xref: /linux/net/ipv4/tcp_output.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
25  *				:	Fragmentation on mtu decrease
26  *				:	Segment collapse on retransmit
27  *				:	AF independence
28  *
29  *		Linus Torvalds	:	send_delayed_ack
30  *		David S. Miller	:	Charge memory using the right skb
31  *					during syn/ack processing.
32  *		David S. Miller :	Output engine completely rewritten.
33  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
34  *		Cacophonix Gaul :	draft-minshall-nagle-01
35  *		J Hadi Salim	:	ECN support
36  *
37  */
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse = 1;
47 
48 /* People can turn this on to  work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows = 0;
52 
53 /* This limits the percentage of the congestion window which we
54  * will allow a single TSO frame to consume.  Building TSO frames
55  * which are too large can cause TCP streams to be bursty.
56  */
57 int sysctl_tcp_tso_win_divisor = 3;
58 
59 int sysctl_tcp_mtu_probing = 0;
60 int sysctl_tcp_base_mss = 512;
61 
62 EXPORT_SYMBOL(sysctl_tcp_mtu_probing);
63 EXPORT_SYMBOL(sysctl_tcp_base_mss);
64 
65 static void update_send_head(struct sock *sk, struct tcp_sock *tp,
66 			     struct sk_buff *skb)
67 {
68 	sk->sk_send_head = skb->next;
69 	if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
70 		sk->sk_send_head = NULL;
71 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
72 	tcp_packets_out_inc(sk, tp, skb);
73 }
74 
75 /* SND.NXT, if window was not shrunk.
76  * If window has been shrunk, what should we make? It is not clear at all.
77  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
78  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
79  * invalid. OK, let's make this for now:
80  */
81 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
82 {
83 	if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
84 		return tp->snd_nxt;
85 	else
86 		return tp->snd_una+tp->snd_wnd;
87 }
88 
89 /* Calculate mss to advertise in SYN segment.
90  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
91  *
92  * 1. It is independent of path mtu.
93  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
94  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
95  *    attached devices, because some buggy hosts are confused by
96  *    large MSS.
97  * 4. We do not make 3, we advertise MSS, calculated from first
98  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
99  *    This may be overridden via information stored in routing table.
100  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
101  *    probably even Jumbo".
102  */
103 static __u16 tcp_advertise_mss(struct sock *sk)
104 {
105 	struct tcp_sock *tp = tcp_sk(sk);
106 	struct dst_entry *dst = __sk_dst_get(sk);
107 	int mss = tp->advmss;
108 
109 	if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
110 		mss = dst_metric(dst, RTAX_ADVMSS);
111 		tp->advmss = mss;
112 	}
113 
114 	return (__u16)mss;
115 }
116 
117 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
118  * This is the first part of cwnd validation mechanism. */
119 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	s32 delta = tcp_time_stamp - tp->lsndtime;
123 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
124 	u32 cwnd = tp->snd_cwnd;
125 
126 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
127 
128 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
129 	restart_cwnd = min(restart_cwnd, cwnd);
130 
131 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
132 		cwnd >>= 1;
133 	tp->snd_cwnd = max(cwnd, restart_cwnd);
134 	tp->snd_cwnd_stamp = tcp_time_stamp;
135 	tp->snd_cwnd_used = 0;
136 }
137 
138 static void tcp_event_data_sent(struct tcp_sock *tp,
139 				struct sk_buff *skb, struct sock *sk)
140 {
141 	struct inet_connection_sock *icsk = inet_csk(sk);
142 	const u32 now = tcp_time_stamp;
143 
144 	if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)
145 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
146 
147 	tp->lsndtime = now;
148 
149 	/* If it is a reply for ato after last received
150 	 * packet, enter pingpong mode.
151 	 */
152 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
153 		icsk->icsk_ack.pingpong = 1;
154 }
155 
156 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
157 {
158 	tcp_dec_quickack_mode(sk, pkts);
159 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
160 }
161 
162 /* Determine a window scaling and initial window to offer.
163  * Based on the assumption that the given amount of space
164  * will be offered. Store the results in the tp structure.
165  * NOTE: for smooth operation initial space offering should
166  * be a multiple of mss if possible. We assume here that mss >= 1.
167  * This MUST be enforced by all callers.
168  */
169 void tcp_select_initial_window(int __space, __u32 mss,
170 			       __u32 *rcv_wnd, __u32 *window_clamp,
171 			       int wscale_ok, __u8 *rcv_wscale)
172 {
173 	unsigned int space = (__space < 0 ? 0 : __space);
174 
175 	/* If no clamp set the clamp to the max possible scaled window */
176 	if (*window_clamp == 0)
177 		(*window_clamp) = (65535 << 14);
178 	space = min(*window_clamp, space);
179 
180 	/* Quantize space offering to a multiple of mss if possible. */
181 	if (space > mss)
182 		space = (space / mss) * mss;
183 
184 	/* NOTE: offering an initial window larger than 32767
185 	 * will break some buggy TCP stacks. If the admin tells us
186 	 * it is likely we could be speaking with such a buggy stack
187 	 * we will truncate our initial window offering to 32K-1
188 	 * unless the remote has sent us a window scaling option,
189 	 * which we interpret as a sign the remote TCP is not
190 	 * misinterpreting the window field as a signed quantity.
191 	 */
192 	if (sysctl_tcp_workaround_signed_windows)
193 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
194 	else
195 		(*rcv_wnd) = space;
196 
197 	(*rcv_wscale) = 0;
198 	if (wscale_ok) {
199 		/* Set window scaling on max possible window
200 		 * See RFC1323 for an explanation of the limit to 14
201 		 */
202 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
203 		while (space > 65535 && (*rcv_wscale) < 14) {
204 			space >>= 1;
205 			(*rcv_wscale)++;
206 		}
207 	}
208 
209 	/* Set initial window to value enough for senders,
210 	 * following RFC2414. Senders, not following this RFC,
211 	 * will be satisfied with 2.
212 	 */
213 	if (mss > (1<<*rcv_wscale)) {
214 		int init_cwnd = 4;
215 		if (mss > 1460*3)
216 			init_cwnd = 2;
217 		else if (mss > 1460)
218 			init_cwnd = 3;
219 		if (*rcv_wnd > init_cwnd*mss)
220 			*rcv_wnd = init_cwnd*mss;
221 	}
222 
223 	/* Set the clamp no higher than max representable value */
224 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
225 }
226 
227 /* Chose a new window to advertise, update state in tcp_sock for the
228  * socket, and return result with RFC1323 scaling applied.  The return
229  * value can be stuffed directly into th->window for an outgoing
230  * frame.
231  */
232 static u16 tcp_select_window(struct sock *sk)
233 {
234 	struct tcp_sock *tp = tcp_sk(sk);
235 	u32 cur_win = tcp_receive_window(tp);
236 	u32 new_win = __tcp_select_window(sk);
237 
238 	/* Never shrink the offered window */
239 	if(new_win < cur_win) {
240 		/* Danger Will Robinson!
241 		 * Don't update rcv_wup/rcv_wnd here or else
242 		 * we will not be able to advertise a zero
243 		 * window in time.  --DaveM
244 		 *
245 		 * Relax Will Robinson.
246 		 */
247 		new_win = cur_win;
248 	}
249 	tp->rcv_wnd = new_win;
250 	tp->rcv_wup = tp->rcv_nxt;
251 
252 	/* Make sure we do not exceed the maximum possible
253 	 * scaled window.
254 	 */
255 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
256 		new_win = min(new_win, MAX_TCP_WINDOW);
257 	else
258 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
259 
260 	/* RFC1323 scaling applied */
261 	new_win >>= tp->rx_opt.rcv_wscale;
262 
263 	/* If we advertise zero window, disable fast path. */
264 	if (new_win == 0)
265 		tp->pred_flags = 0;
266 
267 	return new_win;
268 }
269 
270 static void tcp_build_and_update_options(__u32 *ptr, struct tcp_sock *tp,
271 					 __u32 tstamp)
272 {
273 	if (tp->rx_opt.tstamp_ok) {
274 		*ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
275 					  (TCPOPT_NOP << 16) |
276 					  (TCPOPT_TIMESTAMP << 8) |
277 					  TCPOLEN_TIMESTAMP);
278 		*ptr++ = htonl(tstamp);
279 		*ptr++ = htonl(tp->rx_opt.ts_recent);
280 	}
281 	if (tp->rx_opt.eff_sacks) {
282 		struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks;
283 		int this_sack;
284 
285 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
286 			       (TCPOPT_NOP  << 16) |
287 			       (TCPOPT_SACK <<  8) |
288 			       (TCPOLEN_SACK_BASE + (tp->rx_opt.eff_sacks *
289 						     TCPOLEN_SACK_PERBLOCK)));
290 		for(this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) {
291 			*ptr++ = htonl(sp[this_sack].start_seq);
292 			*ptr++ = htonl(sp[this_sack].end_seq);
293 		}
294 		if (tp->rx_opt.dsack) {
295 			tp->rx_opt.dsack = 0;
296 			tp->rx_opt.eff_sacks--;
297 		}
298 	}
299 }
300 
301 /* Construct a tcp options header for a SYN or SYN_ACK packet.
302  * If this is every changed make sure to change the definition of
303  * MAX_SYN_SIZE to match the new maximum number of options that you
304  * can generate.
305  */
306 static void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack,
307 				  int offer_wscale, int wscale, __u32 tstamp,
308 				  __u32 ts_recent)
309 {
310 	/* We always get an MSS option.
311 	 * The option bytes which will be seen in normal data
312 	 * packets should timestamps be used, must be in the MSS
313 	 * advertised.  But we subtract them from tp->mss_cache so
314 	 * that calculations in tcp_sendmsg are simpler etc.
315 	 * So account for this fact here if necessary.  If we
316 	 * don't do this correctly, as a receiver we won't
317 	 * recognize data packets as being full sized when we
318 	 * should, and thus we won't abide by the delayed ACK
319 	 * rules correctly.
