1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, increase pingpong count. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 181 { 182 struct tcp_sock *tp = tcp_sk(sk); 183 184 if (unlikely(tp->compressed_ack)) { 185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 186 tp->compressed_ack); 187 tp->compressed_ack = 0; 188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 189 __sock_put(sk); 190 } 191 192 if (unlikely(rcv_nxt != tp->rcv_nxt)) 193 return; /* Special ACK sent by DCTCP to reflect ECN */ 194 tcp_dec_quickack_mode(sk); 195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = rounddown(space, mss); 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = min_t(u32, space, U16_MAX); 233 234 if (init_rcv_wnd) 235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 236 237 *rcv_wscale = 0; 238 if (wscale_ok) { 239 /* Set window scaling on max possible window */ 240 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 241 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 242 space = min_t(u32, space, *window_clamp); 243 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 244 0, TCP_MAX_WSCALE); 245 } 246 /* Set the clamp no higher than max representable value */ 247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 248 } 249 EXPORT_SYMBOL(tcp_select_initial_window); 250 251 /* Chose a new window to advertise, update state in tcp_sock for the 252 * socket, and return result with RFC1323 scaling applied. The return 253 * value can be stuffed directly into th->window for an outgoing 254 * frame. 255 */ 256 static u16 tcp_select_window(struct sock *sk) 257 { 258 struct tcp_sock *tp = tcp_sk(sk); 259 struct net *net = sock_net(sk); 260 u32 old_win = tp->rcv_wnd; 261 u32 cur_win, new_win; 262 263 /* Make the window 0 if we failed to queue the data because we 264 * are out of memory. The window is temporary, so we don't store 265 * it on the socket. 266 */ 267 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 268 return 0; 269 270 cur_win = tcp_receive_window(tp); 271 new_win = __tcp_select_window(sk); 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 281 /* Never shrink the offered window */ 282 if (new_win == 0) 283 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 285 } 286 } 287 288 tp->rcv_wnd = new_win; 289 tp->rcv_wup = tp->rcv_nxt; 290 291 /* Make sure we do not exceed the maximum possible 292 * scaled window. 293 */ 294 if (!tp->rx_opt.rcv_wscale && 295 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 296 new_win = min(new_win, MAX_TCP_WINDOW); 297 else 298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 299 300 /* RFC1323 scaling applied */ 301 new_win >>= tp->rx_opt.rcv_wscale; 302 303 /* If we advertise zero window, disable fast path. */ 304 if (new_win == 0) { 305 tp->pred_flags = 0; 306 if (old_win) 307 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 308 } else if (old_win == 0) { 309 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 310 } 311 312 return new_win; 313 } 314 315 /* Packet ECN state for a SYN-ACK */ 316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 317 { 318 const struct tcp_sock *tp = tcp_sk(sk); 319 320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 321 if (!(tp->ecn_flags & TCP_ECN_OK)) 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 323 else if (tcp_ca_needs_ecn(sk) || 324 tcp_bpf_ca_needs_ecn(sk)) 325 INET_ECN_xmit(sk); 326 } 327 328 /* Packet ECN state for a SYN. */ 329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 333 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 334 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 354 { 355 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 356 /* tp->ecn_flags are cleared at a later point in time when 357 * SYN ACK is ultimatively being received. 358 */ 359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 360 } 361 362 static void 363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 364 { 365 if (inet_rsk(req)->ecn_ok) 366 th->ece = 1; 367 } 368 369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 370 * be sent. 371 */ 372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 373 struct tcphdr *th, int tcp_header_len) 374 { 375 struct tcp_sock *tp = tcp_sk(sk); 376 377 if (tp->ecn_flags & TCP_ECN_OK) { 378 /* Not-retransmitted data segment: set ECT and inject CWR. */ 379 if (skb->len != tcp_header_len && 380 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 381 INET_ECN_xmit(sk); 382 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 383 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 384 th->cwr = 1; 385 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 386 } 387 } else if (!tcp_ca_needs_ecn(sk)) { 388 /* ACK or retransmitted segment: clear ECT|CE */ 389 INET_ECN_dontxmit(sk); 390 } 391 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 392 th->ece = 1; 393 } 394 } 395 396 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 397 * auto increment end seqno. 398 */ 399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 400 { 401 skb->ip_summed = CHECKSUM_PARTIAL; 402 403 TCP_SKB_CB(skb)->tcp_flags = flags; 404 405 tcp_skb_pcount_set(skb, 1); 406 407 TCP_SKB_CB(skb)->seq = seq; 408 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 409 seq++; 410 TCP_SKB_CB(skb)->end_seq = seq; 411 } 412 413 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 414 { 415 return tp->snd_una != tp->snd_up; 416 } 417 418 #define OPTION_SACK_ADVERTISE BIT(0) 419 #define OPTION_TS BIT(1) 420 #define OPTION_MD5 BIT(2) 421 #define OPTION_WSCALE BIT(3) 422 #define OPTION_FAST_OPEN_COOKIE BIT(8) 423 #define OPTION_SMC BIT(9) 424 #define OPTION_MPTCP BIT(10) 425 426 static void smc_options_write(__be32 *ptr, u16 *options) 427 { 428 #if IS_ENABLED(CONFIG_SMC) 429 if (static_branch_unlikely(&tcp_have_smc)) { 430 if (unlikely(OPTION_SMC & *options)) { 431 *ptr++ = htonl((TCPOPT_NOP << 24) | 432 (TCPOPT_NOP << 16) | 433 (TCPOPT_EXP << 8) | 434 (TCPOLEN_EXP_SMC_BASE)); 435 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 436 } 437 } 438 #endif 439 } 440 441 struct tcp_out_options { 442 u16 options; /* bit field of OPTION_* */ 443 u16 mss; /* 0 to disable */ 444 u8 ws; /* window scale, 0 to disable */ 445 u8 num_sack_blocks; /* number of SACK blocks to include */ 446 u8 hash_size; /* bytes in hash_location */ 447 u8 bpf_opt_len; /* length of BPF hdr option */ 448 __u8 *hash_location; /* temporary pointer, overloaded */ 449 __u32 tsval, tsecr; /* need to include OPTION_TS */ 450 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 451 struct mptcp_out_options mptcp; 452 }; 453 454 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 455 struct tcp_sock *tp, 456 struct tcp_out_options *opts) 457 { 458 #if IS_ENABLED(CONFIG_MPTCP) 459 if (unlikely(OPTION_MPTCP & opts->options)) 460 mptcp_write_options(th, ptr, tp, &opts->mptcp); 461 #endif 462 } 463 464 #ifdef CONFIG_CGROUP_BPF 465 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 466 enum tcp_synack_type synack_type) 467 { 468 if (unlikely(!skb)) 469 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 470 471 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 472 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 473 474 return 0; 475 } 476 477 /* req, syn_skb and synack_type are used when writing synack */ 478 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 479 struct request_sock *req, 480 struct sk_buff *syn_skb, 481 enum tcp_synack_type synack_type, 482 struct tcp_out_options *opts, 483 unsigned int *remaining) 484 { 485 struct bpf_sock_ops_kern sock_ops; 486 int err; 487 488 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 489 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 490 !*remaining) 491 return; 492 493 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 494 495 /* init sock_ops */ 496 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 497 498 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 499 500 if (req) { 501 /* The listen "sk" cannot be passed here because 502 * it is not locked. It would not make too much 503 * sense to do bpf_setsockopt(listen_sk) based 504 * on individual connection request also. 505 * 506 * Thus, "req" is passed here and the cgroup-bpf-progs 507 * of the listen "sk" will be run. 508 * 509 * "req" is also used here for fastopen even the "sk" here is 510 * a fullsock "child" sk. It is to keep the behavior 511 * consistent between fastopen and non-fastopen on 512 * the bpf programming side. 513 */ 514 sock_ops.sk = (struct sock *)req; 515 sock_ops.syn_skb = syn_skb; 516 } else { 517 sock_owned_by_me(sk); 518 519 sock_ops.is_fullsock = 1; 520 sock_ops.sk = sk; 521 } 522 523 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 524 sock_ops.remaining_opt_len = *remaining; 525 /* tcp_current_mss() does not pass a skb */ 526 if (skb) 527 bpf_skops_init_skb(&sock_ops, skb, 0); 528 529 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 530 531 if (err || sock_ops.remaining_opt_len == *remaining) 532 return; 533 534 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 535 /* round up to 4 bytes */ 536 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 537 538 *remaining -= opts->bpf_opt_len; 539 } 540 541 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 542 struct request_sock *req, 543 struct sk_buff *syn_skb, 544 enum tcp_synack_type synack_type, 545 struct tcp_out_options *opts) 546 { 547 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 548 struct bpf_sock_ops_kern sock_ops; 549 int err; 550 551 if (likely(!max_opt_len)) 552 return; 553 554 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 555 556 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 557 558 if (req) { 559 sock_ops.sk = (struct sock *)req; 560 sock_ops.syn_skb = syn_skb; 561 } else { 562 sock_owned_by_me(sk); 563 564 sock_ops.is_fullsock = 1; 565 sock_ops.sk = sk; 566 } 567 568 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 569 sock_ops.remaining_opt_len = max_opt_len; 570 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 571 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 572 573 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 574 575 if (err) 576 nr_written = 0; 577 else 578 nr_written = max_opt_len - sock_ops.remaining_opt_len; 579 580 if (nr_written < max_opt_len) 581 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 582 max_opt_len - nr_written); 583 } 584 #else 585 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 586 struct request_sock *req, 587 struct sk_buff *syn_skb, 588 enum tcp_synack_type synack_type, 589 struct tcp_out_options *opts, 590 unsigned int *remaining) 591 { 592 } 593 594 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 595 struct request_sock *req, 596 struct sk_buff *syn_skb, 597 enum tcp_synack_type synack_type, 598 struct tcp_out_options *opts) 599 { 600 } 601 #endif 602 603 /* Write previously computed TCP options to the packet. 604 * 605 * Beware: Something in the Internet is very sensitive to the ordering of 606 * TCP options, we learned this through the hard way, so be careful here. 607 * Luckily we can at least blame others for their non-compliance but from 608 * inter-operability perspective it seems that we're somewhat stuck with 609 * the ordering which we have been using if we want to keep working with 610 * those broken things (not that it currently hurts anybody as there isn't 611 * particular reason why the ordering would need to be changed). 612 * 613 * At least SACK_PERM as the first option is known to lead to a disaster 614 * (but it may well be that other scenarios fail similarly). 615 */ 616 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 617 struct tcp_out_options *opts) 618 { 619 __be32 *ptr = (__be32 *)(th + 1); 620 u16 options = opts->options; /* mungable copy */ 621 622 if (unlikely(OPTION_MD5 & options)) { 623 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 624 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 625 /* overload cookie hash location */ 626 opts->hash_location = (__u8 *)ptr; 627 ptr += 4; 628 } 629 630 if (unlikely(opts->mss)) { 631 *ptr++ = htonl((TCPOPT_MSS << 24) | 632 (TCPOLEN_MSS << 16) | 633 opts->mss); 634 } 635 636 if (likely(OPTION_TS & options)) { 637 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 638 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 639 (TCPOLEN_SACK_PERM << 16) | 640 (TCPOPT_TIMESTAMP << 8) | 641 TCPOLEN_TIMESTAMP); 642 options &= ~OPTION_SACK_ADVERTISE; 643 } else { 644 *ptr++ = htonl((TCPOPT_NOP << 24) | 645 (TCPOPT_NOP << 16) | 646 (TCPOPT_TIMESTAMP << 8) | 647 TCPOLEN_TIMESTAMP); 648 } 649 *ptr++ = htonl(opts->tsval); 650 *ptr++ = htonl(opts->tsecr); 651 } 652 653 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 654 *ptr++ = htonl((TCPOPT_NOP << 24) | 655 (TCPOPT_NOP << 16) | 656 (TCPOPT_SACK_PERM << 8) | 657 TCPOLEN_SACK_PERM); 658 } 659 660 if (unlikely(OPTION_WSCALE & options)) { 661 *ptr++ = htonl((TCPOPT_NOP << 24) | 662 (TCPOPT_WINDOW << 16) | 663 (TCPOLEN_WINDOW << 8) | 664 opts->ws); 665 } 666 667 if (unlikely(opts->num_sack_blocks)) { 668 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 669 tp->duplicate_sack : tp->selective_acks; 670 int this_sack; 671 672 *ptr++ = htonl((TCPOPT_NOP << 24) | 673 (TCPOPT_NOP << 16) | 674 (TCPOPT_SACK << 8) | 675 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 676 TCPOLEN_SACK_PERBLOCK))); 677 678 for (this_sack = 0; this_sack < opts->num_sack_blocks; 679 ++this_sack) { 680 *ptr++ = htonl(sp[this_sack].start_seq); 681 *ptr++ = htonl(sp[this_sack].end_seq); 682 } 683 684 tp->rx_opt.dsack = 0; 685 } 686 687 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 688 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 689 u8 *p = (u8 *)ptr; 690 u32 len; /* Fast Open option length */ 691 692 if (foc->exp) { 693 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 694 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 695 TCPOPT_FASTOPEN_MAGIC); 696 p += TCPOLEN_EXP_FASTOPEN_BASE; 697 } else { 698 len = TCPOLEN_FASTOPEN_BASE + foc->len; 699 *p++ = TCPOPT_FASTOPEN; 700 *p++ = len; 701 } 702 703 memcpy(p, foc->val, foc->len); 704 if ((len & 3) == 2) { 705 p[foc->len] = TCPOPT_NOP; 706 p[foc->len + 1] = TCPOPT_NOP; 707 } 708 ptr += (len + 3) >> 2; 709 } 710 711 smc_options_write(ptr, &options); 712 713 mptcp_options_write(th, ptr, tp, opts); 714 } 715 716 static void smc_set_option(const struct tcp_sock *tp, 717 struct tcp_out_options *opts, 718 unsigned int *remaining) 719 { 720 #if IS_ENABLED(CONFIG_SMC) 721 if (static_branch_unlikely(&tcp_have_smc)) { 722 if (tp->syn_smc) { 723 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 724 opts->options |= OPTION_SMC; 725 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 726 } 727 } 728 } 729 #endif 730 } 731 732 static void smc_set_option_cond(const struct tcp_sock *tp, 733 const struct inet_request_sock *ireq, 734 struct tcp_out_options *opts, 735 unsigned int *remaining) 736 { 737 #if IS_ENABLED(CONFIG_SMC) 738 if (static_branch_unlikely(&tcp_have_smc)) { 739 if (tp->syn_smc && ireq->smc_ok) { 740 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 741 opts->options |= OPTION_SMC; 742 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 743 } 744 } 745 } 746 #endif 747 } 748 749 static void mptcp_set_option_cond(const struct request_sock *req, 750 struct tcp_out_options *opts, 751 unsigned int *remaining) 752 { 753 if (rsk_is_mptcp(req)) { 754 unsigned int size; 755 756 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 757 if (*remaining >= size) { 758 opts->options |= OPTION_MPTCP; 759 *remaining -= size; 760 } 761 } 762 } 763 } 764 765 /* Compute TCP options for SYN packets. This is not the final 766 * network wire format yet. 767 */ 768 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 769 struct tcp_out_options *opts, 770 struct tcp_md5sig_key **md5) 771 { 772 struct tcp_sock *tp = tcp_sk(sk); 773 unsigned int remaining = MAX_TCP_OPTION_SPACE; 774 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 775 776 *md5 = NULL; 777 #ifdef CONFIG_TCP_MD5SIG 778 if (static_branch_unlikely(&tcp_md5_needed.key) && 779 rcu_access_pointer(tp->md5sig_info)) { 780 *md5 = tp->af_specific->md5_lookup(sk, sk); 781 if (*md5) { 782 opts->options |= OPTION_MD5; 783 remaining -= TCPOLEN_MD5SIG_ALIGNED; 784 } 785 } 786 #endif 787 788 /* We always get an MSS option. The option bytes which will be seen in 789 * normal data packets should timestamps be used, must be in the MSS 790 * advertised. But we subtract them from tp->mss_cache so that 791 * calculations in tcp_sendmsg are simpler etc. So account for this 792 * fact here if necessary. If we don't do this correctly, as a 793 * receiver we won't recognize data packets as being full sized when we 794 * should, and thus we won't abide by the delayed ACK rules correctly. 