1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 49 int push_one, gfp_t gfp); 50 51 /* Account for new data that has been sent to the network. */ 52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 53 { 54 struct inet_connection_sock *icsk = inet_csk(sk); 55 struct tcp_sock *tp = tcp_sk(sk); 56 unsigned int prior_packets = tp->packets_out; 57 58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 59 60 __skb_unlink(skb, &sk->sk_write_queue); 61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 62 63 tp->packets_out += tcp_skb_pcount(skb); 64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 65 tcp_rearm_rto(sk); 66 67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 68 tcp_skb_pcount(skb)); 69 } 70 71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 72 * window scaling factor due to loss of precision. 73 * If window has been shrunk, what should we make? It is not clear at all. 74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 76 * invalid. OK, let's make this for now: 77 */ 78 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 79 { 80 const struct tcp_sock *tp = tcp_sk(sk); 81 82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 83 (tp->rx_opt.wscale_ok && 84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 85 return tp->snd_nxt; 86 else 87 return tcp_wnd_end(tp); 88 } 89 90 /* Calculate mss to advertise in SYN segment. 91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 92 * 93 * 1. It is independent of path mtu. 94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 96 * attached devices, because some buggy hosts are confused by 97 * large MSS. 98 * 4. We do not make 3, we advertise MSS, calculated from first 99 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 100 * This may be overridden via information stored in routing table. 101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 102 * probably even Jumbo". 103 */ 104 static __u16 tcp_advertise_mss(struct sock *sk) 105 { 106 struct tcp_sock *tp = tcp_sk(sk); 107 const struct dst_entry *dst = __sk_dst_get(sk); 108 int mss = tp->advmss; 109 110 if (dst) { 111 unsigned int metric = dst_metric_advmss(dst); 112 113 if (metric < mss) { 114 mss = metric; 115 tp->advmss = mss; 116 } 117 } 118 119 return (__u16)mss; 120 } 121 122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 123 * This is the first part of cwnd validation mechanism. 124 */ 125 void tcp_cwnd_restart(struct sock *sk, s32 delta) 126 { 127 struct tcp_sock *tp = tcp_sk(sk); 128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 129 u32 cwnd = tp->snd_cwnd; 130 131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 132 133 tp->snd_ssthresh = tcp_current_ssthresh(sk); 134 restart_cwnd = min(restart_cwnd, cwnd); 135 136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 137 cwnd >>= 1; 138 tp->snd_cwnd = max(cwnd, restart_cwnd); 139 tp->snd_cwnd_stamp = tcp_jiffies32; 140 tp->snd_cwnd_used = 0; 141 } 142 143 /* Congestion state accounting after a packet has been sent. */ 144 static void tcp_event_data_sent(struct tcp_sock *tp, 145 struct sock *sk) 146 { 147 struct inet_connection_sock *icsk = inet_csk(sk); 148 const u32 now = tcp_jiffies32; 149 150 if (tcp_packets_in_flight(tp) == 0) 151 tcp_ca_event(sk, CA_EVENT_TX_START); 152 153 tp->lsndtime = now; 154 155 /* If it is a reply for ato after last received 156 * packet, enter pingpong mode. 157 */ 158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 159 icsk->icsk_ack.pingpong = 1; 160 } 161 162 /* Account for an ACK we sent. */ 163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 164 u32 rcv_nxt) 165 { 166 struct tcp_sock *tp = tcp_sk(sk); 167 168 if (unlikely(tp->compressed_ack)) { 169 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 170 tp->compressed_ack); 171 tp->compressed_ack = 0; 172 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 173 __sock_put(sk); 174 } 175 176 if (unlikely(rcv_nxt != tp->rcv_nxt)) 177 return; /* Special ACK sent by DCTCP to reflect ECN */ 178 tcp_dec_quickack_mode(sk, pkts); 179 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 180 } 181 182 183 u32 tcp_default_init_rwnd(u32 mss) 184 { 185 /* Initial receive window should be twice of TCP_INIT_CWND to 186 * enable proper sending of new unsent data during fast recovery 187 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 188 * limit when mss is larger than 1460. 189 */ 190 u32 init_rwnd = TCP_INIT_CWND * 2; 191 192 if (mss > 1460) 193 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 194 return init_rwnd; 195 } 196 197 /* Determine a window scaling and initial window to offer. 198 * Based on the assumption that the given amount of space 199 * will be offered. Store the results in the tp structure. 200 * NOTE: for smooth operation initial space offering should 201 * be a multiple of mss if possible. We assume here that mss >= 1. 202 * This MUST be enforced by all callers. 203 */ 204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 205 __u32 *rcv_wnd, __u32 *window_clamp, 206 int wscale_ok, __u8 *rcv_wscale, 207 __u32 init_rcv_wnd) 208 { 209 unsigned int space = (__space < 0 ? 0 : __space); 210 211 /* If no clamp set the clamp to the max possible scaled window */ 212 if (*window_clamp == 0) 213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 214 space = min(*window_clamp, space); 215 216 /* Quantize space offering to a multiple of mss if possible. */ 217 if (space > mss) 218 space = rounddown(space, mss); 219 220 /* NOTE: offering an initial window larger than 32767 221 * will break some buggy TCP stacks. If the admin tells us 222 * it is likely we could be speaking with such a buggy stack 223 * we will truncate our initial window offering to 32K-1 224 * unless the remote has sent us a window scaling option, 225 * which we interpret as a sign the remote TCP is not 226 * misinterpreting the window field as a signed quantity. 227 */ 228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 230 else 231 (*rcv_wnd) = space; 232 233 (*rcv_wscale) = 0; 234 if (wscale_ok) { 235 /* Set window scaling on max possible window */ 236 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 237 space = max_t(u32, space, sysctl_rmem_max); 238 space = min_t(u32, space, *window_clamp); 239 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 240 space >>= 1; 241 (*rcv_wscale)++; 242 } 243 } 244 245 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 246 init_rcv_wnd = tcp_default_init_rwnd(mss); 247 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 248 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 419 static void smc_options_write(__be32 *ptr, u16 *options) 420 { 421 #if IS_ENABLED(CONFIG_SMC) 422 if (static_branch_unlikely(&tcp_have_smc)) { 423 if (unlikely(OPTION_SMC & *options)) { 424 *ptr++ = htonl((TCPOPT_NOP << 24) | 425 (TCPOPT_NOP << 16) | 426 (TCPOPT_EXP << 8) | 427 (TCPOLEN_EXP_SMC_BASE)); 428 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 429 } 430 } 431 #endif 432 } 433 434 struct tcp_out_options { 435 u16 options; /* bit field of OPTION_* */ 436 u16 mss; /* 0 to disable */ 437 u8 ws; /* window scale, 0 to disable */ 438 u8 num_sack_blocks; /* number of SACK blocks to include */ 439 u8 hash_size; /* bytes in hash_location */ 440 __u8 *hash_location; /* temporary pointer, overloaded */ 441 __u32 tsval, tsecr; /* need to include OPTION_TS */ 442 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 443 }; 444 445 /* Write previously computed TCP options to the packet. 446 * 447 * Beware: Something in the Internet is very sensitive to the ordering of 448 * TCP options, we learned this through the hard way, so be careful here. 449 * Luckily we can at least blame others for their non-compliance but from 450 * inter-operability perspective it seems that we're somewhat stuck with 451 * the ordering which we have been using if we want to keep working with 452 * those broken things (not that it currently hurts anybody as there isn't 453 * particular reason why the ordering would need to be changed). 454 * 455 * At least SACK_PERM as the first option is known to lead to a disaster 456 * (but it may well be that other scenarios fail similarly). 457 */ 458 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 459 struct tcp_out_options *opts) 460 { 461 u16 options = opts->options; /* mungable copy */ 462 463 if (unlikely(OPTION_MD5 & options)) { 464 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 465 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 466 /* overload cookie hash location */ 467 opts->hash_location = (__u8 *)ptr; 468 ptr += 4; 469 } 470 471 if (unlikely(opts->mss)) { 472 *ptr++ = htonl((TCPOPT_MSS << 24) | 473 (TCPOLEN_MSS << 16) | 474 opts->mss); 475 } 476 477 if (likely(OPTION_TS & options)) { 478 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 479 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 480 (TCPOLEN_SACK_PERM << 16) | 481 (TCPOPT_TIMESTAMP << 8) | 482 TCPOLEN_TIMESTAMP); 483 options &= ~OPTION_SACK_ADVERTISE; 484 } else { 485 *ptr++ = htonl((TCPOPT_NOP << 24) | 486 (TCPOPT_NOP << 16) | 487 (TCPOPT_TIMESTAMP << 8) | 488 TCPOLEN_TIMESTAMP); 489 } 490 *ptr++ = htonl(opts->tsval); 491 *ptr++ = htonl(opts->tsecr); 492 } 493 494 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 495 *ptr++ = htonl((TCPOPT_NOP << 24) | 496 (TCPOPT_NOP << 16) | 497 (TCPOPT_SACK_PERM << 8) | 498 TCPOLEN_SACK_PERM); 499 } 500 501 if (unlikely(OPTION_WSCALE & options)) { 502 *ptr++ = htonl((TCPOPT_NOP << 24) | 503 (TCPOPT_WINDOW << 16) | 504 (TCPOLEN_WINDOW << 8) | 505 opts->ws); 506 } 507 508 if (unlikely(opts->num_sack_blocks)) { 509 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 510 tp->duplicate_sack : tp->selective_acks; 511 int this_sack; 512 513 *ptr++ = htonl((TCPOPT_NOP << 24) | 514 (TCPOPT_NOP << 16) | 515 (TCPOPT_SACK << 8) | 516 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 517 TCPOLEN_SACK_PERBLOCK))); 518 519 for (this_sack = 0; this_sack < opts->num_sack_blocks; 520 ++this_sack) { 521 *ptr++ = htonl(sp[this_sack].start_seq); 522 *ptr++ = htonl(sp[this_sack].end_seq); 523 } 524 525 tp->rx_opt.dsack = 0; 526 } 527 528 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 529 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 530 u8 *p = (u8 *)ptr; 531 u32 len; /* Fast Open option length */ 532 533 if (foc->exp) { 534 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 535 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 536 TCPOPT_FASTOPEN_MAGIC); 537 p += TCPOLEN_EXP_FASTOPEN_BASE; 538 } else { 539 len = TCPOLEN_FASTOPEN_BASE + foc->len; 540 *p++ = TCPOPT_FASTOPEN; 541 *p++ = len; 542 } 543 544 memcpy(p, foc->val, foc->len); 545 if ((len & 3) == 2) { 546 p[foc->len] = TCPOPT_NOP; 547 p[foc->len + 1] = TCPOPT_NOP; 548 } 549 ptr += (len + 3) >> 2; 550 } 551 552 smc_options_write(ptr, &options); 553 } 554 555 static void smc_set_option(const struct tcp_sock *tp, 556 struct tcp_out_options *opts, 557 unsigned int *remaining) 558 { 559 #if IS_ENABLED(CONFIG_SMC) 560 if (static_branch_unlikely(&tcp_have_smc)) { 561 if (tp->syn_smc) { 562 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 563 opts->options |= OPTION_SMC; 564 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 565 } 566 } 567 } 568 #endif 569 } 570 571 static void smc_set_option_cond(const struct tcp_sock *tp, 572 const struct inet_request_sock *ireq, 573 struct tcp_out_options *opts, 574 unsigned int *remaining) 575 { 576 #if IS_ENABLED(CONFIG_SMC) 577 if (static_branch_unlikely(&tcp_have_smc)) { 578 if (tp->syn_smc && ireq->smc_ok) { 579 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 580 opts->options |= OPTION_SMC; 581 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 582 } 583 } 584 } 585 #endif 586 } 587 588 /* Compute TCP options for SYN packets. This is not the final 589 * network wire format yet. 590 */ 591 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 592 struct tcp_out_options *opts, 593 struct tcp_md5sig_key **md5) 594 { 595 struct tcp_sock *tp = tcp_sk(sk); 596 unsigned int remaining = MAX_TCP_OPTION_SPACE; 597 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 598 599 *md5 = NULL; 600 #ifdef CONFIG_TCP_MD5SIG 601 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 602 *md5 = tp->af_specific->md5_lookup(sk, sk); 603 if (*md5) { 604 opts->options |= OPTION_MD5; 605 remaining -= TCPOLEN_MD5SIG_ALIGNED; 606 } 607 } 608 #endif 609 610 /* We always get an MSS option. The option bytes which will be seen in 611 * normal data packets should timestamps be used, must be in the MSS 612 * advertised. But we subtract them from tp->mss_cache so that 613 * calculations in tcp_sendmsg are simpler etc. So account for this 614 * fact here if necessary. If we don't do this correctly, as a 615 * receiver we won't recognize data packets as being full sized when we 616 * should, and thus we won't abide by the delayed ACK rules correctly. 617 * SACKs don't matter, we never delay an ACK when we have any of those 618 * going out. */ 619 opts->mss = tcp_advertise_mss(sk); 620 remaining -= TCPOLEN_MSS_ALIGNED; 621 622 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 623 opts->options |= OPTION_TS; 624 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 625 opts->tsecr = tp->rx_opt.ts_recent; 626 remaining -= TCPOLEN_TSTAMP_ALIGNED; 627 } 628 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 629 opts->ws = tp->rx_opt.rcv_wscale; 630 opts->options |= OPTION_WSCALE; 631 remaining -= TCPOLEN_WSCALE_ALIGNED; 632 } 633 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 634 opts->options |= OPTION_SACK_ADVERTISE; 635 if (unlikely(!