320 	 * SACKs don't matter, we never delay an ACK when we
321 	 * have any of those going out.
322 	 */
323 	*ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
324 	if (ts) {
325 		if(sack)
326 			*ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) |
327 						  (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
328 		else
329 			*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
330 						  (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
331 		*ptr++ = htonl(tstamp);		/* TSVAL */
332 		*ptr++ = htonl(ts_recent);	/* TSECR */
333 	} else if(sack)
334 		*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
335 					  (TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM);
336 	if (offer_wscale)
337 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale));
338 }
339 
340 /* This routine actually transmits TCP packets queued in by
341  * tcp_do_sendmsg().  This is used by both the initial
342  * transmission and possible later retransmissions.
343  * All SKB's seen here are completely headerless.  It is our
344  * job to build the TCP header, and pass the packet down to
345  * IP so it can do the same plus pass the packet off to the
346  * device.
347  *
348  * We are working here with either a clone of the original
349  * SKB, or a fresh unique copy made by the retransmit engine.
350  */
351 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask)
352 {
353 	const struct inet_connection_sock *icsk = inet_csk(sk);
354 	struct inet_sock *inet;
355 	struct tcp_sock *tp;
356 	struct tcp_skb_cb *tcb;
357 	int tcp_header_size;
358 	struct tcphdr *th;
359 	int sysctl_flags;
360 	int err;
361 
362 	BUG_ON(!skb || !tcp_skb_pcount(skb));
363 
364 	/* If congestion control is doing timestamping, we must
365 	 * take such a timestamp before we potentially clone/copy.
366 	 */
367 	if (icsk->icsk_ca_ops->rtt_sample)
368 		__net_timestamp(skb);
369 
370 	if (likely(clone_it)) {
371 		if (unlikely(skb_cloned(skb)))
372 			skb = pskb_copy(skb, gfp_mask);
373 		else
374 			skb = skb_clone(skb, gfp_mask);
375 		if (unlikely(!skb))
376 			return -ENOBUFS;
377 	}
378 
379 	inet = inet_sk(sk);
380 	tp = tcp_sk(sk);
381 	tcb = TCP_SKB_CB(skb);
382 	tcp_header_size = tp->tcp_header_len;
383 
384 #define SYSCTL_FLAG_TSTAMPS	0x1
385 #define SYSCTL_FLAG_WSCALE	0x2
386 #define SYSCTL_FLAG_SACK	0x4
387 
388 	sysctl_flags = 0;
389 	if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
390 		tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
391 		if(sysctl_tcp_timestamps) {
392 			tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
393 			sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
394 		}
395 		if (sysctl_tcp_window_scaling) {
396 			tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
397 			sysctl_flags |= SYSCTL_FLAG_WSCALE;
398 		}
399 		if (sysctl_tcp_sack) {
400 			sysctl_flags |= SYSCTL_FLAG_SACK;
401 			if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
402 				tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
403 		}
404 	} else if (unlikely(tp->rx_opt.eff_sacks)) {
405 		/* A SACK is 2 pad bytes, a 2 byte header, plus
406 		 * 2 32-bit sequence numbers for each SACK block.
407 		 */
408 		tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
409 				    (tp->rx_opt.eff_sacks *
410 				     TCPOLEN_SACK_PERBLOCK));
411 	}
412 
413 	if (tcp_packets_in_flight(tp) == 0)
414 		tcp_ca_event(sk, CA_EVENT_TX_START);
415 
416 	th = (struct tcphdr *) skb_push(skb, tcp_header_size);
417 	skb->h.th = th;
418 	skb_set_owner_w(skb, sk);
419 
420 	/* Build TCP header and checksum it. */
421 	th->source		= inet->sport;
422 	th->dest		= inet->dport;
423 	th->seq			= htonl(tcb->seq);
424 	th->ack_seq		= htonl(tp->rcv_nxt);
425 	*(((__u16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
426 					tcb->flags);
427 
428 	if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
429 		/* RFC1323: The window in SYN & SYN/ACK segments
430 		 * is never scaled.
431 		 */
432 		th->window	= htons(tp->rcv_wnd);
433 	} else {
434 		th->window	= htons(tcp_select_window(sk));
435 	}
436 	th->check		= 0;
437 	th->urg_ptr		= 0;
438 
439 	if (unlikely(tp->urg_mode &&
440 		     between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF))) {
441 		th->urg_ptr		= htons(tp->snd_up-tcb->seq);
442 		th->urg			= 1;
443 	}
444 
445 	if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
446 		tcp_syn_build_options((__u32 *)(th + 1),
447 				      tcp_advertise_mss(sk),
448 				      (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
449 				      (sysctl_flags & SYSCTL_FLAG_SACK),
450 				      (sysctl_flags & SYSCTL_FLAG_WSCALE),
451 				      tp->rx_opt.rcv_wscale,
452 				      tcb->when,
453 				      tp->rx_opt.ts_recent);
454 	} else {
455 		tcp_build_and_update_options((__u32 *)(th + 1),
456 					     tp, tcb->when);
457 		TCP_ECN_send(sk, tp, skb, tcp_header_size);
458 	}
459 
460 	icsk->icsk_af_ops->send_check(sk, skb->len, skb);
461 
462 	if (likely(tcb->flags & TCPCB_FLAG_ACK))
463 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
464 
465 	if (skb->len != tcp_header_size)
466 		tcp_event_data_sent(tp, skb, sk);
467 
468 	TCP_INC_STATS(TCP_MIB_OUTSEGS);
469 
470 	err = icsk->icsk_af_ops->queue_xmit(skb, 0);
471 	if (unlikely(err <= 0))
472 		return err;
473 
474 	tcp_enter_cwr(sk);
475 
476 	/* NET_XMIT_CN is special. It does not guarantee,
477 	 * that this packet is lost. It tells that device
478 	 * is about to start to drop packets or already
479 	 * drops some packets of the same priority and
480 	 * invokes us to send less aggressively.
481 	 */
482 	return err == NET_XMIT_CN ? 0 : err;
483 
484 #undef SYSCTL_FLAG_TSTAMPS
485 #undef SYSCTL_FLAG_WSCALE
486 #undef SYSCTL_FLAG_SACK
487 }
488 
489 
490 /* This routine just queue's the buffer
491  *
492  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
493  * otherwise socket can stall.
494  */
495 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
496 {
497 	struct tcp_sock *tp = tcp_sk(sk);
498 
499 	/* Advance write_seq and place onto the write_queue. */
500 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
501 	skb_header_release(skb);
502 	__skb_queue_tail(&sk->sk_write_queue, skb);
503 	sk_charge_skb(sk, skb);
504 
505 	/* Queue it, remembering where we must start sending. */
506 	if (sk->sk_send_head == NULL)
507 		sk->sk_send_head = skb;
508 }
509 
510 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
511 {
512 	if (skb->len <= mss_now ||
513 	    !(sk->sk_route_caps & NETIF_F_TSO)) {
514 		/* Avoid the costly divide in the normal
515 		 * non-TSO case.
516 		 */
517 		skb_shinfo(skb)->tso_segs = 1;
518 		skb_shinfo(skb)->tso_size = 0;
519 	} else {
520 		unsigned int factor;
521 
522 		factor = skb->len + (mss_now - 1);
523 		factor /= mss_now;
524 		skb_shinfo(skb)->tso_segs = factor;
525 		skb_shinfo(skb)->tso_size = mss_now;
526 	}
527 }
528 
529 /* Function to create two new TCP segments.  Shrinks the given segment
530  * to the specified size and appends a new segment with the rest of the
531  * packet to the list.  This won't be called frequently, I hope.
532  * Remember, these are still headerless SKBs at this point.
533  */
534 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now)
535 {
536 	struct tcp_sock *tp = tcp_sk(sk);
537 	struct sk_buff *buff;
538 	int nsize, old_factor;
539 	u16 flags;
540 
541 	BUG_ON(len > skb->len);
542 
543  	clear_all_retrans_hints(tp);
544 	nsize = skb_headlen(skb) - len;
545 	if (nsize < 0)
546 		nsize = 0;
547 
548 	if (skb_cloned(skb) &&
549 	    skb_is_nonlinear(skb) &&
550 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
551 		return -ENOMEM;
552 
553 	/* Get a new skb... force flag on. */
554 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
555 	if (buff == NULL)
556 		return -ENOMEM; /* We'll just try again later. */
557 	sk_charge_skb(sk, buff);
558 
559 	/* Correct the sequence numbers. */
560 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
561 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
562 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
563 
564 	/* PSH and FIN should only be set in the second packet. */
565 	flags = TCP_SKB_CB(skb)->flags;
566 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
567 	TCP_SKB_CB(buff)->flags = flags;
568 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
569 	TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
570 
571 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
572 		/* Copy and checksum data tail into the new buffer. */
573 		buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
574 						       nsize, 0);
575 
576 		skb_trim(skb, len);
577 
578 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
579 	} else {
580 		skb->ip_summed = CHECKSUM_HW;
581 		skb_split(skb, buff, len);
582 	}
583 
584 	buff->ip_summed = skb->ip_summed;
585 
586 	/* Looks stupid, but our code really uses when of
587 	 * skbs, which it never sent before. --ANK
588 	 */
589 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
590 	buff->tstamp = skb->tstamp;
591 
592 	old_factor = tcp_skb_pcount(skb);
593 
594 	/* Fix up tso_factor for both original and new SKB.  */
595 	tcp_set_skb_tso_segs(sk, skb, mss_now);
596 	tcp_set_skb_tso_segs(sk, buff, mss_now);
597 
598 	/* If this packet has been sent out already, we must
599 	 * adjust the various packet counters.
