1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: Pedro Roque : Retransmit queue handled by TCP. 25 * : Fragmentation on mtu decrease 26 * : Segment collapse on retransmit 27 * : AF independence 28 * 29 * Linus Torvalds : send_delayed_ack 30 * David S. Miller : Charge memory using the right skb 31 * during syn/ack processing. 32 * David S. Miller : Output engine completely rewritten. 33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 34 * Cacophonix Gaul : draft-minshall-nagle-01 35 * J Hadi Salim : ECN support 36 * 37 */ 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/module.h> 43 #include <linux/smp_lock.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows = 0; 52 53 /* This limits the percentage of the congestion window which we 54 * will allow a single TSO frame to consume. Building TSO frames 55 * which are too large can cause TCP streams to be bursty. 56 */ 57 int sysctl_tcp_tso_win_divisor = 3; 58 59 int sysctl_tcp_mtu_probing = 0; 60 int sysctl_tcp_base_mss = 512; 61 62 EXPORT_SYMBOL(sysctl_tcp_mtu_probing); 63 EXPORT_SYMBOL(sysctl_tcp_base_mss); 64 65 static void update_send_head(struct sock *sk, struct tcp_sock *tp, 66 struct sk_buff *skb) 67 { 68 sk->sk_send_head = skb->next; 69 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) 70 sk->sk_send_head = NULL; 71 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 72 tcp_packets_out_inc(sk, tp, skb); 73 } 74 75 /* SND.NXT, if window was not shrunk. 76 * If window has been shrunk, what should we make? It is not clear at all. 77 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 78 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 79 * invalid. OK, let's make this for now: 80 */ 81 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) 82 { 83 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) 84 return tp->snd_nxt; 85 else 86 return tp->snd_una+tp->snd_wnd; 87 } 88 89 /* Calculate mss to advertise in SYN segment. 90 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 91 * 92 * 1. It is independent of path mtu. 93 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 94 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 95 * attached devices, because some buggy hosts are confused by 96 * large MSS. 97 * 4. We do not make 3, we advertise MSS, calculated from first 98 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 99 * This may be overridden via information stored in routing table. 100 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 101 * probably even Jumbo". 102 */ 103 static __u16 tcp_advertise_mss(struct sock *sk) 104 { 105 struct tcp_sock *tp = tcp_sk(sk); 106 struct dst_entry *dst = __sk_dst_get(sk); 107 int mss = tp->advmss; 108 109 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { 110 mss = dst_metric(dst, RTAX_ADVMSS); 111 tp->advmss = mss; 112 } 113 114 return (__u16)mss; 115 } 116 117 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 118 * This is the first part of cwnd validation mechanism. */ 119 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 s32 delta = tcp_time_stamp - tp->lsndtime; 123 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 124 u32 cwnd = tp->snd_cwnd; 125 126 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 127 128 tp->snd_ssthresh = tcp_current_ssthresh(sk); 129 restart_cwnd = min(restart_cwnd, cwnd); 130 131 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 132 cwnd >>= 1; 133 tp->snd_cwnd = max(cwnd, restart_cwnd); 134 tp->snd_cwnd_stamp = tcp_time_stamp; 135 tp->snd_cwnd_used = 0; 136 } 137 138 static void tcp_event_data_sent(struct tcp_sock *tp, 139 struct sk_buff *skb, struct sock *sk) 140 { 141 struct inet_connection_sock *icsk = inet_csk(sk); 142 const u32 now = tcp_time_stamp; 143 144 if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto) 145 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 146 147 tp->lsndtime = now; 148 149 /* If it is a reply for ato after last received 150 * packet, enter pingpong mode. 151 */ 152 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 153 icsk->icsk_ack.pingpong = 1; 154 } 155 156 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 157 { 158 tcp_dec_quickack_mode(sk, pkts); 159 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 160 } 161 162 /* Determine a window scaling and initial window to offer. 163 * Based on the assumption that the given amount of space 164 * will be offered. Store the results in the tp structure. 165 * NOTE: for smooth operation initial space offering should 166 * be a multiple of mss if possible. We assume here that mss >= 1. 167 * This MUST be enforced by all callers. 168 */ 169 void tcp_select_initial_window(int __space, __u32 mss, 170 __u32 *rcv_wnd, __u32 *window_clamp, 171 int wscale_ok, __u8 *rcv_wscale) 172 { 173 unsigned int space = (__space < 0 ? 0 : __space); 174 175 /* If no clamp set the clamp to the max possible scaled window */ 176 if (*window_clamp == 0) 177 (*window_clamp) = (65535 << 14); 178 space = min(*window_clamp, space); 179 180 /* Quantize space offering to a multiple of mss if possible. */ 181 if (space > mss) 182 space = (space / mss) * mss; 183 184 /* NOTE: offering an initial window larger than 32767 185 * will break some buggy TCP stacks. If the admin tells us 186 * it is likely we could be speaking with such a buggy stack 187 * we will truncate our initial window offering to 32K-1 188 * unless the remote has sent us a window scaling option, 189 * which we interpret as a sign the remote TCP is not 190 * misinterpreting the window field as a signed quantity. 191 */ 192 if (sysctl_tcp_workaround_signed_windows) 193 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 194 else 195 (*rcv_wnd) = space; 196 197 (*rcv_wscale) = 0; 198 if (wscale_ok) { 199 /* Set window scaling on max possible window 200 * See RFC1323 for an explanation of the limit to 14 201 */ 202 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 203 while (space > 65535 && (*rcv_wscale) < 14) { 204 space >>= 1; 205 (*rcv_wscale)++; 206 } 207 } 208 209 /* Set initial window to value enough for senders, 210 * following RFC2414. Senders, not following this RFC, 211 * will be satisfied with 2. 212 */ 213 if (mss > (1<<*rcv_wscale)) { 214 int init_cwnd = 4; 215 if (mss > 1460*3) 216 init_cwnd = 2; 217 else if (mss > 1460) 218 init_cwnd = 3; 219 if (*rcv_wnd > init_cwnd*mss) 220 *rcv_wnd = init_cwnd*mss; 221 } 222 223 /* Set the clamp no higher than max representable value */ 224 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 225 } 226 227 /* Chose a new window to advertise, update state in tcp_sock for the 228 * socket, and return result with RFC1323 scaling applied. The return 229 * value can be stuffed directly into th->window for an outgoing 230 * frame. 231 */ 232 static u16 tcp_select_window(struct sock *sk) 233 { 234 struct tcp_sock *tp = tcp_sk(sk); 235 u32 cur_win = tcp_receive_window(tp); 236 u32 new_win = __tcp_select_window(sk); 237 238 /* Never shrink the offered window */ 239 if(new_win < cur_win) { 240 /* Danger Will Robinson! 241 * Don't update rcv_wup/rcv_wnd here or else 242 * we will not be able to advertise a zero 243 * window in time. --DaveM 244 * 245 * Relax Will Robinson. 246 */ 247 new_win = cur_win; 248 } 249 tp->rcv_wnd = new_win; 250 tp->rcv_wup = tp->rcv_nxt; 251 252 /* Make sure we do not exceed the maximum possible 253 * scaled window. 254 */ 255 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 256 new_win = min(new_win, MAX_TCP_WINDOW); 257 else 258 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 259 260 /* RFC1323 scaling applied */ 261 new_win >>= tp->rx_opt.rcv_wscale; 262 263 /* If we advertise zero window, disable fast path. */ 264 if (new_win == 0) 265 tp->pred_flags = 0; 266 267 return new_win; 268 } 269 270 static void tcp_build_and_update_options(__u32 *ptr, struct tcp_sock *tp, 271 __u32 tstamp) 272 { 273 if (tp->rx_opt.tstamp_ok) { 274 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | 275 (TCPOPT_NOP << 16) | 276 (TCPOPT_TIMESTAMP << 8) | 277 TCPOLEN_TIMESTAMP); 278 *ptr++ = htonl(tstamp); 279 *ptr++ = htonl(tp->rx_opt.ts_recent); 280 } 281 if (tp->rx_opt.eff_sacks) { 282 struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks; 283 int this_sack; 284 285 *ptr++ = htonl((TCPOPT_NOP << 24) | 286 (TCPOPT_NOP << 16) | 287 (TCPOPT_SACK << 8) | 288 (TCPOLEN_SACK_BASE + (tp->rx_opt.eff_sacks * 289 TCPOLEN_SACK_PERBLOCK))); 290 for(this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) { 291 *ptr++ = htonl(sp[this_sack].start_seq); 292 *ptr++ = htonl(sp[this_sack].end_seq); 293 } 294 if (tp->rx_opt.dsack) { 295 tp->rx_opt.dsack = 0; 296 tp->rx_opt.eff_sacks--; 297 } 298 } 299 } 300 301 /* Construct a tcp options header for a SYN or SYN_ACK packet. 302 * If this is every changed make sure to change the definition of 303 * MAX_SYN_SIZE to match the new maximum number of options that you 304 * can generate. 305 */ 306 static void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack, 307 int offer_wscale, int wscale, __u32 tstamp, 308 __u32 ts_recent) 309 { 310 /* We always get an MSS option. 311 * The option bytes which will be seen in normal data 312 * packets should timestamps be used, must be in the MSS 313 * advertised. But we subtract them from tp->mss_cache so 314 * that calculations in tcp_sendmsg are simpler etc. 315 * So account for this fact here if necessary. If we 316 * don't do this correctly, as a receiver we won't 317 * recognize data packets as being full sized when we 318 * should, and thus we won't abide by the delayed ACK 319 * rules correctly. 