xref: /linux/net/ipv4/tcp_output.c (revision eeb409bde964df1956297b6775ff5f53dd98d556)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 #include <linux/skbuff_ref.h>
48 
49 #include <trace/events/tcp.h>
50 
51 /* Refresh clocks of a TCP socket,
52  * ensuring monotically increasing values.
53  */
54 void tcp_mstamp_refresh(struct tcp_sock *tp)
55 {
56 	u64 val = tcp_clock_ns();
57 
58 	tp->tcp_clock_cache = val;
59 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
60 }
61 
62 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
63 			   int push_one, gfp_t gfp);
64 
65 /* Account for new data that has been sent to the network. */
66 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
67 {
68 	struct inet_connection_sock *icsk = inet_csk(sk);
69 	struct tcp_sock *tp = tcp_sk(sk);
70 	unsigned int prior_packets = tp->packets_out;
71 
72 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
73 
74 	__skb_unlink(skb, &sk->sk_write_queue);
75 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
76 
77 	if (tp->highest_sack == NULL)
78 		tp->highest_sack = skb;
79 
80 	tp->packets_out += tcp_skb_pcount(skb);
81 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
82 		tcp_rearm_rto(sk);
83 
84 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 		      tcp_skb_pcount(skb));
86 	tcp_check_space(sk);
87 }
88 
89 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
90  * window scaling factor due to loss of precision.
91  * If window has been shrunk, what should we make? It is not clear at all.
92  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
93  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
94  * invalid. OK, let's make this for now:
95  */
96 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
97 {
98 	const struct tcp_sock *tp = tcp_sk(sk);
99 
100 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
101 	    (tp->rx_opt.wscale_ok &&
102 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
103 		return tp->snd_nxt;
104 	else
105 		return tcp_wnd_end(tp);
106 }
107 
108 /* Calculate mss to advertise in SYN segment.
109  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110  *
111  * 1. It is independent of path mtu.
112  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
113  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
114  *    attached devices, because some buggy hosts are confused by
115  *    large MSS.
116  * 4. We do not make 3, we advertise MSS, calculated from first
117  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
118  *    This may be overridden via information stored in routing table.
119  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
120  *    probably even Jumbo".
121  */
122 static __u16 tcp_advertise_mss(struct sock *sk)
123 {
124 	struct tcp_sock *tp = tcp_sk(sk);
125 	const struct dst_entry *dst = __sk_dst_get(sk);
126 	int mss = tp->advmss;
127 
128 	if (dst) {
129 		unsigned int metric = dst_metric_advmss(dst);
130 
131 		if (metric < mss) {
132 			mss = metric;
133 			tp->advmss = mss;
134 		}
135 	}
136 
137 	return (__u16)mss;
138 }
139 
140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
141  * This is the first part of cwnd validation mechanism.
142  */
143 void tcp_cwnd_restart(struct sock *sk, s32 delta)
144 {
145 	struct tcp_sock *tp = tcp_sk(sk);
146 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
147 	u32 cwnd = tcp_snd_cwnd(tp);
148 
149 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150 
151 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
152 	restart_cwnd = min(restart_cwnd, cwnd);
153 
154 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155 		cwnd >>= 1;
156 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
157 	tp->snd_cwnd_stamp = tcp_jiffies32;
158 	tp->snd_cwnd_used = 0;
159 }
160 
161 /* Congestion state accounting after a packet has been sent. */
162 static void tcp_event_data_sent(struct tcp_sock *tp,
163 				struct sock *sk)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const u32 now = tcp_jiffies32;
167 
168 	if (tcp_packets_in_flight(tp) == 0)
169 		tcp_ca_event(sk, CA_EVENT_TX_START);
170 
171 	tp->lsndtime = now;
172 
173 	/* If it is a reply for ato after last received
174 	 * packet, increase pingpong count.
175 	 */
176 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
177 		inet_csk_inc_pingpong_cnt(sk);
178 }
179 
180 /* Account for an ACK we sent. */
181 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
182 {
183 	struct tcp_sock *tp = tcp_sk(sk);
184 
185 	if (unlikely(tp->compressed_ack)) {
186 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 			      tp->compressed_ack);
188 		tp->compressed_ack = 0;
189 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 			__sock_put(sk);
191 	}
192 
193 	if (unlikely(rcv_nxt != tp->rcv_nxt))
194 		return;  /* Special ACK sent by DCTCP to reflect ECN */
195 	tcp_dec_quickack_mode(sk);
196 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *__window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 	u32 window_clamp = READ_ONCE(*__window_clamp);
213 
214 	/* If no clamp set the clamp to the max possible scaled window */
215 	if (window_clamp == 0)
216 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
217 	space = min(window_clamp, space);
218 
219 	/* Quantize space offering to a multiple of mss if possible. */
220 	if (space > mss)
221 		space = rounddown(space, mss);
222 
223 	/* NOTE: offering an initial window larger than 32767
224 	 * will break some buggy TCP stacks. If the admin tells us
225 	 * it is likely we could be speaking with such a buggy stack
226 	 * we will truncate our initial window offering to 32K-1
227 	 * unless the remote has sent us a window scaling option,
228 	 * which we interpret as a sign the remote TCP is not
229 	 * misinterpreting the window field as a signed quantity.
230 	 */
231 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
232 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233 	else
234 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
235 
236 	if (init_rcv_wnd)
237 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238 
239 	*rcv_wscale = 0;
240 	if (wscale_ok) {
241 		/* Set window scaling on max possible window */
242 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
243 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
244 		space = min_t(u32, space, window_clamp);
245 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
246 				      0, TCP_MAX_WSCALE);
247 	}
248 	/* Set the clamp no higher than max representable value */
249 	WRITE_ONCE(*__window_clamp,
250 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253 
254 /* Chose a new window to advertise, update state in tcp_sock for the
255  * socket, and return result with RFC1323 scaling applied.  The return
256  * value can be stuffed directly into th->window for an outgoing
257  * frame.
258  */
259 static u16 tcp_select_window(struct sock *sk)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 	struct net *net = sock_net(sk);
263 	u32 old_win = tp->rcv_wnd;
264 	u32 cur_win, new_win;
265 
266 	/* Make the window 0 if we failed to queue the data because we
267 	 * are out of memory. The window is temporary, so we don't store
268 	 * it on the socket.
269 	 */
270 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
271 		return 0;
272 
273 	cur_win = tcp_receive_window(tp);
274 	new_win = __tcp_select_window(sk);
275 	if (new_win < cur_win) {
276 		/* Danger Will Robinson!
277 		 * Don't update rcv_wup/rcv_wnd here or else
278 		 * we will not be able to advertise a zero
279 		 * window in time.  --DaveM
280 		 *
281 		 * Relax Will Robinson.
282 		 */
283 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
284 			/* Never shrink the offered window */
285 			if (new_win == 0)
286 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
287 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
288 		}
289 	}
290 
291 	tp->rcv_wnd = new_win;
292 	tp->rcv_wup = tp->rcv_nxt;
293 
294 	/* Make sure we do not exceed the maximum possible
295 	 * scaled window.
296 	 */
297 	if (!tp->rx_opt.rcv_wscale &&
298 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
299 		new_win = min(new_win, MAX_TCP_WINDOW);
300 	else
301 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
302 
303 	/* RFC1323 scaling applied */
304 	new_win >>= tp->rx_opt.rcv_wscale;
305 
306 	/* If we advertise zero window, disable fast path. */
307 	if (new_win == 0) {
308 		tp->pred_flags = 0;
309 		if (old_win)
310 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
311 	} else if (old_win == 0) {
312 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
313 	}
314 
315 	return new_win;
316 }
317 
318 /* Packet ECN state for a SYN-ACK */
319 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
320 {
321 	const struct tcp_sock *tp = tcp_sk(sk);
322 
323 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
324 	if (!(tp->ecn_flags & TCP_ECN_OK))
325 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
326 	else if (tcp_ca_needs_ecn(sk) ||
327 		 tcp_bpf_ca_needs_ecn(sk))
328 		INET_ECN_xmit(sk);
329 }
330 
331 /* Packet ECN state for a SYN.  */
332 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
333 {
334 	struct tcp_sock *tp = tcp_sk(sk);
335 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
336 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
337 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
338 
339 	if (!use_ecn) {
340 		const struct dst_entry *dst = __sk_dst_get(sk);
341 
342 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
343 			use_ecn = true;
344 	}
345 
346 	tp->ecn_flags = 0;
347 
348 	if (use_ecn) {
349 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
350 		tp->ecn_flags = TCP_ECN_OK;
351 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
352 			INET_ECN_xmit(sk);
353 	}
354 }
355 
356 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
357 {
358 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
359 		/* tp->ecn_flags are cleared at a later point in time when
360 		 * SYN ACK is ultimatively being received.
361 		 */
362 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
363 }
364 
365 static void
366 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
367 {
368 	if (inet_rsk(req)->ecn_ok)
369 		th->ece = 1;
370 }
371 
372 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
373  * be sent.
374  */
375 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
376 			 struct tcphdr *th, int tcp_header_len)
377 {
378 	struct tcp_sock *tp = tcp_sk(sk);
379 
380 	if (tp->ecn_flags & TCP_ECN_OK) {
381 		/* Not-retransmitted data segment: set ECT and inject CWR. */
382 		if (skb->len != tcp_header_len &&
383 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
384 			INET_ECN_xmit(sk);
385 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
386 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
387 				th->cwr = 1;
388 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
389 			}
390 		} else if (!tcp_ca_needs_ecn(sk)) {
391 			/* ACK or retransmitted segment: clear ECT|CE */
392 			INET_ECN_dontxmit(sk);
393 		}
394 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
395 			th->ece = 1;
396 	}
397 }
398 
399 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
400  * auto increment end seqno.
401  */
402 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
403 {
404 	skb->ip_summed = CHECKSUM_PARTIAL;
405 
406 	TCP_SKB_CB(skb)->tcp_flags = flags;
407 
408 	tcp_skb_pcount_set(skb, 1);
409 
410 	TCP_SKB_CB(skb)->seq = seq;
411 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
412 		seq++;
413 	TCP_SKB_CB(skb)->end_seq = seq;
414 }
415 
416 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
417 {
418 	return tp->snd_una != tp->snd_up;
419 }
420 
421 #define OPTION_SACK_ADVERTISE	BIT(0)
422 #define OPTION_TS		BIT(1)
423 #define OPTION_MD5		BIT(2)
424 #define OPTION_WSCALE		BIT(3)
425 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
426 #define OPTION_SMC		BIT(9)
427 #define OPTION_MPTCP		BIT(10)
428 #define OPTION_AO		BIT(11)
429 
430 static void smc_options_write(__be32 *ptr, u16 *options)
431 {
432 #if IS_ENABLED(CONFIG_SMC)
433 	if (static_branch_unlikely(&tcp_have_smc)) {
434 		if (unlikely(OPTION_SMC & *options)) {
435 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
436 				       (TCPOPT_NOP  << 16) |
437 				       (TCPOPT_EXP <<  8) |
438 				       (TCPOLEN_EXP_SMC_BASE));
439 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
440 		}
441 	}
442 #endif
443 }
444 
445 struct tcp_out_options {
446 	u16 options;		/* bit field of OPTION_* */
447 	u16 mss;		/* 0 to disable */
448 	u8 ws;			/* window scale, 0 to disable */
449 	u8 num_sack_blocks;	/* number of SACK blocks to include */
450 	u8 hash_size;		/* bytes in hash_location */
451 	u8 bpf_opt_len;		/* length of BPF hdr option */
452 	__u8 *hash_location;	/* temporary pointer, overloaded */
453 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
454 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
455 	struct mptcp_out_options mptcp;
456 };
457 
458 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
459 				struct tcp_sock *tp,
460 				struct tcp_out_options *opts)
461 {
462 #if IS_ENABLED(CONFIG_MPTCP)
463 	if (unlikely(OPTION_MPTCP & opts->options))
464 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
465 #endif
466 }
467 
468 #ifdef CONFIG_CGROUP_BPF
469 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
470 					enum tcp_synack_type synack_type)
471 {
472 	if (unlikely(!skb))
473 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
474 
475 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
476 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
477 
478 	return 0;
479 }
480 
481 /* req, syn_skb and synack_type are used when writing synack */
482 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
483 				  struct request_sock *req,
484 				  struct sk_buff *syn_skb,
485 				  enum tcp_synack_type synack_type,
486 				  struct tcp_out_options *opts,
487 				  unsigned int *remaining)
488 {
489 	struct bpf_sock_ops_kern sock_ops;
490 	int err;
491 
492 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
493 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
494 	    !*remaining)
495 		return;
496 
497 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
498 
499 	/* init sock_ops */
500 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
501 
502 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
503 
504 	if (req) {
505 		/* The listen "sk" cannot be passed here because
506 		 * it is not locked.  It would not make too much
507 		 * sense to do bpf_setsockopt(listen_sk) based
508 		 * on individual connection request also.
509 		 *
510 		 * Thus, "req" is passed here and the cgroup-bpf-progs
511 		 * of the listen "sk" will be run.
512 		 *
513 		 * "req" is also used here for fastopen even the "sk" here is
514 		 * a fullsock "child" sk.  It is to keep the behavior
515 		 * consistent between fastopen and non-fastopen on
516 		 * the bpf programming side.
517 		 */
518 		sock_ops.sk = (struct sock *)req;
519 		sock_ops.syn_skb = syn_skb;
520 	} else {
521 		sock_owned_by_me(sk);
522 
523 		sock_ops.is_fullsock = 1;
524 		sock_ops.sk = sk;
525 	}
526 
527 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
528 	sock_ops.remaining_opt_len = *remaining;
529 	/* tcp_current_mss() does not pass a skb */
530 	if (skb)
531 		bpf_skops_init_skb(&sock_ops, skb, 0);
532 
533 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
534 
535 	if (err || sock_ops.remaining_opt_len == *remaining)
536 		return;
537 
538 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
539 	/* round up to 4 bytes */
540 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
541 
542 	*remaining -= opts->bpf_opt_len;
543 }
544 
545 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
546 				    struct request_sock *req,
547 				    struct sk_buff *syn_skb,
548 				    enum tcp_synack_type synack_type,
549 				    struct tcp_out_options *opts)
550 {
551 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
552 	struct bpf_sock_ops_kern sock_ops;
553 	int err;
554 
555 	if (likely(!max_opt_len))
556 		return;
557 
558 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
559 
560 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
561 
562 	if (req) {
563 		sock_ops.sk = (struct sock *)req;
564 		sock_ops.syn_skb = syn_skb;
565 	} else {
566 		sock_owned_by_me(sk);
567 
568 		sock_ops.is_fullsock = 1;
569 		sock_ops.sk = sk;
570 	}
571 
572 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
573 	sock_ops.remaining_opt_len = max_opt_len;
574 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
575 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
576 
577 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
578 
579 	if (err)
580 		nr_written = 0;
581 	else
582 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
583 
584 	if (nr_written < max_opt_len)
585 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
586 		       max_opt_len - nr_written);
587 }
588 #else
589 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
590 				  struct request_sock *req,
591 				  struct sk_buff *syn_skb,
592 				  enum tcp_synack_type synack_type,
593 				  struct tcp_out_options *opts,
594 				  unsigned int *remaining)
595 {
596 }
597 
598 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
599 				    struct request_sock *req,
600 				    struct sk_buff *syn_skb,
601 				    enum tcp_synack_type synack_type,
602 				    struct tcp_out_options *opts)
603 {
604 }
605 #endif
606 
607 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
608 				      const struct tcp_request_sock *tcprsk,
609 				      struct tcp_out_options *opts,
610 				      struct tcp_key *key, __be32 *ptr)
611 {
612 #ifdef CONFIG_TCP_AO
613 	u8 maclen = tcp_ao_maclen(key->ao_key);
614 
615 	if (tcprsk) {
616 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
617 
618 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
619 			       (tcprsk->ao_keyid << 8) |
620 			       (tcprsk->ao_rcv_next));
621 	} else {
622 		struct tcp_ao_key *rnext_key;
623 		struct tcp_ao_info *ao_info;
624 
625 		ao_info = rcu_dereference_check(tp->ao_info,
626 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
627 		rnext_key = READ_ONCE(ao_info->rnext_key);
628 		if (WARN_ON_ONCE(!rnext_key))
629 			return ptr;
630 		*ptr++ = htonl((TCPOPT_AO << 24) |
631 			       (tcp_ao_len(key->ao_key) << 16) |
632 			       (key->ao_key->sndid << 8) |
633 			       (rnext_key->rcvid));
634 	}
635 	opts->hash_location = (__u8 *)ptr;
636 	ptr += maclen / sizeof(*ptr);
637 	if (unlikely(maclen % sizeof(*ptr))) {
638 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
639 		ptr++;
640 	}
641 #endif
642 	return ptr;
643 }
644 
645 /* Write previously computed TCP options to the packet.