(OPTION_TS & opts->options))) 636 remaining -= TCPOLEN_SACKPERM_ALIGNED; 637 } 638 639 if (fastopen && fastopen->cookie.len >= 0) { 640 u32 need = fastopen->cookie.len; 641 642 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 643 TCPOLEN_FASTOPEN_BASE; 644 need = (need + 3) & ~3U; /* Align to 32 bits */ 645 if (remaining >= need) { 646 opts->options |= OPTION_FAST_OPEN_COOKIE; 647 opts->fastopen_cookie = &fastopen->cookie; 648 remaining -= need; 649 tp->syn_fastopen = 1; 650 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 651 } 652 } 653 654 smc_set_option(tp, opts, &remaining); 655 656 return MAX_TCP_OPTION_SPACE - remaining; 657 } 658 659 /* Set up TCP options for SYN-ACKs. */ 660 static unsigned int tcp_synack_options(const struct sock *sk, 661 struct request_sock *req, 662 unsigned int mss, struct sk_buff *skb, 663 struct tcp_out_options *opts, 664 const struct tcp_md5sig_key *md5, 665 struct tcp_fastopen_cookie *foc) 666 { 667 struct inet_request_sock *ireq = inet_rsk(req); 668 unsigned int remaining = MAX_TCP_OPTION_SPACE; 669 670 #ifdef CONFIG_TCP_MD5SIG 671 if (md5) { 672 opts->options |= OPTION_MD5; 673 remaining -= TCPOLEN_MD5SIG_ALIGNED; 674 675 /* We can't fit any SACK blocks in a packet with MD5 + TS 676 * options. There was discussion about disabling SACK 677 * rather than TS in order to fit in better with old, 678 * buggy kernels, but that was deemed to be unnecessary. 679 */ 680 ireq->tstamp_ok &= !ireq->sack_ok; 681 } 682 #endif 683 684 /* We always send an MSS option. */ 685 opts->mss = mss; 686 remaining -= TCPOLEN_MSS_ALIGNED; 687 688 if (likely(ireq->wscale_ok)) { 689 opts->ws = ireq->rcv_wscale; 690 opts->options |= OPTION_WSCALE; 691 remaining -= TCPOLEN_WSCALE_ALIGNED; 692 } 693 if (likely(ireq->tstamp_ok)) { 694 opts->options |= OPTION_TS; 695 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 696 opts->tsecr = req->ts_recent; 697 remaining -= TCPOLEN_TSTAMP_ALIGNED; 698 } 699 if (likely(ireq->sack_ok)) { 700 opts->options |= OPTION_SACK_ADVERTISE; 701 if (unlikely(!ireq->tstamp_ok)) 702 remaining -= TCPOLEN_SACKPERM_ALIGNED; 703 } 704 if (foc != NULL && foc->len >= 0) { 705 u32 need = foc->len; 706 707 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 708 TCPOLEN_FASTOPEN_BASE; 709 need = (need + 3) & ~3U; /* Align to 32 bits */ 710 if (remaining >= need) { 711 opts->options |= OPTION_FAST_OPEN_COOKIE; 712 opts->fastopen_cookie = foc; 713 remaining -= need; 714 } 715 } 716 717 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 718 719 return MAX_TCP_OPTION_SPACE - remaining; 720 } 721 722 /* Compute TCP options for ESTABLISHED sockets. This is not the 723 * final wire format yet. 724 */ 725 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 726 struct tcp_out_options *opts, 727 struct tcp_md5sig_key **md5) 728 { 729 struct tcp_sock *tp = tcp_sk(sk); 730 unsigned int size = 0; 731 unsigned int eff_sacks; 732 733 opts->options = 0; 734 735 *md5 = NULL; 736 #ifdef CONFIG_TCP_MD5SIG 737 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 738 *md5 = tp->af_specific->md5_lookup(sk, sk); 739 if (*md5) { 740 opts->options |= OPTION_MD5; 741 size += TCPOLEN_MD5SIG_ALIGNED; 742 } 743 } 744 #endif 745 746 if (likely(tp->rx_opt.tstamp_ok)) { 747 opts->options |= OPTION_TS; 748 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 749 opts->tsecr = tp->rx_opt.ts_recent; 750 size += TCPOLEN_TSTAMP_ALIGNED; 751 } 752 753 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 754 if (unlikely(eff_sacks)) { 755 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 756 opts->num_sack_blocks = 757 min_t(unsigned int, eff_sacks, 758 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 759 TCPOLEN_SACK_PERBLOCK); 760 size += TCPOLEN_SACK_BASE_ALIGNED + 761 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 762 } 763 764 return size; 765 } 766 767 768 /* TCP SMALL QUEUES (TSQ) 769 * 770 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 771 * to reduce RTT and bufferbloat. 772 * We do this using a special skb destructor (tcp_wfree). 773 * 774 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 775 * needs to be reallocated in a driver. 776 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 777 * 778 * Since transmit from skb destructor is forbidden, we use a tasklet 779 * to process all sockets that eventually need to send more skbs. 780 * We use one tasklet per cpu, with its own queue of sockets. 781 */ 782 struct tsq_tasklet { 783 struct tasklet_struct tasklet; 784 struct list_head head; /* queue of tcp sockets */ 785 }; 786 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 787 788 static void tcp_tsq_write(struct sock *sk) 789 { 790 if ((1 << sk->sk_state) & 791 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 792 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 793 struct tcp_sock *tp = tcp_sk(sk); 794 795 if (tp->lost_out > tp->retrans_out && 796 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 797 tcp_mstamp_refresh(tp); 798 tcp_xmit_retransmit_queue(sk); 799 } 800 801 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 802 0, GFP_ATOMIC); 803 } 804 } 805 806 static void tcp_tsq_handler(struct sock *sk) 807 { 808 bh_lock_sock(sk); 809 if (!sock_owned_by_user(sk)) 810 tcp_tsq_write(sk); 811 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 812 sock_hold(sk); 813 bh_unlock_sock(sk); 814 } 815 /* 816 * One tasklet per cpu tries to send more skbs. 817 * We run in tasklet context but need to disable irqs when 818 * transferring tsq->head because tcp_wfree() might 819 * interrupt us (non NAPI drivers) 820 */ 821 static void tcp_tasklet_func(unsigned long data) 822 { 823 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 824 LIST_HEAD(list); 825 unsigned long flags; 826 struct list_head *q, *n; 827 struct tcp_sock *tp; 828 struct sock *sk; 829 830 local_irq_save(flags); 831 list_splice_init(&tsq->head, &list); 832 local_irq_restore(flags); 833 834 list_for_each_safe(q, n, &list) { 835 tp = list_entry(q, struct tcp_sock, tsq_node); 836 list_del(&tp->tsq_node); 837 838 sk = (struct sock *)tp; 839 smp_mb__before_atomic(); 840 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 841 842 tcp_tsq_handler(sk); 843 sk_free(sk); 844 } 845 } 846 847 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 848 TCPF_WRITE_TIMER_DEFERRED | \ 849 TCPF_DELACK_TIMER_DEFERRED | \ 850 TCPF_MTU_REDUCED_DEFERRED) 851 /** 852 * tcp_release_cb - tcp release_sock() callback 853 * @sk: socket 854 * 855 * called from release_sock() to perform protocol dependent 856 * actions before socket release. 857 */ 858 void tcp_release_cb(struct sock *sk) 859 { 860 unsigned long flags, nflags; 861 862 /* perform an atomic operation only if at least one flag is set */ 863 do { 864 flags = sk->sk_tsq_flags; 865 if (!(flags & TCP_DEFERRED_ALL)) 866 return; 867 nflags = flags & ~TCP_DEFERRED_ALL; 868 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 869 870 if (flags & TCPF_TSQ_DEFERRED) { 871 tcp_tsq_write(sk); 872 __sock_put(sk); 873 } 874 /* Here begins the tricky part : 875 * We are called from release_sock() with : 876 * 1) BH disabled 877 * 2) sk_lock.slock spinlock held 878 * 3) socket owned by us (sk->sk_lock.owned == 1) 879 * 880 * But following code is meant to be called from BH handlers, 881 * so we should keep BH disabled, but early release socket ownership 882 */ 883 sock_release_ownership(sk); 884 885 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 886 tcp_write_timer_handler(sk); 887 __sock_put(sk); 888 } 889 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 890 tcp_delack_timer_handler(sk); 891 __sock_put(sk); 892 } 893 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 894 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 895 __sock_put(sk); 896 } 897 } 898 EXPORT_SYMBOL(tcp_release_cb); 899 900 void __init tcp_tasklet_init(void) 901 { 902 int i; 903 904 for_each_possible_cpu(i) { 905 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 906 907 INIT_LIST_HEAD(&tsq->head); 908 tasklet_init(&tsq->tasklet, 909 tcp_tasklet_func, 910 (unsigned long)tsq); 911 } 912 } 913 914 /* 915 * Write buffer destructor automatically called from kfree_skb. 916 * We can't xmit new skbs from this context, as we might already 917 * hold qdisc lock. 918 */ 919 void tcp_wfree(struct sk_buff *skb) 920 { 921 struct sock *sk = skb->sk; 922 struct tcp_sock *tp = tcp_sk(sk); 923 unsigned long flags, nval, oval; 924 925 /* Keep one reference on sk_wmem_alloc. 926 * Will be released by sk_free() from here or tcp_tasklet_func() 927 */ 928 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 929 930 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 931 * Wait until our queues (qdisc + devices) are drained. 932 * This gives : 933 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 934 * - chance for incoming ACK (processed by another cpu maybe) 935 * to migrate this flow (skb->ooo_okay will be eventually set) 936 */ 937 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 938 goto out; 939 940 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 941 struct tsq_tasklet *tsq; 942 bool empty; 943 944 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 945 goto out; 946 947 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 948 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 949 if (nval != oval) 950 continue; 951 952 /* queue this socket to tasklet queue */ 953 local_irq_save(flags); 954 tsq = this_cpu_ptr(&tsq_tasklet); 955 empty = list_empty(&tsq->head); 956 list_add(&tp->tsq_node, &tsq->head); 957 if (empty) 958 tasklet_schedule(&tsq->tasklet); 959 local_irq_restore(flags); 960 return; 961 } 962 out: 963 sk_free(sk); 964 } 965 966 /* Note: Called under soft irq. 967 * We can call TCP stack right away, unless socket is owned by user. 968 */ 969 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 970 { 971 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 972 struct sock *sk = (struct sock *)tp; 973 974 tcp_tsq_handler(sk); 975 sock_put(sk); 976 977 return HRTIMER_NORESTART; 978 } 979 980 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 981 { 982 u64 len_ns; 983 u32 rate; 984 985 if (!tcp_needs_internal_pacing(sk)) 986 return; 987 rate = sk->sk_pacing_rate; 988 if (!rate || rate == ~0U) 989 return; 990 991 len_ns = (u64)skb->len * NSEC_PER_SEC; 992 do_div(len_ns, rate); 993 hrtimer_start(&tcp_sk(sk)->pacing_timer, 994 ktime_add_ns(ktime_get(), len_ns), 995 HRTIMER_MODE_ABS_PINNED_SOFT); 996 sock_hold(sk); 997 } 998 999 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 1000 { 1001 skb->skb_mstamp = tp->tcp_mstamp; 1002 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1003 } 1004 1005 /* This routine actually transmits TCP packets queued in by 1006 * tcp_do_sendmsg(). This is used by both the initial 1007 * transmission and possible later retransmissions. 1008 * All SKB's seen here are completely headerless. It is our 1009 * job to build the TCP header, and pass the packet down to 1010 * IP so it can do the same plus pass the packet off to the 1011 * device. 1012 * 1013 * We are working here with either a clone of the original 1014 * SKB, or a fresh unique copy made by the retransmit engine. 1015 */ 1016 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1017 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1018 { 1019 const struct inet_connection_sock *icsk = inet_csk(sk); 1020 struct inet_sock *inet; 1021 struct tcp_sock *tp; 1022 struct tcp_skb_cb *tcb; 1023 struct tcp_out_options opts; 1024 unsigned int tcp_options_size, tcp_header_size; 1025 struct sk_buff *oskb = NULL; 1026 struct tcp_md5sig_key *md5; 1027 struct tcphdr *th; 1028 int err; 1029 1030 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1031 tp = tcp_sk(sk); 1032 1033 if (clone_it) { 1034 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1035 - tp->snd_una; 1036 oskb = skb; 1037 1038 tcp_skb_tsorted_save(oskb) { 1039 if (unlikely(skb_cloned(oskb))) 1040 skb = pskb_copy(oskb, gfp_mask); 1041 else 1042 skb = skb_clone(oskb, gfp_mask); 1043 } tcp_skb_tsorted_restore(oskb); 1044 1045 if (unlikely(!skb)) 1046 return -ENOBUFS; 1047 } 1048 skb->skb_mstamp = tp->tcp_mstamp; 1049 1050 inet = inet_sk(sk); 1051 tcb = TCP_SKB_CB(skb); 1052 memset(&opts, 0, sizeof(opts)); 1053 1054 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1055 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1056 else 1057 tcp_options_size = tcp_established_options(sk, skb, &opts, 1058 &md5); 1059 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1060 1061 /* if no packet is in qdisc/device queue, then allow XPS to select 1062 * another queue. We can be called from tcp_tsq_handler() 1063 * which holds one reference to sk. 1064 * 1065 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1066 * One way to get this would be to set skb->truesize = 2 on them. 1067 */ 1068 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1069 1070 /* If we had to use memory reserve to allocate this skb, 1071 * this might cause drops if packet is looped back : 1072 * Other socket might not have SOCK_MEMALLOC. 1073 * Packets not looped back do not care about pfmemalloc. 1074 */ 1075 skb->pfmemalloc = 0; 1076 1077 skb_push(skb, tcp_header_size); 1078 skb_reset_transport_header(skb); 1079 1080 skb_orphan(skb); 1081 skb->sk = sk; 1082 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1083 skb_set_hash_from_sk(skb, sk); 1084 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1085 1086 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1087 1088 /* Build TCP header and checksum it. */ 1089 th = (struct tcphdr *)skb->data; 1090 th->source = inet->inet_sport; 1091 th->dest = inet->inet_dport; 1092 th->seq = htonl(tcb->seq); 1093 th->ack_seq = htonl(rcv_nxt); 1094 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1095 tcb->tcp_flags); 1096 1097 th->check = 0; 1098 th->urg_ptr = 0; 1099 1100 /* The urg_mode check is necessary during a below snd_una win probe */ 1101 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1102 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1103 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1104 th->urg = 1; 1105 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1106 th->urg_ptr = htons(0xFFFF); 1107 th->urg = 1; 1108 } 1109 } 1110 1111 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1112 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1113 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1114 th->window = htons(tcp_select_window(sk)); 1115 tcp_ecn_send(sk, skb, th, tcp_header_size); 1116 } else { 1117 /* RFC1323: The window in SYN & SYN/ACK segments 1118 * is never scaled. 