320 * SACKs don't matter, we never delay an ACK when we 321 * have any of those going out. 322 */ 323 *ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss); 324 if (ts) { 325 if(sack) 326 *ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) | 327 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); 328 else 329 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 330 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); 331 *ptr++ = htonl(tstamp); /* TSVAL */ 332 *ptr++ = htonl(ts_recent); /* TSECR */ 333 } else if(sack) 334 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 335 (TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM); 336 if (offer_wscale) 337 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale)); 338 } 339 340 /* This routine actually transmits TCP packets queued in by 341 * tcp_do_sendmsg(). This is used by both the initial 342 * transmission and possible later retransmissions. 343 * All SKB's seen here are completely headerless. It is our 344 * job to build the TCP header, and pass the packet down to 345 * IP so it can do the same plus pass the packet off to the 346 * device. 347 * 348 * We are working here with either a clone of the original 349 * SKB, or a fresh unique copy made by the retransmit engine. 350 */ 351 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask) 352 { 353 const struct inet_connection_sock *icsk = inet_csk(sk); 354 struct inet_sock *inet; 355 struct tcp_sock *tp; 356 struct tcp_skb_cb *tcb; 357 int tcp_header_size; 358 struct tcphdr *th; 359 int sysctl_flags; 360 int err; 361 362 BUG_ON(!skb || !tcp_skb_pcount(skb)); 363 364 /* If congestion control is doing timestamping, we must 365 * take such a timestamp before we potentially clone/copy. 366 */ 367 if (icsk->icsk_ca_ops->rtt_sample) 368 __net_timestamp(skb); 369 370 if (likely(clone_it)) { 371 if (unlikely(skb_cloned(skb))) 372 skb = pskb_copy(skb, gfp_mask); 373 else 374 skb = skb_clone(skb, gfp_mask); 375 if (unlikely(!skb)) 376 return -ENOBUFS; 377 } 378 379 inet = inet_sk(sk); 380 tp = tcp_sk(sk); 381 tcb = TCP_SKB_CB(skb); 382 tcp_header_size = tp->tcp_header_len; 383 384 #define SYSCTL_FLAG_TSTAMPS 0x1 385 #define SYSCTL_FLAG_WSCALE 0x2 386 #define SYSCTL_FLAG_SACK 0x4 387 388 sysctl_flags = 0; 389 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 390 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; 391 if(sysctl_tcp_timestamps) { 392 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; 393 sysctl_flags |= SYSCTL_FLAG_TSTAMPS; 394 } 395 if (sysctl_tcp_window_scaling) { 396 tcp_header_size += TCPOLEN_WSCALE_ALIGNED; 397 sysctl_flags |= SYSCTL_FLAG_WSCALE; 398 } 399 if (sysctl_tcp_sack) { 400 sysctl_flags |= SYSCTL_FLAG_SACK; 401 if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) 402 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; 403 } 404 } else if (unlikely(tp->rx_opt.eff_sacks)) { 405 /* A SACK is 2 pad bytes, a 2 byte header, plus 406 * 2 32-bit sequence numbers for each SACK block. 407 */ 408 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + 409 (tp->rx_opt.eff_sacks * 410 TCPOLEN_SACK_PERBLOCK)); 411 } 412 413 if (tcp_packets_in_flight(tp) == 0) 414 tcp_ca_event(sk, CA_EVENT_TX_START); 415 416 th = (struct tcphdr *) skb_push(skb, tcp_header_size); 417 skb->h.th = th; 418 skb_set_owner_w(skb, sk); 419 420 /* Build TCP header and checksum it. */ 421 th->source = inet->sport; 422 th->dest = inet->dport; 423 th->seq = htonl(tcb->seq); 424 th->ack_seq = htonl(tp->rcv_nxt); 425 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 426 tcb->flags); 427 428 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 429 /* RFC1323: The window in SYN & SYN/ACK segments 430 * is never scaled. 431 */ 432 th->window = htons(tp->rcv_wnd); 433 } else { 434 th->window = htons(tcp_select_window(sk)); 435 } 436 th->check = 0; 437 th->urg_ptr = 0; 438 439 if (unlikely(tp->urg_mode && 440 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF))) { 441 th->urg_ptr = htons(tp->snd_up-tcb->seq); 442 th->urg = 1; 443 } 444 445 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 446 tcp_syn_build_options((__u32 *)(th + 1), 447 tcp_advertise_mss(sk), 448 (sysctl_flags & SYSCTL_FLAG_TSTAMPS), 449 (sysctl_flags & SYSCTL_FLAG_SACK), 450 (sysctl_flags & SYSCTL_FLAG_WSCALE), 451 tp->rx_opt.rcv_wscale, 452 tcb->when, 453 tp->rx_opt.ts_recent); 454 } else { 455 tcp_build_and_update_options((__u32 *)(th + 1), 456 tp, tcb->when); 457 TCP_ECN_send(sk, tp, skb, tcp_header_size); 458 } 459 460 icsk->icsk_af_ops->send_check(sk, skb->len, skb); 461 462 if (likely(tcb->flags & TCPCB_FLAG_ACK)) 463 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 464 465 if (skb->len != tcp_header_size) 466 tcp_event_data_sent(tp, skb, sk); 467 468 TCP_INC_STATS(TCP_MIB_OUTSEGS); 469 470 err = icsk->icsk_af_ops->queue_xmit(skb, 0); 471 if (unlikely(err <= 0)) 472 return err; 473 474 tcp_enter_cwr(sk); 475 476 /* NET_XMIT_CN is special. It does not guarantee, 477 * that this packet is lost. It tells that device 478 * is about to start to drop packets or already 479 * drops some packets of the same priority and 480 * invokes us to send less aggressively. 481 */ 482 return err == NET_XMIT_CN ? 0 : err; 483 484 #undef SYSCTL_FLAG_TSTAMPS 485 #undef SYSCTL_FLAG_WSCALE 486 #undef SYSCTL_FLAG_SACK 487 } 488 489 490 /* This routine just queue's the buffer 491 * 492 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 493 * otherwise socket can stall. 494 */ 495 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 496 { 497 struct tcp_sock *tp = tcp_sk(sk); 498 499 /* Advance write_seq and place onto the write_queue. */ 500 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 501 skb_header_release(skb); 502 __skb_queue_tail(&sk->sk_write_queue, skb); 503 sk_charge_skb(sk, skb); 504 505 /* Queue it, remembering where we must start sending. */ 506 if (sk->sk_send_head == NULL) 507 sk->sk_send_head = skb; 508 } 509 510 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 511 { 512 if (skb->len <= mss_now || 513 !(sk->sk_route_caps & NETIF_F_TSO)) { 514 /* Avoid the costly divide in the normal 515 * non-TSO case. 516 */ 517 skb_shinfo(skb)->tso_segs = 1; 518 skb_shinfo(skb)->tso_size = 0; 519 } else { 520 unsigned int factor; 521 522 factor = skb->len + (mss_now - 1); 523 factor /= mss_now; 524 skb_shinfo(skb)->tso_segs = factor; 525 skb_shinfo(skb)->tso_size = mss_now; 526 } 527 } 528 529 /* Function to create two new TCP segments. Shrinks the given segment 530 * to the specified size and appends a new segment with the rest of the 531 * packet to the list. This won't be called frequently, I hope. 532 * Remember, these are still headerless SKBs at this point. 533 */ 534 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now) 535 { 536 struct tcp_sock *tp = tcp_sk(sk); 537 struct sk_buff *buff; 538 int nsize, old_factor; 539 u16 flags; 540 541 BUG_ON(len > skb->len); 542 543 clear_all_retrans_hints(tp); 544 nsize = skb_headlen(skb) - len; 545 if (nsize < 0) 546 nsize = 0; 547 548 if (skb_cloned(skb) && 549 skb_is_nonlinear(skb) && 550 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 551 return -ENOMEM; 552 553 /* Get a new skb... force flag on. */ 554 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 555 if (buff == NULL) 556 return -ENOMEM; /* We'll just try again later. */ 557 sk_charge_skb(sk, buff); 558 559 /* Correct the sequence numbers. */ 560 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 561 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 562 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 563 564 /* PSH and FIN should only be set in the second packet. */ 565 flags = TCP_SKB_CB(skb)->flags; 566 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 567 TCP_SKB_CB(buff)->flags = flags; 568 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 569 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; 570 571 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { 572 /* Copy and checksum data tail into the new buffer. */ 573 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), 574 nsize, 0); 575 576 skb_trim(skb, len); 577 578 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 579 } else { 580 skb->ip_summed = CHECKSUM_HW; 581 skb_split(skb, buff, len); 582 } 583 584 buff->ip_summed = skb->ip_summed; 585 586 /* Looks stupid, but our code really uses when of 587 * skbs, which it never sent before. --ANK 588 */ 589 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 590 buff->tstamp = skb->tstamp; 591 592 old_factor = tcp_skb_pcount(skb); 593 594 /* Fix up tso_factor for both original and new SKB. */ 595 tcp_set_skb_tso_segs(sk, skb, mss_now); 596 tcp_set_skb_tso_segs(sk, buff, mss_now); 597 598 /* If this packet has been sent out already, we must 599 * adjust the various packet counters. 