xref: /linux/net/ipv4/tcp_output.c (revision e8dfd42c17faf183415323db1ef0c977be0d6489)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 #include <linux/skbuff_ref.h>
48 
49 #include <trace/events/tcp.h>
50 
51 /* Refresh clocks of a TCP socket,
52  * ensuring monotically increasing values.
53  */
54 void tcp_mstamp_refresh(struct tcp_sock *tp)
55 {
56 	u64 val = tcp_clock_ns();
57 
58 	tp->tcp_clock_cache = val;
59 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
60 }
61 
62 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
63 			   int push_one, gfp_t gfp);
64 
65 /* Account for new data that has been sent to the network. */
66 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
67 {
68 	struct inet_connection_sock *icsk = inet_csk(sk);
69 	struct tcp_sock *tp = tcp_sk(sk);
70 	unsigned int prior_packets = tp->packets_out;
71 
72 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
73 
74 	__skb_unlink(skb, &sk->sk_write_queue);
75 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
76 
77 	if (tp->highest_sack == NULL)
78 		tp->highest_sack = skb;
79 
80 	tp->packets_out += tcp_skb_pcount(skb);
81 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
82 		tcp_rearm_rto(sk);
83 
84 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 		      tcp_skb_pcount(skb));
86 	tcp_check_space(sk);
87 }
88 
89 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
90  * window scaling factor due to loss of precision.
91  * If window has been shrunk, what should we make? It is not clear at all.
92  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
93  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
94  * invalid. OK, let's make this for now:
95  */
96 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
97 {
98 	const struct tcp_sock *tp = tcp_sk(sk);
99 
100 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
101 	    (tp->rx_opt.wscale_ok &&
102 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
103 		return tp->snd_nxt;
104 	else
105 		return tcp_wnd_end(tp);
106 }
107 
108 /* Calculate mss to advertise in SYN segment.
109  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110  *
111  * 1. It is independent of path mtu.
112  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
113  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
114  *    attached devices, because some buggy hosts are confused by
115  *    large MSS.
116  * 4. We do not make 3, we advertise MSS, calculated from first
117  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
118  *    This may be overridden via information stored in routing table.
119  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
120  *    probably even Jumbo".
121  */
122 static __u16 tcp_advertise_mss(struct sock *sk)
123 {
124 	struct tcp_sock *tp = tcp_sk(sk);
125 	const struct dst_entry *dst = __sk_dst_get(sk);
126 	int mss = tp->advmss;
127 
128 	if (dst) {
129 		unsigned int metric = dst_metric_advmss(dst);
130 
131 		if (metric < mss) {
132 			mss = metric;
133 			tp->advmss = mss;
134 		}
135 	}
136 
137 	return (__u16)mss;
138 }
139 
140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
141  * This is the first part of cwnd validation mechanism.
142  */
143 void tcp_cwnd_restart(struct sock *sk, s32 delta)
144 {
145 	struct tcp_sock *tp = tcp_sk(sk);
146 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
147 	u32 cwnd = tcp_snd_cwnd(tp);
148 
149 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150 
151 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
152 	restart_cwnd = min(restart_cwnd, cwnd);
153 
154 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155 		cwnd >>= 1;
156 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
157 	tp->snd_cwnd_stamp = tcp_jiffies32;
158 	tp->snd_cwnd_used = 0;
159 }
160 
161 /* Congestion state accounting after a packet has been sent. */
162 static void tcp_event_data_sent(struct tcp_sock *tp,
163 				struct sock *sk)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const u32 now = tcp_jiffies32;
167 
168 	if (tcp_packets_in_flight(tp) == 0)
169 		tcp_ca_event(sk, CA_EVENT_TX_START);
170 
171 	tp->lsndtime = now;
172 
173 	/* If it is a reply for ato after last received
174 	 * packet, increase pingpong count.
175 	 */
176 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
177 		inet_csk_inc_pingpong_cnt(sk);
178 }
179 
180 /* Account for an ACK we sent. */
181 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
182 {
183 	struct tcp_sock *tp = tcp_sk(sk);
184 
185 	if (unlikely(tp->compressed_ack)) {
186 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 			      tp->compressed_ack);
188 		tp->compressed_ack = 0;
189 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 			__sock_put(sk);
191 	}
192 
193 	if (unlikely(rcv_nxt != tp->rcv_nxt))
194 		return;  /* Special ACK sent by DCTCP to reflect ECN */
195 	tcp_dec_quickack_mode(sk);
196 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *__window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 	u32 window_clamp = READ_ONCE(*__window_clamp);
213 
214 	/* If no clamp set the clamp to the max possible scaled window */
215 	if (window_clamp == 0)
216 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
217 	space = min(window_clamp, space);
218 
219 	/* Quantize space offering to a multiple of mss if possible. */
220 	if (space > mss)
221 		space = rounddown(space, mss);
222 
223 	/* NOTE: offering an initial window larger than 32767
224 	 * will break some buggy TCP stacks. If the admin tells us
225 	 * it is likely we could be speaking with such a buggy stack
226 	 * we will truncate our initial window offering to 32K-1
227 	 * unless the remote has sent us a window scaling option,
228 	 * which we interpret as a sign the remote TCP is not
229 	 * misinterpreting the window field as a signed quantity.
230 	 */
231 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
232 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233 	else
234 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
235 
236 	if (init_rcv_wnd)
237 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238 
239 	*rcv_wscale = 0;
240 	if (wscale_ok) {
241 		/* Set window scaling on max possible window */
242 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
243 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
244 		space = min_t(u32, space, window_clamp);
245 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
246 				      0, TCP_MAX_WSCALE);
247 	}
248 	/* Set the clamp no higher than max representable value */
249 	WRITE_ONCE(*__window_clamp,
250 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253 
254 /* Chose a new window to advertise, update state in tcp_sock for the
255  * socket, and return result with RFC1323 scaling applied.  The return
256  * value can be stuffed directly into th->window for an outgoing
257  * frame.
258  */
259 static u16 tcp_select_window(struct sock *sk)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 	struct net *net = sock_net(sk);
263 	u32 old_win = tp->rcv_wnd;
264 	u32 cur_win, new_win;
265 
266 	/* Make the window 0 if we failed to queue the data because we
267 	 * are out of memory. The window is temporary, so we don't store
268 	 * it on the socket.
269 	 */
270 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
271 		return 0;
272 
273 	cur_win = tcp_receive_window(tp);
274 	new_win = __tcp_select_window(sk);
275 	if (new_win < cur_win) {
276 		/* Danger Will Robinson!
277 		 * Don't update rcv_wup/rcv_wnd here or else
278 		 * we will not be able to advertise a zero
279 		 * window in time.  --DaveM
280 		 *
281 		 * Relax Will Robinson.
282 		 */
283 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
284 			/* Never shrink the offered window */
285 			if (new_win == 0)
286 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
287 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
288 		}
289 	}
290 
291 	tp->rcv_wnd = new_win;
292 	tp->rcv_wup = tp->rcv_nxt;
293 
294 	/* Make sure we do not exceed the maximum possible
295 	 * scaled window.
296 	 */
297 	if (!tp->rx_opt.rcv_wscale &&
298 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
299 		new_win = min(new_win, MAX_TCP_WINDOW);
300 	else
301 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
302 
303 	/* RFC1323 scaling applied */
304 	new_win >>= tp->rx_opt.rcv_wscale;
305 
306 	/* If we advertise zero window, disable fast path. */
307 	if (new_win == 0) {
308 		tp->pred_flags = 0;
309 		if (old_win)
310 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
311 	} else if (old_win == 0) {
312 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
313 	}
314 
315 	return new_win;
316 }
317 
318 /* Packet ECN state for a SYN-ACK */
319 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
320 {
321 	const struct tcp_sock *tp = tcp_sk(sk);
322 
323 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
324 	if (!(tp->ecn_flags & TCP_ECN_OK))
325 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
326 	else if (tcp_ca_needs_ecn(sk) ||
327 		 tcp_bpf_ca_needs_ecn(sk))
328 		INET_ECN_xmit(sk);
329 }
330 
331 /* Packet ECN state for a SYN.  */
332 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
333 {
334 	struct tcp_sock *tp = tcp_sk(sk);
335 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
336 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
337 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
338 
339 	if (!use_ecn) {
340 		const struct dst_entry *dst = __sk_dst_get(sk);
341 
342 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
343 			use_ecn = true;
344 	}
345 
346 	tp->ecn_flags = 0;
347 
348 	if (use_ecn) {
349 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
350 		tp->ecn_flags = TCP_ECN_OK;
351 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
352 			INET_ECN_xmit(sk);
353 	}
354 }
355 
356 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
357 {
358 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
359 		/* tp->ecn_flags are cleared at a later point in time when
360 		 * SYN ACK is ultimatively being received.
361 		 */
362 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
363 }
364 
365 static void
366 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
367 {
368 	if (inet_rsk(req)->ecn_ok)
369 		th->ece = 1;
370 }
371 
372 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
373  * be sent.
374  */
375 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
376 			 struct tcphdr *th, int tcp_header_len)
377 {
378 	struct tcp_sock *tp = tcp_sk(sk);
379 
380 	if (tp->ecn_flags & TCP_ECN_OK) {
381 		/* Not-retransmitted data segment: set ECT and inject CWR. */
382 		if (skb->len != tcp_header_len &&
383 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
384 			INET_ECN_xmit(sk);
385 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
386 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
387 				th->cwr = 1;
388 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
389 			}
390 		} else if (!tcp_ca_needs_ecn(sk)) {
391 			/* ACK or retransmitted segment: clear ECT|CE */
392 			INET_ECN_dontxmit(sk);
393 		}
394 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
395 			th->ece = 1;
396 	}
397 }
398 
399 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
400  * auto increment end seqno.
401  */
402 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
403 {
404 	skb->ip_summed = CHECKSUM_PARTIAL;
405 
406 	TCP_SKB_CB(skb)->tcp_flags = flags;
407 
408 	tcp_skb_pcount_set(skb, 1);
409 
410 	TCP_SKB_CB(skb)->seq = seq;
411 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
412 		seq++;
413 	TCP_SKB_CB(skb)->end_seq = seq;
414 }
415 
416 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
417 {
418 	return tp->snd_una != tp->snd_up;
419 }
420 
421 #define OPTION_SACK_ADVERTISE	BIT(0)
422 #define OPTION_TS		BIT(1)
423 #define OPTION_MD5		BIT(2)
424 #define OPTION_WSCALE		BIT(3)
425 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
426 #define OPTION_SMC		BIT(9)
427 #define OPTION_MPTCP		BIT(10)
428 #define OPTION_AO		BIT(11)
429 
430 static void smc_options_write(__be32 *ptr, u16 *options)
431 {
432 #if IS_ENABLED(CONFIG_SMC)
433 	if (static_branch_unlikely(&tcp_have_smc)) {
434 		if (unlikely(OPTION_SMC & *options)) {
435 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
436 				       (TCPOPT_NOP  << 16) |
437 				       (TCPOPT_EXP <<  8) |
438 				       (TCPOLEN_EXP_SMC_BASE));
439 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
440 		}
441 	}
442 #endif
443 }
444 
445 struct tcp_out_options {
446 	u16 options;		/* bit field of OPTION_* */
447 	u16 mss;		/* 0 to disable */
448 	u8 ws;			/* window scale, 0 to disable */
449 	u8 num_sack_blocks;	/* number of SACK blocks to include */
450 	u8 hash_size;		/* bytes in hash_location */
451 	u8 bpf_opt_len;		/* length of BPF hdr option */
452 	__u8 *hash_location;	/* temporary pointer, overloaded */
453 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
454 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
455 	struct mptcp_out_options mptcp;
456 };
457 
458 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
459 				struct tcp_sock *tp,
460 				struct tcp_out_options *opts)
461 {
462 #if IS_ENABLED(CONFIG_MPTCP)
463 	if (unlikely(OPTION_MPTCP & opts->options))
464 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
465 #endif
466 }
467 
468 #ifdef CONFIG_CGROUP_BPF
469 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
470 					enum tcp_synack_type synack_type)
471 {
472 	if (unlikely(!skb))
473 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
474 
475 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
476 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
477 
478 	return 0;
479 }
480 
481 /* req, syn_skb and synack_type are used when writing synack */
482 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
483 				  struct request_sock *req,
484 				  struct sk_buff *syn_skb,
485 				  enum tcp_synack_type synack_type,
486 				  struct tcp_out_options *opts,
487 				  unsigned int *remaining)
488 {
489 	struct bpf_sock_ops_kern sock_ops;
490 	int err;
491 
492 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
493 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
494 	    !*remaining)
495 		return;
496 
497 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
498 
499 	/* init sock_ops */
500 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
501 
502 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
503 
504 	if (req) {
505 		/* The listen "sk" cannot be passed here because
506 		 * it is not locked.  It would not make too much
507 		 * sense to do bpf_setsockopt(listen_sk) based
508 		 * on individual connection request also.
509 		 *
510 		 * Thus, "req" is passed here and the cgroup-bpf-progs
511 		 * of the listen "sk" will be run.
512 		 *
513 		 * "req" is also used here for fastopen even the "sk" here is
514 		 * a fullsock "child" sk.  It is to keep the behavior
515 		 * consistent between fastopen and non-fastopen on
516 		 * the bpf programming side.
517 		 */
518 		sock_ops.sk = (struct sock *)req;
519 		sock_ops.syn_skb = syn_skb;
520 	} else {
521 		sock_owned_by_me(sk);
522 
523 		sock_ops.is_fullsock = 1;
524 		sock_ops.sk = sk;
525 	}
526 
527 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
528 	sock_ops.remaining_opt_len = *remaining;
529 	/* tcp_current_mss() does not pass a skb */
530 	if (skb)
531 		bpf_skops_init_skb(&sock_ops, skb, 0);
532 
533 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
534 
535 	if (err || sock_ops.remaining_opt_len == *remaining)
536 		return;
537 
538 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
539 	/* round up to 4 bytes */
540 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
541 
542 	*remaining -= opts->bpf_opt_len;
543 }
544 
545 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
546 				    struct request_sock *req,
547 				    struct sk_buff *syn_skb,
548 				    enum tcp_synack_type synack_type,
549 				    struct tcp_out_options *opts)
550 {
551 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
552 	struct bpf_sock_ops_kern sock_ops;
553 	int err;
554 
555 	if (likely(!max_opt_len))
556 		return;
557 
558 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
559 
560 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
561 
562 	if (req) {
563 		sock_ops.sk = (struct sock *)req;
564 		sock_ops.syn_skb = syn_skb;
565 	} else {
566 		sock_owned_by_me(sk);
567 
568 		sock_ops.is_fullsock = 1;
569 		sock_ops.sk = sk;
570 	}
571 
572 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
573 	sock_ops.remaining_opt_len = max_opt_len;
574 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
575 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
576 
577 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
578 
579 	if (err)
580 		nr_written = 0;
581 	else
582 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
583 
584 	if (nr_written < max_opt_len)
585 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
586 		       max_opt_len - nr_written);
587 }
588 #else
589 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
590 				  struct request_sock *req,
591 				  struct sk_buff *syn_skb,
592 				  enum tcp_synack_type synack_type,
593 				  struct tcp_out_options *opts,
594 				  unsigned int *remaining)
595 {
596 }
597 
598 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
599 				    struct request_sock *req,
600 				    struct sk_buff *syn_skb,
601 				    enum tcp_synack_type synack_type,
602 				    struct tcp_out_options *opts)
603 {
604 }
605 #endif
606 
607 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
608 				      const struct tcp_request_sock *tcprsk,
609 				      struct tcp_out_options *opts,
610 				      struct tcp_key *key, __be32 *ptr)
611 {
612 #ifdef CONFIG_TCP_AO
613 	u8 maclen = tcp_ao_maclen(key->ao_key);
614 
615 	if (tcprsk) {
616 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
617 
618 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
619 			       (tcprsk->ao_keyid << 8) |
620 			       (tcprsk->ao_rcv_next));
621 	} else {
622 		struct tcp_ao_key *rnext_key;
623 		struct tcp_ao_info *ao_info;
624 
625 		ao_info = rcu_dereference_check(tp->ao_info,
626 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
627 		rnext_key = READ_ONCE(ao_info->rnext_key);
628 		if (WARN_ON_ONCE(!rnext_key))
629 			return ptr;
630 		*ptr++ = htonl((TCPOPT_AO << 24) |
631 			       (tcp_ao_len(key->ao_key) << 16) |
632 			       (key->ao_key->sndid << 8) |
633 			       (rnext_key->rcvid));
634 	}
635 	opts->hash_location = (__u8 *)ptr;
636 	ptr += maclen / sizeof(*ptr);
637 	if (unlikely(maclen % sizeof(*ptr))) {
638 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
639 		ptr++;
640 	}
641 #endif
642 	return ptr;
643 }
644 
645 /* Write previously computed TCP options to the packet.
646  *
647  * Beware: Something in the Internet is very sensitive to the ordering of
648  * TCP options, we learned this through the hard way, so be careful here.