795 * SACKs don't matter, we never delay an ACK when we have any of those 796 * going out. */ 797 opts->mss = tcp_advertise_mss(sk); 798 remaining -= TCPOLEN_MSS_ALIGNED; 799 800 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) { 801 opts->options |= OPTION_TS; 802 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 803 opts->tsecr = tp->rx_opt.ts_recent; 804 remaining -= TCPOLEN_TSTAMP_ALIGNED; 805 } 806 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 807 opts->ws = tp->rx_opt.rcv_wscale; 808 opts->options |= OPTION_WSCALE; 809 remaining -= TCPOLEN_WSCALE_ALIGNED; 810 } 811 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 812 opts->options |= OPTION_SACK_ADVERTISE; 813 if (unlikely(!(OPTION_TS & opts->options))) 814 remaining -= TCPOLEN_SACKPERM_ALIGNED; 815 } 816 817 if (fastopen && fastopen->cookie.len >= 0) { 818 u32 need = fastopen->cookie.len; 819 820 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 821 TCPOLEN_FASTOPEN_BASE; 822 need = (need + 3) & ~3U; /* Align to 32 bits */ 823 if (remaining >= need) { 824 opts->options |= OPTION_FAST_OPEN_COOKIE; 825 opts->fastopen_cookie = &fastopen->cookie; 826 remaining -= need; 827 tp->syn_fastopen = 1; 828 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 829 } 830 } 831 832 smc_set_option(tp, opts, &remaining); 833 834 if (sk_is_mptcp(sk)) { 835 unsigned int size; 836 837 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 838 opts->options |= OPTION_MPTCP; 839 remaining -= size; 840 } 841 } 842 843 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 844 845 return MAX_TCP_OPTION_SPACE - remaining; 846 } 847 848 /* Set up TCP options for SYN-ACKs. */ 849 static unsigned int tcp_synack_options(const struct sock *sk, 850 struct request_sock *req, 851 unsigned int mss, struct sk_buff *skb, 852 struct tcp_out_options *opts, 853 const struct tcp_md5sig_key *md5, 854 struct tcp_fastopen_cookie *foc, 855 enum tcp_synack_type synack_type, 856 struct sk_buff *syn_skb) 857 { 858 struct inet_request_sock *ireq = inet_rsk(req); 859 unsigned int remaining = MAX_TCP_OPTION_SPACE; 860 861 #ifdef CONFIG_TCP_MD5SIG 862 if (md5) { 863 opts->options |= OPTION_MD5; 864 remaining -= TCPOLEN_MD5SIG_ALIGNED; 865 866 /* We can't fit any SACK blocks in a packet with MD5 + TS 867 * options. There was discussion about disabling SACK 868 * rather than TS in order to fit in better with old, 869 * buggy kernels, but that was deemed to be unnecessary. 870 */ 871 if (synack_type != TCP_SYNACK_COOKIE) 872 ireq->tstamp_ok &= !ireq->sack_ok; 873 } 874 #endif 875 876 /* We always send an MSS option. */ 877 opts->mss = mss; 878 remaining -= TCPOLEN_MSS_ALIGNED; 879 880 if (likely(ireq->wscale_ok)) { 881 opts->ws = ireq->rcv_wscale; 882 opts->options |= OPTION_WSCALE; 883 remaining -= TCPOLEN_WSCALE_ALIGNED; 884 } 885 if (likely(ireq->tstamp_ok)) { 886 opts->options |= OPTION_TS; 887 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 888 tcp_rsk(req)->ts_off; 889 opts->tsecr = READ_ONCE(req->ts_recent); 890 remaining -= TCPOLEN_TSTAMP_ALIGNED; 891 } 892 if (likely(ireq->sack_ok)) { 893 opts->options |= OPTION_SACK_ADVERTISE; 894 if (unlikely(!ireq->tstamp_ok)) 895 remaining -= TCPOLEN_SACKPERM_ALIGNED; 896 } 897 if (foc != NULL && foc->len >= 0) { 898 u32 need = foc->len; 899 900 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 901 TCPOLEN_FASTOPEN_BASE; 902 need = (need + 3) & ~3U; /* Align to 32 bits */ 903 if (remaining >= need) { 904 opts->options |= OPTION_FAST_OPEN_COOKIE; 905 opts->fastopen_cookie = foc; 906 remaining -= need; 907 } 908 } 909 910 mptcp_set_option_cond(req, opts, &remaining); 911 912 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 913 914 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 915 synack_type, opts, &remaining); 916 917 return MAX_TCP_OPTION_SPACE - remaining; 918 } 919 920 /* Compute TCP options for ESTABLISHED sockets. This is not the 921 * final wire format yet. 922 */ 923 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 924 struct tcp_out_options *opts, 925 struct tcp_md5sig_key **md5) 926 { 927 struct tcp_sock *tp = tcp_sk(sk); 928 unsigned int size = 0; 929 unsigned int eff_sacks; 930 931 opts->options = 0; 932 933 *md5 = NULL; 934 #ifdef CONFIG_TCP_MD5SIG 935 if (static_branch_unlikely(&tcp_md5_needed.key) && 936 rcu_access_pointer(tp->md5sig_info)) { 937 *md5 = tp->af_specific->md5_lookup(sk, sk); 938 if (*md5) { 939 opts->options |= OPTION_MD5; 940 size += TCPOLEN_MD5SIG_ALIGNED; 941 } 942 } 943 #endif 944 945 if (likely(tp->rx_opt.tstamp_ok)) { 946 opts->options |= OPTION_TS; 947 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 948 tp->tsoffset : 0; 949 opts->tsecr = tp->rx_opt.ts_recent; 950 size += TCPOLEN_TSTAMP_ALIGNED; 951 } 952 953 /* MPTCP options have precedence over SACK for the limited TCP 954 * option space because a MPTCP connection would be forced to 955 * fall back to regular TCP if a required multipath option is 956 * missing. SACK still gets a chance to use whatever space is 957 * left. 958 */ 959 if (sk_is_mptcp(sk)) { 960 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 961 unsigned int opt_size = 0; 962 963 if (mptcp_established_options(sk, skb, &opt_size, remaining, 964 &opts->mptcp)) { 965 opts->options |= OPTION_MPTCP; 966 size += opt_size; 967 } 968 } 969 970 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 971 if (unlikely(eff_sacks)) { 972 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 973 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 974 TCPOLEN_SACK_PERBLOCK)) 975 return size; 976 977 opts->num_sack_blocks = 978 min_t(unsigned int, eff_sacks, 979 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 980 TCPOLEN_SACK_PERBLOCK); 981 982 size += TCPOLEN_SACK_BASE_ALIGNED + 983 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 984 } 985 986 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 987 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 988 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 989 990 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 991 992 size = MAX_TCP_OPTION_SPACE - remaining; 993 } 994 995 return size; 996 } 997 998 999 /* TCP SMALL QUEUES (TSQ) 1000 * 1001 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1002 * to reduce RTT and bufferbloat. 1003 * We do this using a special skb destructor (tcp_wfree). 1004 * 1005 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1006 * needs to be reallocated in a driver. 1007 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1008 * 1009 * Since transmit from skb destructor is forbidden, we use a tasklet 1010 * to process all sockets that eventually need to send more skbs. 1011 * We use one tasklet per cpu, with its own queue of sockets. 1012 */ 1013 struct tsq_tasklet { 1014 struct tasklet_struct tasklet; 1015 struct list_head head; /* queue of tcp sockets */ 1016 }; 1017 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1018 1019 static void tcp_tsq_write(struct sock *sk) 1020 { 1021 if ((1 << sk->sk_state) & 1022 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1023 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1024 struct tcp_sock *tp = tcp_sk(sk); 1025 1026 if (tp->lost_out > tp->retrans_out && 1027 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1028 tcp_mstamp_refresh(tp); 1029 tcp_xmit_retransmit_queue(sk); 1030 } 1031 1032 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1033 0, GFP_ATOMIC); 1034 } 1035 } 1036 1037 static void tcp_tsq_handler(struct sock *sk) 1038 { 1039 bh_lock_sock(sk); 1040 if (!sock_owned_by_user(sk)) 1041 tcp_tsq_write(sk); 1042 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1043 sock_hold(sk); 1044 bh_unlock_sock(sk); 1045 } 1046 /* 1047 * One tasklet per cpu tries to send more skbs. 1048 * We run in tasklet context but need to disable irqs when 1049 * transferring tsq->head because tcp_wfree() might 1050 * interrupt us (non NAPI drivers) 1051 */ 1052 static void tcp_tasklet_func(struct tasklet_struct *t) 1053 { 1054 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1055 LIST_HEAD(list); 1056 unsigned long flags; 1057 struct list_head *q, *n; 1058 struct tcp_sock *tp; 1059 struct sock *sk; 1060 1061 local_irq_save(flags); 1062 list_splice_init(&tsq->head, &list); 1063 local_irq_restore(flags); 1064 1065 list_for_each_safe(q, n, &list) { 1066 tp = list_entry(q, struct tcp_sock, tsq_node); 1067 list_del(&tp->tsq_node); 1068 1069 sk = (struct sock *)tp; 1070 smp_mb__before_atomic(); 1071 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1072 1073 tcp_tsq_handler(sk); 1074 sk_free(sk); 1075 } 1076 } 1077 1078 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1079 TCPF_WRITE_TIMER_DEFERRED | \ 1080 TCPF_DELACK_TIMER_DEFERRED | \ 1081 TCPF_MTU_REDUCED_DEFERRED | \ 1082 TCPF_ACK_DEFERRED) 1083 /** 1084 * tcp_release_cb - tcp release_sock() callback 1085 * @sk: socket 1086 * 1087 * called from release_sock() to perform protocol dependent 1088 * actions before socket release. 1089 */ 1090 void tcp_release_cb(struct sock *sk) 1091 { 1092 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1093 unsigned long nflags; 1094 1095 /* perform an atomic operation only if at least one flag is set */ 1096 do { 1097 if (!(flags & TCP_DEFERRED_ALL)) 1098 return; 1099 nflags = flags & ~TCP_DEFERRED_ALL; 1100 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1101 1102 if (flags & TCPF_TSQ_DEFERRED) { 1103 tcp_tsq_write(sk); 1104 __sock_put(sk); 1105 } 1106 1107 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1108 tcp_write_timer_handler(sk); 1109 __sock_put(sk); 1110 } 1111 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1112 tcp_delack_timer_handler(sk); 1113 __sock_put(sk); 1114 } 1115 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1116 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1117 __sock_put(sk); 1118 } 1119 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1120 tcp_send_ack(sk); 1121 } 1122 EXPORT_SYMBOL(tcp_release_cb); 1123 1124 void __init tcp_tasklet_init(void) 1125 { 1126 int i; 1127 1128 for_each_possible_cpu(i) { 1129 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1130 1131 INIT_LIST_HEAD(&tsq->head); 1132 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1133 } 1134 } 1135 1136 /* 1137 * Write buffer destructor automatically called from kfree_skb. 1138 * We can't xmit new skbs from this context, as we might already 1139 * hold qdisc lock. 1140 */ 1141 void tcp_wfree(struct sk_buff *skb) 1142 { 1143 struct sock *sk = skb->sk; 1144 struct tcp_sock *tp = tcp_sk(sk); 1145 unsigned long flags, nval, oval; 1146 struct tsq_tasklet *tsq; 1147 bool empty; 1148 1149 /* Keep one reference on sk_wmem_alloc. 1150 * Will be released by sk_free() from here or tcp_tasklet_func() 1151 */ 1152 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1153 1154 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1155 * Wait until our queues (qdisc + devices) are drained. 1156 * This gives : 1157 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1158 * - chance for incoming ACK (processed by another cpu maybe) 1159 * to migrate this flow (skb->ooo_okay will be eventually set) 1160 */ 1161 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1162 goto out; 1163 1164 oval = smp_load_acquire(&sk->sk_tsq_flags); 1165 do { 1166 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1167 goto out; 1168 1169 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1170 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1171 1172 /* queue this socket to tasklet queue */ 1173 local_irq_save(flags); 1174 tsq = this_cpu_ptr(&tsq_tasklet); 1175 empty = list_empty(&tsq->head); 1176 list_add(&tp->tsq_node, &tsq->head); 1177 if (empty) 1178 tasklet_schedule(&tsq->tasklet); 1179 local_irq_restore(flags); 1180 return; 1181 out: 1182 sk_free(sk); 1183 } 1184 1185 /* Note: Called under soft irq. 1186 * We can call TCP stack right away, unless socket is owned by user. 1187 */ 1188 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1189 { 1190 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1191 struct sock *sk = (struct sock *)tp; 1192 1193 tcp_tsq_handler(sk); 1194 sock_put(sk); 1195 1196 return HRTIMER_NORESTART; 1197 } 1198 1199 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1200 u64 prior_wstamp) 1201 { 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 1204 if (sk->sk_pacing_status != SK_PACING_NONE) { 1205 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1206 1207 /* Original sch_fq does not pace first 10 MSS 1208 * Note that tp->data_segs_out overflows after 2^32 packets, 1209 * this is a minor annoyance. 1210 */ 1211 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1212 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1213 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1214 1215 /* take into account OS jitter */ 1216 len_ns -= min_t(u64, len_ns / 2, credit); 1217 tp->tcp_wstamp_ns += len_ns; 1218 } 1219 } 1220 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1221 } 1222 1223 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1224 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1225 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1226 1227 /* This routine actually transmits TCP packets queued in by 1228 * tcp_do_sendmsg(). This is used by both the initial 1229 * transmission and possible later retransmissions. 1230 * All SKB's seen here are completely headerless. It is our 1231 * job to build the TCP header, and pass the packet down to 1232 * IP so it can do the same plus pass the packet off to the 1233 * device. 1234 * 1235 * We are working here with either a clone of the original 1236 * SKB, or a fresh unique copy made by the retransmit engine. 1237 */ 1238 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1239 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1240 { 1241 const struct inet_connection_sock *icsk = inet_csk(sk); 1242 struct inet_sock *inet; 1243 struct tcp_sock *tp; 1244 struct tcp_skb_cb *tcb; 1245 struct tcp_out_options opts; 1246 unsigned int tcp_options_size, tcp_header_size; 1247 struct sk_buff *oskb = NULL; 1248 struct tcp_md5sig_key *md5; 1249 struct tcphdr *th; 1250 u64 prior_wstamp; 1251 int err; 1252 1253 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1254 tp = tcp_sk(sk); 1255 prior_wstamp = tp->tcp_wstamp_ns; 1256 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1257 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1258 if (clone_it) { 1259 oskb = skb; 1260 1261 tcp_skb_tsorted_save(oskb) { 1262 if (unlikely(skb_cloned(oskb))) 1263 skb = pskb_copy(oskb, gfp_mask); 1264 else 1265 skb = skb_clone(oskb, gfp_mask); 1266 } tcp_skb_tsorted_restore(oskb); 1267 1268 if (unlikely(!skb)) 1269 return -ENOBUFS; 1270 /* retransmit skbs might have a non zero value in skb->dev 1271 * because skb->dev is aliased with skb->rbnode.rb_left 1272 */ 1273 skb->dev = NULL; 1274 } 1275 1276 inet = inet_sk(sk); 1277 tcb = TCP_SKB_CB(skb); 1278 memset(&opts, 0, sizeof(opts)); 1279 1280 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1281 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1282 } else { 1283 tcp_options_size = tcp_established_options(sk, skb, &opts, 1284 &md5); 1285 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1286 * at receiver : This slightly improve GRO performance. 1287 * Note that we do not force the PSH flag for non GSO packets, 1288 * because they might be sent under high congestion events, 1289 * and in this case it is better to delay the delivery of 1-MSS 1290 * packets and thus the corresponding ACK packet that would 1291 * release the following packet. 