600 	 */
601 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
602 		int diff = old_factor - tcp_skb_pcount(skb) -
603 			tcp_skb_pcount(buff);
604 
605 		tp->packets_out -= diff;
606 
607 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
608 			tp->sacked_out -= diff;
609 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
610 			tp->retrans_out -= diff;
611 
612 		if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
613 			tp->lost_out -= diff;
614 			tp->left_out -= diff;
615 		}
616 
617 		if (diff > 0) {
618 			/* Adjust Reno SACK estimate. */
619 			if (!tp->rx_opt.sack_ok) {
620 				tp->sacked_out -= diff;
621 				if ((int)tp->sacked_out < 0)
622 					tp->sacked_out = 0;
623 				tcp_sync_left_out(tp);
624 			}
625 
626 			tp->fackets_out -= diff;
627 			if ((int)tp->fackets_out < 0)
628 				tp->fackets_out = 0;
629 		}
630 	}
631 
632 	/* Link BUFF into the send queue. */
633 	skb_header_release(buff);
634 	__skb_append(skb, buff, &sk->sk_write_queue);
635 
636 	return 0;
637 }
638 
639 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
640  * eventually). The difference is that pulled data not copied, but
641  * immediately discarded.
642  */
643 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
644 {
645 	int i, k, eat;
646 
647 	eat = len;
648 	k = 0;
649 	for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
650 		if (skb_shinfo(skb)->frags[i].size <= eat) {
651 			put_page(skb_shinfo(skb)->frags[i].page);
652 			eat -= skb_shinfo(skb)->frags[i].size;
653 		} else {
654 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
655 			if (eat) {
656 				skb_shinfo(skb)->frags[k].page_offset += eat;
657 				skb_shinfo(skb)->frags[k].size -= eat;
658 				eat = 0;
659 			}
660 			k++;
661 		}
662 	}
663 	skb_shinfo(skb)->nr_frags = k;
664 
665 	skb->tail = skb->data;
666 	skb->data_len -= len;
667 	skb->len = skb->data_len;
668 	return skb->tail;
669 }
670 
671 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
672 {
673 	if (skb_cloned(skb) &&
674 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
675 		return -ENOMEM;
676 
677 	if (len <= skb_headlen(skb)) {
678 		__skb_pull(skb, len);
679 	} else {
680 		if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
681 			return -ENOMEM;
682 	}
683 
684 	TCP_SKB_CB(skb)->seq += len;
685 	skb->ip_summed = CHECKSUM_HW;
686 
687 	skb->truesize	     -= len;
688 	sk->sk_wmem_queued   -= len;
689 	sk->sk_forward_alloc += len;
690 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
691 
692 	/* Any change of skb->len requires recalculation of tso
693 	 * factor and mss.
694 	 */
695 	if (tcp_skb_pcount(skb) > 1)
696 		tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
697 
698 	return 0;
699 }
700 
701 /* Not accounting for SACKs here. */
702 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
703 {
704 	struct tcp_sock *tp = tcp_sk(sk);
705 	struct inet_connection_sock *icsk = inet_csk(sk);
706 	int mss_now;
707 
708 	/* Calculate base mss without TCP options:
709 	   It is MMS_S - sizeof(tcphdr) of rfc1122
710 	 */
711 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
712 
713 	/* Clamp it (mss_clamp does not include tcp options) */
714 	if (mss_now > tp->rx_opt.mss_clamp)
715 		mss_now = tp->rx_opt.mss_clamp;
716 
717 	/* Now subtract optional transport overhead */
718 	mss_now -= icsk->icsk_ext_hdr_len;
719 
720 	/* Then reserve room for full set of TCP options and 8 bytes of data */
721 	if (mss_now < 48)
722 		mss_now = 48;
723 
724 	/* Now subtract TCP options size, not including SACKs */
725 	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
726 
727 	return mss_now;
728 }
729 
730 /* Inverse of above */
731 int tcp_mss_to_mtu(struct sock *sk, int mss)
732 {
733 	struct tcp_sock *tp = tcp_sk(sk);
734 	struct inet_connection_sock *icsk = inet_csk(sk);
735 	int mtu;
736 
737 	mtu = mss +
738 	      tp->tcp_header_len +
739 	      icsk->icsk_ext_hdr_len +
740 	      icsk->icsk_af_ops->net_header_len;
741 
742 	return mtu;
743 }
744 
745 void tcp_mtup_init(struct sock *sk)
746 {
747 	struct tcp_sock *tp = tcp_sk(sk);
748 	struct inet_connection_sock *icsk = inet_csk(sk);
749 
750 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
751 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
752 	                       icsk->icsk_af_ops->net_header_len;
753 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
754 	icsk->icsk_mtup.probe_size = 0;
755 }
756 
757 /* This function synchronize snd mss to current pmtu/exthdr set.
758 
759    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
760    for TCP options, but includes only bare TCP header.
761 
762    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
763    It is minimum of user_mss and mss received with SYN.
764    It also does not include TCP options.
765 
766    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
767 
768    tp->mss_cache is current effective sending mss, including
769    all tcp options except for SACKs. It is evaluated,
770    taking into account current pmtu, but never exceeds
771    tp->rx_opt.mss_clamp.
772 
773    NOTE1. rfc1122 clearly states that advertised MSS
774    DOES NOT include either tcp or ip options.
775 
776    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
777    are READ ONLY outside this function.		--ANK (980731)
778  */
779 
780 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
781 {
782 	struct tcp_sock *tp = tcp_sk(sk);
783 	struct inet_connection_sock *icsk = inet_csk(sk);
784 	int mss_now;
785 
786 	if (icsk->icsk_mtup.search_high > pmtu)
787 		icsk->icsk_mtup.search_high = pmtu;
788 
789 	mss_now = tcp_mtu_to_mss(sk, pmtu);
790 
791 	/* Bound mss with half of window */
792 	if (tp->max_window && mss_now > (tp->max_window>>1))
793 		mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
794 
795 	/* And store cached results */
796 	icsk->icsk_pmtu_cookie = pmtu;
797 	if (icsk->icsk_mtup.enabled)
798 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
799 	tp->mss_cache = mss_now;
800 
801 	return mss_now;
802 }
803 
804 /* Compute the current effective MSS, taking SACKs and IP options,
805  * and even PMTU discovery events into account.
806  *
807  * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
808  * cannot be large. However, taking into account rare use of URG, this
809  * is not a big flaw.
810  */
811 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
812 {
813 	struct tcp_sock *tp = tcp_sk(sk);
814 	struct dst_entry *dst = __sk_dst_get(sk);
815 	u32 mss_now;
816 	u16 xmit_size_goal;
817 	int doing_tso = 0;
818 
819 	mss_now = tp->mss_cache;
820 
821 	if (large_allowed &&
822 	    (sk->sk_route_caps & NETIF_F_TSO) &&
823 	    !tp->urg_mode)
824 		doing_tso = 1;
825 
826 	if (dst) {
827 		u32 mtu = dst_mtu(dst);
828 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
829 			mss_now = tcp_sync_mss(sk, mtu);
830 	}
831 
832 	if (tp->rx_opt.eff_sacks)
833 		mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
834 			    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
835 
836 	xmit_size_goal = mss_now;
837 
838 	if (doing_tso) {
839 		xmit_size_goal = (65535 -
840 				  inet_csk(sk)->icsk_af_ops->net_header_len -
841 				  inet_csk(sk)->icsk_ext_hdr_len -
842 				  tp->tcp_header_len);
843 
844 		if (tp->max_window &&
845 		    (xmit_size_goal > (tp->max_window >> 1)))
846 			xmit_size_goal = max((tp->max_window >> 1),
847 					     68U - tp->tcp_header_len);
848 
849 		xmit_size_goal -= (xmit_size_goal % mss_now);
850 	}
851 	tp->xmit_size_goal = xmit_size_goal;
852 
853 	return mss_now;
854 }
855 
856 /* Congestion window validation. (RFC2861) */
857 
858 static void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
859 {
860 	__u32 packets_out = tp->packets_out;
861 
862 	if (packets_out >= tp->snd_cwnd) {
863 		/* Network is feed fully. */
864 		tp->snd_cwnd_used = 0;
865 		tp->snd_cwnd_stamp = tcp_time_stamp;
866 	} else {
867 		/* Network starves. */
868 		if (tp->packets_out > tp->snd_cwnd_used)
869 			tp->snd_cwnd_used = tp->packets_out;
870 
871 		if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
872 			tcp_cwnd_application_limited(sk);
873 	}
874 }
875 
876 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
877 {
878 	u32 window, cwnd_len;
879 
880 	window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
881 	cwnd_len = mss_now * cwnd;
882 	return min(window, cwnd_len);
883 }
884 
885 /* Can at least one segment of SKB be sent right now, according to the
886  * congestion window rules?  If so, return how many segments are allowed.
887  */
888 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
889 {
890 	u32 in_flight, cwnd;
891 
892 	/* Don't be strict about the congestion window for the final FIN.  */
893 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
894 		return 1;
895 
896 	in_flight = tcp_packets_in_flight(tp);
897 	cwnd = tp->snd_cwnd;
898 	if (in_flight < cwnd)
899 		return (cwnd - in_flight);
900 
901 	return 0;
902 }
903 
904 /* This must be invoked the first time we consider transmitting
905  * SKB onto the wire.
906  */
907 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
908 {
909 	int tso_segs = tcp_skb_pcount(skb);
910 
911 	if (!tso_segs ||
912 	    (tso_segs > 1 &&
913 	     skb_shinfo(skb)->tso_size != mss_now)) {
914 		tcp_set_skb_tso_segs(sk, skb, mss_now);
915 		tso_segs = tcp_skb_pcount(skb);
916 	}
917 	return tso_segs;
918 }
919 
920 static inline int tcp_minshall_check(const struct tcp_sock *tp)
921 {
922 	return after(tp->snd_sml,tp->snd_una) &&
923 		!after(tp->snd_sml, tp->snd_nxt);
924 }
925 
926 /* Return 0, if packet can be sent now without violation Nagle's rules:
927  * 1. It is full sized.
928  * 2. Or it contains FIN. (already checked by caller)
929  * 3. Or TCP_NODELAY was set.
930  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
931  *    With Minshall's modification: all sent small packets are ACKed.