649  * Luckily we can at least blame others for their non-compliance but from
650  * inter-operability perspective it seems that we're somewhat stuck with
651  * the ordering which we have been using if we want to keep working with
652  * those broken things (not that it currently hurts anybody as there isn't
653  * particular reason why the ordering would need to be changed).
654  *
655  * At least SACK_PERM as the first option is known to lead to a disaster
656  * (but it may well be that other scenarios fail similarly).
657  */
658 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
659 			      const struct tcp_request_sock *tcprsk,
660 			      struct tcp_out_options *opts,
661 			      struct tcp_key *key)
662 {
663 	__be32 *ptr = (__be32 *)(th + 1);
664 	u16 options = opts->options;	/* mungable copy */
665 
666 	if (tcp_key_is_md5(key)) {
667 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
668 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
669 		/* overload cookie hash location */
670 		opts->hash_location = (__u8 *)ptr;
671 		ptr += 4;
672 	} else if (tcp_key_is_ao(key)) {
673 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
674 	}
675 	if (unlikely(opts->mss)) {
676 		*ptr++ = htonl((TCPOPT_MSS << 24) |
677 			       (TCPOLEN_MSS << 16) |
678 			       opts->mss);
679 	}
680 
681 	if (likely(OPTION_TS & options)) {
682 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
683 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
684 				       (TCPOLEN_SACK_PERM << 16) |
685 				       (TCPOPT_TIMESTAMP << 8) |
686 				       TCPOLEN_TIMESTAMP);
687 			options &= ~OPTION_SACK_ADVERTISE;
688 		} else {
689 			*ptr++ = htonl((TCPOPT_NOP << 24) |
690 				       (TCPOPT_NOP << 16) |
691 				       (TCPOPT_TIMESTAMP << 8) |
692 				       TCPOLEN_TIMESTAMP);
693 		}
694 		*ptr++ = htonl(opts->tsval);
695 		*ptr++ = htonl(opts->tsecr);
696 	}
697 
698 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
699 		*ptr++ = htonl((TCPOPT_NOP << 24) |
700 			       (TCPOPT_NOP << 16) |
701 			       (TCPOPT_SACK_PERM << 8) |
702 			       TCPOLEN_SACK_PERM);
703 	}
704 
705 	if (unlikely(OPTION_WSCALE & options)) {
706 		*ptr++ = htonl((TCPOPT_NOP << 24) |
707 			       (TCPOPT_WINDOW << 16) |
708 			       (TCPOLEN_WINDOW << 8) |
709 			       opts->ws);
710 	}
711 
712 	if (unlikely(opts->num_sack_blocks)) {
713 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
714 			tp->duplicate_sack : tp->selective_acks;
715 		int this_sack;
716 
717 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
718 			       (TCPOPT_NOP  << 16) |
719 			       (TCPOPT_SACK <<  8) |
720 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
721 						     TCPOLEN_SACK_PERBLOCK)));
722 
723 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
724 		     ++this_sack) {
725 			*ptr++ = htonl(sp[this_sack].start_seq);
726 			*ptr++ = htonl(sp[this_sack].end_seq);
727 		}
728 
729 		tp->rx_opt.dsack = 0;
730 	}
731 
732 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
733 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
734 		u8 *p = (u8 *)ptr;
735 		u32 len; /* Fast Open option length */
736 
737 		if (foc->exp) {
738 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
739 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
740 				     TCPOPT_FASTOPEN_MAGIC);
741 			p += TCPOLEN_EXP_FASTOPEN_BASE;
742 		} else {
743 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
744 			*p++ = TCPOPT_FASTOPEN;
745 			*p++ = len;
746 		}
747 
748 		memcpy(p, foc->val, foc->len);
749 		if ((len & 3) == 2) {
750 			p[foc->len] = TCPOPT_NOP;
751 			p[foc->len + 1] = TCPOPT_NOP;
752 		}
753 		ptr += (len + 3) >> 2;
754 	}
755 
756 	smc_options_write(ptr, &options);
757 
758 	mptcp_options_write(th, ptr, tp, opts);
759 }
760 
761 static void smc_set_option(const struct tcp_sock *tp,
762 			   struct tcp_out_options *opts,
763 			   unsigned int *remaining)
764 {
765 #if IS_ENABLED(CONFIG_SMC)
766 	if (static_branch_unlikely(&tcp_have_smc)) {
767 		if (tp->syn_smc) {
768 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
769 				opts->options |= OPTION_SMC;
770 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
771 			}
772 		}
773 	}
774 #endif
775 }
776 
777 static void smc_set_option_cond(const struct tcp_sock *tp,
778 				const struct inet_request_sock *ireq,
779 				struct tcp_out_options *opts,
780 				unsigned int *remaining)
781 {
782 #if IS_ENABLED(CONFIG_SMC)
783 	if (static_branch_unlikely(&tcp_have_smc)) {
784 		if (tp->syn_smc && ireq->smc_ok) {
785 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
786 				opts->options |= OPTION_SMC;
787 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
788 			}
789 		}
790 	}
791 #endif
792 }
793 
794 static void mptcp_set_option_cond(const struct request_sock *req,
795 				  struct tcp_out_options *opts,
796 				  unsigned int *remaining)
797 {
798 	if (rsk_is_mptcp(req)) {
799 		unsigned int size;
800 
801 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
802 			if (*remaining >= size) {
803 				opts->options |= OPTION_MPTCP;
804 				*remaining -= size;
805 			}
806 		}
807 	}
808 }
809 
810 /* Compute TCP options for SYN packets. This is not the final
811  * network wire format yet.
812  */
813 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
814 				struct tcp_out_options *opts,
815 				struct tcp_key *key)
816 {
817 	struct tcp_sock *tp = tcp_sk(sk);
818 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
819 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
820 	bool timestamps;
821 
822 	/* Better than switch (key.type) as it has static branches */
823 	if (tcp_key_is_md5(key)) {
824 		timestamps = false;
825 		opts->options |= OPTION_MD5;
826 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
827 	} else {
828 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
829 		if (tcp_key_is_ao(key)) {
830 			opts->options |= OPTION_AO;
831 			remaining -= tcp_ao_len_aligned(key->ao_key);
832 		}
833 	}
834 
835 	/* We always get an MSS option.  The option bytes which will be seen in
836 	 * normal data packets should timestamps be used, must be in the MSS
837 	 * advertised.  But we subtract them from tp->mss_cache so that
838 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
839 	 * fact here if necessary.  If we don't do this correctly, as a
840 	 * receiver we won't recognize data packets as being full sized when we
841 	 * should, and thus we won't abide by the delayed ACK rules correctly.
842 	 * SACKs don't matter, we never delay an ACK when we have any of those
843 	 * going out.  */
844 	opts->mss = tcp_advertise_mss(sk);
845 	remaining -= TCPOLEN_MSS_ALIGNED;
846 
847 	if (likely(timestamps)) {
848 		opts->options |= OPTION_TS;
849 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
850 		opts->tsecr = tp->rx_opt.ts_recent;
851 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
852 	}
853 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
854 		opts->ws = tp->rx_opt.rcv_wscale;
855 		opts->options |= OPTION_WSCALE;
856 		remaining -= TCPOLEN_WSCALE_ALIGNED;
857 	}
858 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
859 		opts->options |= OPTION_SACK_ADVERTISE;
860 		if (unlikely(!(OPTION_TS & opts->options)))
861 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
862 	}
863 
864 	if (fastopen && fastopen->cookie.len >= 0) {
865 		u32 need = fastopen->cookie.len;
866 
867 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
868 					       TCPOLEN_FASTOPEN_BASE;
869 		need = (need + 3) & ~3U;  /* Align to 32 bits */
870 		if (remaining >= need) {
871 			opts->options |= OPTION_FAST_OPEN_COOKIE;
872 			opts->fastopen_cookie = &fastopen->cookie;
873 			remaining -= need;
874 			tp->syn_fastopen = 1;
875 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
876 		}
877 	}
878 
879 	smc_set_option(tp, opts, &remaining);
880 
881 	if (sk_is_mptcp(sk)) {
882 		unsigned int size;
883 
884 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
885 			opts->options |= OPTION_MPTCP;
886 			remaining -= size;
887 		}
888 	}
889 
890 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
891 
892 	return MAX_TCP_OPTION_SPACE - remaining;
893 }
894 
895 /* Set up TCP options for SYN-ACKs. */
896 static unsigned int tcp_synack_options(const struct sock *sk,
897 				       struct request_sock *req,
898 				       unsigned int mss, struct sk_buff *skb,
899 				       struct tcp_out_options *opts,
900 				       const struct tcp_key *key,
901 				       struct tcp_fastopen_cookie *foc,
902 				       enum tcp_synack_type synack_type,
903 				       struct sk_buff *syn_skb)
904 {
905 	struct inet_request_sock *ireq = inet_rsk(req);
906 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
907 
908 	if (tcp_key_is_md5(key)) {
909 		opts->options |= OPTION_MD5;
910 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
911 
912 		/* We can't fit any SACK blocks in a packet with MD5 + TS
913 		 * options. There was discussion about disabling SACK
914 		 * rather than TS in order to fit in better with old,
915 		 * buggy kernels, but that was deemed to be unnecessary.
916 		 */
917 		if (synack_type != TCP_SYNACK_COOKIE)
918 			ireq->tstamp_ok &= !ireq->sack_ok;
919 	} else if (tcp_key_is_ao(key)) {
920 		opts->options |= OPTION_AO;
921 		remaining -= tcp_ao_len_aligned(key->ao_key);
922 		ireq->tstamp_ok &= !ireq->sack_ok;
923 	}
924 
925 	/* We always send an MSS option. */
926 	opts->mss = mss;
927 	remaining -= TCPOLEN_MSS_ALIGNED;
928 
929 	if (likely(ireq->wscale_ok)) {
930 		opts->ws = ireq->rcv_wscale;
931 		opts->options |= OPTION_WSCALE;
932 		remaining -= TCPOLEN_WSCALE_ALIGNED;
933 	}
934 	if (likely(ireq->tstamp_ok)) {
935 		opts->options |= OPTION_TS;
936 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
937 			      tcp_rsk(req)->ts_off;
938 		opts->tsecr = READ_ONCE(req->ts_recent);
939 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
940 	}
941 	if (likely(ireq->sack_ok)) {
942 		opts->options |= OPTION_SACK_ADVERTISE;
943 		if (unlikely(!ireq->tstamp_ok))
944 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
945 	}
946 	if (foc != NULL && foc->len >= 0) {
947 		u32 need = foc->len;
948 
949 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
950 				   TCPOLEN_FASTOPEN_BASE;
951 		need = (need + 3) & ~3U;  /* Align to 32 bits */
952 		if (remaining >= need) {
953 			opts->options |= OPTION_FAST_OPEN_COOKIE;
954 			opts->fastopen_cookie = foc;
955 			remaining -= need;
956 		}
957 	}
958 
959 	mptcp_set_option_cond(req, opts, &remaining);
960 
961 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
962 
963 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
964 			      synack_type, opts, &remaining);
965 
966 	return MAX_TCP_OPTION_SPACE - remaining;
967 }
968 
969 /* Compute TCP options for ESTABLISHED sockets. This is not the
970  * final wire format yet.
971  */
972 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
973 					struct tcp_out_options *opts,
974 					struct tcp_key *key)
975 {
976 	struct tcp_sock *tp = tcp_sk(sk);
977 	unsigned int size = 0;
978 	unsigned int eff_sacks;
979 
980 	opts->options = 0;
981 
982 	/* Better than switch (key.type) as it has static branches */
983 	if (tcp_key_is_md5(key)) {
984 		opts->options |= OPTION_MD5;
985 		size += TCPOLEN_MD5SIG_ALIGNED;
986 	} else if (tcp_key_is_ao(key)) {
987 		opts->options |= OPTION_AO;
988 		size += tcp_ao_len_aligned(key->ao_key);
989 	}
990 
991 	if (likely(tp->rx_opt.tstamp_ok)) {
992 		opts->options |= OPTION_TS;
993 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
994 				tp->tsoffset : 0;
995 		opts->tsecr = tp->rx_opt.ts_recent;
996 		size += TCPOLEN_TSTAMP_ALIGNED;
997 	}
998 
999 	/* MPTCP options have precedence over SACK for the limited TCP
1000 	 * option space because a MPTCP connection would be forced to
1001 	 * fall back to regular TCP if a required multipath option is
1002 	 * missing. SACK still gets a chance to use whatever space is
1003 	 * left.
1004 	 */
1005 	if (sk_is_mptcp(sk)) {
1006 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1007 		unsigned int opt_size = 0;
1008 
1009 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1010 					      &opts->mptcp)) {
1011 			opts->options |= OPTION_MPTCP;
1012 			size += opt_size;
1013 		}
1014 	}
1015 
1016 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1017 	if (unlikely(eff_sacks)) {
1018 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1019 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1020 					 TCPOLEN_SACK_PERBLOCK))
1021 			return size;
1022 
1023 		opts->num_sack_blocks =
1024 			min_t(unsigned int, eff_sacks,
1025 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1026 			      TCPOLEN_SACK_PERBLOCK);
1027 
1028 		size += TCPOLEN_SACK_BASE_ALIGNED +
1029 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1030 	}
1031 
1032 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1033 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1034 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1035 
1036 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1037 
1038 		size = MAX_TCP_OPTION_SPACE - remaining;
1039 	}
1040 
1041 	return size;
1042 }
1043 
1044 
1045 /* TCP SMALL QUEUES (TSQ)
1046  *
1047  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1048  * to reduce RTT and bufferbloat.
1049  * We do this using a special skb destructor (tcp_wfree).
1050  *
1051  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1052  * needs to be reallocated in a driver.
1053  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1054  *
1055  * Since transmit from skb destructor is forbidden, we use a tasklet
1056  * to process all sockets that eventually need to send more skbs.
1057  * We use one tasklet per cpu, with its own queue of sockets.
1058  */
1059 struct tsq_tasklet {
1060 	struct tasklet_struct	tasklet;
1061 	struct list_head	head; /* queue of tcp sockets */
1062 };
1063 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1064 
1065 static void tcp_tsq_write(struct sock *sk)
1066 {
1067 	if ((1 << sk->sk_state) &
1068 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1069 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1070 		struct tcp_sock *tp = tcp_sk(sk);
1071 
1072 		if (tp->lost_out > tp->retrans_out &&
1073 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1074 			tcp_mstamp_refresh(tp);
1075 			tcp_xmit_retransmit_queue(sk);
1076 		}
1077 
1078 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1079 			       0, GFP_ATOMIC);
1080 	}
1081 }
1082 
1083 static void tcp_tsq_handler(struct sock *sk)
1084 {
1085 	bh_lock_sock(sk);
1086 	if (!sock_owned_by_user(sk))
1087 		tcp_tsq_write(sk);
1088 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1089 		sock_hold(sk);
1090 	bh_unlock_sock(sk);
1091 }
1092 /*
1093  * One tasklet per cpu tries to send more skbs.
1094  * We run in tasklet context but need to disable irqs when
1095  * transferring tsq->head because tcp_wfree() might
1096  * interrupt us (non NAPI drivers)
1097  */
1098 static void tcp_tasklet_func(struct tasklet_struct *t)
1099 {
1100 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1101 	LIST_HEAD(list);
1102 	unsigned long flags;
1103 	struct list_head *q, *n;
1104 	struct tcp_sock *tp;
1105 	struct sock *sk;
1106 
1107 	local_irq_save(flags);
1108 	list_splice_init(&tsq->head, &list);
1109 	local_irq_restore(flags);
1110 
1111 	list_for_each_safe(q, n, &list) {
1112 		tp = list_entry(q, struct tcp_sock, tsq_node);
1113 		list_del(&tp->tsq_node);
1114 
1115 		sk = (struct sock *)tp;
1116 		smp_mb__before_atomic();
1117 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1118 
1119 		tcp_tsq_handler(sk);
1120 		sk_free(sk);
1121 	}
1122 }
1123 
1124 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1125 			  TCPF_WRITE_TIMER_DEFERRED |	\
1126 			  TCPF_DELACK_TIMER_DEFERRED |	\
1127 			  TCPF_MTU_REDUCED_DEFERRED |	\
1128 			  TCPF_ACK_DEFERRED)
1129 /**
1130  * tcp_release_cb - tcp release_sock() callback
1131  * @sk: socket
1132  *
1133  * called from release_sock() to perform protocol dependent
1134  * actions before socket release.
1135  */
1136 void tcp_release_cb(struct sock *sk)
1137 {
1138 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1139 	unsigned long nflags;
1140 
1141 	/* perform an atomic operation only if at least one flag is set */
1142 	do {
1143 		if (!(flags & TCP_DEFERRED_ALL))
1144 			return;
1145 		nflags = flags & ~TCP_DEFERRED_ALL;
1146 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1147 
1148 	if (flags & TCPF_TSQ_DEFERRED) {
1149 		tcp_tsq_write(sk);
1150 		__sock_put(sk);
1151 	}
1152 
1153 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1154 		tcp_write_timer_handler(sk);
1155 		__sock_put(sk);
1156 	}
1157 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1158 		tcp_delack_timer_handler(sk);
1159 		__sock_put(sk);
1160 	}
1161 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1162 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1163 		__sock_put(sk);
1164 	}
1165 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1166 		tcp_send_ack(sk);
1167 }
1168 EXPORT_SYMBOL(tcp_release_cb);
1169 
1170 void __init tcp_tasklet_init(void)
1171 {
1172 	int i;
1173 
1174 	for_each_possible_cpu(i) {
1175 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1176 
1177 		INIT_LIST_HEAD(&tsq->head);
1178 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1179 	}
1180 }
1181 
1182 /*
1183  * Write buffer destructor automatically called from kfree_skb.