1119 */ 1120 th->window = htons(min(tp->rcv_wnd, 65535U)); 1121 } 1122 #ifdef CONFIG_TCP_MD5SIG 1123 /* Calculate the MD5 hash, as we have all we need now */ 1124 if (md5) { 1125 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1126 tp->af_specific->calc_md5_hash(opts.hash_location, 1127 md5, sk, skb); 1128 } 1129 #endif 1130 1131 icsk->icsk_af_ops->send_check(sk, skb); 1132 1133 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1134 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1135 1136 if (skb->len != tcp_header_size) { 1137 tcp_event_data_sent(tp, sk); 1138 tp->data_segs_out += tcp_skb_pcount(skb); 1139 tp->bytes_sent += skb->len - tcp_header_size; 1140 tcp_internal_pacing(sk, skb); 1141 } 1142 1143 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1144 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1145 tcp_skb_pcount(skb)); 1146 1147 tp->segs_out += tcp_skb_pcount(skb); 1148 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1149 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1150 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1151 1152 /* Our usage of tstamp should remain private */ 1153 skb->tstamp = 0; 1154 1155 /* Cleanup our debris for IP stacks */ 1156 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1157 sizeof(struct inet6_skb_parm))); 1158 1159 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1160 1161 if (unlikely(err > 0)) { 1162 tcp_enter_cwr(sk); 1163 err = net_xmit_eval(err); 1164 } 1165 if (!err && oskb) { 1166 tcp_update_skb_after_send(tp, oskb); 1167 tcp_rate_skb_sent(sk, oskb); 1168 } 1169 return err; 1170 } 1171 1172 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1173 gfp_t gfp_mask) 1174 { 1175 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1176 tcp_sk(sk)->rcv_nxt); 1177 } 1178 1179 /* This routine just queues the buffer for sending. 1180 * 1181 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1182 * otherwise socket can stall. 1183 */ 1184 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1185 { 1186 struct tcp_sock *tp = tcp_sk(sk); 1187 1188 /* Advance write_seq and place onto the write_queue. */ 1189 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1190 __skb_header_release(skb); 1191 tcp_add_write_queue_tail(sk, skb); 1192 sk->sk_wmem_queued += skb->truesize; 1193 sk_mem_charge(sk, skb->truesize); 1194 } 1195 1196 /* Initialize TSO segments for a packet. */ 1197 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1198 { 1199 if (skb->len <= mss_now) { 1200 /* Avoid the costly divide in the normal 1201 * non-TSO case. 1202 */ 1203 tcp_skb_pcount_set(skb, 1); 1204 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1205 } else { 1206 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1207 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1208 } 1209 } 1210 1211 /* Pcount in the middle of the write queue got changed, we need to do various 1212 * tweaks to fix counters 1213 */ 1214 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1215 { 1216 struct tcp_sock *tp = tcp_sk(sk); 1217 1218 tp->packets_out -= decr; 1219 1220 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1221 tp->sacked_out -= decr; 1222 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1223 tp->retrans_out -= decr; 1224 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1225 tp->lost_out -= decr; 1226 1227 /* Reno case is special. Sigh... */ 1228 if (tcp_is_reno(tp) && decr > 0) 1229 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1230 1231 if (tp->lost_skb_hint && 1232 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1233 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1234 tp->lost_cnt_hint -= decr; 1235 1236 tcp_verify_left_out(tp); 1237 } 1238 1239 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1240 { 1241 return TCP_SKB_CB(skb)->txstamp_ack || 1242 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1243 } 1244 1245 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1246 { 1247 struct skb_shared_info *shinfo = skb_shinfo(skb); 1248 1249 if (unlikely(tcp_has_tx_tstamp(skb)) && 1250 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1251 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1252 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1253 1254 shinfo->tx_flags &= ~tsflags; 1255 shinfo2->tx_flags |= tsflags; 1256 swap(shinfo->tskey, shinfo2->tskey); 1257 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1258 TCP_SKB_CB(skb)->txstamp_ack = 0; 1259 } 1260 } 1261 1262 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1263 { 1264 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1265 TCP_SKB_CB(skb)->eor = 0; 1266 } 1267 1268 /* Insert buff after skb on the write or rtx queue of sk. */ 1269 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1270 struct sk_buff *buff, 1271 struct sock *sk, 1272 enum tcp_queue tcp_queue) 1273 { 1274 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1275 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1276 else 1277 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1278 } 1279 1280 /* Function to create two new TCP segments. Shrinks the given segment 1281 * to the specified size and appends a new segment with the rest of the 1282 * packet to the list. This won't be called frequently, I hope. 1283 * Remember, these are still headerless SKBs at this point. 1284 */ 1285 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1286 struct sk_buff *skb, u32 len, 1287 unsigned int mss_now, gfp_t gfp) 1288 { 1289 struct tcp_sock *tp = tcp_sk(sk); 1290 struct sk_buff *buff; 1291 int nsize, old_factor; 1292 int nlen; 1293 u8 flags; 1294 1295 if (WARN_ON(len > skb->len)) 1296 return -EINVAL; 1297 1298 nsize = skb_headlen(skb) - len; 1299 if (nsize < 0) 1300 nsize = 0; 1301 1302 if (skb_unclone(skb, gfp)) 1303 return -ENOMEM; 1304 1305 /* Get a new skb... force flag on. */ 1306 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1307 if (!buff) 1308 return -ENOMEM; /* We'll just try again later. */ 1309 1310 sk->sk_wmem_queued += buff->truesize; 1311 sk_mem_charge(sk, buff->truesize); 1312 nlen = skb->len - len - nsize; 1313 buff->truesize += nlen; 1314 skb->truesize -= nlen; 1315 1316 /* Correct the sequence numbers. */ 1317 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1318 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1319 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1320 1321 /* PSH and FIN should only be set in the second packet. */ 1322 flags = TCP_SKB_CB(skb)->tcp_flags; 1323 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1324 TCP_SKB_CB(buff)->tcp_flags = flags; 1325 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1326 tcp_skb_fragment_eor(skb, buff); 1327 1328 skb_split(skb, buff, len); 1329 1330 buff->ip_summed = CHECKSUM_PARTIAL; 1331 1332 buff->tstamp = skb->tstamp; 1333 tcp_fragment_tstamp(skb, buff); 1334 1335 old_factor = tcp_skb_pcount(skb); 1336 1337 /* Fix up tso_factor for both original and new SKB. */ 1338 tcp_set_skb_tso_segs(skb, mss_now); 1339 tcp_set_skb_tso_segs(buff, mss_now); 1340 1341 /* Update delivered info for the new segment */ 1342 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1343 1344 /* If this packet has been sent out already, we must 1345 * adjust the various packet counters. 1346 */ 1347 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1348 int diff = old_factor - tcp_skb_pcount(skb) - 1349 tcp_skb_pcount(buff); 1350 1351 if (diff) 1352 tcp_adjust_pcount(sk, skb, diff); 1353 } 1354 1355 /* Link BUFF into the send queue. */ 1356 __skb_header_release(buff); 1357 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1358 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1359 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1360 1361 return 0; 1362 } 1363 1364 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1365 * data is not copied, but immediately discarded. 1366 */ 1367 static int __pskb_trim_head(struct sk_buff *skb, int len) 1368 { 1369 struct skb_shared_info *shinfo; 1370 int i, k, eat; 1371 1372 eat = min_t(int, len, skb_headlen(skb)); 1373 if (eat) { 1374 __skb_pull(skb, eat); 1375 len -= eat; 1376 if (!len) 1377 return 0; 1378 } 1379 eat = len; 1380 k = 0; 1381 shinfo = skb_shinfo(skb); 1382 for (i = 0; i < shinfo->nr_frags; i++) { 1383 int size = skb_frag_size(&shinfo->frags[i]); 1384 1385 if (size <= eat) { 1386 skb_frag_unref(skb, i); 1387 eat -= size; 1388 } else { 1389 shinfo->frags[k] = shinfo->frags[i]; 1390 if (eat) { 1391 shinfo->frags[k].page_offset += eat; 1392 skb_frag_size_sub(&shinfo->frags[k], eat); 1393 eat = 0; 1394 } 1395 k++; 1396 } 1397 } 1398 shinfo->nr_frags = k; 1399 1400 skb->data_len -= len; 1401 skb->len = skb->data_len; 1402 return len; 1403 } 1404 1405 /* Remove acked data from a packet in the transmit queue. */ 1406 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1407 { 1408 u32 delta_truesize; 1409 1410 if (skb_unclone(skb, GFP_ATOMIC)) 1411 return -ENOMEM; 1412 1413 delta_truesize = __pskb_trim_head(skb, len); 1414 1415 TCP_SKB_CB(skb)->seq += len; 1416 skb->ip_summed = CHECKSUM_PARTIAL; 1417 1418 if (delta_truesize) { 1419 skb->truesize -= delta_truesize; 1420 sk->sk_wmem_queued -= delta_truesize; 1421 sk_mem_uncharge(sk, delta_truesize); 1422 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1423 } 1424 1425 /* Any change of skb->len requires recalculation of tso factor. */ 1426 if (tcp_skb_pcount(skb) > 1) 1427 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1428 1429 return 0; 1430 } 1431 1432 /* Calculate MSS not accounting any TCP options. */ 1433 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1434 { 1435 const struct tcp_sock *tp = tcp_sk(sk); 1436 const struct inet_connection_sock *icsk = inet_csk(sk); 1437 int mss_now; 1438 1439 /* Calculate base mss without TCP options: 1440 It is MMS_S - sizeof(tcphdr) of rfc1122 1441 */ 1442 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1443 1444 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1445 if (icsk->icsk_af_ops->net_frag_header_len) { 1446 const struct dst_entry *dst = __sk_dst_get(sk); 1447 1448 if (dst && dst_allfrag(dst)) 1449 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1450 } 1451 1452 /* Clamp it (mss_clamp does not include tcp options) */ 1453 if (mss_now > tp->rx_opt.mss_clamp) 1454 mss_now = tp->rx_opt.mss_clamp; 1455 1456 /* Now subtract optional transport overhead */ 1457 mss_now -= icsk->icsk_ext_hdr_len; 1458 1459 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1460 if (mss_now < 48) 1461 mss_now = 48; 1462 return mss_now; 1463 } 1464 1465 /* Calculate MSS. Not accounting for SACKs here. */ 1466 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1467 { 1468 /* Subtract TCP options size, not including SACKs */ 1469 return __tcp_mtu_to_mss(sk, pmtu) - 1470 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1471 } 1472 1473 /* Inverse of above */ 1474 int tcp_mss_to_mtu(struct sock *sk, int mss) 1475 { 1476 const struct tcp_sock *tp = tcp_sk(sk); 1477 const struct inet_connection_sock *icsk = inet_csk(sk); 1478 int mtu; 1479 1480 mtu = mss + 1481 tp->tcp_header_len + 1482 icsk->icsk_ext_hdr_len + 1483 icsk->icsk_af_ops->net_header_len; 1484 1485 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1486 if (icsk->icsk_af_ops->net_frag_header_len) { 1487 const struct dst_entry *dst = __sk_dst_get(sk); 1488 1489 if (dst && dst_allfrag(dst)) 1490 mtu += icsk->icsk_af_ops->net_frag_header_len; 1491 } 1492 return mtu; 1493 } 1494 EXPORT_SYMBOL(tcp_mss_to_mtu); 1495 1496 /* MTU probing init per socket */ 1497 void tcp_mtup_init(struct sock *sk) 1498 { 1499 struct tcp_sock *tp = tcp_sk(sk); 1500 struct inet_connection_sock *icsk = inet_csk(sk); 1501 struct net *net = sock_net(sk); 1502 1503 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1504 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1505 icsk->icsk_af_ops->net_header_len; 1506 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1507 icsk->icsk_mtup.probe_size = 0; 1508 if (icsk->icsk_mtup.enabled) 1509 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1510 } 1511 EXPORT_SYMBOL(tcp_mtup_init); 1512 1513 /* This function synchronize snd mss to current pmtu/exthdr set. 1514 1515 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1516 for TCP options, but includes only bare TCP header. 1517 1518 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1519 It is minimum of user_mss and mss received with SYN. 1520 It also does not include TCP options. 1521 1522 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1523 1524 tp->mss_cache is current effective sending mss, including 1525 all tcp options except for SACKs. It is evaluated, 1526 taking into account current pmtu, but never exceeds 1527 tp->rx_opt.mss_clamp. 1528 1529 NOTE1. rfc1122 clearly states that advertised MSS 1530 DOES NOT include either tcp or ip options. 1531 1532 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1533 are READ ONLY outside this function. --ANK (980731) 1534 */ 1535 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1536 { 1537 struct tcp_sock *tp = tcp_sk(sk); 1538 struct inet_connection_sock *icsk = inet_csk(sk); 1539 int mss_now; 1540 1541 if (icsk->icsk_mtup.search_high > pmtu) 1542 icsk->icsk_mtup.search_high = pmtu; 1543 1544 mss_now = tcp_mtu_to_mss(sk, pmtu); 1545 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1546 1547 /* And store cached results */ 1548 icsk->icsk_pmtu_cookie = pmtu; 1549 if (icsk->icsk_mtup.enabled) 1550 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1551 tp->mss_cache = mss_now; 1552 1553 return mss_now; 1554 } 1555 EXPORT_SYMBOL(tcp_sync_mss); 1556 1557 /* Compute the current effective MSS, taking SACKs and IP options, 1558 * and even PMTU discovery events into account. 