646  *
647  * Beware: Something in the Internet is very sensitive to the ordering of
648  * TCP options, we learned this through the hard way, so be careful here.
649  * Luckily we can at least blame others for their non-compliance but from
650  * inter-operability perspective it seems that we're somewhat stuck with
651  * the ordering which we have been using if we want to keep working with
652  * those broken things (not that it currently hurts anybody as there isn't
653  * particular reason why the ordering would need to be changed).
654  *
655  * At least SACK_PERM as the first option is known to lead to a disaster
656  * (but it may well be that other scenarios fail similarly).
657  */
658 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
659 			      const struct tcp_request_sock *tcprsk,
660 			      struct tcp_out_options *opts,
661 			      struct tcp_key *key)
662 {
663 	__be32 *ptr = (__be32 *)(th + 1);
664 	u16 options = opts->options;	/* mungable copy */
665 
666 	if (tcp_key_is_md5(key)) {
667 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
668 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
669 		/* overload cookie hash location */
670 		opts->hash_location = (__u8 *)ptr;
671 		ptr += 4;
672 	} else if (tcp_key_is_ao(key)) {
673 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
674 	}
675 	if (unlikely(opts->mss)) {
676 		*ptr++ = htonl((TCPOPT_MSS << 24) |
677 			       (TCPOLEN_MSS << 16) |
678 			       opts->mss);
679 	}
680 
681 	if (likely(OPTION_TS & options)) {
682 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
683 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
684 				       (TCPOLEN_SACK_PERM << 16) |
685 				       (TCPOPT_TIMESTAMP << 8) |
686 				       TCPOLEN_TIMESTAMP);
687 			options &= ~OPTION_SACK_ADVERTISE;
688 		} else {
689 			*ptr++ = htonl((TCPOPT_NOP << 24) |
690 				       (TCPOPT_NOP << 16) |
691 				       (TCPOPT_TIMESTAMP << 8) |
692 				       TCPOLEN_TIMESTAMP);
693 		}
694 		*ptr++ = htonl(opts->tsval);
695 		*ptr++ = htonl(opts->tsecr);
696 	}
697 
698 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
699 		*ptr++ = htonl((TCPOPT_NOP << 24) |
700 			       (TCPOPT_NOP << 16) |
701 			       (TCPOPT_SACK_PERM << 8) |
702 			       TCPOLEN_SACK_PERM);
703 	}
704 
705 	if (unlikely(OPTION_WSCALE & options)) {
706 		*ptr++ = htonl((TCPOPT_NOP << 24) |
707 			       (TCPOPT_WINDOW << 16) |
708 			       (TCPOLEN_WINDOW << 8) |
709 			       opts->ws);
710 	}
711 
712 	if (unlikely(opts->num_sack_blocks)) {
713 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
714 			tp->duplicate_sack : tp->selective_acks;
715 		int this_sack;
716 
717 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
718 			       (TCPOPT_NOP  << 16) |
719 			       (TCPOPT_SACK <<  8) |
720 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
721 						     TCPOLEN_SACK_PERBLOCK)));
722 
723 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
724 		     ++this_sack) {
725 			*ptr++ = htonl(sp[this_sack].start_seq);
726 			*ptr++ = htonl(sp[this_sack].end_seq);
727 		}
728 
729 		tp->rx_opt.dsack = 0;
730 	}
731 
732 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
733 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
734 		u8 *p = (u8 *)ptr;
735 		u32 len; /* Fast Open option length */
736 
737 		if (foc->exp) {
738 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
739 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
740 				     TCPOPT_FASTOPEN_MAGIC);
741 			p += TCPOLEN_EXP_FASTOPEN_BASE;
742 		} else {
743 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
744 			*p++ = TCPOPT_FASTOPEN;
745 			*p++ = len;
746 		}
747 
748 		memcpy(p, foc->val, foc->len);
749 		if ((len & 3) == 2) {
750 			p[foc->len] = TCPOPT_NOP;
751 			p[foc->len + 1] = TCPOPT_NOP;
752 		}
753 		ptr += (len + 3) >> 2;
754 	}
755 
756 	smc_options_write(ptr, &options);
757 
758 	mptcp_options_write(th, ptr, tp, opts);
759 }
760 
761 static void smc_set_option(const struct tcp_sock *tp,
762 			   struct tcp_out_options *opts,
763 			   unsigned int *remaining)
764 {
765 #if IS_ENABLED(CONFIG_SMC)
766 	if (static_branch_unlikely(&tcp_have_smc)) {
767 		if (tp->syn_smc) {
768 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
769 				opts->options |= OPTION_SMC;
770 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
771 			}
772 		}
773 	}
774 #endif
775 }
776 
777 static void smc_set_option_cond(const struct tcp_sock *tp,
778 				const struct inet_request_sock *ireq,
779 				struct tcp_out_options *opts,
780 				unsigned int *remaining)
781 {
782 #if IS_ENABLED(CONFIG_SMC)
783 	if (static_branch_unlikely(&tcp_have_smc)) {
784 		if (tp->syn_smc && ireq->smc_ok) {
785 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
786 				opts->options |= OPTION_SMC;
787 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
788 			}
789 		}
790 	}
791 #endif
792 }
793 
794 static void mptcp_set_option_cond(const struct request_sock *req,
795 				  struct tcp_out_options *opts,
796 				  unsigned int *remaining)
797 {
798 	if (rsk_is_mptcp(req)) {
799 		unsigned int size;
800 
801 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
802 			if (*remaining >= size) {
803 				opts->options |= OPTION_MPTCP;
804 				*remaining -= size;
805 			}
806 		}
807 	}
808 }
809 
810 /* Compute TCP options for SYN packets. This is not the final
811  * network wire format yet.
812  */
813 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
814 				struct tcp_out_options *opts,
815 				struct tcp_key *key)
816 {
817 	struct tcp_sock *tp = tcp_sk(sk);
818 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
819 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
820 	bool timestamps;
821 
822 	/* Better than switch (key.type) as it has static branches */
823 	if (tcp_key_is_md5(key)) {
824 		timestamps = false;
825 		opts->options |= OPTION_MD5;
826 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
827 	} else {
828 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
829 		if (tcp_key_is_ao(key)) {
830 			opts->options |= OPTION_AO;
831 			remaining -= tcp_ao_len_aligned(key->ao_key);
832 		}
833 	}
834 
835 	/* We always get an MSS option.  The option bytes which will be seen in
836 	 * normal data packets should timestamps be used, must be in the MSS
837 	 * advertised.  But we subtract them from tp->mss_cache so that
838 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
839 	 * fact here if necessary.  If we don't do this correctly, as a
840 	 * receiver we won't recognize data packets as being full sized when we
841 	 * should, and thus we won't abide by the delayed ACK rules correctly.
842 	 * SACKs don't matter, we never delay an ACK when we have any of those
843 	 * going out.  */
844 	opts->mss = tcp_advertise_mss(sk);
845 	remaining -= TCPOLEN_MSS_ALIGNED;
846 
847 	if (likely(timestamps)) {
848 		opts->options |= OPTION_TS;
849 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
850 		opts->tsecr = tp->rx_opt.ts_recent;
851 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
852 	}
853 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
854 		opts->ws = tp->rx_opt.rcv_wscale;
855 		opts->options |= OPTION_WSCALE;
856 		remaining -= TCPOLEN_WSCALE_ALIGNED;
857 	}
858 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
859 		opts->options |= OPTION_SACK_ADVERTISE;
860 		if (unlikely(!(OPTION_TS & opts->options)))
861 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
862 	}
863 
864 	if (fastopen && fastopen->cookie.len >= 0) {
865 		u32 need = fastopen->cookie.len;
866 
867 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
868 					       TCPOLEN_FASTOPEN_BASE;
869 		need = (need + 3) & ~3U;  /* Align to 32 bits */
870 		if (remaining >= need) {
871 			opts->options |= OPTION_FAST_OPEN_COOKIE;
872 			opts->fastopen_cookie = &fastopen->cookie;
873 			remaining -= need;
874 			tp->syn_fastopen = 1;
875 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
876 		}
877 	}
878 
879 	smc_set_option(tp, opts, &remaining);
880 
881 	if (sk_is_mptcp(sk)) {
882 		unsigned int size;
883 
884 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
885 			opts->options |= OPTION_MPTCP;
886 			remaining -= size;
887 		}
888 	}
889 
890 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
891 
892 	return MAX_TCP_OPTION_SPACE - remaining;
893 }
894 
895 /* Set up TCP options for SYN-ACKs. */
896 static unsigned int tcp_synack_options(const struct sock *sk,
897 				       struct request_sock *req,
898 				       unsigned int mss, struct sk_buff *skb,
899 				       struct tcp_out_options *opts,
900 				       const struct tcp_key *key,
901 				       struct tcp_fastopen_cookie *foc,
902 				       enum tcp_synack_type synack_type,
903 				       struct sk_buff *syn_skb)
904 {
905 	struct inet_request_sock *ireq = inet_rsk(req);
906 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
907 
908 	if (tcp_key_is_md5(key)) {
909 		opts->options |= OPTION_MD5;
910 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
911 
912 		/* We can't fit any SACK blocks in a packet with MD5 + TS
913 		 * options. There was discussion about disabling SACK
914 		 * rather than TS in order to fit in better with old,
915 		 * buggy kernels, but that was deemed to be unnecessary.
916 		 */
917 		if (synack_type != TCP_SYNACK_COOKIE)
918 			ireq->tstamp_ok &= !ireq->sack_ok;
919 	} else if (tcp_key_is_ao(key)) {
920 		opts->options |= OPTION_AO;
921 		remaining -= tcp_ao_len_aligned(key->ao_key);
922 		ireq->tstamp_ok &= !ireq->sack_ok;
923 	}
924 
925 	/* We always send an MSS option. */
926 	opts->mss = mss;
927 	remaining -= TCPOLEN_MSS_ALIGNED;
928 
929 	if (likely(ireq->wscale_ok)) {
930 		opts->ws = ireq->rcv_wscale;
931 		opts->options |= OPTION_WSCALE;
932 		remaining -= TCPOLEN_WSCALE_ALIGNED;
933 	}
934 	if (likely(ireq->tstamp_ok)) {
935 		opts->options |= OPTION_TS;
936 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
937 			      tcp_rsk(req)->ts_off;
938 		opts->tsecr = READ_ONCE(req->ts_recent);
939 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
940 	}
941 	if (likely(ireq->sack_ok)) {
942 		opts->options |= OPTION_SACK_ADVERTISE;
943 		if (unlikely(!ireq->tstamp_ok))
944 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
945 	}
946 	if (foc != NULL && foc->len >= 0) {
947 		u32 need = foc->len;
948 
949 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
950 				   TCPOLEN_FASTOPEN_BASE;
951 		need = (need + 3) & ~3U;  /* Align to 32 bits */
952 		if (remaining >= need) {
953 			opts->options |= OPTION_FAST_OPEN_COOKIE;
954 			opts->fastopen_cookie = foc;
955 			remaining -= need;
956 		}
957 	}
958 
959 	mptcp_set_option_cond(req, opts, &remaining);
960 
961 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
962 
963 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
964 			      synack_type, opts, &remaining);
965 
966 	return MAX_TCP_OPTION_SPACE - remaining;
967 }
968 
969 /* Compute TCP options for ESTABLISHED sockets. This is not the
970  * final wire format yet.
971  */
972 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
973 					struct tcp_out_options *opts,
974 					struct tcp_key *key)
975 {
976 	struct tcp_sock *tp = tcp_sk(sk);
977 	unsigned int size = 0;
978 	unsigned int eff_sacks;
979 
980 	opts->options = 0;
981 
982 	/* Better than switch (key.type) as it has static branches */
983 	if (tcp_key_is_md5(key)) {
984 		opts->options |= OPTION_MD5;
985 		size += TCPOLEN_MD5SIG_ALIGNED;
986 	} else if (tcp_key_is_ao(key)) {
987 		opts->options |= OPTION_AO;
988 		size += tcp_ao_len_aligned(key->ao_key);
989 	}
990 
991 	if (likely(tp->rx_opt.tstamp_ok)) {
992 		opts->options |= OPTION_TS;
993 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
994 				tp->tsoffset : 0;
995 		opts->tsecr = tp->rx_opt.ts_recent;
996 		size += TCPOLEN_TSTAMP_ALIGNED;
997 	}
998 
999 	/* MPTCP options have precedence over SACK for the limited TCP
1000 	 * option space because a MPTCP connection would be forced to
1001 	 * fall back to regular TCP if a required multipath option is
1002 	 * missing. SACK still gets a chance to use whatever space is
1003 	 * left.
1004 	 */
1005 	if (sk_is_mptcp(sk)) {
1006 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1007 		unsigned int opt_size = 0;
1008 
1009 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1010 					      &opts->mptcp)) {
1011 			opts->options |= OPTION_MPTCP;
1012 			size += opt_size;
1013 		}
1014 	}
1015 
1016 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1017 	if (unlikely(eff_sacks)) {
1018 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1019 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1020 					 TCPOLEN_SACK_PERBLOCK))
1021 			return size;
1022 
1023 		opts->num_sack_blocks =
1024 			min_t(unsigned int, eff_sacks,
1025 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1026 			      TCPOLEN_SACK_PERBLOCK);
1027 
1028 		size += TCPOLEN_SACK_BASE_ALIGNED +
1029 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1030 	}
1031 
1032 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1033 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1034 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1035 
1036 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1037 
1038 		size = MAX_TCP_OPTION_SPACE - remaining;
1039 	}
1040 
1041 	return size;
1042 }
1043 
1044 
1045 /* TCP SMALL QUEUES (TSQ)
1046  *
1047  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1048  * to reduce RTT and bufferbloat.
1049  * We do this using a special skb destructor (tcp_wfree).
1050  *
1051  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1052  * needs to be reallocated in a driver.
1053  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1054  *
1055  * Since transmit from skb destructor is forbidden, we use a tasklet
1056  * to process all sockets that eventually need to send more skbs.
1057  * We use one tasklet per cpu, with its own queue of sockets.
1058  */
1059 struct tsq_tasklet {
1060 	struct tasklet_struct	tasklet;
1061 	struct list_head	head; /* queue of tcp sockets */
1062 };
1063 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1064 
1065 static void tcp_tsq_write(struct sock *sk)
1066 {
1067 	if ((1 << sk->sk_state) &
1068 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1069 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1070 		struct tcp_sock *tp = tcp_sk(sk);
1071 
1072 		if (tp->lost_out > tp->retrans_out &&
1073 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1074 			tcp_mstamp_refresh(tp);
1075 			tcp_xmit_retransmit_queue(sk);
1076 		}
1077 
1078 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1079 			       0, GFP_ATOMIC);
1080 	}
1081 }
1082 
1083 static void tcp_tsq_handler(struct sock *sk)
1084 {
1085 	bh_lock_sock(sk);
1086 	if (!sock_owned_by_user(sk))
1087 		tcp_tsq_write(sk);
1088 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1089 		sock_hold(sk);
1090 	bh_unlock_sock(sk);
1091 }
1092 /*
1093  * One tasklet per cpu tries to send more skbs.
1094  * We run in tasklet context but need to disable irqs when
1095  * transferring tsq->head because tcp_wfree() might
1096  * interrupt us (non NAPI drivers)
1097  */
1098 static void tcp_tasklet_func(struct tasklet_struct *t)
1099 {
1100 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1101 	LIST_HEAD(list);
1102 	unsigned long flags;
1103 	struct list_head *q, *n;
1104 	struct tcp_sock *tp;
1105 	struct sock *sk;
1106 
1107 	local_irq_save(flags);
1108 	list_splice_init(&tsq->head, &list);
1109 	local_irq_restore(flags);
1110 
1111 	list_for_each_safe(q, n, &list) {
1112 		tp = list_entry(q, struct tcp_sock, tsq_node);
1113 		list_del(&tp->tsq_node);
1114 
1115 		sk = (struct sock *)tp;
1116 		smp_mb__before_atomic();
1117 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1118 
1119 		tcp_tsq_handler(sk);
1120 		sk_free(sk);
1121 	}
1122 }
1123 
1124 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1125 			  TCPF_WRITE_TIMER_DEFERRED |	\
1126 			  TCPF_DELACK_TIMER_DEFERRED |	\
1127 			  TCPF_MTU_REDUCED_DEFERRED |	\
1128 			  TCPF_ACK_DEFERRED)
1129 /**
1130  * tcp_release_cb - tcp release_sock() callback
1131  * @sk: socket
1132  *
1133  * called from release_sock() to perform protocol dependent
1134  * actions before socket release.