1184  * We can't xmit new skbs from this context, as we might already
1185  * hold qdisc lock.
1186  */
1187 void tcp_wfree(struct sk_buff *skb)
1188 {
1189 	struct sock *sk = skb->sk;
1190 	struct tcp_sock *tp = tcp_sk(sk);
1191 	unsigned long flags, nval, oval;
1192 	struct tsq_tasklet *tsq;
1193 	bool empty;
1194 
1195 	/* Keep one reference on sk_wmem_alloc.
1196 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1197 	 */
1198 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1199 
1200 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1201 	 * Wait until our queues (qdisc + devices) are drained.
1202 	 * This gives :
1203 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1204 	 * - chance for incoming ACK (processed by another cpu maybe)
1205 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1206 	 */
1207 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1208 		goto out;
1209 
1210 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1211 	do {
1212 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1213 			goto out;
1214 
1215 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1216 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1217 
1218 	/* queue this socket to tasklet queue */
1219 	local_irq_save(flags);
1220 	tsq = this_cpu_ptr(&tsq_tasklet);
1221 	empty = list_empty(&tsq->head);
1222 	list_add(&tp->tsq_node, &tsq->head);
1223 	if (empty)
1224 		tasklet_schedule(&tsq->tasklet);
1225 	local_irq_restore(flags);
1226 	return;
1227 out:
1228 	sk_free(sk);
1229 }
1230 
1231 /* Note: Called under soft irq.
1232  * We can call TCP stack right away, unless socket is owned by user.
1233  */
1234 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1235 {
1236 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1237 	struct sock *sk = (struct sock *)tp;
1238 
1239 	tcp_tsq_handler(sk);
1240 	sock_put(sk);
1241 
1242 	return HRTIMER_NORESTART;
1243 }
1244 
1245 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1246 				      u64 prior_wstamp)
1247 {
1248 	struct tcp_sock *tp = tcp_sk(sk);
1249 
1250 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1251 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1252 
1253 		/* Original sch_fq does not pace first 10 MSS
1254 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1255 		 * this is a minor annoyance.
1256 		 */
1257 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1258 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1259 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1260 
1261 			/* take into account OS jitter */
1262 			len_ns -= min_t(u64, len_ns / 2, credit);
1263 			tp->tcp_wstamp_ns += len_ns;
1264 		}
1265 	}
1266 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1267 }
1268 
1269 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1270 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1271 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1272 
1273 /* This routine actually transmits TCP packets queued in by
1274  * tcp_do_sendmsg().  This is used by both the initial
1275  * transmission and possible later retransmissions.
1276  * All SKB's seen here are completely headerless.  It is our
1277  * job to build the TCP header, and pass the packet down to
1278  * IP so it can do the same plus pass the packet off to the
1279  * device.
1280  *
1281  * We are working here with either a clone of the original
1282  * SKB, or a fresh unique copy made by the retransmit engine.
1283  */
1284 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1285 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1286 {
1287 	const struct inet_connection_sock *icsk = inet_csk(sk);
1288 	struct inet_sock *inet;
1289 	struct tcp_sock *tp;
1290 	struct tcp_skb_cb *tcb;
1291 	struct tcp_out_options opts;
1292 	unsigned int tcp_options_size, tcp_header_size;
1293 	struct sk_buff *oskb = NULL;
1294 	struct tcp_key key;
1295 	struct tcphdr *th;
1296 	u64 prior_wstamp;
1297 	int err;
1298 
1299 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1300 	tp = tcp_sk(sk);
1301 	prior_wstamp = tp->tcp_wstamp_ns;
1302 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1303 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1304 	if (clone_it) {
1305 		oskb = skb;
1306 
1307 		tcp_skb_tsorted_save(oskb) {
1308 			if (unlikely(skb_cloned(oskb)))
1309 				skb = pskb_copy(oskb, gfp_mask);
1310 			else
1311 				skb = skb_clone(oskb, gfp_mask);
1312 		} tcp_skb_tsorted_restore(oskb);
1313 
1314 		if (unlikely(!skb))
1315 			return -ENOBUFS;
1316 		/* retransmit skbs might have a non zero value in skb->dev
1317 		 * because skb->dev is aliased with skb->rbnode.rb_left
1318 		 */
1319 		skb->dev = NULL;
1320 	}
1321 
1322 	inet = inet_sk(sk);
1323 	tcb = TCP_SKB_CB(skb);
1324 	memset(&opts, 0, sizeof(opts));
1325 
1326 	tcp_get_current_key(sk, &key);
1327 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1328 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1329 	} else {
1330 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1331 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1332 		 * at receiver : This slightly improve GRO performance.
1333 		 * Note that we do not force the PSH flag for non GSO packets,
1334 		 * because they might be sent under high congestion events,
1335 		 * and in this case it is better to delay the delivery of 1-MSS
1336 		 * packets and thus the corresponding ACK packet that would
1337 		 * release the following packet.
1338 		 */
1339 		if (tcp_skb_pcount(skb) > 1)
1340 			tcb->tcp_flags |= TCPHDR_PSH;
1341 	}
1342 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1343 
1344 	/* We set skb->ooo_okay to one if this packet can select
1345 	 * a different TX queue than prior packets of this flow,
1346 	 * to avoid self inflicted reorders.
1347 	 * The 'other' queue decision is based on current cpu number
1348 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1349 	 * We can switch to another (and better) queue if:
1350 	 * 1) No packet with payload is in qdisc/device queues.
1351 	 *    Delays in TX completion can defeat the test
1352 	 *    even if packets were already sent.
1353 	 * 2) Or rtx queue is empty.
1354 	 *    This mitigates above case if ACK packets for
1355 	 *    all prior packets were already processed.
1356 	 */
1357 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1358 			tcp_rtx_queue_empty(sk);
1359 
1360 	/* If we had to use memory reserve to allocate this skb,
1361 	 * this might cause drops if packet is looped back :
1362 	 * Other socket might not have SOCK_MEMALLOC.
1363 	 * Packets not looped back do not care about pfmemalloc.
1364 	 */
1365 	skb->pfmemalloc = 0;
1366 
1367 	skb_push(skb, tcp_header_size);
1368 	skb_reset_transport_header(skb);
1369 
1370 	skb_orphan(skb);
1371 	skb->sk = sk;
1372 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1373 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1374 
1375 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1376 
1377 	/* Build TCP header and checksum it. */
1378 	th = (struct tcphdr *)skb->data;
1379 	th->source		= inet->inet_sport;
1380 	th->dest		= inet->inet_dport;
1381 	th->seq			= htonl(tcb->seq);
1382 	th->ack_seq		= htonl(rcv_nxt);
1383 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1384 					tcb->tcp_flags);
1385 
1386 	th->check		= 0;
1387 	th->urg_ptr		= 0;
1388 
1389 	/* The urg_mode check is necessary during a below snd_una win probe */
1390 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1391 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1392 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1393 			th->urg = 1;
1394 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1395 			th->urg_ptr = htons(0xFFFF);
1396 			th->urg = 1;
1397 		}
1398 	}
1399 
1400 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1401 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1402 		th->window      = htons(tcp_select_window(sk));
1403 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1404 	} else {
1405 		/* RFC1323: The window in SYN & SYN/ACK segments
1406 		 * is never scaled.
1407 		 */
1408 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1409 	}
1410 
1411 	tcp_options_write(th, tp, NULL, &opts, &key);
1412 
1413 	if (tcp_key_is_md5(&key)) {
1414 #ifdef CONFIG_TCP_MD5SIG
1415 		/* Calculate the MD5 hash, as we have all we need now */
1416 		sk_gso_disable(sk);
1417 		tp->af_specific->calc_md5_hash(opts.hash_location,
1418 					       key.md5_key, sk, skb);
1419 #endif
1420 	} else if (tcp_key_is_ao(&key)) {
1421 		int err;
1422 
1423 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1424 					  opts.hash_location);
1425 		if (err) {
1426 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1427 			return -ENOMEM;
1428 		}
1429 	}
1430 
1431 	/* BPF prog is the last one writing header option */
1432 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1433 
1434 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1435 			   tcp_v6_send_check, tcp_v4_send_check,
1436 			   sk, skb);
1437 
1438 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1439 		tcp_event_ack_sent(sk, rcv_nxt);
1440 
1441 	if (skb->len != tcp_header_size) {
1442 		tcp_event_data_sent(tp, sk);
1443 		tp->data_segs_out += tcp_skb_pcount(skb);
1444 		tp->bytes_sent += skb->len - tcp_header_size;
1445 	}
1446 
1447 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1448 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1449 			      tcp_skb_pcount(skb));
1450 
1451 	tp->segs_out += tcp_skb_pcount(skb);
1452 	skb_set_hash_from_sk(skb, sk);
1453 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1454 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1455 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1456 
1457 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1458 
1459 	/* Cleanup our debris for IP stacks */
1460 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1461 			       sizeof(struct inet6_skb_parm)));
1462 
1463 	tcp_add_tx_delay(skb, tp);
1464 
1465 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1466 				 inet6_csk_xmit, ip_queue_xmit,
1467 				 sk, skb, &inet->cork.fl);
1468 
1469 	if (unlikely(err > 0)) {
1470 		tcp_enter_cwr(sk);
1471 		err = net_xmit_eval(err);
1472 	}
1473 	if (!err && oskb) {
1474 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1475 		tcp_rate_skb_sent(sk, oskb);
1476 	}
1477 	return err;
1478 }
1479 
1480 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1481 			    gfp_t gfp_mask)
1482 {
1483 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1484 				  tcp_sk(sk)->rcv_nxt);
1485 }
1486 
1487 /* This routine just queues the buffer for sending.
1488  *
1489  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1490  * otherwise socket can stall.
1491  */
1492 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1493 {
1494 	struct tcp_sock *tp = tcp_sk(sk);
1495 
1496 	/* Advance write_seq and place onto the write_queue. */
1497 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1498 	__skb_header_release(skb);
1499 	tcp_add_write_queue_tail(sk, skb);
1500 	sk_wmem_queued_add(sk, skb->truesize);
1501 	sk_mem_charge(sk, skb->truesize);
1502 }
1503 
1504 /* Initialize TSO segments for a packet. */
1505 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1506 {
1507 	int tso_segs;
1508 
1509 	if (skb->len <= mss_now) {
1510 		/* Avoid the costly divide in the normal
1511 		 * non-TSO case.
1512 		 */
1513 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1514 		tcp_skb_pcount_set(skb, 1);
1515 		return 1;
1516 	}
1517 	TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1518 	tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1519 	tcp_skb_pcount_set(skb, tso_segs);
1520 	return tso_segs;
1521 }
1522 
1523 /* Pcount in the middle of the write queue got changed, we need to do various
1524  * tweaks to fix counters
1525  */
1526 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1527 {
1528 	struct tcp_sock *tp = tcp_sk(sk);
1529 
1530 	tp->packets_out -= decr;
1531 
1532 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1533 		tp->sacked_out -= decr;
1534 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1535 		tp->retrans_out -= decr;
1536 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1537 		tp->lost_out -= decr;
1538 
1539 	/* Reno case is special. Sigh... */
1540 	if (tcp_is_reno(tp) && decr > 0)
1541 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1542 
1543 	if (tp->lost_skb_hint &&
1544 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1545 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1546 		tp->lost_cnt_hint -= decr;
1547 
1548 	tcp_verify_left_out(tp);
1549 }
1550 
1551 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1552 {
1553 	return TCP_SKB_CB(skb)->txstamp_ack ||
1554 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1555 }
1556 
1557 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1558 {
1559 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1560 
1561 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1562 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1563 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1564 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1565 
1566 		shinfo->tx_flags &= ~tsflags;
1567 		shinfo2->tx_flags |= tsflags;
1568 		swap(shinfo->tskey, shinfo2->tskey);
1569 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1570 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1571 	}
1572 }
1573 
1574 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1575 {
1576 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1577 	TCP_SKB_CB(skb)->eor = 0;
1578 }
1579 
1580 /* Insert buff after skb on the write or rtx queue of sk.  */
1581 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1582 					 struct sk_buff *buff,
1583 					 struct sock *sk,
1584 					 enum tcp_queue tcp_queue)
1585 {
1586 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1587 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1588 	else
1589 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1590 }
1591 
1592 /* Function to create two new TCP segments.  Shrinks the given segment
1593  * to the specified size and appends a new segment with the rest of the
1594  * packet to the list.  This won't be called frequently, I hope.
1595  * Remember, these are still headerless SKBs at this point.
1596  */
1597 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1598 		 struct sk_buff *skb, u32 len,
1599 		 unsigned int mss_now, gfp_t gfp)
1600 {
1601 	struct tcp_sock *tp = tcp_sk(sk);
1602 	struct sk_buff *buff;
1603 	int old_factor;
1604 	long limit;
1605 	int nlen;
1606 	u8 flags;
1607 
1608 	if (WARN_ON(len > skb->len))
1609 		return -EINVAL;
1610 
1611 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1612 
1613 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1614 	 * We need some allowance to not penalize applications setting small
1615 	 * SO_SNDBUF values.
1616 	 * Also allow first and last skb in retransmit queue to be split.
1617 	 */
1618 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1619 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1620 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1621 		     skb != tcp_rtx_queue_head(sk) &&
1622 		     skb != tcp_rtx_queue_tail(sk))) {
1623 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1624 		return -ENOMEM;
1625 	}
1626 
1627 	if (skb_unclone_keeptruesize(skb, gfp))
1628 		return -ENOMEM;
1629 
1630 	/* Get a new skb... force flag on. */
1631 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1632 	if (!buff)
1633 		return -ENOMEM; /* We'll just try again later. */
1634 	skb_copy_decrypted(buff, skb);
1635 	mptcp_skb_ext_copy(buff, skb);
1636 
1637 	sk_wmem_queued_add(sk, buff->truesize);
1638 	sk_mem_charge(sk, buff->truesize);
1639 	nlen = skb->len - len;
1640 	buff->truesize += nlen;
1641 	skb->truesize -= nlen;
1642 
1643 	/* Correct the sequence numbers. */
1644 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1645 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1646 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1647 
1648 	/* PSH and FIN should only be set in the second packet. */
1649 	flags = TCP_SKB_CB(skb)->tcp_flags;
1650 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1651 	TCP_SKB_CB(buff)->tcp_flags = flags;
1652 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1653 	tcp_skb_fragment_eor(skb, buff);
1654 
1655 	skb_split(skb, buff, len);
1656 
1657 	skb_set_delivery_time(buff, skb->tstamp, true);
1658 	tcp_fragment_tstamp(skb, buff);
1659 
1660 	old_factor = tcp_skb_pcount(skb);
1661 
1662 	/* Fix up tso_factor for both original and new SKB.  */
1663 	tcp_set_skb_tso_segs(skb, mss_now);
1664 	tcp_set_skb_tso_segs(buff, mss_now);
1665 
1666 	/* Update delivered info for the new segment */
1667 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1668 
1669 	/* If this packet has been sent out already, we must
1670 	 * adjust the various packet counters.
1671 	 */
1672 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1673 		int diff = old_factor - tcp_skb_pcount(skb) -
1674 			tcp_skb_pcount(buff);
1675 
1676 		if (diff)
1677 			tcp_adjust_pcount(sk, skb, diff);
1678 	}
1679 
1680 	/* Link BUFF into the send queue. */
1681 	__skb_header_release(buff);
1682 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1683 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1684 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1685 
1686 	return 0;
1687 }
1688 
1689 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1690  * data is not copied, but immediately discarded.