1559 */ 1560 unsigned int tcp_current_mss(struct sock *sk) 1561 { 1562 const struct tcp_sock *tp = tcp_sk(sk); 1563 const struct dst_entry *dst = __sk_dst_get(sk); 1564 u32 mss_now; 1565 unsigned int header_len; 1566 struct tcp_out_options opts; 1567 struct tcp_md5sig_key *md5; 1568 1569 mss_now = tp->mss_cache; 1570 1571 if (dst) { 1572 u32 mtu = dst_mtu(dst); 1573 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1574 mss_now = tcp_sync_mss(sk, mtu); 1575 } 1576 1577 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1578 sizeof(struct tcphdr); 1579 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1580 * some common options. If this is an odd packet (because we have SACK 1581 * blocks etc) then our calculated header_len will be different, and 1582 * we have to adjust mss_now correspondingly */ 1583 if (header_len != tp->tcp_header_len) { 1584 int delta = (int) header_len - tp->tcp_header_len; 1585 mss_now -= delta; 1586 } 1587 1588 return mss_now; 1589 } 1590 1591 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1592 * As additional protections, we do not touch cwnd in retransmission phases, 1593 * and if application hit its sndbuf limit recently. 1594 */ 1595 static void tcp_cwnd_application_limited(struct sock *sk) 1596 { 1597 struct tcp_sock *tp = tcp_sk(sk); 1598 1599 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1600 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1601 /* Limited by application or receiver window. */ 1602 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1603 u32 win_used = max(tp->snd_cwnd_used, init_win); 1604 if (win_used < tp->snd_cwnd) { 1605 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1606 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1607 } 1608 tp->snd_cwnd_used = 0; 1609 } 1610 tp->snd_cwnd_stamp = tcp_jiffies32; 1611 } 1612 1613 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1614 { 1615 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1616 struct tcp_sock *tp = tcp_sk(sk); 1617 1618 /* Track the maximum number of outstanding packets in each 1619 * window, and remember whether we were cwnd-limited then. 1620 */ 1621 if (!before(tp->snd_una, tp->max_packets_seq) || 1622 tp->packets_out > tp->max_packets_out) { 1623 tp->max_packets_out = tp->packets_out; 1624 tp->max_packets_seq = tp->snd_nxt; 1625 tp->is_cwnd_limited = is_cwnd_limited; 1626 } 1627 1628 if (tcp_is_cwnd_limited(sk)) { 1629 /* Network is feed fully. */ 1630 tp->snd_cwnd_used = 0; 1631 tp->snd_cwnd_stamp = tcp_jiffies32; 1632 } else { 1633 /* Network starves. */ 1634 if (tp->packets_out > tp->snd_cwnd_used) 1635 tp->snd_cwnd_used = tp->packets_out; 1636 1637 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1638 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1639 !ca_ops->cong_control) 1640 tcp_cwnd_application_limited(sk); 1641 1642 /* The following conditions together indicate the starvation 1643 * is caused by insufficient sender buffer: 1644 * 1) just sent some data (see tcp_write_xmit) 1645 * 2) not cwnd limited (this else condition) 1646 * 3) no more data to send (tcp_write_queue_empty()) 1647 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1648 */ 1649 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1650 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1651 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1652 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1653 } 1654 } 1655 1656 /* Minshall's variant of the Nagle send check. */ 1657 static bool tcp_minshall_check(const struct tcp_sock *tp) 1658 { 1659 return after(tp->snd_sml, tp->snd_una) && 1660 !after(tp->snd_sml, tp->snd_nxt); 1661 } 1662 1663 /* Update snd_sml if this skb is under mss 1664 * Note that a TSO packet might end with a sub-mss segment 1665 * The test is really : 1666 * if ((skb->len % mss) != 0) 1667 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1668 * But we can avoid doing the divide again given we already have 1669 * skb_pcount = skb->len / mss_now 1670 */ 1671 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1672 const struct sk_buff *skb) 1673 { 1674 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1675 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1676 } 1677 1678 /* Return false, if packet can be sent now without violation Nagle's rules: 1679 * 1. It is full sized. (provided by caller in %partial bool) 1680 * 2. Or it contains FIN. (already checked by caller) 1681 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1682 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1683 * With Minshall's modification: all sent small packets are ACKed. 1684 */ 1685 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1686 int nonagle) 1687 { 1688 return partial && 1689 ((nonagle & TCP_NAGLE_CORK) || 1690 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1691 } 1692 1693 /* Return how many segs we'd like on a TSO packet, 1694 * to send one TSO packet per ms 1695 */ 1696 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1697 int min_tso_segs) 1698 { 1699 u32 bytes, segs; 1700 1701 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, 1702 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1703 1704 /* Goal is to send at least one packet per ms, 1705 * not one big TSO packet every 100 ms. 1706 * This preserves ACK clocking and is consistent 1707 * with tcp_tso_should_defer() heuristic. 1708 */ 1709 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1710 1711 return segs; 1712 } 1713 1714 /* Return the number of segments we want in the skb we are transmitting. 1715 * See if congestion control module wants to decide; otherwise, autosize. 1716 */ 1717 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1718 { 1719 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1720 u32 min_tso, tso_segs; 1721 1722 min_tso = ca_ops->min_tso_segs ? 1723 ca_ops->min_tso_segs(sk) : 1724 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1725 1726 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1727 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1728 } 1729 1730 /* Returns the portion of skb which can be sent right away */ 1731 static unsigned int tcp_mss_split_point(const struct sock *sk, 1732 const struct sk_buff *skb, 1733 unsigned int mss_now, 1734 unsigned int max_segs, 1735 int nonagle) 1736 { 1737 const struct tcp_sock *tp = tcp_sk(sk); 1738 u32 partial, needed, window, max_len; 1739 1740 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1741 max_len = mss_now * max_segs; 1742 1743 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1744 return max_len; 1745 1746 needed = min(skb->len, window); 1747 1748 if (max_len <= needed) 1749 return max_len; 1750 1751 partial = needed % mss_now; 1752 /* If last segment is not a full MSS, check if Nagle rules allow us 1753 * to include this last segment in this skb. 1754 * Otherwise, we'll split the skb at last MSS boundary 1755 */ 1756 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1757 return needed - partial; 1758 1759 return needed; 1760 } 1761 1762 /* Can at least one segment of SKB be sent right now, according to the 1763 * congestion window rules? If so, return how many segments are allowed. 1764 */ 1765 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1766 const struct sk_buff *skb) 1767 { 1768 u32 in_flight, cwnd, halfcwnd; 1769 1770 /* Don't be strict about the congestion window for the final FIN. */ 1771 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1772 tcp_skb_pcount(skb) == 1) 1773 return 1; 1774 1775 in_flight = tcp_packets_in_flight(tp); 1776 cwnd = tp->snd_cwnd; 1777 if (in_flight >= cwnd) 1778 return 0; 1779 1780 /* For better scheduling, ensure we have at least 1781 * 2 GSO packets in flight. 1782 */ 1783 halfcwnd = max(cwnd >> 1, 1U); 1784 return min(halfcwnd, cwnd - in_flight); 1785 } 1786 1787 /* Initialize TSO state of a skb. 1788 * This must be invoked the first time we consider transmitting 1789 * SKB onto the wire. 1790 */ 1791 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1792 { 1793 int tso_segs = tcp_skb_pcount(skb); 1794 1795 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1796 tcp_set_skb_tso_segs(skb, mss_now); 1797 tso_segs = tcp_skb_pcount(skb); 1798 } 1799 return tso_segs; 1800 } 1801 1802 1803 /* Return true if the Nagle test allows this packet to be 1804 * sent now. 1805 */ 1806 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1807 unsigned int cur_mss, int nonagle) 1808 { 1809 /* Nagle rule does not apply to frames, which sit in the middle of the 1810 * write_queue (they have no chances to get new data). 1811 * 1812 * This is implemented in the callers, where they modify the 'nonagle' 1813 * argument based upon the location of SKB in the send queue. 1814 */ 1815 if (nonagle & TCP_NAGLE_PUSH) 1816 return true; 1817 1818 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1819 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1820 return true; 1821 1822 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1823 return true; 1824 1825 return false; 1826 } 1827 1828 /* Does at least the first segment of SKB fit into the send window? */ 1829 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1830 const struct sk_buff *skb, 1831 unsigned int cur_mss) 1832 { 1833 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1834 1835 if (skb->len > cur_mss) 1836 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1837 1838 return !after(end_seq, tcp_wnd_end(tp)); 1839 } 1840 1841 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1842 * which is put after SKB on the list. It is very much like 1843 * tcp_fragment() except that it may make several kinds of assumptions 1844 * in order to speed up the splitting operation. In particular, we 1845 * know that all the data is in scatter-gather pages, and that the 1846 * packet has never been sent out before (and thus is not cloned). 1847 */ 1848 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1849 struct sk_buff *skb, unsigned int len, 1850 unsigned int mss_now, gfp_t gfp) 1851 { 1852 struct sk_buff *buff; 1853 int nlen = skb->len - len; 1854 u8 flags; 1855 1856 /* All of a TSO frame must be composed of paged data. */ 1857 if (skb->len != skb->data_len) 1858 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1859 1860 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1861 if (unlikely(!buff)) 1862 return -ENOMEM; 1863 1864 sk->sk_wmem_queued += buff->truesize; 1865 sk_mem_charge(sk, buff->truesize); 1866 buff->truesize += nlen; 1867 skb->truesize -= nlen; 1868 1869 /* Correct the sequence numbers. */ 1870 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1871 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1872 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1873 1874 /* PSH and FIN should only be set in the second packet. */ 1875 flags = TCP_SKB_CB(skb)->tcp_flags; 1876 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1877 TCP_SKB_CB(buff)->tcp_flags = flags; 1878 1879 /* This packet was never sent out yet, so no SACK bits. */ 1880 TCP_SKB_CB(buff)->sacked = 0; 1881 1882 tcp_skb_fragment_eor(skb, buff); 1883 1884 buff->ip_summed = CHECKSUM_PARTIAL; 1885 skb_split(skb, buff, len); 1886 tcp_fragment_tstamp(skb, buff); 1887 1888 /* Fix up tso_factor for both original and new SKB. */ 1889 tcp_set_skb_tso_segs(skb, mss_now); 1890 tcp_set_skb_tso_segs(buff, mss_now); 1891 1892 /* Link BUFF into the send queue. */ 1893 __skb_header_release(buff); 1894 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1895 1896 return 0; 1897 } 1898 1899 /* Try to defer sending, if possible, in order to minimize the amount 1900 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1901 * 1902 * This algorithm is from John Heffner. 1903 */ 1904 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1905 bool *is_cwnd_limited, u32 max_segs) 1906 { 1907 const struct inet_connection_sock *icsk = inet_csk(sk); 1908 u32 age, send_win, cong_win, limit, in_flight; 1909 struct tcp_sock *tp = tcp_sk(sk); 1910 struct sk_buff *head; 1911 int win_divisor; 1912 1913 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1914 goto send_now; 1915 1916 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1917 goto send_now; 1918 1919 /* Avoid bursty behavior by allowing defer 1920 * only if the last write was recent. 1921 */ 1922 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1923 goto send_now; 1924 1925 in_flight = tcp_packets_in_flight(tp); 1926 1927 BUG_ON(tcp_skb_pcount(skb) <= 1); 1928 BUG_ON(tp->snd_cwnd <= in_flight); 1929 1930 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1931 1932 /* From in_flight test above, we know that cwnd > in_flight. */ 1933 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1934 1935 limit = min(send_win, cong_win); 1936 1937 /* If a full-sized TSO skb can be sent, do it. */ 1938 if (limit >= max_segs * tp->mss_cache) 1939 goto send_now; 1940 1941 /* Middle in queue won't get any more data, full sendable already? */ 1942 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1943 goto send_now; 1944 1945 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1946 if (win_divisor) { 1947 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1948 1949 /* If at least some fraction of a window is available, 1950 * just use it. 1951 */ 1952 chunk /= win_divisor; 1953 if (limit >= chunk) 1954 goto send_now; 1955 } else { 1956 /* Different approach, try not to defer past a single 1957 * ACK. Receiver should ACK every other full sized 1958 * frame, so if we have space for more than 3 frames 1959 * then send now. 1960 */ 1961 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1962 goto send_now; 1963 } 1964 1965 /* TODO : use tsorted_sent_queue ? */ 1966 head = tcp_rtx_queue_head(sk); 1967 if (!head) 1968 goto send_now; 1969 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1970 /* If next ACK is likely to come too late (half srtt), do not defer */ 1971 if (age < (tp->srtt_us >> 4)) 1972 goto send_now; 1973 1974 /* Ok, it looks like it is advisable to defer. */ 1975 1976 if (cong_win < send_win && cong_win <= skb->len) 1977 *is_cwnd_limited = true; 1978 1979 return true; 1980 1981 send_now: 1982 return false; 1983 } 1984 1985 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1986 { 1987 struct inet_connection_sock *icsk = inet_csk(sk); 1988 struct tcp_sock *tp = tcp_sk(sk); 1989 struct net *net = sock_net(sk); 1990 u32 interval; 1991 s32 delta; 1992 1993 interval = net->ipv4.sysctl_tcp_probe_interval; 1994 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1995 if (unlikely(delta >= interval * HZ)) { 1996 int mss = tcp_current_mss(sk); 1997 1998 /* Update current search range */ 1999 icsk->icsk_mtup.probe_size = 0; 2000 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2001 sizeof(struct tcphdr) + 2002 icsk->icsk_af_ops->net_header_len; 2003 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2004 2005 /* Update probe time stamp */ 2006 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2007 } 2008 } 2009 2010 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2011 { 2012 struct sk_buff *skb, *next; 2013 2014 skb = tcp_send_head(sk); 2015 tcp_for_write_queue_from_safe(skb, next, sk) { 2016 if (len <= skb->len) 2017 break; 2018 2019 if (unlikely(TCP_SKB_CB(skb)->eor)) 2020 return false; 2021 2022 len -= skb->len; 2023 } 2024 2025 return true; 2026 } 2027 2028 /* Create a new MTU probe if we are ready. 