600 */ 601 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 602 int diff = old_factor - tcp_skb_pcount(skb) - 603 tcp_skb_pcount(buff); 604 605 tp->packets_out -= diff; 606 607 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 608 tp->sacked_out -= diff; 609 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 610 tp->retrans_out -= diff; 611 612 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { 613 tp->lost_out -= diff; 614 tp->left_out -= diff; 615 } 616 617 if (diff > 0) { 618 /* Adjust Reno SACK estimate. */ 619 if (!tp->rx_opt.sack_ok) { 620 tp->sacked_out -= diff; 621 if ((int)tp->sacked_out < 0) 622 tp->sacked_out = 0; 623 tcp_sync_left_out(tp); 624 } 625 626 tp->fackets_out -= diff; 627 if ((int)tp->fackets_out < 0) 628 tp->fackets_out = 0; 629 } 630 } 631 632 /* Link BUFF into the send queue. */ 633 skb_header_release(buff); 634 __skb_append(skb, buff, &sk->sk_write_queue); 635 636 return 0; 637 } 638 639 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 640 * eventually). The difference is that pulled data not copied, but 641 * immediately discarded. 642 */ 643 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) 644 { 645 int i, k, eat; 646 647 eat = len; 648 k = 0; 649 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { 650 if (skb_shinfo(skb)->frags[i].size <= eat) { 651 put_page(skb_shinfo(skb)->frags[i].page); 652 eat -= skb_shinfo(skb)->frags[i].size; 653 } else { 654 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 655 if (eat) { 656 skb_shinfo(skb)->frags[k].page_offset += eat; 657 skb_shinfo(skb)->frags[k].size -= eat; 658 eat = 0; 659 } 660 k++; 661 } 662 } 663 skb_shinfo(skb)->nr_frags = k; 664 665 skb->tail = skb->data; 666 skb->data_len -= len; 667 skb->len = skb->data_len; 668 return skb->tail; 669 } 670 671 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 672 { 673 if (skb_cloned(skb) && 674 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 675 return -ENOMEM; 676 677 if (len <= skb_headlen(skb)) { 678 __skb_pull(skb, len); 679 } else { 680 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) 681 return -ENOMEM; 682 } 683 684 TCP_SKB_CB(skb)->seq += len; 685 skb->ip_summed = CHECKSUM_HW; 686 687 skb->truesize -= len; 688 sk->sk_wmem_queued -= len; 689 sk->sk_forward_alloc += len; 690 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 691 692 /* Any change of skb->len requires recalculation of tso 693 * factor and mss. 694 */ 695 if (tcp_skb_pcount(skb) > 1) 696 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1)); 697 698 return 0; 699 } 700 701 /* Not accounting for SACKs here. */ 702 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 703 { 704 struct tcp_sock *tp = tcp_sk(sk); 705 struct inet_connection_sock *icsk = inet_csk(sk); 706 int mss_now; 707 708 /* Calculate base mss without TCP options: 709 It is MMS_S - sizeof(tcphdr) of rfc1122 710 */ 711 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 712 713 /* Clamp it (mss_clamp does not include tcp options) */ 714 if (mss_now > tp->rx_opt.mss_clamp) 715 mss_now = tp->rx_opt.mss_clamp; 716 717 /* Now subtract optional transport overhead */ 718 mss_now -= icsk->icsk_ext_hdr_len; 719 720 /* Then reserve room for full set of TCP options and 8 bytes of data */ 721 if (mss_now < 48) 722 mss_now = 48; 723 724 /* Now subtract TCP options size, not including SACKs */ 725 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 726 727 return mss_now; 728 } 729 730 /* Inverse of above */ 731 int tcp_mss_to_mtu(struct sock *sk, int mss) 732 { 733 struct tcp_sock *tp = tcp_sk(sk); 734 struct inet_connection_sock *icsk = inet_csk(sk); 735 int mtu; 736 737 mtu = mss + 738 tp->tcp_header_len + 739 icsk->icsk_ext_hdr_len + 740 icsk->icsk_af_ops->net_header_len; 741 742 return mtu; 743 } 744 745 void tcp_mtup_init(struct sock *sk) 746 { 747 struct tcp_sock *tp = tcp_sk(sk); 748 struct inet_connection_sock *icsk = inet_csk(sk); 749 750 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 751 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 752 icsk->icsk_af_ops->net_header_len; 753 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 754 icsk->icsk_mtup.probe_size = 0; 755 } 756 757 /* This function synchronize snd mss to current pmtu/exthdr set. 758 759 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 760 for TCP options, but includes only bare TCP header. 761 762 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 763 It is minimum of user_mss and mss received with SYN. 764 It also does not include TCP options. 765 766 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 767 768 tp->mss_cache is current effective sending mss, including 769 all tcp options except for SACKs. It is evaluated, 770 taking into account current pmtu, but never exceeds 771 tp->rx_opt.mss_clamp. 772 773 NOTE1. rfc1122 clearly states that advertised MSS 774 DOES NOT include either tcp or ip options. 775 776 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 777 are READ ONLY outside this function. --ANK (980731) 778 */ 779 780 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 781 { 782 struct tcp_sock *tp = tcp_sk(sk); 783 struct inet_connection_sock *icsk = inet_csk(sk); 784 int mss_now; 785 786 if (icsk->icsk_mtup.search_high > pmtu) 787 icsk->icsk_mtup.search_high = pmtu; 788 789 mss_now = tcp_mtu_to_mss(sk, pmtu); 790 791 /* Bound mss with half of window */ 792 if (tp->max_window && mss_now > (tp->max_window>>1)) 793 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); 794 795 /* And store cached results */ 796 icsk->icsk_pmtu_cookie = pmtu; 797 if (icsk->icsk_mtup.enabled) 798 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 799 tp->mss_cache = mss_now; 800 801 return mss_now; 802 } 803 804 /* Compute the current effective MSS, taking SACKs and IP options, 805 * and even PMTU discovery events into account. 806 * 807 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up 808 * cannot be large. However, taking into account rare use of URG, this 809 * is not a big flaw. 810 */ 811 unsigned int tcp_current_mss(struct sock *sk, int large_allowed) 812 { 813 struct tcp_sock *tp = tcp_sk(sk); 814 struct dst_entry *dst = __sk_dst_get(sk); 815 u32 mss_now; 816 u16 xmit_size_goal; 817 int doing_tso = 0; 818 819 mss_now = tp->mss_cache; 820 821 if (large_allowed && 822 (sk->sk_route_caps & NETIF_F_TSO) && 823 !tp->urg_mode) 824 doing_tso = 1; 825 826 if (dst) { 827 u32 mtu = dst_mtu(dst); 828 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 829 mss_now = tcp_sync_mss(sk, mtu); 830 } 831 832 if (tp->rx_opt.eff_sacks) 833 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + 834 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 835 836 xmit_size_goal = mss_now; 837 838 if (doing_tso) { 839 xmit_size_goal = (65535 - 840 inet_csk(sk)->icsk_af_ops->net_header_len - 841 inet_csk(sk)->icsk_ext_hdr_len - 842 tp->tcp_header_len); 843 844 if (tp->max_window && 845 (xmit_size_goal > (tp->max_window >> 1))) 846 xmit_size_goal = max((tp->max_window >> 1), 847 68U - tp->tcp_header_len); 848 849 xmit_size_goal -= (xmit_size_goal % mss_now); 850 } 851 tp->xmit_size_goal = xmit_size_goal; 852 853 return mss_now; 854 } 855 856 /* Congestion window validation. (RFC2861) */ 857 858 static void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp) 859 { 860 __u32 packets_out = tp->packets_out; 861 862 if (packets_out >= tp->snd_cwnd) { 863 /* Network is feed fully. */ 864 tp->snd_cwnd_used = 0; 865 tp->snd_cwnd_stamp = tcp_time_stamp; 866 } else { 867 /* Network starves. */ 868 if (tp->packets_out > tp->snd_cwnd_used) 869 tp->snd_cwnd_used = tp->packets_out; 870 871 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 872 tcp_cwnd_application_limited(sk); 873 } 874 } 875 876 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd) 877 { 878 u32 window, cwnd_len; 879 880 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq); 881 cwnd_len = mss_now * cwnd; 882 return min(window, cwnd_len); 883 } 884 885 /* Can at least one segment of SKB be sent right now, according to the 886 * congestion window rules? If so, return how many segments are allowed. 887 */ 888 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb) 889 { 890 u32 in_flight, cwnd; 891 892 /* Don't be strict about the congestion window for the final FIN. */ 893 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 894 return 1; 895 896 in_flight = tcp_packets_in_flight(tp); 897 cwnd = tp->snd_cwnd; 898 if (in_flight < cwnd) 899 return (cwnd - in_flight); 900 901 return 0; 902 } 903 904 /* This must be invoked the first time we consider transmitting 905 * SKB onto the wire. 906 */ 907 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 908 { 909 int tso_segs = tcp_skb_pcount(skb); 910 911 if (!tso_segs || 912 (tso_segs > 1 && 913 skb_shinfo(skb)->tso_size != mss_now)) { 914 tcp_set_skb_tso_segs(sk, skb, mss_now); 915 tso_segs = tcp_skb_pcount(skb); 916 } 917 return tso_segs; 918 } 919 920 static inline int tcp_minshall_check(const struct tcp_sock *tp) 921 { 922 return after(tp->snd_sml,tp->snd_una) && 923 !after(tp->snd_sml, tp->snd_nxt); 924 } 925 926 /* Return 0, if packet can be sent now without violation Nagle's rules: 927 * 1. It is full sized. 928 * 2. Or it contains FIN. (already checked by caller) 929 * 3. Or TCP_NODELAY was set. 930 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 931 * With Minshall's modification: all sent small packets are ACKed. 932 */ 933 934 static inline int tcp_nagle_check(const struct tcp_sock *tp, 935 const struct sk_buff *skb, 936 unsigned mss_now, int nonagle) 937 { 938 return (skb->len < mss_now && 939 ((nonagle&TCP_NAGLE_CORK) || 940 (!nonagle && 941 tp->packets_out && 942 tcp_minshall_check(tp)))); 943 } 944 945 /* Return non-zero if the Nagle test allows this packet to be 946 * sent now. 947 */ 948 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 949 unsigned int cur_mss, int nonagle) 950 { 951 /* Nagle rule does not apply to frames, which sit in the middle of the 952 * write_queue (they have no chances to get new data). 