1691  */
1692 static int __pskb_trim_head(struct sk_buff *skb, int len)
1693 {
1694 	struct skb_shared_info *shinfo;
1695 	int i, k, eat;
1696 
1697 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1698 	eat = len;
1699 	k = 0;
1700 	shinfo = skb_shinfo(skb);
1701 	for (i = 0; i < shinfo->nr_frags; i++) {
1702 		int size = skb_frag_size(&shinfo->frags[i]);
1703 
1704 		if (size <= eat) {
1705 			skb_frag_unref(skb, i);
1706 			eat -= size;
1707 		} else {
1708 			shinfo->frags[k] = shinfo->frags[i];
1709 			if (eat) {
1710 				skb_frag_off_add(&shinfo->frags[k], eat);
1711 				skb_frag_size_sub(&shinfo->frags[k], eat);
1712 				eat = 0;
1713 			}
1714 			k++;
1715 		}
1716 	}
1717 	shinfo->nr_frags = k;
1718 
1719 	skb->data_len -= len;
1720 	skb->len = skb->data_len;
1721 	return len;
1722 }
1723 
1724 /* Remove acked data from a packet in the transmit queue. */
1725 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1726 {
1727 	u32 delta_truesize;
1728 
1729 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1730 		return -ENOMEM;
1731 
1732 	delta_truesize = __pskb_trim_head(skb, len);
1733 
1734 	TCP_SKB_CB(skb)->seq += len;
1735 
1736 	skb->truesize	   -= delta_truesize;
1737 	sk_wmem_queued_add(sk, -delta_truesize);
1738 	if (!skb_zcopy_pure(skb))
1739 		sk_mem_uncharge(sk, delta_truesize);
1740 
1741 	/* Any change of skb->len requires recalculation of tso factor. */
1742 	if (tcp_skb_pcount(skb) > 1)
1743 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1744 
1745 	return 0;
1746 }
1747 
1748 /* Calculate MSS not accounting any TCP options.  */
1749 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1750 {
1751 	const struct tcp_sock *tp = tcp_sk(sk);
1752 	const struct inet_connection_sock *icsk = inet_csk(sk);
1753 	int mss_now;
1754 
1755 	/* Calculate base mss without TCP options:
1756 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1757 	 */
1758 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1759 
1760 	/* Clamp it (mss_clamp does not include tcp options) */
1761 	if (mss_now > tp->rx_opt.mss_clamp)
1762 		mss_now = tp->rx_opt.mss_clamp;
1763 
1764 	/* Now subtract optional transport overhead */
1765 	mss_now -= icsk->icsk_ext_hdr_len;
1766 
1767 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1768 	mss_now = max(mss_now,
1769 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1770 	return mss_now;
1771 }
1772 
1773 /* Calculate MSS. Not accounting for SACKs here.  */
1774 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1775 {
1776 	/* Subtract TCP options size, not including SACKs */
1777 	return __tcp_mtu_to_mss(sk, pmtu) -
1778 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1779 }
1780 EXPORT_SYMBOL(tcp_mtu_to_mss);
1781 
1782 /* Inverse of above */
1783 int tcp_mss_to_mtu(struct sock *sk, int mss)
1784 {
1785 	const struct tcp_sock *tp = tcp_sk(sk);
1786 	const struct inet_connection_sock *icsk = inet_csk(sk);
1787 
1788 	return mss +
1789 	      tp->tcp_header_len +
1790 	      icsk->icsk_ext_hdr_len +
1791 	      icsk->icsk_af_ops->net_header_len;
1792 }
1793 EXPORT_SYMBOL(tcp_mss_to_mtu);
1794 
1795 /* MTU probing init per socket */
1796 void tcp_mtup_init(struct sock *sk)
1797 {
1798 	struct tcp_sock *tp = tcp_sk(sk);
1799 	struct inet_connection_sock *icsk = inet_csk(sk);
1800 	struct net *net = sock_net(sk);
1801 
1802 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1803 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1804 			       icsk->icsk_af_ops->net_header_len;
1805 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1806 	icsk->icsk_mtup.probe_size = 0;
1807 	if (icsk->icsk_mtup.enabled)
1808 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1809 }
1810 EXPORT_SYMBOL(tcp_mtup_init);
1811 
1812 /* This function synchronize snd mss to current pmtu/exthdr set.
1813 
1814    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1815    for TCP options, but includes only bare TCP header.
1816 
1817    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1818    It is minimum of user_mss and mss received with SYN.
1819    It also does not include TCP options.
1820 
1821    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1822 
1823    tp->mss_cache is current effective sending mss, including
1824    all tcp options except for SACKs. It is evaluated,
1825    taking into account current pmtu, but never exceeds
1826    tp->rx_opt.mss_clamp.
1827 
1828    NOTE1. rfc1122 clearly states that advertised MSS
1829    DOES NOT include either tcp or ip options.
1830 
1831    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1832    are READ ONLY outside this function.		--ANK (980731)
1833  */
1834 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1835 {
1836 	struct tcp_sock *tp = tcp_sk(sk);
1837 	struct inet_connection_sock *icsk = inet_csk(sk);
1838 	int mss_now;
1839 
1840 	if (icsk->icsk_mtup.search_high > pmtu)
1841 		icsk->icsk_mtup.search_high = pmtu;
1842 
1843 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1844 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1845 
1846 	/* And store cached results */
1847 	icsk->icsk_pmtu_cookie = pmtu;
1848 	if (icsk->icsk_mtup.enabled)
1849 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1850 	tp->mss_cache = mss_now;
1851 
1852 	return mss_now;
1853 }
1854 EXPORT_SYMBOL(tcp_sync_mss);
1855 
1856 /* Compute the current effective MSS, taking SACKs and IP options,
1857  * and even PMTU discovery events into account.
1858  */
1859 unsigned int tcp_current_mss(struct sock *sk)
1860 {
1861 	const struct tcp_sock *tp = tcp_sk(sk);
1862 	const struct dst_entry *dst = __sk_dst_get(sk);
1863 	u32 mss_now;
1864 	unsigned int header_len;
1865 	struct tcp_out_options opts;
1866 	struct tcp_key key;
1867 
1868 	mss_now = tp->mss_cache;
1869 
1870 	if (dst) {
1871 		u32 mtu = dst_mtu(dst);
1872 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1873 			mss_now = tcp_sync_mss(sk, mtu);
1874 	}
1875 	tcp_get_current_key(sk, &key);
1876 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1877 		     sizeof(struct tcphdr);
1878 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1879 	 * some common options. If this is an odd packet (because we have SACK
1880 	 * blocks etc) then our calculated header_len will be different, and
1881 	 * we have to adjust mss_now correspondingly */
1882 	if (header_len != tp->tcp_header_len) {
1883 		int delta = (int) header_len - tp->tcp_header_len;
1884 		mss_now -= delta;
1885 	}
1886 
1887 	return mss_now;
1888 }
1889 
1890 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1891  * As additional protections, we do not touch cwnd in retransmission phases,
1892  * and if application hit its sndbuf limit recently.
1893  */
1894 static void tcp_cwnd_application_limited(struct sock *sk)
1895 {
1896 	struct tcp_sock *tp = tcp_sk(sk);
1897 
1898 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1899 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1900 		/* Limited by application or receiver window. */
1901 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1902 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1903 		if (win_used < tcp_snd_cwnd(tp)) {
1904 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1905 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1906 		}
1907 		tp->snd_cwnd_used = 0;
1908 	}
1909 	tp->snd_cwnd_stamp = tcp_jiffies32;
1910 }
1911 
1912 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1913 {
1914 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1915 	struct tcp_sock *tp = tcp_sk(sk);
1916 
1917 	/* Track the strongest available signal of the degree to which the cwnd
1918 	 * is fully utilized. If cwnd-limited then remember that fact for the
1919 	 * current window. If not cwnd-limited then track the maximum number of
1920 	 * outstanding packets in the current window. (If cwnd-limited then we
1921 	 * chose to not update tp->max_packets_out to avoid an extra else
1922 	 * clause with no functional impact.)
1923 	 */
1924 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1925 	    is_cwnd_limited ||
1926 	    (!tp->is_cwnd_limited &&
1927 	     tp->packets_out > tp->max_packets_out)) {
1928 		tp->is_cwnd_limited = is_cwnd_limited;
1929 		tp->max_packets_out = tp->packets_out;
1930 		tp->cwnd_usage_seq = tp->snd_nxt;
1931 	}
1932 
1933 	if (tcp_is_cwnd_limited(sk)) {
1934 		/* Network is feed fully. */
1935 		tp->snd_cwnd_used = 0;
1936 		tp->snd_cwnd_stamp = tcp_jiffies32;
1937 	} else {
1938 		/* Network starves. */
1939 		if (tp->packets_out > tp->snd_cwnd_used)
1940 			tp->snd_cwnd_used = tp->packets_out;
1941 
1942 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1943 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1944 		    !ca_ops->cong_control)
1945 			tcp_cwnd_application_limited(sk);
1946 
1947 		/* The following conditions together indicate the starvation
1948 		 * is caused by insufficient sender buffer:
1949 		 * 1) just sent some data (see tcp_write_xmit)
1950 		 * 2) not cwnd limited (this else condition)
1951 		 * 3) no more data to send (tcp_write_queue_empty())
1952 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1953 		 */
1954 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1955 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1956 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1957 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1958 	}
1959 }
1960 
1961 /* Minshall's variant of the Nagle send check. */
1962 static bool tcp_minshall_check(const struct tcp_sock *tp)
1963 {
1964 	return after(tp->snd_sml, tp->snd_una) &&
1965 		!after(tp->snd_sml, tp->snd_nxt);
1966 }
1967 
1968 /* Update snd_sml if this skb is under mss
1969  * Note that a TSO packet might end with a sub-mss segment
1970  * The test is really :
1971  * if ((skb->len % mss) != 0)
1972  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1973  * But we can avoid doing the divide again given we already have
1974  *  skb_pcount = skb->len / mss_now
1975  */
1976 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1977 				const struct sk_buff *skb)
1978 {
1979 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1980 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1981 }
1982 
1983 /* Return false, if packet can be sent now without violation Nagle's rules:
1984  * 1. It is full sized. (provided by caller in %partial bool)
1985  * 2. Or it contains FIN. (already checked by caller)
1986  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1987  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1988  *    With Minshall's modification: all sent small packets are ACKed.
1989  */
1990 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1991 			    int nonagle)
1992 {
1993 	return partial &&
1994 		((nonagle & TCP_NAGLE_CORK) ||
1995 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1996 }
1997 
1998 /* Return how many segs we'd like on a TSO packet,
1999  * depending on current pacing rate, and how close the peer is.
2000  *
2001  * Rationale is:
2002  * - For close peers, we rather send bigger packets to reduce
2003  *   cpu costs, because occasional losses will be repaired fast.
2004  * - For long distance/rtt flows, we would like to get ACK clocking
2005  *   with 1 ACK per ms.
2006  *
2007  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2008  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2009  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2010  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2011  */
2012 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2013 			    int min_tso_segs)
2014 {
2015 	unsigned long bytes;
2016 	u32 r;
2017 
2018 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2019 
2020 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2021 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2022 		bytes += sk->sk_gso_max_size >> r;
2023 
2024 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2025 
2026 	return max_t(u32, bytes / mss_now, min_tso_segs);
2027 }
2028 
2029 /* Return the number of segments we want in the skb we are transmitting.
2030  * See if congestion control module wants to decide; otherwise, autosize.
2031  */
2032 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2033 {
2034 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2035 	u32 min_tso, tso_segs;
2036 
2037 	min_tso = ca_ops->min_tso_segs ?
2038 			ca_ops->min_tso_segs(sk) :
2039 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2040 
2041 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2042 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2043 }
2044 
2045 /* Returns the portion of skb which can be sent right away */
2046 static unsigned int tcp_mss_split_point(const struct sock *sk,
2047 					const struct sk_buff *skb,
2048 					unsigned int mss_now,
2049 					unsigned int max_segs,
2050 					int nonagle)
2051 {
2052 	const struct tcp_sock *tp = tcp_sk(sk);
2053 	u32 partial, needed, window, max_len;
2054 
2055 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2056 	max_len = mss_now * max_segs;
2057 
2058 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2059 		return max_len;
2060 
2061 	needed = min(skb->len, window);
2062 
2063 	if (max_len <= needed)
2064 		return max_len;
2065 
2066 	partial = needed % mss_now;
2067 	/* If last segment is not a full MSS, check if Nagle rules allow us
2068 	 * to include this last segment in this skb.
2069 	 * Otherwise, we'll split the skb at last MSS boundary
2070 	 */
2071 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2072 		return needed - partial;
2073 
2074 	return needed;
2075 }
2076 
2077 /* Can at least one segment of SKB be sent right now, according to the
2078  * congestion window rules?  If so, return how many segments are allowed.
2079  */
2080 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2081 {
2082 	u32 in_flight, cwnd, halfcwnd;
2083 
2084 	in_flight = tcp_packets_in_flight(tp);
2085 	cwnd = tcp_snd_cwnd(tp);
2086 	if (in_flight >= cwnd)
2087 		return 0;
2088 
2089 	/* For better scheduling, ensure we have at least
2090 	 * 2 GSO packets in flight.
2091 	 */
2092 	halfcwnd = max(cwnd >> 1, 1U);
2093 	return min(halfcwnd, cwnd - in_flight);
2094 }
2095 
2096 /* Initialize TSO state of a skb.
2097  * This must be invoked the first time we consider transmitting
2098  * SKB onto the wire.
2099  */
2100 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2101 {
2102 	int tso_segs = tcp_skb_pcount(skb);
2103 
2104 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2105 		return tcp_set_skb_tso_segs(skb, mss_now);
2106 
2107 	return tso_segs;
2108 }
2109 
2110 
2111 /* Return true if the Nagle test allows this packet to be
2112  * sent now.
2113  */
2114 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2115 				  unsigned int cur_mss, int nonagle)
2116 {
2117 	/* Nagle rule does not apply to frames, which sit in the middle of the
2118 	 * write_queue (they have no chances to get new data).
2119 	 *
2120 	 * This is implemented in the callers, where they modify the 'nonagle'
2121 	 * argument based upon the location of SKB in the send queue.
2122 	 */
2123 	if (nonagle & TCP_NAGLE_PUSH)
2124 		return true;
2125 
2126 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2127 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2128 		return true;
2129 
2130 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2131 		return true;
2132 
2133 	return false;
2134 }
2135 
2136 /* Does at least the first segment of SKB fit into the send window? */
2137 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2138 			     const struct sk_buff *skb,
2139 			     unsigned int cur_mss)
2140 {
2141 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2142 
2143 	if (skb->len > cur_mss)
2144 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2145 
2146 	return !after(end_seq, tcp_wnd_end(tp));
2147 }
2148 
2149 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2150  * which is put after SKB on the list.  It is very much like
2151  * tcp_fragment() except that it may make several kinds of assumptions
2152  * in order to speed up the splitting operation.  In particular, we
2153  * know that all the data is in scatter-gather pages, and that the
2154  * packet has never been sent out before (and thus is not cloned).
2155  */
2156 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2157 			unsigned int mss_now, gfp_t gfp)
2158 {
2159 	int nlen = skb->len - len;
2160 	struct sk_buff *buff;
2161 	u8 flags;
2162 
2163 	/* All of a TSO frame must be composed of paged data.  */
2164 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2165 
2166 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2167 	if (unlikely(!buff))
2168 		return -ENOMEM;
2169 	skb_copy_decrypted(buff, skb);
2170 	mptcp_skb_ext_copy(buff, skb);
2171 
2172 	sk_wmem_queued_add(sk, buff->truesize);
2173 	sk_mem_charge(sk, buff->truesize);
2174 	buff->truesize += nlen;
2175 	skb->truesize -= nlen;
2176 
2177 	/* Correct the sequence numbers. */
2178 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2179 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2180 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2181 
2182 	/* PSH and FIN should only be set in the second packet. */
2183 	flags = TCP_SKB_CB(skb)->tcp_flags;
2184 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2185 	TCP_SKB_CB(buff)->tcp_flags = flags;
2186 
2187 	tcp_skb_fragment_eor(skb, buff);
2188 
2189 	skb_split(skb, buff, len);
2190 	tcp_fragment_tstamp(skb, buff);
2191 
2192 	/* Fix up tso_factor for both original and new SKB.  */
2193 	tcp_set_skb_tso_segs(skb, mss_now);
2194 	tcp_set_skb_tso_segs(buff, mss_now);
2195 
2196 	/* Link BUFF into the send queue. */
2197 	__skb_header_release(buff);
2198 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2199 
2200 	return 0;
2201 }
2202 
2203 /* Try to defer sending, if possible, in order to minimize the amount
2204  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2205  *
2206  * This algorithm is from John Heffner.
2207  */
2208 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2209 				 bool *is_cwnd_limited,
2210 				 bool *is_rwnd_limited,
2211 				 u32 max_segs)
2212 {
2213 	const struct inet_connection_sock *icsk = inet_csk(sk);
2214 	u32 send_win, cong_win, limit, in_flight;
2215 	struct tcp_sock *tp = tcp_sk(sk);
2216 	struct sk_buff *head;
2217 	int win_divisor;
2218 	s64 delta;
2219 
2220 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2221 		goto send_now;
2222 
2223 	/* Avoid bursty behavior by allowing defer
2224 	 * only if the last write was recent (1 ms).
2225 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2226 	 * packets waiting in a qdisc or device for EDT delivery.
2227 	 */
2228 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2229 	if (delta > 0)
2230 		goto send_now;
2231 
2232 	in_flight = tcp_packets_in_flight(tp);
2233 
2234 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2235 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2236 
2237 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2238 
2239 	/* From in_flight test above, we know that cwnd > in_flight.  */
2240 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2241 
2242 	limit = min(send_win, cong_win);
2243 
2244 	/* If a full-sized TSO skb can be sent, do it. */
2245 	if (limit >= max_segs * tp->mss_cache)
2246 		goto send_now;
2247 
2248 	/* Middle in queue won't get any more data, full sendable already? */
2249 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2250 		goto send_now;
2251 
2252 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2253 	if (win_divisor) {
2254 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2255 
2256 		/* If at least some fraction of a window is available,
2257 		 * just use it.