1292 */ 1293 if (tcp_skb_pcount(skb) > 1) 1294 tcb->tcp_flags |= TCPHDR_PSH; 1295 } 1296 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1297 1298 /* We set skb->ooo_okay to one if this packet can select 1299 * a different TX queue than prior packets of this flow, 1300 * to avoid self inflicted reorders. 1301 * The 'other' queue decision is based on current cpu number 1302 * if XPS is enabled, or sk->sk_txhash otherwise. 1303 * We can switch to another (and better) queue if: 1304 * 1) No packet with payload is in qdisc/device queues. 1305 * Delays in TX completion can defeat the test 1306 * even if packets were already sent. 1307 * 2) Or rtx queue is empty. 1308 * This mitigates above case if ACK packets for 1309 * all prior packets were already processed. 1310 */ 1311 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1312 tcp_rtx_queue_empty(sk); 1313 1314 /* If we had to use memory reserve to allocate this skb, 1315 * this might cause drops if packet is looped back : 1316 * Other socket might not have SOCK_MEMALLOC. 1317 * Packets not looped back do not care about pfmemalloc. 1318 */ 1319 skb->pfmemalloc = 0; 1320 1321 skb_push(skb, tcp_header_size); 1322 skb_reset_transport_header(skb); 1323 1324 skb_orphan(skb); 1325 skb->sk = sk; 1326 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1327 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1328 1329 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1330 1331 /* Build TCP header and checksum it. */ 1332 th = (struct tcphdr *)skb->data; 1333 th->source = inet->inet_sport; 1334 th->dest = inet->inet_dport; 1335 th->seq = htonl(tcb->seq); 1336 th->ack_seq = htonl(rcv_nxt); 1337 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1338 tcb->tcp_flags); 1339 1340 th->check = 0; 1341 th->urg_ptr = 0; 1342 1343 /* The urg_mode check is necessary during a below snd_una win probe */ 1344 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1345 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1346 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1347 th->urg = 1; 1348 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1349 th->urg_ptr = htons(0xFFFF); 1350 th->urg = 1; 1351 } 1352 } 1353 1354 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1355 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1356 th->window = htons(tcp_select_window(sk)); 1357 tcp_ecn_send(sk, skb, th, tcp_header_size); 1358 } else { 1359 /* RFC1323: The window in SYN & SYN/ACK segments 1360 * is never scaled. 1361 */ 1362 th->window = htons(min(tp->rcv_wnd, 65535U)); 1363 } 1364 1365 tcp_options_write(th, tp, &opts); 1366 1367 #ifdef CONFIG_TCP_MD5SIG 1368 /* Calculate the MD5 hash, as we have all we need now */ 1369 if (md5) { 1370 sk_gso_disable(sk); 1371 tp->af_specific->calc_md5_hash(opts.hash_location, 1372 md5, sk, skb); 1373 } 1374 #endif 1375 1376 /* BPF prog is the last one writing header option */ 1377 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1378 1379 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1380 tcp_v6_send_check, tcp_v4_send_check, 1381 sk, skb); 1382 1383 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1384 tcp_event_ack_sent(sk, rcv_nxt); 1385 1386 if (skb->len != tcp_header_size) { 1387 tcp_event_data_sent(tp, sk); 1388 tp->data_segs_out += tcp_skb_pcount(skb); 1389 tp->bytes_sent += skb->len - tcp_header_size; 1390 } 1391 1392 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1393 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1394 tcp_skb_pcount(skb)); 1395 1396 tp->segs_out += tcp_skb_pcount(skb); 1397 skb_set_hash_from_sk(skb, sk); 1398 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1399 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1400 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1401 1402 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1403 1404 /* Cleanup our debris for IP stacks */ 1405 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1406 sizeof(struct inet6_skb_parm))); 1407 1408 tcp_add_tx_delay(skb, tp); 1409 1410 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1411 inet6_csk_xmit, ip_queue_xmit, 1412 sk, skb, &inet->cork.fl); 1413 1414 if (unlikely(err > 0)) { 1415 tcp_enter_cwr(sk); 1416 err = net_xmit_eval(err); 1417 } 1418 if (!err && oskb) { 1419 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1420 tcp_rate_skb_sent(sk, oskb); 1421 } 1422 return err; 1423 } 1424 1425 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1426 gfp_t gfp_mask) 1427 { 1428 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1429 tcp_sk(sk)->rcv_nxt); 1430 } 1431 1432 /* This routine just queues the buffer for sending. 1433 * 1434 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1435 * otherwise socket can stall. 1436 */ 1437 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1438 { 1439 struct tcp_sock *tp = tcp_sk(sk); 1440 1441 /* Advance write_seq and place onto the write_queue. */ 1442 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1443 __skb_header_release(skb); 1444 tcp_add_write_queue_tail(sk, skb); 1445 sk_wmem_queued_add(sk, skb->truesize); 1446 sk_mem_charge(sk, skb->truesize); 1447 } 1448 1449 /* Initialize TSO segments for a packet. */ 1450 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1451 { 1452 if (skb->len <= mss_now) { 1453 /* Avoid the costly divide in the normal 1454 * non-TSO case. 1455 */ 1456 tcp_skb_pcount_set(skb, 1); 1457 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1458 } else { 1459 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1460 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1461 } 1462 } 1463 1464 /* Pcount in the middle of the write queue got changed, we need to do various 1465 * tweaks to fix counters 1466 */ 1467 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1468 { 1469 struct tcp_sock *tp = tcp_sk(sk); 1470 1471 tp->packets_out -= decr; 1472 1473 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1474 tp->sacked_out -= decr; 1475 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1476 tp->retrans_out -= decr; 1477 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1478 tp->lost_out -= decr; 1479 1480 /* Reno case is special. Sigh... */ 1481 if (tcp_is_reno(tp) && decr > 0) 1482 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1483 1484 if (tp->lost_skb_hint && 1485 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1486 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1487 tp->lost_cnt_hint -= decr; 1488 1489 tcp_verify_left_out(tp); 1490 } 1491 1492 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1493 { 1494 return TCP_SKB_CB(skb)->txstamp_ack || 1495 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1496 } 1497 1498 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1499 { 1500 struct skb_shared_info *shinfo = skb_shinfo(skb); 1501 1502 if (unlikely(tcp_has_tx_tstamp(skb)) && 1503 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1504 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1505 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1506 1507 shinfo->tx_flags &= ~tsflags; 1508 shinfo2->tx_flags |= tsflags; 1509 swap(shinfo->tskey, shinfo2->tskey); 1510 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1511 TCP_SKB_CB(skb)->txstamp_ack = 0; 1512 } 1513 } 1514 1515 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1516 { 1517 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1518 TCP_SKB_CB(skb)->eor = 0; 1519 } 1520 1521 /* Insert buff after skb on the write or rtx queue of sk. */ 1522 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1523 struct sk_buff *buff, 1524 struct sock *sk, 1525 enum tcp_queue tcp_queue) 1526 { 1527 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1528 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1529 else 1530 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1531 } 1532 1533 /* Function to create two new TCP segments. Shrinks the given segment 1534 * to the specified size and appends a new segment with the rest of the 1535 * packet to the list. This won't be called frequently, I hope. 1536 * Remember, these are still headerless SKBs at this point. 1537 */ 1538 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1539 struct sk_buff *skb, u32 len, 1540 unsigned int mss_now, gfp_t gfp) 1541 { 1542 struct tcp_sock *tp = tcp_sk(sk); 1543 struct sk_buff *buff; 1544 int old_factor; 1545 long limit; 1546 int nlen; 1547 u8 flags; 1548 1549 if (WARN_ON(len > skb->len)) 1550 return -EINVAL; 1551 1552 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1553 1554 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1555 * We need some allowance to not penalize applications setting small 1556 * SO_SNDBUF values. 1557 * Also allow first and last skb in retransmit queue to be split. 1558 */ 1559 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1560 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1561 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1562 skb != tcp_rtx_queue_head(sk) && 1563 skb != tcp_rtx_queue_tail(sk))) { 1564 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1565 return -ENOMEM; 1566 } 1567 1568 if (skb_unclone_keeptruesize(skb, gfp)) 1569 return -ENOMEM; 1570 1571 /* Get a new skb... force flag on. */ 1572 buff = tcp_stream_alloc_skb(sk, gfp, true); 1573 if (!buff) 1574 return -ENOMEM; /* We'll just try again later. */ 1575 skb_copy_decrypted(buff, skb); 1576 mptcp_skb_ext_copy(buff, skb); 1577 1578 sk_wmem_queued_add(sk, buff->truesize); 1579 sk_mem_charge(sk, buff->truesize); 1580 nlen = skb->len - len; 1581 buff->truesize += nlen; 1582 skb->truesize -= nlen; 1583 1584 /* Correct the sequence numbers. */ 1585 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1586 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1587 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1588 1589 /* PSH and FIN should only be set in the second packet. */ 1590 flags = TCP_SKB_CB(skb)->tcp_flags; 1591 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1592 TCP_SKB_CB(buff)->tcp_flags = flags; 1593 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1594 tcp_skb_fragment_eor(skb, buff); 1595 1596 skb_split(skb, buff, len); 1597 1598 skb_set_delivery_time(buff, skb->tstamp, true); 1599 tcp_fragment_tstamp(skb, buff); 1600 1601 old_factor = tcp_skb_pcount(skb); 1602 1603 /* Fix up tso_factor for both original and new SKB. */ 1604 tcp_set_skb_tso_segs(skb, mss_now); 1605 tcp_set_skb_tso_segs(buff, mss_now); 1606 1607 /* Update delivered info for the new segment */ 1608 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1609 1610 /* If this packet has been sent out already, we must 1611 * adjust the various packet counters. 1612 */ 1613 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1614 int diff = old_factor - tcp_skb_pcount(skb) - 1615 tcp_skb_pcount(buff); 1616 1617 if (diff) 1618 tcp_adjust_pcount(sk, skb, diff); 1619 } 1620 1621 /* Link BUFF into the send queue. */ 1622 __skb_header_release(buff); 1623 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1624 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1625 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1626 1627 return 0; 1628 } 1629 1630 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1631 * data is not copied, but immediately discarded. 1632 */ 1633 static int __pskb_trim_head(struct sk_buff *skb, int len) 1634 { 1635 struct skb_shared_info *shinfo; 1636 int i, k, eat; 1637 1638 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1639 eat = len; 1640 k = 0; 1641 shinfo = skb_shinfo(skb); 1642 for (i = 0; i < shinfo->nr_frags; i++) { 1643 int size = skb_frag_size(&shinfo->frags[i]); 1644 1645 if (size <= eat) { 1646 skb_frag_unref(skb, i); 1647 eat -= size; 1648 } else { 1649 shinfo->frags[k] = shinfo->frags[i]; 1650 if (eat) { 1651 skb_frag_off_add(&shinfo->frags[k], eat); 1652 skb_frag_size_sub(&shinfo->frags[k], eat); 1653 eat = 0; 1654 } 1655 k++; 1656 } 1657 } 1658 shinfo->nr_frags = k; 1659 1660 skb->data_len -= len; 1661 skb->len = skb->data_len; 1662 return len; 1663 } 1664 1665 /* Remove acked data from a packet in the transmit queue. */ 1666 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1667 { 1668 u32 delta_truesize; 1669 1670 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1671 return -ENOMEM; 1672 1673 delta_truesize = __pskb_trim_head(skb, len); 1674 1675 TCP_SKB_CB(skb)->seq += len; 1676 1677 skb->truesize -= delta_truesize; 1678 sk_wmem_queued_add(sk, -delta_truesize); 1679 if (!skb_zcopy_pure(skb)) 1680 sk_mem_uncharge(sk, delta_truesize); 1681 1682 /* Any change of skb->len requires recalculation of tso factor. */ 1683 if (tcp_skb_pcount(skb) > 1) 1684 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1685 1686 return 0; 1687 } 1688 1689 /* Calculate MSS not accounting any TCP options. */ 1690 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1691 { 1692 const struct tcp_sock *tp = tcp_sk(sk); 1693 const struct inet_connection_sock *icsk = inet_csk(sk); 1694 int mss_now; 1695 1696 /* Calculate base mss without TCP options: 1697 It is MMS_S - sizeof(tcphdr) of rfc1122 1698 */ 1699 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1700 1701 /* Clamp it (mss_clamp does not include tcp options) */ 1702 if (mss_now > tp->rx_opt.mss_clamp) 1703 mss_now = tp->rx_opt.mss_clamp; 1704 1705 /* Now subtract optional transport overhead */ 1706 mss_now -= icsk->icsk_ext_hdr_len; 1707 1708 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1709 mss_now = max(mss_now, 1710 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1711 return mss_now; 1712 } 1713 1714 /* Calculate MSS. Not accounting for SACKs here. */ 1715 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1716 { 1717 /* Subtract TCP options size, not including SACKs */ 1718 return __tcp_mtu_to_mss(sk, pmtu) - 1719 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1720 } 1721 EXPORT_SYMBOL(tcp_mtu_to_mss); 1722 1723 /* Inverse of above */ 1724 int tcp_mss_to_mtu(struct sock *sk, int mss) 1725 { 1726 const struct tcp_sock *tp = tcp_sk(sk); 1727 const struct inet_connection_sock *icsk = inet_csk(sk); 1728 1729 return mss + 1730 tp->tcp_header_len + 1731 icsk->icsk_ext_hdr_len + 1732 icsk->icsk_af_ops->net_header_len; 1733 } 1734 EXPORT_SYMBOL(tcp_mss_to_mtu); 1735 1736 /* MTU probing init per socket */ 1737 void tcp_mtup_init(struct sock *sk) 1738 { 1739 struct tcp_sock *tp = tcp_sk(sk); 1740 struct inet_connection_sock *icsk = inet_csk(sk); 1741 struct net *net = sock_net(sk); 1742 1743 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1744 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1745 icsk->icsk_af_ops->net_header_len; 1746 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1747 icsk->icsk_mtup.probe_size = 0; 1748 if (icsk->icsk_mtup.enabled) 1749 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1750 } 1751 EXPORT_SYMBOL(tcp_mtup_init); 1752 1753 /* This function synchronize snd mss to current pmtu/exthdr set. 1754 1755 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1756 for TCP options, but includes only bare TCP header. 1757 1758 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1759 It is minimum of user_mss and mss received with SYN. 1760 It also does not include TCP options. 1761 1762 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1763 1764 tp->mss_cache is current effective sending mss, including 1765 all tcp options except for SACKs. It is evaluated, 1766 taking into account current pmtu, but never exceeds 1767 tp->rx_opt.mss_clamp. 1768 1769 NOTE1. rfc1122 clearly states that advertised MSS 1770 DOES NOT include either tcp or ip options. 