1135  */
1136 void tcp_release_cb(struct sock *sk)
1137 {
1138 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1139 	unsigned long nflags;
1140 
1141 	/* perform an atomic operation only if at least one flag is set */
1142 	do {
1143 		if (!(flags & TCP_DEFERRED_ALL))
1144 			return;
1145 		nflags = flags & ~TCP_DEFERRED_ALL;
1146 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1147 
1148 	if (flags & TCPF_TSQ_DEFERRED) {
1149 		tcp_tsq_write(sk);
1150 		__sock_put(sk);
1151 	}
1152 
1153 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1154 		tcp_write_timer_handler(sk);
1155 		__sock_put(sk);
1156 	}
1157 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1158 		tcp_delack_timer_handler(sk);
1159 		__sock_put(sk);
1160 	}
1161 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1162 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1163 		__sock_put(sk);
1164 	}
1165 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1166 		tcp_send_ack(sk);
1167 }
1168 EXPORT_SYMBOL(tcp_release_cb);
1169 
1170 void __init tcp_tasklet_init(void)
1171 {
1172 	int i;
1173 
1174 	for_each_possible_cpu(i) {
1175 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1176 
1177 		INIT_LIST_HEAD(&tsq->head);
1178 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1179 	}
1180 }
1181 
1182 /*
1183  * Write buffer destructor automatically called from kfree_skb.
1184  * We can't xmit new skbs from this context, as we might already
1185  * hold qdisc lock.
1186  */
1187 void tcp_wfree(struct sk_buff *skb)
1188 {
1189 	struct sock *sk = skb->sk;
1190 	struct tcp_sock *tp = tcp_sk(sk);
1191 	unsigned long flags, nval, oval;
1192 	struct tsq_tasklet *tsq;
1193 	bool empty;
1194 
1195 	/* Keep one reference on sk_wmem_alloc.
1196 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1197 	 */
1198 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1199 
1200 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1201 	 * Wait until our queues (qdisc + devices) are drained.
1202 	 * This gives :
1203 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1204 	 * - chance for incoming ACK (processed by another cpu maybe)
1205 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1206 	 */
1207 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1208 		goto out;
1209 
1210 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1211 	do {
1212 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1213 			goto out;
1214 
1215 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1216 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1217 
1218 	/* queue this socket to tasklet queue */
1219 	local_irq_save(flags);
1220 	tsq = this_cpu_ptr(&tsq_tasklet);
1221 	empty = list_empty(&tsq->head);
1222 	list_add(&tp->tsq_node, &tsq->head);
1223 	if (empty)
1224 		tasklet_schedule(&tsq->tasklet);
1225 	local_irq_restore(flags);
1226 	return;
1227 out:
1228 	sk_free(sk);
1229 }
1230 
1231 /* Note: Called under soft irq.
1232  * We can call TCP stack right away, unless socket is owned by user.
1233  */
1234 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1235 {
1236 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1237 	struct sock *sk = (struct sock *)tp;
1238 
1239 	tcp_tsq_handler(sk);
1240 	sock_put(sk);
1241 
1242 	return HRTIMER_NORESTART;
1243 }
1244 
1245 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1246 				      u64 prior_wstamp)
1247 {
1248 	struct tcp_sock *tp = tcp_sk(sk);
1249 
1250 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1251 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1252 
1253 		/* Original sch_fq does not pace first 10 MSS
1254 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1255 		 * this is a minor annoyance.
1256 		 */
1257 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1258 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1259 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1260 
1261 			/* take into account OS jitter */
1262 			len_ns -= min_t(u64, len_ns / 2, credit);
1263 			tp->tcp_wstamp_ns += len_ns;
1264 		}
1265 	}
1266 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1267 }
1268 
1269 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1270 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1271 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1272 
1273 /* This routine actually transmits TCP packets queued in by
1274  * tcp_do_sendmsg().  This is used by both the initial
1275  * transmission and possible later retransmissions.
1276  * All SKB's seen here are completely headerless.  It is our
1277  * job to build the TCP header, and pass the packet down to
1278  * IP so it can do the same plus pass the packet off to the
1279  * device.
1280  *
1281  * We are working here with either a clone of the original
1282  * SKB, or a fresh unique copy made by the retransmit engine.
1283  */
1284 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1285 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1286 {
1287 	const struct inet_connection_sock *icsk = inet_csk(sk);
1288 	struct inet_sock *inet;
1289 	struct tcp_sock *tp;
1290 	struct tcp_skb_cb *tcb;
1291 	struct tcp_out_options opts;
1292 	unsigned int tcp_options_size, tcp_header_size;
1293 	struct sk_buff *oskb = NULL;
1294 	struct tcp_key key;
1295 	struct tcphdr *th;
1296 	u64 prior_wstamp;
1297 	int err;
1298 
1299 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1300 	tp = tcp_sk(sk);
1301 	prior_wstamp = tp->tcp_wstamp_ns;
1302 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1303 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1304 	if (clone_it) {
1305 		oskb = skb;
1306 
1307 		tcp_skb_tsorted_save(oskb) {
1308 			if (unlikely(skb_cloned(oskb)))
1309 				skb = pskb_copy(oskb, gfp_mask);
1310 			else
1311 				skb = skb_clone(oskb, gfp_mask);
1312 		} tcp_skb_tsorted_restore(oskb);
1313 
1314 		if (unlikely(!skb))
1315 			return -ENOBUFS;
1316 		/* retransmit skbs might have a non zero value in skb->dev
1317 		 * because skb->dev is aliased with skb->rbnode.rb_left
1318 		 */
1319 		skb->dev = NULL;
1320 	}
1321 
1322 	inet = inet_sk(sk);
1323 	tcb = TCP_SKB_CB(skb);
1324 	memset(&opts, 0, sizeof(opts));
1325 
1326 	tcp_get_current_key(sk, &key);
1327 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1328 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1329 	} else {
1330 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1331 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1332 		 * at receiver : This slightly improve GRO performance.
1333 		 * Note that we do not force the PSH flag for non GSO packets,
1334 		 * because they might be sent under high congestion events,
1335 		 * and in this case it is better to delay the delivery of 1-MSS
1336 		 * packets and thus the corresponding ACK packet that would
1337 		 * release the following packet.
1338 		 */
1339 		if (tcp_skb_pcount(skb) > 1)
1340 			tcb->tcp_flags |= TCPHDR_PSH;
1341 	}
1342 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1343 
1344 	/* We set skb->ooo_okay to one if this packet can select
1345 	 * a different TX queue than prior packets of this flow,
1346 	 * to avoid self inflicted reorders.
1347 	 * The 'other' queue decision is based on current cpu number
1348 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1349 	 * We can switch to another (and better) queue if:
1350 	 * 1) No packet with payload is in qdisc/device queues.
1351 	 *    Delays in TX completion can defeat the test
1352 	 *    even if packets were already sent.
1353 	 * 2) Or rtx queue is empty.
1354 	 *    This mitigates above case if ACK packets for
1355 	 *    all prior packets were already processed.
1356 	 */
1357 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1358 			tcp_rtx_queue_empty(sk);
1359 
1360 	/* If we had to use memory reserve to allocate this skb,
1361 	 * this might cause drops if packet is looped back :
1362 	 * Other socket might not have SOCK_MEMALLOC.
1363 	 * Packets not looped back do not care about pfmemalloc.
1364 	 */
1365 	skb->pfmemalloc = 0;
1366 
1367 	skb_push(skb, tcp_header_size);
1368 	skb_reset_transport_header(skb);
1369 
1370 	skb_orphan(skb);
1371 	skb->sk = sk;
1372 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1373 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1374 
1375 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1376 
1377 	/* Build TCP header and checksum it. */
1378 	th = (struct tcphdr *)skb->data;
1379 	th->source		= inet->inet_sport;
1380 	th->dest		= inet->inet_dport;
1381 	th->seq			= htonl(tcb->seq);
1382 	th->ack_seq		= htonl(rcv_nxt);
1383 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1384 					tcb->tcp_flags);
1385 
1386 	th->check		= 0;
1387 	th->urg_ptr		= 0;
1388 
1389 	/* The urg_mode check is necessary during a below snd_una win probe */
1390 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1391 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1392 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1393 			th->urg = 1;
1394 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1395 			th->urg_ptr = htons(0xFFFF);
1396 			th->urg = 1;
1397 		}
1398 	}
1399 
1400 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1401 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1402 		th->window      = htons(tcp_select_window(sk));
1403 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1404 	} else {
1405 		/* RFC1323: The window in SYN & SYN/ACK segments
1406 		 * is never scaled.
1407 		 */
1408 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1409 	}
1410 
1411 	tcp_options_write(th, tp, NULL, &opts, &key);
1412 
1413 	if (tcp_key_is_md5(&key)) {
1414 #ifdef CONFIG_TCP_MD5SIG
1415 		/* Calculate the MD5 hash, as we have all we need now */
1416 		sk_gso_disable(sk);
1417 		tp->af_specific->calc_md5_hash(opts.hash_location,
1418 					       key.md5_key, sk, skb);
1419 #endif
1420 	} else if (tcp_key_is_ao(&key)) {
1421 		int err;
1422 
1423 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1424 					  opts.hash_location);
1425 		if (err) {
1426 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1427 			return -ENOMEM;
1428 		}
1429 	}
1430 
1431 	/* BPF prog is the last one writing header option */
1432 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1433 
1434 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1435 			   tcp_v6_send_check, tcp_v4_send_check,
1436 			   sk, skb);
1437 
1438 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1439 		tcp_event_ack_sent(sk, rcv_nxt);
1440 
1441 	if (skb->len != tcp_header_size) {
1442 		tcp_event_data_sent(tp, sk);
1443 		tp->data_segs_out += tcp_skb_pcount(skb);
1444 		tp->bytes_sent += skb->len - tcp_header_size;
1445 	}
1446 
1447 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1448 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1449 			      tcp_skb_pcount(skb));
1450 
1451 	tp->segs_out += tcp_skb_pcount(skb);
1452 	skb_set_hash_from_sk(skb, sk);
1453 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1454 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1455 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1456 
1457 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1458 
1459 	/* Cleanup our debris for IP stacks */
1460 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1461 			       sizeof(struct inet6_skb_parm)));
1462 
1463 	tcp_add_tx_delay(skb, tp);
1464 
1465 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1466 				 inet6_csk_xmit, ip_queue_xmit,
1467 				 sk, skb, &inet->cork.fl);
1468 
1469 	if (unlikely(err > 0)) {
1470 		tcp_enter_cwr(sk);
1471 		err = net_xmit_eval(err);
1472 	}
1473 	if (!err && oskb) {
1474 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1475 		tcp_rate_skb_sent(sk, oskb);
1476 	}
1477 	return err;
1478 }
1479 
1480 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1481 			    gfp_t gfp_mask)
1482 {
1483 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1484 				  tcp_sk(sk)->rcv_nxt);
1485 }
1486 
1487 /* This routine just queues the buffer for sending.
1488  *
1489  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1490  * otherwise socket can stall.
1491  */
1492 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1493 {
1494 	struct tcp_sock *tp = tcp_sk(sk);
1495 
1496 	/* Advance write_seq and place onto the write_queue. */
1497 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1498 	__skb_header_release(skb);
1499 	tcp_add_write_queue_tail(sk, skb);
1500 	sk_wmem_queued_add(sk, skb->truesize);
1501 	sk_mem_charge(sk, skb->truesize);
1502 }
1503 
1504 /* Initialize TSO segments for a packet. */
1505 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1506 {
1507 	if (skb->len <= mss_now) {
1508 		/* Avoid the costly divide in the normal
1509 		 * non-TSO case.
1510 		 */
1511 		tcp_skb_pcount_set(skb, 1);
1512 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1513 	} else {
1514 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1515 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1516 	}
1517 }
1518 
1519 /* Pcount in the middle of the write queue got changed, we need to do various
1520  * tweaks to fix counters
1521  */
1522 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1523 {
1524 	struct tcp_sock *tp = tcp_sk(sk);
1525 
1526 	tp->packets_out -= decr;
1527 
1528 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1529 		tp->sacked_out -= decr;
1530 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1531 		tp->retrans_out -= decr;
1532 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1533 		tp->lost_out -= decr;
1534 
1535 	/* Reno case is special. Sigh... */
1536 	if (tcp_is_reno(tp) && decr > 0)
1537 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1538 
1539 	if (tp->lost_skb_hint &&
1540 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1541 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1542 		tp->lost_cnt_hint -= decr;
1543 
1544 	tcp_verify_left_out(tp);
1545 }
1546 
1547 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1548 {
1549 	return TCP_SKB_CB(skb)->txstamp_ack ||
1550 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1551 }
1552 
1553 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1554 {
1555 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1556 
1557 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1558 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1559 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1560 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1561 
1562 		shinfo->tx_flags &= ~tsflags;
1563 		shinfo2->tx_flags |= tsflags;
1564 		swap(shinfo->tskey, shinfo2->tskey);
1565 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1566 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1567 	}
1568 }
1569 
1570 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1571 {
1572 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1573 	TCP_SKB_CB(skb)->eor = 0;
1574 }
1575 
1576 /* Insert buff after skb on the write or rtx queue of sk.  */
1577 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1578 					 struct sk_buff *buff,
1579 					 struct sock *sk,
1580 					 enum tcp_queue tcp_queue)
1581 {
1582 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1583 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1584 	else
1585 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1586 }
1587 
1588 /* Function to create two new TCP segments.  Shrinks the given segment
1589  * to the specified size and appends a new segment with the rest of the
1590  * packet to the list.  This won't be called frequently, I hope.
1591  * Remember, these are still headerless SKBs at this point.
1592  */
1593 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1594 		 struct sk_buff *skb, u32 len,
1595 		 unsigned int mss_now, gfp_t gfp)
1596 {
1597 	struct tcp_sock *tp = tcp_sk(sk);
1598 	struct sk_buff *buff;
1599 	int old_factor;
1600 	long limit;
1601 	int nlen;
1602 	u8 flags;
1603 
1604 	if (WARN_ON(len > skb->len))
1605 		return -EINVAL;
1606 
1607 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1608 
1609 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1610 	 * We need some allowance to not penalize applications setting small
1611 	 * SO_SNDBUF values.
1612 	 * Also allow first and last skb in retransmit queue to be split.
1613 	 */
1614 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1615 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1616 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1617 		     skb != tcp_rtx_queue_head(sk) &&
1618 		     skb != tcp_rtx_queue_tail(sk))) {
1619 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1620 		return -ENOMEM;
1621 	}
1622 
1623 	if (skb_unclone_keeptruesize(skb, gfp))
1624 		return -ENOMEM;
1625 
1626 	/* Get a new skb... force flag on. */
1627 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1628 	if (!buff)
1629 		return -ENOMEM; /* We'll just try again later. */
1630 	skb_copy_decrypted(buff, skb);
1631 	mptcp_skb_ext_copy(buff, skb);
1632 
1633 	sk_wmem_queued_add(sk, buff->truesize);
1634 	sk_mem_charge(sk, buff->truesize);
1635 	nlen = skb->len - len;
1636 	buff->truesize += nlen;
1637 	skb->truesize -= nlen;
1638 
1639 	/* Correct the sequence numbers. */
1640 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1641 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1642 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1643 
1644 	/* PSH and FIN should only be set in the second packet. */
1645 	flags = TCP_SKB_CB(skb)->tcp_flags;
1646 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1647 	TCP_SKB_CB(buff)->tcp_flags = flags;
1648 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1649 	tcp_skb_fragment_eor(skb, buff);
1650 
1651 	skb_split(skb, buff, len);
1652 
1653 	skb_set_delivery_time(buff, skb->tstamp, true);
1654 	tcp_fragment_tstamp(skb, buff);
1655 
1656 	old_factor = tcp_skb_pcount(skb);
1657 
1658 	/* Fix up tso_factor for both original and new SKB.  */
1659 	tcp_set_skb_tso_segs(skb, mss_now);
1660 	tcp_set_skb_tso_segs(buff, mss_now);
1661 
1662 	/* Update delivered info for the new segment */
1663 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1664 
1665 	/* If this packet has been sent out already, we must
1666 	 * adjust the various packet counters.
1667 	 */
1668 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1669 		int diff = old_factor - tcp_skb_pcount(skb) -
1670 			tcp_skb_pcount(buff);
1671 
1672 		if (diff)
1673 			tcp_adjust_pcount(sk, skb, diff);
1674 	}
1675 
1676 	/* Link BUFF into the send queue. */
1677 	__skb_header_release(buff);
1678 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1679 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1680 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1681 
1682 	return 0;
1683 }
1684 
1685 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1686  * data is not copied, but immediately discarded.
