1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/tcp_ecn.h> 42 #include <net/mptcp.h> 43 #include <net/smc.h> 44 #include <net/proto_memory.h> 45 #include <net/psp.h> 46 47 #include <linux/compiler.h> 48 #include <linux/gfp.h> 49 #include <linux/module.h> 50 #include <linux/static_key.h> 51 #include <linux/skbuff_ref.h> 52 53 #include <trace/events/tcp.h> 54 55 /* Refresh clocks of a TCP socket, 56 * ensuring monotically increasing values. 57 */ 58 void tcp_mstamp_refresh(struct tcp_sock *tp) 59 { 60 u64 val = tcp_clock_ns(); 61 62 tp->tcp_clock_cache = val; 63 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 64 } 65 66 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 67 int push_one, gfp_t gfp); 68 69 /* Account for new data that has been sent to the network. */ 70 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 71 { 72 struct inet_connection_sock *icsk = inet_csk(sk); 73 struct tcp_sock *tp = tcp_sk(sk); 74 unsigned int prior_packets = tp->packets_out; 75 76 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 77 78 __skb_unlink(skb, &sk->sk_write_queue); 79 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 80 81 if (tp->highest_sack == NULL) 82 tp->highest_sack = skb; 83 84 tp->packets_out += tcp_skb_pcount(skb); 85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 86 tcp_rearm_rto(sk); 87 88 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 89 tcp_skb_pcount(skb)); 90 tcp_check_space(sk); 91 } 92 93 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 94 * window scaling factor due to loss of precision. 95 * If window has been shrunk, what should we make? It is not clear at all. 96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 98 * invalid. OK, let's make this for now: 99 */ 100 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 101 { 102 const struct tcp_sock *tp = tcp_sk(sk); 103 104 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 105 (tp->rx_opt.wscale_ok && 106 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 107 return tp->snd_nxt; 108 else 109 return tcp_wnd_end(tp); 110 } 111 112 /* Calculate mss to advertise in SYN segment. 113 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 114 * 115 * 1. It is independent of path mtu. 116 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 117 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 118 * attached devices, because some buggy hosts are confused by 119 * large MSS. 120 * 4. We do not make 3, we advertise MSS, calculated from first 121 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 122 * This may be overridden via information stored in routing table. 123 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 124 * probably even Jumbo". 125 */ 126 static __u16 tcp_advertise_mss(struct sock *sk) 127 { 128 struct tcp_sock *tp = tcp_sk(sk); 129 const struct dst_entry *dst = __sk_dst_get(sk); 130 int mss = tp->advmss; 131 132 if (dst) { 133 unsigned int metric = dst_metric_advmss(dst); 134 135 if (metric < mss) { 136 mss = metric; 137 tp->advmss = mss; 138 } 139 } 140 141 return (__u16)mss; 142 } 143 144 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 145 * This is the first part of cwnd validation mechanism. 146 */ 147 void tcp_cwnd_restart(struct sock *sk, s32 delta) 148 { 149 struct tcp_sock *tp = tcp_sk(sk); 150 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 151 u32 cwnd = tcp_snd_cwnd(tp); 152 153 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 154 155 tp->snd_ssthresh = tcp_current_ssthresh(sk); 156 restart_cwnd = min(restart_cwnd, cwnd); 157 158 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 159 cwnd >>= 1; 160 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 161 tp->snd_cwnd_stamp = tcp_jiffies32; 162 tp->snd_cwnd_used = 0; 163 } 164 165 /* Congestion state accounting after a packet has been sent. */ 166 static void tcp_event_data_sent(struct tcp_sock *tp, 167 struct sock *sk) 168 { 169 struct inet_connection_sock *icsk = inet_csk(sk); 170 const u32 now = tcp_jiffies32; 171 172 if (tcp_packets_in_flight(tp) == 0) 173 tcp_ca_event(sk, CA_EVENT_TX_START); 174 175 tp->lsndtime = now; 176 177 /* If it is a reply for ato after last received 178 * packet, increase pingpong count. 179 */ 180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 181 inet_csk_inc_pingpong_cnt(sk); 182 } 183 184 /* Account for an ACK we sent. */ 185 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 186 { 187 struct tcp_sock *tp = tcp_sk(sk); 188 189 if (unlikely(tp->compressed_ack)) { 190 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 191 tp->compressed_ack); 192 tp->compressed_ack = 0; 193 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 194 __sock_put(sk); 195 } 196 197 if (unlikely(rcv_nxt != tp->rcv_nxt)) 198 return; /* Special ACK sent by DCTCP to reflect ECN */ 199 tcp_dec_quickack_mode(sk); 200 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 201 } 202 203 /* Determine a window scaling and initial window to offer. 204 * Based on the assumption that the given amount of space 205 * will be offered. Store the results in the tp structure. 206 * NOTE: for smooth operation initial space offering should 207 * be a multiple of mss if possible. We assume here that mss >= 1. 208 * This MUST be enforced by all callers. 209 */ 210 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 211 __u32 *rcv_wnd, __u32 *__window_clamp, 212 int wscale_ok, __u8 *rcv_wscale, 213 __u32 init_rcv_wnd) 214 { 215 unsigned int space = (__space < 0 ? 0 : __space); 216 u32 window_clamp = READ_ONCE(*__window_clamp); 217 218 /* If no clamp set the clamp to the max possible scaled window */ 219 if (window_clamp == 0) 220 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 221 space = min(window_clamp, space); 222 223 /* Quantize space offering to a multiple of mss if possible. */ 224 if (space > mss) 225 space = rounddown(space, mss); 226 227 /* NOTE: offering an initial window larger than 32767 228 * will break some buggy TCP stacks. If the admin tells us 229 * it is likely we could be speaking with such a buggy stack 230 * we will truncate our initial window offering to 32K-1 231 * unless the remote has sent us a window scaling option, 232 * which we interpret as a sign the remote TCP is not 233 * misinterpreting the window field as a signed quantity. 234 */ 235 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 237 else 238 (*rcv_wnd) = space; 239 240 if (init_rcv_wnd) 241 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 242 243 *rcv_wscale = 0; 244 if (wscale_ok) { 245 /* Set window scaling on max possible window */ 246 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 247 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 248 space = min_t(u32, space, window_clamp); 249 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 250 0, TCP_MAX_WSCALE); 251 } 252 /* Set the clamp no higher than max representable value */ 253 WRITE_ONCE(*__window_clamp, 254 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 255 } 256 EXPORT_IPV6_MOD(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 struct net *net = sock_net(sk); 267 u32 old_win = tp->rcv_wnd; 268 u32 cur_win, new_win; 269 270 /* Make the window 0 if we failed to queue the data because we 271 * are out of memory. 272 */ 273 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) { 274 tp->pred_flags = 0; 275 tp->rcv_wnd = 0; 276 tp->rcv_wup = tp->rcv_nxt; 277 return 0; 278 } 279 280 cur_win = tcp_receive_window(tp); 281 new_win = __tcp_select_window(sk); 282 if (new_win < cur_win) { 283 /* Danger Will Robinson! 284 * Don't update rcv_wup/rcv_wnd here or else 285 * we will not be able to advertise a zero 286 * window in time. --DaveM 287 * 288 * Relax Will Robinson. 289 */ 290 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 291 /* Never shrink the offered window */ 292 if (new_win == 0) 293 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 294 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 295 } 296 } 297 298 tp->rcv_wnd = new_win; 299 tp->rcv_wup = tp->rcv_nxt; 300 301 /* Make sure we do not exceed the maximum possible 302 * scaled window. 303 */ 304 if (!tp->rx_opt.rcv_wscale && 305 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 306 new_win = min(new_win, MAX_TCP_WINDOW); 307 else 308 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 309 310 /* RFC1323 scaling applied */ 311 new_win >>= tp->rx_opt.rcv_wscale; 312 313 /* If we advertise zero window, disable fast path. */ 314 if (new_win == 0) { 315 tp->pred_flags = 0; 316 if (old_win) 317 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 318 } else if (old_win == 0) { 319 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 320 } 321 322 return new_win; 323 } 324 325 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 326 * be sent. 327 */ 328 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 329 struct tcphdr *th, int tcp_header_len) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 333 if (!tcp_ecn_mode_any(tp)) 334 return; 335 336 if (tcp_ecn_mode_accecn(tp)) { 337 if (!tcp_accecn_ace_fail_recv(tp)) 338 INET_ECN_xmit(sk); 339 tcp_accecn_set_ace(tp, skb, th); 340 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ACCECN; 341 } else { 342 /* Not-retransmitted data segment: set ECT and inject CWR. */ 343 if (skb->len != tcp_header_len && 344 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 345 INET_ECN_xmit(sk); 346 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 347 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 348 th->cwr = 1; 349 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 350 } 351 } else if (!tcp_ca_needs_ecn(sk)) { 352 /* ACK or retransmitted segment: clear ECT|CE */ 353 INET_ECN_dontxmit(sk); 354 } 355 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 356 th->ece = 1; 357 } 358 } 359 360 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 361 * auto increment end seqno. 362 */ 363 static void tcp_init_nondata_skb(struct sk_buff *skb, struct sock *sk, 364 u32 seq, u16 flags) 365 { 366 skb->ip_summed = CHECKSUM_PARTIAL; 367 368 TCP_SKB_CB(skb)->tcp_flags = flags; 369 370 tcp_skb_pcount_set(skb, 1); 371 psp_enqueue_set_decrypted(sk, skb); 372 373 TCP_SKB_CB(skb)->seq = seq; 374 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 375 seq++; 376 TCP_SKB_CB(skb)->end_seq = seq; 377 } 378 379 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 380 { 381 return tp->snd_una != tp->snd_up; 382 } 383 384 #define OPTION_SACK_ADVERTISE BIT(0) 385 #define OPTION_TS BIT(1) 386 #define OPTION_MD5 BIT(2) 387 #define OPTION_WSCALE BIT(3) 388 #define OPTION_FAST_OPEN_COOKIE BIT(8) 389 #define OPTION_SMC BIT(9) 390 #define OPTION_MPTCP BIT(10) 391 #define OPTION_AO BIT(11) 392 #define OPTION_ACCECN BIT(12) 393 394 static void smc_options_write(__be32 *ptr, u16 *options) 395 { 396 #if IS_ENABLED(CONFIG_SMC) 397 if (static_branch_unlikely(&tcp_have_smc)) { 398 if (unlikely(OPTION_SMC & *options)) { 399 *ptr++ = htonl((TCPOPT_NOP << 24) | 400 (TCPOPT_NOP << 16) | 401 (TCPOPT_EXP << 8) | 402 (TCPOLEN_EXP_SMC_BASE)); 403 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 404 } 405 } 406 #endif 407 } 408 409 struct tcp_out_options { 410 u16 options; /* bit field of OPTION_* */ 411 u16 mss; /* 0 to disable */ 412 u8 ws; /* window scale, 0 to disable */ 413 u8 num_sack_blocks; /* number of SACK blocks to include */ 414 u8 num_accecn_fields:7, /* number of AccECN fields needed */ 415 use_synack_ecn_bytes:1; /* Use synack_ecn_bytes or not */ 416 u8 hash_size; /* bytes in hash_location */ 417 u8 bpf_opt_len; /* length of BPF hdr option */ 418 __u8 *hash_location; /* temporary pointer, overloaded */ 419 __u32 tsval, tsecr; /* need to include OPTION_TS */ 420 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 421 struct mptcp_out_options mptcp; 422 }; 423 424 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 425 struct tcp_sock *tp, 426 struct tcp_out_options *opts) 427 { 428 #if IS_ENABLED(CONFIG_MPTCP) 429 if (unlikely(OPTION_MPTCP & opts->options)) 430 mptcp_write_options(th, ptr, tp, &opts->mptcp); 431 #endif 432 } 433 434 #ifdef CONFIG_CGROUP_BPF 435 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 436 enum tcp_synack_type synack_type) 437 { 438 if (unlikely(!skb)) 439 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 440 441 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 442 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 443 444 return 0; 445 } 446 447 /* req, syn_skb and synack_type are used when writing synack */ 448 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 449 struct request_sock *req, 450 struct sk_buff *syn_skb, 451 enum tcp_synack_type synack_type, 452 struct tcp_out_options *opts, 453 unsigned int *remaining) 454 { 455 struct bpf_sock_ops_kern sock_ops; 456 int err; 457 458 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 459 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 460 !*remaining) 461 return; 462 463 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 464 465 /* init sock_ops */ 466 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 467 468 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 469 470 if (req) { 471 /* The listen "sk" cannot be passed here because 472 * it is not locked. It would not make too much 473 * sense to do bpf_setsockopt(listen_sk) based 474 * on individual connection request also. 475 * 476 * Thus, "req" is passed here and the cgroup-bpf-progs 477 * of the listen "sk" will be run. 478 * 479 * "req" is also used here for fastopen even the "sk" here is 480 * a fullsock "child" sk. It is to keep the behavior 481 * consistent between fastopen and non-fastopen on 482 * the bpf programming side. 483 */ 484 sock_ops.sk = (struct sock *)req; 485 sock_ops.syn_skb = syn_skb; 486 } else { 487 sock_owned_by_me(sk); 488 489 sock_ops.is_fullsock = 1; 490 sock_ops.is_locked_tcp_sock = 1; 491 sock_ops.sk = sk; 492 } 493 494 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 495 sock_ops.remaining_opt_len = *remaining; 496 /* tcp_current_mss() does not pass a skb */ 497 if (skb) 498 bpf_skops_init_skb(&sock_ops, skb, 0); 499 500 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 501 502 if (err || sock_ops.remaining_opt_len == *remaining) 503 return; 504 505 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 506 /* round up to 4 bytes */ 507 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 508 509 *remaining -= opts->bpf_opt_len; 510 } 511 512 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 513 struct request_sock *req, 514 struct sk_buff *syn_skb, 515 enum tcp_synack_type synack_type, 516 struct tcp_out_options *opts) 517 { 518 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 519 struct bpf_sock_ops_kern sock_ops; 520 int err; 521 522 if (likely(!max_opt_len)) 523 return; 524 525 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 526 527 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 528 529 if (req) { 530 sock_ops.sk = (struct sock *)req; 531 sock_ops.syn_skb = syn_skb; 532 } else { 533 sock_owned_by_me(sk); 534 535 sock_ops.is_fullsock = 1; 536 sock_ops.is_locked_tcp_sock = 1; 537 sock_ops.sk = sk; 538 } 539 540 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 541 sock_ops.remaining_opt_len = max_opt_len; 542 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 543 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 544 545 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 546 547 if (err) 548 nr_written = 0; 549 else 550 nr_written = max_opt_len - sock_ops.remaining_opt_len; 551 552 if (nr_written < max_opt_len) 553 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 554 max_opt_len - nr_written); 555 } 556 #else 557 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 558 struct request_sock *req, 559 struct sk_buff *syn_skb, 560 enum tcp_synack_type synack_type, 561 struct tcp_out_options *opts, 562 unsigned int *remaining) 563 { 564 } 565 566 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 567 struct request_sock *req, 568 struct sk_buff *syn_skb, 569 enum tcp_synack_type synack_type, 570 struct tcp_out_options *opts) 571 { 572 } 573 #endif 574 575 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 576 const struct tcp_request_sock *tcprsk, 577 struct tcp_out_options *opts, 578 struct tcp_key *key, __be32 *ptr) 579 { 580 #ifdef CONFIG_TCP_AO 581 u8 maclen = tcp_ao_maclen(key->ao_key); 582 583 if (tcprsk) { 584 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 585 586 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 587 (tcprsk->ao_keyid << 8) | 588 (tcprsk->ao_rcv_next)); 589 } else { 590 struct tcp_ao_key *rnext_key; 591 struct tcp_ao_info *ao_info; 592 593 ao_info = rcu_dereference_check(tp->ao_info, 594 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 595 rnext_key = READ_ONCE(ao_info->rnext_key); 596 if (WARN_ON_ONCE(!rnext_key)) 597 return ptr; 598 *ptr++ = htonl((TCPOPT_AO << 24) | 599 (tcp_ao_len(key->ao_key) << 16) | 600 (key->ao_key->sndid << 8) | 601 (rnext_key->rcvid)); 602 } 603 opts->hash_location = (__u8 *)ptr; 604 ptr += maclen / sizeof(*ptr); 605 if (unlikely(maclen % sizeof(*ptr))) { 606 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 607 ptr++; 608 } 609 #endif 610 return ptr; 611 } 612 613 /* Initial values for AccECN option, ordered is based on ECN field bits 614 * similar to received_ecn_bytes. Used for SYN/ACK AccECN option. 