953 * 954 * This is implemented in the callers, where they modify the 'nonagle' 955 * argument based upon the location of SKB in the send queue. 956 */ 957 if (nonagle & TCP_NAGLE_PUSH) 958 return 1; 959 960 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 961 if (tp->urg_mode || 962 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) 963 return 1; 964 965 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 966 return 1; 967 968 return 0; 969 } 970 971 /* Does at least the first segment of SKB fit into the send window? */ 972 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss) 973 { 974 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 975 976 if (skb->len > cur_mss) 977 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 978 979 return !after(end_seq, tp->snd_una + tp->snd_wnd); 980 } 981 982 /* This checks if the data bearing packet SKB (usually sk->sk_send_head) 983 * should be put on the wire right now. If so, it returns the number of 984 * packets allowed by the congestion window. 985 */ 986 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 987 unsigned int cur_mss, int nonagle) 988 { 989 struct tcp_sock *tp = tcp_sk(sk); 990 unsigned int cwnd_quota; 991 992 tcp_init_tso_segs(sk, skb, cur_mss); 993 994 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 995 return 0; 996 997 cwnd_quota = tcp_cwnd_test(tp, skb); 998 if (cwnd_quota && 999 !tcp_snd_wnd_test(tp, skb, cur_mss)) 1000 cwnd_quota = 0; 1001 1002 return cwnd_quota; 1003 } 1004 1005 static inline int tcp_skb_is_last(const struct sock *sk, 1006 const struct sk_buff *skb) 1007 { 1008 return skb->next == (struct sk_buff *)&sk->sk_write_queue; 1009 } 1010 1011 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp) 1012 { 1013 struct sk_buff *skb = sk->sk_send_head; 1014 1015 return (skb && 1016 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), 1017 (tcp_skb_is_last(sk, skb) ? 1018 TCP_NAGLE_PUSH : 1019 tp->nonagle))); 1020 } 1021 1022 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1023 * which is put after SKB on the list. It is very much like 1024 * tcp_fragment() except that it may make several kinds of assumptions 1025 * in order to speed up the splitting operation. In particular, we 1026 * know that all the data is in scatter-gather pages, and that the 1027 * packet has never been sent out before (and thus is not cloned). 1028 */ 1029 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now) 1030 { 1031 struct sk_buff *buff; 1032 int nlen = skb->len - len; 1033 u16 flags; 1034 1035 /* All of a TSO frame must be composed of paged data. */ 1036 if (skb->len != skb->data_len) 1037 return tcp_fragment(sk, skb, len, mss_now); 1038 1039 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC); 1040 if (unlikely(buff == NULL)) 1041 return -ENOMEM; 1042 1043 buff->truesize = nlen; 1044 skb->truesize -= nlen; 1045 1046 /* Correct the sequence numbers. */ 1047 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1048 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1049 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1050 1051 /* PSH and FIN should only be set in the second packet. */ 1052 flags = TCP_SKB_CB(skb)->flags; 1053 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 1054 TCP_SKB_CB(buff)->flags = flags; 1055 1056 /* This packet was never sent out yet, so no SACK bits. */ 1057 TCP_SKB_CB(buff)->sacked = 0; 1058 1059 buff->ip_summed = skb->ip_summed = CHECKSUM_HW; 1060 skb_split(skb, buff, len); 1061 1062 /* Fix up tso_factor for both original and new SKB. */ 1063 tcp_set_skb_tso_segs(sk, skb, mss_now); 1064 tcp_set_skb_tso_segs(sk, buff, mss_now); 1065 1066 /* Link BUFF into the send queue. */ 1067 skb_header_release(buff); 1068 __skb_append(skb, buff, &sk->sk_write_queue); 1069 1070 return 0; 1071 } 1072 1073 /* Try to defer sending, if possible, in order to minimize the amount 1074 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1075 * 1076 * This algorithm is from John Heffner. 1077 */ 1078 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 1079 { 1080 const struct inet_connection_sock *icsk = inet_csk(sk); 1081 u32 send_win, cong_win, limit, in_flight; 1082 1083 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 1084 return 0; 1085 1086 if (icsk->icsk_ca_state != TCP_CA_Open) 1087 return 0; 1088 1089 in_flight = tcp_packets_in_flight(tp); 1090 1091 BUG_ON(tcp_skb_pcount(skb) <= 1 || 1092 (tp->snd_cwnd <= in_flight)); 1093 1094 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq; 1095 1096 /* From in_flight test above, we know that cwnd > in_flight. */ 1097 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1098 1099 limit = min(send_win, cong_win); 1100 1101 /* If a full-sized TSO skb can be sent, do it. */ 1102 if (limit >= 65536) 1103 return 0; 1104 1105 if (sysctl_tcp_tso_win_divisor) { 1106 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1107 1108 /* If at least some fraction of a window is available, 1109 * just use it. 1110 */ 1111 chunk /= sysctl_tcp_tso_win_divisor; 1112 if (limit >= chunk) 1113 return 0; 1114 } else { 1115 /* Different approach, try not to defer past a single 1116 * ACK. Receiver should ACK every other full sized 1117 * frame, so if we have space for more than 3 frames 1118 * then send now. 1119 */ 1120 if (limit > tcp_max_burst(tp) * tp->mss_cache) 1121 return 0; 1122 } 1123 1124 /* Ok, it looks like it is advisable to defer. */ 1125 return 1; 1126 } 1127 1128 /* Create a new MTU probe if we are ready. 1129 * Returns 0 if we should wait to probe (no cwnd available), 1130 * 1 if a probe was sent, 1131 * -1 otherwise */ 1132 static int tcp_mtu_probe(struct sock *sk) 1133 { 1134 struct tcp_sock *tp = tcp_sk(sk); 1135 struct inet_connection_sock *icsk = inet_csk(sk); 1136 struct sk_buff *skb, *nskb, *next; 1137 int len; 1138 int probe_size; 1139 unsigned int pif; 1140 int copy; 1141 int mss_now; 1142 1143 /* Not currently probing/verifying, 1144 * not in recovery, 1145 * have enough cwnd, and 1146 * not SACKing (the variable headers throw things off) */ 1147 if (!icsk->icsk_mtup.enabled || 1148 icsk->icsk_mtup.probe_size || 1149 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1150 tp->snd_cwnd < 11 || 1151 tp->rx_opt.eff_sacks) 1152 return -1; 1153 1154 /* Very simple search strategy: just double the MSS. */ 1155 mss_now = tcp_current_mss(sk, 0); 1156 probe_size = 2*tp->mss_cache; 1157 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1158 /* TODO: set timer for probe_converge_event */ 1159 return -1; 1160 } 1161 1162 /* Have enough data in the send queue to probe? */ 1163 len = 0; 1164 if ((skb = sk->sk_send_head) == NULL) 1165 return -1; 1166 while ((len += skb->len) < probe_size && !tcp_skb_is_last(sk, skb)) 1167 skb = skb->next; 1168 if (len < probe_size) 1169 return -1; 1170 1171 /* Receive window check. */ 1172 if (after(TCP_SKB_CB(skb)->seq + probe_size, tp->snd_una + tp->snd_wnd)) { 1173 if (tp->snd_wnd < probe_size) 1174 return -1; 1175 else 1176 return 0; 1177 } 1178 1179 /* Do we need to wait to drain cwnd? */ 1180 pif = tcp_packets_in_flight(tp); 1181 if (pif + 2 > tp->snd_cwnd) { 1182 /* With no packets in flight, don't stall. */ 1183 if (pif == 0) 1184 return -1; 1185 else 1186 return 0; 1187 } 1188 1189 /* We're allowed to probe. Build it now. */ 1190 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1191 return -1; 1192 sk_charge_skb(sk, nskb); 1193 1194 skb = sk->sk_send_head; 1195 __skb_insert(nskb, skb->prev, skb, &sk->sk_write_queue); 1196 sk->sk_send_head = nskb; 1197 1198 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1199 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1200 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK; 1201 TCP_SKB_CB(nskb)->sacked = 0; 1202 nskb->csum = 0; 1203 if (skb->ip_summed == CHECKSUM_HW) 1204 nskb->ip_summed = CHECKSUM_HW; 1205 1206 len = 0; 1207 while (len < probe_size) { 1208 next = skb->next; 1209 1210 copy = min_t(int, skb->len, probe_size - len); 1211 if (nskb->ip_summed) 1212 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1213 else 1214 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1215 skb_put(nskb, copy), copy, nskb->csum); 1216 1217 if (skb->len <= copy) { 1218 /* We've eaten all the data from this skb. 1219 * Throw it away. */ 1220 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags; 1221 __skb_unlink(skb, &sk->sk_write_queue); 1222 sk_stream_free_skb(sk, skb); 1223 } else { 1224 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags & 1225 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 1226 if (!skb_shinfo(skb)->nr_frags) { 1227 skb_pull(skb, copy); 1228 if (skb->ip_summed != CHECKSUM_HW) 1229 skb->csum = csum_partial(skb->data, skb->len, 0); 1230 } else { 1231 __pskb_trim_head(skb, copy); 1232 tcp_set_skb_tso_segs(sk, skb, mss_now); 1233 } 1234 TCP_SKB_CB(skb)->seq += copy; 1235 } 1236 1237 len += copy; 1238 skb = next; 1239 } 1240 tcp_init_tso_segs(sk, nskb, nskb->len); 1241 1242 /* We're ready to send. If this fails, the probe will 1243 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1244 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1245 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1246 /* Decrement cwnd here because we are sending 1247 * effectively two packets. */ 1248 tp->snd_cwnd--; 1249 update_send_head(sk, tp, nskb); 1250 1251 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1252 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1253 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1254 1255 return 1; 1256 } 1257 1258 return -1; 1259 } 1260 1261 1262 /* This routine writes packets to the network. It advances the 1263 * send_head. This happens as incoming acks open up the remote 1264 * window for us. 1265 * 1266 * Returns 1, if no segments are in flight and we have queued segments, but 1267 * cannot send anything now because of SWS or another problem. 