1687  */
1688 static int __pskb_trim_head(struct sk_buff *skb, int len)
1689 {
1690 	struct skb_shared_info *shinfo;
1691 	int i, k, eat;
1692 
1693 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1694 	eat = len;
1695 	k = 0;
1696 	shinfo = skb_shinfo(skb);
1697 	for (i = 0; i < shinfo->nr_frags; i++) {
1698 		int size = skb_frag_size(&shinfo->frags[i]);
1699 
1700 		if (size <= eat) {
1701 			skb_frag_unref(skb, i);
1702 			eat -= size;
1703 		} else {
1704 			shinfo->frags[k] = shinfo->frags[i];
1705 			if (eat) {
1706 				skb_frag_off_add(&shinfo->frags[k], eat);
1707 				skb_frag_size_sub(&shinfo->frags[k], eat);
1708 				eat = 0;
1709 			}
1710 			k++;
1711 		}
1712 	}
1713 	shinfo->nr_frags = k;
1714 
1715 	skb->data_len -= len;
1716 	skb->len = skb->data_len;
1717 	return len;
1718 }
1719 
1720 /* Remove acked data from a packet in the transmit queue. */
1721 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1722 {
1723 	u32 delta_truesize;
1724 
1725 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1726 		return -ENOMEM;
1727 
1728 	delta_truesize = __pskb_trim_head(skb, len);
1729 
1730 	TCP_SKB_CB(skb)->seq += len;
1731 
1732 	skb->truesize	   -= delta_truesize;
1733 	sk_wmem_queued_add(sk, -delta_truesize);
1734 	if (!skb_zcopy_pure(skb))
1735 		sk_mem_uncharge(sk, delta_truesize);
1736 
1737 	/* Any change of skb->len requires recalculation of tso factor. */
1738 	if (tcp_skb_pcount(skb) > 1)
1739 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1740 
1741 	return 0;
1742 }
1743 
1744 /* Calculate MSS not accounting any TCP options.  */
1745 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1746 {
1747 	const struct tcp_sock *tp = tcp_sk(sk);
1748 	const struct inet_connection_sock *icsk = inet_csk(sk);
1749 	int mss_now;
1750 
1751 	/* Calculate base mss without TCP options:
1752 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1753 	 */
1754 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1755 
1756 	/* Clamp it (mss_clamp does not include tcp options) */
1757 	if (mss_now > tp->rx_opt.mss_clamp)
1758 		mss_now = tp->rx_opt.mss_clamp;
1759 
1760 	/* Now subtract optional transport overhead */
1761 	mss_now -= icsk->icsk_ext_hdr_len;
1762 
1763 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1764 	mss_now = max(mss_now,
1765 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1766 	return mss_now;
1767 }
1768 
1769 /* Calculate MSS. Not accounting for SACKs here.  */
1770 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1771 {
1772 	/* Subtract TCP options size, not including SACKs */
1773 	return __tcp_mtu_to_mss(sk, pmtu) -
1774 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1775 }
1776 EXPORT_SYMBOL(tcp_mtu_to_mss);
1777 
1778 /* Inverse of above */
1779 int tcp_mss_to_mtu(struct sock *sk, int mss)
1780 {
1781 	const struct tcp_sock *tp = tcp_sk(sk);
1782 	const struct inet_connection_sock *icsk = inet_csk(sk);
1783 
1784 	return mss +
1785 	      tp->tcp_header_len +
1786 	      icsk->icsk_ext_hdr_len +
1787 	      icsk->icsk_af_ops->net_header_len;
1788 }
1789 EXPORT_SYMBOL(tcp_mss_to_mtu);
1790 
1791 /* MTU probing init per socket */
1792 void tcp_mtup_init(struct sock *sk)
1793 {
1794 	struct tcp_sock *tp = tcp_sk(sk);
1795 	struct inet_connection_sock *icsk = inet_csk(sk);
1796 	struct net *net = sock_net(sk);
1797 
1798 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1799 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1800 			       icsk->icsk_af_ops->net_header_len;
1801 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1802 	icsk->icsk_mtup.probe_size = 0;
1803 	if (icsk->icsk_mtup.enabled)
1804 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1805 }
1806 EXPORT_SYMBOL(tcp_mtup_init);
1807 
1808 /* This function synchronize snd mss to current pmtu/exthdr set.
1809 
1810    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1811    for TCP options, but includes only bare TCP header.
1812 
1813    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1814    It is minimum of user_mss and mss received with SYN.
1815    It also does not include TCP options.
1816 
1817    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1818 
1819    tp->mss_cache is current effective sending mss, including
1820    all tcp options except for SACKs. It is evaluated,
1821    taking into account current pmtu, but never exceeds
1822    tp->rx_opt.mss_clamp.
1823 
1824    NOTE1. rfc1122 clearly states that advertised MSS
1825    DOES NOT include either tcp or ip options.
1826 
1827    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1828    are READ ONLY outside this function.		--ANK (980731)
1829  */
1830 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1831 {
1832 	struct tcp_sock *tp = tcp_sk(sk);
1833 	struct inet_connection_sock *icsk = inet_csk(sk);
1834 	int mss_now;
1835 
1836 	if (icsk->icsk_mtup.search_high > pmtu)
1837 		icsk->icsk_mtup.search_high = pmtu;
1838 
1839 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1840 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1841 
1842 	/* And store cached results */
1843 	icsk->icsk_pmtu_cookie = pmtu;
1844 	if (icsk->icsk_mtup.enabled)
1845 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1846 	tp->mss_cache = mss_now;
1847 
1848 	return mss_now;
1849 }
1850 EXPORT_SYMBOL(tcp_sync_mss);
1851 
1852 /* Compute the current effective MSS, taking SACKs and IP options,
1853  * and even PMTU discovery events into account.
1854  */
1855 unsigned int tcp_current_mss(struct sock *sk)
1856 {
1857 	const struct tcp_sock *tp = tcp_sk(sk);
1858 	const struct dst_entry *dst = __sk_dst_get(sk);
1859 	u32 mss_now;
1860 	unsigned int header_len;
1861 	struct tcp_out_options opts;
1862 	struct tcp_key key;
1863 
1864 	mss_now = tp->mss_cache;
1865 
1866 	if (dst) {
1867 		u32 mtu = dst_mtu(dst);
1868 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1869 			mss_now = tcp_sync_mss(sk, mtu);
1870 	}
1871 	tcp_get_current_key(sk, &key);
1872 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1873 		     sizeof(struct tcphdr);
1874 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1875 	 * some common options. If this is an odd packet (because we have SACK
1876 	 * blocks etc) then our calculated header_len will be different, and
1877 	 * we have to adjust mss_now correspondingly */
1878 	if (header_len != tp->tcp_header_len) {
1879 		int delta = (int) header_len - tp->tcp_header_len;
1880 		mss_now -= delta;
1881 	}
1882 
1883 	return mss_now;
1884 }
1885 
1886 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1887  * As additional protections, we do not touch cwnd in retransmission phases,
1888  * and if application hit its sndbuf limit recently.
1889  */
1890 static void tcp_cwnd_application_limited(struct sock *sk)
1891 {
1892 	struct tcp_sock *tp = tcp_sk(sk);
1893 
1894 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1895 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1896 		/* Limited by application or receiver window. */
1897 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1898 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1899 		if (win_used < tcp_snd_cwnd(tp)) {
1900 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1901 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1902 		}
1903 		tp->snd_cwnd_used = 0;
1904 	}
1905 	tp->snd_cwnd_stamp = tcp_jiffies32;
1906 }
1907 
1908 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1909 {
1910 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1911 	struct tcp_sock *tp = tcp_sk(sk);
1912 
1913 	/* Track the strongest available signal of the degree to which the cwnd
1914 	 * is fully utilized. If cwnd-limited then remember that fact for the
1915 	 * current window. If not cwnd-limited then track the maximum number of
1916 	 * outstanding packets in the current window. (If cwnd-limited then we
1917 	 * chose to not update tp->max_packets_out to avoid an extra else
1918 	 * clause with no functional impact.)
1919 	 */
1920 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1921 	    is_cwnd_limited ||
1922 	    (!tp->is_cwnd_limited &&
1923 	     tp->packets_out > tp->max_packets_out)) {
1924 		tp->is_cwnd_limited = is_cwnd_limited;
1925 		tp->max_packets_out = tp->packets_out;
1926 		tp->cwnd_usage_seq = tp->snd_nxt;
1927 	}
1928 
1929 	if (tcp_is_cwnd_limited(sk)) {
1930 		/* Network is feed fully. */
1931 		tp->snd_cwnd_used = 0;
1932 		tp->snd_cwnd_stamp = tcp_jiffies32;
1933 	} else {
1934 		/* Network starves. */
1935 		if (tp->packets_out > tp->snd_cwnd_used)
1936 			tp->snd_cwnd_used = tp->packets_out;
1937 
1938 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1939 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1940 		    !ca_ops->cong_control)
1941 			tcp_cwnd_application_limited(sk);
1942 
1943 		/* The following conditions together indicate the starvation
1944 		 * is caused by insufficient sender buffer:
1945 		 * 1) just sent some data (see tcp_write_xmit)
1946 		 * 2) not cwnd limited (this else condition)
1947 		 * 3) no more data to send (tcp_write_queue_empty())
1948 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1949 		 */
1950 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1951 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1952 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1953 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1954 	}
1955 }
1956 
1957 /* Minshall's variant of the Nagle send check. */
1958 static bool tcp_minshall_check(const struct tcp_sock *tp)
1959 {
1960 	return after(tp->snd_sml, tp->snd_una) &&
1961 		!after(tp->snd_sml, tp->snd_nxt);
1962 }
1963 
1964 /* Update snd_sml if this skb is under mss
1965  * Note that a TSO packet might end with a sub-mss segment
1966  * The test is really :
1967  * if ((skb->len % mss) != 0)
1968  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1969  * But we can avoid doing the divide again given we already have
1970  *  skb_pcount = skb->len / mss_now
1971  */
1972 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1973 				const struct sk_buff *skb)
1974 {
1975 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1976 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1977 }
1978 
1979 /* Return false, if packet can be sent now without violation Nagle's rules:
1980  * 1. It is full sized. (provided by caller in %partial bool)
1981  * 2. Or it contains FIN. (already checked by caller)
1982  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1983  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1984  *    With Minshall's modification: all sent small packets are ACKed.
1985  */
1986 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1987 			    int nonagle)
1988 {
1989 	return partial &&
1990 		((nonagle & TCP_NAGLE_CORK) ||
1991 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1992 }
1993 
1994 /* Return how many segs we'd like on a TSO packet,
1995  * depending on current pacing rate, and how close the peer is.
1996  *
1997  * Rationale is:
1998  * - For close peers, we rather send bigger packets to reduce
1999  *   cpu costs, because occasional losses will be repaired fast.
2000  * - For long distance/rtt flows, we would like to get ACK clocking
2001  *   with 1 ACK per ms.
2002  *
2003  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2004  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2005  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2006  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2007  */
2008 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2009 			    int min_tso_segs)
2010 {
2011 	unsigned long bytes;
2012 	u32 r;
2013 
2014 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2015 
2016 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2017 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2018 		bytes += sk->sk_gso_max_size >> r;
2019 
2020 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2021 
2022 	return max_t(u32, bytes / mss_now, min_tso_segs);
2023 }
2024 
2025 /* Return the number of segments we want in the skb we are transmitting.
2026  * See if congestion control module wants to decide; otherwise, autosize.
2027  */
2028 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2029 {
2030 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2031 	u32 min_tso, tso_segs;
2032 
2033 	min_tso = ca_ops->min_tso_segs ?
2034 			ca_ops->min_tso_segs(sk) :
2035 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2036 
2037 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2038 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2039 }
2040 
2041 /* Returns the portion of skb which can be sent right away */
2042 static unsigned int tcp_mss_split_point(const struct sock *sk,
2043 					const struct sk_buff *skb,
2044 					unsigned int mss_now,
2045 					unsigned int max_segs,
2046 					int nonagle)
2047 {
2048 	const struct tcp_sock *tp = tcp_sk(sk);
2049 	u32 partial, needed, window, max_len;
2050 
2051 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2052 	max_len = mss_now * max_segs;
2053 
2054 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2055 		return max_len;
2056 
2057 	needed = min(skb->len, window);
2058 
2059 	if (max_len <= needed)
2060 		return max_len;
2061 
2062 	partial = needed % mss_now;
2063 	/* If last segment is not a full MSS, check if Nagle rules allow us
2064 	 * to include this last segment in this skb.
2065 	 * Otherwise, we'll split the skb at last MSS boundary
2066 	 */
2067 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2068 		return needed - partial;
2069 
2070 	return needed;
2071 }
2072 
2073 /* Can at least one segment of SKB be sent right now, according to the
2074  * congestion window rules?  If so, return how many segments are allowed.
2075  */
2076 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2077 					 const struct sk_buff *skb)
2078 {
2079 	u32 in_flight, cwnd, halfcwnd;
2080 
2081 	/* Don't be strict about the congestion window for the final FIN.  */
2082 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2083 	    tcp_skb_pcount(skb) == 1)
2084 		return 1;
2085 
2086 	in_flight = tcp_packets_in_flight(tp);
2087 	cwnd = tcp_snd_cwnd(tp);
2088 	if (in_flight >= cwnd)
2089 		return 0;
2090 
2091 	/* For better scheduling, ensure we have at least
2092 	 * 2 GSO packets in flight.
2093 	 */
2094 	halfcwnd = max(cwnd >> 1, 1U);
2095 	return min(halfcwnd, cwnd - in_flight);
2096 }
2097 
2098 /* Initialize TSO state of a skb.
2099  * This must be invoked the first time we consider transmitting
2100  * SKB onto the wire.
2101  */
2102 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2103 {
2104 	int tso_segs = tcp_skb_pcount(skb);
2105 
2106 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2107 		tcp_set_skb_tso_segs(skb, mss_now);
2108 		tso_segs = tcp_skb_pcount(skb);
2109 	}
2110 	return tso_segs;
2111 }
2112 
2113 
2114 /* Return true if the Nagle test allows this packet to be
2115  * sent now.
2116  */
2117 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2118 				  unsigned int cur_mss, int nonagle)
2119 {
2120 	/* Nagle rule does not apply to frames, which sit in the middle of the
2121 	 * write_queue (they have no chances to get new data).
2122 	 *
2123 	 * This is implemented in the callers, where they modify the 'nonagle'
2124 	 * argument based upon the location of SKB in the send queue.
2125 	 */
2126 	if (nonagle & TCP_NAGLE_PUSH)
2127 		return true;
2128 
2129 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2130 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2131 		return true;
2132 
2133 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2134 		return true;
2135 
2136 	return false;
2137 }
2138 
2139 /* Does at least the first segment of SKB fit into the send window? */
2140 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2141 			     const struct sk_buff *skb,
2142 			     unsigned int cur_mss)
2143 {
2144 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2145 
2146 	if (skb->len > cur_mss)
2147 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2148 
2149 	return !after(end_seq, tcp_wnd_end(tp));
2150 }
2151 
2152 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2153  * which is put after SKB on the list.  It is very much like
2154  * tcp_fragment() except that it may make several kinds of assumptions
2155  * in order to speed up the splitting operation.  In particular, we
2156  * know that all the data is in scatter-gather pages, and that the
2157  * packet has never been sent out before (and thus is not cloned).
2158  */
2159 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2160 			unsigned int mss_now, gfp_t gfp)
2161 {
2162 	int nlen = skb->len - len;
2163 	struct sk_buff *buff;
2164 	u8 flags;
2165 
2166 	/* All of a TSO frame must be composed of paged data.  */
2167 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2168 
2169 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2170 	if (unlikely(!buff))
2171 		return -ENOMEM;
2172 	skb_copy_decrypted(buff, skb);
2173 	mptcp_skb_ext_copy(buff, skb);
2174 
2175 	sk_wmem_queued_add(sk, buff->truesize);
2176 	sk_mem_charge(sk, buff->truesize);
2177 	buff->truesize += nlen;
2178 	skb->truesize -= nlen;
2179 
2180 	/* Correct the sequence numbers. */
2181 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2182 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2183 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2184 
2185 	/* PSH and FIN should only be set in the second packet. */
2186 	flags = TCP_SKB_CB(skb)->tcp_flags;
2187 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2188 	TCP_SKB_CB(buff)->tcp_flags = flags;
2189 
2190 	tcp_skb_fragment_eor(skb, buff);
2191 
2192 	skb_split(skb, buff, len);
2193 	tcp_fragment_tstamp(skb, buff);
2194 
2195 	/* Fix up tso_factor for both original and new SKB.  */
2196 	tcp_set_skb_tso_segs(skb, mss_now);
2197 	tcp_set_skb_tso_segs(buff, mss_now);
2198 
2199 	/* Link BUFF into the send queue. */
2200 	__skb_header_release(buff);
2201 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2202 
2203 	return 0;
2204 }
2205 
2206 /* Try to defer sending, if possible, in order to minimize the amount
2207  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2208  *
2209  * This algorithm is from John Heffner.
2210  */
2211 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2212 				 bool *is_cwnd_limited,
2213 				 bool *is_rwnd_limited,
2214 				 u32 max_segs)
2215 {
2216 	const struct inet_connection_sock *icsk = inet_csk(sk);
2217 	u32 send_win, cong_win, limit, in_flight;
2218 	struct tcp_sock *tp = tcp_sk(sk);
2219 	struct sk_buff *head;
2220 	int win_divisor;
2221 	s64 delta;
2222 
2223 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2224 		goto send_now;
2225 
2226 	/* Avoid bursty behavior by allowing defer
2227 	 * only if the last write was recent (1 ms).