932  */
933 
934 static inline int tcp_nagle_check(const struct tcp_sock *tp,
935 				  const struct sk_buff *skb,
936 				  unsigned mss_now, int nonagle)
937 {
938 	return (skb->len < mss_now &&
939 		((nonagle&TCP_NAGLE_CORK) ||
940 		 (!nonagle &&
941 		  tp->packets_out &&
942 		  tcp_minshall_check(tp))));
943 }
944 
945 /* Return non-zero if the Nagle test allows this packet to be
946  * sent now.
947  */
948 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
949 				 unsigned int cur_mss, int nonagle)
950 {
951 	/* Nagle rule does not apply to frames, which sit in the middle of the
952 	 * write_queue (they have no chances to get new data).
953 	 *
954 	 * This is implemented in the callers, where they modify the 'nonagle'
955 	 * argument based upon the location of SKB in the send queue.
956 	 */
957 	if (nonagle & TCP_NAGLE_PUSH)
958 		return 1;
959 
960 	/* Don't use the nagle rule for urgent data (or for the final FIN).  */
961 	if (tp->urg_mode ||
962 	    (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
963 		return 1;
964 
965 	if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
966 		return 1;
967 
968 	return 0;
969 }
970 
971 /* Does at least the first segment of SKB fit into the send window? */
972 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
973 {
974 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
975 
976 	if (skb->len > cur_mss)
977 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
978 
979 	return !after(end_seq, tp->snd_una + tp->snd_wnd);
980 }
981 
982 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
983  * should be put on the wire right now.  If so, it returns the number of
984  * packets allowed by the congestion window.
985  */
986 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
987 				 unsigned int cur_mss, int nonagle)
988 {
989 	struct tcp_sock *tp = tcp_sk(sk);
990 	unsigned int cwnd_quota;
991 
992 	tcp_init_tso_segs(sk, skb, cur_mss);
993 
994 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
995 		return 0;
996 
997 	cwnd_quota = tcp_cwnd_test(tp, skb);
998 	if (cwnd_quota &&
999 	    !tcp_snd_wnd_test(tp, skb, cur_mss))
1000 		cwnd_quota = 0;
1001 
1002 	return cwnd_quota;
1003 }
1004 
1005 static inline int tcp_skb_is_last(const struct sock *sk,
1006 				  const struct sk_buff *skb)
1007 {
1008 	return skb->next == (struct sk_buff *)&sk->sk_write_queue;
1009 }
1010 
1011 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
1012 {
1013 	struct sk_buff *skb = sk->sk_send_head;
1014 
1015 	return (skb &&
1016 		tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
1017 			     (tcp_skb_is_last(sk, skb) ?
1018 			      TCP_NAGLE_PUSH :
1019 			      tp->nonagle)));
1020 }
1021 
1022 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1023  * which is put after SKB on the list.  It is very much like
1024  * tcp_fragment() except that it may make several kinds of assumptions
1025  * in order to speed up the splitting operation.  In particular, we
1026  * know that all the data is in scatter-gather pages, and that the
1027  * packet has never been sent out before (and thus is not cloned).
1028  */
1029 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now)
1030 {
1031 	struct sk_buff *buff;
1032 	int nlen = skb->len - len;
1033 	u16 flags;
1034 
1035 	/* All of a TSO frame must be composed of paged data.  */
1036 	if (skb->len != skb->data_len)
1037 		return tcp_fragment(sk, skb, len, mss_now);
1038 
1039 	buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
1040 	if (unlikely(buff == NULL))
1041 		return -ENOMEM;
1042 
1043 	buff->truesize = nlen;
1044 	skb->truesize -= nlen;
1045 
1046 	/* Correct the sequence numbers. */
1047 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1048 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1049 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1050 
1051 	/* PSH and FIN should only be set in the second packet. */
1052 	flags = TCP_SKB_CB(skb)->flags;
1053 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1054 	TCP_SKB_CB(buff)->flags = flags;
1055 
1056 	/* This packet was never sent out yet, so no SACK bits. */
1057 	TCP_SKB_CB(buff)->sacked = 0;
1058 
1059 	buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
1060 	skb_split(skb, buff, len);
1061 
1062 	/* Fix up tso_factor for both original and new SKB.  */
1063 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1064 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1065 
1066 	/* Link BUFF into the send queue. */
1067 	skb_header_release(buff);
1068 	__skb_append(skb, buff, &sk->sk_write_queue);
1069 
1070 	return 0;
1071 }
1072 
1073 /* Try to defer sending, if possible, in order to minimize the amount
1074  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1075  *
1076  * This algorithm is from John Heffner.
1077  */
1078 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
1079 {
1080 	const struct inet_connection_sock *icsk = inet_csk(sk);
1081 	u32 send_win, cong_win, limit, in_flight;
1082 
1083 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
1084 		return 0;
1085 
1086 	if (icsk->icsk_ca_state != TCP_CA_Open)
1087 		return 0;
1088 
1089 	in_flight = tcp_packets_in_flight(tp);
1090 
1091 	BUG_ON(tcp_skb_pcount(skb) <= 1 ||
1092 	       (tp->snd_cwnd <= in_flight));
1093 
1094 	send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
1095 
1096 	/* From in_flight test above, we know that cwnd > in_flight.  */
1097 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1098 
1099 	limit = min(send_win, cong_win);
1100 
1101 	/* If a full-sized TSO skb can be sent, do it. */
1102 	if (limit >= 65536)
1103 		return 0;
1104 
1105 	if (sysctl_tcp_tso_win_divisor) {
1106 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1107 
1108 		/* If at least some fraction of a window is available,
1109 		 * just use it.
1110 		 */
1111 		chunk /= sysctl_tcp_tso_win_divisor;
1112 		if (limit >= chunk)
1113 			return 0;
1114 	} else {
1115 		/* Different approach, try not to defer past a single
1116 		 * ACK.  Receiver should ACK every other full sized
1117 		 * frame, so if we have space for more than 3 frames
1118 		 * then send now.
1119 		 */
1120 		if (limit > tcp_max_burst(tp) * tp->mss_cache)
1121 			return 0;
1122 	}
1123 
1124 	/* Ok, it looks like it is advisable to defer.  */
1125 	return 1;
1126 }
1127 
1128 /* Create a new MTU probe if we are ready.
1129  * Returns 0 if we should wait to probe (no cwnd available),
1130  *         1 if a probe was sent,
1131  *         -1 otherwise */
1132 static int tcp_mtu_probe(struct sock *sk)
1133 {
1134 	struct tcp_sock *tp = tcp_sk(sk);
1135 	struct inet_connection_sock *icsk = inet_csk(sk);
1136 	struct sk_buff *skb, *nskb, *next;
1137 	int len;
1138 	int probe_size;
1139 	unsigned int pif;
1140 	int copy;
1141 	int mss_now;
1142 
1143 	/* Not currently probing/verifying,
1144 	 * not in recovery,
1145 	 * have enough cwnd, and
1146 	 * not SACKing (the variable headers throw things off) */
1147 	if (!icsk->icsk_mtup.enabled ||
1148 	    icsk->icsk_mtup.probe_size ||
1149 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1150 	    tp->snd_cwnd < 11 ||
1151 	    tp->rx_opt.eff_sacks)
1152 		return -1;
1153 
1154 	/* Very simple search strategy: just double the MSS. */
1155 	mss_now = tcp_current_mss(sk, 0);
1156 	probe_size = 2*tp->mss_cache;
1157 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1158 		/* TODO: set timer for probe_converge_event */
1159 		return -1;
1160 	}
1161 
1162 	/* Have enough data in the send queue to probe? */
1163 	len = 0;
1164 	if ((skb = sk->sk_send_head) == NULL)
1165 		return -1;
1166 	while ((len += skb->len) < probe_size && !tcp_skb_is_last(sk, skb))
1167 		skb = skb->next;
1168 	if (len < probe_size)
1169 		return -1;
1170 
1171 	/* Receive window check. */
1172 	if (after(TCP_SKB_CB(skb)->seq + probe_size, tp->snd_una + tp->snd_wnd)) {
1173 		if (tp->snd_wnd < probe_size)
1174 			return -1;
1175 		else
1176 			return 0;
1177 	}
1178 
1179 	/* Do we need to wait to drain cwnd? */
1180 	pif = tcp_packets_in_flight(tp);
1181 	if (pif + 2 > tp->snd_cwnd) {
1182 		/* With no packets in flight, don't stall. */
1183 		if (pif == 0)
1184 			return -1;
1185 		else
1186 			return 0;
1187 	}
1188 
1189 	/* We're allowed to probe.  Build it now. */
1190 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1191 		return -1;
1192 	sk_charge_skb(sk, nskb);
1193 
1194 	skb = sk->sk_send_head;
1195 	__skb_insert(nskb, skb->prev, skb, &sk->sk_write_queue);
1196 	sk->sk_send_head = nskb;
1197 
1198 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1199 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1200 	TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
1201 	TCP_SKB_CB(nskb)->sacked = 0;
1202 	nskb->csum = 0;
1203 	if (skb->ip_summed == CHECKSUM_HW)
1204 		nskb->ip_summed = CHECKSUM_HW;
1205 
1206 	len = 0;
1207 	while (len < probe_size) {
1208 		next = skb->next;
1209 
1210 		copy = min_t(int, skb->len, probe_size - len);
1211 		if (nskb->ip_summed)
1212 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1213 		else
1214 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1215 			                 skb_put(nskb, copy), copy, nskb->csum);
1216 
1217 		if (skb->len <= copy) {
1218 			/* We've eaten all the data from this skb.