1268 */ 1269 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) 1270 { 1271 struct tcp_sock *tp = tcp_sk(sk); 1272 struct sk_buff *skb; 1273 unsigned int tso_segs, sent_pkts; 1274 int cwnd_quota; 1275 int result; 1276 1277 /* If we are closed, the bytes will have to remain here. 1278 * In time closedown will finish, we empty the write queue and all 1279 * will be happy. 1280 */ 1281 if (unlikely(sk->sk_state == TCP_CLOSE)) 1282 return 0; 1283 1284 sent_pkts = 0; 1285 1286 /* Do MTU probing. */ 1287 if ((result = tcp_mtu_probe(sk)) == 0) { 1288 return 0; 1289 } else if (result > 0) { 1290 sent_pkts = 1; 1291 } 1292 1293 while ((skb = sk->sk_send_head)) { 1294 unsigned int limit; 1295 1296 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1297 BUG_ON(!tso_segs); 1298 1299 cwnd_quota = tcp_cwnd_test(tp, skb); 1300 if (!cwnd_quota) 1301 break; 1302 1303 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1304 break; 1305 1306 if (tso_segs == 1) { 1307 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1308 (tcp_skb_is_last(sk, skb) ? 1309 nonagle : TCP_NAGLE_PUSH)))) 1310 break; 1311 } else { 1312 if (tcp_tso_should_defer(sk, tp, skb)) 1313 break; 1314 } 1315 1316 limit = mss_now; 1317 if (tso_segs > 1) { 1318 limit = tcp_window_allows(tp, skb, 1319 mss_now, cwnd_quota); 1320 1321 if (skb->len < limit) { 1322 unsigned int trim = skb->len % mss_now; 1323 1324 if (trim) 1325 limit = skb->len - trim; 1326 } 1327 } 1328 1329 if (skb->len > limit && 1330 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1331 break; 1332 1333 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1334 1335 if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC))) 1336 break; 1337 1338 /* Advance the send_head. This one is sent out. 1339 * This call will increment packets_out. 1340 */ 1341 update_send_head(sk, tp, skb); 1342 1343 tcp_minshall_update(tp, mss_now, skb); 1344 sent_pkts++; 1345 } 1346 1347 if (likely(sent_pkts)) { 1348 tcp_cwnd_validate(sk, tp); 1349 return 0; 1350 } 1351 return !tp->packets_out && sk->sk_send_head; 1352 } 1353 1354 /* Push out any pending frames which were held back due to 1355 * TCP_CORK or attempt at coalescing tiny packets. 1356 * The socket must be locked by the caller. 1357 */ 1358 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp, 1359 unsigned int cur_mss, int nonagle) 1360 { 1361 struct sk_buff *skb = sk->sk_send_head; 1362 1363 if (skb) { 1364 if (tcp_write_xmit(sk, cur_mss, nonagle)) 1365 tcp_check_probe_timer(sk, tp); 1366 } 1367 } 1368 1369 /* Send _single_ skb sitting at the send head. This function requires 1370 * true push pending frames to setup probe timer etc. 1371 */ 1372 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1373 { 1374 struct tcp_sock *tp = tcp_sk(sk); 1375 struct sk_buff *skb = sk->sk_send_head; 1376 unsigned int tso_segs, cwnd_quota; 1377 1378 BUG_ON(!skb || skb->len < mss_now); 1379 1380 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1381 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); 1382 1383 if (likely(cwnd_quota)) { 1384 unsigned int limit; 1385 1386 BUG_ON(!tso_segs); 1387 1388 limit = mss_now; 1389 if (tso_segs > 1) { 1390 limit = tcp_window_allows(tp, skb, 1391 mss_now, cwnd_quota); 1392 1393 if (skb->len < limit) { 1394 unsigned int trim = skb->len % mss_now; 1395 1396 if (trim) 1397 limit = skb->len - trim; 1398 } 1399 } 1400 1401 if (skb->len > limit && 1402 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1403 return; 1404 1405 /* Send it out now. */ 1406 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1407 1408 if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) { 1409 update_send_head(sk, tp, skb); 1410 tcp_cwnd_validate(sk, tp); 1411 return; 1412 } 1413 } 1414 } 1415 1416 /* This function returns the amount that we can raise the 1417 * usable window based on the following constraints 1418 * 1419 * 1. The window can never be shrunk once it is offered (RFC 793) 1420 * 2. We limit memory per socket 1421 * 1422 * RFC 1122: 1423 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1424 * RECV.NEXT + RCV.WIN fixed until: 1425 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1426 * 1427 * i.e. don't raise the right edge of the window until you can raise 1428 * it at least MSS bytes. 1429 * 1430 * Unfortunately, the recommended algorithm breaks header prediction, 1431 * since header prediction assumes th->window stays fixed. 1432 * 1433 * Strictly speaking, keeping th->window fixed violates the receiver 1434 * side SWS prevention criteria. The problem is that under this rule 1435 * a stream of single byte packets will cause the right side of the 1436 * window to always advance by a single byte. 1437 * 1438 * Of course, if the sender implements sender side SWS prevention 1439 * then this will not be a problem. 1440 * 1441 * BSD seems to make the following compromise: 1442 * 1443 * If the free space is less than the 1/4 of the maximum 1444 * space available and the free space is less than 1/2 mss, 1445 * then set the window to 0. 1446 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1447 * Otherwise, just prevent the window from shrinking 1448 * and from being larger than the largest representable value. 1449 * 1450 * This prevents incremental opening of the window in the regime 1451 * where TCP is limited by the speed of the reader side taking 1452 * data out of the TCP receive queue. It does nothing about 1453 * those cases where the window is constrained on the sender side 1454 * because the pipeline is full. 1455 * 1456 * BSD also seems to "accidentally" limit itself to windows that are a 1457 * multiple of MSS, at least until the free space gets quite small. 1458 * This would appear to be a side effect of the mbuf implementation. 1459 * Combining these two algorithms results in the observed behavior 1460 * of having a fixed window size at almost all times. 1461 * 1462 * Below we obtain similar behavior by forcing the offered window to 1463 * a multiple of the mss when it is feasible to do so. 1464 * 1465 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1466 * Regular options like TIMESTAMP are taken into account. 1467 */ 1468 u32 __tcp_select_window(struct sock *sk) 1469 { 1470 struct inet_connection_sock *icsk = inet_csk(sk); 1471 struct tcp_sock *tp = tcp_sk(sk); 1472 /* MSS for the peer's data. Previous versions used mss_clamp 1473 * here. I don't know if the value based on our guesses 1474 * of peer's MSS is better for the performance. It's more correct 1475 * but may be worse for the performance because of rcv_mss 1476 * fluctuations. --SAW 1998/11/1 1477 */ 1478 int mss = icsk->icsk_ack.rcv_mss; 1479 int free_space = tcp_space(sk); 1480 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1481 int window; 1482 1483 if (mss > full_space) 1484 mss = full_space; 1485 1486 if (free_space < full_space/2) { 1487 icsk->icsk_ack.quick = 0; 1488 1489 if (tcp_memory_pressure) 1490 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); 1491 1492 if (free_space < mss) 1493 return 0; 1494 } 1495 1496 if (free_space > tp->rcv_ssthresh) 1497 free_space = tp->rcv_ssthresh; 1498 1499 /* Don't do rounding if we are using window scaling, since the 1500 * scaled window will not line up with the MSS boundary anyway. 1501 */ 1502 window = tp->rcv_wnd; 1503 if (tp->rx_opt.rcv_wscale) { 1504 window = free_space; 1505 1506 /* Advertise enough space so that it won't get scaled away. 1507 * Import case: prevent zero window announcement if 1508 * 1<<rcv_wscale > mss. 1509 */ 1510 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1511 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1512 << tp->rx_opt.rcv_wscale); 1513 } else { 1514 /* Get the largest window that is a nice multiple of mss. 1515 * Window clamp already applied above. 1516 * If our current window offering is within 1 mss of the 1517 * free space we just keep it. This prevents the divide 1518 * and multiply from happening most of the time. 1519 * We also don't do any window rounding when the free space 1520 * is too small. 