615 */ 616 static const u32 synack_ecn_bytes[3] = { 0, 0, 0 }; 617 618 /* Write previously computed TCP options to the packet. 619 * 620 * Beware: Something in the Internet is very sensitive to the ordering of 621 * TCP options, we learned this through the hard way, so be careful here. 622 * Luckily we can at least blame others for their non-compliance but from 623 * inter-operability perspective it seems that we're somewhat stuck with 624 * the ordering which we have been using if we want to keep working with 625 * those broken things (not that it currently hurts anybody as there isn't 626 * particular reason why the ordering would need to be changed). 627 * 628 * At least SACK_PERM as the first option is known to lead to a disaster 629 * (but it may well be that other scenarios fail similarly). 630 */ 631 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 632 const struct tcp_request_sock *tcprsk, 633 struct tcp_out_options *opts, 634 struct tcp_key *key) 635 { 636 u8 leftover_highbyte = TCPOPT_NOP; /* replace 1st NOP if avail */ 637 u8 leftover_lowbyte = TCPOPT_NOP; /* replace 2nd NOP in succession */ 638 __be32 *ptr = (__be32 *)(th + 1); 639 u16 options = opts->options; /* mungable copy */ 640 641 if (tcp_key_is_md5(key)) { 642 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 643 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 644 /* overload cookie hash location */ 645 opts->hash_location = (__u8 *)ptr; 646 ptr += 4; 647 } else if (tcp_key_is_ao(key)) { 648 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 649 } 650 if (unlikely(opts->mss)) { 651 *ptr++ = htonl((TCPOPT_MSS << 24) | 652 (TCPOLEN_MSS << 16) | 653 opts->mss); 654 } 655 656 if (likely(OPTION_TS & options)) { 657 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 658 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 659 (TCPOLEN_SACK_PERM << 16) | 660 (TCPOPT_TIMESTAMP << 8) | 661 TCPOLEN_TIMESTAMP); 662 options &= ~OPTION_SACK_ADVERTISE; 663 } else { 664 *ptr++ = htonl((TCPOPT_NOP << 24) | 665 (TCPOPT_NOP << 16) | 666 (TCPOPT_TIMESTAMP << 8) | 667 TCPOLEN_TIMESTAMP); 668 } 669 *ptr++ = htonl(opts->tsval); 670 *ptr++ = htonl(opts->tsecr); 671 } 672 673 if (OPTION_ACCECN & options) { 674 const u32 *ecn_bytes = opts->use_synack_ecn_bytes ? 675 synack_ecn_bytes : 676 tp->received_ecn_bytes; 677 const u8 ect0_idx = INET_ECN_ECT_0 - 1; 678 const u8 ect1_idx = INET_ECN_ECT_1 - 1; 679 const u8 ce_idx = INET_ECN_CE - 1; 680 u32 e0b; 681 u32 e1b; 682 u32 ceb; 683 u8 len; 684 685 e0b = ecn_bytes[ect0_idx] + TCP_ACCECN_E0B_INIT_OFFSET; 686 e1b = ecn_bytes[ect1_idx] + TCP_ACCECN_E1B_INIT_OFFSET; 687 ceb = ecn_bytes[ce_idx] + TCP_ACCECN_CEB_INIT_OFFSET; 688 len = TCPOLEN_ACCECN_BASE + 689 opts->num_accecn_fields * TCPOLEN_ACCECN_PERFIELD; 690 691 if (opts->num_accecn_fields == 2) { 692 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 693 ((e1b >> 8) & 0xffff)); 694 *ptr++ = htonl(((e1b & 0xff) << 24) | 695 (ceb & 0xffffff)); 696 } else if (opts->num_accecn_fields == 1) { 697 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 698 ((e1b >> 8) & 0xffff)); 699 leftover_highbyte = e1b & 0xff; 700 leftover_lowbyte = TCPOPT_NOP; 701 } else if (opts->num_accecn_fields == 0) { 702 leftover_highbyte = TCPOPT_ACCECN1; 703 leftover_lowbyte = len; 704 } else if (opts->num_accecn_fields == 3) { 705 *ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | 706 ((e1b >> 8) & 0xffff)); 707 *ptr++ = htonl(((e1b & 0xff) << 24) | 708 (ceb & 0xffffff)); 709 *ptr++ = htonl(((e0b & 0xffffff) << 8) | 710 TCPOPT_NOP); 711 } 712 if (tp) { 713 tp->accecn_minlen = 0; 714 tp->accecn_opt_tstamp = tp->tcp_mstamp; 715 if (tp->accecn_opt_demand) 716 tp->accecn_opt_demand--; 717 } 718 } 719 720 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 721 *ptr++ = htonl((leftover_highbyte << 24) | 722 (leftover_lowbyte << 16) | 723 (TCPOPT_SACK_PERM << 8) | 724 TCPOLEN_SACK_PERM); 725 leftover_highbyte = TCPOPT_NOP; 726 leftover_lowbyte = TCPOPT_NOP; 727 } 728 729 if (unlikely(OPTION_WSCALE & options)) { 730 u8 highbyte = TCPOPT_NOP; 731 732 /* Do not split the leftover 2-byte to fit into a single 733 * NOP, i.e., replace this NOP only when 1 byte is leftover 734 * within leftover_highbyte. 735 */ 736 if (unlikely(leftover_highbyte != TCPOPT_NOP && 737 leftover_lowbyte == TCPOPT_NOP)) { 738 highbyte = leftover_highbyte; 739 leftover_highbyte = TCPOPT_NOP; 740 } 741 *ptr++ = htonl((highbyte << 24) | 742 (TCPOPT_WINDOW << 16) | 743 (TCPOLEN_WINDOW << 8) | 744 opts->ws); 745 } 746 747 if (unlikely(opts->num_sack_blocks)) { 748 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 749 tp->duplicate_sack : tp->selective_acks; 750 int this_sack; 751 752 *ptr++ = htonl((leftover_highbyte << 24) | 753 (leftover_lowbyte << 16) | 754 (TCPOPT_SACK << 8) | 755 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 756 TCPOLEN_SACK_PERBLOCK))); 757 leftover_highbyte = TCPOPT_NOP; 758 leftover_lowbyte = TCPOPT_NOP; 759 760 for (this_sack = 0; this_sack < opts->num_sack_blocks; 761 ++this_sack) { 762 *ptr++ = htonl(sp[this_sack].start_seq); 763 *ptr++ = htonl(sp[this_sack].end_seq); 764 } 765 766 tp->rx_opt.dsack = 0; 767 } else if (unlikely(leftover_highbyte != TCPOPT_NOP || 768 leftover_lowbyte != TCPOPT_NOP)) { 769 *ptr++ = htonl((leftover_highbyte << 24) | 770 (leftover_lowbyte << 16) | 771 (TCPOPT_NOP << 8) | 772 TCPOPT_NOP); 773 leftover_highbyte = TCPOPT_NOP; 774 leftover_lowbyte = TCPOPT_NOP; 775 } 776 777 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 778 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 779 u8 *p = (u8 *)ptr; 780 u32 len; /* Fast Open option length */ 781 782 if (foc->exp) { 783 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 784 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 785 TCPOPT_FASTOPEN_MAGIC); 786 p += TCPOLEN_EXP_FASTOPEN_BASE; 787 } else { 788 len = TCPOLEN_FASTOPEN_BASE + foc->len; 789 *p++ = TCPOPT_FASTOPEN; 790 *p++ = len; 791 } 792 793 memcpy(p, foc->val, foc->len); 794 if ((len & 3) == 2) { 795 p[foc->len] = TCPOPT_NOP; 796 p[foc->len + 1] = TCPOPT_NOP; 797 } 798 ptr += (len + 3) >> 2; 799 } 800 801 smc_options_write(ptr, &options); 802 803 mptcp_options_write(th, ptr, tp, opts); 804 } 805 806 static void smc_set_option(struct tcp_sock *tp, 807 struct tcp_out_options *opts, 808 unsigned int *remaining) 809 { 810 #if IS_ENABLED(CONFIG_SMC) 811 if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc) { 812 tp->syn_smc = !!smc_call_hsbpf(1, tp, syn_option); 813 /* re-check syn_smc */ 814 if (tp->syn_smc && 815 *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 816 opts->options |= OPTION_SMC; 817 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 818 } 819 } 820 #endif 821 } 822 823 static void smc_set_option_cond(const struct tcp_sock *tp, 824 struct inet_request_sock *ireq, 825 struct tcp_out_options *opts, 826 unsigned int *remaining) 827 { 828 #if IS_ENABLED(CONFIG_SMC) 829 if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc && ireq->smc_ok) { 830 ireq->smc_ok = !!smc_call_hsbpf(1, tp, synack_option, ireq); 831 /* re-check smc_ok */ 832 if (ireq->smc_ok && 833 *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 834 opts->options |= OPTION_SMC; 835 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 836 } 837 } 838 #endif 839 } 840 841 static void mptcp_set_option_cond(const struct request_sock *req, 842 struct tcp_out_options *opts, 843 unsigned int *remaining) 844 { 845 if (rsk_is_mptcp(req)) { 846 unsigned int size; 847 848 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 849 if (*remaining >= size) { 850 opts->options |= OPTION_MPTCP; 851 *remaining -= size; 852 } 853 } 854 } 855 } 856 857 static u32 tcp_synack_options_combine_saving(struct tcp_out_options *opts) 858 { 859 /* How much there's room for combining with the alignment padding? */ 860 if ((opts->options & (OPTION_SACK_ADVERTISE | OPTION_TS)) == 861 OPTION_SACK_ADVERTISE) 862 return 2; 863 else if (opts->options & OPTION_WSCALE) 864 return 1; 865 return 0; 866 } 867 868 /* Calculates how long AccECN option will fit to @remaining option space. 869 * 870 * AccECN option can sometimes replace NOPs used for alignment of other 871 * TCP options (up to @max_combine_saving available). 872 * 873 * Only solutions with at least @required AccECN fields are accepted. 874 * 875 * Returns: The size of the AccECN option excluding space repurposed from 876 * the alignment of the other options. 877 */ 878 static int tcp_options_fit_accecn(struct tcp_out_options *opts, int required, 879 int remaining) 880 { 881 int size = TCP_ACCECN_MAXSIZE; 882 int sack_blocks_reduce = 0; 883 int max_combine_saving; 884 int rem = remaining; 885 int align_size; 886 887 if (opts->use_synack_ecn_bytes) 888 max_combine_saving = tcp_synack_options_combine_saving(opts); 889 else 890 max_combine_saving = opts->num_sack_blocks > 0 ? 2 : 0; 891 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS; 892 while (opts->num_accecn_fields >= required) { 893 /* Pad to dword if cannot combine */ 894 if ((size & 0x3) > max_combine_saving) 895 align_size = ALIGN(size, 4); 896 else 897 align_size = ALIGN_DOWN(size, 4); 898 899 if (rem >= align_size) { 900 size = align_size; 901 break; 902 } else if (opts->num_accecn_fields == required && 903 opts->num_sack_blocks > 2 && 904 required > 0) { 905 /* Try to fit the option by removing one SACK block */ 906 opts->num_sack_blocks--; 907 sack_blocks_reduce++; 908 rem = rem + TCPOLEN_SACK_PERBLOCK; 909 910 opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS; 911 size = TCP_ACCECN_MAXSIZE; 912 continue; 913 } 914 915 opts->num_accecn_fields--; 916 size -= TCPOLEN_ACCECN_PERFIELD; 917 } 918 if (sack_blocks_reduce > 0) { 919 if (opts->num_accecn_fields >= required) 920 size -= sack_blocks_reduce * TCPOLEN_SACK_PERBLOCK; 921 else 922 opts->num_sack_blocks += sack_blocks_reduce; 923 } 924 if (opts->num_accecn_fields < required) 925 return 0; 926 927 opts->options |= OPTION_ACCECN; 928 return size; 929 } 930 931 /* Compute TCP options for SYN packets. This is not the final 932 * network wire format yet. 933 */ 934 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 935 struct tcp_out_options *opts, 936 struct tcp_key *key) 937 { 938 struct tcp_sock *tp = tcp_sk(sk); 939 unsigned int remaining = MAX_TCP_OPTION_SPACE; 940 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 941 bool timestamps; 942 943 /* Better than switch (key.type) as it has static branches */ 944 if (tcp_key_is_md5(key)) { 945 timestamps = false; 946 opts->options |= OPTION_MD5; 947 remaining -= TCPOLEN_MD5SIG_ALIGNED; 948 } else { 949 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 950 if (tcp_key_is_ao(key)) { 951 opts->options |= OPTION_AO; 952 remaining -= tcp_ao_len_aligned(key->ao_key); 953 } 954 } 955 956 /* We always get an MSS option. The option bytes which will be seen in 957 * normal data packets should timestamps be used, must be in the MSS 958 * advertised. But we subtract them from tp->mss_cache so that 959 * calculations in tcp_sendmsg are simpler etc. So account for this 960 * fact here if necessary. If we don't do this correctly, as a 961 * receiver we won't recognize data packets as being full sized when we 962 * should, and thus we won't abide by the delayed ACK rules correctly. 963 * SACKs don't matter, we never delay an ACK when we have any of those 964 * going out. */ 965 opts->mss = tcp_advertise_mss(sk); 966 remaining -= TCPOLEN_MSS_ALIGNED; 967 968 if (likely(timestamps)) { 969 opts->options |= OPTION_TS; 970 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 971 opts->tsecr = tp->rx_opt.ts_recent; 972 remaining -= TCPOLEN_TSTAMP_ALIGNED; 973 } 974 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 975 opts->ws = tp->rx_opt.rcv_wscale; 976 opts->options |= OPTION_WSCALE; 977 remaining -= TCPOLEN_WSCALE_ALIGNED; 978 } 979 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 980 opts->options |= OPTION_SACK_ADVERTISE; 981 if (unlikely(!(OPTION_TS & opts->options))) 982 remaining -= TCPOLEN_SACKPERM_ALIGNED; 983 } 984 985 if (fastopen && fastopen->cookie.len >= 0) { 986 u32 need = fastopen->cookie.len; 987 988 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 989 TCPOLEN_FASTOPEN_BASE; 990 need = (need + 3) & ~3U; /* Align to 32 bits */ 991 if (remaining >= need) { 992 opts->options |= OPTION_FAST_OPEN_COOKIE; 993 opts->fastopen_cookie = &fastopen->cookie; 994 remaining -= need; 995 tp->syn_fastopen = 1; 996 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 997 } 998 } 999 1000 smc_set_option(tp, opts, &remaining); 1001 1002 if (sk_is_mptcp(sk)) { 1003 unsigned int size; 1004 1005 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 1006 if (remaining >= size) { 1007 opts->options |= OPTION_MPTCP; 1008 remaining -= size; 1009 } 1010 } 1011 } 1012 1013 /* Simultaneous open SYN/ACK needs AccECN option but not SYN. 1014 * It is attempted to negotiate the use of AccECN also on the first 1015 * retransmitted SYN, as mentioned in "3.1.4.1. Retransmitted SYNs" 1016 * of AccECN draft. 1017 */ 1018 if (unlikely((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK) && 1019 tcp_ecn_mode_accecn(tp) && 1020 inet_csk(sk)->icsk_retransmits < 2 && 1021 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) && 1022 remaining >= TCPOLEN_ACCECN_BASE)) { 1023 opts->use_synack_ecn_bytes = 1; 1024 remaining -= tcp_options_fit_accecn(opts, 0, remaining); 1025 } 1026 1027 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1028 1029 return MAX_TCP_OPTION_SPACE - remaining; 1030 } 1031 1032 /* Set up TCP options for SYN-ACKs. */ 1033 static unsigned int tcp_synack_options(const struct sock *sk, 1034 struct request_sock *req, 1035 unsigned int mss, struct sk_buff *skb, 1036 struct tcp_out_options *opts, 1037 const struct tcp_key *key, 1038 struct tcp_fastopen_cookie *foc, 1039 enum tcp_synack_type synack_type, 1040 struct sk_buff *syn_skb) 1041 { 1042 struct inet_request_sock *ireq = inet_rsk(req); 1043 unsigned int remaining = MAX_TCP_OPTION_SPACE; 1044 struct tcp_request_sock *treq = tcp_rsk(req); 1045 1046 if (tcp_key_is_md5(key)) { 1047 opts->options |= OPTION_MD5; 1048 remaining -= TCPOLEN_MD5SIG_ALIGNED; 1049 1050 /* We can't fit any SACK blocks in a packet with MD5 + TS 1051 * options. There was discussion about disabling SACK 1052 * rather than TS in order to fit in better with old, 1053 * buggy kernels, but that was deemed to be unnecessary. 