1771 1772 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1773 are READ ONLY outside this function. --ANK (980731) 1774 */ 1775 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1776 { 1777 struct tcp_sock *tp = tcp_sk(sk); 1778 struct inet_connection_sock *icsk = inet_csk(sk); 1779 int mss_now; 1780 1781 if (icsk->icsk_mtup.search_high > pmtu) 1782 icsk->icsk_mtup.search_high = pmtu; 1783 1784 mss_now = tcp_mtu_to_mss(sk, pmtu); 1785 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1786 1787 /* And store cached results */ 1788 icsk->icsk_pmtu_cookie = pmtu; 1789 if (icsk->icsk_mtup.enabled) 1790 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1791 tp->mss_cache = mss_now; 1792 1793 return mss_now; 1794 } 1795 EXPORT_SYMBOL(tcp_sync_mss); 1796 1797 /* Compute the current effective MSS, taking SACKs and IP options, 1798 * and even PMTU discovery events into account. 1799 */ 1800 unsigned int tcp_current_mss(struct sock *sk) 1801 { 1802 const struct tcp_sock *tp = tcp_sk(sk); 1803 const struct dst_entry *dst = __sk_dst_get(sk); 1804 u32 mss_now; 1805 unsigned int header_len; 1806 struct tcp_out_options opts; 1807 struct tcp_md5sig_key *md5; 1808 1809 mss_now = tp->mss_cache; 1810 1811 if (dst) { 1812 u32 mtu = dst_mtu(dst); 1813 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1814 mss_now = tcp_sync_mss(sk, mtu); 1815 } 1816 1817 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1818 sizeof(struct tcphdr); 1819 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1820 * some common options. If this is an odd packet (because we have SACK 1821 * blocks etc) then our calculated header_len will be different, and 1822 * we have to adjust mss_now correspondingly */ 1823 if (header_len != tp->tcp_header_len) { 1824 int delta = (int) header_len - tp->tcp_header_len; 1825 mss_now -= delta; 1826 } 1827 1828 return mss_now; 1829 } 1830 1831 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1832 * As additional protections, we do not touch cwnd in retransmission phases, 1833 * and if application hit its sndbuf limit recently. 1834 */ 1835 static void tcp_cwnd_application_limited(struct sock *sk) 1836 { 1837 struct tcp_sock *tp = tcp_sk(sk); 1838 1839 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1840 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1841 /* Limited by application or receiver window. */ 1842 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1843 u32 win_used = max(tp->snd_cwnd_used, init_win); 1844 if (win_used < tcp_snd_cwnd(tp)) { 1845 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1846 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1847 } 1848 tp->snd_cwnd_used = 0; 1849 } 1850 tp->snd_cwnd_stamp = tcp_jiffies32; 1851 } 1852 1853 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1854 { 1855 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1856 struct tcp_sock *tp = tcp_sk(sk); 1857 1858 /* Track the strongest available signal of the degree to which the cwnd 1859 * is fully utilized. If cwnd-limited then remember that fact for the 1860 * current window. If not cwnd-limited then track the maximum number of 1861 * outstanding packets in the current window. (If cwnd-limited then we 1862 * chose to not update tp->max_packets_out to avoid an extra else 1863 * clause with no functional impact.) 1864 */ 1865 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1866 is_cwnd_limited || 1867 (!tp->is_cwnd_limited && 1868 tp->packets_out > tp->max_packets_out)) { 1869 tp->is_cwnd_limited = is_cwnd_limited; 1870 tp->max_packets_out = tp->packets_out; 1871 tp->cwnd_usage_seq = tp->snd_nxt; 1872 } 1873 1874 if (tcp_is_cwnd_limited(sk)) { 1875 /* Network is feed fully. */ 1876 tp->snd_cwnd_used = 0; 1877 tp->snd_cwnd_stamp = tcp_jiffies32; 1878 } else { 1879 /* Network starves. */ 1880 if (tp->packets_out > tp->snd_cwnd_used) 1881 tp->snd_cwnd_used = tp->packets_out; 1882 1883 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1884 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1885 !ca_ops->cong_control) 1886 tcp_cwnd_application_limited(sk); 1887 1888 /* The following conditions together indicate the starvation 1889 * is caused by insufficient sender buffer: 1890 * 1) just sent some data (see tcp_write_xmit) 1891 * 2) not cwnd limited (this else condition) 1892 * 3) no more data to send (tcp_write_queue_empty()) 1893 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1894 */ 1895 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1896 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1897 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1898 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1899 } 1900 } 1901 1902 /* Minshall's variant of the Nagle send check. */ 1903 static bool tcp_minshall_check(const struct tcp_sock *tp) 1904 { 1905 return after(tp->snd_sml, tp->snd_una) && 1906 !after(tp->snd_sml, tp->snd_nxt); 1907 } 1908 1909 /* Update snd_sml if this skb is under mss 1910 * Note that a TSO packet might end with a sub-mss segment 1911 * The test is really : 1912 * if ((skb->len % mss) != 0) 1913 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1914 * But we can avoid doing the divide again given we already have 1915 * skb_pcount = skb->len / mss_now 1916 */ 1917 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1918 const struct sk_buff *skb) 1919 { 1920 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1921 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1922 } 1923 1924 /* Return false, if packet can be sent now without violation Nagle's rules: 1925 * 1. It is full sized. (provided by caller in %partial bool) 1926 * 2. Or it contains FIN. (already checked by caller) 1927 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1928 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1929 * With Minshall's modification: all sent small packets are ACKed. 1930 */ 1931 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1932 int nonagle) 1933 { 1934 return partial && 1935 ((nonagle & TCP_NAGLE_CORK) || 1936 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1937 } 1938 1939 /* Return how many segs we'd like on a TSO packet, 1940 * depending on current pacing rate, and how close the peer is. 1941 * 1942 * Rationale is: 1943 * - For close peers, we rather send bigger packets to reduce 1944 * cpu costs, because occasional losses will be repaired fast. 1945 * - For long distance/rtt flows, we would like to get ACK clocking 1946 * with 1 ACK per ms. 1947 * 1948 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 1949 * in bigger TSO bursts. We we cut the RTT-based allowance in half 1950 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 1951 * is below 1500 bytes after 6 * ~500 usec = 3ms. 1952 */ 1953 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1954 int min_tso_segs) 1955 { 1956 unsigned long bytes; 1957 u32 r; 1958 1959 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 1960 1961 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 1962 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 1963 bytes += sk->sk_gso_max_size >> r; 1964 1965 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 1966 1967 return max_t(u32, bytes / mss_now, min_tso_segs); 1968 } 1969 1970 /* Return the number of segments we want in the skb we are transmitting. 1971 * See if congestion control module wants to decide; otherwise, autosize. 1972 */ 1973 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1974 { 1975 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1976 u32 min_tso, tso_segs; 1977 1978 min_tso = ca_ops->min_tso_segs ? 1979 ca_ops->min_tso_segs(sk) : 1980 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 1981 1982 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1983 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1984 } 1985 1986 /* Returns the portion of skb which can be sent right away */ 1987 static unsigned int tcp_mss_split_point(const struct sock *sk, 1988 const struct sk_buff *skb, 1989 unsigned int mss_now, 1990 unsigned int max_segs, 1991 int nonagle) 1992 { 1993 const struct tcp_sock *tp = tcp_sk(sk); 1994 u32 partial, needed, window, max_len; 1995 1996 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1997 max_len = mss_now * max_segs; 1998 1999 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2000 return max_len; 2001 2002 needed = min(skb->len, window); 2003 2004 if (max_len <= needed) 2005 return max_len; 2006 2007 partial = needed % mss_now; 2008 /* If last segment is not a full MSS, check if Nagle rules allow us 2009 * to include this last segment in this skb. 2010 * Otherwise, we'll split the skb at last MSS boundary 2011 */ 2012 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2013 return needed - partial; 2014 2015 return needed; 2016 } 2017 2018 /* Can at least one segment of SKB be sent right now, according to the 2019 * congestion window rules? If so, return how many segments are allowed. 2020 */ 2021 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2022 const struct sk_buff *skb) 2023 { 2024 u32 in_flight, cwnd, halfcwnd; 2025 2026 /* Don't be strict about the congestion window for the final FIN. */ 2027 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2028 tcp_skb_pcount(skb) == 1) 2029 return 1; 2030 2031 in_flight = tcp_packets_in_flight(tp); 2032 cwnd = tcp_snd_cwnd(tp); 2033 if (in_flight >= cwnd) 2034 return 0; 2035 2036 /* For better scheduling, ensure we have at least 2037 * 2 GSO packets in flight. 2038 */ 2039 halfcwnd = max(cwnd >> 1, 1U); 2040 return min(halfcwnd, cwnd - in_flight); 2041 } 2042 2043 /* Initialize TSO state of a skb. 2044 * This must be invoked the first time we consider transmitting 2045 * SKB onto the wire. 2046 */ 2047 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2048 { 2049 int tso_segs = tcp_skb_pcount(skb); 2050 2051 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2052 tcp_set_skb_tso_segs(skb, mss_now); 2053 tso_segs = tcp_skb_pcount(skb); 2054 } 2055 return tso_segs; 2056 } 2057 2058 2059 /* Return true if the Nagle test allows this packet to be 2060 * sent now. 2061 */ 2062 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2063 unsigned int cur_mss, int nonagle) 2064 { 2065 /* Nagle rule does not apply to frames, which sit in the middle of the 2066 * write_queue (they have no chances to get new data). 2067 * 2068 * This is implemented in the callers, where they modify the 'nonagle' 2069 * argument based upon the location of SKB in the send queue. 2070 */ 2071 if (nonagle & TCP_NAGLE_PUSH) 2072 return true; 2073 2074 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2075 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2076 return true; 2077 2078 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2079 return true; 2080 2081 return false; 2082 } 2083 2084 /* Does at least the first segment of SKB fit into the send window? */ 2085 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2086 const struct sk_buff *skb, 2087 unsigned int cur_mss) 2088 { 2089 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2090 2091 if (skb->len > cur_mss) 2092 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2093 2094 return !after(end_seq, tcp_wnd_end(tp)); 2095 } 2096 2097 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2098 * which is put after SKB on the list. It is very much like 2099 * tcp_fragment() except that it may make several kinds of assumptions 2100 * in order to speed up the splitting operation. In particular, we 2101 * know that all the data is in scatter-gather pages, and that the 2102 * packet has never been sent out before (and thus is not cloned). 2103 */ 2104 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2105 unsigned int mss_now, gfp_t gfp) 2106 { 2107 int nlen = skb->len - len; 2108 struct sk_buff *buff; 2109 u8 flags; 2110 2111 /* All of a TSO frame must be composed of paged data. */ 2112 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2113 2114 buff = tcp_stream_alloc_skb(sk, gfp, true); 2115 if (unlikely(!buff)) 2116 return -ENOMEM; 2117 skb_copy_decrypted(buff, skb); 2118 mptcp_skb_ext_copy(buff, skb); 2119 2120 sk_wmem_queued_add(sk, buff->truesize); 2121 sk_mem_charge(sk, buff->truesize); 2122 buff->truesize += nlen; 2123 skb->truesize -= nlen; 2124 2125 /* Correct the sequence numbers. */ 2126 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2127 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2128 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2129 2130 /* PSH and FIN should only be set in the second packet. */ 2131 flags = TCP_SKB_CB(skb)->tcp_flags; 2132 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2133 TCP_SKB_CB(buff)->tcp_flags = flags; 2134 2135 tcp_skb_fragment_eor(skb, buff); 2136 2137 skb_split(skb, buff, len); 2138 tcp_fragment_tstamp(skb, buff); 2139 2140 /* Fix up tso_factor for both original and new SKB. */ 2141 tcp_set_skb_tso_segs(skb, mss_now); 2142 tcp_set_skb_tso_segs(buff, mss_now); 2143 2144 /* Link BUFF into the send queue. */ 2145 __skb_header_release(buff); 2146 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2147 2148 return 0; 2149 } 2150 2151 /* Try to defer sending, if possible, in order to minimize the amount 2152 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2153 * 2154 * This algorithm is from John Heffner. 2155 */ 2156 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2157 bool *is_cwnd_limited, 2158 bool *is_rwnd_limited, 2159 u32 max_segs) 2160 { 2161 const struct inet_connection_sock *icsk = inet_csk(sk); 2162 u32 send_win, cong_win, limit, in_flight; 2163 struct tcp_sock *tp = tcp_sk(sk); 2164 struct sk_buff *head; 2165 int win_divisor; 2166 s64 delta; 2167 2168 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2169 goto send_now; 2170 2171 /* Avoid bursty behavior by allowing defer 2172 * only if the last write was recent (1 ms). 2173 * Note that tp->tcp_wstamp_ns can be in the future if we have 2174 * packets waiting in a qdisc or device for EDT delivery. 2175 */ 2176 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2177 if (delta > 0) 2178 goto send_now; 2179 2180 in_flight = tcp_packets_in_flight(tp); 2181 2182 BUG_ON(tcp_skb_pcount(skb) <= 1); 2183 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2184 2185 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2186 2187 /* From in_flight test above, we know that cwnd > in_flight. */ 2188 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2189 2190 limit = min(send_win, cong_win); 2191 2192 /* If a full-sized TSO skb can be sent, do it. */ 2193 if (limit >= max_segs * tp->mss_cache) 2194 goto send_now; 2195 2196 /* Middle in queue won't get any more data, full sendable already? */ 2197 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2198 goto send_now; 2199 2200 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2201 if (win_divisor) { 2202 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2203 2204 /* If at least some fraction of a window is available, 2205 * just use it. 2206 */ 2207 chunk /= win_divisor; 2208 if (limit >= chunk) 2209 goto send_now; 2210 } else { 2211 /* Different approach, try not to defer past a single 2212 * ACK. Receiver should ACK every other full sized 2213 * frame, so if we have space for more than 3 frames 2214 * then send now. 2215 */ 2216 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2217 goto send_now; 2218 } 2219 2220 /* TODO : use tsorted_sent_queue ? */ 2221 head = tcp_rtx_queue_head(sk); 2222 if (!head) 2223 goto send_now; 2224 delta = tp->tcp_clock_cache - head->tstamp; 2225 /* If next ACK is likely to come too late (half srtt), do not defer */ 2226 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2227 goto send_now; 2228 2229 /* Ok, it looks like it is advisable to defer. 2230 * Three cases are tracked : 2231 * 1) We are cwnd-limited 2232 * 2) We are rwnd-limited 2233 * 3) We are application limited. 