1521 */ 1522 if (window <= free_space - mss || window > free_space) 1523 window = (free_space/mss)*mss; 1524 } 1525 1526 return window; 1527 } 1528 1529 /* Attempt to collapse two adjacent SKB's during retransmission. */ 1530 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) 1531 { 1532 struct tcp_sock *tp = tcp_sk(sk); 1533 struct sk_buff *next_skb = skb->next; 1534 1535 /* The first test we must make is that neither of these two 1536 * SKB's are still referenced by someone else. 1537 */ 1538 if (!skb_cloned(skb) && !skb_cloned(next_skb)) { 1539 int skb_size = skb->len, next_skb_size = next_skb->len; 1540 u16 flags = TCP_SKB_CB(skb)->flags; 1541 1542 /* Also punt if next skb has been SACK'd. */ 1543 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) 1544 return; 1545 1546 /* Next skb is out of window. */ 1547 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) 1548 return; 1549 1550 /* Punt if not enough space exists in the first SKB for 1551 * the data in the second, or the total combined payload 1552 * would exceed the MSS. 1553 */ 1554 if ((next_skb_size > skb_tailroom(skb)) || 1555 ((skb_size + next_skb_size) > mss_now)) 1556 return; 1557 1558 BUG_ON(tcp_skb_pcount(skb) != 1 || 1559 tcp_skb_pcount(next_skb) != 1); 1560 1561 /* changing transmit queue under us so clear hints */ 1562 clear_all_retrans_hints(tp); 1563 1564 /* Ok. We will be able to collapse the packet. */ 1565 __skb_unlink(next_skb, &sk->sk_write_queue); 1566 1567 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); 1568 1569 if (next_skb->ip_summed == CHECKSUM_HW) 1570 skb->ip_summed = CHECKSUM_HW; 1571 1572 if (skb->ip_summed != CHECKSUM_HW) 1573 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1574 1575 /* Update sequence range on original skb. */ 1576 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1577 1578 /* Merge over control information. */ 1579 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ 1580 TCP_SKB_CB(skb)->flags = flags; 1581 1582 /* All done, get rid of second SKB and account for it so 1583 * packet counting does not break. 1584 */ 1585 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); 1586 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) 1587 tp->retrans_out -= tcp_skb_pcount(next_skb); 1588 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { 1589 tp->lost_out -= tcp_skb_pcount(next_skb); 1590 tp->left_out -= tcp_skb_pcount(next_skb); 1591 } 1592 /* Reno case is special. Sigh... */ 1593 if (!tp->rx_opt.sack_ok && tp->sacked_out) { 1594 tcp_dec_pcount_approx(&tp->sacked_out, next_skb); 1595 tp->left_out -= tcp_skb_pcount(next_skb); 1596 } 1597 1598 /* Not quite right: it can be > snd.fack, but 1599 * it is better to underestimate fackets. 1600 */ 1601 tcp_dec_pcount_approx(&tp->fackets_out, next_skb); 1602 tcp_packets_out_dec(tp, next_skb); 1603 sk_stream_free_skb(sk, next_skb); 1604 } 1605 } 1606 1607 /* Do a simple retransmit without using the backoff mechanisms in 1608 * tcp_timer. This is used for path mtu discovery. 1609 * The socket is already locked here. 1610 */ 1611 void tcp_simple_retransmit(struct sock *sk) 1612 { 1613 const struct inet_connection_sock *icsk = inet_csk(sk); 1614 struct tcp_sock *tp = tcp_sk(sk); 1615 struct sk_buff *skb; 1616 unsigned int mss = tcp_current_mss(sk, 0); 1617 int lost = 0; 1618 1619 sk_stream_for_retrans_queue(skb, sk) { 1620 if (skb->len > mss && 1621 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1622 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1623 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1624 tp->retrans_out -= tcp_skb_pcount(skb); 1625 } 1626 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { 1627 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1628 tp->lost_out += tcp_skb_pcount(skb); 1629 lost = 1; 1630 } 1631 } 1632 } 1633 1634 clear_all_retrans_hints(tp); 1635 1636 if (!lost) 1637 return; 1638 1639 tcp_sync_left_out(tp); 1640 1641 /* Don't muck with the congestion window here. 1642 * Reason is that we do not increase amount of _data_ 1643 * in network, but units changed and effective 1644 * cwnd/ssthresh really reduced now. 1645 */ 1646 if (icsk->icsk_ca_state != TCP_CA_Loss) { 1647 tp->high_seq = tp->snd_nxt; 1648 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1649 tp->prior_ssthresh = 0; 1650 tp->undo_marker = 0; 1651 tcp_set_ca_state(sk, TCP_CA_Loss); 1652 } 1653 tcp_xmit_retransmit_queue(sk); 1654 } 1655 1656 /* This retransmits one SKB. Policy decisions and retransmit queue 1657 * state updates are done by the caller. Returns non-zero if an 1658 * error occurred which prevented the send. 1659 */ 1660 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 1661 { 1662 struct tcp_sock *tp = tcp_sk(sk); 1663 struct inet_connection_sock *icsk = inet_csk(sk); 1664 unsigned int cur_mss = tcp_current_mss(sk, 0); 1665 int err; 1666 1667 /* Inconslusive MTU probe */ 1668 if (icsk->icsk_mtup.probe_size) { 1669 icsk->icsk_mtup.probe_size = 0; 1670 } 1671 1672 /* Do not sent more than we queued. 1/4 is reserved for possible 1673 * copying overhead: fragmentation, tunneling, mangling etc. 1674 */ 1675 if (atomic_read(&sk->sk_wmem_alloc) > 1676 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 1677 return -EAGAIN; 1678 1679 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 1680 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1681 BUG(); 1682 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 1683 return -ENOMEM; 1684 } 1685 1686 /* If receiver has shrunk his window, and skb is out of 1687 * new window, do not retransmit it. The exception is the 1688 * case, when window is shrunk to zero. In this case 1689 * our retransmit serves as a zero window probe. 1690 */ 1691 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) 1692 && TCP_SKB_CB(skb)->seq != tp->snd_una) 1693 return -EAGAIN; 1694 1695 if (skb->len > cur_mss) { 1696 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 1697 return -ENOMEM; /* We'll try again later. */ 1698 } 1699 1700 /* Collapse two adjacent packets if worthwhile and we can. */ 1701 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && 1702 (skb->len < (cur_mss >> 1)) && 1703 (skb->next != sk->sk_send_head) && 1704 (skb->next != (struct sk_buff *)&sk->sk_write_queue) && 1705 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && 1706 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && 1707 (sysctl_tcp_retrans_collapse != 0)) 1708 tcp_retrans_try_collapse(sk, skb, cur_mss); 1709 1710 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 1711 return -EHOSTUNREACH; /* Routing failure or similar. */ 1712 1713 /* Some Solaris stacks overoptimize and ignore the FIN on a 1714 * retransmit when old data is attached. So strip it off 1715 * since it is cheap to do so and saves bytes on the network. 1716 */ 1717 if(skb->len > 0 && 1718 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1719 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 1720 if (!pskb_trim(skb, 0)) { 1721 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; 1722 skb_shinfo(skb)->tso_segs = 1; 1723 skb_shinfo(skb)->tso_size = 0; 1724 skb->ip_summed = CHECKSUM_NONE; 1725 skb->csum = 0; 1726 } 1727 } 1728 1729 /* Make a copy, if the first transmission SKB clone we made 1730 * is still in somebody's hands, else make a clone. 1731 */ 1732 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1733 1734 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 1735 1736 if (err == 0) { 1737 /* Update global TCP statistics. */ 1738 TCP_INC_STATS(TCP_MIB_RETRANSSEGS); 1739 1740 tp->total_retrans++; 1741 1742 #if FASTRETRANS_DEBUG > 0 1743 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1744 if (net_ratelimit()) 1745 printk(KERN_DEBUG "retrans_out leaked.\n"); 1746 } 1747 #endif 1748 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 1749 tp->retrans_out += tcp_skb_pcount(skb); 1750 1751 /* Save stamp of the first retransmit. */ 1752 if (!tp->retrans_stamp) 1753 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 1754 1755 tp->undo_retrans++; 1756 1757 /* snd_nxt is stored to detect loss of retransmitted segment, 1758 * see tcp_input.c tcp_sacktag_write_queue(). 1759 */ 1760 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 1761 } 1762 return err; 1763 } 1764 1765 /* This gets called after a retransmit timeout, and the initially 1766 * retransmitted data is acknowledged. It tries to continue 1767 * resending the rest of the retransmit queue, until either 1768 * we've sent it all or the congestion window limit is reached. 1769 * If doing SACK, the first ACK which comes back for a timeout 1770 * based retransmit packet might feed us FACK information again. 1771 * If so, we use it to avoid unnecessarily retransmissions. 1772 */ 1773 void tcp_xmit_retransmit_queue(struct sock *sk) 1774 { 1775 const struct inet_connection_sock *icsk = inet_csk(sk); 1776 struct tcp_sock *tp = tcp_sk(sk); 1777 struct sk_buff *skb; 1778 int packet_cnt; 1779 1780 if (tp->retransmit_skb_hint) { 1781 skb = tp->retransmit_skb_hint; 1782 packet_cnt = tp->retransmit_cnt_hint; 1783 }else{ 1784 skb = sk->sk_write_queue.next; 1785 packet_cnt = 0; 1786 } 1787 1788 /* First pass: retransmit lost packets. */ 1789 if (tp->lost_out) { 1790 sk_stream_for_retrans_queue_from(skb, sk) { 1791 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1792 1793 /* we could do better than to assign each time */ 1794 tp->retransmit_skb_hint = skb; 1795 tp->retransmit_cnt_hint = packet_cnt; 1796 1797 /* Assume this retransmit will generate 1798 * only one packet for congestion window 1799 * calculation purposes. This works because 1800 * tcp_retransmit_skb() will chop up the 1801 * packet to be MSS sized and all the 1802 * packet counting works out. 1803 */ 1804 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1805 return; 1806 1807 if (sacked & TCPCB_LOST) { 1808 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { 1809 if (tcp_retransmit_skb(sk, skb)) { 1810 tp->retransmit_skb_hint = NULL; 1811 return; 1812 } 1813 if (icsk->icsk_ca_state != TCP_CA_Loss) 1814 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); 1815 else 1816 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); 1817 1818 if (skb == 1819 skb_peek(&sk->sk_write_queue)) 1820 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1821 inet_csk(sk)->icsk_rto, 1822 TCP_RTO_MAX); 1823 } 1824 1825 packet_cnt += tcp_skb_pcount(skb); 1826 if (packet_cnt >= tp->lost_out) 1827 break; 1828 } 1829 } 1830 } 1831 1832 /* OK, demanded retransmission is finished. */ 1833 1834 /* Forward retransmissions are possible only during Recovery. */ 1835 if (icsk->icsk_ca_state != TCP_CA_Recovery) 1836 return; 1837 1838 /* No forward retransmissions in Reno are possible. */ 1839 if (!tp->rx_opt.sack_ok) 1840 return; 1841 1842 /* Yeah, we have to make difficult choice between forward transmission 1843 * and retransmission... Both ways have their merits... 