1054 */ 1055 if (synack_type != TCP_SYNACK_COOKIE) 1056 ireq->tstamp_ok &= !ireq->sack_ok; 1057 } else if (tcp_key_is_ao(key)) { 1058 opts->options |= OPTION_AO; 1059 remaining -= tcp_ao_len_aligned(key->ao_key); 1060 ireq->tstamp_ok &= !ireq->sack_ok; 1061 } 1062 1063 /* We always send an MSS option. */ 1064 opts->mss = mss; 1065 remaining -= TCPOLEN_MSS_ALIGNED; 1066 1067 if (likely(ireq->wscale_ok)) { 1068 opts->ws = ireq->rcv_wscale; 1069 opts->options |= OPTION_WSCALE; 1070 remaining -= TCPOLEN_WSCALE_ALIGNED; 1071 } 1072 if (likely(ireq->tstamp_ok)) { 1073 opts->options |= OPTION_TS; 1074 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 1075 tcp_rsk(req)->ts_off; 1076 if (!tcp_rsk(req)->snt_tsval_first) { 1077 if (!opts->tsval) 1078 opts->tsval = ~0U; 1079 tcp_rsk(req)->snt_tsval_first = opts->tsval; 1080 } 1081 WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval); 1082 opts->tsecr = req->ts_recent; 1083 remaining -= TCPOLEN_TSTAMP_ALIGNED; 1084 } 1085 if (likely(ireq->sack_ok)) { 1086 opts->options |= OPTION_SACK_ADVERTISE; 1087 if (unlikely(!ireq->tstamp_ok)) 1088 remaining -= TCPOLEN_SACKPERM_ALIGNED; 1089 } 1090 if (foc != NULL && foc->len >= 0) { 1091 u32 need = foc->len; 1092 1093 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 1094 TCPOLEN_FASTOPEN_BASE; 1095 need = (need + 3) & ~3U; /* Align to 32 bits */ 1096 if (remaining >= need) { 1097 opts->options |= OPTION_FAST_OPEN_COOKIE; 1098 opts->fastopen_cookie = foc; 1099 remaining -= need; 1100 } 1101 } 1102 1103 mptcp_set_option_cond(req, opts, &remaining); 1104 1105 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 1106 1107 if (treq->accecn_ok && 1108 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) && 1109 req->num_timeout < 1 && remaining >= TCPOLEN_ACCECN_BASE) { 1110 opts->use_synack_ecn_bytes = 1; 1111 remaining -= tcp_options_fit_accecn(opts, 0, remaining); 1112 } 1113 1114 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 1115 synack_type, opts, &remaining); 1116 1117 return MAX_TCP_OPTION_SPACE - remaining; 1118 } 1119 1120 /* Compute TCP options for ESTABLISHED sockets. This is not the 1121 * final wire format yet. 1122 */ 1123 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 1124 struct tcp_out_options *opts, 1125 struct tcp_key *key) 1126 { 1127 struct tcp_sock *tp = tcp_sk(sk); 1128 unsigned int size = 0; 1129 unsigned int eff_sacks; 1130 1131 opts->options = 0; 1132 1133 /* Better than switch (key.type) as it has static branches */ 1134 if (tcp_key_is_md5(key)) { 1135 opts->options |= OPTION_MD5; 1136 size += TCPOLEN_MD5SIG_ALIGNED; 1137 } else if (tcp_key_is_ao(key)) { 1138 opts->options |= OPTION_AO; 1139 size += tcp_ao_len_aligned(key->ao_key); 1140 } 1141 1142 if (likely(tp->rx_opt.tstamp_ok)) { 1143 opts->options |= OPTION_TS; 1144 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 1145 tp->tsoffset : 0; 1146 opts->tsecr = tp->rx_opt.ts_recent; 1147 size += TCPOLEN_TSTAMP_ALIGNED; 1148 } 1149 1150 /* MPTCP options have precedence over SACK for the limited TCP 1151 * option space because a MPTCP connection would be forced to 1152 * fall back to regular TCP if a required multipath option is 1153 * missing. SACK still gets a chance to use whatever space is 1154 * left. 1155 */ 1156 if (sk_is_mptcp(sk)) { 1157 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1158 unsigned int opt_size = 0; 1159 1160 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1161 &opts->mptcp)) { 1162 opts->options |= OPTION_MPTCP; 1163 size += opt_size; 1164 } 1165 } 1166 1167 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1168 if (unlikely(eff_sacks)) { 1169 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1170 if (likely(remaining >= TCPOLEN_SACK_BASE_ALIGNED + 1171 TCPOLEN_SACK_PERBLOCK)) { 1172 opts->num_sack_blocks = 1173 min_t(unsigned int, eff_sacks, 1174 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1175 TCPOLEN_SACK_PERBLOCK); 1176 1177 size += TCPOLEN_SACK_BASE_ALIGNED + 1178 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1179 } else { 1180 opts->num_sack_blocks = 0; 1181 } 1182 } else { 1183 opts->num_sack_blocks = 0; 1184 } 1185 1186 if (tcp_ecn_mode_accecn(tp)) { 1187 int ecn_opt = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option); 1188 1189 if (ecn_opt && tp->saw_accecn_opt && !tcp_accecn_opt_fail_send(tp) && 1190 (ecn_opt >= TCP_ACCECN_OPTION_FULL || tp->accecn_opt_demand || 1191 tcp_accecn_option_beacon_check(sk))) { 1192 opts->use_synack_ecn_bytes = 0; 1193 size += tcp_options_fit_accecn(opts, tp->accecn_minlen, 1194 MAX_TCP_OPTION_SPACE - size); 1195 } 1196 } 1197 1198 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1199 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1200 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1201 1202 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1203 1204 size = MAX_TCP_OPTION_SPACE - remaining; 1205 } 1206 1207 return size; 1208 } 1209 1210 1211 /* TCP SMALL QUEUES (TSQ) 1212 * 1213 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1214 * to reduce RTT and bufferbloat. 1215 * We do this using a special skb destructor (tcp_wfree). 1216 * 1217 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1218 * needs to be reallocated in a driver. 1219 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1220 * 1221 * Since transmit from skb destructor is forbidden, we use a BH work item 1222 * to process all sockets that eventually need to send more skbs. 1223 * We use one work item per cpu, with its own queue of sockets. 1224 */ 1225 struct tsq_work { 1226 struct work_struct work; 1227 struct list_head head; /* queue of tcp sockets */ 1228 }; 1229 static DEFINE_PER_CPU(struct tsq_work, tsq_work); 1230 1231 static void tcp_tsq_write(struct sock *sk) 1232 { 1233 if ((1 << sk->sk_state) & 1234 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1235 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1236 struct tcp_sock *tp = tcp_sk(sk); 1237 1238 if (tp->lost_out > tp->retrans_out && 1239 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1240 tcp_mstamp_refresh(tp); 1241 tcp_xmit_retransmit_queue(sk); 1242 } 1243 1244 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1245 0, GFP_ATOMIC); 1246 } 1247 } 1248 1249 static void tcp_tsq_handler(struct sock *sk) 1250 { 1251 bh_lock_sock(sk); 1252 if (!sock_owned_by_user(sk)) 1253 tcp_tsq_write(sk); 1254 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1255 sock_hold(sk); 1256 bh_unlock_sock(sk); 1257 } 1258 /* 1259 * One work item per cpu tries to send more skbs. 1260 * We run in BH context but need to disable irqs when 1261 * transferring tsq->head because tcp_wfree() might 1262 * interrupt us (non NAPI drivers) 1263 */ 1264 static void tcp_tsq_workfn(struct work_struct *work) 1265 { 1266 struct tsq_work *tsq = container_of(work, struct tsq_work, work); 1267 LIST_HEAD(list); 1268 unsigned long flags; 1269 struct list_head *q, *n; 1270 struct tcp_sock *tp; 1271 struct sock *sk; 1272 1273 local_irq_save(flags); 1274 list_splice_init(&tsq->head, &list); 1275 local_irq_restore(flags); 1276 1277 list_for_each_safe(q, n, &list) { 1278 tp = list_entry(q, struct tcp_sock, tsq_node); 1279 list_del(&tp->tsq_node); 1280 1281 sk = (struct sock *)tp; 1282 smp_mb__before_atomic(); 1283 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1284 1285 tcp_tsq_handler(sk); 1286 sk_free(sk); 1287 } 1288 } 1289 1290 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1291 TCPF_WRITE_TIMER_DEFERRED | \ 1292 TCPF_DELACK_TIMER_DEFERRED | \ 1293 TCPF_MTU_REDUCED_DEFERRED | \ 1294 TCPF_ACK_DEFERRED) 1295 /** 1296 * tcp_release_cb - tcp release_sock() callback 1297 * @sk: socket 1298 * 1299 * called from release_sock() to perform protocol dependent 1300 * actions before socket release. 1301 */ 1302 void tcp_release_cb(struct sock *sk) 1303 { 1304 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1305 unsigned long nflags; 1306 1307 /* perform an atomic operation only if at least one flag is set */ 1308 do { 1309 if (!(flags & TCP_DEFERRED_ALL)) 1310 return; 1311 nflags = flags & ~TCP_DEFERRED_ALL; 1312 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1313 1314 if (flags & TCPF_TSQ_DEFERRED) { 1315 tcp_tsq_write(sk); 1316 __sock_put(sk); 1317 } 1318 1319 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1320 tcp_write_timer_handler(sk); 1321 __sock_put(sk); 1322 } 1323 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1324 tcp_delack_timer_handler(sk); 1325 __sock_put(sk); 1326 } 1327 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1328 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1329 __sock_put(sk); 1330 } 1331 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1332 tcp_send_ack(sk); 1333 } 1334 EXPORT_IPV6_MOD(tcp_release_cb); 1335 1336 void __init tcp_tsq_work_init(void) 1337 { 1338 int i; 1339 1340 for_each_possible_cpu(i) { 1341 struct tsq_work *tsq = &per_cpu(tsq_work, i); 1342 1343 INIT_LIST_HEAD(&tsq->head); 1344 INIT_WORK(&tsq->work, tcp_tsq_workfn); 1345 } 1346 } 1347 1348 /* 1349 * Write buffer destructor automatically called from kfree_skb. 1350 * We can't xmit new skbs from this context, as we might already 1351 * hold qdisc lock. 1352 */ 1353 void tcp_wfree(struct sk_buff *skb) 1354 { 1355 struct sock *sk = skb->sk; 1356 struct tcp_sock *tp = tcp_sk(sk); 1357 unsigned long flags, nval, oval; 1358 struct tsq_work *tsq; 1359 bool empty; 1360 1361 /* Keep one reference on sk_wmem_alloc. 1362 * Will be released by sk_free() from here or tcp_tsq_workfn() 1363 */ 1364 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1365 1366 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1367 * Wait until our queues (qdisc + devices) are drained. 1368 * This gives : 1369 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1370 * - chance for incoming ACK (processed by another cpu maybe) 1371 * to migrate this flow (skb->ooo_okay will be eventually set) 1372 */ 1373 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1374 goto out; 1375 1376 oval = smp_load_acquire(&sk->sk_tsq_flags); 1377 do { 1378 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1379 goto out; 1380 1381 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1382 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1383 1384 /* queue this socket to BH workqueue */ 1385 local_irq_save(flags); 1386 tsq = this_cpu_ptr(&tsq_work); 1387 empty = list_empty(&tsq->head); 1388 list_add(&tp->tsq_node, &tsq->head); 1389 if (empty) 1390 queue_work(system_bh_wq, &tsq->work); 1391 local_irq_restore(flags); 1392 return; 1393 out: 1394 sk_free(sk); 1395 } 1396 1397 /* Note: Called under soft irq. 1398 * We can call TCP stack right away, unless socket is owned by user. 1399 */ 1400 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1401 { 1402 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1403 struct sock *sk = (struct sock *)tp; 1404 1405 tcp_tsq_handler(sk); 1406 sock_put(sk); 1407 1408 return HRTIMER_NORESTART; 1409 } 1410 1411 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1412 u64 prior_wstamp) 1413 { 1414 struct tcp_sock *tp = tcp_sk(sk); 1415 1416 if (sk->sk_pacing_status != SK_PACING_NONE) { 1417 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1418 1419 /* Original sch_fq does not pace first 10 MSS 1420 * Note that tp->data_segs_out overflows after 2^32 packets, 1421 * this is a minor annoyance. 1422 */ 1423 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1424 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1425 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1426 1427 /* take into account OS jitter */ 1428 len_ns -= min_t(u64, len_ns / 2, credit); 1429 tp->tcp_wstamp_ns += len_ns; 1430 } 1431 } 1432 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1433 } 1434 1435 /* Snapshot the current delivery information in the skb, to generate 1436 * a rate sample later when the skb is (s)acked in tcp_rate_skb_delivered(). 1437 */ 1438 static void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb) 1439 { 1440 struct tcp_sock *tp = tcp_sk(sk); 1441 1442 /* In general we need to start delivery rate samples from the 1443 * time we received the most recent ACK, to ensure we include 1444 * the full time the network needs to deliver all in-flight 1445 * packets. If there are no packets in flight yet, then we 1446 * know that any ACKs after now indicate that the network was 1447 * able to deliver those packets completely in the sampling 1448 * interval between now and the next ACK. 1449 * 1450 * Note that we use packets_out instead of tcp_packets_in_flight(tp) 1451 * because the latter is a guess based on RTO and loss-marking 1452 * heuristics. We don't want spurious RTOs or loss markings to cause 1453 * a spuriously small time interval, causing a spuriously high 1454 * bandwidth estimate. 1455 */ 1456 if (!tp->packets_out) { 1457 u64 tstamp_us = tcp_skb_timestamp_us(skb); 1458 1459 tp->first_tx_mstamp = tstamp_us; 1460 tp->delivered_mstamp = tstamp_us; 1461 } 1462 1463 TCP_SKB_CB(skb)->tx.first_tx_mstamp = tp->first_tx_mstamp; 1464 TCP_SKB_CB(skb)->tx.delivered_mstamp = tp->delivered_mstamp; 1465 TCP_SKB_CB(skb)->tx.delivered = tp->delivered; 1466 TCP_SKB_CB(skb)->tx.delivered_ce = tp->delivered_ce; 1467 TCP_SKB_CB(skb)->tx.is_app_limited = tp->app_limited ? 1 : 0; 1468 } 1469 1470 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1471 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1472 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1473 1474 /* This routine actually transmits TCP packets queued in by 1475 * tcp_do_sendmsg(). This is used by both the initial 1476 * transmission and possible later retransmissions. 1477 * All SKB's seen here are completely headerless. It is our 1478 * job to build the TCP header, and pass the packet down to 1479 * IP so it can do the same plus pass the packet off to the 1480 * device. 1481 * 1482 * We are working here with either a clone of the original 1483 * SKB, or a fresh unique copy made by the retransmit engine. 1484 */ 1485 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1486 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1487 { 1488 const struct inet_connection_sock *icsk = inet_csk(sk); 1489 struct inet_sock *inet; 1490 struct tcp_sock *tp; 1491 struct tcp_skb_cb *tcb; 1492 struct tcp_out_options opts; 1493 unsigned int tcp_options_size, tcp_header_size; 1494 struct sk_buff *oskb = NULL; 1495 struct tcp_key key; 1496 struct tcphdr *th; 1497 u64 prior_wstamp; 1498 int err; 1499 1500 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1501 tp = tcp_sk(sk); 1502 prior_wstamp = tp->tcp_wstamp_ns; 1503 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1504 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 1505 if (clone_it) { 1506 oskb = skb; 1507 1508 tcp_skb_tsorted_save(oskb) { 1509 if (unlikely(skb_cloned(oskb))) 1510 skb = pskb_copy(oskb, gfp_mask); 1511 else 1512 skb = skb_clone(oskb, gfp_mask); 1513 } tcp_skb_tsorted_restore(oskb); 1514 1515 if (unlikely(!skb)) 1516 return -ENOBUFS; 1517 /* retransmit skbs might have a non zero value in skb->dev 1518 * because skb->dev is aliased with skb->rbnode.rb_left 1519 */ 1520 skb->dev = NULL; 1521 } 1522 1523 inet = inet_sk(sk); 1524 tcb = TCP_SKB_CB(skb); 1525 memset(&opts, 0, sizeof(opts)); 1526 1527 tcp_get_current_key(sk, &key); 1528 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1529 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1530 } else { 1531 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1532 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1533 * at receiver : This slightly improve GRO performance. 1534 * Note that we do not force the PSH flag for non GSO packets, 1535 * because they might be sent under high congestion events, 1536 * and in this case it is better to delay the delivery of 1-MSS 1537 * packets and thus the corresponding ACK packet that would 1538 * release the following packet. 