2234 */ 2235 if (cong_win < send_win) { 2236 if (cong_win <= skb->len) { 2237 *is_cwnd_limited = true; 2238 return true; 2239 } 2240 } else { 2241 if (send_win <= skb->len) { 2242 *is_rwnd_limited = true; 2243 return true; 2244 } 2245 } 2246 2247 /* If this packet won't get more data, do not wait. */ 2248 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2249 TCP_SKB_CB(skb)->eor) 2250 goto send_now; 2251 2252 return true; 2253 2254 send_now: 2255 return false; 2256 } 2257 2258 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2259 { 2260 struct inet_connection_sock *icsk = inet_csk(sk); 2261 struct tcp_sock *tp = tcp_sk(sk); 2262 struct net *net = sock_net(sk); 2263 u32 interval; 2264 s32 delta; 2265 2266 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2267 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2268 if (unlikely(delta >= interval * HZ)) { 2269 int mss = tcp_current_mss(sk); 2270 2271 /* Update current search range */ 2272 icsk->icsk_mtup.probe_size = 0; 2273 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2274 sizeof(struct tcphdr) + 2275 icsk->icsk_af_ops->net_header_len; 2276 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2277 2278 /* Update probe time stamp */ 2279 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2280 } 2281 } 2282 2283 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2284 { 2285 struct sk_buff *skb, *next; 2286 2287 skb = tcp_send_head(sk); 2288 tcp_for_write_queue_from_safe(skb, next, sk) { 2289 if (len <= skb->len) 2290 break; 2291 2292 if (unlikely(TCP_SKB_CB(skb)->eor) || 2293 tcp_has_tx_tstamp(skb) || 2294 !skb_pure_zcopy_same(skb, next)) 2295 return false; 2296 2297 len -= skb->len; 2298 } 2299 2300 return true; 2301 } 2302 2303 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2304 int probe_size) 2305 { 2306 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2307 int i, todo, len = 0, nr_frags = 0; 2308 const struct sk_buff *skb; 2309 2310 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2311 return -ENOMEM; 2312 2313 skb_queue_walk(&sk->sk_write_queue, skb) { 2314 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2315 2316 if (skb_headlen(skb)) 2317 return -EINVAL; 2318 2319 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2320 if (len >= probe_size) 2321 goto commit; 2322 todo = min_t(int, skb_frag_size(fragfrom), 2323 probe_size - len); 2324 len += todo; 2325 if (lastfrag && 2326 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2327 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2328 skb_frag_size(lastfrag)) { 2329 skb_frag_size_add(lastfrag, todo); 2330 continue; 2331 } 2332 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2333 return -E2BIG; 2334 skb_frag_page_copy(fragto, fragfrom); 2335 skb_frag_off_copy(fragto, fragfrom); 2336 skb_frag_size_set(fragto, todo); 2337 nr_frags++; 2338 lastfrag = fragto++; 2339 } 2340 } 2341 commit: 2342 WARN_ON_ONCE(len != probe_size); 2343 for (i = 0; i < nr_frags; i++) 2344 skb_frag_ref(to, i); 2345 2346 skb_shinfo(to)->nr_frags = nr_frags; 2347 to->truesize += probe_size; 2348 to->len += probe_size; 2349 to->data_len += probe_size; 2350 __skb_header_release(to); 2351 return 0; 2352 } 2353 2354 /* Create a new MTU probe if we are ready. 2355 * MTU probe is regularly attempting to increase the path MTU by 2356 * deliberately sending larger packets. This discovers routing 2357 * changes resulting in larger path MTUs. 2358 * 2359 * Returns 0 if we should wait to probe (no cwnd available), 2360 * 1 if a probe was sent, 2361 * -1 otherwise 2362 */ 2363 static int tcp_mtu_probe(struct sock *sk) 2364 { 2365 struct inet_connection_sock *icsk = inet_csk(sk); 2366 struct tcp_sock *tp = tcp_sk(sk); 2367 struct sk_buff *skb, *nskb, *next; 2368 struct net *net = sock_net(sk); 2369 int probe_size; 2370 int size_needed; 2371 int copy, len; 2372 int mss_now; 2373 int interval; 2374 2375 /* Not currently probing/verifying, 2376 * not in recovery, 2377 * have enough cwnd, and 2378 * not SACKing (the variable headers throw things off) 2379 */ 2380 if (likely(!icsk->icsk_mtup.enabled || 2381 icsk->icsk_mtup.probe_size || 2382 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2383 tcp_snd_cwnd(tp) < 11 || 2384 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2385 return -1; 2386 2387 /* Use binary search for probe_size between tcp_mss_base, 2388 * and current mss_clamp. if (search_high - search_low) 2389 * smaller than a threshold, backoff from probing. 2390 */ 2391 mss_now = tcp_current_mss(sk); 2392 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2393 icsk->icsk_mtup.search_low) >> 1); 2394 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2395 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2396 /* When misfortune happens, we are reprobing actively, 2397 * and then reprobe timer has expired. We stick with current 2398 * probing process by not resetting search range to its orignal. 2399 */ 2400 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2401 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2402 /* Check whether enough time has elaplased for 2403 * another round of probing. 2404 */ 2405 tcp_mtu_check_reprobe(sk); 2406 return -1; 2407 } 2408 2409 /* Have enough data in the send queue to probe? */ 2410 if (tp->write_seq - tp->snd_nxt < size_needed) 2411 return -1; 2412 2413 if (tp->snd_wnd < size_needed) 2414 return -1; 2415 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2416 return 0; 2417 2418 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2419 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2420 if (!tcp_packets_in_flight(tp)) 2421 return -1; 2422 else 2423 return 0; 2424 } 2425 2426 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2427 return -1; 2428 2429 /* We're allowed to probe. Build it now. */ 2430 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2431 if (!nskb) 2432 return -1; 2433 2434 /* build the payload, and be prepared to abort if this fails. */ 2435 if (tcp_clone_payload(sk, nskb, probe_size)) { 2436 tcp_skb_tsorted_anchor_cleanup(nskb); 2437 consume_skb(nskb); 2438 return -1; 2439 } 2440 sk_wmem_queued_add(sk, nskb->truesize); 2441 sk_mem_charge(sk, nskb->truesize); 2442 2443 skb = tcp_send_head(sk); 2444 skb_copy_decrypted(nskb, skb); 2445 mptcp_skb_ext_copy(nskb, skb); 2446 2447 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2448 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2449 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2450 2451 tcp_insert_write_queue_before(nskb, skb, sk); 2452 tcp_highest_sack_replace(sk, skb, nskb); 2453 2454 len = 0; 2455 tcp_for_write_queue_from_safe(skb, next, sk) { 2456 copy = min_t(int, skb->len, probe_size - len); 2457 2458 if (skb->len <= copy) { 2459 /* We've eaten all the data from this skb. 2460 * Throw it away. */ 2461 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2462 /* If this is the last SKB we copy and eor is set 2463 * we need to propagate it to the new skb. 2464 */ 2465 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2466 tcp_skb_collapse_tstamp(nskb, skb); 2467 tcp_unlink_write_queue(skb, sk); 2468 tcp_wmem_free_skb(sk, skb); 2469 } else { 2470 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2471 ~(TCPHDR_FIN|TCPHDR_PSH); 2472 __pskb_trim_head(skb, copy); 2473 tcp_set_skb_tso_segs(skb, mss_now); 2474 TCP_SKB_CB(skb)->seq += copy; 2475 } 2476 2477 len += copy; 2478 2479 if (len >= probe_size) 2480 break; 2481 } 2482 tcp_init_tso_segs(nskb, nskb->len); 2483 2484 /* We're ready to send. If this fails, the probe will 2485 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2486 */ 2487 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2488 /* Decrement cwnd here because we are sending 2489 * effectively two packets. */ 2490 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2491 tcp_event_new_data_sent(sk, nskb); 2492 2493 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2494 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2495 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2496 2497 return 1; 2498 } 2499 2500 return -1; 2501 } 2502 2503 static bool tcp_pacing_check(struct sock *sk) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 2507 if (!tcp_needs_internal_pacing(sk)) 2508 return false; 2509 2510 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2511 return false; 2512 2513 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2514 hrtimer_start(&tp->pacing_timer, 2515 ns_to_ktime(tp->tcp_wstamp_ns), 2516 HRTIMER_MODE_ABS_PINNED_SOFT); 2517 sock_hold(sk); 2518 } 2519 return true; 2520 } 2521 2522 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2523 { 2524 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2525 2526 /* No skb in the rtx queue. */ 2527 if (!node) 2528 return true; 2529 2530 /* Only one skb in rtx queue. */ 2531 return !node->rb_left && !node->rb_right; 2532 } 2533 2534 /* TCP Small Queues : 2535 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2536 * (These limits are doubled for retransmits) 2537 * This allows for : 2538 * - better RTT estimation and ACK scheduling 2539 * - faster recovery 2540 * - high rates 2541 * Alas, some drivers / subsystems require a fair amount 2542 * of queued bytes to ensure line rate. 2543 * One example is wifi aggregation (802.11 AMPDU) 2544 */ 2545 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2546 unsigned int factor) 2547 { 2548 unsigned long limit; 2549 2550 limit = max_t(unsigned long, 2551 2 * skb->truesize, 2552 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2553 if (sk->sk_pacing_status == SK_PACING_NONE) 2554 limit = min_t(unsigned long, limit, 2555 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2556 limit <<= factor; 2557 2558 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2559 tcp_sk(sk)->tcp_tx_delay) { 2560 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2561 tcp_sk(sk)->tcp_tx_delay; 2562 2563 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2564 * approximate our needs assuming an ~100% skb->truesize overhead. 2565 * USEC_PER_SEC is approximated by 2^20. 2566 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2567 */ 2568 extra_bytes >>= (20 - 1); 2569 limit += extra_bytes; 2570 } 2571 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2572 /* Always send skb if rtx queue is empty or has one skb. 2573 * No need to wait for TX completion to call us back, 2574 * after softirq/tasklet schedule. 2575 * This helps when TX completions are delayed too much. 2576 */ 2577 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2578 return false; 2579 2580 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2581 /* It is possible TX completion already happened 2582 * before we set TSQ_THROTTLED, so we must 2583 * test again the condition. 2584 */ 2585 smp_mb__after_atomic(); 2586 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2587 return true; 2588 } 2589 return false; 2590 } 2591 2592 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2593 { 2594 const u32 now = tcp_jiffies32; 2595 enum tcp_chrono old = tp->chrono_type; 2596 2597 if (old > TCP_CHRONO_UNSPEC) 2598 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2599 tp->chrono_start = now; 2600 tp->chrono_type = new; 2601 } 2602 2603 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2604 { 2605 struct tcp_sock *tp = tcp_sk(sk); 2606 2607 /* If there are multiple conditions worthy of tracking in a 2608 * chronograph then the highest priority enum takes precedence 2609 * over the other conditions. So that if something "more interesting" 2610 * starts happening, stop the previous chrono and start a new one. 2611 */ 2612 if (type > tp->chrono_type) 2613 tcp_chrono_set(tp, type); 2614 } 2615 2616 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2617 { 2618 struct tcp_sock *tp = tcp_sk(sk); 2619 2620 2621 /* There are multiple conditions worthy of tracking in a 2622 * chronograph, so that the highest priority enum takes 2623 * precedence over the other conditions (see tcp_chrono_start). 2624 * If a condition stops, we only stop chrono tracking if 2625 * it's the "most interesting" or current chrono we are 2626 * tracking and starts busy chrono if we have pending data. 2627 */ 2628 if (tcp_rtx_and_write_queues_empty(sk)) 2629 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2630 else if (type == tp->chrono_type) 2631 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2632 } 2633 2634 /* This routine writes packets to the network. It advances the 2635 * send_head. This happens as incoming acks open up the remote 2636 * window for us. 2637 * 2638 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2639 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2640 * account rare use of URG, this is not a big flaw. 2641 * 2642 * Send at most one packet when push_one > 0. Temporarily ignore 2643 * cwnd limit to force at most one packet out when push_one == 2. 2644 2645 * Returns true, if no segments are in flight and we have queued segments, 2646 * but cannot send anything now because of SWS or another problem. 2647 */ 2648 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2649 int push_one, gfp_t gfp) 2650 { 2651 struct tcp_sock *tp = tcp_sk(sk); 2652 struct sk_buff *skb; 2653 unsigned int tso_segs, sent_pkts; 2654 int cwnd_quota; 2655 int result; 2656 bool is_cwnd_limited = false, is_rwnd_limited = false; 2657 u32 max_segs; 2658 2659 sent_pkts = 0; 2660 2661 tcp_mstamp_refresh(tp); 2662 if (!push_one) { 2663 /* Do MTU probing. */ 2664 result = tcp_mtu_probe(sk); 2665 if (!result) { 2666 return false; 2667 } else if (result > 0) { 2668 sent_pkts = 1; 2669 } 2670 } 2671 2672 max_segs = tcp_tso_segs(sk, mss_now); 2673 while ((skb = tcp_send_head(sk))) { 2674 unsigned int limit; 2675 2676 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2677 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2678 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2679 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2680 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2681 tcp_init_tso_segs(skb, mss_now); 2682 goto repair; /* Skip network transmission */ 2683 } 2684 2685 if (tcp_pacing_check(sk)) 2686 break; 2687 2688 tso_segs = tcp_init_tso_segs(skb, mss_now); 2689 BUG_ON(!tso_segs); 2690 2691 cwnd_quota = tcp_cwnd_test(tp, skb); 2692 if (!cwnd_quota) { 2693 if (push_one == 2) 2694 /* Force out a loss probe pkt. */ 2695 cwnd_quota = 1; 2696 else 2697 break; 2698 } 2699 2700 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2701 is_rwnd_limited = true; 2702 break; 2703 } 2704 2705 if (tso_segs == 1) { 2706 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2707 (tcp_skb_is_last(sk, skb) ? 2708 nonagle : TCP_NAGLE_PUSH)))) 2709 break; 2710 } else { 2711 if (!push_one && 2712 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2713 &is_rwnd_limited, max_segs)) 2714 break; 2715 } 2716 2717 limit = mss_now; 2718 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2719 limit = tcp_mss_split_point(sk, skb, mss_now, 2720 min_t(unsigned int, 2721 cwnd_quota, 2722 max_segs), 2723 nonagle); 2724 2725 if (skb->len > limit && 2726 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2727 break; 2728 2729 if (tcp_small_queue_check(sk, skb, 0)) 2730 break; 2731 2732 /* Argh, we hit an empty skb(), presumably a thread 2733 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2734 * We do not want to send a pure-ack packet and have 2735 * a strange looking rtx queue with empty packet(s). 2736 */ 2737 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2738 break; 2739 2740 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2741 break; 2742 2743 repair: 2744 /* Advance the send_head. This one is sent out. 2745 * This call will increment packets_out. 2746 */ 2747 tcp_event_new_data_sent(sk, skb); 2748 2749 tcp_minshall_update(tp, mss_now, skb); 2750 sent_pkts += tcp_skb_pcount(skb); 2751 2752 if (push_one) 2753 break; 2754 } 2755 2756 if (is_rwnd_limited) 2757 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2758 else 2759 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2760 2761 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2762 if (likely(sent_pkts || is_cwnd_limited)) 2763 tcp_cwnd_validate(sk, is_cwnd_limited); 2764 2765 if (likely(sent_pkts)) { 2766 if (tcp_in_cwnd_reduction(sk)) 2767 tp->prr_out += sent_pkts; 2768 2769 /* Send one loss probe per tail loss episode. */ 2770 if (push_one != 2) 2771 tcp_schedule_loss_probe(sk, false); 2772 return false; 2773 } 2774 return !tp->packets_out && !tcp_write_queue_empty(sk); 2775 } 2776 2777 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2778 { 2779 struct inet_connection_sock *icsk = inet_csk(sk); 2780 struct tcp_sock *tp = tcp_sk(sk); 2781 u32 timeout, timeout_us, rto_delta_us; 2782 int early_retrans; 2783 2784 /* Don't do any loss probe on a Fast Open connection before 3WHS 2785 * finishes. 