1219 			 * Throw it away. */
1220 			TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
1221 			__skb_unlink(skb, &sk->sk_write_queue);
1222 			sk_stream_free_skb(sk, skb);
1223 		} else {
1224 			TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
1225 			                           ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1226 			if (!skb_shinfo(skb)->nr_frags) {
1227 				skb_pull(skb, copy);
1228 				if (skb->ip_summed != CHECKSUM_HW)
1229 					skb->csum = csum_partial(skb->data, skb->len, 0);
1230 			} else {
1231 				__pskb_trim_head(skb, copy);
1232 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1233 			}
1234 			TCP_SKB_CB(skb)->seq += copy;
1235 		}
1236 
1237 		len += copy;
1238 		skb = next;
1239 	}
1240 	tcp_init_tso_segs(sk, nskb, nskb->len);
1241 
1242 	/* We're ready to send.  If this fails, the probe will
1243 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1244 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1245 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1246 		/* Decrement cwnd here because we are sending
1247 		* effectively two packets. */
1248 		tp->snd_cwnd--;
1249 		update_send_head(sk, tp, nskb);
1250 
1251 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1252 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1253 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1254 
1255 		return 1;
1256 	}
1257 
1258 	return -1;
1259 }
1260 
1261 
1262 /* This routine writes packets to the network.  It advances the
1263  * send_head.  This happens as incoming acks open up the remote
1264  * window for us.
1265  *
1266  * Returns 1, if no segments are in flight and we have queued segments, but
1267  * cannot send anything now because of SWS or another problem.
1268  */
1269 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
1270 {
1271 	struct tcp_sock *tp = tcp_sk(sk);
1272 	struct sk_buff *skb;
1273 	unsigned int tso_segs, sent_pkts;
1274 	int cwnd_quota;
1275 	int result;
1276 
1277 	/* If we are closed, the bytes will have to remain here.
1278 	 * In time closedown will finish, we empty the write queue and all
1279 	 * will be happy.
1280 	 */
1281 	if (unlikely(sk->sk_state == TCP_CLOSE))
1282 		return 0;
1283 
1284 	sent_pkts = 0;
1285 
1286 	/* Do MTU probing. */
1287 	if ((result = tcp_mtu_probe(sk)) == 0) {
1288 		return 0;
1289 	} else if (result > 0) {
1290 		sent_pkts = 1;
1291 	}
1292 
1293 	while ((skb = sk->sk_send_head)) {
1294 		unsigned int limit;
1295 
1296 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1297 		BUG_ON(!tso_segs);
1298 
1299 		cwnd_quota = tcp_cwnd_test(tp, skb);
1300 		if (!cwnd_quota)
1301 			break;
1302 
1303 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1304 			break;
1305 
1306 		if (tso_segs == 1) {
1307 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1308 						     (tcp_skb_is_last(sk, skb) ?
1309 						      nonagle : TCP_NAGLE_PUSH))))
1310 				break;
1311 		} else {
1312 			if (tcp_tso_should_defer(sk, tp, skb))
1313 				break;
1314 		}
1315 
1316 		limit = mss_now;
1317 		if (tso_segs > 1) {
1318 			limit = tcp_window_allows(tp, skb,
1319 						  mss_now, cwnd_quota);
1320 
1321 			if (skb->len < limit) {
1322 				unsigned int trim = skb->len % mss_now;
1323 
1324 				if (trim)
1325 					limit = skb->len - trim;
1326 			}
1327 		}
1328 
1329 		if (skb->len > limit &&
1330 		    unlikely(tso_fragment(sk, skb, limit, mss_now)))
1331 			break;
1332 
1333 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1334 
1335 		if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC)))
1336 			break;
1337 
1338 		/* Advance the send_head.  This one is sent out.
1339 		 * This call will increment packets_out.
1340 		 */
1341 		update_send_head(sk, tp, skb);
1342 
1343 		tcp_minshall_update(tp, mss_now, skb);
1344 		sent_pkts++;
1345 	}
1346 
1347 	if (likely(sent_pkts)) {
1348 		tcp_cwnd_validate(sk, tp);
1349 		return 0;
1350 	}
1351 	return !tp->packets_out && sk->sk_send_head;
1352 }
1353 
1354 /* Push out any pending frames which were held back due to
1355  * TCP_CORK or attempt at coalescing tiny packets.
1356  * The socket must be locked by the caller.
1357  */
1358 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
1359 			       unsigned int cur_mss, int nonagle)
1360 {
1361 	struct sk_buff *skb = sk->sk_send_head;
1362 
1363 	if (skb) {
1364 		if (tcp_write_xmit(sk, cur_mss, nonagle))
1365 			tcp_check_probe_timer(sk, tp);
1366 	}
1367 }
1368 
1369 /* Send _single_ skb sitting at the send head. This function requires
1370  * true push pending frames to setup probe timer etc.
1371  */
1372 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1373 {
1374 	struct tcp_sock *tp = tcp_sk(sk);
1375 	struct sk_buff *skb = sk->sk_send_head;
1376 	unsigned int tso_segs, cwnd_quota;
1377 
1378 	BUG_ON(!skb || skb->len < mss_now);
1379 
1380 	tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1381 	cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1382 
1383 	if (likely(cwnd_quota)) {
1384 		unsigned int limit;
1385 
1386 		BUG_ON(!tso_segs);
1387 
1388 		limit = mss_now;
1389 		if (tso_segs > 1) {
1390 			limit = tcp_window_allows(tp, skb,
1391 						  mss_now, cwnd_quota);
1392 
1393 			if (skb->len < limit) {
1394 				unsigned int trim = skb->len % mss_now;
1395 
1396 				if (trim)
1397 					limit = skb->len - trim;
1398 			}
1399 		}
1400 
1401 		if (skb->len > limit &&
1402 		    unlikely(tso_fragment(sk, skb, limit, mss_now)))
1403 			return;
1404 
1405 		/* Send it out now. */
1406 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1407 
1408 		if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) {
1409 			update_send_head(sk, tp, skb);
1410 			tcp_cwnd_validate(sk, tp);
1411 			return;
1412 		}
1413 	}
1414 }
1415 
1416 /* This function returns the amount that we can raise the
1417  * usable window based on the following constraints
1418  *
1419  * 1. The window can never be shrunk once it is offered (RFC 793)
1420  * 2. We limit memory per socket
1421  *
1422  * RFC 1122:
1423  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1424  *  RECV.NEXT + RCV.WIN fixed until:
1425  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1426  *
1427  * i.e. don't raise the right edge of the window until you can raise
1428  * it at least MSS bytes.
1429  *
1430  * Unfortunately, the recommended algorithm breaks header prediction,
1431  * since header prediction assumes th->window stays fixed.
1432  *
1433  * Strictly speaking, keeping th->window fixed violates the receiver
1434  * side SWS prevention criteria. The problem is that under this rule
1435  * a stream of single byte packets will cause the right side of the
1436  * window to always advance by a single byte.
1437  *
1438  * Of course, if the sender implements sender side SWS prevention
1439  * then this will not be a problem.
1440  *
1441  * BSD seems to make the following compromise:
1442  *
1443  *	If the free space is less than the 1/4 of the maximum
1444  *	space available and the free space is less than 1/2 mss,
1445  *	then set the window to 0.
1446  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1447  *	Otherwise, just prevent the window from shrinking
1448  *	and from being larger than the largest representable value.
1449  *
1450  * This prevents incremental opening of the window in the regime
1451  * where TCP is limited by the speed of the reader side taking
1452  * data out of the TCP receive queue. It does nothing about
1453  * those cases where the window is constrained on the sender side
1454  * because the pipeline is full.
1455  *
1456  * BSD also seems to "accidentally" limit itself to windows that are a
1457  * multiple of MSS, at least until the free space gets quite small.
1458  * This would appear to be a side effect of the mbuf implementation.
1459  * Combining these two algorithms results in the observed behavior
1460  * of having a fixed window size at almost all times.
1461  *
1462  * Below we obtain similar behavior by forcing the offered window to
1463  * a multiple of the mss when it is feasible to do so.
1464  *
1465  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1466  * Regular options like TIMESTAMP are taken into account.
1467  */
1468 u32 __tcp_select_window(struct sock *sk)
1469 {
1470 	struct inet_connection_sock *icsk = inet_csk(sk);
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 	/* MSS for the peer's data.  Previous versions used mss_clamp
1473 	 * here.  I don't know if the value based on our guesses
1474 	 * of peer's MSS is better for the performance.  It's more correct
1475 	 * but may be worse for the performance because of rcv_mss
1476 	 * fluctuations.  --SAW  1998/11/1
1477 	 */
1478 	int mss = icsk->icsk_ack.rcv_mss;
1479 	int free_space = tcp_space(sk);
1480 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1481 	int window;
1482 
1483 	if (mss > full_space)
1484 		mss = full_space;
1485 
1486 	if (free_space < full_space/2) {
1487 		icsk->icsk_ack.quick = 0;
1488 
1489 		if (tcp_memory_pressure)
1490 			tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1491 
1492 		if (free_space < mss)
1493 			return 0;
1494 	}
1495 
1496 	if (free_space > tp->rcv_ssthresh)
1497 		free_space = tp->rcv_ssthresh;
1498 
1499 	/* Don't do rounding if we are using window scaling, since the
1500 	 * scaled window will not line up with the MSS boundary anyway.
1501 	 */
1502 	window = tp->rcv_wnd;
1503 	if (tp->rx_opt.rcv_wscale) {
1504 		window = free_space;
1505 
1506 		/* Advertise enough space so that it won't get scaled away.
1507 		 * Import case: prevent zero window announcement if
1508 		 * 1<<rcv_wscale > mss.
1509 		 */
1510 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1511 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1512 				  << tp->rx_opt.rcv_wscale);
1513 	} else {
1514 		/* Get the largest window that is a nice multiple of mss.
1515 		 * Window clamp already applied above.
1516 		 * If our current window offering is within 1 mss of the
1517 		 * free space we just keep it. This prevents the divide
1518 		 * and multiply from happening most of the time.
1519 		 * We also don't do any window rounding when the free space
1520 		 * is too small.
1521 		 */
1522 		if (window <= free_space - mss || window > free_space)
1523 			window = (free_space/mss)*mss;
1524 	}
1525 
1526 	return window;
1527 }
1528 
1529 /* Attempt to collapse two adjacent SKB's during retransmission. */
1530 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1531 {
1532 	struct tcp_sock *tp = tcp_sk(sk);
1533 	struct sk_buff *next_skb = skb->next;
1534 
1535 	/* The first test we must make is that neither of these two
1536 	 * SKB's are still referenced by someone else.