2258 		 */
2259 		chunk /= win_divisor;
2260 		if (limit >= chunk)
2261 			goto send_now;
2262 	} else {
2263 		/* Different approach, try not to defer past a single
2264 		 * ACK.  Receiver should ACK every other full sized
2265 		 * frame, so if we have space for more than 3 frames
2266 		 * then send now.
2267 		 */
2268 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2269 			goto send_now;
2270 	}
2271 
2272 	/* TODO : use tsorted_sent_queue ? */
2273 	head = tcp_rtx_queue_head(sk);
2274 	if (!head)
2275 		goto send_now;
2276 	delta = tp->tcp_clock_cache - head->tstamp;
2277 	/* If next ACK is likely to come too late (half srtt), do not defer */
2278 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2279 		goto send_now;
2280 
2281 	/* Ok, it looks like it is advisable to defer.
2282 	 * Three cases are tracked :
2283 	 * 1) We are cwnd-limited
2284 	 * 2) We are rwnd-limited
2285 	 * 3) We are application limited.
2286 	 */
2287 	if (cong_win < send_win) {
2288 		if (cong_win <= skb->len) {
2289 			*is_cwnd_limited = true;
2290 			return true;
2291 		}
2292 	} else {
2293 		if (send_win <= skb->len) {
2294 			*is_rwnd_limited = true;
2295 			return true;
2296 		}
2297 	}
2298 
2299 	/* If this packet won't get more data, do not wait. */
2300 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2301 	    TCP_SKB_CB(skb)->eor)
2302 		goto send_now;
2303 
2304 	return true;
2305 
2306 send_now:
2307 	return false;
2308 }
2309 
2310 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2311 {
2312 	struct inet_connection_sock *icsk = inet_csk(sk);
2313 	struct tcp_sock *tp = tcp_sk(sk);
2314 	struct net *net = sock_net(sk);
2315 	u32 interval;
2316 	s32 delta;
2317 
2318 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2319 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2320 	if (unlikely(delta >= interval * HZ)) {
2321 		int mss = tcp_current_mss(sk);
2322 
2323 		/* Update current search range */
2324 		icsk->icsk_mtup.probe_size = 0;
2325 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2326 			sizeof(struct tcphdr) +
2327 			icsk->icsk_af_ops->net_header_len;
2328 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2329 
2330 		/* Update probe time stamp */
2331 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2332 	}
2333 }
2334 
2335 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2336 {
2337 	struct sk_buff *skb, *next;
2338 
2339 	skb = tcp_send_head(sk);
2340 	tcp_for_write_queue_from_safe(skb, next, sk) {
2341 		if (len <= skb->len)
2342 			break;
2343 
2344 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2345 		    tcp_has_tx_tstamp(skb) ||
2346 		    !skb_pure_zcopy_same(skb, next))
2347 			return false;
2348 
2349 		len -= skb->len;
2350 	}
2351 
2352 	return true;
2353 }
2354 
2355 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2356 			     int probe_size)
2357 {
2358 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2359 	int i, todo, len = 0, nr_frags = 0;
2360 	const struct sk_buff *skb;
2361 
2362 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2363 		return -ENOMEM;
2364 
2365 	skb_queue_walk(&sk->sk_write_queue, skb) {
2366 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2367 
2368 		if (skb_headlen(skb))
2369 			return -EINVAL;
2370 
2371 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2372 			if (len >= probe_size)
2373 				goto commit;
2374 			todo = min_t(int, skb_frag_size(fragfrom),
2375 				     probe_size - len);
2376 			len += todo;
2377 			if (lastfrag &&
2378 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2379 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2380 						      skb_frag_size(lastfrag)) {
2381 				skb_frag_size_add(lastfrag, todo);
2382 				continue;
2383 			}
2384 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2385 				return -E2BIG;
2386 			skb_frag_page_copy(fragto, fragfrom);
2387 			skb_frag_off_copy(fragto, fragfrom);
2388 			skb_frag_size_set(fragto, todo);
2389 			nr_frags++;
2390 			lastfrag = fragto++;
2391 		}
2392 	}
2393 commit:
2394 	WARN_ON_ONCE(len != probe_size);
2395 	for (i = 0; i < nr_frags; i++)
2396 		skb_frag_ref(to, i);
2397 
2398 	skb_shinfo(to)->nr_frags = nr_frags;
2399 	to->truesize += probe_size;
2400 	to->len += probe_size;
2401 	to->data_len += probe_size;
2402 	__skb_header_release(to);
2403 	return 0;
2404 }
2405 
2406 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2407  * all its payload was moved to another one (dst).
2408  * Make sure to transfer tcp_flags, eor, and tstamp.
2409  */
2410 static void tcp_eat_one_skb(struct sock *sk,
2411 			    struct sk_buff *dst,
2412 			    struct sk_buff *src)
2413 {
2414 	TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2415 	TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2416 	tcp_skb_collapse_tstamp(dst, src);
2417 	tcp_unlink_write_queue(src, sk);
2418 	tcp_wmem_free_skb(sk, src);
2419 }
2420 
2421 /* Create a new MTU probe if we are ready.
2422  * MTU probe is regularly attempting to increase the path MTU by
2423  * deliberately sending larger packets.  This discovers routing
2424  * changes resulting in larger path MTUs.
2425  *
2426  * Returns 0 if we should wait to probe (no cwnd available),
2427  *         1 if a probe was sent,
2428  *         -1 otherwise
2429  */
2430 static int tcp_mtu_probe(struct sock *sk)
2431 {
2432 	struct inet_connection_sock *icsk = inet_csk(sk);
2433 	struct tcp_sock *tp = tcp_sk(sk);
2434 	struct sk_buff *skb, *nskb, *next;
2435 	struct net *net = sock_net(sk);
2436 	int probe_size;
2437 	int size_needed;
2438 	int copy, len;
2439 	int mss_now;
2440 	int interval;
2441 
2442 	/* Not currently probing/verifying,
2443 	 * not in recovery,
2444 	 * have enough cwnd, and
2445 	 * not SACKing (the variable headers throw things off)
2446 	 */
2447 	if (likely(!icsk->icsk_mtup.enabled ||
2448 		   icsk->icsk_mtup.probe_size ||
2449 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2450 		   tcp_snd_cwnd(tp) < 11 ||
2451 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2452 		return -1;
2453 
2454 	/* Use binary search for probe_size between tcp_mss_base,
2455 	 * and current mss_clamp. if (search_high - search_low)
2456 	 * smaller than a threshold, backoff from probing.
2457 	 */
2458 	mss_now = tcp_current_mss(sk);
2459 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2460 				    icsk->icsk_mtup.search_low) >> 1);
2461 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2462 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2463 	/* When misfortune happens, we are reprobing actively,
2464 	 * and then reprobe timer has expired. We stick with current
2465 	 * probing process by not resetting search range to its orignal.
2466 	 */
2467 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2468 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2469 		/* Check whether enough time has elaplased for
2470 		 * another round of probing.
2471 		 */
2472 		tcp_mtu_check_reprobe(sk);
2473 		return -1;
2474 	}
2475 
2476 	/* Have enough data in the send queue to probe? */
2477 	if (tp->write_seq - tp->snd_nxt < size_needed)
2478 		return -1;
2479 
2480 	if (tp->snd_wnd < size_needed)
2481 		return -1;
2482 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2483 		return 0;
2484 
2485 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2486 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2487 		if (!tcp_packets_in_flight(tp))
2488 			return -1;
2489 		else
2490 			return 0;
2491 	}
2492 
2493 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2494 		return -1;
2495 
2496 	/* We're allowed to probe.  Build it now. */
2497 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2498 	if (!nskb)
2499 		return -1;
2500 
2501 	/* build the payload, and be prepared to abort if this fails. */
2502 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2503 		tcp_skb_tsorted_anchor_cleanup(nskb);
2504 		consume_skb(nskb);
2505 		return -1;
2506 	}
2507 	sk_wmem_queued_add(sk, nskb->truesize);
2508 	sk_mem_charge(sk, nskb->truesize);
2509 
2510 	skb = tcp_send_head(sk);
2511 	skb_copy_decrypted(nskb, skb);
2512 	mptcp_skb_ext_copy(nskb, skb);
2513 
2514 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2515 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2516 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2517 
2518 	tcp_insert_write_queue_before(nskb, skb, sk);
2519 	tcp_highest_sack_replace(sk, skb, nskb);
2520 
2521 	len = 0;
2522 	tcp_for_write_queue_from_safe(skb, next, sk) {
2523 		copy = min_t(int, skb->len, probe_size - len);
2524 
2525 		if (skb->len <= copy) {
2526 			tcp_eat_one_skb(sk, nskb, skb);
2527 		} else {
2528 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2529 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2530 			__pskb_trim_head(skb, copy);
2531 			tcp_set_skb_tso_segs(skb, mss_now);
2532 			TCP_SKB_CB(skb)->seq += copy;
2533 		}
2534 
2535 		len += copy;
2536 
2537 		if (len >= probe_size)
2538 			break;
2539 	}
2540 	tcp_init_tso_segs(nskb, nskb->len);
2541 
2542 	/* We're ready to send.  If this fails, the probe will
2543 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2544 	 */
2545 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2546 		/* Decrement cwnd here because we are sending
2547 		 * effectively two packets. */
2548 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2549 		tcp_event_new_data_sent(sk, nskb);
2550 
2551 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2552 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2553 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2554 
2555 		return 1;
2556 	}
2557 
2558 	return -1;
2559 }
2560 
2561 static bool tcp_pacing_check(struct sock *sk)
2562 {
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 
2565 	if (!tcp_needs_internal_pacing(sk))
2566 		return false;
2567 
2568 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2569 		return false;
2570 
2571 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2572 		hrtimer_start(&tp->pacing_timer,
2573 			      ns_to_ktime(tp->tcp_wstamp_ns),
2574 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2575 		sock_hold(sk);
2576 	}
2577 	return true;
2578 }
2579 
2580 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2581 {
2582 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2583 
2584 	/* No skb in the rtx queue. */
2585 	if (!node)
2586 		return true;
2587 
2588 	/* Only one skb in rtx queue. */
2589 	return !node->rb_left && !node->rb_right;
2590 }
2591 
2592 /* TCP Small Queues :
2593  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2594  * (These limits are doubled for retransmits)
2595  * This allows for :
2596  *  - better RTT estimation and ACK scheduling
2597  *  - faster recovery
2598  *  - high rates
2599  * Alas, some drivers / subsystems require a fair amount
2600  * of queued bytes to ensure line rate.
2601  * One example is wifi aggregation (802.11 AMPDU)
2602  */
2603 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2604 				  unsigned int factor)
2605 {
2606 	unsigned long limit;
2607 
2608 	limit = max_t(unsigned long,
2609 		      2 * skb->truesize,
2610 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2611 	if (sk->sk_pacing_status == SK_PACING_NONE)
2612 		limit = min_t(unsigned long, limit,
2613 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2614 	limit <<= factor;
2615 
2616 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2617 	    tcp_sk(sk)->tcp_tx_delay) {
2618 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2619 				  tcp_sk(sk)->tcp_tx_delay;
2620 
2621 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2622 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2623 		 * USEC_PER_SEC is approximated by 2^20.
2624 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2625 		 */
2626 		extra_bytes >>= (20 - 1);
2627 		limit += extra_bytes;
2628 	}
2629 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2630 		/* Always send skb if rtx queue is empty or has one skb.
2631 		 * No need to wait for TX completion to call us back,
2632 		 * after softirq/tasklet schedule.
2633 		 * This helps when TX completions are delayed too much.
2634 		 */
2635 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2636 			return false;
2637 
2638 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2639 		/* It is possible TX completion already happened
2640 		 * before we set TSQ_THROTTLED, so we must
2641 		 * test again the condition.
2642 		 */
2643 		smp_mb__after_atomic();
2644 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2645 			return true;
2646 	}
2647 	return false;
2648 }
2649 
2650 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2651 {
2652 	const u32 now = tcp_jiffies32;
2653 	enum tcp_chrono old = tp->chrono_type;
2654 
2655 	if (old > TCP_CHRONO_UNSPEC)
2656 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2657 	tp->chrono_start = now;
2658 	tp->chrono_type = new;
2659 }
2660 
2661 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2662 {
2663 	struct tcp_sock *tp = tcp_sk(sk);
2664 
2665 	/* If there are multiple conditions worthy of tracking in a
2666 	 * chronograph then the highest priority enum takes precedence
2667 	 * over the other conditions. So that if something "more interesting"
2668 	 * starts happening, stop the previous chrono and start a new one.
2669 	 */
2670 	if (type > tp->chrono_type)
2671 		tcp_chrono_set(tp, type);
2672 }
2673 
2674 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2675 {
2676 	struct tcp_sock *tp = tcp_sk(sk);
2677 
2678 
2679 	/* There are multiple conditions worthy of tracking in a
2680 	 * chronograph, so that the highest priority enum takes
2681 	 * precedence over the other conditions (see tcp_chrono_start).
2682 	 * If a condition stops, we only stop chrono tracking if
2683 	 * it's the "most interesting" or current chrono we are
2684 	 * tracking and starts busy chrono if we have pending data.
2685 	 */
2686 	if (tcp_rtx_and_write_queues_empty(sk))
2687 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2688 	else if (type == tp->chrono_type)
2689 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2690 }
2691 
2692 /* First skb in the write queue is smaller than ideal packet size.
2693  * Check if we can move payload from the second skb in the queue.
2694  */
2695 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2696 {
2697 	struct sk_buff *next_skb = skb->next;
2698 	unsigned int nlen;
2699 
2700 	if (tcp_skb_is_last(sk, skb))
2701 		return;
2702 
2703 	if (!tcp_skb_can_collapse(skb, next_skb))
2704 		return;
2705 
2706 	nlen = min_t(u32, amount, next_skb->len);
2707 	if (!nlen || !skb_shift(skb, next_skb, nlen))
2708 		return;
2709 
2710 	TCP_SKB_CB(skb)->end_seq += nlen;
2711 	TCP_SKB_CB(next_skb)->seq += nlen;
2712 
2713 	if (!next_skb->len) {
2714 		/* In case FIN is set, we need to update end_seq */
2715 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2716 
2717 		tcp_eat_one_skb(sk, skb, next_skb);
2718 	}
2719 }
2720 
2721 /* This routine writes packets to the network.  It advances the
2722  * send_head.  This happens as incoming acks open up the remote
2723  * window for us.
2724  *
2725  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2726  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2727  * account rare use of URG, this is not a big flaw.
2728  *
2729  * Send at most one packet when push_one > 0. Temporarily ignore
2730  * cwnd limit to force at most one packet out when push_one == 2.
2731 
2732  * Returns true, if no segments are in flight and we have queued segments,
2733  * but cannot send anything now because of SWS or another problem.
2734  */
2735 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2736 			   int push_one, gfp_t gfp)
2737 {
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 	struct sk_buff *skb;
2740 	unsigned int tso_segs, sent_pkts;
2741 	u32 cwnd_quota, max_segs;
2742 	int result;
2743 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2744 
2745 	sent_pkts = 0;
2746 
2747 	tcp_mstamp_refresh(tp);
2748 	if (!push_one) {
2749 		/* Do MTU probing. */
2750 		result = tcp_mtu_probe(sk);
2751 		if (!result) {
2752 			return false;
2753 		} else if (result > 0) {
2754 			sent_pkts = 1;
2755 		}
2756 	}
2757 
2758 	max_segs = tcp_tso_segs(sk, mss_now);
2759 	while ((skb = tcp_send_head(sk))) {
2760 		unsigned int limit;
2761 		int missing_bytes;
2762 
2763 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2764 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2765 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2766 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2767 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2768 			tcp_init_tso_segs(skb, mss_now);
2769 			goto repair; /* Skip network transmission */
2770 		}
2771 
2772 		if (tcp_pacing_check(sk))
2773 			break;
2774 
2775 		cwnd_quota = tcp_cwnd_test(tp);
2776 		if (!cwnd_quota) {
2777 			if (push_one == 2)
2778 				/* Force out a loss probe pkt. */
2779 				cwnd_quota = 1;
2780 			else
2781 				break;
2782 		}
2783 		cwnd_quota = min(cwnd_quota, max_segs);
2784 		missing_bytes = cwnd_quota * mss_now - skb->len;
2785 		if (missing_bytes > 0)
2786 			tcp_grow_skb(sk, skb, missing_bytes);
2787 
2788 		tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2789 
2790 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2791 			is_rwnd_limited = true;
2792 			break;
2793 		}
2794 
2795 		if (tso_segs == 1) {
2796 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2797 						     (tcp_skb_is_last(sk, skb) ?
2798 						      nonagle : TCP_NAGLE_PUSH))))
2799 				break;
2800 		} else {
2801 			if (!push_one &&
2802 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2803 						 &is_rwnd_limited, max_segs))
2804 				break;
2805 		}
2806 
2807 		limit = mss_now;
2808 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2809 			limit = tcp_mss_split_point(sk, skb, mss_now,
2810 						    cwnd_quota,
2811 						    nonagle);
2812 
2813 		if (skb->len > limit &&
2814 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2815 			break;
2816 
2817 		if (tcp_small_queue_check(sk, skb, 0))
2818 			break;
2819 
2820 		/* Argh, we hit an empty skb(), presumably a thread
2821 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2822 		 * We do not want to send a pure-ack packet and have
2823 		 * a strange looking rtx queue with empty packet(s).