1539 */ 1540 if (tcp_skb_pcount(skb) > 1) 1541 tcb->tcp_flags |= TCPHDR_PSH; 1542 } 1543 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1544 1545 /* We set skb->ooo_okay to one if this packet can select 1546 * a different TX queue than prior packets of this flow, 1547 * to avoid self inflicted reorders. 1548 * The 'other' queue decision is based on current cpu number 1549 * if XPS is enabled, or sk->sk_txhash otherwise. 1550 * We can switch to another (and better) queue if: 1551 * 1) No packet with payload is in qdisc/device queues. 1552 * Delays in TX completion can defeat the test 1553 * even if packets were already sent. 1554 * 2) Or rtx queue is empty. 1555 * This mitigates above case if ACK packets for 1556 * all prior packets were already processed. 1557 */ 1558 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1559 tcp_rtx_queue_empty(sk); 1560 1561 /* If we had to use memory reserve to allocate this skb, 1562 * this might cause drops if packet is looped back : 1563 * Other socket might not have SOCK_MEMALLOC. 1564 * Packets not looped back do not care about pfmemalloc. 1565 */ 1566 skb->pfmemalloc = 0; 1567 1568 skb_push(skb, tcp_header_size); 1569 skb_reset_transport_header(skb); 1570 1571 skb_orphan(skb); 1572 skb->sk = sk; 1573 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1574 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1575 1576 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1577 1578 /* Build TCP header and checksum it. */ 1579 th = (struct tcphdr *)skb->data; 1580 th->source = inet->inet_sport; 1581 th->dest = inet->inet_dport; 1582 th->seq = htonl(tcb->seq); 1583 th->ack_seq = htonl(rcv_nxt); 1584 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1585 (tcb->tcp_flags & TCPHDR_FLAGS_MASK)); 1586 1587 th->check = 0; 1588 th->urg_ptr = 0; 1589 1590 /* The urg_mode check is necessary during a below snd_una win probe */ 1591 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1592 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1593 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1594 th->urg = 1; 1595 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1596 th->urg_ptr = htons(0xFFFF); 1597 th->urg = 1; 1598 } 1599 } 1600 1601 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1602 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1603 th->window = htons(tcp_select_window(sk)); 1604 tcp_ecn_send(sk, skb, th, tcp_header_size); 1605 } else { 1606 /* RFC1323: The window in SYN & SYN/ACK segments 1607 * is never scaled. 1608 */ 1609 th->window = htons(min(tp->rcv_wnd, 65535U)); 1610 } 1611 1612 tcp_options_write(th, tp, NULL, &opts, &key); 1613 1614 if (tcp_key_is_md5(&key)) { 1615 #ifdef CONFIG_TCP_MD5SIG 1616 /* Calculate the MD5 hash, as we have all we need now */ 1617 sk_gso_disable(sk); 1618 tp->af_specific->calc_md5_hash(opts.hash_location, 1619 key.md5_key, sk, skb); 1620 #endif 1621 } else if (tcp_key_is_ao(&key)) { 1622 int err; 1623 1624 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1625 opts.hash_location); 1626 if (err) { 1627 sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_NOT_SPECIFIED); 1628 return -ENOMEM; 1629 } 1630 } 1631 1632 /* BPF prog is the last one writing header option */ 1633 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1634 1635 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1636 tcp_v6_send_check, tcp_v4_send_check, 1637 sk, skb); 1638 1639 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1640 tcp_event_ack_sent(sk, rcv_nxt); 1641 1642 if (skb->len != tcp_header_size) { 1643 tcp_event_data_sent(tp, sk); 1644 tp->data_segs_out += tcp_skb_pcount(skb); 1645 tp->bytes_sent += skb->len - tcp_header_size; 1646 } 1647 1648 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1649 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1650 tcp_skb_pcount(skb)); 1651 1652 tp->segs_out += tcp_skb_pcount(skb); 1653 skb_set_hash_from_sk(skb, sk); 1654 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1655 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1656 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1657 1658 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1659 1660 /* Cleanup our debris for IP stacks */ 1661 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1662 sizeof(struct inet6_skb_parm))); 1663 1664 tcp_add_tx_delay(skb, tp); 1665 1666 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1667 inet6_csk_xmit, ip_queue_xmit, 1668 sk, skb, &inet->cork.fl); 1669 1670 if (unlikely(err > 0)) { 1671 tcp_enter_cwr(sk); 1672 err = net_xmit_eval(err); 1673 } 1674 if (!err && oskb) { 1675 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1676 tcp_rate_skb_sent(sk, oskb); 1677 } 1678 return err; 1679 } 1680 1681 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1682 gfp_t gfp_mask) 1683 { 1684 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1685 tcp_sk(sk)->rcv_nxt); 1686 } 1687 1688 /* This routine just queues the buffer for sending. 1689 * 1690 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1691 * otherwise socket can stall. 1692 */ 1693 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1694 { 1695 struct tcp_sock *tp = tcp_sk(sk); 1696 1697 /* Advance write_seq and place onto the write_queue. */ 1698 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1699 __skb_header_release(skb); 1700 psp_enqueue_set_decrypted(sk, skb); 1701 tcp_add_write_queue_tail(sk, skb); 1702 sk_wmem_queued_add(sk, skb->truesize); 1703 sk_mem_charge(sk, skb->truesize); 1704 } 1705 1706 /* Initialize TSO segments for a packet. */ 1707 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1708 { 1709 int tso_segs; 1710 1711 if (skb->len <= mss_now) { 1712 /* Avoid the costly divide in the normal 1713 * non-TSO case. 1714 */ 1715 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1716 tcp_skb_pcount_set(skb, 1); 1717 return 1; 1718 } 1719 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1720 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1721 tcp_skb_pcount_set(skb, tso_segs); 1722 return tso_segs; 1723 } 1724 1725 /* Pcount in the middle of the write queue got changed, we need to do various 1726 * tweaks to fix counters 1727 */ 1728 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1729 { 1730 struct tcp_sock *tp = tcp_sk(sk); 1731 1732 tp->packets_out -= decr; 1733 1734 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1735 tp->sacked_out -= decr; 1736 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1737 tp->retrans_out -= decr; 1738 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1739 tp->lost_out -= decr; 1740 1741 /* Reno case is special. Sigh... */ 1742 if (tcp_is_reno(tp) && decr > 0) 1743 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1744 1745 tcp_verify_left_out(tp); 1746 } 1747 1748 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1749 { 1750 return TCP_SKB_CB(skb)->txstamp_ack || 1751 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1752 } 1753 1754 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1755 { 1756 struct skb_shared_info *shinfo = skb_shinfo(skb); 1757 1758 if (unlikely(tcp_has_tx_tstamp(skb)) && 1759 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1760 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1761 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1762 1763 shinfo->tx_flags &= ~tsflags; 1764 shinfo2->tx_flags |= tsflags; 1765 swap(shinfo->tskey, shinfo2->tskey); 1766 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1767 TCP_SKB_CB(skb)->txstamp_ack = 0; 1768 } 1769 } 1770 1771 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1772 { 1773 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1774 TCP_SKB_CB(skb)->eor = 0; 1775 } 1776 1777 /* Insert buff after skb on the write or rtx queue of sk. */ 1778 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1779 struct sk_buff *buff, 1780 struct sock *sk, 1781 enum tcp_queue tcp_queue) 1782 { 1783 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1784 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1785 else 1786 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1787 } 1788 1789 /* Function to create two new TCP segments. Shrinks the given segment 1790 * to the specified size and appends a new segment with the rest of the 1791 * packet to the list. This won't be called frequently, I hope. 1792 * Remember, these are still headerless SKBs at this point. 1793 */ 1794 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1795 struct sk_buff *skb, u32 len, 1796 unsigned int mss_now, gfp_t gfp) 1797 { 1798 struct tcp_sock *tp = tcp_sk(sk); 1799 struct sk_buff *buff; 1800 int old_factor; 1801 long limit; 1802 u16 flags; 1803 int nlen; 1804 1805 if (WARN_ON(len > skb->len)) 1806 return -EINVAL; 1807 1808 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1809 1810 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1811 * We need some allowance to not penalize applications setting small 1812 * SO_SNDBUF values. 1813 * Also allow first and last skb in retransmit queue to be split. 1814 */ 1815 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1816 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1817 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1818 skb != tcp_rtx_queue_head(sk) && 1819 skb != tcp_rtx_queue_tail(sk))) { 1820 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1821 return -ENOMEM; 1822 } 1823 1824 if (skb_unclone_keeptruesize(skb, gfp)) 1825 return -ENOMEM; 1826 1827 /* Get a new skb... force flag on. */ 1828 buff = tcp_stream_alloc_skb(sk, gfp, true); 1829 if (!buff) 1830 return -ENOMEM; /* We'll just try again later. */ 1831 skb_copy_decrypted(buff, skb); 1832 mptcp_skb_ext_copy(buff, skb); 1833 1834 sk_wmem_queued_add(sk, buff->truesize); 1835 sk_mem_charge(sk, buff->truesize); 1836 nlen = skb->len - len; 1837 buff->truesize += nlen; 1838 skb->truesize -= nlen; 1839 1840 /* Correct the sequence numbers. */ 1841 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1842 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1843 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1844 1845 /* PSH and FIN should only be set in the second packet. */ 1846 flags = TCP_SKB_CB(skb)->tcp_flags; 1847 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1848 TCP_SKB_CB(buff)->tcp_flags = flags; 1849 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1850 tcp_skb_fragment_eor(skb, buff); 1851 1852 skb_split(skb, buff, len); 1853 1854 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC); 1855 tcp_fragment_tstamp(skb, buff); 1856 1857 old_factor = tcp_skb_pcount(skb); 1858 1859 /* Fix up tso_factor for both original and new SKB. */ 1860 tcp_set_skb_tso_segs(skb, mss_now); 1861 tcp_set_skb_tso_segs(buff, mss_now); 1862 1863 /* Update delivered info for the new segment */ 1864 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1865 1866 /* If this packet has been sent out already, we must 1867 * adjust the various packet counters. 1868 */ 1869 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1870 int diff = old_factor - tcp_skb_pcount(skb) - 1871 tcp_skb_pcount(buff); 1872 1873 if (diff) 1874 tcp_adjust_pcount(sk, skb, diff); 1875 } 1876 1877 /* Link BUFF into the send queue. */ 1878 __skb_header_release(buff); 1879 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1880 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1881 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1882 1883 return 0; 1884 } 1885 1886 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1887 * data is not copied, but immediately discarded. 1888 */ 1889 static int __pskb_trim_head(struct sk_buff *skb, int len) 1890 { 1891 struct skb_shared_info *shinfo; 1892 int i, k, eat; 1893 1894 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1895 eat = len; 1896 k = 0; 1897 shinfo = skb_shinfo(skb); 1898 for (i = 0; i < shinfo->nr_frags; i++) { 1899 int size = skb_frag_size(&shinfo->frags[i]); 1900 1901 if (size <= eat) { 1902 skb_frag_unref(skb, i); 1903 eat -= size; 1904 } else { 1905 shinfo->frags[k] = shinfo->frags[i]; 1906 if (eat) { 1907 skb_frag_off_add(&shinfo->frags[k], eat); 1908 skb_frag_size_sub(&shinfo->frags[k], eat); 1909 eat = 0; 1910 } 1911 k++; 1912 } 1913 } 1914 shinfo->nr_frags = k; 1915 1916 skb->data_len -= len; 1917 skb->len = skb->data_len; 1918 return len; 1919 } 1920 1921 /* Remove acked data from a packet in the transmit queue. */ 1922 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1923 { 1924 u32 delta_truesize; 1925 1926 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1927 return -ENOMEM; 1928 1929 delta_truesize = __pskb_trim_head(skb, len); 1930 1931 TCP_SKB_CB(skb)->seq += len; 1932 1933 skb->truesize -= delta_truesize; 1934 sk_wmem_queued_add(sk, -delta_truesize); 1935 if (!skb_zcopy_pure(skb)) 1936 sk_mem_uncharge(sk, delta_truesize); 1937 1938 /* Any change of skb->len requires recalculation of tso factor. */ 1939 if (tcp_skb_pcount(skb) > 1) 1940 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1941 1942 return 0; 1943 } 1944 1945 /* Calculate MSS not accounting any TCP options. */ 1946 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1947 { 1948 const struct tcp_sock *tp = tcp_sk(sk); 1949 const struct inet_connection_sock *icsk = inet_csk(sk); 1950 int mss_now; 1951 1952 /* Calculate base mss without TCP options: 1953 It is MMS_S - sizeof(tcphdr) of rfc1122 1954 */ 1955 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1956 1957 /* Clamp it (mss_clamp does not include tcp options) */ 1958 if (mss_now > tp->rx_opt.mss_clamp) 1959 mss_now = tp->rx_opt.mss_clamp; 1960 1961 /* Now subtract optional transport overhead */ 1962 mss_now -= icsk->icsk_ext_hdr_len; 1963 1964 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1965 mss_now = max(mss_now, 1966 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1967 return mss_now; 1968 } 1969 1970 /* Calculate MSS. Not accounting for SACKs here. */ 1971 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1972 { 1973 /* Subtract TCP options size, not including SACKs */ 1974 return __tcp_mtu_to_mss(sk, pmtu) - 1975 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1976 } 1977 EXPORT_IPV6_MOD(tcp_mtu_to_mss); 1978 1979 /* Inverse of above */ 1980 int tcp_mss_to_mtu(struct sock *sk, int mss) 1981 { 1982 const struct tcp_sock *tp = tcp_sk(sk); 1983 const struct inet_connection_sock *icsk = inet_csk(sk); 1984 1985 return mss + 1986 tp->tcp_header_len + 1987 icsk->icsk_ext_hdr_len + 1988 icsk->icsk_af_ops->net_header_len; 1989 } 1990 EXPORT_SYMBOL(tcp_mss_to_mtu); 1991 1992 /* MTU probing init per socket */ 1993 void tcp_mtup_init(struct sock *sk) 1994 { 1995 struct tcp_sock *tp = tcp_sk(sk); 1996 struct inet_connection_sock *icsk = inet_csk(sk); 1997 struct net *net = sock_net(sk); 1998 1999 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 2000 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 2001 icsk->icsk_af_ops->net_header_len; 2002 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 2003 icsk->icsk_mtup.probe_size = 0; 2004 if (icsk->icsk_mtup.enabled) 2005 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2006 } 2007 2008 /* This function synchronize snd mss to current pmtu/exthdr set. 2009 2010 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 2011 for TCP options, but includes only bare TCP header. 2012 2013 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 2014 It is minimum of user_mss and mss received with SYN. 2015 It also does not include TCP options. 2016 2017 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 2018 2019 tp->mss_cache is current effective sending mss, including 2020 all tcp options except for SACKs. It is evaluated, 2021 taking into account current pmtu, but never exceeds 2022 tp->rx_opt.mss_clamp. 2023 2024 NOTE1. rfc1122 clearly states that advertised MSS 2025 DOES NOT include either tcp or ip options. 