcp_sk(sk);
3648 	struct sk_buff *skb;
3649 
3650 	if (sk->sk_state == TCP_CLOSE)
3651 		return -1;
3652 
3653 	skb = tcp_send_head(sk);
3654 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3655 		int err;
3656 		unsigned int mss = tcp_current_mss(sk);
3657 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3658 
3659 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3660 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3661 
3662 		/* We are probing the opening of a window
3663 		 * but the window size is != 0
3664 		 * must have been a result SWS avoidance ( sender )
3665 		 */
3666 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3667 		    skb->len > mss) {
3668 			seg_size = min(seg_size, mss);
3669 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3670 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3671 					 skb, seg_size, mss, GFP_ATOMIC))
3672 				return -1;
3673 		} else if (!tcp_skb_pcount(skb))
3674 			tcp_set_skb_tso_segs(skb, mss);
3675 
3676 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3677 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3678 		if (!err)
3679 			tcp_event_new_data_sent(sk, skb);
3680 		return err;
3681 	} else {
3682 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3683 			tcp_xmit_probe_skb(sk, 1, mib);
3684 		return tcp_xmit_probe_skb(sk, 0, mib);
3685 	}
3686 }
3687 
3688 /* A window probe timeout has occurred.  If window is not closed send
3689  * a partial packet else a zero probe.
3690  */
3691 void tcp_send_probe0(struct sock *sk)
3692 {
3693 	struct inet_connection_sock *icsk = inet_csk(sk);
3694 	struct tcp_sock *tp = tcp_sk(sk);
3695 	struct net *net = sock_net(sk);
3696 	unsigned long probe_max;
3697 	int err;
3698 
3699 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3700 
3701 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3702 		/* Cancel probe timer, if it is not required. */
3703 		icsk->icsk_probes_out = 0;
3704 		icsk->icsk_backoff = 0;
3705 		return;
3706 	}
3707 
3708 	if (err <= 0) {
3709 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3710 			icsk->icsk_backoff++;
3711 		icsk->icsk_probes_out++;
3712 		probe_max = TCP_RTO_MAX;
3713 	} else {
3714 		/* If packet was not sent due to local congestion,
3715 		 * do not backoff and do not remember icsk_probes_out.
3716 		 * Let local senders to fight for local resources.
3717 		 *
3718 		 * Use accumulated backoff yet.
3719 		 */
3720 		if (!icsk->icsk_probes_out)
3721 			icsk->icsk_probes_out = 1;
3722 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3723 	}
3724 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3725 				  tcp_probe0_when(sk, probe_max),
3726 				  TCP_RTO_MAX);
3727 }
3728 
3729 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3730 {
3731 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3732 	struct flowi fl;
3733 	int res;
3734 
3735 	tcp_rsk(req)->txhash = net_tx_rndhash();
3736 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3737 	if (!res) {
3738 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3739 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3740 		if (unlikely(tcp_passive_fastopen(sk)))
3741 			tcp_sk(sk)->total_retrans++;
3742 		trace_tcp_retransmit_synack(sk, req);
3743 	}
3744 	return res;
3745 }
3746 EXPORT_SYMBOL(tcp_rtx_synack);
3747