2824 		 */
2825 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2826 			break;
2827 
2828 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2829 			break;
2830 
2831 repair:
2832 		/* Advance the send_head.  This one is sent out.
2833 		 * This call will increment packets_out.
2834 		 */
2835 		tcp_event_new_data_sent(sk, skb);
2836 
2837 		tcp_minshall_update(tp, mss_now, skb);
2838 		sent_pkts += tcp_skb_pcount(skb);
2839 
2840 		if (push_one)
2841 			break;
2842 	}
2843 
2844 	if (is_rwnd_limited)
2845 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2846 	else
2847 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2848 
2849 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2850 	if (likely(sent_pkts || is_cwnd_limited))
2851 		tcp_cwnd_validate(sk, is_cwnd_limited);
2852 
2853 	if (likely(sent_pkts)) {
2854 		if (tcp_in_cwnd_reduction(sk))
2855 			tp->prr_out += sent_pkts;
2856 
2857 		/* Send one loss probe per tail loss episode. */
2858 		if (push_one != 2)
2859 			tcp_schedule_loss_probe(sk, false);
2860 		return false;
2861 	}
2862 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2863 }
2864 
2865 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2866 {
2867 	struct inet_connection_sock *icsk = inet_csk(sk);
2868 	struct tcp_sock *tp = tcp_sk(sk);
2869 	u32 timeout, timeout_us, rto_delta_us;
2870 	int early_retrans;
2871 
2872 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2873 	 * finishes.
2874 	 */
2875 	if (rcu_access_pointer(tp->fastopen_rsk))
2876 		return false;
2877 
2878 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2879 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2880 	 * not in loss recovery, that are either limited by cwnd or application.
2881 	 */
2882 	if ((early_retrans != 3 && early_retrans != 4) ||
2883 	    !tp->packets_out || !tcp_is_sack(tp) ||
2884 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2885 	     icsk->icsk_ca_state != TCP_CA_CWR))
2886 		return false;
2887 
2888 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2889 	 * for delayed ack when there's one outstanding packet. If no RTT
2890 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2891 	 */
2892 	if (tp->srtt_us) {
2893 		timeout_us = tp->srtt_us >> 2;
2894 		if (tp->packets_out == 1)
2895 			timeout_us += tcp_rto_min_us(sk);
2896 		else
2897 			timeout_us += TCP_TIMEOUT_MIN_US;
2898 		timeout = usecs_to_jiffies(timeout_us);
2899 	} else {
2900 		timeout = TCP_TIMEOUT_INIT;
2901 	}
2902 
2903 	/* If the RTO formula yields an earlier time, then use that time. */
2904 	rto_delta_us = advancing_rto ?
2905 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2906 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2907 	if (rto_delta_us > 0)
2908 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2909 
2910 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2911 	return true;
2912 }
2913 
2914 /* Thanks to skb fast clones, we can detect if a prior transmit of
2915  * a packet is still in a qdisc or driver queue.
2916  * In this case, there is very little point doing a retransmit !
2917  */
2918 static bool skb_still_in_host_queue(struct sock *sk,
2919 				    const struct sk_buff *skb)
2920 {
2921 	if (unlikely(skb_fclone_busy(sk, skb))) {
2922 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2923 		smp_mb__after_atomic();
2924 		if (skb_fclone_busy(sk, skb)) {
2925 			NET_INC_STATS(sock_net(sk),
2926 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2927 			return true;
2928 		}
2929 	}
2930 	return false;
2931 }
2932 
2933 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2934  * retransmit the last segment.
2935  */
2936 void tcp_send_loss_probe(struct sock *sk)
2937 {
2938 	struct tcp_sock *tp = tcp_sk(sk);
2939 	struct sk_buff *skb;
2940 	int pcount;
2941 	int mss = tcp_current_mss(sk);
2942 
2943 	/* At most one outstanding TLP */
2944 	if (tp->tlp_high_seq)
2945 		goto rearm_timer;
2946 
2947 	tp->tlp_retrans = 0;
2948 	skb = tcp_send_head(sk);
2949 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2950 		pcount = tp->packets_out;
2951 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2952 		if (tp->packets_out > pcount)
2953 			goto probe_sent;
2954 		goto rearm_timer;
2955 	}
2956 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2957 	if (unlikely(!skb)) {
2958 		WARN_ONCE(tp->packets_out,
2959 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2960 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2961 		inet_csk(sk)->icsk_pending = 0;
2962 		return;
2963 	}
2964 
2965 	if (skb_still_in_host_queue(sk, skb))
2966 		goto rearm_timer;
2967 
2968 	pcount = tcp_skb_pcount(skb);
2969 	if (WARN_ON(!pcount))
2970 		goto rearm_timer;
2971 
2972 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2973 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2974 					  (pcount - 1) * mss, mss,
2975 					  GFP_ATOMIC)))
2976 			goto rearm_timer;
2977 		skb = skb_rb_next(skb);
2978 	}
2979 
2980 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2981 		goto rearm_timer;
2982 
2983 	if (__tcp_retransmit_skb(sk, skb, 1))
2984 		goto rearm_timer;
2985 
2986 	tp->tlp_retrans = 1;
2987 
2988 probe_sent:
2989 	/* Record snd_nxt for loss detection. */
2990 	tp->tlp_high_seq = tp->snd_nxt;
2991 
2992 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2993 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2994 	inet_csk(sk)->icsk_pending = 0;
2995 rearm_timer:
2996 	tcp_rearm_rto(sk);
2997 }
2998 
2999 /* Push out any pending frames which were held back due to
3000  * TCP_CORK or attempt at coalescing tiny packets.
3001  * The socket must be locked by the caller.
3002  */
3003 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3004 			       int nonagle)
3005 {
3006 	/* If we are closed, the bytes will have to remain here.
3007 	 * In time closedown will finish, we empty the write queue and
3008 	 * all will be happy.
3009 	 */
3010 	if (unlikely(sk->sk_state == TCP_CLOSE))
3011 		return;
3012 
3013 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3014 			   sk_gfp_mask(sk, GFP_ATOMIC)))
3015 		tcp_check_probe_timer(sk);
3016 }
3017 
3018 /* Send _single_ skb sitting at the send head. This function requires
3019  * true push pending frames to setup probe timer etc.
3020  */
3021 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3022 {
3023 	struct sk_buff *skb = tcp_send_head(sk);
3024 
3025 	BUG_ON(!skb || skb->len < mss_now);
3026 
3027 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3028 }
3029 
3030 /* This function returns the amount that we can raise the
3031  * usable window based on the following constraints
3032  *
3033  * 1. The window can never be shrunk once it is offered (RFC 793)
3034  * 2. We limit memory per socket
3035  *
3036  * RFC 1122:
3037  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3038  *  RECV.NEXT + RCV.WIN fixed until:
3039  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3040  *
3041  * i.e. don't raise the right edge of the window until you can raise
3042  * it at least MSS bytes.
3043  *
3044  * Unfortunately, the recommended algorithm breaks header prediction,
3045  * since header prediction assumes th->window stays fixed.
3046  *
3047  * Strictly speaking, keeping th->window fixed violates the receiver
3048  * side SWS prevention criteria. The problem is that under this rule
3049  * a stream of single byte packets will cause the right side of the
3050  * window to always advance by a single byte.
3051  *
3052  * Of course, if the sender implements sender side SWS prevention
3053  * then this will not be a problem.
3054  *
3055  * BSD seems to make the following compromise:
3056  *
3057  *	If the free space is less than the 1/4 of the maximum
3058  *	space available and the free space is less than 1/2 mss,
3059  *	then set the window to 0.
3060  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3061  *	Otherwise, just prevent the window from shrinking
3062  *	and from being larger than the largest representable value.
3063  *
3064  * This prevents incremental opening of the window in the regime
3065  * where TCP is limited by the speed of the reader side taking
3066  * data out of the TCP receive queue. It does nothing about
3067  * those cases where the window is constrained on the sender side
3068  * because the pipeline is full.
3069  *
3070  * BSD also seems to "accidentally" limit itself to windows that are a
3071  * multiple of MSS, at least until the free space gets quite small.
3072  * This would appear to be a side effect of the mbuf implementation.
3073  * Combining these two algorithms results in the observed behavior
3074  * of having a fixed window size at almost all times.
3075  *
3076  * Below we obtain similar behavior by forcing the offered window to
3077  * a multiple of the mss when it is feasible to do so.
3078  *
3079  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3080  * Regular options like TIMESTAMP are taken into account.
3081  */
3082 u32 __tcp_select_window(struct sock *sk)
3083 {
3084 	struct inet_connection_sock *icsk = inet_csk(sk);
3085 	struct tcp_sock *tp = tcp_sk(sk);
3086 	struct net *net = sock_net(sk);
3087 	/* MSS for the peer's data.  Previous versions used mss_clamp
3088 	 * here.  I don't know if the value based on our guesses
3089 	 * of peer's MSS is better for the performance.  It's more correct
3090 	 * but may be worse for the performance because of rcv_mss
3091 	 * fluctuations.  --SAW  1998/11/1
3092 	 */
3093 	int mss = icsk->icsk_ack.rcv_mss;
3094 	int free_space = tcp_space(sk);
3095 	int allowed_space = tcp_full_space(sk);
3096 	int full_space, window;
3097 
3098 	if (sk_is_mptcp(sk))
3099 		mptcp_space(sk, &free_space, &allowed_space);
3100 
3101 	full_space = min_t(int, tp->window_clamp, allowed_space);
3102 
3103 	if (unlikely(mss > full_space)) {
3104 		mss = full_space;
3105 		if (mss <= 0)
3106 			return 0;
3107 	}
3108 
3109 	/* Only allow window shrink if the sysctl is enabled and we have
3110 	 * a non-zero scaling factor in effect.
3111 	 */
3112 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3113 		goto shrink_window_allowed;
3114 
3115 	/* do not allow window to shrink */
3116 
3117 	if (free_space < (full_space >> 1)) {
3118 		icsk->icsk_ack.quick = 0;
3119 
3120 		if (tcp_under_memory_pressure(sk))
3121 			tcp_adjust_rcv_ssthresh(sk);
3122 
3123 		/* free_space might become our new window, make sure we don't
3124 		 * increase it due to wscale.
3125 		 */
3126 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3127 
3128 		/* if free space is less than mss estimate, or is below 1/16th
3129 		 * of the maximum allowed, try to move to zero-window, else
3130 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3131 		 * new incoming data is dropped due to memory limits.
3132 		 * With large window, mss test triggers way too late in order
3133 		 * to announce zero window in time before rmem limit kicks in.
3134 		 */
3135 		if (free_space < (allowed_space >> 4) || free_space < mss)
3136 			return 0;
3137 	}
3138 
3139 	if (free_space > tp->rcv_ssthresh)
3140 		free_space = tp->rcv_ssthresh;
3141 
3142 	/* Don't do rounding if we are using window scaling, since the
3143 	 * scaled window will not line up with the MSS boundary anyway.
3144 	 */
3145 	if (tp->rx_opt.rcv_wscale) {
3146 		window = free_space;
3147 
3148 		/* Advertise enough space so that it won't get scaled away.
3149 		 * Import case: prevent zero window announcement if
3150 		 * 1<<rcv_wscale > mss.
3151 		 */
3152 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3153 	} else {
3154 		window = tp->rcv_wnd;
3155 		/* Get the largest window that is a nice multiple of mss.
3156 		 * Window clamp already applied above.
3157 		 * If our current window offering is within 1 mss of the
3158 		 * free space we just keep it. This prevents the divide
3159 		 * and multiply from happening most of the time.
3160 		 * We also don't do any window rounding when the free space
3161 		 * is too small.
3162 		 */
3163 		if (window <= free_space - mss || window > free_space)
3164 			window = rounddown(free_space, mss);
3165 		else if (mss == full_space &&
3166 			 free_space > window + (full_space >> 1))
3167 			window = free_space;
3168 	}
3169 
3170 	return window;
3171 
3172 shrink_window_allowed:
3173 	/* new window should always be an exact multiple of scaling factor */
3174 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3175 
3176 	if (free_space < (full_space >> 1)) {
3177 		icsk->icsk_ack.quick = 0;
3178 
3179 		if (tcp_under_memory_pressure(sk))
3180 			tcp_adjust_rcv_ssthresh(sk);
3181 
3182 		/* if free space is too low, return a zero window */
3183 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3184 			free_space < (1 << tp->rx_opt.rcv_wscale))
3185 			return 0;
3186 	}
3187 
3188 	if (free_space > tp->rcv_ssthresh) {
3189 		free_space = tp->rcv_ssthresh;
3190 		/* new window should always be an exact multiple of scaling factor
3191 		 *
3192 		 * For this case, we ALIGN "up" (increase free_space) because
3193 		 * we know free_space is not zero here, it has been reduced from
3194 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3195 		 * (unlike sk_rcvbuf).
3196 		 */
3197 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3198 	}
3199 
3200 	return free_space;
3201 }
3202 
3203 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3204 			     const struct sk_buff *next_skb)
3205 {
3206 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3207 		const struct skb_shared_info *next_shinfo =
3208 			skb_shinfo(next_skb);
3209 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3210 
3211 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3212 		shinfo->tskey = next_shinfo->tskey;
3213 		TCP_SKB_CB(skb)->txstamp_ack |=
3214 			TCP_SKB_CB(next_skb)->txstamp_ack;
3215 	}
3216 }
3217 
3218 /* Collapses two adjacent SKB's during retransmission. */
3219 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3220 {
3221 	struct tcp_sock *tp = tcp_sk(sk);
3222 	struct sk_buff *next_skb = skb_rb_next(skb);
3223 	int next_skb_size;
3224 
3225 	next_skb_size = next_skb->len;
3226 
3227 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3228 
3229 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3230 		return false;
3231 
3232 	tcp_highest_sack_replace(sk, next_skb, skb);
3233 
3234 	/* Update sequence range on original skb. */
3235 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3236 
3237 	/* Merge over control information. This moves PSH/FIN etc. over */
3238 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3239 
3240 	/* All done, get rid of second SKB and account for it so
3241 	 * packet counting does not break.
3242 	 */
3243 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3244 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3245 
3246 	/* changed transmit queue under us so clear hints */
3247 	tcp_clear_retrans_hints_partial(tp);
3248 	if (next_skb == tp->retransmit_skb_hint)
3249 		tp->retransmit_skb_hint = skb;
3250 
3251 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3252 
3253 	tcp_skb_collapse_tstamp(skb, next_skb);
3254 
3255 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3256 	return true;
3257 }
3258 
3259 /* Check if coalescing SKBs is legal. */
3260 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3261 {
3262 	if (tcp_skb_pcount(skb) > 1)
3263 		return false;
3264 	if (skb_cloned(skb))
3265 		return false;
3266 	/* Some heuristics for collapsing over SACK'd could be invented */
3267 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3268 		return false;
3269 
3270 	return true;
3271 }
3272 
3273 /* Collapse packets in the retransmit queue to make to create
3274  * less packets on the wire. This is only done on retransmission.
3275  */
3276 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3277 				     int space)
3278 {
3279 	struct tcp_sock *tp = tcp_sk(sk);
3280 	struct sk_buff *skb = to, *tmp;
3281 	bool first = true;
3282 
3283 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3284 		return;
3285 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3286 		return;
3287 
3288 	skb_rbtree_walk_from_safe(skb, tmp) {
3289 		if (!tcp_can_collapse(sk, skb))
3290 			break;
3291 
3292 		if (!tcp_skb_can_collapse(to, skb))
3293 			break;
3294 
3295 		space -= skb->len;
3296 
3297 		if (first) {
3298 			first = false;
3299 			continue;
3300 		}
3301 
3302 		if (space < 0)
3303 			break;
3304 
3305 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3306 			break;
3307 
3308 		if (!tcp_collapse_retrans(sk, to))
3309 			break;
3310 	}
3311 }
3312 
3313 /* This retransmits one SKB.  Policy decisions and retransmit queue
3314  * state updates are done by the caller.  Returns non-zero if an
3315  * error occurred which prevented the send.
3316  */
3317 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3318 {
3319 	struct inet_connection_sock *icsk = inet_csk(sk);
3320 	struct tcp_sock *tp = tcp_sk(sk);
3321 	unsigned int cur_mss;
3322 	int diff, len, err;
3323 	int avail_wnd;
3324 
3325 	/* Inconclusive MTU probe */
3326 	if (icsk->icsk_mtup.probe_size)
3327 		icsk->icsk_mtup.probe_size = 0;
3328 
3329 	if (skb_still_in_host_queue(sk, skb))
3330 		return -EBUSY;
3331 
3332 start:
3333 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3334 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3335 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3336 			TCP_SKB_CB(skb)->seq++;
3337 			goto start;
3338 		}
3339 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3340 			WARN_ON_ONCE(1);
3341 			return -EINVAL;
3342 		}
3343 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3344 			return -ENOMEM;
3345 	}
3346 
3347 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3348 		return -EHOSTUNREACH; /* Routing failure or similar. */
3349 
3350 	cur_mss = tcp_current_mss(sk);
3351 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3352 
3353 	/* If receiver has shrunk his window, and skb is out of
3354 	 * new window, do not retransmit it. The exception is the
3355 	 * case, when window is shrunk to zero. In this case
3356 	 * our retransmit of one segment serves as a zero window probe.