2029 * MTU probe is regularly attempting to increase the path MTU by 2030 * deliberately sending larger packets. This discovers routing 2031 * changes resulting in larger path MTUs. 2032 * 2033 * Returns 0 if we should wait to probe (no cwnd available), 2034 * 1 if a probe was sent, 2035 * -1 otherwise 2036 */ 2037 static int tcp_mtu_probe(struct sock *sk) 2038 { 2039 struct inet_connection_sock *icsk = inet_csk(sk); 2040 struct tcp_sock *tp = tcp_sk(sk); 2041 struct sk_buff *skb, *nskb, *next; 2042 struct net *net = sock_net(sk); 2043 int probe_size; 2044 int size_needed; 2045 int copy, len; 2046 int mss_now; 2047 int interval; 2048 2049 /* Not currently probing/verifying, 2050 * not in recovery, 2051 * have enough cwnd, and 2052 * not SACKing (the variable headers throw things off) 2053 */ 2054 if (likely(!icsk->icsk_mtup.enabled || 2055 icsk->icsk_mtup.probe_size || 2056 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2057 tp->snd_cwnd < 11 || 2058 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2059 return -1; 2060 2061 /* Use binary search for probe_size between tcp_mss_base, 2062 * and current mss_clamp. if (search_high - search_low) 2063 * smaller than a threshold, backoff from probing. 2064 */ 2065 mss_now = tcp_current_mss(sk); 2066 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2067 icsk->icsk_mtup.search_low) >> 1); 2068 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2069 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2070 /* When misfortune happens, we are reprobing actively, 2071 * and then reprobe timer has expired. We stick with current 2072 * probing process by not resetting search range to its orignal. 2073 */ 2074 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2075 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2076 /* Check whether enough time has elaplased for 2077 * another round of probing. 2078 */ 2079 tcp_mtu_check_reprobe(sk); 2080 return -1; 2081 } 2082 2083 /* Have enough data in the send queue to probe? */ 2084 if (tp->write_seq - tp->snd_nxt < size_needed) 2085 return -1; 2086 2087 if (tp->snd_wnd < size_needed) 2088 return -1; 2089 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2090 return 0; 2091 2092 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2093 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2094 if (!tcp_packets_in_flight(tp)) 2095 return -1; 2096 else 2097 return 0; 2098 } 2099 2100 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2101 return -1; 2102 2103 /* We're allowed to probe. Build it now. */ 2104 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2105 if (!nskb) 2106 return -1; 2107 sk->sk_wmem_queued += nskb->truesize; 2108 sk_mem_charge(sk, nskb->truesize); 2109 2110 skb = tcp_send_head(sk); 2111 2112 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2113 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2114 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2115 TCP_SKB_CB(nskb)->sacked = 0; 2116 nskb->csum = 0; 2117 nskb->ip_summed = CHECKSUM_PARTIAL; 2118 2119 tcp_insert_write_queue_before(nskb, skb, sk); 2120 tcp_highest_sack_replace(sk, skb, nskb); 2121 2122 len = 0; 2123 tcp_for_write_queue_from_safe(skb, next, sk) { 2124 copy = min_t(int, skb->len, probe_size - len); 2125 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2126 2127 if (skb->len <= copy) { 2128 /* We've eaten all the data from this skb. 2129 * Throw it away. */ 2130 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2131 /* If this is the last SKB we copy and eor is set 2132 * we need to propagate it to the new skb. 2133 */ 2134 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2135 tcp_unlink_write_queue(skb, sk); 2136 sk_wmem_free_skb(sk, skb); 2137 } else { 2138 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2139 ~(TCPHDR_FIN|TCPHDR_PSH); 2140 if (!skb_shinfo(skb)->nr_frags) { 2141 skb_pull(skb, copy); 2142 } else { 2143 __pskb_trim_head(skb, copy); 2144 tcp_set_skb_tso_segs(skb, mss_now); 2145 } 2146 TCP_SKB_CB(skb)->seq += copy; 2147 } 2148 2149 len += copy; 2150 2151 if (len >= probe_size) 2152 break; 2153 } 2154 tcp_init_tso_segs(nskb, nskb->len); 2155 2156 /* We're ready to send. If this fails, the probe will 2157 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2158 */ 2159 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2160 /* Decrement cwnd here because we are sending 2161 * effectively two packets. */ 2162 tp->snd_cwnd--; 2163 tcp_event_new_data_sent(sk, nskb); 2164 2165 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2166 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2167 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2168 2169 return 1; 2170 } 2171 2172 return -1; 2173 } 2174 2175 static bool tcp_pacing_check(const struct sock *sk) 2176 { 2177 return tcp_needs_internal_pacing(sk) && 2178 hrtimer_is_queued(&tcp_sk(sk)->pacing_timer); 2179 } 2180 2181 /* TCP Small Queues : 2182 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2183 * (These limits are doubled for retransmits) 2184 * This allows for : 2185 * - better RTT estimation and ACK scheduling 2186 * - faster recovery 2187 * - high rates 2188 * Alas, some drivers / subsystems require a fair amount 2189 * of queued bytes to ensure line rate. 2190 * One example is wifi aggregation (802.11 AMPDU) 2191 */ 2192 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2193 unsigned int factor) 2194 { 2195 unsigned int limit; 2196 2197 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); 2198 limit = min_t(u32, limit, 2199 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2200 limit <<= factor; 2201 2202 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2203 /* Always send skb if rtx queue is empty. 2204 * No need to wait for TX completion to call us back, 2205 * after softirq/tasklet schedule. 2206 * This helps when TX completions are delayed too much. 2207 */ 2208 if (tcp_rtx_queue_empty(sk)) 2209 return false; 2210 2211 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2212 /* It is possible TX completion already happened 2213 * before we set TSQ_THROTTLED, so we must 2214 * test again the condition. 2215 */ 2216 smp_mb__after_atomic(); 2217 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2218 return true; 2219 } 2220 return false; 2221 } 2222 2223 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2224 { 2225 const u32 now = tcp_jiffies32; 2226 enum tcp_chrono old = tp->chrono_type; 2227 2228 if (old > TCP_CHRONO_UNSPEC) 2229 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2230 tp->chrono_start = now; 2231 tp->chrono_type = new; 2232 } 2233 2234 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2235 { 2236 struct tcp_sock *tp = tcp_sk(sk); 2237 2238 /* If there are multiple conditions worthy of tracking in a 2239 * chronograph then the highest priority enum takes precedence 2240 * over the other conditions. So that if something "more interesting" 2241 * starts happening, stop the previous chrono and start a new one. 2242 */ 2243 if (type > tp->chrono_type) 2244 tcp_chrono_set(tp, type); 2245 } 2246 2247 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2248 { 2249 struct tcp_sock *tp = tcp_sk(sk); 2250 2251 2252 /* There are multiple conditions worthy of tracking in a 2253 * chronograph, so that the highest priority enum takes 2254 * precedence over the other conditions (see tcp_chrono_start). 2255 * If a condition stops, we only stop chrono tracking if 2256 * it's the "most interesting" or current chrono we are 2257 * tracking and starts busy chrono if we have pending data. 2258 */ 2259 if (tcp_rtx_and_write_queues_empty(sk)) 2260 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2261 else if (type == tp->chrono_type) 2262 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2263 } 2264 2265 /* This routine writes packets to the network. It advances the 2266 * send_head. This happens as incoming acks open up the remote 2267 * window for us. 2268 * 2269 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2270 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2271 * account rare use of URG, this is not a big flaw. 2272 * 2273 * Send at most one packet when push_one > 0. Temporarily ignore 2274 * cwnd limit to force at most one packet out when push_one == 2. 2275 2276 * Returns true, if no segments are in flight and we have queued segments, 2277 * but cannot send anything now because of SWS or another problem. 2278 */ 2279 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2280 int push_one, gfp_t gfp) 2281 { 2282 struct tcp_sock *tp = tcp_sk(sk); 2283 struct sk_buff *skb; 2284 unsigned int tso_segs, sent_pkts; 2285 int cwnd_quota; 2286 int result; 2287 bool is_cwnd_limited = false, is_rwnd_limited = false; 2288 u32 max_segs; 2289 2290 sent_pkts = 0; 2291 2292 tcp_mstamp_refresh(tp); 2293 if (!push_one) { 2294 /* Do MTU probing. */ 2295 result = tcp_mtu_probe(sk); 2296 if (!result) { 2297 return false; 2298 } else if (result > 0) { 2299 sent_pkts = 1; 2300 } 2301 } 2302 2303 max_segs = tcp_tso_segs(sk, mss_now); 2304 while ((skb = tcp_send_head(sk))) { 2305 unsigned int limit; 2306 2307 if (tcp_pacing_check(sk)) 2308 break; 2309 2310 tso_segs = tcp_init_tso_segs(skb, mss_now); 2311 BUG_ON(!tso_segs); 2312 2313 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2314 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2315 tcp_update_skb_after_send(tp, skb); 2316 goto repair; /* Skip network transmission */ 2317 } 2318 2319 cwnd_quota = tcp_cwnd_test(tp, skb); 2320 if (!cwnd_quota) { 2321 if (push_one == 2) 2322 /* Force out a loss probe pkt. */ 2323 cwnd_quota = 1; 2324 else 2325 break; 2326 } 2327 2328 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2329 is_rwnd_limited = true; 2330 break; 2331 } 2332 2333 if (tso_segs == 1) { 2334 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2335 (tcp_skb_is_last(sk, skb) ? 2336 nonagle : TCP_NAGLE_PUSH)))) 2337 break; 2338 } else { 2339 if (!push_one && 2340 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2341 max_segs)) 2342 break; 2343 } 2344 2345 limit = mss_now; 2346 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2347 limit = tcp_mss_split_point(sk, skb, mss_now, 2348 min_t(unsigned int, 2349 cwnd_quota, 2350 max_segs), 2351 nonagle); 2352 2353 if (skb->len > limit && 2354 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2355 skb, limit, mss_now, gfp))) 2356 break; 2357 2358 if (tcp_small_queue_check(sk, skb, 0)) 2359 break; 2360 2361 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2362 break; 2363 2364 repair: 2365 /* Advance the send_head. This one is sent out. 2366 * This call will increment packets_out. 2367 */ 2368 tcp_event_new_data_sent(sk, skb); 2369 2370 tcp_minshall_update(tp, mss_now, skb); 2371 sent_pkts += tcp_skb_pcount(skb); 2372 2373 if (push_one) 2374 break; 2375 } 2376 2377 if (is_rwnd_limited) 2378 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2379 else 2380 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2381 2382 if (likely(sent_pkts)) { 2383 if (tcp_in_cwnd_reduction(sk)) 2384 tp->prr_out += sent_pkts; 2385 2386 /* Send one loss probe per tail loss episode. */ 2387 if (push_one != 2) 2388 tcp_schedule_loss_probe(sk, false); 2389 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2390 tcp_cwnd_validate(sk, is_cwnd_limited); 2391 return false; 2392 } 2393 return !tp->packets_out && !tcp_write_queue_empty(sk); 2394 } 2395 2396 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2397 { 2398 struct inet_connection_sock *icsk = inet_csk(sk); 2399 struct tcp_sock *tp = tcp_sk(sk); 2400 u32 timeout, rto_delta_us; 2401 int early_retrans; 2402 2403 /* Don't do any loss probe on a Fast Open connection before 3WHS 2404 * finishes. 2405 */ 2406 if (tp->fastopen_rsk) 2407 return false; 2408 2409 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2410 /* Schedule a loss probe in 2*RTT for SACK capable connections 2411 * not in loss recovery, that are either limited by cwnd or application. 2412 */ 2413 if ((early_retrans != 3 && early_retrans != 4) || 2414 !tp->packets_out || !tcp_is_sack(tp) || 2415 (icsk->icsk_ca_state != TCP_CA_Open && 2416 icsk->icsk_ca_state != TCP_CA_CWR)) 2417 return false; 2418 2419 /* Probe timeout is 2*rtt. Add minimum RTO to account 2420 * for delayed ack when there's one outstanding packet. If no RTT 2421 * sample is available then probe after TCP_TIMEOUT_INIT. 2422 */ 2423 if (tp->srtt_us) { 2424 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2425 if (tp->packets_out == 1) 2426 timeout += TCP_RTO_MIN; 2427 else 2428 timeout += TCP_TIMEOUT_MIN; 2429 } else { 2430 timeout = TCP_TIMEOUT_INIT; 2431 } 2432 2433 /* If the RTO formula yields an earlier time, then use that time. */ 2434 rto_delta_us = advancing_rto ? 2435 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2436 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2437 if (rto_delta_us > 0) 2438 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2439 2440 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2441 TCP_RTO_MAX); 2442 return true; 2443 } 2444 2445 /* Thanks to skb fast clones, we can detect if a prior transmit of 2446 * a packet is still in a qdisc or driver queue. 2447 * In this case, there is very little point doing a retransmit ! 2448 */ 2449 static bool skb_still_in_host_queue(const struct sock *sk, 2450 const struct sk_buff *skb) 2451 { 2452 if (unlikely(skb_fclone_busy(sk, skb))) { 2453 NET_INC_STATS(sock_net(sk), 2454 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2455 return true; 2456 } 2457 return false; 2458 } 2459 2460 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2461 * retransmit the last segment. 