2786 */ 2787 if (rcu_access_pointer(tp->fastopen_rsk)) 2788 return false; 2789 2790 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2791 /* Schedule a loss probe in 2*RTT for SACK capable connections 2792 * not in loss recovery, that are either limited by cwnd or application. 2793 */ 2794 if ((early_retrans != 3 && early_retrans != 4) || 2795 !tp->packets_out || !tcp_is_sack(tp) || 2796 (icsk->icsk_ca_state != TCP_CA_Open && 2797 icsk->icsk_ca_state != TCP_CA_CWR)) 2798 return false; 2799 2800 /* Probe timeout is 2*rtt. Add minimum RTO to account 2801 * for delayed ack when there's one outstanding packet. If no RTT 2802 * sample is available then probe after TCP_TIMEOUT_INIT. 2803 */ 2804 if (tp->srtt_us) { 2805 timeout_us = tp->srtt_us >> 2; 2806 if (tp->packets_out == 1) 2807 timeout_us += tcp_rto_min_us(sk); 2808 else 2809 timeout_us += TCP_TIMEOUT_MIN_US; 2810 timeout = usecs_to_jiffies(timeout_us); 2811 } else { 2812 timeout = TCP_TIMEOUT_INIT; 2813 } 2814 2815 /* If the RTO formula yields an earlier time, then use that time. */ 2816 rto_delta_us = advancing_rto ? 2817 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2818 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2819 if (rto_delta_us > 0) 2820 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2821 2822 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2823 return true; 2824 } 2825 2826 /* Thanks to skb fast clones, we can detect if a prior transmit of 2827 * a packet is still in a qdisc or driver queue. 2828 * In this case, there is very little point doing a retransmit ! 2829 */ 2830 static bool skb_still_in_host_queue(struct sock *sk, 2831 const struct sk_buff *skb) 2832 { 2833 if (unlikely(skb_fclone_busy(sk, skb))) { 2834 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2835 smp_mb__after_atomic(); 2836 if (skb_fclone_busy(sk, skb)) { 2837 NET_INC_STATS(sock_net(sk), 2838 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2839 return true; 2840 } 2841 } 2842 return false; 2843 } 2844 2845 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2846 * retransmit the last segment. 2847 */ 2848 void tcp_send_loss_probe(struct sock *sk) 2849 { 2850 struct tcp_sock *tp = tcp_sk(sk); 2851 struct sk_buff *skb; 2852 int pcount; 2853 int mss = tcp_current_mss(sk); 2854 2855 /* At most one outstanding TLP */ 2856 if (tp->tlp_high_seq) 2857 goto rearm_timer; 2858 2859 tp->tlp_retrans = 0; 2860 skb = tcp_send_head(sk); 2861 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2862 pcount = tp->packets_out; 2863 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2864 if (tp->packets_out > pcount) 2865 goto probe_sent; 2866 goto rearm_timer; 2867 } 2868 skb = skb_rb_last(&sk->tcp_rtx_queue); 2869 if (unlikely(!skb)) { 2870 WARN_ONCE(tp->packets_out, 2871 "invalid inflight: %u state %u cwnd %u mss %d\n", 2872 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2873 inet_csk(sk)->icsk_pending = 0; 2874 return; 2875 } 2876 2877 if (skb_still_in_host_queue(sk, skb)) 2878 goto rearm_timer; 2879 2880 pcount = tcp_skb_pcount(skb); 2881 if (WARN_ON(!pcount)) 2882 goto rearm_timer; 2883 2884 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2885 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2886 (pcount - 1) * mss, mss, 2887 GFP_ATOMIC))) 2888 goto rearm_timer; 2889 skb = skb_rb_next(skb); 2890 } 2891 2892 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2893 goto rearm_timer; 2894 2895 if (__tcp_retransmit_skb(sk, skb, 1)) 2896 goto rearm_timer; 2897 2898 tp->tlp_retrans = 1; 2899 2900 probe_sent: 2901 /* Record snd_nxt for loss detection. */ 2902 tp->tlp_high_seq = tp->snd_nxt; 2903 2904 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2905 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2906 inet_csk(sk)->icsk_pending = 0; 2907 rearm_timer: 2908 tcp_rearm_rto(sk); 2909 } 2910 2911 /* Push out any pending frames which were held back due to 2912 * TCP_CORK or attempt at coalescing tiny packets. 2913 * The socket must be locked by the caller. 2914 */ 2915 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2916 int nonagle) 2917 { 2918 /* If we are closed, the bytes will have to remain here. 2919 * In time closedown will finish, we empty the write queue and 2920 * all will be happy. 2921 */ 2922 if (unlikely(sk->sk_state == TCP_CLOSE)) 2923 return; 2924 2925 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2926 sk_gfp_mask(sk, GFP_ATOMIC))) 2927 tcp_check_probe_timer(sk); 2928 } 2929 2930 /* Send _single_ skb sitting at the send head. This function requires 2931 * true push pending frames to setup probe timer etc. 2932 */ 2933 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2934 { 2935 struct sk_buff *skb = tcp_send_head(sk); 2936 2937 BUG_ON(!skb || skb->len < mss_now); 2938 2939 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2940 } 2941 2942 /* This function returns the amount that we can raise the 2943 * usable window based on the following constraints 2944 * 2945 * 1. The window can never be shrunk once it is offered (RFC 793) 2946 * 2. We limit memory per socket 2947 * 2948 * RFC 1122: 2949 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2950 * RECV.NEXT + RCV.WIN fixed until: 2951 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2952 * 2953 * i.e. don't raise the right edge of the window until you can raise 2954 * it at least MSS bytes. 2955 * 2956 * Unfortunately, the recommended algorithm breaks header prediction, 2957 * since header prediction assumes th->window stays fixed. 2958 * 2959 * Strictly speaking, keeping th->window fixed violates the receiver 2960 * side SWS prevention criteria. The problem is that under this rule 2961 * a stream of single byte packets will cause the right side of the 2962 * window to always advance by a single byte. 2963 * 2964 * Of course, if the sender implements sender side SWS prevention 2965 * then this will not be a problem. 2966 * 2967 * BSD seems to make the following compromise: 2968 * 2969 * If the free space is less than the 1/4 of the maximum 2970 * space available and the free space is less than 1/2 mss, 2971 * then set the window to 0. 2972 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2973 * Otherwise, just prevent the window from shrinking 2974 * and from being larger than the largest representable value. 2975 * 2976 * This prevents incremental opening of the window in the regime 2977 * where TCP is limited by the speed of the reader side taking 2978 * data out of the TCP receive queue. It does nothing about 2979 * those cases where the window is constrained on the sender side 2980 * because the pipeline is full. 2981 * 2982 * BSD also seems to "accidentally" limit itself to windows that are a 2983 * multiple of MSS, at least until the free space gets quite small. 2984 * This would appear to be a side effect of the mbuf implementation. 2985 * Combining these two algorithms results in the observed behavior 2986 * of having a fixed window size at almost all times. 2987 * 2988 * Below we obtain similar behavior by forcing the offered window to 2989 * a multiple of the mss when it is feasible to do so. 2990 * 2991 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2992 * Regular options like TIMESTAMP are taken into account. 2993 */ 2994 u32 __tcp_select_window(struct sock *sk) 2995 { 2996 struct inet_connection_sock *icsk = inet_csk(sk); 2997 struct tcp_sock *tp = tcp_sk(sk); 2998 struct net *net = sock_net(sk); 2999 /* MSS for the peer's data. Previous versions used mss_clamp 3000 * here. I don't know if the value based on our guesses 3001 * of peer's MSS is better for the performance. It's more correct 3002 * but may be worse for the performance because of rcv_mss 3003 * fluctuations. --SAW 1998/11/1 3004 */ 3005 int mss = icsk->icsk_ack.rcv_mss; 3006 int free_space = tcp_space(sk); 3007 int allowed_space = tcp_full_space(sk); 3008 int full_space, window; 3009 3010 if (sk_is_mptcp(sk)) 3011 mptcp_space(sk, &free_space, &allowed_space); 3012 3013 full_space = min_t(int, tp->window_clamp, allowed_space); 3014 3015 if (unlikely(mss > full_space)) { 3016 mss = full_space; 3017 if (mss <= 0) 3018 return 0; 3019 } 3020 3021 /* Only allow window shrink if the sysctl is enabled and we have 3022 * a non-zero scaling factor in effect. 3023 */ 3024 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3025 goto shrink_window_allowed; 3026 3027 /* do not allow window to shrink */ 3028 3029 if (free_space < (full_space >> 1)) { 3030 icsk->icsk_ack.quick = 0; 3031 3032 if (tcp_under_memory_pressure(sk)) 3033 tcp_adjust_rcv_ssthresh(sk); 3034 3035 /* free_space might become our new window, make sure we don't 3036 * increase it due to wscale. 3037 */ 3038 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3039 3040 /* if free space is less than mss estimate, or is below 1/16th 3041 * of the maximum allowed, try to move to zero-window, else 3042 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3043 * new incoming data is dropped due to memory limits. 3044 * With large window, mss test triggers way too late in order 3045 * to announce zero window in time before rmem limit kicks in. 3046 */ 3047 if (free_space < (allowed_space >> 4) || free_space < mss) 3048 return 0; 3049 } 3050 3051 if (free_space > tp->rcv_ssthresh) 3052 free_space = tp->rcv_ssthresh; 3053 3054 /* Don't do rounding if we are using window scaling, since the 3055 * scaled window will not line up with the MSS boundary anyway. 3056 */ 3057 if (tp->rx_opt.rcv_wscale) { 3058 window = free_space; 3059 3060 /* Advertise enough space so that it won't get scaled away. 3061 * Import case: prevent zero window announcement if 3062 * 1<<rcv_wscale > mss. 3063 */ 3064 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3065 } else { 3066 window = tp->rcv_wnd; 3067 /* Get the largest window that is a nice multiple of mss. 3068 * Window clamp already applied above. 3069 * If our current window offering is within 1 mss of the 3070 * free space we just keep it. This prevents the divide 3071 * and multiply from happening most of the time. 3072 * We also don't do any window rounding when the free space 3073 * is too small. 3074 */ 3075 if (window <= free_space - mss || window > free_space) 3076 window = rounddown(free_space, mss); 3077 else if (mss == full_space && 3078 free_space > window + (full_space >> 1)) 3079 window = free_space; 3080 } 3081 3082 return window; 3083 3084 shrink_window_allowed: 3085 /* new window should always be an exact multiple of scaling factor */ 3086 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3087 3088 if (free_space < (full_space >> 1)) { 3089 icsk->icsk_ack.quick = 0; 3090 3091 if (tcp_under_memory_pressure(sk)) 3092 tcp_adjust_rcv_ssthresh(sk); 3093 3094 /* if free space is too low, return a zero window */ 3095 if (free_space < (allowed_space >> 4) || free_space < mss || 3096 free_space < (1 << tp->rx_opt.rcv_wscale)) 3097 return 0; 3098 } 3099 3100 if (free_space > tp->rcv_ssthresh) { 3101 free_space = tp->rcv_ssthresh; 3102 /* new window should always be an exact multiple of scaling factor 3103 * 3104 * For this case, we ALIGN "up" (increase free_space) because 3105 * we know free_space is not zero here, it has been reduced from 3106 * the memory-based limit, and rcv_ssthresh is not a hard limit 3107 * (unlike sk_rcvbuf). 3108 */ 3109 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3110 } 3111 3112 return free_space; 3113 } 3114 3115 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3116 const struct sk_buff *next_skb) 3117 { 3118 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3119 const struct skb_shared_info *next_shinfo = 3120 skb_shinfo(next_skb); 3121 struct skb_shared_info *shinfo = skb_shinfo(skb); 3122 3123 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3124 shinfo->tskey = next_shinfo->tskey; 3125 TCP_SKB_CB(skb)->txstamp_ack |= 3126 TCP_SKB_CB(next_skb)->txstamp_ack; 3127 } 3128 } 3129 3130 /* Collapses two adjacent SKB's during retransmission. */ 3131 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3132 { 3133 struct tcp_sock *tp = tcp_sk(sk); 3134 struct sk_buff *next_skb = skb_rb_next(skb); 3135 int next_skb_size; 3136 3137 next_skb_size = next_skb->len; 3138 3139 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3140 3141 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3142 return false; 3143 3144 tcp_highest_sack_replace(sk, next_skb, skb); 3145 3146 /* Update sequence range on original skb. */ 3147 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3148 3149 /* Merge over control information. This moves PSH/FIN etc. over */ 3150 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3151 3152 /* All done, get rid of second SKB and account for it so 3153 * packet counting does not break. 3154 */ 3155 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3156 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3157 3158 /* changed transmit queue under us so clear hints */ 3159 tcp_clear_retrans_hints_partial(tp); 3160 if (next_skb == tp->retransmit_skb_hint) 3161 tp->retransmit_skb_hint = skb; 3162 3163 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3164 3165 tcp_skb_collapse_tstamp(skb, next_skb); 3166 3167 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3168 return true; 3169 } 3170 3171 /* Check if coalescing SKBs is legal. */ 3172 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3173 { 3174 if (tcp_skb_pcount(skb) > 1) 3175 return false; 3176 if (skb_cloned(skb)) 3177 return false; 3178 /* Some heuristics for collapsing over SACK'd could be invented */ 3179 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3180 return false; 3181 3182 return true; 3183 } 3184 3185 /* Collapse packets in the retransmit queue to make to create 3186 * less packets on the wire. This is only done on retransmission. 3187 */ 3188 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3189 int space) 3190 { 3191 struct tcp_sock *tp = tcp_sk(sk); 3192 struct sk_buff *skb = to, *tmp; 3193 bool first = true; 3194 3195 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3196 return; 3197 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3198 return; 3199 3200 skb_rbtree_walk_from_safe(skb, tmp) { 3201 if (!tcp_can_collapse(sk, skb)) 3202 break; 3203 3204 if (!tcp_skb_can_collapse(to, skb)) 3205 break; 3206 3207 space -= skb->len; 3208 3209 if (first) { 3210 first = false; 3211 continue; 3212 } 3213 3214 if (space < 0) 3215 break; 3216 3217 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3218 break; 3219 3220 if (!tcp_collapse_retrans(sk, to)) 3221 break; 3222 } 3223 } 3224 3225 /* This retransmits one SKB. Policy decisions and retransmit queue 3226 * state updates are done by the caller. Returns non-zero if an 3227 * error occurred which prevented the send. 3228 */ 3229 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3230 { 3231 struct inet_connection_sock *icsk = inet_csk(sk); 3232 struct tcp_sock *tp = tcp_sk(sk); 3233 unsigned int cur_mss; 3234 int diff, len, err; 3235 int avail_wnd; 3236 3237 /* Inconclusive MTU probe */ 3238 if (icsk->icsk_mtup.probe_size) 3239 icsk->icsk_mtup.probe_size = 0; 3240 3241 if (skb_still_in_host_queue(sk, skb)) 3242 return -EBUSY; 3243 3244 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3245 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3246 WARN_ON_ONCE(1); 3247 return -EINVAL; 3248 } 3249 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3250 return -ENOMEM; 3251 } 3252 3253 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3254 return -EHOSTUNREACH; /* Routing failure or similar. */ 3255 3256 cur_mss = tcp_current_mss(sk); 3257 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3258 3259 /* If receiver has shrunk his window, and skb is out of 3260 * new window, do not retransmit it. The exception is the 3261 * case, when window is shrunk to zero. In this case 3262 * our retransmit of one segment serves as a zero window probe. 