2228 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2229 	 * packets waiting in a qdisc or device for EDT delivery.
2230 	 */
2231 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2232 	if (delta > 0)
2233 		goto send_now;
2234 
2235 	in_flight = tcp_packets_in_flight(tp);
2236 
2237 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2238 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2239 
2240 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2241 
2242 	/* From in_flight test above, we know that cwnd > in_flight.  */
2243 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2244 
2245 	limit = min(send_win, cong_win);
2246 
2247 	/* If a full-sized TSO skb can be sent, do it. */
2248 	if (limit >= max_segs * tp->mss_cache)
2249 		goto send_now;
2250 
2251 	/* Middle in queue won't get any more data, full sendable already? */
2252 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2253 		goto send_now;
2254 
2255 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2256 	if (win_divisor) {
2257 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2258 
2259 		/* If at least some fraction of a window is available,
2260 		 * just use it.
2261 		 */
2262 		chunk /= win_divisor;
2263 		if (limit >= chunk)
2264 			goto send_now;
2265 	} else {
2266 		/* Different approach, try not to defer past a single
2267 		 * ACK.  Receiver should ACK every other full sized
2268 		 * frame, so if we have space for more than 3 frames
2269 		 * then send now.
2270 		 */
2271 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2272 			goto send_now;
2273 	}
2274 
2275 	/* TODO : use tsorted_sent_queue ? */
2276 	head = tcp_rtx_queue_head(sk);
2277 	if (!head)
2278 		goto send_now;
2279 	delta = tp->tcp_clock_cache - head->tstamp;
2280 	/* If next ACK is likely to come too late (half srtt), do not defer */
2281 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2282 		goto send_now;
2283 
2284 	/* Ok, it looks like it is advisable to defer.
2285 	 * Three cases are tracked :
2286 	 * 1) We are cwnd-limited
2287 	 * 2) We are rwnd-limited
2288 	 * 3) We are application limited.
2289 	 */
2290 	if (cong_win < send_win) {
2291 		if (cong_win <= skb->len) {
2292 			*is_cwnd_limited = true;
2293 			return true;
2294 		}
2295 	} else {
2296 		if (send_win <= skb->len) {
2297 			*is_rwnd_limited = true;
2298 			return true;
2299 		}
2300 	}
2301 
2302 	/* If this packet won't get more data, do not wait. */
2303 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2304 	    TCP_SKB_CB(skb)->eor)
2305 		goto send_now;
2306 
2307 	return true;
2308 
2309 send_now:
2310 	return false;
2311 }
2312 
2313 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2314 {
2315 	struct inet_connection_sock *icsk = inet_csk(sk);
2316 	struct tcp_sock *tp = tcp_sk(sk);
2317 	struct net *net = sock_net(sk);
2318 	u32 interval;
2319 	s32 delta;
2320 
2321 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2322 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2323 	if (unlikely(delta >= interval * HZ)) {
2324 		int mss = tcp_current_mss(sk);
2325 
2326 		/* Update current search range */
2327 		icsk->icsk_mtup.probe_size = 0;
2328 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2329 			sizeof(struct tcphdr) +
2330 			icsk->icsk_af_ops->net_header_len;
2331 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2332 
2333 		/* Update probe time stamp */
2334 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2335 	}
2336 }
2337 
2338 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2339 {
2340 	struct sk_buff *skb, *next;
2341 
2342 	skb = tcp_send_head(sk);
2343 	tcp_for_write_queue_from_safe(skb, next, sk) {
2344 		if (len <= skb->len)
2345 			break;
2346 
2347 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2348 		    tcp_has_tx_tstamp(skb) ||
2349 		    !skb_pure_zcopy_same(skb, next))
2350 			return false;
2351 
2352 		len -= skb->len;
2353 	}
2354 
2355 	return true;
2356 }
2357 
2358 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2359 			     int probe_size)
2360 {
2361 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2362 	int i, todo, len = 0, nr_frags = 0;
2363 	const struct sk_buff *skb;
2364 
2365 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2366 		return -ENOMEM;
2367 
2368 	skb_queue_walk(&sk->sk_write_queue, skb) {
2369 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2370 
2371 		if (skb_headlen(skb))
2372 			return -EINVAL;
2373 
2374 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2375 			if (len >= probe_size)
2376 				goto commit;
2377 			todo = min_t(int, skb_frag_size(fragfrom),
2378 				     probe_size - len);
2379 			len += todo;
2380 			if (lastfrag &&
2381 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2382 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2383 						      skb_frag_size(lastfrag)) {
2384 				skb_frag_size_add(lastfrag, todo);
2385 				continue;
2386 			}
2387 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2388 				return -E2BIG;
2389 			skb_frag_page_copy(fragto, fragfrom);
2390 			skb_frag_off_copy(fragto, fragfrom);
2391 			skb_frag_size_set(fragto, todo);
2392 			nr_frags++;
2393 			lastfrag = fragto++;
2394 		}
2395 	}
2396 commit:
2397 	WARN_ON_ONCE(len != probe_size);
2398 	for (i = 0; i < nr_frags; i++)
2399 		skb_frag_ref(to, i);
2400 
2401 	skb_shinfo(to)->nr_frags = nr_frags;
2402 	to->truesize += probe_size;
2403 	to->len += probe_size;
2404 	to->data_len += probe_size;
2405 	__skb_header_release(to);
2406 	return 0;
2407 }
2408 
2409 /* Create a new MTU probe if we are ready.
2410  * MTU probe is regularly attempting to increase the path MTU by
2411  * deliberately sending larger packets.  This discovers routing
2412  * changes resulting in larger path MTUs.
2413  *
2414  * Returns 0 if we should wait to probe (no cwnd available),
2415  *         1 if a probe was sent,
2416  *         -1 otherwise
2417  */
2418 static int tcp_mtu_probe(struct sock *sk)
2419 {
2420 	struct inet_connection_sock *icsk = inet_csk(sk);
2421 	struct tcp_sock *tp = tcp_sk(sk);
2422 	struct sk_buff *skb, *nskb, *next;
2423 	struct net *net = sock_net(sk);
2424 	int probe_size;
2425 	int size_needed;
2426 	int copy, len;
2427 	int mss_now;
2428 	int interval;
2429 
2430 	/* Not currently probing/verifying,
2431 	 * not in recovery,
2432 	 * have enough cwnd, and
2433 	 * not SACKing (the variable headers throw things off)
2434 	 */
2435 	if (likely(!icsk->icsk_mtup.enabled ||
2436 		   icsk->icsk_mtup.probe_size ||
2437 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2438 		   tcp_snd_cwnd(tp) < 11 ||
2439 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2440 		return -1;
2441 
2442 	/* Use binary search for probe_size between tcp_mss_base,
2443 	 * and current mss_clamp. if (search_high - search_low)
2444 	 * smaller than a threshold, backoff from probing.
2445 	 */
2446 	mss_now = tcp_current_mss(sk);
2447 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2448 				    icsk->icsk_mtup.search_low) >> 1);
2449 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2450 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2451 	/* When misfortune happens, we are reprobing actively,
2452 	 * and then reprobe timer has expired. We stick with current
2453 	 * probing process by not resetting search range to its orignal.
2454 	 */
2455 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2456 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2457 		/* Check whether enough time has elaplased for
2458 		 * another round of probing.
2459 		 */
2460 		tcp_mtu_check_reprobe(sk);
2461 		return -1;
2462 	}
2463 
2464 	/* Have enough data in the send queue to probe? */
2465 	if (tp->write_seq - tp->snd_nxt < size_needed)
2466 		return -1;
2467 
2468 	if (tp->snd_wnd < size_needed)
2469 		return -1;
2470 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2471 		return 0;
2472 
2473 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2474 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2475 		if (!tcp_packets_in_flight(tp))
2476 			return -1;
2477 		else
2478 			return 0;
2479 	}
2480 
2481 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2482 		return -1;
2483 
2484 	/* We're allowed to probe.  Build it now. */
2485 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2486 	if (!nskb)
2487 		return -1;
2488 
2489 	/* build the payload, and be prepared to abort if this fails. */
2490 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2491 		tcp_skb_tsorted_anchor_cleanup(nskb);
2492 		consume_skb(nskb);
2493 		return -1;
2494 	}
2495 	sk_wmem_queued_add(sk, nskb->truesize);
2496 	sk_mem_charge(sk, nskb->truesize);
2497 
2498 	skb = tcp_send_head(sk);
2499 	skb_copy_decrypted(nskb, skb);
2500 	mptcp_skb_ext_copy(nskb, skb);
2501 
2502 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2503 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2504 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2505 
2506 	tcp_insert_write_queue_before(nskb, skb, sk);
2507 	tcp_highest_sack_replace(sk, skb, nskb);
2508 
2509 	len = 0;
2510 	tcp_for_write_queue_from_safe(skb, next, sk) {
2511 		copy = min_t(int, skb->len, probe_size - len);
2512 
2513 		if (skb->len <= copy) {
2514 			/* We've eaten all the data from this skb.
2515 			 * Throw it away. */
2516 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2517 			/* If this is the last SKB we copy and eor is set
2518 			 * we need to propagate it to the new skb.
2519 			 */
2520 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2521 			tcp_skb_collapse_tstamp(nskb, skb);
2522 			tcp_unlink_write_queue(skb, sk);
2523 			tcp_wmem_free_skb(sk, skb);
2524 		} else {
2525 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2526 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2527 			__pskb_trim_head(skb, copy);
2528 			tcp_set_skb_tso_segs(skb, mss_now);
2529 			TCP_SKB_CB(skb)->seq += copy;
2530 		}
2531 
2532 		len += copy;
2533 
2534 		if (len >= probe_size)
2535 			break;
2536 	}
2537 	tcp_init_tso_segs(nskb, nskb->len);
2538 
2539 	/* We're ready to send.  If this fails, the probe will
2540 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2541 	 */
2542 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2543 		/* Decrement cwnd here because we are sending
2544 		 * effectively two packets. */
2545 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2546 		tcp_event_new_data_sent(sk, nskb);
2547 
2548 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2549 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2550 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2551 
2552 		return 1;
2553 	}
2554 
2555 	return -1;
2556 }
2557 
2558 static bool tcp_pacing_check(struct sock *sk)
2559 {
2560 	struct tcp_sock *tp = tcp_sk(sk);
2561 
2562 	if (!tcp_needs_internal_pacing(sk))
2563 		return false;
2564 
2565 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2566 		return false;
2567 
2568 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2569 		hrtimer_start(&tp->pacing_timer,
2570 			      ns_to_ktime(tp->tcp_wstamp_ns),
2571 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2572 		sock_hold(sk);
2573 	}
2574 	return true;
2575 }
2576 
2577 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2578 {
2579 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2580 
2581 	/* No skb in the rtx queue. */
2582 	if (!node)
2583 		return true;
2584 
2585 	/* Only one skb in rtx queue. */
2586 	return !node->rb_left && !node->rb_right;
2587 }
2588 
2589 /* TCP Small Queues :
2590  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2591  * (These limits are doubled for retransmits)
2592  * This allows for :
2593  *  - better RTT estimation and ACK scheduling
2594  *  - faster recovery
2595  *  - high rates
2596  * Alas, some drivers / subsystems require a fair amount
2597  * of queued bytes to ensure line rate.
2598  * One example is wifi aggregation (802.11 AMPDU)
2599  */
2600 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2601 				  unsigned int factor)
2602 {
2603 	unsigned long limit;
2604 
2605 	limit = max_t(unsigned long,
2606 		      2 * skb->truesize,
2607 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2608 	if (sk->sk_pacing_status == SK_PACING_NONE)
2609 		limit = min_t(unsigned long, limit,
2610 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2611 	limit <<= factor;
2612 
2613 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2614 	    tcp_sk(sk)->tcp_tx_delay) {
2615 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2616 				  tcp_sk(sk)->tcp_tx_delay;
2617 
2618 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2619 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2620 		 * USEC_PER_SEC is approximated by 2^20.
2621 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2622 		 */
2623 		extra_bytes >>= (20 - 1);
2624 		limit += extra_bytes;
2625 	}
2626 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2627 		/* Always send skb if rtx queue is empty or has one skb.
2628 		 * No need to wait for TX completion to call us back,
2629 		 * after softirq/tasklet schedule.
2630 		 * This helps when TX completions are delayed too much.
2631 		 */
2632 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2633 			return false;
2634 
2635 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2636 		/* It is possible TX completion already happened
2637 		 * before we set TSQ_THROTTLED, so we must
2638 		 * test again the condition.
2639 		 */
2640 		smp_mb__after_atomic();
2641 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2642 			return true;
2643 	}
2644 	return false;
2645 }
2646 
2647 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2648 {
2649 	const u32 now = tcp_jiffies32;
2650 	enum tcp_chrono old = tp->chrono_type;
2651 
2652 	if (old > TCP_CHRONO_UNSPEC)
2653 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2654 	tp->chrono_start = now;
2655 	tp->chrono_type = new;
2656 }
2657 
2658 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2659 {
2660 	struct tcp_sock *tp = tcp_sk(sk);
2661 
2662 	/* If there are multiple conditions worthy of tracking in a
2663 	 * chronograph then the highest priority enum takes precedence
2664 	 * over the other conditions. So that if something "more interesting"
2665 	 * starts happening, stop the previous chrono and start a new one.
2666 	 */
2667 	if (type > tp->chrono_type)
2668 		tcp_chrono_set(tp, type);
2669 }
2670 
2671 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 
2675 
2676 	/* There are multiple conditions worthy of tracking in a
2677 	 * chronograph, so that the highest priority enum takes
2678 	 * precedence over the other conditions (see tcp_chrono_start).
2679 	 * If a condition stops, we only stop chrono tracking if
2680 	 * it's the "most interesting" or current chrono we are
2681 	 * tracking and starts busy chrono if we have pending data.
2682 	 */
2683 	if (tcp_rtx_and_write_queues_empty(sk))
2684 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2685 	else if (type == tp->chrono_type)
2686 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2687 }
2688 
2689 /* This routine writes packets to the network.  It advances the
2690  * send_head.  This happens as incoming acks open up the remote
2691  * window for us.
2692  *
2693  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2694  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2695  * account rare use of URG, this is not a big flaw.
2696  *
2697  * Send at most one packet when push_one > 0. Temporarily ignore
2698  * cwnd limit to force at most one packet out when push_one == 2.
2699 
2700  * Returns true, if no segments are in flight and we have queued segments,
2701  * but cannot send anything now because of SWS or another problem.
2702  */
2703 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2704 			   int push_one, gfp_t gfp)
2705 {
2706 	struct tcp_sock *tp = tcp_sk(sk);
2707 	struct sk_buff *skb;
2708 	unsigned int tso_segs, sent_pkts;
2709 	int cwnd_quota;
2710 	int result;
2711 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2712 	u32 max_segs;
2713 
2714 	sent_pkts = 0;
2715 
2716 	tcp_mstamp_refresh(tp);
2717 	if (!push_one) {
2718 		/* Do MTU probing. */
2719 		result = tcp_mtu_probe(sk);
2720 		if (!result) {
2721 			return false;
2722 		} else if (result > 0) {
2723 			sent_pkts = 1;
2724 		}
2725 	}
2726 
2727 	max_segs = tcp_tso_segs(sk, mss_now);
2728 	while ((skb = tcp_send_head(sk))) {
2729 		unsigned int limit;
2730 
2731 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2732 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2733 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2734 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2735 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2736 			tcp_init_tso_segs(skb, mss_now);
2737 			goto repair; /* Skip network transmission */
2738 		}
2739 
2740 		if (tcp_pacing_check(sk))
2741 			break;
2742 
2743 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2744 		BUG_ON(!tso_segs);
2745 
2746 		cwnd_quota = tcp_cwnd_test(tp, skb);
2747 		if (!cwnd_quota) {
2748 			if (push_one == 2)
2749 				/* Force out a loss probe pkt. */
2750 				cwnd_quota = 1;
2751 			else
2752 				break;
2753 		}
2754 
2755 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2756 			is_rwnd_limited = true;
2757 			break;
2758 		}
2759 
2760 		if (tso_segs == 1) {
2761 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2762 						     (tcp_skb_is_last(sk, skb) ?
2763 						      nonagle : TCP_NAGLE_PUSH))))
2764 				break;
2765 		} else {
2766 			if (!push_one &&
2767 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2768 						 &is_rwnd_limited, max_segs))
2769 				break;
2770 		}
2771 
2772 		limit = mss_now;
2773 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2774 			limit = tcp_mss_split_point(sk, skb, mss_now,
2775 						    min_t(unsigned int,
2776 							  cwnd_quota,
2777 							  max_segs),
2778 						    nonagle);
2779 
2780 		if (skb->len > limit &&
2781 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2782 			break;
2783 
2784 		if (tcp_small_queue_check(sk, skb, 0))
2785 			break;
2786 
2787 		/* Argh, we hit an empty skb(), presumably a thread
2788 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2789 		 * We do not want to send a pure-ack packet and have
2790 		 * a strange looking rtx queue with empty packet(s).