2462 */ 2463 void tcp_send_loss_probe(struct sock *sk) 2464 { 2465 struct tcp_sock *tp = tcp_sk(sk); 2466 struct sk_buff *skb; 2467 int pcount; 2468 int mss = tcp_current_mss(sk); 2469 2470 skb = tcp_send_head(sk); 2471 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2472 pcount = tp->packets_out; 2473 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2474 if (tp->packets_out > pcount) 2475 goto probe_sent; 2476 goto rearm_timer; 2477 } 2478 skb = skb_rb_last(&sk->tcp_rtx_queue); 2479 2480 /* At most one outstanding TLP retransmission. */ 2481 if (tp->tlp_high_seq) 2482 goto rearm_timer; 2483 2484 /* Retransmit last segment. */ 2485 if (WARN_ON(!skb)) 2486 goto rearm_timer; 2487 2488 if (skb_still_in_host_queue(sk, skb)) 2489 goto rearm_timer; 2490 2491 pcount = tcp_skb_pcount(skb); 2492 if (WARN_ON(!pcount)) 2493 goto rearm_timer; 2494 2495 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2496 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2497 (pcount - 1) * mss, mss, 2498 GFP_ATOMIC))) 2499 goto rearm_timer; 2500 skb = skb_rb_next(skb); 2501 } 2502 2503 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2504 goto rearm_timer; 2505 2506 if (__tcp_retransmit_skb(sk, skb, 1)) 2507 goto rearm_timer; 2508 2509 /* Record snd_nxt for loss detection. */ 2510 tp->tlp_high_seq = tp->snd_nxt; 2511 2512 probe_sent: 2513 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2514 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2515 inet_csk(sk)->icsk_pending = 0; 2516 rearm_timer: 2517 tcp_rearm_rto(sk); 2518 } 2519 2520 /* Push out any pending frames which were held back due to 2521 * TCP_CORK or attempt at coalescing tiny packets. 2522 * The socket must be locked by the caller. 2523 */ 2524 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2525 int nonagle) 2526 { 2527 /* If we are closed, the bytes will have to remain here. 2528 * In time closedown will finish, we empty the write queue and 2529 * all will be happy. 2530 */ 2531 if (unlikely(sk->sk_state == TCP_CLOSE)) 2532 return; 2533 2534 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2535 sk_gfp_mask(sk, GFP_ATOMIC))) 2536 tcp_check_probe_timer(sk); 2537 } 2538 2539 /* Send _single_ skb sitting at the send head. This function requires 2540 * true push pending frames to setup probe timer etc. 2541 */ 2542 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2543 { 2544 struct sk_buff *skb = tcp_send_head(sk); 2545 2546 BUG_ON(!skb || skb->len < mss_now); 2547 2548 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2549 } 2550 2551 /* This function returns the amount that we can raise the 2552 * usable window based on the following constraints 2553 * 2554 * 1. The window can never be shrunk once it is offered (RFC 793) 2555 * 2. We limit memory per socket 2556 * 2557 * RFC 1122: 2558 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2559 * RECV.NEXT + RCV.WIN fixed until: 2560 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2561 * 2562 * i.e. don't raise the right edge of the window until you can raise 2563 * it at least MSS bytes. 2564 * 2565 * Unfortunately, the recommended algorithm breaks header prediction, 2566 * since header prediction assumes th->window stays fixed. 2567 * 2568 * Strictly speaking, keeping th->window fixed violates the receiver 2569 * side SWS prevention criteria. The problem is that under this rule 2570 * a stream of single byte packets will cause the right side of the 2571 * window to always advance by a single byte. 2572 * 2573 * Of course, if the sender implements sender side SWS prevention 2574 * then this will not be a problem. 2575 * 2576 * BSD seems to make the following compromise: 2577 * 2578 * If the free space is less than the 1/4 of the maximum 2579 * space available and the free space is less than 1/2 mss, 2580 * then set the window to 0. 2581 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2582 * Otherwise, just prevent the window from shrinking 2583 * and from being larger than the largest representable value. 2584 * 2585 * This prevents incremental opening of the window in the regime 2586 * where TCP is limited by the speed of the reader side taking 2587 * data out of the TCP receive queue. It does nothing about 2588 * those cases where the window is constrained on the sender side 2589 * because the pipeline is full. 2590 * 2591 * BSD also seems to "accidentally" limit itself to windows that are a 2592 * multiple of MSS, at least until the free space gets quite small. 2593 * This would appear to be a side effect of the mbuf implementation. 2594 * Combining these two algorithms results in the observed behavior 2595 * of having a fixed window size at almost all times. 2596 * 2597 * Below we obtain similar behavior by forcing the offered window to 2598 * a multiple of the mss when it is feasible to do so. 2599 * 2600 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2601 * Regular options like TIMESTAMP are taken into account. 2602 */ 2603 u32 __tcp_select_window(struct sock *sk) 2604 { 2605 struct inet_connection_sock *icsk = inet_csk(sk); 2606 struct tcp_sock *tp = tcp_sk(sk); 2607 /* MSS for the peer's data. Previous versions used mss_clamp 2608 * here. I don't know if the value based on our guesses 2609 * of peer's MSS is better for the performance. It's more correct 2610 * but may be worse for the performance because of rcv_mss 2611 * fluctuations. --SAW 1998/11/1 2612 */ 2613 int mss = icsk->icsk_ack.rcv_mss; 2614 int free_space = tcp_space(sk); 2615 int allowed_space = tcp_full_space(sk); 2616 int full_space = min_t(int, tp->window_clamp, allowed_space); 2617 int window; 2618 2619 if (unlikely(mss > full_space)) { 2620 mss = full_space; 2621 if (mss <= 0) 2622 return 0; 2623 } 2624 if (free_space < (full_space >> 1)) { 2625 icsk->icsk_ack.quick = 0; 2626 2627 if (tcp_under_memory_pressure(sk)) 2628 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2629 4U * tp->advmss); 2630 2631 /* free_space might become our new window, make sure we don't 2632 * increase it due to wscale. 2633 */ 2634 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2635 2636 /* if free space is less than mss estimate, or is below 1/16th 2637 * of the maximum allowed, try to move to zero-window, else 2638 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2639 * new incoming data is dropped due to memory limits. 2640 * With large window, mss test triggers way too late in order 2641 * to announce zero window in time before rmem limit kicks in. 2642 */ 2643 if (free_space < (allowed_space >> 4) || free_space < mss) 2644 return 0; 2645 } 2646 2647 if (free_space > tp->rcv_ssthresh) 2648 free_space = tp->rcv_ssthresh; 2649 2650 /* Don't do rounding if we are using window scaling, since the 2651 * scaled window will not line up with the MSS boundary anyway. 2652 */ 2653 if (tp->rx_opt.rcv_wscale) { 2654 window = free_space; 2655 2656 /* Advertise enough space so that it won't get scaled away. 2657 * Import case: prevent zero window announcement if 2658 * 1<<rcv_wscale > mss. 2659 */ 2660 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2661 } else { 2662 window = tp->rcv_wnd; 2663 /* Get the largest window that is a nice multiple of mss. 2664 * Window clamp already applied above. 2665 * If our current window offering is within 1 mss of the 2666 * free space we just keep it. This prevents the divide 2667 * and multiply from happening most of the time. 2668 * We also don't do any window rounding when the free space 2669 * is too small. 2670 */ 2671 if (window <= free_space - mss || window > free_space) 2672 window = rounddown(free_space, mss); 2673 else if (mss == full_space && 2674 free_space > window + (full_space >> 1)) 2675 window = free_space; 2676 } 2677 2678 return window; 2679 } 2680 2681 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2682 const struct sk_buff *next_skb) 2683 { 2684 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2685 const struct skb_shared_info *next_shinfo = 2686 skb_shinfo(next_skb); 2687 struct skb_shared_info *shinfo = skb_shinfo(skb); 2688 2689 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2690 shinfo->tskey = next_shinfo->tskey; 2691 TCP_SKB_CB(skb)->txstamp_ack |= 2692 TCP_SKB_CB(next_skb)->txstamp_ack; 2693 } 2694 } 2695 2696 /* Collapses two adjacent SKB's during retransmission. */ 2697 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2698 { 2699 struct tcp_sock *tp = tcp_sk(sk); 2700 struct sk_buff *next_skb = skb_rb_next(skb); 2701 int next_skb_size; 2702 2703 next_skb_size = next_skb->len; 2704 2705 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2706 2707 if (next_skb_size) { 2708 if (next_skb_size <= skb_availroom(skb)) 2709 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2710 next_skb_size); 2711 else if (!skb_shift(skb, next_skb, next_skb_size)) 2712 return false; 2713 } 2714 tcp_highest_sack_replace(sk, next_skb, skb); 2715 2716 /* Update sequence range on original skb. */ 2717 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2718 2719 /* Merge over control information. This moves PSH/FIN etc. over */ 2720 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2721 2722 /* All done, get rid of second SKB and account for it so 2723 * packet counting does not break. 2724 */ 2725 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2726 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2727 2728 /* changed transmit queue under us so clear hints */ 2729 tcp_clear_retrans_hints_partial(tp); 2730 if (next_skb == tp->retransmit_skb_hint) 2731 tp->retransmit_skb_hint = skb; 2732 2733 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2734 2735 tcp_skb_collapse_tstamp(skb, next_skb); 2736 2737 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2738 return true; 2739 } 2740 2741 /* Check if coalescing SKBs is legal. */ 2742 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2743 { 2744 if (tcp_skb_pcount(skb) > 1) 2745 return false; 2746 if (skb_cloned(skb)) 2747 return false; 2748 /* Some heuristics for collapsing over SACK'd could be invented */ 2749 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2750 return false; 2751 2752 return true; 2753 } 2754 2755 /* Collapse packets in the retransmit queue to make to create 2756 * less packets on the wire. This is only done on retransmission. 2757 */ 2758 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2759 int space) 2760 { 2761 struct tcp_sock *tp = tcp_sk(sk); 2762 struct sk_buff *skb = to, *tmp; 2763 bool first = true; 2764 2765 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2766 return; 2767 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2768 return; 2769 2770 skb_rbtree_walk_from_safe(skb, tmp) { 2771 if (!tcp_can_collapse(sk, skb)) 2772 break; 2773 2774 if (!tcp_skb_can_collapse_to(to)) 2775 break; 2776 2777 space -= skb->len; 2778 2779 if (first) { 2780 first = false; 2781 continue; 2782 } 2783 2784 if (space < 0) 2785 break; 2786 2787 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2788 break; 2789 2790 if (!tcp_collapse_retrans(sk, to)) 2791 break; 2792 } 2793 } 2794 2795 /* This retransmits one SKB. Policy decisions and retransmit queue 2796 * state updates are done by the caller. Returns non-zero if an 2797 * error occurred which prevented the send. 2798 */ 2799 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2800 { 2801 struct inet_connection_sock *icsk = inet_csk(sk); 2802 struct tcp_sock *tp = tcp_sk(sk); 2803 unsigned int cur_mss; 2804 int diff, len, err; 2805 2806 2807 /* Inconclusive MTU probe */ 2808 if (icsk->icsk_mtup.probe_size) 2809 icsk->icsk_mtup.probe_size = 0; 2810 2811 /* Do not sent more than we queued. 1/4 is reserved for possible 2812 * copying overhead: fragmentation, tunneling, mangling etc. 2813 */ 2814 if (refcount_read(&sk->sk_wmem_alloc) > 2815 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2816 sk->sk_sndbuf)) 2817 return -EAGAIN; 2818 2819 if (skb_still_in_host_queue(sk, skb)) 2820 return -EBUSY; 2821 2822 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2823 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2824 WARN_ON_ONCE(1); 2825 return -EINVAL; 2826 } 2827 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2828 return -ENOMEM; 2829 } 2830 2831 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2832 return -EHOSTUNREACH; /* Routing failure or similar. */ 2833 2834 cur_mss = tcp_current_mss(sk); 2835 2836 /* If receiver has shrunk his window, and skb is out of 2837 * new window, do not retransmit it. The exception is the 2838 * case, when window is shrunk to zero. In this case 2839 * our retransmit serves as a zero window probe. 2840 */ 2841 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2842 TCP_SKB_CB(skb)->seq != tp->snd_una) 2843 return -EAGAIN; 2844 2845 len = cur_mss * segs; 2846 if (skb->len > len) { 2847 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2848 cur_mss, GFP_ATOMIC)) 2849 return -ENOMEM; /* We'll try again later. */ 2850 } else { 2851 if (skb_unclone(skb, GFP_ATOMIC)) 2852 return -ENOMEM; 2853 2854 diff = tcp_skb_pcount(skb); 2855 tcp_set_skb_tso_segs(skb, cur_mss); 2856 diff -= tcp_skb_pcount(skb); 2857 if (diff) 2858 tcp_adjust_pcount(sk, skb, diff); 2859 if (skb->len < cur_mss) 2860 tcp_retrans_try_collapse(sk, skb, cur_mss); 2861 } 2862 2863 /* RFC3168, section 6.1.1.1. ECN fallback */ 2864 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2865 tcp_ecn_clear_syn(sk, skb); 2866 2867 /* Update global and local TCP statistics. */ 2868 segs = tcp_skb_pcount(skb); 2869 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2870 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2871 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2872 tp->total_retrans += segs; 2873 tp->bytes_retrans += skb->len; 2874 2875 /* make sure skb->data is aligned on arches that require it 2876 * and check if ack-trimming & collapsing extended the headroom 2877 * beyond what csum_start can cover. 