3263 */ 3264 if (avail_wnd <= 0) { 3265 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3266 return -EAGAIN; 3267 avail_wnd = cur_mss; 3268 } 3269 3270 len = cur_mss * segs; 3271 if (len > avail_wnd) { 3272 len = rounddown(avail_wnd, cur_mss); 3273 if (!len) 3274 len = avail_wnd; 3275 } 3276 if (skb->len > len) { 3277 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3278 cur_mss, GFP_ATOMIC)) 3279 return -ENOMEM; /* We'll try again later. */ 3280 } else { 3281 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3282 return -ENOMEM; 3283 3284 diff = tcp_skb_pcount(skb); 3285 tcp_set_skb_tso_segs(skb, cur_mss); 3286 diff -= tcp_skb_pcount(skb); 3287 if (diff) 3288 tcp_adjust_pcount(sk, skb, diff); 3289 avail_wnd = min_t(int, avail_wnd, cur_mss); 3290 if (skb->len < avail_wnd) 3291 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3292 } 3293 3294 /* RFC3168, section 6.1.1.1. ECN fallback */ 3295 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3296 tcp_ecn_clear_syn(sk, skb); 3297 3298 /* Update global and local TCP statistics. */ 3299 segs = tcp_skb_pcount(skb); 3300 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3301 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3302 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3303 tp->total_retrans += segs; 3304 tp->bytes_retrans += skb->len; 3305 3306 /* make sure skb->data is aligned on arches that require it 3307 * and check if ack-trimming & collapsing extended the headroom 3308 * beyond what csum_start can cover. 3309 */ 3310 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3311 skb_headroom(skb) >= 0xFFFF)) { 3312 struct sk_buff *nskb; 3313 3314 tcp_skb_tsorted_save(skb) { 3315 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3316 if (nskb) { 3317 nskb->dev = NULL; 3318 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3319 } else { 3320 err = -ENOBUFS; 3321 } 3322 } tcp_skb_tsorted_restore(skb); 3323 3324 if (!err) { 3325 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3326 tcp_rate_skb_sent(sk, skb); 3327 } 3328 } else { 3329 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3330 } 3331 3332 /* To avoid taking spuriously low RTT samples based on a timestamp 3333 * for a transmit that never happened, always mark EVER_RETRANS 3334 */ 3335 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3336 3337 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3338 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3339 TCP_SKB_CB(skb)->seq, segs, err); 3340 3341 if (likely(!err)) { 3342 trace_tcp_retransmit_skb(sk, skb); 3343 } else if (err != -EBUSY) { 3344 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3345 } 3346 return err; 3347 } 3348 3349 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3350 { 3351 struct tcp_sock *tp = tcp_sk(sk); 3352 int err = __tcp_retransmit_skb(sk, skb, segs); 3353 3354 if (err == 0) { 3355 #if FASTRETRANS_DEBUG > 0 3356 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3357 net_dbg_ratelimited("retrans_out leaked\n"); 3358 } 3359 #endif 3360 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3361 tp->retrans_out += tcp_skb_pcount(skb); 3362 } 3363 3364 /* Save stamp of the first (attempted) retransmit. */ 3365 if (!tp->retrans_stamp) 3366 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3367 3368 if (tp->undo_retrans < 0) 3369 tp->undo_retrans = 0; 3370 tp->undo_retrans += tcp_skb_pcount(skb); 3371 return err; 3372 } 3373 3374 /* This gets called after a retransmit timeout, and the initially 3375 * retransmitted data is acknowledged. It tries to continue 3376 * resending the rest of the retransmit queue, until either 3377 * we've sent it all or the congestion window limit is reached. 3378 */ 3379 void tcp_xmit_retransmit_queue(struct sock *sk) 3380 { 3381 const struct inet_connection_sock *icsk = inet_csk(sk); 3382 struct sk_buff *skb, *rtx_head, *hole = NULL; 3383 struct tcp_sock *tp = tcp_sk(sk); 3384 bool rearm_timer = false; 3385 u32 max_segs; 3386 int mib_idx; 3387 3388 if (!tp->packets_out) 3389 return; 3390 3391 rtx_head = tcp_rtx_queue_head(sk); 3392 skb = tp->retransmit_skb_hint ?: rtx_head; 3393 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3394 skb_rbtree_walk_from(skb) { 3395 __u8 sacked; 3396 int segs; 3397 3398 if (tcp_pacing_check(sk)) 3399 break; 3400 3401 /* we could do better than to assign each time */ 3402 if (!hole) 3403 tp->retransmit_skb_hint = skb; 3404 3405 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3406 if (segs <= 0) 3407 break; 3408 sacked = TCP_SKB_CB(skb)->sacked; 3409 /* In case tcp_shift_skb_data() have aggregated large skbs, 3410 * we need to make sure not sending too bigs TSO packets 3411 */ 3412 segs = min_t(int, segs, max_segs); 3413 3414 if (tp->retrans_out >= tp->lost_out) { 3415 break; 3416 } else if (!(sacked & TCPCB_LOST)) { 3417 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3418 hole = skb; 3419 continue; 3420 3421 } else { 3422 if (icsk->icsk_ca_state != TCP_CA_Loss) 3423 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3424 else 3425 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3426 } 3427 3428 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3429 continue; 3430 3431 if (tcp_small_queue_check(sk, skb, 1)) 3432 break; 3433 3434 if (tcp_retransmit_skb(sk, skb, segs)) 3435 break; 3436 3437 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3438 3439 if (tcp_in_cwnd_reduction(sk)) 3440 tp->prr_out += tcp_skb_pcount(skb); 3441 3442 if (skb == rtx_head && 3443 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3444 rearm_timer = true; 3445 3446 } 3447 if (rearm_timer) 3448 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3449 inet_csk(sk)->icsk_rto, 3450 TCP_RTO_MAX); 3451 } 3452 3453 /* We allow to exceed memory limits for FIN packets to expedite 3454 * connection tear down and (memory) recovery. 3455 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3456 * or even be forced to close flow without any FIN. 3457 * In general, we want to allow one skb per socket to avoid hangs 3458 * with edge trigger epoll() 3459 */ 3460 void sk_forced_mem_schedule(struct sock *sk, int size) 3461 { 3462 int delta, amt; 3463 3464 delta = size - sk->sk_forward_alloc; 3465 if (delta <= 0) 3466 return; 3467 amt = sk_mem_pages(delta); 3468 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3469 sk_memory_allocated_add(sk, amt); 3470 3471 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3472 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3473 gfp_memcg_charge() | __GFP_NOFAIL); 3474 } 3475 3476 /* Send a FIN. The caller locks the socket for us. 3477 * We should try to send a FIN packet really hard, but eventually give up. 3478 */ 3479 void tcp_send_fin(struct sock *sk) 3480 { 3481 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3482 struct tcp_sock *tp = tcp_sk(sk); 3483 3484 /* Optimization, tack on the FIN if we have one skb in write queue and 3485 * this skb was not yet sent, or we are under memory pressure. 3486 * Note: in the latter case, FIN packet will be sent after a timeout, 3487 * as TCP stack thinks it has already been transmitted. 3488 */ 3489 tskb = tail; 3490 if (!tskb && tcp_under_memory_pressure(sk)) 3491 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3492 3493 if (tskb) { 3494 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3495 TCP_SKB_CB(tskb)->end_seq++; 3496 tp->write_seq++; 3497 if (!tail) { 3498 /* This means tskb was already sent. 3499 * Pretend we included the FIN on previous transmit. 3500 * We need to set tp->snd_nxt to the value it would have 3501 * if FIN had been sent. This is because retransmit path 3502 * does not change tp->snd_nxt. 3503 */ 3504 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3505 return; 3506 } 3507 } else { 3508 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3509 if (unlikely(!skb)) 3510 return; 3511 3512 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3513 skb_reserve(skb, MAX_TCP_HEADER); 3514 sk_forced_mem_schedule(sk, skb->truesize); 3515 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3516 tcp_init_nondata_skb(skb, tp->write_seq, 3517 TCPHDR_ACK | TCPHDR_FIN); 3518 tcp_queue_skb(sk, skb); 3519 } 3520 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3521 } 3522 3523 /* We get here when a process closes a file descriptor (either due to 3524 * an explicit close() or as a byproduct of exit()'ing) and there 3525 * was unread data in the receive queue. This behavior is recommended 3526 * by RFC 2525, section 2.17. -DaveM 3527 */ 3528 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3529 { 3530 struct sk_buff *skb; 3531 3532 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3533 3534 /* NOTE: No TCP options attached and we never retransmit this. */ 3535 skb = alloc_skb(MAX_TCP_HEADER, priority); 3536 if (!skb) { 3537 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3538 return; 3539 } 3540 3541 /* Reserve space for headers and prepare control bits. */ 3542 skb_reserve(skb, MAX_TCP_HEADER); 3543 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3544 TCPHDR_ACK | TCPHDR_RST); 3545 tcp_mstamp_refresh(tcp_sk(sk)); 3546 /* Send it off. */ 3547 if (tcp_transmit_skb(sk, skb, 0, priority)) 3548 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3549 3550 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3551 * skb here is different to the troublesome skb, so use NULL 3552 */ 3553 trace_tcp_send_reset(sk, NULL); 3554 } 3555 3556 /* Send a crossed SYN-ACK during socket establishment. 3557 * WARNING: This routine must only be called when we have already sent 3558 * a SYN packet that crossed the incoming SYN that caused this routine 3559 * to get called. If this assumption fails then the initial rcv_wnd 3560 * and rcv_wscale values will not be correct. 3561 */ 3562 int tcp_send_synack(struct sock *sk) 3563 { 3564 struct sk_buff *skb; 3565 3566 skb = tcp_rtx_queue_head(sk); 3567 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3568 pr_err("%s: wrong queue state\n", __func__); 3569 return -EFAULT; 3570 } 3571 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3572 if (skb_cloned(skb)) { 3573 struct sk_buff *nskb; 3574 3575 tcp_skb_tsorted_save(skb) { 3576 nskb = skb_copy(skb, GFP_ATOMIC); 3577 } tcp_skb_tsorted_restore(skb); 3578 if (!nskb) 3579 return -ENOMEM; 3580 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3581 tcp_highest_sack_replace(sk, skb, nskb); 3582 tcp_rtx_queue_unlink_and_free(skb, sk); 3583 __skb_header_release(nskb); 3584 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3585 sk_wmem_queued_add(sk, nskb->truesize); 3586 sk_mem_charge(sk, nskb->truesize); 3587 skb = nskb; 3588 } 3589 3590 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3591 tcp_ecn_send_synack(sk, skb); 3592 } 3593 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3594 } 3595 3596 /** 3597 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3598 * @sk: listener socket 3599 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3600 * should not use it again. 3601 * @req: request_sock pointer 3602 * @foc: cookie for tcp fast open 3603 * @synack_type: Type of synack to prepare 3604 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3605 */ 3606 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3607 struct request_sock *req, 3608 struct tcp_fastopen_cookie *foc, 3609 enum tcp_synack_type synack_type, 3610 struct sk_buff *syn_skb) 3611 { 3612 struct inet_request_sock *ireq = inet_rsk(req); 3613 const struct tcp_sock *tp = tcp_sk(sk); 3614 struct tcp_md5sig_key *md5 = NULL; 3615 struct tcp_out_options opts; 3616 struct sk_buff *skb; 3617 int tcp_header_size; 3618 struct tcphdr *th; 3619 int mss; 3620 u64 now; 3621 3622 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3623 if (unlikely(!skb)) { 3624 dst_release(dst); 3625 return NULL; 3626 } 3627 /* Reserve space for headers. */ 3628 skb_reserve(skb, MAX_TCP_HEADER); 3629 3630 switch (synack_type) { 3631 case TCP_SYNACK_NORMAL: 3632 skb_set_owner_w(skb, req_to_sk(req)); 3633 break; 3634 case TCP_SYNACK_COOKIE: 3635 /* Under synflood, we do not attach skb to a socket, 3636 * to avoid false sharing. 3637 */ 3638 break; 3639 case TCP_SYNACK_FASTOPEN: 3640 /* sk is a const pointer, because we want to express multiple 3641 * cpu might call us concurrently. 3642 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3643 */ 3644 skb_set_owner_w(skb, (struct sock *)sk); 3645 break; 3646 } 3647 skb_dst_set(skb, dst); 3648 3649 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3650 3651 memset(&opts, 0, sizeof(opts)); 3652 if (tcp_rsk(req)->req_usec_ts < 0) 3653 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 3654 now = tcp_clock_ns(); 3655 #ifdef CONFIG_SYN_COOKIES 3656 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3657 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3658 true); 3659 else 3660 #endif 3661 { 3662 skb_set_delivery_time(skb, now, true); 3663 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3664 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3665 } 3666 3667 #ifdef CONFIG_TCP_MD5SIG 3668 rcu_read_lock(); 3669 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3670 #endif 3671 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3672 /* bpf program will be interested in the tcp_flags */ 3673 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3674 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3675 foc, synack_type, 3676 syn_skb) + sizeof(*th); 3677 3678 skb_push(skb, tcp_header_size); 3679 skb_reset_transport_header(skb); 3680 3681 th = (struct tcphdr *)skb->data; 3682 memset(th, 0, sizeof(struct tcphdr)); 3683 th->syn = 1; 3684 th->ack = 1; 3685 tcp_ecn_make_synack(req, th); 3686 th->source = htons(ireq->ir_num); 3687 th->dest = ireq->ir_rmt_port; 3688 skb->mark = ireq->ir_mark; 3689 skb->ip_summed = CHECKSUM_PARTIAL; 3690 th->seq = htonl(tcp_rsk(req)->snt_isn); 3691 /* XXX data is queued and acked as is. No buffer/window check */ 3692 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3693 3694 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3695 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3696 tcp_options_write(th, NULL, &opts); 3697 th->doff = (tcp_header_size >> 2); 3698 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3699 3700 #ifdef CONFIG_TCP_MD5SIG 3701 /* Okay, we have all we need - do the md5 hash if needed */ 3702 if (md5) 3703 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3704 md5, req_to_sk(req), skb); 3705 rcu_read_unlock(); 3706 #endif 3707 3708 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3709 synack_type, &opts); 3710 3711 skb_set_delivery_time(skb, now, true); 3712 tcp_add_tx_delay(skb, tp); 3713 3714 return skb; 3715 } 3716 EXPORT_SYMBOL(tcp_make_synack); 3717 3718 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3719 { 3720 struct inet_connection_sock *icsk = inet_csk(sk); 3721 const struct tcp_congestion_ops *ca; 3722 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3723 3724 if (ca_key == TCP_CA_UNSPEC) 3725 return; 3726 3727 rcu_read_lock(); 3728 ca = tcp_ca_find_key(ca_key); 3729 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3730 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3731 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3732 icsk->icsk_ca_ops = ca; 3733 } 3734 rcu_read_unlock(); 3735 } 3736 3737 /* Do all connect socket setups that can be done AF independent. */ 3738 static void tcp_connect_init(struct sock *sk) 3739 { 3740 const struct dst_entry *dst = __sk_dst_get(sk); 3741 struct tcp_sock *tp = tcp_sk(sk); 3742 __u8 rcv_wscale; 3743 u32 rcv_wnd; 3744 3745 /* We'll fix this up when we get a response from the other end. 3746 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3747 */ 3748 tp->tcp_header_len = sizeof(struct tcphdr); 3749 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3750 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3751 3752 /* If user gave his TCP_MAXSEG, record it to clamp */ 3753 if (tp->rx_opt.user_mss) 3754 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3755 tp->max_window = 0; 3756 tcp_mtup_init(sk); 3757 tcp_sync_mss(sk, dst_mtu(dst)); 3758 3759 tcp_ca_dst_init(sk, dst); 3760 3761 if (!tp->window_clamp) 3762 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3763 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3764 3765 tcp_initialize_rcv_mss(sk); 3766 3767 /* limit the window selection if the user enforce a smaller rx buffer */ 3768 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3769 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3770 tp->window_clamp = tcp_full_space(sk); 3771 3772 rcv_wnd = tcp_rwnd_init_bpf(sk); 3773 if (rcv_wnd == 0) 3774 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3775 3776 tcp_select_initial_window(sk, tcp_full_space(sk), 3777 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3778 &tp->rcv_wnd, 3779 &tp->window_clamp, 3780 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3781 &rcv_wscale, 3782 rcv_wnd); 3783 3784 tp->rx_opt.rcv_wscale = rcv_wscale; 3785 tp->rcv_ssthresh = tp->rcv_wnd; 3786 3787 WRITE_ONCE(sk->sk_err, 0); 3788 sock_reset_flag(sk, SOCK_DONE); 3789 tp->snd_wnd = 0; 3790 tcp_init_wl(tp, 0); 3791 tcp_write_queue_purge(sk); 3792 tp->snd_una = tp->write_seq; 3793 tp->snd_sml = tp->write_seq; 3794 tp->snd_up = tp->write_seq; 3795 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3796 3797 if (likely(!tp->repair)) 3798 tp->rcv_nxt = 0; 3799 else 3800 tp->rcv_tstamp = tcp_jiffies32; 3801 tp->rcv_wup = tp->rcv_nxt; 3802 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3803 3804 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3805 inet_csk(sk)->icsk_retransmits = 0; 3806 tcp_clear_retrans(tp); 3807 } 3808 3809 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3810 { 3811 struct tcp_sock *tp = tcp_sk(sk); 3812 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3813 3814 tcb->end_seq += skb->len; 3815 __skb_header_release(skb); 3816 sk_wmem_queued_add(sk, skb->truesize); 3817 sk_mem_charge(sk, skb->truesize); 3818 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3819 tp->packets_out += tcp_skb_pcount(skb); 3820 } 3821 3822 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3823 * queue a data-only packet after the regular SYN, such that regular SYNs 3824 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3825 * only the SYN sequence, the data are retransmitted in the first ACK. 3826 * If cookie is not cached or other error occurs, falls back to send a 3827 * regular SYN with Fast Open cookie request option. 