1537 	 */
1538 	if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1539 		int skb_size = skb->len, next_skb_size = next_skb->len;
1540 		u16 flags = TCP_SKB_CB(skb)->flags;
1541 
1542 		/* Also punt if next skb has been SACK'd. */
1543 		if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1544 			return;
1545 
1546 		/* Next skb is out of window. */
1547 		if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1548 			return;
1549 
1550 		/* Punt if not enough space exists in the first SKB for
1551 		 * the data in the second, or the total combined payload
1552 		 * would exceed the MSS.
1553 		 */
1554 		if ((next_skb_size > skb_tailroom(skb)) ||
1555 		    ((skb_size + next_skb_size) > mss_now))
1556 			return;
1557 
1558 		BUG_ON(tcp_skb_pcount(skb) != 1 ||
1559 		       tcp_skb_pcount(next_skb) != 1);
1560 
1561 		/* changing transmit queue under us so clear hints */
1562 		clear_all_retrans_hints(tp);
1563 
1564 		/* Ok.	We will be able to collapse the packet. */
1565 		__skb_unlink(next_skb, &sk->sk_write_queue);
1566 
1567 		memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1568 
1569 		if (next_skb->ip_summed == CHECKSUM_HW)
1570 			skb->ip_summed = CHECKSUM_HW;
1571 
1572 		if (skb->ip_summed != CHECKSUM_HW)
1573 			skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1574 
1575 		/* Update sequence range on original skb. */
1576 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1577 
1578 		/* Merge over control information. */
1579 		flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1580 		TCP_SKB_CB(skb)->flags = flags;
1581 
1582 		/* All done, get rid of second SKB and account for it so
1583 		 * packet counting does not break.
1584 		 */
1585 		TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1586 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1587 			tp->retrans_out -= tcp_skb_pcount(next_skb);
1588 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1589 			tp->lost_out -= tcp_skb_pcount(next_skb);
1590 			tp->left_out -= tcp_skb_pcount(next_skb);
1591 		}
1592 		/* Reno case is special. Sigh... */
1593 		if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1594 			tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1595 			tp->left_out -= tcp_skb_pcount(next_skb);
1596 		}
1597 
1598 		/* Not quite right: it can be > snd.fack, but
1599 		 * it is better to underestimate fackets.
1600 		 */
1601 		tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1602 		tcp_packets_out_dec(tp, next_skb);
1603 		sk_stream_free_skb(sk, next_skb);
1604 	}
1605 }
1606 
1607 /* Do a simple retransmit without using the backoff mechanisms in
1608  * tcp_timer. This is used for path mtu discovery.
1609  * The socket is already locked here.
1610  */
1611 void tcp_simple_retransmit(struct sock *sk)
1612 {
1613 	const struct inet_connection_sock *icsk = inet_csk(sk);
1614 	struct tcp_sock *tp = tcp_sk(sk);
1615 	struct sk_buff *skb;
1616 	unsigned int mss = tcp_current_mss(sk, 0);
1617 	int lost = 0;
1618 
1619 	sk_stream_for_retrans_queue(skb, sk) {
1620 		if (skb->len > mss &&
1621 		    !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1622 			if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1623 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1624 				tp->retrans_out -= tcp_skb_pcount(skb);
1625 			}
1626 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1627 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1628 				tp->lost_out += tcp_skb_pcount(skb);
1629 				lost = 1;
1630 			}
1631 		}
1632 	}
1633 
1634 	clear_all_retrans_hints(tp);
1635 
1636 	if (!lost)
1637 		return;
1638 
1639 	tcp_sync_left_out(tp);
1640 
1641  	/* Don't muck with the congestion window here.
1642 	 * Reason is that we do not increase amount of _data_
1643 	 * in network, but units changed and effective
1644 	 * cwnd/ssthresh really reduced now.
1645 	 */
1646 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
1647 		tp->high_seq = tp->snd_nxt;
1648 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
1649 		tp->prior_ssthresh = 0;
1650 		tp->undo_marker = 0;
1651 		tcp_set_ca_state(sk, TCP_CA_Loss);
1652 	}
1653 	tcp_xmit_retransmit_queue(sk);
1654 }
1655 
1656 /* This retransmits one SKB.  Policy decisions and retransmit queue
1657  * state updates are done by the caller.  Returns non-zero if an
1658  * error occurred which prevented the send.
1659  */
1660 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1661 {
1662 	struct tcp_sock *tp = tcp_sk(sk);
1663 	struct inet_connection_sock *icsk = inet_csk(sk);
1664  	unsigned int cur_mss = tcp_current_mss(sk, 0);
1665 	int err;
1666 
1667 	/* Inconslusive MTU probe */
1668 	if (icsk->icsk_mtup.probe_size) {
1669 		icsk->icsk_mtup.probe_size = 0;
1670 	}
1671 
1672 	/* Do not sent more than we queued. 1/4 is reserved for possible
1673 	 * copying overhead: fragmentation, tunneling, mangling etc.
1674 	 */
1675 	if (atomic_read(&sk->sk_wmem_alloc) >
1676 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1677 		return -EAGAIN;
1678 
1679 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1680 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1681 			BUG();
1682 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1683 			return -ENOMEM;
1684 	}
1685 
1686 	/* If receiver has shrunk his window, and skb is out of
1687 	 * new window, do not retransmit it. The exception is the
1688 	 * case, when window is shrunk to zero. In this case
1689 	 * our retransmit serves as a zero window probe.
1690 	 */
1691 	if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1692 	    && TCP_SKB_CB(skb)->seq != tp->snd_una)
1693 		return -EAGAIN;
1694 
1695 	if (skb->len > cur_mss) {
1696 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1697 			return -ENOMEM; /* We'll try again later. */
1698 	}
1699 
1700 	/* Collapse two adjacent packets if worthwhile and we can. */
1701 	if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1702 	   (skb->len < (cur_mss >> 1)) &&
1703 	   (skb->next != sk->sk_send_head) &&
1704 	   (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1705 	   (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1706 	   (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1707 	   (sysctl_tcp_retrans_collapse != 0))
1708 		tcp_retrans_try_collapse(sk, skb, cur_mss);
1709 
1710 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
1711 		return -EHOSTUNREACH; /* Routing failure or similar. */
1712 
1713 	/* Some Solaris stacks overoptimize and ignore the FIN on a
1714 	 * retransmit when old data is attached.  So strip it off
1715 	 * since it is cheap to do so and saves bytes on the network.
1716 	 */
1717 	if(skb->len > 0 &&
1718 	   (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1719 	   tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1720 		if (!pskb_trim(skb, 0)) {
1721 			TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1722 			skb_shinfo(skb)->tso_segs = 1;
1723 			skb_shinfo(skb)->tso_size = 0;
1724 			skb->ip_summed = CHECKSUM_NONE;
1725 			skb->csum = 0;
1726 		}
1727 	}
1728 
1729 	/* Make a copy, if the first transmission SKB clone we made
1730 	 * is still in somebody's hands, else make a clone.
1731 	 */
1732 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1733 
1734 	err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1735 
1736 	if (err == 0) {
1737 		/* Update global TCP statistics. */
1738 		TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1739 
1740 		tp->total_retrans++;
1741 
1742 #if FASTRETRANS_DEBUG > 0
1743 		if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1744 			if (net_ratelimit())
1745 				printk(KERN_DEBUG "retrans_out leaked.\n");
1746 		}
1747 #endif
1748 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1749 		tp->retrans_out += tcp_skb_pcount(skb);
1750 
1751 		/* Save stamp of the first retransmit. */
1752 		if (!tp->retrans_stamp)
1753 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1754 
1755 		tp->undo_retrans++;
1756 
1757 		/* snd_nxt is stored to detect loss of retransmitted segment,
1758 		 * see tcp_input.c tcp_sacktag_write_queue().
1759 		 */
1760 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1761 	}
1762 	return err;
1763 }
1764 
1765 /* This gets called after a retransmit timeout, and the initially
1766  * retransmitted data is acknowledged.  It tries to continue
1767  * resending the rest of the retransmit queue, until either
1768  * we've sent it all or the congestion window limit is reached.
1769  * If doing SACK, the first ACK which comes back for a timeout
1770  * based retransmit packet might feed us FACK information again.
1771  * If so, we use it to avoid unnecessarily retransmissions.
1772  */
1773 void tcp_xmit_retransmit_queue(struct sock *sk)
1774 {
1775 	const struct inet_connection_sock *icsk = inet_csk(sk);
1776 	struct tcp_sock *tp = tcp_sk(sk);
1777 	struct sk_buff *skb;
1778 	int packet_cnt;
1779 
1780 	if (tp->retransmit_skb_hint) {
1781 		skb = tp->retransmit_skb_hint;
1782 		packet_cnt = tp->retransmit_cnt_hint;
1783 	}else{
1784 		skb = sk->sk_write_queue.next;
1785 		packet_cnt = 0;
1786 	}
1787 
1788 	/* First pass: retransmit lost packets. */
1789 	if (tp->lost_out) {
1790 		sk_stream_for_retrans_queue_from(skb, sk) {
1791 			__u8 sacked = TCP_SKB_CB(skb)->sacked;
1792 
1793 			/* we could do better than to assign each time */
1794 			tp->retransmit_skb_hint = skb;
1795 			tp->retransmit_cnt_hint = packet_cnt;
1796 
1797 			/* Assume this retransmit will generate
1798 			 * only one packet for congestion window
1799 			 * calculation purposes.  This works because
1800 			 * tcp_retransmit_skb() will chop up the
1801 			 * packet to be MSS sized and all the
1802 			 * packet counting works out.