2878 */ 2879 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2880 skb_headroom(skb) >= 0xFFFF)) { 2881 struct sk_buff *nskb; 2882 2883 tcp_skb_tsorted_save(skb) { 2884 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2885 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2886 -ENOBUFS; 2887 } tcp_skb_tsorted_restore(skb); 2888 2889 if (!err) { 2890 tcp_update_skb_after_send(tp, skb); 2891 tcp_rate_skb_sent(sk, skb); 2892 } 2893 } else { 2894 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2895 } 2896 2897 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2898 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2899 TCP_SKB_CB(skb)->seq, segs, err); 2900 2901 if (likely(!err)) { 2902 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2903 trace_tcp_retransmit_skb(sk, skb); 2904 } else if (err != -EBUSY) { 2905 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2906 } 2907 return err; 2908 } 2909 2910 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2911 { 2912 struct tcp_sock *tp = tcp_sk(sk); 2913 int err = __tcp_retransmit_skb(sk, skb, segs); 2914 2915 if (err == 0) { 2916 #if FASTRETRANS_DEBUG > 0 2917 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2918 net_dbg_ratelimited("retrans_out leaked\n"); 2919 } 2920 #endif 2921 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2922 tp->retrans_out += tcp_skb_pcount(skb); 2923 2924 /* Save stamp of the first retransmit. */ 2925 if (!tp->retrans_stamp) 2926 tp->retrans_stamp = tcp_skb_timestamp(skb); 2927 2928 } 2929 2930 if (tp->undo_retrans < 0) 2931 tp->undo_retrans = 0; 2932 tp->undo_retrans += tcp_skb_pcount(skb); 2933 return err; 2934 } 2935 2936 /* This gets called after a retransmit timeout, and the initially 2937 * retransmitted data is acknowledged. It tries to continue 2938 * resending the rest of the retransmit queue, until either 2939 * we've sent it all or the congestion window limit is reached. 2940 */ 2941 void tcp_xmit_retransmit_queue(struct sock *sk) 2942 { 2943 const struct inet_connection_sock *icsk = inet_csk(sk); 2944 struct sk_buff *skb, *rtx_head, *hole = NULL; 2945 struct tcp_sock *tp = tcp_sk(sk); 2946 u32 max_segs; 2947 int mib_idx; 2948 2949 if (!tp->packets_out) 2950 return; 2951 2952 rtx_head = tcp_rtx_queue_head(sk); 2953 skb = tp->retransmit_skb_hint ?: rtx_head; 2954 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2955 skb_rbtree_walk_from(skb) { 2956 __u8 sacked; 2957 int segs; 2958 2959 if (tcp_pacing_check(sk)) 2960 break; 2961 2962 /* we could do better than to assign each time */ 2963 if (!hole) 2964 tp->retransmit_skb_hint = skb; 2965 2966 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2967 if (segs <= 0) 2968 return; 2969 sacked = TCP_SKB_CB(skb)->sacked; 2970 /* In case tcp_shift_skb_data() have aggregated large skbs, 2971 * we need to make sure not sending too bigs TSO packets 2972 */ 2973 segs = min_t(int, segs, max_segs); 2974 2975 if (tp->retrans_out >= tp->lost_out) { 2976 break; 2977 } else if (!(sacked & TCPCB_LOST)) { 2978 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2979 hole = skb; 2980 continue; 2981 2982 } else { 2983 if (icsk->icsk_ca_state != TCP_CA_Loss) 2984 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2985 else 2986 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2987 } 2988 2989 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2990 continue; 2991 2992 if (tcp_small_queue_check(sk, skb, 1)) 2993 return; 2994 2995 if (tcp_retransmit_skb(sk, skb, segs)) 2996 return; 2997 2998 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2999 3000 if (tcp_in_cwnd_reduction(sk)) 3001 tp->prr_out += tcp_skb_pcount(skb); 3002 3003 if (skb == rtx_head && 3004 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3005 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3006 inet_csk(sk)->icsk_rto, 3007 TCP_RTO_MAX); 3008 } 3009 } 3010 3011 /* We allow to exceed memory limits for FIN packets to expedite 3012 * connection tear down and (memory) recovery. 3013 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3014 * or even be forced to close flow without any FIN. 3015 * In general, we want to allow one skb per socket to avoid hangs 3016 * with edge trigger epoll() 3017 */ 3018 void sk_forced_mem_schedule(struct sock *sk, int size) 3019 { 3020 int amt; 3021 3022 if (size <= sk->sk_forward_alloc) 3023 return; 3024 amt = sk_mem_pages(size); 3025 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3026 sk_memory_allocated_add(sk, amt); 3027 3028 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3029 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3030 } 3031 3032 /* Send a FIN. The caller locks the socket for us. 3033 * We should try to send a FIN packet really hard, but eventually give up. 3034 */ 3035 void tcp_send_fin(struct sock *sk) 3036 { 3037 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3038 struct tcp_sock *tp = tcp_sk(sk); 3039 3040 /* Optimization, tack on the FIN if we have one skb in write queue and 3041 * this skb was not yet sent, or we are under memory pressure. 3042 * Note: in the latter case, FIN packet will be sent after a timeout, 3043 * as TCP stack thinks it has already been transmitted. 3044 */ 3045 if (!tskb && tcp_under_memory_pressure(sk)) 3046 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3047 3048 if (tskb) { 3049 coalesce: 3050 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3051 TCP_SKB_CB(tskb)->end_seq++; 3052 tp->write_seq++; 3053 if (tcp_write_queue_empty(sk)) { 3054 /* This means tskb was already sent. 3055 * Pretend we included the FIN on previous transmit. 3056 * We need to set tp->snd_nxt to the value it would have 3057 * if FIN had been sent. This is because retransmit path 3058 * does not change tp->snd_nxt. 3059 */ 3060 tp->snd_nxt++; 3061 return; 3062 } 3063 } else { 3064 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3065 if (unlikely(!skb)) { 3066 if (tskb) 3067 goto coalesce; 3068 return; 3069 } 3070 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3071 skb_reserve(skb, MAX_TCP_HEADER); 3072 sk_forced_mem_schedule(sk, skb->truesize); 3073 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3074 tcp_init_nondata_skb(skb, tp->write_seq, 3075 TCPHDR_ACK | TCPHDR_FIN); 3076 tcp_queue_skb(sk, skb); 3077 } 3078 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3079 } 3080 3081 /* We get here when a process closes a file descriptor (either due to 3082 * an explicit close() or as a byproduct of exit()'ing) and there 3083 * was unread data in the receive queue. This behavior is recommended 3084 * by RFC 2525, section 2.17. -DaveM 3085 */ 3086 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3087 { 3088 struct sk_buff *skb; 3089 3090 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3091 3092 /* NOTE: No TCP options attached and we never retransmit this. */ 3093 skb = alloc_skb(MAX_TCP_HEADER, priority); 3094 if (!skb) { 3095 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3096 return; 3097 } 3098 3099 /* Reserve space for headers and prepare control bits. */ 3100 skb_reserve(skb, MAX_TCP_HEADER); 3101 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3102 TCPHDR_ACK | TCPHDR_RST); 3103 tcp_mstamp_refresh(tcp_sk(sk)); 3104 /* Send it off. */ 3105 if (tcp_transmit_skb(sk, skb, 0, priority)) 3106 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3107 3108 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3109 * skb here is different to the troublesome skb, so use NULL 3110 */ 3111 trace_tcp_send_reset(sk, NULL); 3112 } 3113 3114 /* Send a crossed SYN-ACK during socket establishment. 3115 * WARNING: This routine must only be called when we have already sent 3116 * a SYN packet that crossed the incoming SYN that caused this routine 3117 * to get called. If this assumption fails then the initial rcv_wnd 3118 * and rcv_wscale values will not be correct. 3119 */ 3120 int tcp_send_synack(struct sock *sk) 3121 { 3122 struct sk_buff *skb; 3123 3124 skb = tcp_rtx_queue_head(sk); 3125 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3126 pr_err("%s: wrong queue state\n", __func__); 3127 return -EFAULT; 3128 } 3129 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3130 if (skb_cloned(skb)) { 3131 struct sk_buff *nskb; 3132 3133 tcp_skb_tsorted_save(skb) { 3134 nskb = skb_copy(skb, GFP_ATOMIC); 3135 } tcp_skb_tsorted_restore(skb); 3136 if (!nskb) 3137 return -ENOMEM; 3138 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3139 tcp_rtx_queue_unlink_and_free(skb, sk); 3140 __skb_header_release(nskb); 3141 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3142 sk->sk_wmem_queued += nskb->truesize; 3143 sk_mem_charge(sk, nskb->truesize); 3144 skb = nskb; 3145 } 3146 3147 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3148 tcp_ecn_send_synack(sk, skb); 3149 } 3150 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3151 } 3152 3153 /** 3154 * tcp_make_synack - Prepare a SYN-ACK. 3155 * sk: listener socket 3156 * dst: dst entry attached to the SYNACK 3157 * req: request_sock pointer 3158 * 3159 * Allocate one skb and build a SYNACK packet. 3160 * @dst is consumed : Caller should not use it again. 3161 */ 3162 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3163 struct request_sock *req, 3164 struct tcp_fastopen_cookie *foc, 3165 enum tcp_synack_type synack_type) 3166 { 3167 struct inet_request_sock *ireq = inet_rsk(req); 3168 const struct tcp_sock *tp = tcp_sk(sk); 3169 struct tcp_md5sig_key *md5 = NULL; 3170 struct tcp_out_options opts; 3171 struct sk_buff *skb; 3172 int tcp_header_size; 3173 struct tcphdr *th; 3174 int mss; 3175 3176 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3177 if (unlikely(!skb)) { 3178 dst_release(dst); 3179 return NULL; 3180 } 3181 /* Reserve space for headers. */ 3182 skb_reserve(skb, MAX_TCP_HEADER); 3183 3184 switch (synack_type) { 3185 case TCP_SYNACK_NORMAL: 3186 skb_set_owner_w(skb, req_to_sk(req)); 3187 break; 3188 case TCP_SYNACK_COOKIE: 3189 /* Under synflood, we do not attach skb to a socket, 3190 * to avoid false sharing. 3191 */ 3192 break; 3193 case TCP_SYNACK_FASTOPEN: 3194 /* sk is a const pointer, because we want to express multiple 3195 * cpu might call us concurrently. 3196 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3197 */ 3198 skb_set_owner_w(skb, (struct sock *)sk); 3199 break; 3200 } 3201 skb_dst_set(skb, dst); 3202 3203 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3204 3205 memset(&opts, 0, sizeof(opts)); 3206 #ifdef CONFIG_SYN_COOKIES 3207 if (unlikely(req->cookie_ts)) 3208 skb->skb_mstamp = cookie_init_timestamp(req); 3209 else 3210 #endif 3211 skb->skb_mstamp = tcp_clock_us(); 3212 3213 #ifdef CONFIG_TCP_MD5SIG 3214 rcu_read_lock(); 3215 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3216 #endif 3217 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3218 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3219 foc) + sizeof(*th); 3220 3221 skb_push(skb, tcp_header_size); 3222 skb_reset_transport_header(skb); 3223 3224 th = (struct tcphdr *)skb->data; 3225 memset(th, 0, sizeof(struct tcphdr)); 3226 th->syn = 1; 3227 th->ack = 1; 3228 tcp_ecn_make_synack(req, th); 3229 th->source = htons(ireq->ir_num); 3230 th->dest = ireq->ir_rmt_port; 3231 skb->mark = ireq->ir_mark; 3232 skb->ip_summed = CHECKSUM_PARTIAL; 3233 th->seq = htonl(tcp_rsk(req)->snt_isn); 3234 /* XXX data is queued and acked as is. No buffer/window check */ 3235 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3236 3237 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3238 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3239 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3240 th->doff = (tcp_header_size >> 2); 3241 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3242 3243 #ifdef CONFIG_TCP_MD5SIG 3244 /* Okay, we have all we need - do the md5 hash if needed */ 3245 if (md5) 3246 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3247 md5, req_to_sk(req), skb); 3248 rcu_read_unlock(); 3249 #endif 3250 3251 /* Do not fool tcpdump (if any), clean our debris */ 3252 skb->tstamp = 0; 3253 return skb; 3254 } 3255 EXPORT_SYMBOL(tcp_make_synack); 3256 3257 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3258 { 3259 struct inet_connection_sock *icsk = inet_csk(sk); 3260 const struct tcp_congestion_ops *ca; 3261 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3262 3263 if (ca_key == TCP_CA_UNSPEC) 3264 return; 3265 3266 rcu_read_lock(); 3267 ca = tcp_ca_find_key(ca_key); 3268 if (likely(ca && try_module_get(ca->owner))) { 3269 module_put(icsk->icsk_ca_ops->owner); 3270 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3271 icsk->icsk_ca_ops = ca; 3272 } 3273 rcu_read_unlock(); 3274 } 3275 3276 /* Do all connect socket setups that can be done AF independent. */ 3277 static void tcp_connect_init(struct sock *sk) 3278 { 3279 const struct dst_entry *dst = __sk_dst_get(sk); 3280 struct tcp_sock *tp = tcp_sk(sk); 3281 __u8 rcv_wscale; 3282 u32 rcv_wnd; 3283 3284 /* We'll fix this up when we get a response from the other end. 3285 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3286 */ 3287 tp->tcp_header_len = sizeof(struct tcphdr); 3288 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3289 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3290 3291 #ifdef CONFIG_TCP_MD5SIG 3292 if (tp->af_specific->md5_lookup(sk, sk)) 3293 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3294 #endif 3295 3296 /* If user gave his TCP_MAXSEG, record it to clamp */ 3297 if (tp->rx_opt.user_mss) 3298 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3299 tp->max_window = 0; 3300 tcp_mtup_init(sk); 3301 tcp_sync_mss(sk, dst_mtu(dst)); 3302 3303 tcp_ca_dst_init(sk, dst); 3304 3305 if (!tp->window_clamp) 3306 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3307 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3308 3309 tcp_initialize_rcv_mss(sk); 3310 3311 /* limit the window selection if the user enforce a smaller rx buffer */ 3312 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3313 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3314 tp->window_clamp = tcp_full_space(sk); 3315 3316 rcv_wnd = tcp_rwnd_init_bpf(sk); 3317 if (rcv_wnd == 0) 3318 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3319 3320 tcp_select_initial_window(sk, tcp_full_space(sk), 3321 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3322 &tp->rcv_wnd, 3323 &tp->window_clamp, 3324 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3325 &rcv_wscale, 3326 rcv_wnd); 3327 3328 tp->rx_opt.rcv_wscale = rcv_wscale; 3329 tp->rcv_ssthresh = tp->rcv_wnd; 3330 3331 sk->sk_err = 0; 3332 sock_reset_flag(sk, SOCK_DONE); 3333 tp->snd_wnd = 0; 3334 tcp_init_wl(tp, 0); 3335 tcp_write_queue_purge(sk); 3336 tp->snd_una = tp->write_seq; 3337 tp->snd_sml = tp->write_seq; 3338 tp->snd_up = tp->write_seq; 3339 tp->snd_nxt = tp->write_seq; 3340 3341 if (likely(!tp->repair)) 3342 tp->rcv_nxt = 0; 3343 else 3344 tp->rcv_tstamp = tcp_jiffies32; 3345 tp->rcv_wup = tp->rcv_nxt; 3346 tp->copied_seq = tp->rcv_nxt; 3347 3348 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3349 inet_csk(sk)->icsk_retransmits = 0; 3350 tcp_clear_retrans(tp); 3351 } 3352 3353 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3354 { 3355 struct tcp_sock *tp = tcp_sk(sk); 3356 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3357 3358 tcb->end_seq += skb->len; 3359 __skb_header_release(skb); 3360 sk->sk_wmem_queued += skb->truesize; 3361 sk_mem_charge(sk, skb->truesize); 3362 tp->write_seq = tcb->end_seq; 3363 tp->packets_out += tcp_skb_pcount(skb); 3364 } 3365 3366 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3367 * queue a data-only packet after the regular SYN, such that regular SYNs 3368 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3369 * only the SYN sequence, the data are retransmitted in the first ACK. 3370 * If cookie is not cached or other error occurs, falls back to send a 3371 * regular SYN with Fast Open cookie request option. 