3828 */ 3829 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3830 { 3831 struct inet_connection_sock *icsk = inet_csk(sk); 3832 struct tcp_sock *tp = tcp_sk(sk); 3833 struct tcp_fastopen_request *fo = tp->fastopen_req; 3834 struct page_frag *pfrag = sk_page_frag(sk); 3835 struct sk_buff *syn_data; 3836 int space, err = 0; 3837 3838 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3839 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3840 goto fallback; 3841 3842 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3843 * user-MSS. Reserve maximum option space for middleboxes that add 3844 * private TCP options. The cost is reduced data space in SYN :( 3845 */ 3846 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3847 /* Sync mss_cache after updating the mss_clamp */ 3848 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3849 3850 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3851 MAX_TCP_OPTION_SPACE; 3852 3853 space = min_t(size_t, space, fo->size); 3854 3855 if (space && 3856 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3857 pfrag, sk->sk_allocation)) 3858 goto fallback; 3859 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3860 if (!syn_data) 3861 goto fallback; 3862 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3863 if (space) { 3864 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3865 space = tcp_wmem_schedule(sk, space); 3866 } 3867 if (space) { 3868 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3869 space, &fo->data->msg_iter); 3870 if (unlikely(!space)) { 3871 tcp_skb_tsorted_anchor_cleanup(syn_data); 3872 kfree_skb(syn_data); 3873 goto fallback; 3874 } 3875 skb_fill_page_desc(syn_data, 0, pfrag->page, 3876 pfrag->offset, space); 3877 page_ref_inc(pfrag->page); 3878 pfrag->offset += space; 3879 skb_len_add(syn_data, space); 3880 skb_zcopy_set(syn_data, fo->uarg, NULL); 3881 } 3882 /* No more data pending in inet_wait_for_connect() */ 3883 if (space == fo->size) 3884 fo->data = NULL; 3885 fo->copied = space; 3886 3887 tcp_connect_queue_skb(sk, syn_data); 3888 if (syn_data->len) 3889 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3890 3891 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3892 3893 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3894 3895 /* Now full SYN+DATA was cloned and sent (or not), 3896 * remove the SYN from the original skb (syn_data) 3897 * we keep in write queue in case of a retransmit, as we 3898 * also have the SYN packet (with no data) in the same queue. 3899 */ 3900 TCP_SKB_CB(syn_data)->seq++; 3901 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3902 if (!err) { 3903 tp->syn_data = (fo->copied > 0); 3904 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3905 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3906 goto done; 3907 } 3908 3909 /* data was not sent, put it in write_queue */ 3910 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3911 tp->packets_out -= tcp_skb_pcount(syn_data); 3912 3913 fallback: 3914 /* Send a regular SYN with Fast Open cookie request option */ 3915 if (fo->cookie.len > 0) 3916 fo->cookie.len = 0; 3917 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3918 if (err) 3919 tp->syn_fastopen = 0; 3920 done: 3921 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3922 return err; 3923 } 3924 3925 /* Build a SYN and send it off. */ 3926 int tcp_connect(struct sock *sk) 3927 { 3928 struct tcp_sock *tp = tcp_sk(sk); 3929 struct sk_buff *buff; 3930 int err; 3931 3932 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3933 3934 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3935 return -EHOSTUNREACH; /* Routing failure or similar. */ 3936 3937 tcp_connect_init(sk); 3938 3939 if (unlikely(tp->repair)) { 3940 tcp_finish_connect(sk, NULL); 3941 return 0; 3942 } 3943 3944 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 3945 if (unlikely(!buff)) 3946 return -ENOBUFS; 3947 3948 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3949 tcp_mstamp_refresh(tp); 3950 tp->retrans_stamp = tcp_time_stamp_ts(tp); 3951 tcp_connect_queue_skb(sk, buff); 3952 tcp_ecn_send_syn(sk, buff); 3953 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3954 3955 /* Send off SYN; include data in Fast Open. */ 3956 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3957 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3958 if (err == -ECONNREFUSED) 3959 return err; 3960 3961 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3962 * in order to make this packet get counted in tcpOutSegs. 3963 */ 3964 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3965 tp->pushed_seq = tp->write_seq; 3966 buff = tcp_send_head(sk); 3967 if (unlikely(buff)) { 3968 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3969 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3970 } 3971 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3972 3973 /* Timer for repeating the SYN until an answer. */ 3974 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3975 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3976 return 0; 3977 } 3978 EXPORT_SYMBOL(tcp_connect); 3979 3980 u32 tcp_delack_max(const struct sock *sk) 3981 { 3982 const struct dst_entry *dst = __sk_dst_get(sk); 3983 u32 delack_max = inet_csk(sk)->icsk_delack_max; 3984 3985 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) { 3986 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 3987 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1); 3988 3989 delack_max = min_t(u32, delack_max, delack_from_rto_min); 3990 } 3991 return delack_max; 3992 } 3993 3994 /* Send out a delayed ack, the caller does the policy checking 3995 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3996 * for details. 3997 */ 3998 void tcp_send_delayed_ack(struct sock *sk) 3999 { 4000 struct inet_connection_sock *icsk = inet_csk(sk); 4001 int ato = icsk->icsk_ack.ato; 4002 unsigned long timeout; 4003 4004 if (ato > TCP_DELACK_MIN) { 4005 const struct tcp_sock *tp = tcp_sk(sk); 4006 int max_ato = HZ / 2; 4007 4008 if (inet_csk_in_pingpong_mode(sk) || 4009 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4010 max_ato = TCP_DELACK_MAX; 4011 4012 /* Slow path, intersegment interval is "high". */ 4013 4014 /* If some rtt estimate is known, use it to bound delayed ack. 4015 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4016 * directly. 4017 */ 4018 if (tp->srtt_us) { 4019 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4020 TCP_DELACK_MIN); 4021 4022 if (rtt < max_ato) 4023 max_ato = rtt; 4024 } 4025 4026 ato = min(ato, max_ato); 4027 } 4028 4029 ato = min_t(u32, ato, tcp_delack_max(sk)); 4030 4031 /* Stay within the limit we were given */ 4032 timeout = jiffies + ato; 4033 4034 /* Use new timeout only if there wasn't a older one earlier. */ 4035 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4036 /* If delack timer is about to expire, send ACK now. */ 4037 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4038 tcp_send_ack(sk); 4039 return; 4040 } 4041 4042 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4043 timeout = icsk->icsk_ack.timeout; 4044 } 4045 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4046 icsk->icsk_ack.timeout = timeout; 4047 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4048 } 4049 4050 /* This routine sends an ack and also updates the window. */ 4051 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4052 { 4053 struct sk_buff *buff; 4054 4055 /* If we have been reset, we may not send again. */ 4056 if (sk->sk_state == TCP_CLOSE) 4057 return; 4058 4059 /* We are not putting this on the write queue, so 4060 * tcp_transmit_skb() will set the ownership to this 4061 * sock. 4062 */ 4063 buff = alloc_skb(MAX_TCP_HEADER, 4064 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4065 if (unlikely(!buff)) { 4066 struct inet_connection_sock *icsk = inet_csk(sk); 4067 unsigned long delay; 4068 4069 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4070 if (delay < TCP_RTO_MAX) 4071 icsk->icsk_ack.retry++; 4072 inet_csk_schedule_ack(sk); 4073 icsk->icsk_ack.ato = TCP_ATO_MIN; 4074 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4075 return; 4076 } 4077 4078 /* Reserve space for headers and prepare control bits. */ 4079 skb_reserve(buff, MAX_TCP_HEADER); 4080 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4081 4082 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4083 * too much. 4084 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4085 */ 4086 skb_set_tcp_pure_ack(buff); 4087 4088 /* Send it off, this clears delayed acks for us. */ 4089 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4090 } 4091 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4092 4093 void tcp_send_ack(struct sock *sk) 4094 { 4095 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4096 } 4097 4098 /* This routine sends a packet with an out of date sequence 4099 * number. It assumes the other end will try to ack it. 4100 * 4101 * Question: what should we make while urgent mode? 4102 * 4.4BSD forces sending single byte of data. We cannot send 4103 * out of window data, because we have SND.NXT==SND.MAX... 4104 * 4105 * Current solution: to send TWO zero-length segments in urgent mode: 4106 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4107 * out-of-date with SND.UNA-1 to probe window. 4108 */ 4109 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4110 { 4111 struct tcp_sock *tp = tcp_sk(sk); 4112 struct sk_buff *skb; 4113 4114 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4115 skb = alloc_skb(MAX_TCP_HEADER, 4116 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4117 if (!skb) 4118 return -1; 4119 4120 /* Reserve space for headers and set control bits. */ 4121 skb_reserve(skb, MAX_TCP_HEADER); 4122 /* Use a previous sequence. This should cause the other 4123 * end to send an ack. Don't queue or clone SKB, just 4124 * send it. 4125 */ 4126 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4127 NET_INC_STATS(sock_net(sk), mib); 4128 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4129 } 4130 4131 /* Called from setsockopt( ... TCP_REPAIR ) */ 4132 void tcp_send_window_probe(struct sock *sk) 4133 { 4134 if (sk->sk_state == TCP_ESTABLISHED) { 4135 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4136 tcp_mstamp_refresh(tcp_sk(sk)); 4137 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4138 } 4139 } 4140 4141 /* Initiate keepalive or window probe from timer. */ 4142 int tcp_write_wakeup(struct sock *sk, int mib) 4143 { 4144 struct tcp_sock *tp = tcp_sk(sk); 4145 struct sk_buff *skb; 4146 4147 if (sk->sk_state == TCP_CLOSE) 4148 return -1; 4149 4150 skb = tcp_send_head(sk); 4151 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4152 int err; 4153 unsigned int mss = tcp_current_mss(sk); 4154 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4155 4156 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4157 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4158 4159 /* We are probing the opening of a window 4160 * but the window size is != 0 4161 * must have been a result SWS avoidance ( sender ) 4162 */ 4163 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4164 skb->len > mss) { 4165 seg_size = min(seg_size, mss); 4166 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4167 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4168 skb, seg_size, mss, GFP_ATOMIC)) 4169 return -1; 4170 } else if (!tcp_skb_pcount(skb)) 4171 tcp_set_skb_tso_segs(skb, mss); 4172 4173 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4174 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4175 if (!err) 4176 tcp_event_new_data_sent(sk, skb); 4177 return err; 4178 } else { 4179 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4180 tcp_xmit_probe_skb(sk, 1, mib); 4181 return tcp_xmit_probe_skb(sk, 0, mib); 4182 } 4183 } 4184 4185 /* A window probe timeout has occurred. If window is not closed send 4186 * a partial packet else a zero probe. 4187 */ 4188 void tcp_send_probe0(struct sock *sk) 4189 { 4190 struct inet_connection_sock *icsk = inet_csk(sk); 4191 struct tcp_sock *tp = tcp_sk(sk); 4192 struct net *net = sock_net(sk); 4193 unsigned long timeout; 4194 int err; 4195 4196 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4197 4198 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4199 /* Cancel probe timer, if it is not required. */ 4200 icsk->icsk_probes_out = 0; 4201 icsk->icsk_backoff = 0; 4202 icsk->icsk_probes_tstamp = 0; 4203 return; 4204 } 4205 4206 icsk->icsk_probes_out++; 4207 if (err <= 0) { 4208 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4209 icsk->icsk_backoff++; 4210 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4211 } else { 4212 /* If packet was not sent due to local congestion, 4213 * Let senders fight for local resources conservatively. 4214 */ 4215 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4216 } 4217 4218 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4219 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4220 } 4221 4222 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4223 { 4224 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4225 struct flowi fl; 4226 int res; 4227 4228 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4229 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4230 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4231 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4232 NULL); 4233 if (!res) { 4234 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4235 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4236 if (unlikely(tcp_passive_fastopen(sk))) { 4237 /* sk has const attribute because listeners are lockless. 4238 * However in this case, we are dealing with a passive fastopen 4239 * socket thus we can change total_retrans value. 4240 */ 4241 tcp_sk_rw(sk)->total_retrans++; 4242 } 4243 trace_tcp_retransmit_synack(sk, req); 4244 } 4245 return res; 4246 } 4247 EXPORT_SYMBOL(tcp_rtx_synack); 4248