1803 			 */
1804 			if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1805 				return;
1806 
1807 			if (sacked & TCPCB_LOST) {
1808 				if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1809 					if (tcp_retransmit_skb(sk, skb)) {
1810 						tp->retransmit_skb_hint = NULL;
1811 						return;
1812 					}
1813 					if (icsk->icsk_ca_state != TCP_CA_Loss)
1814 						NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1815 					else
1816 						NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1817 
1818 					if (skb ==
1819 					    skb_peek(&sk->sk_write_queue))
1820 						inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1821 									  inet_csk(sk)->icsk_rto,
1822 									  TCP_RTO_MAX);
1823 				}
1824 
1825 				packet_cnt += tcp_skb_pcount(skb);
1826 				if (packet_cnt >= tp->lost_out)
1827 					break;
1828 			}
1829 		}
1830 	}
1831 
1832 	/* OK, demanded retransmission is finished. */
1833 
1834 	/* Forward retransmissions are possible only during Recovery. */
1835 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
1836 		return;
1837 
1838 	/* No forward retransmissions in Reno are possible. */
1839 	if (!tp->rx_opt.sack_ok)
1840 		return;
1841 
1842 	/* Yeah, we have to make difficult choice between forward transmission
1843 	 * and retransmission... Both ways have their merits...
1844 	 *
1845 	 * For now we do not retransmit anything, while we have some new
1846 	 * segments to send.
1847 	 */
1848 
1849 	if (tcp_may_send_now(sk, tp))
1850 		return;
1851 
1852 	if (tp->forward_skb_hint) {
1853 		skb = tp->forward_skb_hint;
1854 		packet_cnt = tp->forward_cnt_hint;
1855 	} else{
1856 		skb = sk->sk_write_queue.next;
1857 		packet_cnt = 0;
1858 	}
1859 
1860 	sk_stream_for_retrans_queue_from(skb, sk) {
1861 		tp->forward_cnt_hint = packet_cnt;
1862 		tp->forward_skb_hint = skb;
1863 
1864 		/* Similar to the retransmit loop above we
1865 		 * can pretend that the retransmitted SKB
1866 		 * we send out here will be composed of one
1867 		 * real MSS sized packet because tcp_retransmit_skb()
1868 		 * will fragment it if necessary.
1869 		 */
1870 		if (++packet_cnt > tp->fackets_out)
1871 			break;
1872 
1873 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1874 			break;
1875 
1876 		if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1877 			continue;
1878 
1879 		/* Ok, retransmit it. */
1880 		if (tcp_retransmit_skb(sk, skb)) {
1881 			tp->forward_skb_hint = NULL;
1882 			break;
1883 		}
1884 
1885 		if (skb == skb_peek(&sk->sk_write_queue))
1886 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1887 						  inet_csk(sk)->icsk_rto,
1888 						  TCP_RTO_MAX);
1889 
1890 		NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1891 	}
1892 }
1893 
1894 
1895 /* Send a fin.  The caller locks the socket for us.  This cannot be
1896  * allowed to fail queueing a FIN frame under any circumstances.
1897  */
1898 void tcp_send_fin(struct sock *sk)
1899 {
1900 	struct tcp_sock *tp = tcp_sk(sk);
1901 	struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1902 	int mss_now;
1903 
1904 	/* Optimization, tack on the FIN if we have a queue of
1905 	 * unsent frames.  But be careful about outgoing SACKS
1906 	 * and IP options.
1907 	 */
1908 	mss_now = tcp_current_mss(sk, 1);
1909 
1910 	if (sk->sk_send_head != NULL) {
1911 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1912 		TCP_SKB_CB(skb)->end_seq++;
1913 		tp->write_seq++;
1914 	} else {
1915 		/* Socket is locked, keep trying until memory is available. */
1916 		for (;;) {
1917 			skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
1918 			if (skb)
1919 				break;
1920 			yield();
1921 		}
1922 
1923 		/* Reserve space for headers and prepare control bits. */
1924 		skb_reserve(skb, MAX_TCP_HEADER);
1925 		skb->csum = 0;
1926 		TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1927 		TCP_SKB_CB(skb)->sacked = 0;
1928 		skb_shinfo(skb)->tso_segs = 1;
1929 		skb_shinfo(skb)->tso_size = 0;
1930 
1931 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1932 		TCP_SKB_CB(skb)->seq = tp->write_seq;
1933 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1934 		tcp_queue_skb(sk, skb);
1935 	}
1936 	__tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1937 }
1938 
1939 /* We get here when a process closes a file descriptor (either due to
1940  * an explicit close() or as a byproduct of exit()'ing) and there
1941  * was unread data in the receive queue.  This behavior is recommended
1942  * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM
1943  */
1944 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
1945 {
1946 	struct tcp_sock *tp = tcp_sk(sk);
1947 	struct sk_buff *skb;
1948 
1949 	/* NOTE: No TCP options attached and we never retransmit this. */
1950 	skb = alloc_skb(MAX_TCP_HEADER, priority);
1951 	if (!skb) {
1952 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1953 		return;
1954 	}
1955 
1956 	/* Reserve space for headers and prepare control bits. */
1957 	skb_reserve(skb, MAX_TCP_HEADER);
1958 	skb->csum = 0;
1959 	TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1960 	TCP_SKB_CB(skb)->sacked = 0;
1961 	skb_shinfo(skb)->tso_segs = 1;
1962 	skb_shinfo(skb)->tso_size = 0;
1963 
1964 	/* Send it off. */
1965 	TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1966 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1967 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1968 	if (tcp_transmit_skb(sk, skb, 0, priority))
1969 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1970 }
1971 
1972 /* WARNING: This routine must only be called when we have already sent
1973  * a SYN packet that crossed the incoming SYN that caused this routine
1974  * to get called. If this assumption fails then the initial rcv_wnd
1975  * and rcv_wscale values will not be correct.
1976  */
1977 int tcp_send_synack(struct sock *sk)
1978 {
1979 	struct sk_buff* skb;
1980 
1981 	skb = skb_peek(&sk->sk_write_queue);
1982 	if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1983 		printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1984 		return -EFAULT;
1985 	}
1986 	if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1987 		if (skb_cloned(skb)) {
1988 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1989 			if (nskb == NULL)
1990 				return -ENOMEM;
1991 			__skb_unlink(skb, &sk->sk_write_queue);
1992 			skb_header_release(nskb);
1993 			__skb_queue_head(&sk->sk_write_queue, nskb);
1994 			sk_stream_free_skb(sk, skb);
1995 			sk_charge_skb(sk, nskb);
1996 			skb = nskb;
1997 		}
1998 
1999 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
2000 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2001 	}
2002 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2003 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2004 }
2005 
2006 /*
2007  * Prepare a SYN-ACK.
2008  */
2009 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2010 				 struct request_sock *req)
2011 {
2012 	struct inet_request_sock *ireq = inet_rsk(req);
2013 	struct tcp_sock *tp = tcp_sk(sk);
2014 	struct tcphdr *th;
2015 	int tcp_header_size;
2016 	struct sk_buff *skb;
2017 
2018 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2019 	if (skb == NULL)
2020 		return NULL;
2021 
2022 	/* Reserve space for headers. */
2023 	skb_reserve(skb, MAX_TCP_HEADER);
2024 
2025 	skb->dst = dst_clone(dst);
2026 
2027 	tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
2028 			   (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
2029 			   (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
2030 			   /* SACK_PERM is in the place of NOP NOP of TS */
2031 			   ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
2032 	skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
2033 
2034 	memset(th, 0, sizeof(struct tcphdr));
2035 	th->syn = 1;
2036 	th->ack = 1;
2037 	if (dst->dev->features&NETIF_F_TSO)
2038 		ireq->ecn_ok = 0;
2039 	TCP_ECN_make_synack(req, th);
2040 	th->source = inet_sk(sk)->sport;
2041 	th->dest = ireq->rmt_port;
2042 	TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
2043 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
2044 	TCP_SKB_CB(skb)->sacked = 0;
2045 	skb_shinfo(skb)->tso_segs = 1;
2046 	skb_shinfo(skb)->tso_size = 0;
2047 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2048 	th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2049 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2050 		__u8 rcv_wscale;
2051 		/* Set this up on the first call only */
2052 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2053 		/* tcp_full_space because it is guaranteed to be the first packet */
2054 		tcp_select_initial_window(tcp_full_space(sk),
2055 			dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2056 			&req->rcv_wnd,
2057 			&req->window_clamp,
2058 			ireq->wscale_ok,
2059 			&rcv_wscale);
2060 		ireq->rcv_wscale = rcv_wscale;
2061 	}
2062 
2063 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2064 	th->window = htons(req->rcv_wnd);
2065 
2066 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2067 	tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
2068 			      ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
2069 			      TCP_SKB_CB(skb)->when,
2070 			      req->ts_recent);
2071 
2072 	skb->csum = 0;
2073 	th->doff = (tcp_header_size >> 2);
2074 	TCP_INC_STATS(TCP_MIB_OUTSEGS);
2075 	return skb;
2076 }
2077 
2078 /*
2079  * Do all connect socket setups that can be done AF independent.
2080  */
2081 static void tcp_connect_init(struct sock *sk)
2082 {
2083 	struct dst_entry *dst = __sk_dst_get(sk);
2084 	struct tcp_sock *tp = tcp_sk(sk);
2085 	__u8 rcv_wscale;
2086 
2087 	/* We'll fix this up when we get a response from the other end.
2088 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2089 	 */
2090 	tp->tcp_header_len = sizeof(struct tcphdr) +
2091 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2092 
2093 	/* If user gave his TCP_MAXSEG, record it to clamp */
2094 	if (tp->rx_opt.user_mss)
2095 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2096 	tp->max_window = 0;
2097 	tcp_mtup_init(sk);
2098 	tcp_sync_mss(sk, dst_mtu(dst));
2099 
2100 	if (!tp->window_clamp)
2101 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2102 	tp->advmss = dst_metric(dst, RTAX_ADVMSS);
2103 	tcp_initialize_rcv_mss(sk);
2104 
2105 	tcp_select_initial_window(tcp_full_space(sk),
2106 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2107 				  &tp->rcv_wnd,
2108 				  &tp->window_clamp,
2109 				  sysctl_tcp_window_scaling,
2110 				  &rcv_wscale);
2111 
2112 	tp->rx_opt.rcv_wscale = rcv_wscale;
2113 	tp->rcv_ssthresh = tp->rcv_wnd;
2114 
2115 	sk->sk_err = 0;
2116 	sock_reset_flag(sk, SOCK_DONE);
2117 	tp->snd_wnd = 0;
2118 	tcp_init_wl(tp, tp->write_seq, 0);
2119 	tp->snd_una = tp->write_seq;
2120 	tp->snd_sml = tp->write_seq;
2121 	tp->rcv_nxt = 0;
2122 	tp->rcv_wup = 0;
2123 	tp->copied_seq = 0;
2124 
2125 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2126 	inet_csk(sk)->icsk_retransmits = 0;
2127 	tcp_clear_retrans(tp);
2128 }
2129 
2130 /*
2131  * Build a SYN and send it off.