2791 		 */
2792 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2793 			break;
2794 
2795 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2796 			break;
2797 
2798 repair:
2799 		/* Advance the send_head.  This one is sent out.
2800 		 * This call will increment packets_out.
2801 		 */
2802 		tcp_event_new_data_sent(sk, skb);
2803 
2804 		tcp_minshall_update(tp, mss_now, skb);
2805 		sent_pkts += tcp_skb_pcount(skb);
2806 
2807 		if (push_one)
2808 			break;
2809 	}
2810 
2811 	if (is_rwnd_limited)
2812 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2813 	else
2814 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2815 
2816 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2817 	if (likely(sent_pkts || is_cwnd_limited))
2818 		tcp_cwnd_validate(sk, is_cwnd_limited);
2819 
2820 	if (likely(sent_pkts)) {
2821 		if (tcp_in_cwnd_reduction(sk))
2822 			tp->prr_out += sent_pkts;
2823 
2824 		/* Send one loss probe per tail loss episode. */
2825 		if (push_one != 2)
2826 			tcp_schedule_loss_probe(sk, false);
2827 		return false;
2828 	}
2829 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2830 }
2831 
2832 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2833 {
2834 	struct inet_connection_sock *icsk = inet_csk(sk);
2835 	struct tcp_sock *tp = tcp_sk(sk);
2836 	u32 timeout, timeout_us, rto_delta_us;
2837 	int early_retrans;
2838 
2839 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2840 	 * finishes.
2841 	 */
2842 	if (rcu_access_pointer(tp->fastopen_rsk))
2843 		return false;
2844 
2845 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2846 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2847 	 * not in loss recovery, that are either limited by cwnd or application.
2848 	 */
2849 	if ((early_retrans != 3 && early_retrans != 4) ||
2850 	    !tp->packets_out || !tcp_is_sack(tp) ||
2851 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2852 	     icsk->icsk_ca_state != TCP_CA_CWR))
2853 		return false;
2854 
2855 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2856 	 * for delayed ack when there's one outstanding packet. If no RTT
2857 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2858 	 */
2859 	if (tp->srtt_us) {
2860 		timeout_us = tp->srtt_us >> 2;
2861 		if (tp->packets_out == 1)
2862 			timeout_us += tcp_rto_min_us(sk);
2863 		else
2864 			timeout_us += TCP_TIMEOUT_MIN_US;
2865 		timeout = usecs_to_jiffies(timeout_us);
2866 	} else {
2867 		timeout = TCP_TIMEOUT_INIT;
2868 	}
2869 
2870 	/* If the RTO formula yields an earlier time, then use that time. */
2871 	rto_delta_us = advancing_rto ?
2872 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2873 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2874 	if (rto_delta_us > 0)
2875 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2876 
2877 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2878 	return true;
2879 }
2880 
2881 /* Thanks to skb fast clones, we can detect if a prior transmit of
2882  * a packet is still in a qdisc or driver queue.
2883  * In this case, there is very little point doing a retransmit !
2884  */
2885 static bool skb_still_in_host_queue(struct sock *sk,
2886 				    const struct sk_buff *skb)
2887 {
2888 	if (unlikely(skb_fclone_busy(sk, skb))) {
2889 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2890 		smp_mb__after_atomic();
2891 		if (skb_fclone_busy(sk, skb)) {
2892 			NET_INC_STATS(sock_net(sk),
2893 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2894 			return true;
2895 		}
2896 	}
2897 	return false;
2898 }
2899 
2900 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2901  * retransmit the last segment.
2902  */
2903 void tcp_send_loss_probe(struct sock *sk)
2904 {
2905 	struct tcp_sock *tp = tcp_sk(sk);
2906 	struct sk_buff *skb;
2907 	int pcount;
2908 	int mss = tcp_current_mss(sk);
2909 
2910 	/* At most one outstanding TLP */
2911 	if (tp->tlp_high_seq)
2912 		goto rearm_timer;
2913 
2914 	tp->tlp_retrans = 0;
2915 	skb = tcp_send_head(sk);
2916 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2917 		pcount = tp->packets_out;
2918 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2919 		if (tp->packets_out > pcount)
2920 			goto probe_sent;
2921 		goto rearm_timer;
2922 	}
2923 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2924 	if (unlikely(!skb)) {
2925 		WARN_ONCE(tp->packets_out,
2926 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2927 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2928 		inet_csk(sk)->icsk_pending = 0;
2929 		return;
2930 	}
2931 
2932 	if (skb_still_in_host_queue(sk, skb))
2933 		goto rearm_timer;
2934 
2935 	pcount = tcp_skb_pcount(skb);
2936 	if (WARN_ON(!pcount))
2937 		goto rearm_timer;
2938 
2939 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2940 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2941 					  (pcount - 1) * mss, mss,
2942 					  GFP_ATOMIC)))
2943 			goto rearm_timer;
2944 		skb = skb_rb_next(skb);
2945 	}
2946 
2947 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2948 		goto rearm_timer;
2949 
2950 	if (__tcp_retransmit_skb(sk, skb, 1))
2951 		goto rearm_timer;
2952 
2953 	tp->tlp_retrans = 1;
2954 
2955 probe_sent:
2956 	/* Record snd_nxt for loss detection. */
2957 	tp->tlp_high_seq = tp->snd_nxt;
2958 
2959 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2960 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2961 	inet_csk(sk)->icsk_pending = 0;
2962 rearm_timer:
2963 	tcp_rearm_rto(sk);
2964 }
2965 
2966 /* Push out any pending frames which were held back due to
2967  * TCP_CORK or attempt at coalescing tiny packets.
2968  * The socket must be locked by the caller.
2969  */
2970 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2971 			       int nonagle)
2972 {
2973 	/* If we are closed, the bytes will have to remain here.
2974 	 * In time closedown will finish, we empty the write queue and
2975 	 * all will be happy.
2976 	 */
2977 	if (unlikely(sk->sk_state == TCP_CLOSE))
2978 		return;
2979 
2980 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2981 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2982 		tcp_check_probe_timer(sk);
2983 }
2984 
2985 /* Send _single_ skb sitting at the send head. This function requires
2986  * true push pending frames to setup probe timer etc.
2987  */
2988 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2989 {
2990 	struct sk_buff *skb = tcp_send_head(sk);
2991 
2992 	BUG_ON(!skb || skb->len < mss_now);
2993 
2994 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2995 }
2996 
2997 /* This function returns the amount that we can raise the
2998  * usable window based on the following constraints
2999  *
3000  * 1. The window can never be shrunk once it is offered (RFC 793)
3001  * 2. We limit memory per socket
3002  *
3003  * RFC 1122:
3004  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3005  *  RECV.NEXT + RCV.WIN fixed until:
3006  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3007  *
3008  * i.e. don't raise the right edge of the window until you can raise
3009  * it at least MSS bytes.
3010  *
3011  * Unfortunately, the recommended algorithm breaks header prediction,
3012  * since header prediction assumes th->window stays fixed.
3013  *
3014  * Strictly speaking, keeping th->window fixed violates the receiver
3015  * side SWS prevention criteria. The problem is that under this rule
3016  * a stream of single byte packets will cause the right side of the
3017  * window to always advance by a single byte.
3018  *
3019  * Of course, if the sender implements sender side SWS prevention
3020  * then this will not be a problem.
3021  *
3022  * BSD seems to make the following compromise:
3023  *
3024  *	If the free space is less than the 1/4 of the maximum
3025  *	space available and the free space is less than 1/2 mss,
3026  *	then set the window to 0.
3027  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3028  *	Otherwise, just prevent the window from shrinking
3029  *	and from being larger than the largest representable value.
3030  *
3031  * This prevents incremental opening of the window in the regime
3032  * where TCP is limited by the speed of the reader side taking
3033  * data out of the TCP receive queue. It does nothing about
3034  * those cases where the window is constrained on the sender side
3035  * because the pipeline is full.
3036  *
3037  * BSD also seems to "accidentally" limit itself to windows that are a
3038  * multiple of MSS, at least until the free space gets quite small.
3039  * This would appear to be a side effect of the mbuf implementation.
3040  * Combining these two algorithms results in the observed behavior
3041  * of having a fixed window size at almost all times.
3042  *
3043  * Below we obtain similar behavior by forcing the offered window to
3044  * a multiple of the mss when it is feasible to do so.
3045  *
3046  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3047  * Regular options like TIMESTAMP are taken into account.
3048  */
3049 u32 __tcp_select_window(struct sock *sk)
3050 {
3051 	struct inet_connection_sock *icsk = inet_csk(sk);
3052 	struct tcp_sock *tp = tcp_sk(sk);
3053 	struct net *net = sock_net(sk);
3054 	/* MSS for the peer's data.  Previous versions used mss_clamp
3055 	 * here.  I don't know if the value based on our guesses
3056 	 * of peer's MSS is better for the performance.  It's more correct
3057 	 * but may be worse for the performance because of rcv_mss
3058 	 * fluctuations.  --SAW  1998/11/1
3059 	 */
3060 	int mss = icsk->icsk_ack.rcv_mss;
3061 	int free_space = tcp_space(sk);
3062 	int allowed_space = tcp_full_space(sk);
3063 	int full_space, window;
3064 
3065 	if (sk_is_mptcp(sk))
3066 		mptcp_space(sk, &free_space, &allowed_space);
3067 
3068 	full_space = min_t(int, tp->window_clamp, allowed_space);
3069 
3070 	if (unlikely(mss > full_space)) {
3071 		mss = full_space;
3072 		if (mss <= 0)
3073 			return 0;
3074 	}
3075 
3076 	/* Only allow window shrink if the sysctl is enabled and we have
3077 	 * a non-zero scaling factor in effect.
3078 	 */
3079 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3080 		goto shrink_window_allowed;
3081 
3082 	/* do not allow window to shrink */
3083 
3084 	if (free_space < (full_space >> 1)) {
3085 		icsk->icsk_ack.quick = 0;
3086 
3087 		if (tcp_under_memory_pressure(sk))
3088 			tcp_adjust_rcv_ssthresh(sk);
3089 
3090 		/* free_space might become our new window, make sure we don't
3091 		 * increase it due to wscale.
3092 		 */
3093 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3094 
3095 		/* if free space is less than mss estimate, or is below 1/16th
3096 		 * of the maximum allowed, try to move to zero-window, else
3097 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3098 		 * new incoming data is dropped due to memory limits.
3099 		 * With large window, mss test triggers way too late in order
3100 		 * to announce zero window in time before rmem limit kicks in.
3101 		 */
3102 		if (free_space < (allowed_space >> 4) || free_space < mss)
3103 			return 0;
3104 	}
3105 
3106 	if (free_space > tp->rcv_ssthresh)
3107 		free_space = tp->rcv_ssthresh;
3108 
3109 	/* Don't do rounding if we are using window scaling, since the
3110 	 * scaled window will not line up with the MSS boundary anyway.
3111 	 */
3112 	if (tp->rx_opt.rcv_wscale) {
3113 		window = free_space;
3114 
3115 		/* Advertise enough space so that it won't get scaled away.
3116 		 * Import case: prevent zero window announcement if
3117 		 * 1<<rcv_wscale > mss.
3118 		 */
3119 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3120 	} else {
3121 		window = tp->rcv_wnd;
3122 		/* Get the largest window that is a nice multiple of mss.
3123 		 * Window clamp already applied above.
3124 		 * If our current window offering is within 1 mss of the
3125 		 * free space we just keep it. This prevents the divide
3126 		 * and multiply from happening most of the time.
3127 		 * We also don't do any window rounding when the free space
3128 		 * is too small.
3129 		 */
3130 		if (window <= free_space - mss || window > free_space)
3131 			window = rounddown(free_space, mss);
3132 		else if (mss == full_space &&
3133 			 free_space > window + (full_space >> 1))
3134 			window = free_space;
3135 	}
3136 
3137 	return window;
3138 
3139 shrink_window_allowed:
3140 	/* new window should always be an exact multiple of scaling factor */
3141 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3142 
3143 	if (free_space < (full_space >> 1)) {
3144 		icsk->icsk_ack.quick = 0;
3145 
3146 		if (tcp_under_memory_pressure(sk))
3147 			tcp_adjust_rcv_ssthresh(sk);
3148 
3149 		/* if free space is too low, return a zero window */
3150 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3151 			free_space < (1 << tp->rx_opt.rcv_wscale))
3152 			return 0;
3153 	}
3154 
3155 	if (free_space > tp->rcv_ssthresh) {
3156 		free_space = tp->rcv_ssthresh;
3157 		/* new window should always be an exact multiple of scaling factor
3158 		 *
3159 		 * For this case, we ALIGN "up" (increase free_space) because
3160 		 * we know free_space is not zero here, it has been reduced from
3161 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3162 		 * (unlike sk_rcvbuf).
3163 		 */
3164 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3165 	}
3166 
3167 	return free_space;
3168 }
3169 
3170 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3171 			     const struct sk_buff *next_skb)
3172 {
3173 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3174 		const struct skb_shared_info *next_shinfo =
3175 			skb_shinfo(next_skb);
3176 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3177 
3178 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3179 		shinfo->tskey = next_shinfo->tskey;
3180 		TCP_SKB_CB(skb)->txstamp_ack |=
3181 			TCP_SKB_CB(next_skb)->txstamp_ack;
3182 	}
3183 }
3184 
3185 /* Collapses two adjacent SKB's during retransmission. */
3186 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3187 {
3188 	struct tcp_sock *tp = tcp_sk(sk);
3189 	struct sk_buff *next_skb = skb_rb_next(skb);
3190 	int next_skb_size;
3191 
3192 	next_skb_size = next_skb->len;
3193 
3194 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3195 
3196 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3197 		return false;
3198 
3199 	tcp_highest_sack_replace(sk, next_skb, skb);
3200 
3201 	/* Update sequence range on original skb. */
3202 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3203 
3204 	/* Merge over control information. This moves PSH/FIN etc. over */
3205 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3206 
3207 	/* All done, get rid of second SKB and account for it so
3208 	 * packet counting does not break.
3209 	 */
3210 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3211 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3212 
3213 	/* changed transmit queue under us so clear hints */
3214 	tcp_clear_retrans_hints_partial(tp);
3215 	if (next_skb == tp->retransmit_skb_hint)
3216 		tp->retransmit_skb_hint = skb;
3217 
3218 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3219 
3220 	tcp_skb_collapse_tstamp(skb, next_skb);
3221 
3222 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3223 	return true;
3224 }
3225 
3226 /* Check if coalescing SKBs is legal. */
3227 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3228 {
3229 	if (tcp_skb_pcount(skb) > 1)
3230 		return false;
3231 	if (skb_cloned(skb))
3232 		return false;
3233 	/* Some heuristics for collapsing over SACK'd could be invented */
3234 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3235 		return false;
3236 
3237 	return true;
3238 }
3239 
3240 /* Collapse packets in the retransmit queue to make to create
3241  * less packets on the wire. This is only done on retransmission.
3242  */
3243 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3244 				     int space)
3245 {
3246 	struct tcp_sock *tp = tcp_sk(sk);
3247 	struct sk_buff *skb = to, *tmp;
3248 	bool first = true;
3249 
3250 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3251 		return;
3252 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3253 		return;
3254 
3255 	skb_rbtree_walk_from_safe(skb, tmp) {
3256 		if (!tcp_can_collapse(sk, skb))
3257 			break;
3258 
3259 		if (!tcp_skb_can_collapse(to, skb))
3260 			break;
3261 
3262 		space -= skb->len;
3263 
3264 		if (first) {
3265 			first = false;
3266 			continue;
3267 		}
3268 
3269 		if (space < 0)
3270 			break;
3271 
3272 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3273 			break;
3274 
3275 		if (!tcp_collapse_retrans(sk, to))
3276 			break;
3277 	}
3278 }
3279 
3280 /* This retransmits one SKB.  Policy decisions and retransmit queue
3281  * state updates are done by the caller.  Returns non-zero if an
3282  * error occurred which prevented the send.
3283  */
3284 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3285 {
3286 	struct inet_connection_sock *icsk = inet_csk(sk);
3287 	struct tcp_sock *tp = tcp_sk(sk);
3288 	unsigned int cur_mss;
3289 	int diff, len, err;
3290 	int avail_wnd;
3291 
3292 	/* Inconclusive MTU probe */
3293 	if (icsk->icsk_mtup.probe_size)
3294 		icsk->icsk_mtup.probe_size = 0;
3295 
3296 	if (skb_still_in_host_queue(sk, skb))
3297 		return -EBUSY;
3298 
3299 start:
3300 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3301 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3302 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3303 			TCP_SKB_CB(skb)->seq++;
3304 			goto start;
3305 		}
3306 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3307 			WARN_ON_ONCE(1);
3308 			return -EINVAL;
3309 		}
3310 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3311 			return -ENOMEM;
3312 	}
3313 
3314 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3315 		return -EHOSTUNREACH; /* Routing failure or similar. */
3316 
3317 	cur_mss = tcp_current_mss(sk);
3318 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3319 
3320 	/* If receiver has shrunk his window, and skb is out of
3321 	 * new window, do not retransmit it. The exception is the
3322 	 * case, when window is shrunk to zero. In this case
3323 	 * our retransmit of one segment serves as a zero window probe.