2026 2027 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 2028 are READ ONLY outside this function. --ANK (980731) 2029 */ 2030 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 2031 { 2032 struct tcp_sock *tp = tcp_sk(sk); 2033 struct inet_connection_sock *icsk = inet_csk(sk); 2034 int mss_now; 2035 2036 if (icsk->icsk_mtup.search_high > pmtu) 2037 icsk->icsk_mtup.search_high = pmtu; 2038 2039 mss_now = tcp_mtu_to_mss(sk, pmtu); 2040 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 2041 2042 /* And store cached results */ 2043 icsk->icsk_pmtu_cookie = pmtu; 2044 if (icsk->icsk_mtup.enabled) 2045 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 2046 tp->mss_cache = mss_now; 2047 2048 return mss_now; 2049 } 2050 EXPORT_IPV6_MOD(tcp_sync_mss); 2051 2052 /* Compute the current effective MSS, taking SACKs and IP options, 2053 * and even PMTU discovery events into account. 2054 */ 2055 unsigned int tcp_current_mss(struct sock *sk) 2056 { 2057 const struct tcp_sock *tp = tcp_sk(sk); 2058 const struct dst_entry *dst = __sk_dst_get(sk); 2059 u32 mss_now; 2060 unsigned int header_len; 2061 struct tcp_out_options opts; 2062 struct tcp_key key; 2063 2064 mss_now = tp->mss_cache; 2065 2066 if (dst) { 2067 u32 mtu = dst_mtu(dst); 2068 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 2069 mss_now = tcp_sync_mss(sk, mtu); 2070 } 2071 tcp_get_current_key(sk, &key); 2072 header_len = tcp_established_options(sk, NULL, &opts, &key) + 2073 sizeof(struct tcphdr); 2074 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 2075 * some common options. If this is an odd packet (because we have SACK 2076 * blocks etc) then our calculated header_len will be different, and 2077 * we have to adjust mss_now correspondingly */ 2078 if (header_len != tp->tcp_header_len) { 2079 int delta = (int) header_len - tp->tcp_header_len; 2080 mss_now -= delta; 2081 } 2082 2083 return mss_now; 2084 } 2085 2086 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 2087 * As additional protections, we do not touch cwnd in retransmission phases, 2088 * and if application hit its sndbuf limit recently. 2089 */ 2090 static void tcp_cwnd_application_limited(struct sock *sk) 2091 { 2092 struct tcp_sock *tp = tcp_sk(sk); 2093 2094 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 2095 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 2096 /* Limited by application or receiver window. */ 2097 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 2098 u32 win_used = max(tp->snd_cwnd_used, init_win); 2099 if (win_used < tcp_snd_cwnd(tp)) { 2100 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2101 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 2102 } 2103 tp->snd_cwnd_used = 0; 2104 } 2105 tp->snd_cwnd_stamp = tcp_jiffies32; 2106 } 2107 2108 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 2109 { 2110 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2111 struct tcp_sock *tp = tcp_sk(sk); 2112 2113 /* Track the strongest available signal of the degree to which the cwnd 2114 * is fully utilized. If cwnd-limited then remember that fact for the 2115 * current window. If not cwnd-limited then track the maximum number of 2116 * outstanding packets in the current window. (If cwnd-limited then we 2117 * chose to not update tp->max_packets_out to avoid an extra else 2118 * clause with no functional impact.) 2119 */ 2120 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 2121 is_cwnd_limited || 2122 (!tp->is_cwnd_limited && 2123 tp->packets_out > tp->max_packets_out)) { 2124 tp->is_cwnd_limited = is_cwnd_limited; 2125 tp->max_packets_out = tp->packets_out; 2126 tp->cwnd_usage_seq = tp->snd_nxt; 2127 } 2128 2129 if (tcp_is_cwnd_limited(sk)) { 2130 /* Network is feed fully. */ 2131 tp->snd_cwnd_used = 0; 2132 tp->snd_cwnd_stamp = tcp_jiffies32; 2133 } else { 2134 /* Network starves. */ 2135 if (tp->packets_out > tp->snd_cwnd_used) 2136 tp->snd_cwnd_used = tp->packets_out; 2137 2138 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 2139 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 2140 !ca_ops->cong_control) 2141 tcp_cwnd_application_limited(sk); 2142 2143 /* The following conditions together indicate the starvation 2144 * is caused by insufficient sender buffer: 2145 * 1) just sent some data (see tcp_write_xmit) 2146 * 2) not cwnd limited (this else condition) 2147 * 3) no more data to send (tcp_write_queue_empty()) 2148 * 4) application is hitting buffer limit (SOCK_NOSPACE) 2149 */ 2150 if (tcp_write_queue_empty(sk) && sk->sk_socket && 2151 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 2152 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 2153 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 2154 } 2155 } 2156 2157 /* Minshall's variant of the Nagle send check. */ 2158 static bool tcp_minshall_check(const struct tcp_sock *tp) 2159 { 2160 return after(tp->snd_sml, tp->snd_una) && 2161 !after(tp->snd_sml, tp->snd_nxt); 2162 } 2163 2164 /* Update snd_sml if this skb is under mss 2165 * Note that a TSO packet might end with a sub-mss segment 2166 * The test is really : 2167 * if ((skb->len % mss) != 0) 2168 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 2169 * But we can avoid doing the divide again given we already have 2170 * skb_pcount = skb->len / mss_now 2171 */ 2172 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 2173 const struct sk_buff *skb) 2174 { 2175 if (skb->len < tcp_skb_pcount(skb) * mss_now) 2176 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 2177 } 2178 2179 /* Return false, if packet can be sent now without violation Nagle's rules: 2180 * 1. It is full sized. (provided by caller in %partial bool) 2181 * 2. Or it contains FIN. (already checked by caller) 2182 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 2183 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 2184 * With Minshall's modification: all sent small packets are ACKed. 2185 */ 2186 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 2187 int nonagle) 2188 { 2189 return partial && 2190 ((nonagle & TCP_NAGLE_CORK) || 2191 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 2192 } 2193 2194 /* Return how many segs we'd like on a TSO packet, 2195 * depending on current pacing rate, and how close the peer is. 2196 * 2197 * Rationale is: 2198 * - For close peers, we rather send bigger packets to reduce 2199 * cpu costs, because occasional losses will be repaired fast. 2200 * - For long distance/rtt flows, we would like to get ACK clocking 2201 * with 1 ACK per ms. 2202 * 2203 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2204 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2205 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2206 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2207 */ 2208 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2209 int min_tso_segs) 2210 { 2211 unsigned long bytes; 2212 u32 r; 2213 2214 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2215 2216 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2217 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2218 bytes += sk->sk_gso_max_size >> r; 2219 2220 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2221 2222 return max_t(u32, bytes / mss_now, min_tso_segs); 2223 } 2224 2225 /* Return the number of segments we want in the skb we are transmitting. 2226 * See if congestion control module wants to decide; otherwise, autosize. 2227 */ 2228 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2229 { 2230 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2231 u32 min_tso, tso_segs; 2232 2233 min_tso = ca_ops->min_tso_segs ? 2234 ca_ops->min_tso_segs(sk) : 2235 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2236 2237 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2238 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2239 } 2240 2241 /* Returns the portion of skb which can be sent right away */ 2242 static unsigned int tcp_mss_split_point(const struct sock *sk, 2243 const struct sk_buff *skb, 2244 unsigned int mss_now, 2245 unsigned int max_segs, 2246 int nonagle) 2247 { 2248 const struct tcp_sock *tp = tcp_sk(sk); 2249 u32 partial, needed, window, max_len; 2250 2251 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2252 max_len = mss_now * max_segs; 2253 2254 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2255 return max_len; 2256 2257 needed = min(skb->len, window); 2258 2259 if (max_len <= needed) 2260 return max_len; 2261 2262 partial = needed % mss_now; 2263 /* If last segment is not a full MSS, check if Nagle rules allow us 2264 * to include this last segment in this skb. 2265 * Otherwise, we'll split the skb at last MSS boundary 2266 */ 2267 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2268 return needed - partial; 2269 2270 return needed; 2271 } 2272 2273 /* Can at least one segment of SKB be sent right now, according to the 2274 * congestion window rules? If so, return how many segments are allowed. 2275 */ 2276 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2277 { 2278 u32 in_flight, cwnd, halfcwnd; 2279 2280 in_flight = tcp_packets_in_flight(tp); 2281 cwnd = tcp_snd_cwnd(tp); 2282 if (in_flight >= cwnd) 2283 return 0; 2284 2285 /* For better scheduling, ensure we have at least 2286 * 2 GSO packets in flight. 2287 */ 2288 halfcwnd = max(cwnd >> 1, 1U); 2289 return min(halfcwnd, cwnd - in_flight); 2290 } 2291 2292 /* Initialize TSO state of a skb. 2293 * This must be invoked the first time we consider transmitting 2294 * SKB onto the wire. 2295 */ 2296 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2297 { 2298 int tso_segs = tcp_skb_pcount(skb); 2299 2300 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2301 return tcp_set_skb_tso_segs(skb, mss_now); 2302 2303 return tso_segs; 2304 } 2305 2306 2307 /* Return true if the Nagle test allows this packet to be 2308 * sent now. 2309 */ 2310 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2311 unsigned int cur_mss, int nonagle) 2312 { 2313 /* Nagle rule does not apply to frames, which sit in the middle of the 2314 * write_queue (they have no chances to get new data). 2315 * 2316 * This is implemented in the callers, where they modify the 'nonagle' 2317 * argument based upon the location of SKB in the send queue. 2318 */ 2319 if (nonagle & TCP_NAGLE_PUSH) 2320 return true; 2321 2322 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2323 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2324 return true; 2325 2326 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2327 return true; 2328 2329 return false; 2330 } 2331 2332 /* Does at least the first segment of SKB fit into the send window? */ 2333 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2334 const struct sk_buff *skb, 2335 unsigned int cur_mss) 2336 { 2337 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2338 2339 if (skb->len > cur_mss) 2340 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2341 2342 return !after(end_seq, tcp_wnd_end(tp)); 2343 } 2344 2345 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2346 * which is put after SKB on the list. It is very much like 2347 * tcp_fragment() except that it may make several kinds of assumptions 2348 * in order to speed up the splitting operation. In particular, we 2349 * know that all the data is in scatter-gather pages, and that the 2350 * packet has never been sent out before (and thus is not cloned). 2351 */ 2352 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2353 unsigned int mss_now, gfp_t gfp) 2354 { 2355 int nlen = skb->len - len; 2356 struct sk_buff *buff; 2357 u16 flags; 2358 2359 /* All of a TSO frame must be composed of paged data. */ 2360 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2361 2362 buff = tcp_stream_alloc_skb(sk, gfp, true); 2363 if (unlikely(!buff)) 2364 return -ENOMEM; 2365 skb_copy_decrypted(buff, skb); 2366 mptcp_skb_ext_copy(buff, skb); 2367 2368 sk_wmem_queued_add(sk, buff->truesize); 2369 sk_mem_charge(sk, buff->truesize); 2370 buff->truesize += nlen; 2371 skb->truesize -= nlen; 2372 2373 /* Correct the sequence numbers. */ 2374 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2375 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2376 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2377 2378 /* PSH and FIN should only be set in the second packet. */ 2379 flags = TCP_SKB_CB(skb)->tcp_flags; 2380 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2381 TCP_SKB_CB(buff)->tcp_flags = flags; 2382 2383 tcp_skb_fragment_eor(skb, buff); 2384 2385 skb_split(skb, buff, len); 2386 tcp_fragment_tstamp(skb, buff); 2387 2388 /* Fix up tso_factor for both original and new SKB. */ 2389 tcp_set_skb_tso_segs(skb, mss_now); 2390 tcp_set_skb_tso_segs(buff, mss_now); 2391 2392 /* Link BUFF into the send queue. */ 2393 __skb_header_release(buff); 2394 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2395 2396 return 0; 2397 } 2398 2399 /* Try to defer sending, if possible, in order to minimize the amount 2400 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2401 * 2402 * This algorithm is from John Heffner. 2403 */ 2404 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2405 bool *is_cwnd_limited, 2406 bool *is_rwnd_limited, 2407 u32 max_segs) 2408 { 2409 const struct inet_connection_sock *icsk = inet_csk(sk); 2410 u32 send_win, cong_win, limit, in_flight, threshold; 2411 u64 srtt_in_ns, expected_ack, how_far_is_the_ack; 2412 struct tcp_sock *tp = tcp_sk(sk); 2413 struct sk_buff *head; 2414 int win_divisor; 2415 s64 delta; 2416 2417 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2418 goto send_now; 2419 2420 /* Avoid bursty behavior by allowing defer 2421 * only if the last write was recent (1 ms). 2422 * Note that tp->tcp_wstamp_ns can be in the future if we have 2423 * packets waiting in a qdisc or device for EDT delivery. 2424 */ 2425 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2426 if (delta > 0) 2427 goto send_now; 2428 2429 in_flight = tcp_packets_in_flight(tp); 2430 2431 BUG_ON(tcp_skb_pcount(skb) <= 1); 2432 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2433 2434 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2435 2436 /* From in_flight test above, we know that cwnd > in_flight. */ 2437 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2438 2439 limit = min(send_win, cong_win); 2440 2441 /* If a full-sized TSO skb can be sent, do it. */ 2442 if (limit >= max_segs * tp->mss_cache) 2443 goto send_now; 2444 2445 /* Middle in queue won't get any more data, full sendable already? */ 2446 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2447 goto send_now; 2448 2449 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2450 if (win_divisor) { 2451 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2452 2453 /* If at least some fraction of a window is available, 2454 * just use it. 2455 */ 2456 chunk /= win_divisor; 2457 if (limit >= chunk) 2458 goto send_now; 2459 } else { 2460 /* Different approach, try not to defer past a single 2461 * ACK. Receiver should ACK every other full sized 2462 * frame, so if we have space for more than 3 frames 2463 * then send now. 2464 */ 2465 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2466 goto send_now; 2467 } 2468 2469 /* TODO : use tsorted_sent_queue ? */ 2470 head = tcp_rtx_queue_head(sk); 2471 if (!head) 2472 goto send_now; 2473 2474 srtt_in_ns = (u64)(NSEC_PER_USEC >> 3) * tp->srtt_us; 2475 /* When is the ACK expected ? */ 2476 expected_ack = head->tstamp + srtt_in_ns; 2477 /* How far from now is the ACK expected ? */ 2478 how_far_is_the_ack = expected_ack - tp->tcp_clock_cache; 2479 2480 /* If next ACK is likely to come too late, 2481 * ie in more than min(1ms, half srtt), do not defer. 2482 */ 2483 threshold = min(srtt_in_ns >> 1, NSEC_PER_MSEC); 2484 2485 if ((s64)(how_far_is_the_ack - threshold) > 0) 2486 goto send_now; 2487 2488 /* Ok, it looks like it is advisable to defer. 2489 * Three cases are tracked : 2490 * 1) We are cwnd-limited 2491 * 2) We are rwnd-limited 2492 * 3) We are application limited. 