3372 */ 3373 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3374 { 3375 struct tcp_sock *tp = tcp_sk(sk); 3376 struct tcp_fastopen_request *fo = tp->fastopen_req; 3377 int space, err = 0; 3378 struct sk_buff *syn_data; 3379 3380 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3381 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3382 goto fallback; 3383 3384 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3385 * user-MSS. Reserve maximum option space for middleboxes that add 3386 * private TCP options. The cost is reduced data space in SYN :( 3387 */ 3388 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3389 3390 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3391 MAX_TCP_OPTION_SPACE; 3392 3393 space = min_t(size_t, space, fo->size); 3394 3395 /* limit to order-0 allocations */ 3396 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3397 3398 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3399 if (!syn_data) 3400 goto fallback; 3401 syn_data->ip_summed = CHECKSUM_PARTIAL; 3402 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3403 if (space) { 3404 int copied = copy_from_iter(skb_put(syn_data, space), space, 3405 &fo->data->msg_iter); 3406 if (unlikely(!copied)) { 3407 tcp_skb_tsorted_anchor_cleanup(syn_data); 3408 kfree_skb(syn_data); 3409 goto fallback; 3410 } 3411 if (copied != space) { 3412 skb_trim(syn_data, copied); 3413 space = copied; 3414 } 3415 } 3416 /* No more data pending in inet_wait_for_connect() */ 3417 if (space == fo->size) 3418 fo->data = NULL; 3419 fo->copied = space; 3420 3421 tcp_connect_queue_skb(sk, syn_data); 3422 if (syn_data->len) 3423 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3424 3425 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3426 3427 syn->skb_mstamp = syn_data->skb_mstamp; 3428 3429 /* Now full SYN+DATA was cloned and sent (or not), 3430 * remove the SYN from the original skb (syn_data) 3431 * we keep in write queue in case of a retransmit, as we 3432 * also have the SYN packet (with no data) in the same queue. 3433 */ 3434 TCP_SKB_CB(syn_data)->seq++; 3435 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3436 if (!err) { 3437 tp->syn_data = (fo->copied > 0); 3438 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3440 goto done; 3441 } 3442 3443 /* data was not sent, put it in write_queue */ 3444 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3445 tp->packets_out -= tcp_skb_pcount(syn_data); 3446 3447 fallback: 3448 /* Send a regular SYN with Fast Open cookie request option */ 3449 if (fo->cookie.len > 0) 3450 fo->cookie.len = 0; 3451 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3452 if (err) 3453 tp->syn_fastopen = 0; 3454 done: 3455 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3456 return err; 3457 } 3458 3459 /* Build a SYN and send it off. */ 3460 int tcp_connect(struct sock *sk) 3461 { 3462 struct tcp_sock *tp = tcp_sk(sk); 3463 struct sk_buff *buff; 3464 int err; 3465 3466 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3467 3468 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3469 return -EHOSTUNREACH; /* Routing failure or similar. */ 3470 3471 tcp_connect_init(sk); 3472 3473 if (unlikely(tp->repair)) { 3474 tcp_finish_connect(sk, NULL); 3475 return 0; 3476 } 3477 3478 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3479 if (unlikely(!buff)) 3480 return -ENOBUFS; 3481 3482 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3483 tcp_mstamp_refresh(tp); 3484 tp->retrans_stamp = tcp_time_stamp(tp); 3485 tcp_connect_queue_skb(sk, buff); 3486 tcp_ecn_send_syn(sk, buff); 3487 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3488 3489 /* Send off SYN; include data in Fast Open. */ 3490 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3491 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3492 if (err == -ECONNREFUSED) 3493 return err; 3494 3495 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3496 * in order to make this packet get counted in tcpOutSegs. 3497 */ 3498 tp->snd_nxt = tp->write_seq; 3499 tp->pushed_seq = tp->write_seq; 3500 buff = tcp_send_head(sk); 3501 if (unlikely(buff)) { 3502 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3503 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3504 } 3505 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3506 3507 /* Timer for repeating the SYN until an answer. */ 3508 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3509 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3510 return 0; 3511 } 3512 EXPORT_SYMBOL(tcp_connect); 3513 3514 /* Send out a delayed ack, the caller does the policy checking 3515 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3516 * for details. 3517 */ 3518 void tcp_send_delayed_ack(struct sock *sk) 3519 { 3520 struct inet_connection_sock *icsk = inet_csk(sk); 3521 int ato = icsk->icsk_ack.ato; 3522 unsigned long timeout; 3523 3524 if (ato > TCP_DELACK_MIN) { 3525 const struct tcp_sock *tp = tcp_sk(sk); 3526 int max_ato = HZ / 2; 3527 3528 if (icsk->icsk_ack.pingpong || 3529 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3530 max_ato = TCP_DELACK_MAX; 3531 3532 /* Slow path, intersegment interval is "high". */ 3533 3534 /* If some rtt estimate is known, use it to bound delayed ack. 3535 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3536 * directly. 3537 */ 3538 if (tp->srtt_us) { 3539 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3540 TCP_DELACK_MIN); 3541 3542 if (rtt < max_ato) 3543 max_ato = rtt; 3544 } 3545 3546 ato = min(ato, max_ato); 3547 } 3548 3549 /* Stay within the limit we were given */ 3550 timeout = jiffies + ato; 3551 3552 /* Use new timeout only if there wasn't a older one earlier. */ 3553 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3554 /* If delack timer was blocked or is about to expire, 3555 * send ACK now. 3556 */ 3557 if (icsk->icsk_ack.blocked || 3558 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3559 tcp_send_ack(sk); 3560 return; 3561 } 3562 3563 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3564 timeout = icsk->icsk_ack.timeout; 3565 } 3566 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3567 icsk->icsk_ack.timeout = timeout; 3568 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3569 } 3570 3571 /* This routine sends an ack and also updates the window. */ 3572 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3573 { 3574 struct sk_buff *buff; 3575 3576 /* If we have been reset, we may not send again. */ 3577 if (sk->sk_state == TCP_CLOSE) 3578 return; 3579 3580 /* We are not putting this on the write queue, so 3581 * tcp_transmit_skb() will set the ownership to this 3582 * sock. 3583 */ 3584 buff = alloc_skb(MAX_TCP_HEADER, 3585 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3586 if (unlikely(!buff)) { 3587 inet_csk_schedule_ack(sk); 3588 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3589 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3590 TCP_DELACK_MAX, TCP_RTO_MAX); 3591 return; 3592 } 3593 3594 /* Reserve space for headers and prepare control bits. */ 3595 skb_reserve(buff, MAX_TCP_HEADER); 3596 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3597 3598 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3599 * too much. 3600 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3601 */ 3602 skb_set_tcp_pure_ack(buff); 3603 3604 /* Send it off, this clears delayed acks for us. */ 3605 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3606 } 3607 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3608 3609 void tcp_send_ack(struct sock *sk) 3610 { 3611 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3612 } 3613 3614 /* This routine sends a packet with an out of date sequence 3615 * number. It assumes the other end will try to ack it. 3616 * 3617 * Question: what should we make while urgent mode? 3618 * 4.4BSD forces sending single byte of data. We cannot send 3619 * out of window data, because we have SND.NXT==SND.MAX... 3620 * 3621 * Current solution: to send TWO zero-length segments in urgent mode: 3622 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3623 * out-of-date with SND.UNA-1 to probe window. 3624 */ 3625 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3626 { 3627 struct tcp_sock *tp = tcp_sk(sk); 3628 struct sk_buff *skb; 3629 3630 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3631 skb = alloc_skb(MAX_TCP_HEADER, 3632 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3633 if (!skb) 3634 return -1; 3635 3636 /* Reserve space for headers and set control bits. */ 3637 skb_reserve(skb, MAX_TCP_HEADER); 3638 /* Use a previous sequence. This should cause the other 3639 * end to send an ack. Don't queue or clone SKB, just 3640 * send it. 3641 */ 3642 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3643 NET_INC_STATS(sock_net(sk), mib); 3644 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3645 } 3646 3647 /* Called from setsockopt( ... TCP_REPAIR ) */ 3648 void tcp_send_window_probe(struct sock *sk) 3649 { 3650 if (sk->sk_state == TCP_ESTABLISHED) { 3651 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3652 tcp_mstamp_refresh(tcp_sk(sk)); 3653 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3654 } 3655 } 3656 3657 /* Initiate keepalive or window probe from timer. */ 3658 int tcp_write_wakeup(struct sock *sk, int mib) 3659 { 3660 struct tcp_sock *tp = tcp_sk(sk); 3661 struct sk_buff *skb; 3662 3663 if (sk->sk_state == TCP_CLOSE) 3664 return -1; 3665 3666 skb = tcp_send_head(sk); 3667 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3668 int err; 3669 unsigned int mss = tcp_current_mss(sk); 3670 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3671 3672 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3673 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3674 3675 /* We are probing the opening of a window 3676 * but the window size is != 0 3677 * must have been a result SWS avoidance ( sender ) 3678 */ 3679 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3680 skb->len > mss) { 3681 seg_size = min(seg_size, mss); 3682 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3683 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3684 skb, seg_size, mss, GFP_ATOMIC)) 3685 return -1; 3686 } else if (!tcp_skb_pcount(skb)) 3687 tcp_set_skb_tso_segs(skb, mss); 3688 3689 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3690 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3691 if (!err) 3692 tcp_event_new_data_sent(sk, skb); 3693 return err; 3694 } else { 3695 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3696 tcp_xmit_probe_skb(sk, 1, mib); 3697 return tcp_xmit_probe_skb(sk, 0, mib); 3698 } 3699 } 3700 3701 /* A window probe timeout has occurred. If window is not closed send 3702 * a partial packet else a zero probe. 3703 */ 3704 void tcp_send_probe0(struct sock *sk) 3705 { 3706 struct inet_connection_sock *icsk = inet_csk(sk); 3707 struct tcp_sock *tp = tcp_sk(sk); 3708 struct net *net = sock_net(sk); 3709 unsigned long probe_max; 3710 int err; 3711 3712 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3713 3714 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3715 /* Cancel probe timer, if it is not required. */ 3716 icsk->icsk_probes_out = 0; 3717 icsk->icsk_backoff = 0; 3718 return; 3719 } 3720 3721 if (err <= 0) { 3722 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3723 icsk->icsk_backoff++; 3724 icsk->icsk_probes_out++; 3725 probe_max = TCP_RTO_MAX; 3726 } else { 3727 /* If packet was not sent due to local congestion, 3728 * do not backoff and do not remember icsk_probes_out. 3729 * Let local senders to fight for local resources. 3730 * 3731 * Use accumulated backoff yet. 3732 */ 3733 if (!icsk->icsk_probes_out) 3734 icsk->icsk_probes_out = 1; 3735 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3736 } 3737 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3738 tcp_probe0_when(sk, probe_max), 3739 TCP_RTO_MAX); 3740 } 3741 3742 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3743 { 3744 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3745 struct flowi fl; 3746 int res; 3747 3748 tcp_rsk(req)->txhash = net_tx_rndhash(); 3749 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3750 if (!res) { 3751 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3752 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3753 if (unlikely(tcp_passive_fastopen(sk))) 3754 tcp_sk(sk)->total_retrans++; 3755 trace_tcp_retransmit_synack(sk, req); 3756 } 3757 return res; 3758 } 3759 EXPORT_SYMBOL(tcp_rtx_synack); 3760