1844 * 1845 * For now we do not retransmit anything, while we have some new 1846 * segments to send. 1847 */ 1848 1849 if (tcp_may_send_now(sk, tp)) 1850 return; 1851 1852 if (tp->forward_skb_hint) { 1853 skb = tp->forward_skb_hint; 1854 packet_cnt = tp->forward_cnt_hint; 1855 } else{ 1856 skb = sk->sk_write_queue.next; 1857 packet_cnt = 0; 1858 } 1859 1860 sk_stream_for_retrans_queue_from(skb, sk) { 1861 tp->forward_cnt_hint = packet_cnt; 1862 tp->forward_skb_hint = skb; 1863 1864 /* Similar to the retransmit loop above we 1865 * can pretend that the retransmitted SKB 1866 * we send out here will be composed of one 1867 * real MSS sized packet because tcp_retransmit_skb() 1868 * will fragment it if necessary. 1869 */ 1870 if (++packet_cnt > tp->fackets_out) 1871 break; 1872 1873 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1874 break; 1875 1876 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) 1877 continue; 1878 1879 /* Ok, retransmit it. */ 1880 if (tcp_retransmit_skb(sk, skb)) { 1881 tp->forward_skb_hint = NULL; 1882 break; 1883 } 1884 1885 if (skb == skb_peek(&sk->sk_write_queue)) 1886 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1887 inet_csk(sk)->icsk_rto, 1888 TCP_RTO_MAX); 1889 1890 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); 1891 } 1892 } 1893 1894 1895 /* Send a fin. The caller locks the socket for us. This cannot be 1896 * allowed to fail queueing a FIN frame under any circumstances. 1897 */ 1898 void tcp_send_fin(struct sock *sk) 1899 { 1900 struct tcp_sock *tp = tcp_sk(sk); 1901 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); 1902 int mss_now; 1903 1904 /* Optimization, tack on the FIN if we have a queue of 1905 * unsent frames. But be careful about outgoing SACKS 1906 * and IP options. 1907 */ 1908 mss_now = tcp_current_mss(sk, 1); 1909 1910 if (sk->sk_send_head != NULL) { 1911 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; 1912 TCP_SKB_CB(skb)->end_seq++; 1913 tp->write_seq++; 1914 } else { 1915 /* Socket is locked, keep trying until memory is available. */ 1916 for (;;) { 1917 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL); 1918 if (skb) 1919 break; 1920 yield(); 1921 } 1922 1923 /* Reserve space for headers and prepare control bits. */ 1924 skb_reserve(skb, MAX_TCP_HEADER); 1925 skb->csum = 0; 1926 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); 1927 TCP_SKB_CB(skb)->sacked = 0; 1928 skb_shinfo(skb)->tso_segs = 1; 1929 skb_shinfo(skb)->tso_size = 0; 1930 1931 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 1932 TCP_SKB_CB(skb)->seq = tp->write_seq; 1933 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1934 tcp_queue_skb(sk, skb); 1935 } 1936 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); 1937 } 1938 1939 /* We get here when a process closes a file descriptor (either due to 1940 * an explicit close() or as a byproduct of exit()'ing) and there 1941 * was unread data in the receive queue. This behavior is recommended 1942 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM 1943 */ 1944 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 1945 { 1946 struct tcp_sock *tp = tcp_sk(sk); 1947 struct sk_buff *skb; 1948 1949 /* NOTE: No TCP options attached and we never retransmit this. */ 1950 skb = alloc_skb(MAX_TCP_HEADER, priority); 1951 if (!skb) { 1952 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1953 return; 1954 } 1955 1956 /* Reserve space for headers and prepare control bits. */ 1957 skb_reserve(skb, MAX_TCP_HEADER); 1958 skb->csum = 0; 1959 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); 1960 TCP_SKB_CB(skb)->sacked = 0; 1961 skb_shinfo(skb)->tso_segs = 1; 1962 skb_shinfo(skb)->tso_size = 0; 1963 1964 /* Send it off. */ 1965 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); 1966 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1967 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1968 if (tcp_transmit_skb(sk, skb, 0, priority)) 1969 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1970 } 1971 1972 /* WARNING: This routine must only be called when we have already sent 1973 * a SYN packet that crossed the incoming SYN that caused this routine 1974 * to get called. If this assumption fails then the initial rcv_wnd 1975 * and rcv_wscale values will not be correct. 1976 */ 1977 int tcp_send_synack(struct sock *sk) 1978 { 1979 struct sk_buff* skb; 1980 1981 skb = skb_peek(&sk->sk_write_queue); 1982 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { 1983 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 1984 return -EFAULT; 1985 } 1986 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { 1987 if (skb_cloned(skb)) { 1988 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 1989 if (nskb == NULL) 1990 return -ENOMEM; 1991 __skb_unlink(skb, &sk->sk_write_queue); 1992 skb_header_release(nskb); 1993 __skb_queue_head(&sk->sk_write_queue, nskb); 1994 sk_stream_free_skb(sk, skb); 1995 sk_charge_skb(sk, nskb); 1996 skb = nskb; 1997 } 1998 1999 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; 2000 TCP_ECN_send_synack(tcp_sk(sk), skb); 2001 } 2002 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2003 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2004 } 2005 2006 /* 2007 * Prepare a SYN-ACK. 2008 */ 2009 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2010 struct request_sock *req) 2011 { 2012 struct inet_request_sock *ireq = inet_rsk(req); 2013 struct tcp_sock *tp = tcp_sk(sk); 2014 struct tcphdr *th; 2015 int tcp_header_size; 2016 struct sk_buff *skb; 2017 2018 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 2019 if (skb == NULL) 2020 return NULL; 2021 2022 /* Reserve space for headers. */ 2023 skb_reserve(skb, MAX_TCP_HEADER); 2024 2025 skb->dst = dst_clone(dst); 2026 2027 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + 2028 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + 2029 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + 2030 /* SACK_PERM is in the place of NOP NOP of TS */ 2031 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); 2032 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); 2033 2034 memset(th, 0, sizeof(struct tcphdr)); 2035 th->syn = 1; 2036 th->ack = 1; 2037 if (dst->dev->features&NETIF_F_TSO) 2038 ireq->ecn_ok = 0; 2039 TCP_ECN_make_synack(req, th); 2040 th->source = inet_sk(sk)->sport; 2041 th->dest = ireq->rmt_port; 2042 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn; 2043 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 2044 TCP_SKB_CB(skb)->sacked = 0; 2045 skb_shinfo(skb)->tso_segs = 1; 2046 skb_shinfo(skb)->tso_size = 0; 2047 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2048 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 2049 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2050 __u8 rcv_wscale; 2051 /* Set this up on the first call only */ 2052 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2053 /* tcp_full_space because it is guaranteed to be the first packet */ 2054 tcp_select_initial_window(tcp_full_space(sk), 2055 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2056 &req->rcv_wnd, 2057 &req->window_clamp, 2058 ireq->wscale_ok, 2059 &rcv_wscale); 2060 ireq->rcv_wscale = rcv_wscale; 2061 } 2062 2063 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2064 th->window = htons(req->rcv_wnd); 2065 2066 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2067 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok, 2068 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale, 2069 TCP_SKB_CB(skb)->when, 2070 req->ts_recent); 2071 2072 skb->csum = 0; 2073 th->doff = (tcp_header_size >> 2); 2074 TCP_INC_STATS(TCP_MIB_OUTSEGS); 2075 return skb; 2076 } 2077 2078 /* 2079 * Do all connect socket setups that can be done AF independent. 