2493 */ 2494 if (cong_win < send_win) { 2495 if (cong_win <= skb->len) { 2496 *is_cwnd_limited = true; 2497 return true; 2498 } 2499 } else { 2500 if (send_win <= skb->len) { 2501 *is_rwnd_limited = true; 2502 return true; 2503 } 2504 } 2505 2506 /* If this packet won't get more data, do not wait. */ 2507 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2508 TCP_SKB_CB(skb)->eor) 2509 goto send_now; 2510 2511 return true; 2512 2513 send_now: 2514 return false; 2515 } 2516 2517 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2518 { 2519 struct inet_connection_sock *icsk = inet_csk(sk); 2520 struct tcp_sock *tp = tcp_sk(sk); 2521 struct net *net = sock_net(sk); 2522 u32 interval; 2523 s32 delta; 2524 2525 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2526 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2527 if (unlikely(delta >= interval * HZ)) { 2528 int mss = tcp_current_mss(sk); 2529 2530 /* Update current search range */ 2531 icsk->icsk_mtup.probe_size = 0; 2532 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2533 sizeof(struct tcphdr) + 2534 icsk->icsk_af_ops->net_header_len; 2535 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2536 2537 /* Update probe time stamp */ 2538 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2539 } 2540 } 2541 2542 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2543 { 2544 struct sk_buff *skb, *next; 2545 2546 skb = tcp_send_head(sk); 2547 tcp_for_write_queue_from_safe(skb, next, sk) { 2548 if (len <= skb->len) 2549 break; 2550 2551 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next)) 2552 return false; 2553 2554 len -= skb->len; 2555 } 2556 2557 return true; 2558 } 2559 2560 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2561 int probe_size) 2562 { 2563 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2564 int i, todo, len = 0, nr_frags = 0; 2565 const struct sk_buff *skb; 2566 2567 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2568 return -ENOMEM; 2569 2570 skb_queue_walk(&sk->sk_write_queue, skb) { 2571 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2572 2573 if (skb_headlen(skb)) 2574 return -EINVAL; 2575 2576 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2577 if (len >= probe_size) 2578 goto commit; 2579 todo = min_t(int, skb_frag_size(fragfrom), 2580 probe_size - len); 2581 len += todo; 2582 if (lastfrag && 2583 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2584 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2585 skb_frag_size(lastfrag)) { 2586 skb_frag_size_add(lastfrag, todo); 2587 continue; 2588 } 2589 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2590 return -E2BIG; 2591 skb_frag_page_copy(fragto, fragfrom); 2592 skb_frag_off_copy(fragto, fragfrom); 2593 skb_frag_size_set(fragto, todo); 2594 nr_frags++; 2595 lastfrag = fragto++; 2596 } 2597 } 2598 commit: 2599 WARN_ON_ONCE(len != probe_size); 2600 for (i = 0; i < nr_frags; i++) 2601 skb_frag_ref(to, i); 2602 2603 skb_shinfo(to)->nr_frags = nr_frags; 2604 to->truesize += probe_size; 2605 to->len += probe_size; 2606 to->data_len += probe_size; 2607 __skb_header_release(to); 2608 return 0; 2609 } 2610 2611 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if 2612 * all its payload was moved to another one (dst). 2613 * Make sure to transfer tcp_flags, eor, and tstamp. 2614 */ 2615 static void tcp_eat_one_skb(struct sock *sk, 2616 struct sk_buff *dst, 2617 struct sk_buff *src) 2618 { 2619 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags; 2620 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor; 2621 tcp_skb_collapse_tstamp(dst, src); 2622 tcp_unlink_write_queue(src, sk); 2623 tcp_wmem_free_skb(sk, src); 2624 } 2625 2626 /* Create a new MTU probe if we are ready. 2627 * MTU probe is regularly attempting to increase the path MTU by 2628 * deliberately sending larger packets. This discovers routing 2629 * changes resulting in larger path MTUs. 2630 * 2631 * Returns 0 if we should wait to probe (no cwnd available), 2632 * 1 if a probe was sent, 2633 * -1 otherwise 2634 */ 2635 static int tcp_mtu_probe(struct sock *sk) 2636 { 2637 struct inet_connection_sock *icsk = inet_csk(sk); 2638 struct tcp_sock *tp = tcp_sk(sk); 2639 struct sk_buff *skb, *nskb, *next; 2640 struct net *net = sock_net(sk); 2641 int probe_size; 2642 int size_needed; 2643 int copy, len; 2644 int mss_now; 2645 int interval; 2646 2647 /* Not currently probing/verifying, 2648 * not in recovery, 2649 * have enough cwnd, and 2650 * not SACKing (the variable headers throw things off) 2651 */ 2652 if (likely(!icsk->icsk_mtup.enabled || 2653 icsk->icsk_mtup.probe_size || 2654 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2655 tcp_snd_cwnd(tp) < 11 || 2656 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2657 return -1; 2658 2659 /* Use binary search for probe_size between tcp_mss_base, 2660 * and current mss_clamp. if (search_high - search_low) 2661 * smaller than a threshold, backoff from probing. 2662 */ 2663 mss_now = tcp_current_mss(sk); 2664 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2665 icsk->icsk_mtup.search_low) >> 1); 2666 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2667 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2668 /* When misfortune happens, we are reprobing actively, 2669 * and then reprobe timer has expired. We stick with current 2670 * probing process by not resetting search range to its orignal. 2671 */ 2672 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2673 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2674 /* Check whether enough time has elaplased for 2675 * another round of probing. 2676 */ 2677 tcp_mtu_check_reprobe(sk); 2678 return -1; 2679 } 2680 2681 /* Have enough data in the send queue to probe? */ 2682 if (tp->write_seq - tp->snd_nxt < size_needed) 2683 return -1; 2684 2685 if (tp->snd_wnd < size_needed) 2686 return -1; 2687 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2688 return 0; 2689 2690 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2691 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2692 if (!tcp_packets_in_flight(tp)) 2693 return -1; 2694 else 2695 return 0; 2696 } 2697 2698 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2699 return -1; 2700 2701 /* We're allowed to probe. Build it now. */ 2702 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2703 if (!nskb) 2704 return -1; 2705 2706 /* build the payload, and be prepared to abort if this fails. */ 2707 if (tcp_clone_payload(sk, nskb, probe_size)) { 2708 tcp_skb_tsorted_anchor_cleanup(nskb); 2709 consume_skb(nskb); 2710 return -1; 2711 } 2712 sk_wmem_queued_add(sk, nskb->truesize); 2713 sk_mem_charge(sk, nskb->truesize); 2714 2715 skb = tcp_send_head(sk); 2716 skb_copy_decrypted(nskb, skb); 2717 mptcp_skb_ext_copy(nskb, skb); 2718 2719 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2720 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2721 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2722 2723 tcp_insert_write_queue_before(nskb, skb, sk); 2724 tcp_highest_sack_replace(sk, skb, nskb); 2725 2726 len = 0; 2727 tcp_for_write_queue_from_safe(skb, next, sk) { 2728 copy = min_t(int, skb->len, probe_size - len); 2729 2730 if (skb->len <= copy) { 2731 tcp_eat_one_skb(sk, nskb, skb); 2732 } else { 2733 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2734 ~(TCPHDR_FIN|TCPHDR_PSH); 2735 __pskb_trim_head(skb, copy); 2736 tcp_set_skb_tso_segs(skb, mss_now); 2737 TCP_SKB_CB(skb)->seq += copy; 2738 } 2739 2740 len += copy; 2741 2742 if (len >= probe_size) 2743 break; 2744 } 2745 tcp_init_tso_segs(nskb, nskb->len); 2746 2747 /* We're ready to send. If this fails, the probe will 2748 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2749 */ 2750 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2751 /* Decrement cwnd here because we are sending 2752 * effectively two packets. */ 2753 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2754 tcp_event_new_data_sent(sk, nskb); 2755 2756 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2757 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2758 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2759 2760 return 1; 2761 } 2762 2763 return -1; 2764 } 2765 2766 static bool tcp_pacing_check(struct sock *sk) 2767 { 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 2770 if (!tcp_needs_internal_pacing(sk)) 2771 return false; 2772 2773 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2774 return false; 2775 2776 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2777 hrtimer_start(&tp->pacing_timer, 2778 ns_to_ktime(tp->tcp_wstamp_ns), 2779 HRTIMER_MODE_ABS_PINNED_SOFT); 2780 sock_hold(sk); 2781 } 2782 return true; 2783 } 2784 2785 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2786 { 2787 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2788 2789 /* No skb in the rtx queue. */ 2790 if (!node) 2791 return true; 2792 2793 /* Only one skb in rtx queue. */ 2794 return !node->rb_left && !node->rb_right; 2795 } 2796 2797 /* TCP Small Queues : 2798 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2799 * (These limits are doubled for retransmits) 2800 * This allows for : 2801 * - better RTT estimation and ACK scheduling 2802 * - faster recovery 2803 * - high rates 2804 * Alas, some drivers / subsystems require a fair amount 2805 * of queued bytes to ensure line rate. 2806 * One example is wifi aggregation (802.11 AMPDU) 2807 */ 2808 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2809 unsigned int factor) 2810 { 2811 unsigned long limit; 2812 2813 limit = max_t(unsigned long, 2814 2 * skb->truesize, 2815 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2816 limit = min_t(unsigned long, limit, 2817 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2818 limit <<= factor; 2819 2820 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2821 tcp_sk(sk)->tcp_tx_delay) { 2822 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2823 tcp_sk(sk)->tcp_tx_delay; 2824 2825 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2826 * approximate our needs assuming an ~100% skb->truesize overhead. 2827 * USEC_PER_SEC is approximated by 2^20. 2828 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2829 */ 2830 extra_bytes >>= (20 - 1); 2831 limit += extra_bytes; 2832 } 2833 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2834 /* Always send skb if rtx queue is empty or has one skb. 2835 * No need to wait for TX completion to call us back, 2836 * after softirq schedule. 2837 * This helps when TX completions are delayed too much. 2838 */ 2839 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2840 return false; 2841 2842 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2843 /* It is possible TX completion already happened 2844 * before we set TSQ_THROTTLED, so we must 2845 * test again the condition. 2846 */ 2847 smp_mb__after_atomic(); 2848 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2849 return true; 2850 } 2851 return false; 2852 } 2853 2854 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2855 { 2856 const u32 now = tcp_jiffies32; 2857 enum tcp_chrono old = tp->chrono_type; 2858 2859 if (old > TCP_CHRONO_UNSPEC) 2860 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2861 tp->chrono_start = now; 2862 tp->chrono_type = new; 2863 } 2864 2865 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2866 { 2867 struct tcp_sock *tp = tcp_sk(sk); 2868 2869 /* If there are multiple conditions worthy of tracking in a 2870 * chronograph then the highest priority enum takes precedence 2871 * over the other conditions. So that if something "more interesting" 2872 * starts happening, stop the previous chrono and start a new one. 2873 */ 2874 if (type > tp->chrono_type) 2875 tcp_chrono_set(tp, type); 2876 } 2877 2878 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2879 { 2880 struct tcp_sock *tp = tcp_sk(sk); 2881 2882 2883 /* There are multiple conditions worthy of tracking in a 2884 * chronograph, so that the highest priority enum takes 2885 * precedence over the other conditions (see tcp_chrono_start). 2886 * If a condition stops, we only stop chrono tracking if 2887 * it's the "most interesting" or current chrono we are 2888 * tracking and starts busy chrono if we have pending data. 2889 */ 2890 if (tcp_rtx_and_write_queues_empty(sk)) 2891 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2892 else if (type == tp->chrono_type) 2893 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2894 } 2895 2896 /* First skb in the write queue is smaller than ideal packet size. 2897 * Check if we can move payload from the second skb in the queue. 2898 */ 2899 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2900 { 2901 struct sk_buff *next_skb = skb->next; 2902 unsigned int nlen; 2903 2904 if (tcp_skb_is_last(sk, skb)) 2905 return; 2906 2907 if (!tcp_skb_can_collapse(skb, next_skb)) 2908 return; 2909 2910 nlen = min_t(u32, amount, next_skb->len); 2911 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2912 return; 2913 2914 TCP_SKB_CB(skb)->end_seq += nlen; 2915 TCP_SKB_CB(next_skb)->seq += nlen; 2916 2917 if (!next_skb->len) { 2918 /* In case FIN is set, we need to update end_seq */ 2919 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2920 2921 tcp_eat_one_skb(sk, skb, next_skb); 2922 } 2923 } 2924 2925 /* This routine writes packets to the network. It advances the 2926 * send_head. This happens as incoming acks open up the remote 2927 * window for us. 2928 * 2929 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2930 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2931 * account rare use of URG, this is not a big flaw. 2932 * 2933 * Send at most one packet when push_one > 0. Temporarily ignore 2934 * cwnd limit to force at most one packet out when push_one == 2. 2935 2936 * Returns true, if no segments are in flight and we have queued segments, 2937 * but cannot send anything now because of SWS or another problem. 2938 */ 2939 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2940 int push_one, gfp_t gfp) 2941 { 2942 struct tcp_sock *tp = tcp_sk(sk); 2943 struct sk_buff *skb; 2944 unsigned int tso_segs, sent_pkts; 2945 u32 cwnd_quota, max_segs; 2946 int result; 2947 bool is_cwnd_limited = false, is_rwnd_limited = false; 2948 2949 sent_pkts = 0; 2950 2951 tcp_mstamp_refresh(tp); 2952 2953 /* AccECN option beacon depends on mstamp, it may change mss */ 2954 if (tcp_ecn_mode_accecn(tp) && tcp_accecn_option_beacon_check(sk)) 2955 mss_now = tcp_current_mss(sk); 2956 2957 if (!push_one) { 2958 /* Do MTU probing. */ 2959 result = tcp_mtu_probe(sk); 2960 if (!result) { 2961 return false; 2962 } else if (result > 0) { 2963 sent_pkts = 1; 2964 } 2965 } 2966 2967 max_segs = tcp_tso_segs(sk, mss_now); 2968 while ((skb = tcp_send_head(sk))) { 2969 unsigned int limit; 2970 int missing_bytes; 2971 2972 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2973 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2974 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2975 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 2976 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2977 tcp_init_tso_segs(skb, mss_now); 2978 goto repair; /* Skip network transmission */ 2979 } 2980 2981 if (tcp_pacing_check(sk)) 2982 break; 2983 2984 cwnd_quota = tcp_cwnd_test(tp); 2985 if (!cwnd_quota) { 2986 if (push_one == 2) 2987 /* Force out a loss probe pkt. */ 2988 cwnd_quota = 1; 2989 else 2990 break; 2991 } 2992 cwnd_quota = min(cwnd_quota, max_segs); 2993 missing_bytes = cwnd_quota * mss_now - skb->len; 2994 if (missing_bytes > 0) 2995 tcp_grow_skb(sk, skb, missing_bytes); 2996 2997 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 2998 2999 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 3000 is_rwnd_limited = true; 3001 break; 3002 } 3003 3004 if (tso_segs == 1) { 3005 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 3006 (tcp_skb_is_last(sk, skb) ? 