2132  */
2133 int tcp_connect(struct sock *sk)
2134 {
2135 	struct tcp_sock *tp = tcp_sk(sk);
2136 	struct sk_buff *buff;
2137 
2138 	tcp_connect_init(sk);
2139 
2140 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2141 	if (unlikely(buff == NULL))
2142 		return -ENOBUFS;
2143 
2144 	/* Reserve space for headers. */
2145 	skb_reserve(buff, MAX_TCP_HEADER);
2146 
2147 	TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
2148 	TCP_ECN_send_syn(sk, tp, buff);
2149 	TCP_SKB_CB(buff)->sacked = 0;
2150 	skb_shinfo(buff)->tso_segs = 1;
2151 	skb_shinfo(buff)->tso_size = 0;
2152 	buff->csum = 0;
2153 	TCP_SKB_CB(buff)->seq = tp->write_seq++;
2154 	TCP_SKB_CB(buff)->end_seq = tp->write_seq;
2155 	tp->snd_nxt = tp->write_seq;
2156 	tp->pushed_seq = tp->write_seq;
2157 
2158 	/* Send it off. */
2159 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
2160 	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2161 	skb_header_release(buff);
2162 	__skb_queue_tail(&sk->sk_write_queue, buff);
2163 	sk_charge_skb(sk, buff);
2164 	tp->packets_out += tcp_skb_pcount(buff);
2165 	tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);
2166 	TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
2167 
2168 	/* Timer for repeating the SYN until an answer. */
2169 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2170 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2171 	return 0;
2172 }
2173 
2174 /* Send out a delayed ack, the caller does the policy checking
2175  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
2176  * for details.
2177  */
2178 void tcp_send_delayed_ack(struct sock *sk)
2179 {
2180 	struct inet_connection_sock *icsk = inet_csk(sk);
2181 	int ato = icsk->icsk_ack.ato;
2182 	unsigned long timeout;
2183 
2184 	if (ato > TCP_DELACK_MIN) {
2185 		const struct tcp_sock *tp = tcp_sk(sk);
2186 		int max_ato = HZ/2;
2187 
2188 		if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2189 			max_ato = TCP_DELACK_MAX;
2190 
2191 		/* Slow path, intersegment interval is "high". */
2192 
2193 		/* If some rtt estimate is known, use it to bound delayed ack.
2194 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2195 		 * directly.
2196 		 */
2197 		if (tp->srtt) {
2198 			int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
2199 
2200 			if (rtt < max_ato)
2201 				max_ato = rtt;
2202 		}
2203 
2204 		ato = min(ato, max_ato);
2205 	}
2206 
2207 	/* Stay within the limit we were given */
2208 	timeout = jiffies + ato;
2209 
2210 	/* Use new timeout only if there wasn't a older one earlier. */
2211 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2212 		/* If delack timer was blocked or is about to expire,
2213 		 * send ACK now.
2214 		 */
2215 		if (icsk->icsk_ack.blocked ||
2216 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2217 			tcp_send_ack(sk);
2218 			return;
2219 		}
2220 
2221 		if (!time_before(timeout, icsk->icsk_ack.timeout))
2222 			timeout = icsk->icsk_ack.timeout;
2223 	}
2224 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2225 	icsk->icsk_ack.timeout = timeout;
2226 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2227 }
2228 
2229 /* This routine sends an ack and also updates the window. */
2230 void tcp_send_ack(struct sock *sk)
2231 {
2232 	/* If we have been reset, we may not send again. */
2233 	if (sk->sk_state != TCP_CLOSE) {
2234 		struct tcp_sock *tp = tcp_sk(sk);
2235 		struct sk_buff *buff;
2236 
2237 		/* We are not putting this on the write queue, so
2238 		 * tcp_transmit_skb() will set the ownership to this
2239 		 * sock.
2240 		 */
2241 		buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2242 		if (buff == NULL) {
2243 			inet_csk_schedule_ack(sk);
2244 			inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2245 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2246 						  TCP_DELACK_MAX, TCP_RTO_MAX);
2247 			return;
2248 		}
2249 
2250 		/* Reserve space for headers and prepare control bits. */
2251 		skb_reserve(buff, MAX_TCP_HEADER);
2252 		buff->csum = 0;
2253 		TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
2254 		TCP_SKB_CB(buff)->sacked = 0;
2255 		skb_shinfo(buff)->tso_segs = 1;
2256 		skb_shinfo(buff)->tso_size = 0;
2257 
2258 		/* Send it off, this clears delayed acks for us. */
2259 		TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
2260 		TCP_SKB_CB(buff)->when = tcp_time_stamp;
2261 		tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2262 	}
2263 }
2264 
2265 /* This routine sends a packet with an out of date sequence
2266  * number. It assumes the other end will try to ack it.
2267  *
2268  * Question: what should we make while urgent mode?
2269  * 4.4BSD forces sending single byte of data. We cannot send
2270  * out of window data, because we have SND.NXT==SND.MAX...
2271  *
2272  * Current solution: to send TWO zero-length segments in urgent mode:
2273  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2274  * out-of-date with SND.UNA-1 to probe window.
2275  */
2276 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2277 {
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 	struct sk_buff *skb;
2280 
2281 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
2282 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2283 	if (skb == NULL)
2284 		return -1;
2285 
2286 	/* Reserve space for headers and set control bits. */
2287 	skb_reserve(skb, MAX_TCP_HEADER);
2288 	skb->csum = 0;
2289 	TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
2290 	TCP_SKB_CB(skb)->sacked = urgent;
2291 	skb_shinfo(skb)->tso_segs = 1;
2292 	skb_shinfo(skb)->tso_size = 0;
2293 
2294 	/* Use a previous sequence.  This should cause the other
2295 	 * end to send an ack.  Don't queue or clone SKB, just
2296 	 * send it.
2297 	 */
2298 	TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
2299 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
2300 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2301 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2302 }
2303 
2304 int tcp_write_wakeup(struct sock *sk)
2305 {
2306 	if (sk->sk_state != TCP_CLOSE) {
2307 		struct tcp_sock *tp = tcp_sk(sk);
2308 		struct sk_buff *skb;
2309 
2310 		if ((skb = sk->sk_send_head) != NULL &&
2311 		    before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
2312 			int err;
2313 			unsigned int mss = tcp_current_mss(sk, 0);
2314 			unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
2315 
2316 			if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2317 				tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2318 
2319 			/* We are probing the opening of a window
2320 			 * but the window size is != 0
2321 			 * must have been a result SWS avoidance ( sender )
2322 			 */
2323 			if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2324 			    skb->len > mss) {
2325 				seg_size = min(seg_size, mss);
2326 				TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2327 				if (tcp_fragment(sk, skb, seg_size, mss))
2328 					return -1;
2329 			} else if (!tcp_skb_pcount(skb))
2330 				tcp_set_skb_tso_segs(sk, skb, mss);
2331 
2332 			TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2333 			TCP_SKB_CB(skb)->when = tcp_time_stamp;
2334 			err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2335 			if (!err) {
2336 				update_send_head(sk, tp, skb);
2337 			}
2338 			return err;
2339 		} else {
2340 			if (tp->urg_mode &&
2341 			    between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
2342 				tcp_xmit_probe_skb(sk, TCPCB_URG);
2343 			return tcp_xmit_probe_skb(sk, 0);
2344 		}
2345 	}
2346 	return -1;
2347 }
2348 
2349 /* A window probe timeout has occurred.  If window is not closed send
2350  * a partial packet else a zero probe.
2351  */
2352 void tcp_send_probe0(struct sock *sk)
2353 {
2354 	struct inet_connection_sock *icsk = inet_csk(sk);
2355 	struct tcp_sock *tp = tcp_sk(sk);
2356 	int err;
2357 
2358 	err = tcp_write_wakeup(sk);
2359 
2360 	if (tp->packets_out || !sk->sk_send_head) {
2361 		/* Cancel probe timer, if it is not required. */
2362 		icsk->icsk_probes_out = 0;
2363 		icsk->icsk_backoff = 0;
2364 		return;
2365 	}
2366 
2367 	if (err <= 0) {
2368 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
2369 			icsk->icsk_backoff++;
2370 		icsk->icsk_probes_out++;
2371 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2372 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2373 					  TCP_RTO_MAX);
2374 	} else {
2375 		/* If packet was not sent due to local congestion,
2376 		 * do not backoff and do not remember icsk_probes_out.
2377 		 * Let local senders to fight for local resources.
2378 		 *
2379 		 * Use accumulated backoff yet.
2380 		 */
2381 		if (!icsk->icsk_probes_out)
2382 			icsk->icsk_probes_out = 1;
2383 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2384 					  min(icsk->icsk_rto << icsk->icsk_backoff,
2385 					      TCP_RESOURCE_PROBE_INTERVAL),
2386 					  TCP_RTO_MAX);
2387 	}
2388 }
2389 
2390 EXPORT_SYMBOL(tcp_connect);
2391 EXPORT_SYMBOL(tcp_make_synack);
2392 EXPORT_SYMBOL(tcp_simple_retransmit);
2393 EXPORT_SYMBOL(tcp_sync_mss);
2394 EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor);
2395 EXPORT_SYMBOL(tcp_mtup_init);
2396