3357 	 */
3358 	if (avail_wnd <= 0) {
3359 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3360 			return -EAGAIN;
3361 		avail_wnd = cur_mss;
3362 	}
3363 
3364 	len = cur_mss * segs;
3365 	if (len > avail_wnd) {
3366 		len = rounddown(avail_wnd, cur_mss);
3367 		if (!len)
3368 			len = avail_wnd;
3369 	}
3370 	if (skb->len > len) {
3371 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3372 				 cur_mss, GFP_ATOMIC))
3373 			return -ENOMEM; /* We'll try again later. */
3374 	} else {
3375 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3376 			return -ENOMEM;
3377 
3378 		diff = tcp_skb_pcount(skb);
3379 		tcp_set_skb_tso_segs(skb, cur_mss);
3380 		diff -= tcp_skb_pcount(skb);
3381 		if (diff)
3382 			tcp_adjust_pcount(sk, skb, diff);
3383 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3384 		if (skb->len < avail_wnd)
3385 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3386 	}
3387 
3388 	/* RFC3168, section 6.1.1.1. ECN fallback */
3389 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3390 		tcp_ecn_clear_syn(sk, skb);
3391 
3392 	/* Update global and local TCP statistics. */
3393 	segs = tcp_skb_pcount(skb);
3394 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3395 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3396 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3397 	tp->total_retrans += segs;
3398 	tp->bytes_retrans += skb->len;
3399 
3400 	/* make sure skb->data is aligned on arches that require it
3401 	 * and check if ack-trimming & collapsing extended the headroom
3402 	 * beyond what csum_start can cover.
3403 	 */
3404 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3405 		     skb_headroom(skb) >= 0xFFFF)) {
3406 		struct sk_buff *nskb;
3407 
3408 		tcp_skb_tsorted_save(skb) {
3409 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3410 			if (nskb) {
3411 				nskb->dev = NULL;
3412 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3413 			} else {
3414 				err = -ENOBUFS;
3415 			}
3416 		} tcp_skb_tsorted_restore(skb);
3417 
3418 		if (!err) {
3419 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3420 			tcp_rate_skb_sent(sk, skb);
3421 		}
3422 	} else {
3423 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3424 	}
3425 
3426 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3427 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3428 				  TCP_SKB_CB(skb)->seq, segs, err);
3429 
3430 	if (likely(!err)) {
3431 		trace_tcp_retransmit_skb(sk, skb);
3432 	} else if (err != -EBUSY) {
3433 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3434 	}
3435 
3436 	/* To avoid taking spuriously low RTT samples based on a timestamp
3437 	 * for a transmit that never happened, always mark EVER_RETRANS
3438 	 */
3439 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3440 
3441 	return err;
3442 }
3443 
3444 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3445 {
3446 	struct tcp_sock *tp = tcp_sk(sk);
3447 	int err = __tcp_retransmit_skb(sk, skb, segs);
3448 
3449 	if (err == 0) {
3450 #if FASTRETRANS_DEBUG > 0
3451 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3452 			net_dbg_ratelimited("retrans_out leaked\n");
3453 		}
3454 #endif
3455 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3456 		tp->retrans_out += tcp_skb_pcount(skb);
3457 	}
3458 
3459 	/* Save stamp of the first (attempted) retransmit. */
3460 	if (!tp->retrans_stamp)
3461 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3462 
3463 	if (tp->undo_retrans < 0)
3464 		tp->undo_retrans = 0;
3465 	tp->undo_retrans += tcp_skb_pcount(skb);
3466 	return err;
3467 }
3468 
3469 /* This gets called after a retransmit timeout, and the initially
3470  * retransmitted data is acknowledged.  It tries to continue
3471  * resending the rest of the retransmit queue, until either
3472  * we've sent it all or the congestion window limit is reached.
3473  */
3474 void tcp_xmit_retransmit_queue(struct sock *sk)
3475 {
3476 	const struct inet_connection_sock *icsk = inet_csk(sk);
3477 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3478 	struct tcp_sock *tp = tcp_sk(sk);
3479 	bool rearm_timer = false;
3480 	u32 max_segs;
3481 	int mib_idx;
3482 
3483 	if (!tp->packets_out)
3484 		return;
3485 
3486 	rtx_head = tcp_rtx_queue_head(sk);
3487 	skb = tp->retransmit_skb_hint ?: rtx_head;
3488 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3489 	skb_rbtree_walk_from(skb) {
3490 		__u8 sacked;
3491 		int segs;
3492 
3493 		if (tcp_pacing_check(sk))
3494 			break;
3495 
3496 		/* we could do better than to assign each time */
3497 		if (!hole)
3498 			tp->retransmit_skb_hint = skb;
3499 
3500 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3501 		if (segs <= 0)
3502 			break;
3503 		sacked = TCP_SKB_CB(skb)->sacked;
3504 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3505 		 * we need to make sure not sending too bigs TSO packets
3506 		 */
3507 		segs = min_t(int, segs, max_segs);
3508 
3509 		if (tp->retrans_out >= tp->lost_out) {
3510 			break;
3511 		} else if (!(sacked & TCPCB_LOST)) {
3512 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3513 				hole = skb;
3514 			continue;
3515 
3516 		} else {
3517 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3518 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3519 			else
3520 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3521 		}
3522 
3523 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3524 			continue;
3525 
3526 		if (tcp_small_queue_check(sk, skb, 1))
3527 			break;
3528 
3529 		if (tcp_retransmit_skb(sk, skb, segs))
3530 			break;
3531 
3532 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3533 
3534 		if (tcp_in_cwnd_reduction(sk))
3535 			tp->prr_out += tcp_skb_pcount(skb);
3536 
3537 		if (skb == rtx_head &&
3538 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3539 			rearm_timer = true;
3540 
3541 	}
3542 	if (rearm_timer)
3543 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3544 				     inet_csk(sk)->icsk_rto,
3545 				     TCP_RTO_MAX);
3546 }
3547 
3548 /* We allow to exceed memory limits for FIN packets to expedite
3549  * connection tear down and (memory) recovery.
3550  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3551  * or even be forced to close flow without any FIN.
3552  * In general, we want to allow one skb per socket to avoid hangs
3553  * with edge trigger epoll()
3554  */
3555 void sk_forced_mem_schedule(struct sock *sk, int size)
3556 {
3557 	int delta, amt;
3558 
3559 	delta = size - sk->sk_forward_alloc;
3560 	if (delta <= 0)
3561 		return;
3562 	amt = sk_mem_pages(delta);
3563 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3564 	sk_memory_allocated_add(sk, amt);
3565 
3566 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3567 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3568 					gfp_memcg_charge() | __GFP_NOFAIL);
3569 }
3570 
3571 /* Send a FIN. The caller locks the socket for us.
3572  * We should try to send a FIN packet really hard, but eventually give up.
3573  */
3574 void tcp_send_fin(struct sock *sk)
3575 {
3576 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3577 	struct tcp_sock *tp = tcp_sk(sk);
3578 
3579 	/* Optimization, tack on the FIN if we have one skb in write queue and
3580 	 * this skb was not yet sent, or we are under memory pressure.
3581 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3582 	 * as TCP stack thinks it has already been transmitted.
3583 	 */
3584 	tskb = tail;
3585 	if (!tskb && tcp_under_memory_pressure(sk))
3586 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3587 
3588 	if (tskb) {
3589 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3590 		TCP_SKB_CB(tskb)->end_seq++;
3591 		tp->write_seq++;
3592 		if (!tail) {
3593 			/* This means tskb was already sent.
3594 			 * Pretend we included the FIN on previous transmit.
3595 			 * We need to set tp->snd_nxt to the value it would have
3596 			 * if FIN had been sent. This is because retransmit path
3597 			 * does not change tp->snd_nxt.
3598 			 */
3599 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3600 			return;
3601 		}
3602 	} else {
3603 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3604 		if (unlikely(!skb))
3605 			return;
3606 
3607 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3608 		skb_reserve(skb, MAX_TCP_HEADER);
3609 		sk_forced_mem_schedule(sk, skb->truesize);
3610 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3611 		tcp_init_nondata_skb(skb, tp->write_seq,
3612 				     TCPHDR_ACK | TCPHDR_FIN);
3613 		tcp_queue_skb(sk, skb);
3614 	}
3615 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3616 }
3617 
3618 /* We get here when a process closes a file descriptor (either due to
3619  * an explicit close() or as a byproduct of exit()'ing) and there
3620  * was unread data in the receive queue.  This behavior is recommended
3621  * by RFC 2525, section 2.17.  -DaveM
3622  */
3623 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3624 			   enum sk_rst_reason reason)
3625 {
3626 	struct sk_buff *skb;
3627 
3628 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3629 
3630 	/* NOTE: No TCP options attached and we never retransmit this. */
3631 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3632 	if (!skb) {
3633 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3634 		return;
3635 	}
3636 
3637 	/* Reserve space for headers and prepare control bits. */
3638 	skb_reserve(skb, MAX_TCP_HEADER);
3639 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3640 			     TCPHDR_ACK | TCPHDR_RST);
3641 	tcp_mstamp_refresh(tcp_sk(sk));
3642 	/* Send it off. */
3643 	if (tcp_transmit_skb(sk, skb, 0, priority))
3644 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3645 
3646 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3647 	 * skb here is different to the troublesome skb, so use NULL
3648 	 */
3649 	trace_tcp_send_reset(sk, NULL, SK_RST_REASON_NOT_SPECIFIED);
3650 }
3651 
3652 /* Send a crossed SYN-ACK during socket establishment.
3653  * WARNING: This routine must only be called when we have already sent
3654  * a SYN packet that crossed the incoming SYN that caused this routine
3655  * to get called. If this assumption fails then the initial rcv_wnd
3656  * and rcv_wscale values will not be correct.
3657  */
3658 int tcp_send_synack(struct sock *sk)
3659 {
3660 	struct sk_buff *skb;
3661 
3662 	skb = tcp_rtx_queue_head(sk);
3663 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3664 		pr_err("%s: wrong queue state\n", __func__);
3665 		return -EFAULT;
3666 	}
3667 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3668 		if (skb_cloned(skb)) {
3669 			struct sk_buff *nskb;
3670 
3671 			tcp_skb_tsorted_save(skb) {
3672 				nskb = skb_copy(skb, GFP_ATOMIC);
3673 			} tcp_skb_tsorted_restore(skb);
3674 			if (!nskb)
3675 				return -ENOMEM;
3676 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3677 			tcp_highest_sack_replace(sk, skb, nskb);
3678 			tcp_rtx_queue_unlink_and_free(skb, sk);
3679 			__skb_header_release(nskb);
3680 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3681 			sk_wmem_queued_add(sk, nskb->truesize);
3682 			sk_mem_charge(sk, nskb->truesize);
3683 			skb = nskb;
3684 		}
3685 
3686 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3687 		tcp_ecn_send_synack(sk, skb);
3688 	}
3689 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3690 }
3691 
3692 /**
3693  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3694  * @sk: listener socket
3695  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3696  *       should not use it again.
3697  * @req: request_sock pointer
3698  * @foc: cookie for tcp fast open
3699  * @synack_type: Type of synack to prepare
3700  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3701  */
3702 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3703 				struct request_sock *req,
3704 				struct tcp_fastopen_cookie *foc,
3705 				enum tcp_synack_type synack_type,
3706 				struct sk_buff *syn_skb)
3707 {
3708 	struct inet_request_sock *ireq = inet_rsk(req);
3709 	const struct tcp_sock *tp = tcp_sk(sk);
3710 	struct tcp_out_options opts;
3711 	struct tcp_key key = {};
3712 	struct sk_buff *skb;
3713 	int tcp_header_size;
3714 	struct tcphdr *th;
3715 	int mss;
3716 	u64 now;
3717 
3718 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3719 	if (unlikely(!skb)) {
3720 		dst_release(dst);
3721 		return NULL;
3722 	}
3723 	/* Reserve space for headers. */
3724 	skb_reserve(skb, MAX_TCP_HEADER);
3725 
3726 	switch (synack_type) {
3727 	case TCP_SYNACK_NORMAL:
3728 		skb_set_owner_w(skb, req_to_sk(req));
3729 		break;
3730 	case TCP_SYNACK_COOKIE:
3731 		/* Under synflood, we do not attach skb to a socket,
3732 		 * to avoid false sharing.
3733 		 */
3734 		break;
3735 	case TCP_SYNACK_FASTOPEN:
3736 		/* sk is a const pointer, because we want to express multiple
3737 		 * cpu might call us concurrently.
3738 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3739 		 */
3740 		skb_set_owner_w(skb, (struct sock *)sk);
3741 		break;
3742 	}
3743 	skb_dst_set(skb, dst);
3744 
3745 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3746 
3747 	memset(&opts, 0, sizeof(opts));
3748 	now = tcp_clock_ns();
3749 #ifdef CONFIG_SYN_COOKIES
3750 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3751 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3752 				      true);
3753 	else
3754 #endif
3755 	{
3756 		skb_set_delivery_time(skb, now, true);
3757 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3758 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3759 	}
3760 
3761 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3762 	rcu_read_lock();
3763 #endif
3764 	if (tcp_rsk_used_ao(req)) {
3765 #ifdef CONFIG_TCP_AO
3766 		struct tcp_ao_key *ao_key = NULL;
3767 		u8 keyid = tcp_rsk(req)->ao_keyid;
3768 
3769 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3770 							    keyid, -1);
3771 		/* If there is no matching key - avoid sending anything,
3772 		 * especially usigned segments. It could try harder and lookup
3773 		 * for another peer-matching key, but the peer has requested
3774 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3775 		 */
3776 		if (unlikely(!ao_key)) {
3777 			rcu_read_unlock();
3778 			kfree_skb(skb);
3779 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3780 					     keyid);
3781 			return NULL;
3782 		}
3783 		key.ao_key = ao_key;
3784 		key.type = TCP_KEY_AO;
3785 #endif
3786 	} else {
3787 #ifdef CONFIG_TCP_MD5SIG
3788 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3789 					req_to_sk(req));
3790 		if (key.md5_key)
3791 			key.type = TCP_KEY_MD5;
3792 #endif
3793 	}
3794 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3795 	/* bpf program will be interested in the tcp_flags */
3796 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3797 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3798 					     &key, foc, synack_type, syn_skb)
3799 					+ sizeof(*th);
3800 
3801 	skb_push(skb, tcp_header_size);
3802 	skb_reset_transport_header(skb);
3803 
3804 	th = (struct tcphdr *)skb->data;
3805 	memset(th, 0, sizeof(struct tcphdr));
3806 	th->syn = 1;
3807 	th->ack = 1;
3808 	tcp_ecn_make_synack(req, th);
3809 	th->source = htons(ireq->ir_num);
3810 	th->dest = ireq->ir_rmt_port;
3811 	skb->mark = ireq->ir_mark;
3812 	skb->ip_summed = CHECKSUM_PARTIAL;
3813 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3814 	/* XXX data is queued and acked as is. No buffer/window check */
3815 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3816 
3817 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3818 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3819 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3820 	th->doff = (tcp_header_size >> 2);
3821 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3822 
3823 	/* Okay, we have all we need - do the md5 hash if needed */
3824 	if (tcp_key_is_md5(&key)) {
3825 #ifdef CONFIG_TCP_MD5SIG
3826 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3827 					key.md5_key, req_to_sk(req), skb);
3828 #endif
3829 	} else if (tcp_key_is_ao(&key)) {
3830 #ifdef CONFIG_TCP_AO
3831 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3832 					key.ao_key, req, skb,
3833 					opts.hash_location - (u8 *)th, 0);
3834 #endif
3835 	}
3836 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3837 	rcu_read_unlock();
3838 #endif
3839 
3840 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3841 				synack_type, &opts);
3842 
3843 	skb_set_delivery_time(skb, now, true);
3844 	tcp_add_tx_delay(skb, tp);
3845 
3846 	return skb;
3847 }
3848 EXPORT_SYMBOL(tcp_make_synack);
3849 
3850 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3851 {
3852 	struct inet_connection_sock *icsk = inet_csk(sk);
3853 	const struct tcp_congestion_ops *ca;
3854 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3855 
3856 	if (ca_key == TCP_CA_UNSPEC)
3857 		return;
3858 
3859 	rcu_read_lock();
3860 	ca = tcp_ca_find_key(ca_key);
3861 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3862 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3863 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3864 		icsk->icsk_ca_ops = ca;
3865 	}
3866 	rcu_read_unlock();
3867 }
3868 
3869 /* Do all connect socket setups that can be done AF independent. */
3870 static void tcp_connect_init(struct sock *sk)
3871 {
3872 	const struct dst_entry *dst = __sk_dst_get(sk);
3873 	struct tcp_sock *tp = tcp_sk(sk);
3874 	__u8 rcv_wscale;
3875 	u32 rcv_wnd;
3876 
3877 	/* We'll fix this up when we get a response from the other end.