3324 	 */
3325 	if (avail_wnd <= 0) {
3326 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3327 			return -EAGAIN;
3328 		avail_wnd = cur_mss;
3329 	}
3330 
3331 	len = cur_mss * segs;
3332 	if (len > avail_wnd) {
3333 		len = rounddown(avail_wnd, cur_mss);
3334 		if (!len)
3335 			len = avail_wnd;
3336 	}
3337 	if (skb->len > len) {
3338 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3339 				 cur_mss, GFP_ATOMIC))
3340 			return -ENOMEM; /* We'll try again later. */
3341 	} else {
3342 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3343 			return -ENOMEM;
3344 
3345 		diff = tcp_skb_pcount(skb);
3346 		tcp_set_skb_tso_segs(skb, cur_mss);
3347 		diff -= tcp_skb_pcount(skb);
3348 		if (diff)
3349 			tcp_adjust_pcount(sk, skb, diff);
3350 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3351 		if (skb->len < avail_wnd)
3352 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3353 	}
3354 
3355 	/* RFC3168, section 6.1.1.1. ECN fallback */
3356 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3357 		tcp_ecn_clear_syn(sk, skb);
3358 
3359 	/* Update global and local TCP statistics. */
3360 	segs = tcp_skb_pcount(skb);
3361 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3362 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3363 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3364 	tp->total_retrans += segs;
3365 	tp->bytes_retrans += skb->len;
3366 
3367 	/* make sure skb->data is aligned on arches that require it
3368 	 * and check if ack-trimming & collapsing extended the headroom
3369 	 * beyond what csum_start can cover.
3370 	 */
3371 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3372 		     skb_headroom(skb) >= 0xFFFF)) {
3373 		struct sk_buff *nskb;
3374 
3375 		tcp_skb_tsorted_save(skb) {
3376 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3377 			if (nskb) {
3378 				nskb->dev = NULL;
3379 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3380 			} else {
3381 				err = -ENOBUFS;
3382 			}
3383 		} tcp_skb_tsorted_restore(skb);
3384 
3385 		if (!err) {
3386 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3387 			tcp_rate_skb_sent(sk, skb);
3388 		}
3389 	} else {
3390 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3391 	}
3392 
3393 	/* To avoid taking spuriously low RTT samples based on a timestamp
3394 	 * for a transmit that never happened, always mark EVER_RETRANS
3395 	 */
3396 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3397 
3398 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3399 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3400 				  TCP_SKB_CB(skb)->seq, segs, err);
3401 
3402 	if (likely(!err)) {
3403 		trace_tcp_retransmit_skb(sk, skb);
3404 	} else if (err != -EBUSY) {
3405 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3406 	}
3407 	return err;
3408 }
3409 
3410 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3411 {
3412 	struct tcp_sock *tp = tcp_sk(sk);
3413 	int err = __tcp_retransmit_skb(sk, skb, segs);
3414 
3415 	if (err == 0) {
3416 #if FASTRETRANS_DEBUG > 0
3417 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3418 			net_dbg_ratelimited("retrans_out leaked\n");
3419 		}
3420 #endif
3421 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3422 		tp->retrans_out += tcp_skb_pcount(skb);
3423 	}
3424 
3425 	/* Save stamp of the first (attempted) retransmit. */
3426 	if (!tp->retrans_stamp)
3427 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3428 
3429 	if (tp->undo_retrans < 0)
3430 		tp->undo_retrans = 0;
3431 	tp->undo_retrans += tcp_skb_pcount(skb);
3432 	return err;
3433 }
3434 
3435 /* This gets called after a retransmit timeout, and the initially
3436  * retransmitted data is acknowledged.  It tries to continue
3437  * resending the rest of the retransmit queue, until either
3438  * we've sent it all or the congestion window limit is reached.
3439  */
3440 void tcp_xmit_retransmit_queue(struct sock *sk)
3441 {
3442 	const struct inet_connection_sock *icsk = inet_csk(sk);
3443 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3444 	struct tcp_sock *tp = tcp_sk(sk);
3445 	bool rearm_timer = false;
3446 	u32 max_segs;
3447 	int mib_idx;
3448 
3449 	if (!tp->packets_out)
3450 		return;
3451 
3452 	rtx_head = tcp_rtx_queue_head(sk);
3453 	skb = tp->retransmit_skb_hint ?: rtx_head;
3454 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3455 	skb_rbtree_walk_from(skb) {
3456 		__u8 sacked;
3457 		int segs;
3458 
3459 		if (tcp_pacing_check(sk))
3460 			break;
3461 
3462 		/* we could do better than to assign each time */
3463 		if (!hole)
3464 			tp->retransmit_skb_hint = skb;
3465 
3466 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3467 		if (segs <= 0)
3468 			break;
3469 		sacked = TCP_SKB_CB(skb)->sacked;
3470 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3471 		 * we need to make sure not sending too bigs TSO packets
3472 		 */
3473 		segs = min_t(int, segs, max_segs);
3474 
3475 		if (tp->retrans_out >= tp->lost_out) {
3476 			break;
3477 		} else if (!(sacked & TCPCB_LOST)) {
3478 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3479 				hole = skb;
3480 			continue;
3481 
3482 		} else {
3483 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3484 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3485 			else
3486 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3487 		}
3488 
3489 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3490 			continue;
3491 
3492 		if (tcp_small_queue_check(sk, skb, 1))
3493 			break;
3494 
3495 		if (tcp_retransmit_skb(sk, skb, segs))
3496 			break;
3497 
3498 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3499 
3500 		if (tcp_in_cwnd_reduction(sk))
3501 			tp->prr_out += tcp_skb_pcount(skb);
3502 
3503 		if (skb == rtx_head &&
3504 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3505 			rearm_timer = true;
3506 
3507 	}
3508 	if (rearm_timer)
3509 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3510 				     inet_csk(sk)->icsk_rto,
3511 				     TCP_RTO_MAX);
3512 }
3513 
3514 /* We allow to exceed memory limits for FIN packets to expedite
3515  * connection tear down and (memory) recovery.
3516  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3517  * or even be forced to close flow without any FIN.
3518  * In general, we want to allow one skb per socket to avoid hangs
3519  * with edge trigger epoll()
3520  */
3521 void sk_forced_mem_schedule(struct sock *sk, int size)
3522 {
3523 	int delta, amt;
3524 
3525 	delta = size - sk->sk_forward_alloc;
3526 	if (delta <= 0)
3527 		return;
3528 	amt = sk_mem_pages(delta);
3529 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3530 	sk_memory_allocated_add(sk, amt);
3531 
3532 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3533 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3534 					gfp_memcg_charge() | __GFP_NOFAIL);
3535 }
3536 
3537 /* Send a FIN. The caller locks the socket for us.
3538  * We should try to send a FIN packet really hard, but eventually give up.
3539  */
3540 void tcp_send_fin(struct sock *sk)
3541 {
3542 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3543 	struct tcp_sock *tp = tcp_sk(sk);
3544 
3545 	/* Optimization, tack on the FIN if we have one skb in write queue and
3546 	 * this skb was not yet sent, or we are under memory pressure.
3547 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3548 	 * as TCP stack thinks it has already been transmitted.
3549 	 */
3550 	tskb = tail;
3551 	if (!tskb && tcp_under_memory_pressure(sk))
3552 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3553 
3554 	if (tskb) {
3555 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3556 		TCP_SKB_CB(tskb)->end_seq++;
3557 		tp->write_seq++;
3558 		if (!tail) {
3559 			/* This means tskb was already sent.
3560 			 * Pretend we included the FIN on previous transmit.
3561 			 * We need to set tp->snd_nxt to the value it would have
3562 			 * if FIN had been sent. This is because retransmit path
3563 			 * does not change tp->snd_nxt.
3564 			 */
3565 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3566 			return;
3567 		}
3568 	} else {
3569 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3570 		if (unlikely(!skb))
3571 			return;
3572 
3573 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3574 		skb_reserve(skb, MAX_TCP_HEADER);
3575 		sk_forced_mem_schedule(sk, skb->truesize);
3576 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3577 		tcp_init_nondata_skb(skb, tp->write_seq,
3578 				     TCPHDR_ACK | TCPHDR_FIN);
3579 		tcp_queue_skb(sk, skb);
3580 	}
3581 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3582 }
3583 
3584 /* We get here when a process closes a file descriptor (either due to
3585  * an explicit close() or as a byproduct of exit()'ing) and there
3586  * was unread data in the receive queue.  This behavior is recommended
3587  * by RFC 2525, section 2.17.  -DaveM
3588  */
3589 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3590 {
3591 	struct sk_buff *skb;
3592 
3593 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3594 
3595 	/* NOTE: No TCP options attached and we never retransmit this. */
3596 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3597 	if (!skb) {
3598 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3599 		return;
3600 	}
3601 
3602 	/* Reserve space for headers and prepare control bits. */
3603 	skb_reserve(skb, MAX_TCP_HEADER);
3604 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3605 			     TCPHDR_ACK | TCPHDR_RST);
3606 	tcp_mstamp_refresh(tcp_sk(sk));
3607 	/* Send it off. */
3608 	if (tcp_transmit_skb(sk, skb, 0, priority))
3609 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3610 
3611 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3612 	 * skb here is different to the troublesome skb, so use NULL
3613 	 */
3614 	trace_tcp_send_reset(sk, NULL);
3615 }
3616 
3617 /* Send a crossed SYN-ACK during socket establishment.
3618  * WARNING: This routine must only be called when we have already sent
3619  * a SYN packet that crossed the incoming SYN that caused this routine
3620  * to get called. If this assumption fails then the initial rcv_wnd
3621  * and rcv_wscale values will not be correct.
3622  */
3623 int tcp_send_synack(struct sock *sk)
3624 {
3625 	struct sk_buff *skb;
3626 
3627 	skb = tcp_rtx_queue_head(sk);
3628 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3629 		pr_err("%s: wrong queue state\n", __func__);
3630 		return -EFAULT;
3631 	}
3632 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3633 		if (skb_cloned(skb)) {
3634 			struct sk_buff *nskb;
3635 
3636 			tcp_skb_tsorted_save(skb) {
3637 				nskb = skb_copy(skb, GFP_ATOMIC);
3638 			} tcp_skb_tsorted_restore(skb);
3639 			if (!nskb)
3640 				return -ENOMEM;
3641 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3642 			tcp_highest_sack_replace(sk, skb, nskb);
3643 			tcp_rtx_queue_unlink_and_free(skb, sk);
3644 			__skb_header_release(nskb);
3645 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3646 			sk_wmem_queued_add(sk, nskb->truesize);
3647 			sk_mem_charge(sk, nskb->truesize);
3648 			skb = nskb;
3649 		}
3650 
3651 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3652 		tcp_ecn_send_synack(sk, skb);
3653 	}
3654 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3655 }
3656 
3657 /**
3658  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3659  * @sk: listener socket
3660  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3661  *       should not use it again.
3662  * @req: request_sock pointer
3663  * @foc: cookie for tcp fast open
3664  * @synack_type: Type of synack to prepare
3665  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3666  */
3667 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3668 				struct request_sock *req,
3669 				struct tcp_fastopen_cookie *foc,
3670 				enum tcp_synack_type synack_type,
3671 				struct sk_buff *syn_skb)
3672 {
3673 	struct inet_request_sock *ireq = inet_rsk(req);
3674 	const struct tcp_sock *tp = tcp_sk(sk);
3675 	struct tcp_out_options opts;
3676 	struct tcp_key key = {};
3677 	struct sk_buff *skb;
3678 	int tcp_header_size;
3679 	struct tcphdr *th;
3680 	int mss;
3681 	u64 now;
3682 
3683 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3684 	if (unlikely(!skb)) {
3685 		dst_release(dst);
3686 		return NULL;
3687 	}
3688 	/* Reserve space for headers. */
3689 	skb_reserve(skb, MAX_TCP_HEADER);
3690 
3691 	switch (synack_type) {
3692 	case TCP_SYNACK_NORMAL:
3693 		skb_set_owner_w(skb, req_to_sk(req));
3694 		break;
3695 	case TCP_SYNACK_COOKIE:
3696 		/* Under synflood, we do not attach skb to a socket,
3697 		 * to avoid false sharing.
3698 		 */
3699 		break;
3700 	case TCP_SYNACK_FASTOPEN:
3701 		/* sk is a const pointer, because we want to express multiple
3702 		 * cpu might call us concurrently.
3703 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3704 		 */
3705 		skb_set_owner_w(skb, (struct sock *)sk);
3706 		break;
3707 	}
3708 	skb_dst_set(skb, dst);
3709 
3710 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3711 
3712 	memset(&opts, 0, sizeof(opts));
3713 	now = tcp_clock_ns();
3714 #ifdef CONFIG_SYN_COOKIES
3715 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3716 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3717 				      true);
3718 	else
3719 #endif
3720 	{
3721 		skb_set_delivery_time(skb, now, true);
3722 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3723 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3724 	}
3725 
3726 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3727 	rcu_read_lock();
3728 #endif
3729 	if (tcp_rsk_used_ao(req)) {
3730 #ifdef CONFIG_TCP_AO
3731 		struct tcp_ao_key *ao_key = NULL;
3732 		u8 keyid = tcp_rsk(req)->ao_keyid;
3733 
3734 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3735 							    keyid, -1);
3736 		/* If there is no matching key - avoid sending anything,
3737 		 * especially usigned segments. It could try harder and lookup
3738 		 * for another peer-matching key, but the peer has requested
3739 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3740 		 */
3741 		if (unlikely(!ao_key)) {
3742 			rcu_read_unlock();
3743 			kfree_skb(skb);
3744 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3745 					     keyid);
3746 			return NULL;
3747 		}
3748 		key.ao_key = ao_key;
3749 		key.type = TCP_KEY_AO;
3750 #endif
3751 	} else {
3752 #ifdef CONFIG_TCP_MD5SIG
3753 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3754 					req_to_sk(req));
3755 		if (key.md5_key)
3756 			key.type = TCP_KEY_MD5;
3757 #endif
3758 	}
3759 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3760 	/* bpf program will be interested in the tcp_flags */
3761 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3762 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3763 					     &key, foc, synack_type, syn_skb)
3764 					+ sizeof(*th);
3765 
3766 	skb_push(skb, tcp_header_size);
3767 	skb_reset_transport_header(skb);
3768 
3769 	th = (struct tcphdr *)skb->data;
3770 	memset(th, 0, sizeof(struct tcphdr));
3771 	th->syn = 1;
3772 	th->ack = 1;
3773 	tcp_ecn_make_synack(req, th);
3774 	th->source = htons(ireq->ir_num);
3775 	th->dest = ireq->ir_rmt_port;
3776 	skb->mark = ireq->ir_mark;
3777 	skb->ip_summed = CHECKSUM_PARTIAL;
3778 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3779 	/* XXX data is queued and acked as is. No buffer/window check */
3780 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3781 
3782 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3783 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3784 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3785 	th->doff = (tcp_header_size >> 2);
3786 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3787 
3788 	/* Okay, we have all we need - do the md5 hash if needed */
3789 	if (tcp_key_is_md5(&key)) {
3790 #ifdef CONFIG_TCP_MD5SIG
3791 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3792 					key.md5_key, req_to_sk(req), skb);
3793 #endif
3794 	} else if (tcp_key_is_ao(&key)) {
3795 #ifdef CONFIG_TCP_AO
3796 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3797 					key.ao_key, req, skb,
3798 					opts.hash_location - (u8 *)th, 0);
3799 #endif
3800 	}
3801 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3802 	rcu_read_unlock();
3803 #endif
3804 
3805 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3806 				synack_type, &opts);
3807 
3808 	skb_set_delivery_time(skb, now, true);
3809 	tcp_add_tx_delay(skb, tp);
3810 
3811 	return skb;
3812 }
3813 EXPORT_SYMBOL(tcp_make_synack);
3814 
3815 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3816 {
3817 	struct inet_connection_sock *icsk = inet_csk(sk);
3818 	const struct tcp_congestion_ops *ca;
3819 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3820 
3821 	if (ca_key == TCP_CA_UNSPEC)
3822 		return;
3823 
3824 	rcu_read_lock();
3825 	ca = tcp_ca_find_key(ca_key);
3826 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3827 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3828 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3829 		icsk->icsk_ca_ops = ca;
3830 	}
3831 	rcu_read_unlock();
3832 }
3833 
3834 /* Do all connect socket setups that can be done AF independent. */
3835 static void tcp_connect_init(struct sock *sk)
3836 {
3837 	const struct dst_entry *dst = __sk_dst_get(sk);
3838 	struct tcp_sock *tp = tcp_sk(sk);
3839 	__u8 rcv_wscale;
3840 	u32 rcv_wnd;
3841 
3842 	/* We'll fix this up when we get a response from the other end.