3007 nonagle : TCP_NAGLE_PUSH)))) 3008 break; 3009 } else { 3010 if (!push_one && 3011 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 3012 &is_rwnd_limited, max_segs)) 3013 break; 3014 } 3015 3016 limit = mss_now; 3017 if (tso_segs > 1 && !tcp_urg_mode(tp)) 3018 limit = tcp_mss_split_point(sk, skb, mss_now, 3019 cwnd_quota, 3020 nonagle); 3021 3022 if (skb->len > limit && 3023 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 3024 break; 3025 3026 if (tcp_small_queue_check(sk, skb, 0)) 3027 break; 3028 3029 /* Argh, we hit an empty skb(), presumably a thread 3030 * is sleeping in sendmsg()/sk_stream_wait_memory(). 3031 * We do not want to send a pure-ack packet and have 3032 * a strange looking rtx queue with empty packet(s). 3033 */ 3034 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 3035 break; 3036 3037 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 3038 break; 3039 3040 repair: 3041 /* Advance the send_head. This one is sent out. 3042 * This call will increment packets_out. 3043 */ 3044 tcp_event_new_data_sent(sk, skb); 3045 3046 tcp_minshall_update(tp, mss_now, skb); 3047 sent_pkts += tcp_skb_pcount(skb); 3048 3049 if (push_one) 3050 break; 3051 } 3052 3053 if (is_rwnd_limited) 3054 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 3055 else 3056 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 3057 3058 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 3059 if (likely(sent_pkts || is_cwnd_limited)) 3060 tcp_cwnd_validate(sk, is_cwnd_limited); 3061 3062 if (likely(sent_pkts)) { 3063 if (tcp_in_cwnd_reduction(sk)) 3064 tp->prr_out += sent_pkts; 3065 3066 /* Send one loss probe per tail loss episode. */ 3067 if (push_one != 2) 3068 tcp_schedule_loss_probe(sk, false); 3069 return false; 3070 } 3071 return !tp->packets_out && !tcp_write_queue_empty(sk); 3072 } 3073 3074 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 3075 { 3076 struct inet_connection_sock *icsk = inet_csk(sk); 3077 struct tcp_sock *tp = tcp_sk(sk); 3078 u32 timeout, timeout_us, rto_delta_us; 3079 int early_retrans; 3080 3081 /* Don't do any loss probe on a Fast Open connection before 3WHS 3082 * finishes. 3083 */ 3084 if (rcu_access_pointer(tp->fastopen_rsk)) 3085 return false; 3086 3087 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 3088 /* Schedule a loss probe in 2*RTT for SACK capable connections 3089 * not in loss recovery, that are either limited by cwnd or application. 3090 */ 3091 if ((early_retrans != 3 && early_retrans != 4) || 3092 !tp->packets_out || !tcp_is_sack(tp) || 3093 (icsk->icsk_ca_state != TCP_CA_Open && 3094 icsk->icsk_ca_state != TCP_CA_CWR)) 3095 return false; 3096 3097 /* Probe timeout is 2*rtt. Add minimum RTO to account 3098 * for delayed ack when there's one outstanding packet. If no RTT 3099 * sample is available then probe after TCP_TIMEOUT_INIT. 3100 */ 3101 if (tp->srtt_us) { 3102 timeout_us = tp->srtt_us >> 2; 3103 if (tp->packets_out == 1) 3104 timeout_us += tcp_rto_min_us(sk); 3105 else 3106 timeout_us += TCP_TIMEOUT_MIN_US; 3107 timeout = usecs_to_jiffies(timeout_us); 3108 } else { 3109 timeout = TCP_TIMEOUT_INIT; 3110 } 3111 3112 /* If the RTO formula yields an earlier time, then use that time. */ 3113 rto_delta_us = advancing_rto ? 3114 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 3115 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 3116 if (rto_delta_us > 0) 3117 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 3118 3119 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true); 3120 return true; 3121 } 3122 3123 /* Thanks to skb fast clones, we can detect if a prior transmit of 3124 * a packet is still in a qdisc or driver queue. 3125 * In this case, there is very little point doing a retransmit ! 3126 */ 3127 static bool skb_still_in_host_queue(struct sock *sk, 3128 const struct sk_buff *skb) 3129 { 3130 if (unlikely(skb_fclone_busy(sk, skb))) { 3131 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 3132 smp_mb__after_atomic(); 3133 if (skb_fclone_busy(sk, skb)) { 3134 NET_INC_STATS(sock_net(sk), 3135 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 3136 return true; 3137 } 3138 } 3139 return false; 3140 } 3141 3142 /* When probe timeout (PTO) fires, try send a new segment if possible, else 3143 * retransmit the last segment. 3144 */ 3145 void tcp_send_loss_probe(struct sock *sk) 3146 { 3147 struct tcp_sock *tp = tcp_sk(sk); 3148 struct sk_buff *skb; 3149 int pcount; 3150 int mss = tcp_current_mss(sk); 3151 3152 /* At most one outstanding TLP */ 3153 if (tp->tlp_high_seq) 3154 goto rearm_timer; 3155 3156 tp->tlp_retrans = 0; 3157 skb = tcp_send_head(sk); 3158 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 3159 pcount = tp->packets_out; 3160 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 3161 if (tp->packets_out > pcount) 3162 goto probe_sent; 3163 goto rearm_timer; 3164 } 3165 skb = skb_rb_last(&sk->tcp_rtx_queue); 3166 if (unlikely(!skb)) { 3167 tcp_warn_once(sk, tp->packets_out, "invalid inflight: "); 3168 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 3169 return; 3170 } 3171 3172 if (skb_still_in_host_queue(sk, skb)) 3173 goto rearm_timer; 3174 3175 pcount = tcp_skb_pcount(skb); 3176 if (WARN_ON(!pcount)) 3177 goto rearm_timer; 3178 3179 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 3180 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 3181 (pcount - 1) * mss, mss, 3182 GFP_ATOMIC))) 3183 goto rearm_timer; 3184 skb = skb_rb_next(skb); 3185 } 3186 3187 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 3188 goto rearm_timer; 3189 3190 if (__tcp_retransmit_skb(sk, skb, 1)) 3191 goto rearm_timer; 3192 3193 tp->tlp_retrans = 1; 3194 3195 probe_sent: 3196 /* Record snd_nxt for loss detection. */ 3197 tp->tlp_high_seq = tp->snd_nxt; 3198 3199 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 3200 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 3201 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 3202 rearm_timer: 3203 tcp_rearm_rto(sk); 3204 } 3205 3206 /* Push out any pending frames which were held back due to 3207 * TCP_CORK or attempt at coalescing tiny packets. 3208 * The socket must be locked by the caller. 3209 */ 3210 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 3211 int nonagle) 3212 { 3213 /* If we are closed, the bytes will have to remain here. 3214 * In time closedown will finish, we empty the write queue and 3215 * all will be happy. 3216 */ 3217 if (unlikely(sk->sk_state == TCP_CLOSE)) 3218 return; 3219 3220 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3221 sk_gfp_mask(sk, GFP_ATOMIC))) 3222 tcp_check_probe_timer(sk); 3223 } 3224 3225 /* Send _single_ skb sitting at the send head. This function requires 3226 * true push pending frames to setup probe timer etc. 3227 */ 3228 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3229 { 3230 struct sk_buff *skb = tcp_send_head(sk); 3231 3232 BUG_ON(!skb || skb->len < mss_now); 3233 3234 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3235 } 3236 3237 /* This function returns the amount that we can raise the 3238 * usable window based on the following constraints 3239 * 3240 * 1. The window can never be shrunk once it is offered (RFC 793) 3241 * 2. We limit memory per socket 3242 * 3243 * RFC 1122: 3244 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3245 * RECV.NEXT + RCV.WIN fixed until: 3246 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3247 * 3248 * i.e. don't raise the right edge of the window until you can raise 3249 * it at least MSS bytes. 3250 * 3251 * Unfortunately, the recommended algorithm breaks header prediction, 3252 * since header prediction assumes th->window stays fixed. 3253 * 3254 * Strictly speaking, keeping th->window fixed violates the receiver 3255 * side SWS prevention criteria. The problem is that under this rule 3256 * a stream of single byte packets will cause the right side of the 3257 * window to always advance by a single byte. 3258 * 3259 * Of course, if the sender implements sender side SWS prevention 3260 * then this will not be a problem. 3261 * 3262 * BSD seems to make the following compromise: 3263 * 3264 * If the free space is less than the 1/4 of the maximum 3265 * space available and the free space is less than 1/2 mss, 3266 * then set the window to 0. 3267 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3268 * Otherwise, just prevent the window from shrinking 3269 * and from being larger than the largest representable value. 3270 * 3271 * This prevents incremental opening of the window in the regime 3272 * where TCP is limited by the speed of the reader side taking 3273 * data out of the TCP receive queue. It does nothing about 3274 * those cases where the window is constrained on the sender side 3275 * because the pipeline is full. 3276 * 3277 * BSD also seems to "accidentally" limit itself to windows that are a 3278 * multiple of MSS, at least until the free space gets quite small. 3279 * This would appear to be a side effect of the mbuf implementation. 3280 * Combining these two algorithms results in the observed behavior 3281 * of having a fixed window size at almost all times. 3282 * 3283 * Below we obtain similar behavior by forcing the offered window to 3284 * a multiple of the mss when it is feasible to do so. 3285 * 3286 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3287 * Regular options like TIMESTAMP are taken into account. 3288 */ 3289 u32 __tcp_select_window(struct sock *sk) 3290 { 3291 struct inet_connection_sock *icsk = inet_csk(sk); 3292 struct tcp_sock *tp = tcp_sk(sk); 3293 struct net *net = sock_net(sk); 3294 /* MSS for the peer's data. Previous versions used mss_clamp 3295 * here. I don't know if the value based on our guesses 3296 * of peer's MSS is better for the performance. It's more correct 3297 * but may be worse for the performance because of rcv_mss 3298 * fluctuations. --SAW 1998/11/1 3299 */ 3300 int mss = icsk->icsk_ack.rcv_mss; 3301 int free_space = tcp_space(sk); 3302 int allowed_space = tcp_full_space(sk); 3303 int full_space, window; 3304 3305 if (sk_is_mptcp(sk)) 3306 mptcp_space(sk, &free_space, &allowed_space); 3307 3308 full_space = min_t(int, tp->window_clamp, allowed_space); 3309 3310 if (unlikely(mss > full_space)) { 3311 mss = full_space; 3312 if (mss <= 0) 3313 return 0; 3314 } 3315 3316 /* Only allow window shrink if the sysctl is enabled and we have 3317 * a non-zero scaling factor in effect. 3318 */ 3319 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3320 goto shrink_window_allowed; 3321 3322 /* do not allow window to shrink */ 3323 3324 if (free_space < (full_space >> 1)) { 3325 icsk->icsk_ack.quick = 0; 3326 3327 if (tcp_under_memory_pressure(sk)) 3328 tcp_adjust_rcv_ssthresh(sk); 3329 3330 /* free_space might become our new window, make sure we don't 3331 * increase it due to wscale. 3332 */ 3333 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3334 3335 /* if free space is less than mss estimate, or is below 1/16th 3336 * of the maximum allowed, try to move to zero-window, else 3337 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3338 * new incoming data is dropped due to memory limits. 3339 * With large window, mss test triggers way too late in order 3340 * to announce zero window in time before rmem limit kicks in. 3341 */ 3342 if (free_space < (allowed_space >> 4) || free_space < mss) 3343 return 0; 3344 } 3345 3346 if (free_space > tp->rcv_ssthresh) 3347 free_space = tp->rcv_ssthresh; 3348 3349 /* Don't do rounding if we are using window scaling, since the 3350 * scaled window will not line up with the MSS boundary anyway. 3351 */ 3352 if (tp->rx_opt.rcv_wscale) { 3353 window = free_space; 3354 3355 /* Advertise enough space so that it won't get scaled away. 3356 * Import case: prevent zero window announcement if 3357 * 1<<rcv_wscale > mss. 3358 */ 3359 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3360 } else { 3361 window = tp->rcv_wnd; 3362 /* Get the largest window that is a nice multiple of mss. 3363 * Window clamp already applied above. 3364 * If our current window offering is within 1 mss of the 3365 * free space we just keep it. This prevents the divide 3366 * and multiply from happening most of the time. 3367 * We also don't do any window rounding when the free space 3368 * is too small. 3369 */ 3370 if (window <= free_space - mss || window > free_space) 3371 window = rounddown(free_space, mss); 3372 else if (mss == full_space && 3373 free_space > window + (full_space >> 1)) 3374 window = free_space; 3375 } 3376 3377 return window; 3378 3379 shrink_window_allowed: 3380 /* new window should always be an exact multiple of scaling factor */ 3381 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3382 3383 if (free_space < (full_space >> 1)) { 3384 icsk->icsk_ack.quick = 0; 3385 3386 if (tcp_under_memory_pressure(sk)) 3387 tcp_adjust_rcv_ssthresh(sk); 3388 3389 /* if free space is too low, return a zero window */ 3390 if (free_space < (allowed_space >> 4) || free_space < mss || 3391 free_space < (1 << tp->rx_opt.rcv_wscale)) 3392 return 0; 3393 } 3394 3395 if (free_space > tp->rcv_ssthresh) { 3396 free_space = tp->rcv_ssthresh; 3397 /* new window should always be an exact multiple of scaling factor 3398 * 3399 * For this case, we ALIGN "up" (increase free_space) because 3400 * we know free_space is not zero here, it has been reduced from 3401 * the memory-based limit, and rcv_ssthresh is not a hard limit 3402 * (unlike sk_rcvbuf). 3403 */ 3404 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3405 } 3406 3407 return free_space; 3408 } 3409 3410 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3411 const struct sk_buff *next_skb) 3412 { 3413 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3414 const struct skb_shared_info *next_shinfo = 3415 skb_shinfo(next_skb); 3416 struct skb_shared_info *shinfo = skb_shinfo(skb); 3417 3418 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3419 shinfo->tskey = next_shinfo->tskey; 3420 TCP_SKB_CB(skb)->txstamp_ack |= 3421 TCP_SKB_CB(next_skb)->txstamp_ack; 3422 } 3423 } 3424 3425 /* Collapses two adjacent SKB's during retransmission. */ 3426 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3427 { 3428 struct tcp_sock *tp = tcp_sk(sk); 3429 struct sk_buff *next_skb = skb_rb_next(skb); 3430 int next_skb_size; 3431 3432 next_skb_size = next_skb->len; 3433 3434 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3435 3436 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3437 return false; 3438 3439 tcp_highest_sack_replace(sk, next_skb, skb); 3440 3441 /* Update sequence range on original skb. */ 3442 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3443 3444 /* Merge over control information. This moves PSH/FIN etc. over */ 3445 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3446 3447 /* All done, get rid of second SKB and account for it so 3448 * packet counting does not break. 3449 */ 3450 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3451 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3452 3453 /* changed transmit queue under us so clear hints */ 3454 if (next_skb == tp->retransmit_skb_hint) 3455 tp->retransmit_skb_hint = skb; 3456 3457 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3458 3459 tcp_skb_collapse_tstamp(skb, next_skb); 3460 3461 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3462 return true; 3463 } 3464 3465 /* Check if coalescing SKBs is legal. */ 3466 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3467 { 3468 if (tcp_skb_pcount(skb) > 1) 3469 return false; 3470 if (skb_cloned(skb)) 3471 return false; 3472 if (!skb_frags_readable(skb)) 3473 return false; 3474 /* Some heuristics for collapsing over SACK'd could be invented */ 3475 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3476 return false; 3477 3478 return true; 3479 } 3480 3481 /* Collapse packets in the retransmit queue to make to create 3482 * less packets on the wire. This is only done on retransmission. 