2080 */ 2081 static void tcp_connect_init(struct sock *sk) 2082 { 2083 struct dst_entry *dst = __sk_dst_get(sk); 2084 struct tcp_sock *tp = tcp_sk(sk); 2085 __u8 rcv_wscale; 2086 2087 /* We'll fix this up when we get a response from the other end. 2088 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2089 */ 2090 tp->tcp_header_len = sizeof(struct tcphdr) + 2091 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2092 2093 /* If user gave his TCP_MAXSEG, record it to clamp */ 2094 if (tp->rx_opt.user_mss) 2095 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2096 tp->max_window = 0; 2097 tcp_mtup_init(sk); 2098 tcp_sync_mss(sk, dst_mtu(dst)); 2099 2100 if (!tp->window_clamp) 2101 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2102 tp->advmss = dst_metric(dst, RTAX_ADVMSS); 2103 tcp_initialize_rcv_mss(sk); 2104 2105 tcp_select_initial_window(tcp_full_space(sk), 2106 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2107 &tp->rcv_wnd, 2108 &tp->window_clamp, 2109 sysctl_tcp_window_scaling, 2110 &rcv_wscale); 2111 2112 tp->rx_opt.rcv_wscale = rcv_wscale; 2113 tp->rcv_ssthresh = tp->rcv_wnd; 2114 2115 sk->sk_err = 0; 2116 sock_reset_flag(sk, SOCK_DONE); 2117 tp->snd_wnd = 0; 2118 tcp_init_wl(tp, tp->write_seq, 0); 2119 tp->snd_una = tp->write_seq; 2120 tp->snd_sml = tp->write_seq; 2121 tp->rcv_nxt = 0; 2122 tp->rcv_wup = 0; 2123 tp->copied_seq = 0; 2124 2125 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2126 inet_csk(sk)->icsk_retransmits = 0; 2127 tcp_clear_retrans(tp); 2128 } 2129 2130 /* 2131 * Build a SYN and send it off. 2132 */ 2133 int tcp_connect(struct sock *sk) 2134 { 2135 struct tcp_sock *tp = tcp_sk(sk); 2136 struct sk_buff *buff; 2137 2138 tcp_connect_init(sk); 2139 2140 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2141 if (unlikely(buff == NULL)) 2142 return -ENOBUFS; 2143 2144 /* Reserve space for headers. */ 2145 skb_reserve(buff, MAX_TCP_HEADER); 2146 2147 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; 2148 TCP_ECN_send_syn(sk, tp, buff); 2149 TCP_SKB_CB(buff)->sacked = 0; 2150 skb_shinfo(buff)->tso_segs = 1; 2151 skb_shinfo(buff)->tso_size = 0; 2152 buff->csum = 0; 2153 TCP_SKB_CB(buff)->seq = tp->write_seq++; 2154 TCP_SKB_CB(buff)->end_seq = tp->write_seq; 2155 tp->snd_nxt = tp->write_seq; 2156 tp->pushed_seq = tp->write_seq; 2157 2158 /* Send it off. */ 2159 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2160 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 2161 skb_header_release(buff); 2162 __skb_queue_tail(&sk->sk_write_queue, buff); 2163 sk_charge_skb(sk, buff); 2164 tp->packets_out += tcp_skb_pcount(buff); 2165 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL); 2166 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); 2167 2168 /* Timer for repeating the SYN until an answer. */ 2169 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2170 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2171 return 0; 2172 } 2173 2174 /* Send out a delayed ack, the caller does the policy checking 2175 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2176 * for details. 2177 */ 2178 void tcp_send_delayed_ack(struct sock *sk) 2179 { 2180 struct inet_connection_sock *icsk = inet_csk(sk); 2181 int ato = icsk->icsk_ack.ato; 2182 unsigned long timeout; 2183 2184 if (ato > TCP_DELACK_MIN) { 2185 const struct tcp_sock *tp = tcp_sk(sk); 2186 int max_ato = HZ/2; 2187 2188 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2189 max_ato = TCP_DELACK_MAX; 2190 2191 /* Slow path, intersegment interval is "high". */ 2192 2193 /* If some rtt estimate is known, use it to bound delayed ack. 2194 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2195 * directly. 2196 */ 2197 if (tp->srtt) { 2198 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); 2199 2200 if (rtt < max_ato) 2201 max_ato = rtt; 2202 } 2203 2204 ato = min(ato, max_ato); 2205 } 2206 2207 /* Stay within the limit we were given */ 2208 timeout = jiffies + ato; 2209 2210 /* Use new timeout only if there wasn't a older one earlier. */ 2211 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 2212 /* If delack timer was blocked or is about to expire, 2213 * send ACK now. 2214 */ 2215 if (icsk->icsk_ack.blocked || 2216 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 2217 tcp_send_ack(sk); 2218 return; 2219 } 2220 2221 if (!time_before(timeout, icsk->icsk_ack.timeout)) 2222 timeout = icsk->icsk_ack.timeout; 2223 } 2224 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 2225 icsk->icsk_ack.timeout = timeout; 2226 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 2227 } 2228 2229 /* This routine sends an ack and also updates the window. */ 2230 void tcp_send_ack(struct sock *sk) 2231 { 2232 /* If we have been reset, we may not send again. */ 2233 if (sk->sk_state != TCP_CLOSE) { 2234 struct tcp_sock *tp = tcp_sk(sk); 2235 struct sk_buff *buff; 2236 2237 /* We are not putting this on the write queue, so 2238 * tcp_transmit_skb() will set the ownership to this 2239 * sock. 2240 */ 2241 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2242 if (buff == NULL) { 2243 inet_csk_schedule_ack(sk); 2244 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 2245 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 2246 TCP_DELACK_MAX, TCP_RTO_MAX); 2247 return; 2248 } 2249 2250 /* Reserve space for headers and prepare control bits. */ 2251 skb_reserve(buff, MAX_TCP_HEADER); 2252 buff->csum = 0; 2253 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; 2254 TCP_SKB_CB(buff)->sacked = 0; 2255 skb_shinfo(buff)->tso_segs = 1; 2256 skb_shinfo(buff)->tso_size = 0; 2257 2258 /* Send it off, this clears delayed acks for us. */ 2259 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); 2260 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2261 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); 2262 } 2263 } 2264 2265 /* This routine sends a packet with an out of date sequence 2266 * number. It assumes the other end will try to ack it. 2267 * 2268 * Question: what should we make while urgent mode? 2269 * 4.4BSD forces sending single byte of data. We cannot send 2270 * out of window data, because we have SND.NXT==SND.MAX... 2271 * 2272 * Current solution: to send TWO zero-length segments in urgent mode: 2273 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 2274 * out-of-date with SND.UNA-1 to probe window. 2275 */ 2276 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 2277 { 2278 struct tcp_sock *tp = tcp_sk(sk); 2279 struct sk_buff *skb; 2280 2281 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 2282 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2283 if (skb == NULL) 2284 return -1; 2285 2286 /* Reserve space for headers and set control bits. */ 2287 skb_reserve(skb, MAX_TCP_HEADER); 2288 skb->csum = 0; 2289 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; 2290 TCP_SKB_CB(skb)->sacked = urgent; 2291 skb_shinfo(skb)->tso_segs = 1; 2292 skb_shinfo(skb)->tso_size = 0; 2293 2294 /* Use a previous sequence. This should cause the other 2295 * end to send an ack. Don't queue or clone SKB, just 2296 * send it. 2297 */ 2298 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; 2299 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 2300 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2301 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 2302 } 2303 2304 int tcp_write_wakeup(struct sock *sk) 2305 { 2306 if (sk->sk_state != TCP_CLOSE) { 2307 struct tcp_sock *tp = tcp_sk(sk); 2308 struct sk_buff *skb; 2309 2310 if ((skb = sk->sk_send_head) != NULL && 2311 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { 2312 int err; 2313 unsigned int mss = tcp_current_mss(sk, 0); 2314 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; 2315 2316 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 2317 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 2318 2319 /* We are probing the opening of a window 2320 * but the window size is != 0 2321 * must have been a result SWS avoidance ( sender ) 2322 */ 2323 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 2324 skb->len > mss) { 2325 seg_size = min(seg_size, mss); 2326 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2327 if (tcp_fragment(sk, skb, seg_size, mss)) 2328 return -1; 2329 } else if (!tcp_skb_pcount(skb)) 2330 tcp_set_skb_tso_segs(sk, skb, mss); 2331 2332 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2333 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2334 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2335 if (!err) { 2336 update_send_head(sk, tp, skb); 2337 } 2338 return err; 2339 } else { 2340 if (tp->urg_mode && 2341 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) 2342 tcp_xmit_probe_skb(sk, TCPCB_URG); 2343 return tcp_xmit_probe_skb(sk, 0); 2344 } 2345 } 2346 return -1; 2347 } 2348 2349 /* A window probe timeout has occurred. If window is not closed send 2350 * a partial packet else a zero probe. 2351 */ 2352 void tcp_send_probe0(struct sock *sk) 2353 { 2354 struct inet_connection_sock *icsk = inet_csk(sk); 2355 struct tcp_sock *tp = tcp_sk(sk); 2356 int err; 2357 2358 err = tcp_write_wakeup(sk); 2359 2360 if (tp->packets_out || !sk->sk_send_head) { 2361 /* Cancel probe timer, if it is not required. */ 2362 icsk->icsk_probes_out = 0; 2363 icsk->icsk_backoff = 0; 2364 return; 2365 } 2366 2367 if (err <= 0) { 2368 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2369 icsk->icsk_backoff++; 2370 icsk->icsk_probes_out++; 2371 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2372 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2373 TCP_RTO_MAX); 2374 } else { 2375 /* If packet was not sent due to local congestion, 2376 * do not backoff and do not remember icsk_probes_out. 2377 * Let local senders to fight for local resources. 2378 * 2379 * Use accumulated backoff yet. 2380 */ 2381 if (!icsk->icsk_probes_out) 2382 icsk->icsk_probes_out = 1; 2383 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2384 min(icsk->icsk_rto << icsk->icsk_backoff, 2385 TCP_RESOURCE_PROBE_INTERVAL), 2386 TCP_RTO_MAX); 2387 } 2388 } 2389 2390 EXPORT_SYMBOL(tcp_connect); 2391 EXPORT_SYMBOL(tcp_make_synack); 2392 EXPORT_SYMBOL(tcp_simple_retransmit); 2393 EXPORT_SYMBOL(tcp_sync_mss); 2394 EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor); 2395 EXPORT_SYMBOL(tcp_mtup_init); 2396