3843 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3844 	 */
3845 	tp->tcp_header_len = sizeof(struct tcphdr);
3846 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3847 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3848 
3849 	tcp_ao_connect_init(sk);
3850 
3851 	/* If user gave his TCP_MAXSEG, record it to clamp */
3852 	if (tp->rx_opt.user_mss)
3853 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3854 	tp->max_window = 0;
3855 	tcp_mtup_init(sk);
3856 	tcp_sync_mss(sk, dst_mtu(dst));
3857 
3858 	tcp_ca_dst_init(sk, dst);
3859 
3860 	if (!tp->window_clamp)
3861 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3862 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3863 
3864 	tcp_initialize_rcv_mss(sk);
3865 
3866 	/* limit the window selection if the user enforce a smaller rx buffer */
3867 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3868 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3869 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3870 
3871 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3872 	if (rcv_wnd == 0)
3873 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3874 
3875 	tcp_select_initial_window(sk, tcp_full_space(sk),
3876 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3877 				  &tp->rcv_wnd,
3878 				  &tp->window_clamp,
3879 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3880 				  &rcv_wscale,
3881 				  rcv_wnd);
3882 
3883 	tp->rx_opt.rcv_wscale = rcv_wscale;
3884 	tp->rcv_ssthresh = tp->rcv_wnd;
3885 
3886 	WRITE_ONCE(sk->sk_err, 0);
3887 	sock_reset_flag(sk, SOCK_DONE);
3888 	tp->snd_wnd = 0;
3889 	tcp_init_wl(tp, 0);
3890 	tcp_write_queue_purge(sk);
3891 	tp->snd_una = tp->write_seq;
3892 	tp->snd_sml = tp->write_seq;
3893 	tp->snd_up = tp->write_seq;
3894 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3895 
3896 	if (likely(!tp->repair))
3897 		tp->rcv_nxt = 0;
3898 	else
3899 		tp->rcv_tstamp = tcp_jiffies32;
3900 	tp->rcv_wup = tp->rcv_nxt;
3901 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3902 
3903 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3904 	inet_csk(sk)->icsk_retransmits = 0;
3905 	tcp_clear_retrans(tp);
3906 }
3907 
3908 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3909 {
3910 	struct tcp_sock *tp = tcp_sk(sk);
3911 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3912 
3913 	tcb->end_seq += skb->len;
3914 	__skb_header_release(skb);
3915 	sk_wmem_queued_add(sk, skb->truesize);
3916 	sk_mem_charge(sk, skb->truesize);
3917 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3918 	tp->packets_out += tcp_skb_pcount(skb);
3919 }
3920 
3921 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3922  * queue a data-only packet after the regular SYN, such that regular SYNs
3923  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3924  * only the SYN sequence, the data are retransmitted in the first ACK.
3925  * If cookie is not cached or other error occurs, falls back to send a
3926  * regular SYN with Fast Open cookie request option.
3927  */
3928 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3929 {
3930 	struct inet_connection_sock *icsk = inet_csk(sk);
3931 	struct tcp_sock *tp = tcp_sk(sk);
3932 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3933 	struct page_frag *pfrag = sk_page_frag(sk);
3934 	struct sk_buff *syn_data;
3935 	int space, err = 0;
3936 
3937 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3938 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3939 		goto fallback;
3940 
3941 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3942 	 * user-MSS. Reserve maximum option space for middleboxes that add
3943 	 * private TCP options. The cost is reduced data space in SYN :(
3944 	 */
3945 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3946 	/* Sync mss_cache after updating the mss_clamp */
3947 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3948 
3949 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3950 		MAX_TCP_OPTION_SPACE;
3951 
3952 	space = min_t(size_t, space, fo->size);
3953 
3954 	if (space &&
3955 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3956 				  pfrag, sk->sk_allocation))
3957 		goto fallback;
3958 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3959 	if (!syn_data)
3960 		goto fallback;
3961 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3962 	if (space) {
3963 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3964 		space = tcp_wmem_schedule(sk, space);
3965 	}
3966 	if (space) {
3967 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3968 					    space, &fo->data->msg_iter);
3969 		if (unlikely(!space)) {
3970 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3971 			kfree_skb(syn_data);
3972 			goto fallback;
3973 		}
3974 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3975 				   pfrag->offset, space);
3976 		page_ref_inc(pfrag->page);
3977 		pfrag->offset += space;
3978 		skb_len_add(syn_data, space);
3979 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3980 	}
3981 	/* No more data pending in inet_wait_for_connect() */
3982 	if (space == fo->size)
3983 		fo->data = NULL;
3984 	fo->copied = space;
3985 
3986 	tcp_connect_queue_skb(sk, syn_data);
3987 	if (syn_data->len)
3988 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3989 
3990 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3991 
3992 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3993 
3994 	/* Now full SYN+DATA was cloned and sent (or not),
3995 	 * remove the SYN from the original skb (syn_data)
3996 	 * we keep in write queue in case of a retransmit, as we
3997 	 * also have the SYN packet (with no data) in the same queue.
3998 	 */
3999 	TCP_SKB_CB(syn_data)->seq++;
4000 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4001 	if (!err) {
4002 		tp->syn_data = (fo->copied > 0);
4003 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4004 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4005 		goto done;
4006 	}
4007 
4008 	/* data was not sent, put it in write_queue */
4009 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4010 	tp->packets_out -= tcp_skb_pcount(syn_data);
4011 
4012 fallback:
4013 	/* Send a regular SYN with Fast Open cookie request option */
4014 	if (fo->cookie.len > 0)
4015 		fo->cookie.len = 0;
4016 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4017 	if (err)
4018 		tp->syn_fastopen = 0;
4019 done:
4020 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4021 	return err;
4022 }
4023 
4024 /* Build a SYN and send it off. */
4025 int tcp_connect(struct sock *sk)
4026 {
4027 	struct tcp_sock *tp = tcp_sk(sk);
4028 	struct sk_buff *buff;
4029 	int err;
4030 
4031 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4032 
4033 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4034 	/* Has to be checked late, after setting daddr/saddr/ops.
4035 	 * Return error if the peer has both a md5 and a tcp-ao key
4036 	 * configured as this is ambiguous.
4037 	 */
4038 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4039 					       lockdep_sock_is_held(sk)))) {
4040 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4041 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4042 		struct tcp_ao_info *ao_info;
4043 
4044 		ao_info = rcu_dereference_check(tp->ao_info,
4045 						lockdep_sock_is_held(sk));
4046 		if (ao_info) {
4047 			/* This is an extra check: tcp_ao_required() in
4048 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4049 			 * md5 keys on ao_required socket.
4050 			 */
4051 			needs_ao |= ao_info->ao_required;
4052 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4053 		}
4054 		if (needs_md5 && needs_ao)
4055 			return -EKEYREJECTED;
4056 
4057 		/* If we have a matching md5 key and no matching tcp-ao key
4058 		 * then free up ao_info if allocated.
4059 		 */
4060 		if (needs_md5) {
4061 			tcp_ao_destroy_sock(sk, false);
4062 		} else if (needs_ao) {
4063 			tcp_clear_md5_list(sk);
4064 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4065 						  lockdep_sock_is_held(sk)));
4066 		}
4067 	}
4068 #endif
4069 #ifdef CONFIG_TCP_AO
4070 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4071 					       lockdep_sock_is_held(sk)))) {
4072 		/* Don't allow connecting if ao is configured but no
4073 		 * matching key is found.
4074 		 */
4075 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4076 			return -EKEYREJECTED;
4077 	}
4078 #endif
4079 
4080 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4081 		return -EHOSTUNREACH; /* Routing failure or similar. */
4082 
4083 	tcp_connect_init(sk);
4084 
4085 	if (unlikely(tp->repair)) {
4086 		tcp_finish_connect(sk, NULL);
4087 		return 0;
4088 	}
4089 
4090 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4091 	if (unlikely(!buff))
4092 		return -ENOBUFS;
4093 
4094 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4095 	tcp_mstamp_refresh(tp);
4096 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4097 	tcp_connect_queue_skb(sk, buff);
4098 	tcp_ecn_send_syn(sk, buff);
4099 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4100 
4101 	/* Send off SYN; include data in Fast Open. */
4102 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4103 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4104 	if (err == -ECONNREFUSED)
4105 		return err;
4106 
4107 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4108 	 * in order to make this packet get counted in tcpOutSegs.
4109 	 */
4110 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4111 	tp->pushed_seq = tp->write_seq;
4112 	buff = tcp_send_head(sk);
4113 	if (unlikely(buff)) {
4114 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4115 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4116 	}
4117 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4118 
4119 	/* Timer for repeating the SYN until an answer. */
4120 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4121 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4122 	return 0;
4123 }
4124 EXPORT_SYMBOL(tcp_connect);
4125 
4126 u32 tcp_delack_max(const struct sock *sk)
4127 {
4128 	const struct dst_entry *dst = __sk_dst_get(sk);
4129 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4130 
4131 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4132 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4133 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4134 
4135 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4136 	}
4137 	return delack_max;
4138 }
4139 
4140 /* Send out a delayed ack, the caller does the policy checking
4141  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4142  * for details.
4143  */
4144 void tcp_send_delayed_ack(struct sock *sk)
4145 {
4146 	struct inet_connection_sock *icsk = inet_csk(sk);
4147 	int ato = icsk->icsk_ack.ato;
4148 	unsigned long timeout;
4149 
4150 	if (ato > TCP_DELACK_MIN) {
4151 		const struct tcp_sock *tp = tcp_sk(sk);
4152 		int max_ato = HZ / 2;
4153 
4154 		if (inet_csk_in_pingpong_mode(sk) ||
4155 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4156 			max_ato = TCP_DELACK_MAX;
4157 
4158 		/* Slow path, intersegment interval is "high". */
4159 
4160 		/* If some rtt estimate is known, use it to bound delayed ack.
4161 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4162 		 * directly.
4163 		 */
4164 		if (tp->srtt_us) {
4165 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4166 					TCP_DELACK_MIN);
4167 
4168 			if (rtt < max_ato)
4169 				max_ato = rtt;
4170 		}
4171 
4172 		ato = min(ato, max_ato);
4173 	}
4174 
4175 	ato = min_t(u32, ato, tcp_delack_max(sk));
4176 
4177 	/* Stay within the limit we were given */
4178 	timeout = jiffies + ato;
4179 
4180 	/* Use new timeout only if there wasn't a older one earlier. */
4181 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4182 		/* If delack timer is about to expire, send ACK now. */
4183 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4184 			tcp_send_ack(sk);
4185 			return;
4186 		}
4187 
4188 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4189 			timeout = icsk->icsk_ack.timeout;
4190 	}
4191 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4192 	icsk->icsk_ack.timeout = timeout;
4193 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4194 }
4195 
4196 /* This routine sends an ack and also updates the window. */
4197 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4198 {
4199 	struct sk_buff *buff;
4200 
4201 	/* If we have been reset, we may not send again. */
4202 	if (sk->sk_state == TCP_CLOSE)
4203 		return;
4204 
4205 	/* We are not putting this on the write queue, so
4206 	 * tcp_transmit_skb() will set the ownership to this
4207 	 * sock.
4208 	 */
4209 	buff = alloc_skb(MAX_TCP_HEADER,
4210 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4211 	if (unlikely(!buff)) {
4212 		struct inet_connection_sock *icsk = inet_csk(sk);
4213 		unsigned long delay;
4214 
4215 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4216 		if (delay < TCP_RTO_MAX)
4217 			icsk->icsk_ack.retry++;
4218 		inet_csk_schedule_ack(sk);
4219 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4220 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4221 		return;
4222 	}
4223 
4224 	/* Reserve space for headers and prepare control bits. */
4225 	skb_reserve(buff, MAX_TCP_HEADER);
4226 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4227 
4228 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4229 	 * too much.
4230 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4231 	 */
4232 	skb_set_tcp_pure_ack(buff);
4233 
4234 	/* Send it off, this clears delayed acks for us. */
4235 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4236 }
4237 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4238 
4239 void tcp_send_ack(struct sock *sk)
4240 {
4241 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4242 }
4243 
4244 /* This routine sends a packet with an out of date sequence
4245  * number. It assumes the other end will try to ack it.
4246  *
4247  * Question: what should we make while urgent mode?
4248  * 4.4BSD forces sending single byte of data. We cannot send
4249  * out of window data, because we have SND.NXT==SND.MAX...
4250  *
4251  * Current solution: to send TWO zero-length segments in urgent mode:
4252  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4253  * out-of-date with SND.UNA-1 to probe window.
4254  */
4255 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4256 {
4257 	struct tcp_sock *tp = tcp_sk(sk);
4258 	struct sk_buff *skb;
4259 
4260 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4261 	skb = alloc_skb(MAX_TCP_HEADER,
4262 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4263 	if (!skb)
4264 		return -1;
4265 
4266 	/* Reserve space for headers and set control bits. */
4267 	skb_reserve(skb, MAX_TCP_HEADER);
4268 	/* Use a previous sequence.  This should cause the other
4269 	 * end to send an ack.  Don't queue or clone SKB, just
4270 	 * send it.
4271 	 */
4272 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4273 	NET_INC_STATS(sock_net(sk), mib);
4274 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4275 }
4276 
4277 /* Called from setsockopt( ... TCP_REPAIR ) */
4278 void tcp_send_window_probe(struct sock *sk)
4279 {
4280 	if (sk->sk_state == TCP_ESTABLISHED) {
4281 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4282 		tcp_mstamp_refresh(tcp_sk(sk));
4283 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4284 	}
4285 }
4286 
4287 /* Initiate keepalive or window probe from timer. */
4288 int tcp_write_wakeup(struct sock *sk, int mib)
4289 {
4290 	struct tcp_sock *tp = tcp_sk(sk);
4291 	struct sk_buff *skb;
4292 
4293 	if (sk->sk_state == TCP_CLOSE)
4294 		return -1;
4295 
4296 	skb = tcp_send_head(sk);
4297 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4298 		int err;
4299 		unsigned int mss = tcp_current_mss(sk);
4300 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4301 
4302 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4303 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4304 
4305 		/* We are probing the opening of a window
4306 		 * but the window size is != 0
4307 		 * must have been a result SWS avoidance ( sender )
4308 		 */
4309 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4310 		    skb->len > mss) {
4311 			seg_size = min(seg_size, mss);
4312 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4313 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4314 					 skb, seg_size, mss, GFP_ATOMIC))
4315 				return -1;
4316 		} else if (!tcp_skb_pcount(skb))
4317 			tcp_set_skb_tso_segs(skb, mss);
4318 
4319 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4320 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4321 		if (!err)
4322 			tcp_event_new_data_sent(sk, skb);
4323 		return err;
4324 	} else {
4325 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4326 			tcp_xmit_probe_skb(sk, 1, mib);
4327 		return tcp_xmit_probe_skb(sk, 0, mib);
4328 	}
4329 }
4330 
4331 /* A window probe timeout has occurred.  If window is not closed send
4332  * a partial packet else a zero probe.
4333  */
4334 void tcp_send_probe0(struct sock *sk)
4335 {
4336 	struct inet_connection_sock *icsk = inet_csk(sk);
4337 	struct tcp_sock *tp = tcp_sk(sk);
4338 	struct net *net = sock_net(sk);
4339 	unsigned long timeout;
4340 	int err;
4341 
4342 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4343 
4344 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4345 		/* Cancel probe timer, if it is not required. */
4346 		icsk->icsk_probes_out = 0;
4347 		icsk->icsk_backoff = 0;
4348 		icsk->icsk_probes_tstamp = 0;
4349 		return;
4350 	}
4351 
4352 	icsk->icsk_probes_out++;
4353 	if (err <= 0) {
4354 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4355 			icsk->icsk_backoff++;
4356 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4357 	} else {
4358 		/* If packet was not sent due to local congestion,
4359 		 * Let senders fight for local resources conservatively.
4360 		 */
4361 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4362 	}
4363 
4364 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4365 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4366 }
4367 
4368 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4369 {
4370 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4371 	struct flowi fl;
4372 	int res;
4373 
4374 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4375 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4376 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4377 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4378 				  NULL);
4379 	if (!res) {
4380 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4381 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4382 		if (unlikely(tcp_passive_fastopen(sk))) {
4383 			/* sk has const attribute because listeners are lockless.
4384 			 * However in this case, we are dealing with a passive fastopen
4385 			 * socket thus we can change total_retrans value.
4386 			 */
4387 			tcp_sk_rw(sk)->total_retrans++;
4388 		}
4389 		trace_tcp_retransmit_synack(sk, req);
4390 	}
4391 	return res;
4392 }
4393 EXPORT_SYMBOL(tcp_rtx_synack);
4394