3878 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3879 	 */
3880 	tp->tcp_header_len = sizeof(struct tcphdr);
3881 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3882 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3883 
3884 	tcp_ao_connect_init(sk);
3885 
3886 	/* If user gave his TCP_MAXSEG, record it to clamp */
3887 	if (tp->rx_opt.user_mss)
3888 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3889 	tp->max_window = 0;
3890 	tcp_mtup_init(sk);
3891 	tcp_sync_mss(sk, dst_mtu(dst));
3892 
3893 	tcp_ca_dst_init(sk, dst);
3894 
3895 	if (!tp->window_clamp)
3896 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3897 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3898 
3899 	tcp_initialize_rcv_mss(sk);
3900 
3901 	/* limit the window selection if the user enforce a smaller rx buffer */
3902 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3903 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3904 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3905 
3906 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3907 	if (rcv_wnd == 0)
3908 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3909 
3910 	tcp_select_initial_window(sk, tcp_full_space(sk),
3911 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3912 				  &tp->rcv_wnd,
3913 				  &tp->window_clamp,
3914 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3915 				  &rcv_wscale,
3916 				  rcv_wnd);
3917 
3918 	tp->rx_opt.rcv_wscale = rcv_wscale;
3919 	tp->rcv_ssthresh = tp->rcv_wnd;
3920 
3921 	WRITE_ONCE(sk->sk_err, 0);
3922 	sock_reset_flag(sk, SOCK_DONE);
3923 	tp->snd_wnd = 0;
3924 	tcp_init_wl(tp, 0);
3925 	tcp_write_queue_purge(sk);
3926 	tp->snd_una = tp->write_seq;
3927 	tp->snd_sml = tp->write_seq;
3928 	tp->snd_up = tp->write_seq;
3929 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3930 
3931 	if (likely(!tp->repair))
3932 		tp->rcv_nxt = 0;
3933 	else
3934 		tp->rcv_tstamp = tcp_jiffies32;
3935 	tp->rcv_wup = tp->rcv_nxt;
3936 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3937 
3938 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3939 	inet_csk(sk)->icsk_retransmits = 0;
3940 	tcp_clear_retrans(tp);
3941 }
3942 
3943 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3944 {
3945 	struct tcp_sock *tp = tcp_sk(sk);
3946 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3947 
3948 	tcb->end_seq += skb->len;
3949 	__skb_header_release(skb);
3950 	sk_wmem_queued_add(sk, skb->truesize);
3951 	sk_mem_charge(sk, skb->truesize);
3952 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3953 	tp->packets_out += tcp_skb_pcount(skb);
3954 }
3955 
3956 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3957  * queue a data-only packet after the regular SYN, such that regular SYNs
3958  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3959  * only the SYN sequence, the data are retransmitted in the first ACK.
3960  * If cookie is not cached or other error occurs, falls back to send a
3961  * regular SYN with Fast Open cookie request option.
3962  */
3963 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3964 {
3965 	struct inet_connection_sock *icsk = inet_csk(sk);
3966 	struct tcp_sock *tp = tcp_sk(sk);
3967 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3968 	struct page_frag *pfrag = sk_page_frag(sk);
3969 	struct sk_buff *syn_data;
3970 	int space, err = 0;
3971 
3972 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3973 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3974 		goto fallback;
3975 
3976 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3977 	 * user-MSS. Reserve maximum option space for middleboxes that add
3978 	 * private TCP options. The cost is reduced data space in SYN :(
3979 	 */
3980 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3981 	/* Sync mss_cache after updating the mss_clamp */
3982 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3983 
3984 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3985 		MAX_TCP_OPTION_SPACE;
3986 
3987 	space = min_t(size_t, space, fo->size);
3988 
3989 	if (space &&
3990 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3991 				  pfrag, sk->sk_allocation))
3992 		goto fallback;
3993 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3994 	if (!syn_data)
3995 		goto fallback;
3996 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3997 	if (space) {
3998 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3999 		space = tcp_wmem_schedule(sk, space);
4000 	}
4001 	if (space) {
4002 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
4003 					    space, &fo->data->msg_iter);
4004 		if (unlikely(!space)) {
4005 			tcp_skb_tsorted_anchor_cleanup(syn_data);
4006 			kfree_skb(syn_data);
4007 			goto fallback;
4008 		}
4009 		skb_fill_page_desc(syn_data, 0, pfrag->page,
4010 				   pfrag->offset, space);
4011 		page_ref_inc(pfrag->page);
4012 		pfrag->offset += space;
4013 		skb_len_add(syn_data, space);
4014 		skb_zcopy_set(syn_data, fo->uarg, NULL);
4015 	}
4016 	/* No more data pending in inet_wait_for_connect() */
4017 	if (space == fo->size)
4018 		fo->data = NULL;
4019 	fo->copied = space;
4020 
4021 	tcp_connect_queue_skb(sk, syn_data);
4022 	if (syn_data->len)
4023 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4024 
4025 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4026 
4027 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
4028 
4029 	/* Now full SYN+DATA was cloned and sent (or not),
4030 	 * remove the SYN from the original skb (syn_data)
4031 	 * we keep in write queue in case of a retransmit, as we
4032 	 * also have the SYN packet (with no data) in the same queue.
4033 	 */
4034 	TCP_SKB_CB(syn_data)->seq++;
4035 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4036 	if (!err) {
4037 		tp->syn_data = (fo->copied > 0);
4038 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4039 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4040 		goto done;
4041 	}
4042 
4043 	/* data was not sent, put it in write_queue */
4044 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4045 	tp->packets_out -= tcp_skb_pcount(syn_data);
4046 
4047 fallback:
4048 	/* Send a regular SYN with Fast Open cookie request option */
4049 	if (fo->cookie.len > 0)
4050 		fo->cookie.len = 0;
4051 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4052 	if (err)
4053 		tp->syn_fastopen = 0;
4054 done:
4055 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4056 	return err;
4057 }
4058 
4059 /* Build a SYN and send it off. */
4060 int tcp_connect(struct sock *sk)
4061 {
4062 	struct tcp_sock *tp = tcp_sk(sk);
4063 	struct sk_buff *buff;
4064 	int err;
4065 
4066 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4067 
4068 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4069 	/* Has to be checked late, after setting daddr/saddr/ops.
4070 	 * Return error if the peer has both a md5 and a tcp-ao key
4071 	 * configured as this is ambiguous.
4072 	 */
4073 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4074 					       lockdep_sock_is_held(sk)))) {
4075 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4076 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4077 		struct tcp_ao_info *ao_info;
4078 
4079 		ao_info = rcu_dereference_check(tp->ao_info,
4080 						lockdep_sock_is_held(sk));
4081 		if (ao_info) {
4082 			/* This is an extra check: tcp_ao_required() in
4083 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4084 			 * md5 keys on ao_required socket.
4085 			 */
4086 			needs_ao |= ao_info->ao_required;
4087 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4088 		}
4089 		if (needs_md5 && needs_ao)
4090 			return -EKEYREJECTED;
4091 
4092 		/* If we have a matching md5 key and no matching tcp-ao key
4093 		 * then free up ao_info if allocated.
4094 		 */
4095 		if (needs_md5) {
4096 			tcp_ao_destroy_sock(sk, false);
4097 		} else if (needs_ao) {
4098 			tcp_clear_md5_list(sk);
4099 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4100 						  lockdep_sock_is_held(sk)));
4101 		}
4102 	}
4103 #endif
4104 #ifdef CONFIG_TCP_AO
4105 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4106 					       lockdep_sock_is_held(sk)))) {
4107 		/* Don't allow connecting if ao is configured but no
4108 		 * matching key is found.
4109 		 */
4110 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4111 			return -EKEYREJECTED;
4112 	}
4113 #endif
4114 
4115 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4116 		return -EHOSTUNREACH; /* Routing failure or similar. */
4117 
4118 	tcp_connect_init(sk);
4119 
4120 	if (unlikely(tp->repair)) {
4121 		tcp_finish_connect(sk, NULL);
4122 		return 0;
4123 	}
4124 
4125 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4126 	if (unlikely(!buff))
4127 		return -ENOBUFS;
4128 
4129 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4130 	tcp_mstamp_refresh(tp);
4131 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4132 	tcp_connect_queue_skb(sk, buff);
4133 	tcp_ecn_send_syn(sk, buff);
4134 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4135 
4136 	/* Send off SYN; include data in Fast Open. */
4137 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4138 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4139 	if (err == -ECONNREFUSED)
4140 		return err;
4141 
4142 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4143 	 * in order to make this packet get counted in tcpOutSegs.
4144 	 */
4145 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4146 	tp->pushed_seq = tp->write_seq;
4147 	buff = tcp_send_head(sk);
4148 	if (unlikely(buff)) {
4149 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4150 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4151 	}
4152 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4153 
4154 	/* Timer for repeating the SYN until an answer. */
4155 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4156 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4157 	return 0;
4158 }
4159 EXPORT_SYMBOL(tcp_connect);
4160 
4161 u32 tcp_delack_max(const struct sock *sk)
4162 {
4163 	const struct dst_entry *dst = __sk_dst_get(sk);
4164 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4165 
4166 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4167 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4168 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4169 
4170 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4171 	}
4172 	return delack_max;
4173 }
4174 
4175 /* Send out a delayed ack, the caller does the policy checking
4176  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4177  * for details.
4178  */
4179 void tcp_send_delayed_ack(struct sock *sk)
4180 {
4181 	struct inet_connection_sock *icsk = inet_csk(sk);
4182 	int ato = icsk->icsk_ack.ato;
4183 	unsigned long timeout;
4184 
4185 	if (ato > TCP_DELACK_MIN) {
4186 		const struct tcp_sock *tp = tcp_sk(sk);
4187 		int max_ato = HZ / 2;
4188 
4189 		if (inet_csk_in_pingpong_mode(sk) ||
4190 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4191 			max_ato = TCP_DELACK_MAX;
4192 
4193 		/* Slow path, intersegment interval is "high". */
4194 
4195 		/* If some rtt estimate is known, use it to bound delayed ack.
4196 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4197 		 * directly.
4198 		 */
4199 		if (tp->srtt_us) {
4200 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4201 					TCP_DELACK_MIN);
4202 
4203 			if (rtt < max_ato)
4204 				max_ato = rtt;
4205 		}
4206 
4207 		ato = min(ato, max_ato);
4208 	}
4209 
4210 	ato = min_t(u32, ato, tcp_delack_max(sk));
4211 
4212 	/* Stay within the limit we were given */
4213 	timeout = jiffies + ato;
4214 
4215 	/* Use new timeout only if there wasn't a older one earlier. */
4216 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4217 		/* If delack timer is about to expire, send ACK now. */
4218 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4219 			tcp_send_ack(sk);
4220 			return;
4221 		}
4222 
4223 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4224 			timeout = icsk->icsk_ack.timeout;
4225 	}
4226 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4227 	icsk->icsk_ack.timeout = timeout;
4228 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4229 }
4230 
4231 /* This routine sends an ack and also updates the window. */
4232 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4233 {
4234 	struct sk_buff *buff;
4235 
4236 	/* If we have been reset, we may not send again. */
4237 	if (sk->sk_state == TCP_CLOSE)
4238 		return;
4239 
4240 	/* We are not putting this on the write queue, so
4241 	 * tcp_transmit_skb() will set the ownership to this
4242 	 * sock.
4243 	 */
4244 	buff = alloc_skb(MAX_TCP_HEADER,
4245 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4246 	if (unlikely(!buff)) {
4247 		struct inet_connection_sock *icsk = inet_csk(sk);
4248 		unsigned long delay;
4249 
4250 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4251 		if (delay < TCP_RTO_MAX)
4252 			icsk->icsk_ack.retry++;
4253 		inet_csk_schedule_ack(sk);
4254 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4255 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4256 		return;
4257 	}
4258 
4259 	/* Reserve space for headers and prepare control bits. */
4260 	skb_reserve(buff, MAX_TCP_HEADER);
4261 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4262 
4263 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4264 	 * too much.
4265 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4266 	 */
4267 	skb_set_tcp_pure_ack(buff);
4268 
4269 	/* Send it off, this clears delayed acks for us. */
4270 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4271 }
4272 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4273 
4274 void tcp_send_ack(struct sock *sk)
4275 {
4276 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4277 }
4278 
4279 /* This routine sends a packet with an out of date sequence
4280  * number. It assumes the other end will try to ack it.
4281  *
4282  * Question: what should we make while urgent mode?
4283  * 4.4BSD forces sending single byte of data. We cannot send
4284  * out of window data, because we have SND.NXT==SND.MAX...
4285  *
4286  * Current solution: to send TWO zero-length segments in urgent mode:
4287  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4288  * out-of-date with SND.UNA-1 to probe window.
4289  */
4290 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4291 {
4292 	struct tcp_sock *tp = tcp_sk(sk);
4293 	struct sk_buff *skb;
4294 
4295 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4296 	skb = alloc_skb(MAX_TCP_HEADER,
4297 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4298 	if (!skb)
4299 		return -1;
4300 
4301 	/* Reserve space for headers and set control bits. */
4302 	skb_reserve(skb, MAX_TCP_HEADER);
4303 	/* Use a previous sequence.  This should cause the other
4304 	 * end to send an ack.  Don't queue or clone SKB, just
4305 	 * send it.
4306 	 */
4307 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4308 	NET_INC_STATS(sock_net(sk), mib);
4309 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4310 }
4311 
4312 /* Called from setsockopt( ... TCP_REPAIR ) */
4313 void tcp_send_window_probe(struct sock *sk)
4314 {
4315 	if (sk->sk_state == TCP_ESTABLISHED) {
4316 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4317 		tcp_mstamp_refresh(tcp_sk(sk));
4318 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4319 	}
4320 }
4321 
4322 /* Initiate keepalive or window probe from timer. */
4323 int tcp_write_wakeup(struct sock *sk, int mib)
4324 {
4325 	struct tcp_sock *tp = tcp_sk(sk);
4326 	struct sk_buff *skb;
4327 
4328 	if (sk->sk_state == TCP_CLOSE)
4329 		return -1;
4330 
4331 	skb = tcp_send_head(sk);
4332 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4333 		int err;
4334 		unsigned int mss = tcp_current_mss(sk);
4335 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4336 
4337 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4338 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4339 
4340 		/* We are probing the opening of a window
4341 		 * but the window size is != 0
4342 		 * must have been a result SWS avoidance ( sender )
4343 		 */
4344 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4345 		    skb->len > mss) {
4346 			seg_size = min(seg_size, mss);
4347 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4348 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4349 					 skb, seg_size, mss, GFP_ATOMIC))
4350 				return -1;
4351 		} else if (!tcp_skb_pcount(skb))
4352 			tcp_set_skb_tso_segs(skb, mss);
4353 
4354 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4355 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4356 		if (!err)
4357 			tcp_event_new_data_sent(sk, skb);
4358 		return err;
4359 	} else {
4360 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4361 			tcp_xmit_probe_skb(sk, 1, mib);
4362 		return tcp_xmit_probe_skb(sk, 0, mib);
4363 	}
4364 }
4365 
4366 /* A window probe timeout has occurred.  If window is not closed send
4367  * a partial packet else a zero probe.
4368  */
4369 void tcp_send_probe0(struct sock *sk)
4370 {
4371 	struct inet_connection_sock *icsk = inet_csk(sk);
4372 	struct tcp_sock *tp = tcp_sk(sk);
4373 	struct net *net = sock_net(sk);
4374 	unsigned long timeout;
4375 	int err;
4376 
4377 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4378 
4379 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4380 		/* Cancel probe timer, if it is not required. */
4381 		icsk->icsk_probes_out = 0;
4382 		icsk->icsk_backoff = 0;
4383 		icsk->icsk_probes_tstamp = 0;
4384 		return;
4385 	}
4386 
4387 	icsk->icsk_probes_out++;
4388 	if (err <= 0) {
4389 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4390 			icsk->icsk_backoff++;
4391 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4392 	} else {
4393 		/* If packet was not sent due to local congestion,
4394 		 * Let senders fight for local resources conservatively.
4395 		 */
4396 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4397 	}
4398 
4399 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4400 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4401 }
4402 
4403 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4404 {
4405 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4406 	struct flowi fl;
4407 	int res;
4408 
4409 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4410 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4411 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4412 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4413 				  NULL);
4414 	if (!res) {
4415 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4416 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4417 		if (unlikely(tcp_passive_fastopen(sk))) {
4418 			/* sk has const attribute because listeners are lockless.
4419 			 * However in this case, we are dealing with a passive fastopen
4420 			 * socket thus we can change total_retrans value.
4421 			 */
4422 			tcp_sk_rw(sk)->total_retrans++;
4423 		}
4424 		trace_tcp_retransmit_synack(sk, req);
4425 	}
4426 	return res;
4427 }
4428 EXPORT_SYMBOL(tcp_rtx_synack);
4429