3483 */ 3484 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3485 int space) 3486 { 3487 struct tcp_sock *tp = tcp_sk(sk); 3488 struct sk_buff *skb = to, *tmp; 3489 bool first = true; 3490 3491 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3492 return; 3493 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3494 return; 3495 3496 skb_rbtree_walk_from_safe(skb, tmp) { 3497 if (!tcp_can_collapse(sk, skb)) 3498 break; 3499 3500 if (!tcp_skb_can_collapse(to, skb)) 3501 break; 3502 3503 space -= skb->len; 3504 3505 if (first) { 3506 first = false; 3507 continue; 3508 } 3509 3510 if (space < 0) 3511 break; 3512 3513 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3514 break; 3515 3516 if (!tcp_collapse_retrans(sk, to)) 3517 break; 3518 } 3519 } 3520 3521 /* This retransmits one SKB. Policy decisions and retransmit queue 3522 * state updates are done by the caller. Returns non-zero if an 3523 * error occurred which prevented the send. 3524 */ 3525 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3526 { 3527 struct inet_connection_sock *icsk = inet_csk(sk); 3528 struct tcp_sock *tp = tcp_sk(sk); 3529 unsigned int cur_mss; 3530 int diff, len, err; 3531 int avail_wnd; 3532 3533 /* Inconclusive MTU probe */ 3534 if (icsk->icsk_mtup.probe_size) 3535 icsk->icsk_mtup.probe_size = 0; 3536 3537 if (skb_still_in_host_queue(sk, skb)) { 3538 err = -EBUSY; 3539 goto out; 3540 } 3541 3542 start: 3543 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3544 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3545 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3546 TCP_SKB_CB(skb)->seq++; 3547 goto start; 3548 } 3549 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3550 WARN_ON_ONCE(1); 3551 err = -EINVAL; 3552 goto out; 3553 } 3554 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) { 3555 err = -ENOMEM; 3556 goto out; 3557 } 3558 } 3559 3560 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) { 3561 err = -EHOSTUNREACH; /* Routing failure or similar. */ 3562 goto out; 3563 } 3564 3565 cur_mss = tcp_current_mss(sk); 3566 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3567 3568 /* If receiver has shrunk his window, and skb is out of 3569 * new window, do not retransmit it. The exception is the 3570 * case, when window is shrunk to zero. In this case 3571 * our retransmit of one segment serves as a zero window probe. 3572 */ 3573 if (avail_wnd <= 0) { 3574 if (TCP_SKB_CB(skb)->seq != tp->snd_una) { 3575 err = -EAGAIN; 3576 goto out; 3577 } 3578 avail_wnd = cur_mss; 3579 } 3580 3581 len = cur_mss * segs; 3582 if (len > avail_wnd) { 3583 len = rounddown(avail_wnd, cur_mss); 3584 if (!len) 3585 len = avail_wnd; 3586 } 3587 if (skb->len > len) { 3588 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3589 cur_mss, GFP_ATOMIC)) { 3590 err = -ENOMEM; /* We'll try again later. */ 3591 goto out; 3592 } 3593 } else { 3594 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) { 3595 err = -ENOMEM; 3596 goto out; 3597 } 3598 3599 diff = tcp_skb_pcount(skb); 3600 tcp_set_skb_tso_segs(skb, cur_mss); 3601 diff -= tcp_skb_pcount(skb); 3602 if (diff) 3603 tcp_adjust_pcount(sk, skb, diff); 3604 avail_wnd = min_t(int, avail_wnd, cur_mss); 3605 if (skb->len < avail_wnd) 3606 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3607 } 3608 3609 /* RFC3168, section 6.1.1.1. ECN fallback 3610 * As AccECN uses the same SYN flags (+ AE), this check covers both 3611 * cases. 3612 */ 3613 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3614 tcp_ecn_clear_syn(sk, skb); 3615 3616 /* Update global and local TCP statistics. */ 3617 segs = tcp_skb_pcount(skb); 3618 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3619 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3620 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3621 tp->total_retrans += segs; 3622 tp->bytes_retrans += skb->len; 3623 3624 /* make sure skb->data is aligned on arches that require it 3625 * and check if ack-trimming & collapsing extended the headroom 3626 * beyond what csum_start can cover. 3627 */ 3628 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3629 skb_headroom(skb) >= 0xFFFF)) { 3630 struct sk_buff *nskb; 3631 3632 tcp_skb_tsorted_save(skb) { 3633 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3634 if (nskb) { 3635 nskb->dev = NULL; 3636 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3637 } else { 3638 err = -ENOBUFS; 3639 } 3640 } tcp_skb_tsorted_restore(skb); 3641 3642 if (!err) { 3643 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3644 tcp_rate_skb_sent(sk, skb); 3645 } 3646 } else { 3647 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3648 } 3649 3650 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3651 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3652 TCP_SKB_CB(skb)->seq, segs, err); 3653 3654 if (unlikely(err) && err != -EBUSY) 3655 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3656 3657 /* To avoid taking spuriously low RTT samples based on a timestamp 3658 * for a transmit that never happened, always mark EVER_RETRANS 3659 */ 3660 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3661 3662 out: 3663 trace_tcp_retransmit_skb(sk, skb, err); 3664 return err; 3665 } 3666 3667 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3668 { 3669 struct tcp_sock *tp = tcp_sk(sk); 3670 int err = __tcp_retransmit_skb(sk, skb, segs); 3671 3672 if (err == 0) { 3673 #if FASTRETRANS_DEBUG > 0 3674 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3675 net_dbg_ratelimited("retrans_out leaked\n"); 3676 } 3677 #endif 3678 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3679 tp->retrans_out += tcp_skb_pcount(skb); 3680 } 3681 3682 /* Save stamp of the first (attempted) retransmit. */ 3683 if (!tp->retrans_stamp) 3684 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3685 3686 if (tp->undo_retrans < 0) 3687 tp->undo_retrans = 0; 3688 tp->undo_retrans += tcp_skb_pcount(skb); 3689 return err; 3690 } 3691 3692 /* This gets called after a retransmit timeout, and the initially 3693 * retransmitted data is acknowledged. It tries to continue 3694 * resending the rest of the retransmit queue, until either 3695 * we've sent it all or the congestion window limit is reached. 3696 */ 3697 void tcp_xmit_retransmit_queue(struct sock *sk) 3698 { 3699 const struct inet_connection_sock *icsk = inet_csk(sk); 3700 struct sk_buff *skb, *rtx_head, *hole = NULL; 3701 struct tcp_sock *tp = tcp_sk(sk); 3702 bool rearm_timer = false; 3703 u32 max_segs; 3704 int mib_idx; 3705 3706 if (!tp->packets_out) 3707 return; 3708 3709 rtx_head = tcp_rtx_queue_head(sk); 3710 skb = tp->retransmit_skb_hint ?: rtx_head; 3711 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3712 skb_rbtree_walk_from(skb) { 3713 __u8 sacked; 3714 int segs; 3715 3716 if (tcp_pacing_check(sk)) 3717 break; 3718 3719 /* we could do better than to assign each time */ 3720 if (!hole) 3721 tp->retransmit_skb_hint = skb; 3722 3723 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3724 if (segs <= 0) 3725 break; 3726 sacked = TCP_SKB_CB(skb)->sacked; 3727 /* In case tcp_shift_skb_data() have aggregated large skbs, 3728 * we need to make sure not sending too bigs TSO packets 3729 */ 3730 segs = min_t(int, segs, max_segs); 3731 3732 if (tp->retrans_out >= tp->lost_out) { 3733 break; 3734 } else if (!(sacked & TCPCB_LOST)) { 3735 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3736 hole = skb; 3737 continue; 3738 3739 } else { 3740 if (icsk->icsk_ca_state != TCP_CA_Loss) 3741 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3742 else 3743 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3744 } 3745 3746 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3747 continue; 3748 3749 if (tcp_small_queue_check(sk, skb, 1)) 3750 break; 3751 3752 if (tcp_retransmit_skb(sk, skb, segs)) 3753 break; 3754 3755 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3756 3757 if (tcp_in_cwnd_reduction(sk)) 3758 tp->prr_out += tcp_skb_pcount(skb); 3759 3760 if (skb == rtx_head && 3761 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3762 rearm_timer = true; 3763 3764 } 3765 if (rearm_timer) 3766 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3767 inet_csk(sk)->icsk_rto, true); 3768 } 3769 3770 /* We allow to exceed memory limits for FIN packets to expedite 3771 * connection tear down and (memory) recovery. 3772 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3773 * or even be forced to close flow without any FIN. 3774 * In general, we want to allow one skb per socket to avoid hangs 3775 * with edge trigger epoll() 3776 */ 3777 void sk_forced_mem_schedule(struct sock *sk, int size) 3778 { 3779 int delta, amt; 3780 3781 delta = size - sk->sk_forward_alloc; 3782 if (delta <= 0) 3783 return; 3784 3785 amt = sk_mem_pages(delta); 3786 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3787 3788 if (mem_cgroup_sk_enabled(sk)) 3789 mem_cgroup_sk_charge(sk, amt, gfp_memcg_charge() | __GFP_NOFAIL); 3790 3791 if (sk->sk_bypass_prot_mem) 3792 return; 3793 3794 sk_memory_allocated_add(sk, amt); 3795 } 3796 3797 /* Send a FIN. The caller locks the socket for us. 3798 * We should try to send a FIN packet really hard, but eventually give up. 3799 */ 3800 void tcp_send_fin(struct sock *sk) 3801 { 3802 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3803 struct tcp_sock *tp = tcp_sk(sk); 3804 3805 /* Optimization, tack on the FIN if we have one skb in write queue and 3806 * this skb was not yet sent, or we are under memory pressure. 3807 * Note: in the latter case, FIN packet will be sent after a timeout, 3808 * as TCP stack thinks it has already been transmitted. 3809 */ 3810 tskb = tail; 3811 if (!tskb && tcp_under_memory_pressure(sk)) 3812 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3813 3814 if (tskb) { 3815 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3816 TCP_SKB_CB(tskb)->end_seq++; 3817 tp->write_seq++; 3818 if (!tail) { 3819 /* This means tskb was already sent. 3820 * Pretend we included the FIN on previous transmit. 3821 * We need to set tp->snd_nxt to the value it would have 3822 * if FIN had been sent. This is because retransmit path 3823 * does not change tp->snd_nxt. 3824 */ 3825 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3826 return; 3827 } 3828 } else { 3829 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3830 sk_gfp_mask(sk, GFP_ATOMIC | 3831 __GFP_NOWARN)); 3832 if (unlikely(!skb)) 3833 return; 3834 3835 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3836 skb_reserve(skb, MAX_TCP_HEADER); 3837 sk_forced_mem_schedule(sk, skb->truesize); 3838 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3839 tcp_init_nondata_skb(skb, sk, tp->write_seq, 3840 TCPHDR_ACK | TCPHDR_FIN); 3841 tcp_queue_skb(sk, skb); 3842 } 3843 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3844 } 3845 3846 /* We get here when a process closes a file descriptor (either due to 3847 * an explicit close() or as a byproduct of exit()'ing) and there 3848 * was unread data in the receive queue. This behavior is recommended 3849 * by RFC 2525, section 2.17. -DaveM 3850 */ 3851 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 3852 enum sk_rst_reason reason) 3853 { 3854 struct sk_buff *skb; 3855 3856 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3857 3858 /* NOTE: No TCP options attached and we never retransmit this. */ 3859 skb = alloc_skb(MAX_TCP_HEADER, priority); 3860 if (!skb) { 3861 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3862 return; 3863 } 3864 3865 /* Reserve space for headers and prepare control bits. */ 3866 skb_reserve(skb, MAX_TCP_HEADER); 3867 tcp_init_nondata_skb(skb, sk, tcp_acceptable_seq(sk), 3868 TCPHDR_ACK | TCPHDR_RST); 3869 tcp_mstamp_refresh(tcp_sk(sk)); 3870 /* Send it off. */ 3871 if (tcp_transmit_skb(sk, skb, 0, priority)) 3872 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3873 3874 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3875 * skb here is different to the troublesome skb, so use NULL 3876 */ 3877 trace_tcp_send_reset(sk, NULL, reason); 3878 } 3879 3880 /* Send a crossed SYN-ACK during socket establishment. 3881 * WARNING: This routine must only be called when we have already sent 3882 * a SYN packet that crossed the incoming SYN that caused this routine 3883 * to get called. If this assumption fails then the initial rcv_wnd 3884 * and rcv_wscale values will not be correct. 3885 */ 3886 int tcp_send_synack(struct sock *sk) 3887 { 3888 struct sk_buff *skb; 3889 3890 skb = tcp_rtx_queue_head(sk); 3891 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3892 pr_err("%s: wrong queue state\n", __func__); 3893 return -EFAULT; 3894 } 3895 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3896 if (skb_cloned(skb)) { 3897 struct sk_buff *nskb; 3898 3899 tcp_skb_tsorted_save(skb) { 3900 nskb = skb_copy(skb, GFP_ATOMIC); 3901 } tcp_skb_tsorted_restore(skb); 3902 if (!nskb) 3903 return -ENOMEM; 3904 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3905 tcp_highest_sack_replace(sk, skb, nskb); 3906 tcp_rtx_queue_unlink_and_free(skb, sk); 3907 __skb_header_release(nskb); 3908 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3909 sk_wmem_queued_add(sk, nskb->truesize); 3910 sk_mem_charge(sk, nskb->truesize); 3911 skb = nskb; 3912 } 3913 3914 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3915 tcp_ecn_send_synack(sk, skb); 3916 } 3917 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3918 } 3919 3920 /** 3921 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3922 * @sk: listener socket 3923 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3924 * should not use it again. 3925 * @req: request_sock pointer 3926 * @foc: cookie for tcp fast open 3927 * @synack_type: Type of synack to prepare 3928 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3929 */ 3930 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3931 struct request_sock *req, 3932 struct tcp_fastopen_cookie *foc, 3933 enum tcp_synack_type synack_type, 3934 struct sk_buff *syn_skb) 3935 { 3936 struct inet_request_sock *ireq = inet_rsk(req); 3937 const struct tcp_sock *tp = tcp_sk(sk); 3938 struct tcp_out_options opts; 3939 struct tcp_key key = {}; 3940 struct sk_buff *skb; 3941 int tcp_header_size; 3942 struct tcphdr *th; 3943 int mss; 3944 u64 now; 3945 3946 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3947 if (unlikely(!skb)) { 3948 dst_release(dst); 3949 return NULL; 3950 } 3951 /* Reserve space for headers. */ 3952 skb_reserve(skb, MAX_TCP_HEADER); 3953 3954 switch (synack_type) { 3955 case TCP_SYNACK_NORMAL: 3956 skb_set_owner_edemux(skb, req_to_sk(req)); 3957 break; 3958 case TCP_SYNACK_COOKIE: 3959 /* Under synflood, we do not attach skb to a socket, 3960 * to avoid false sharing. 3961 */ 3962 break; 3963 case TCP_SYNACK_FASTOPEN: 3964 /* sk is a const pointer, because we want to express multiple 3965 * cpu might call us concurrently. 3966 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3967 */ 3968 skb_set_owner_w(skb, (struct sock *)sk); 3969 break; 3970 } 3971 skb_dst_set(skb, dst); 3972 3973 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3974 3975 memset(&opts, 0, sizeof(opts)); 3976 now = tcp_clock_ns(); 3977 #ifdef CONFIG_SYN_COOKIES 3978 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3979 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3980 SKB_CLOCK_MONOTONIC); 3981 else 3982 #endif 3983 { 3984 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3985 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3986 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3987 } 3988 3989 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3990 rcu_read_lock(); 3991 #endif 3992 if (tcp_rsk_used_ao(req)) { 3993 #ifdef CONFIG_TCP_AO 3994 struct tcp_ao_key *ao_key = NULL; 3995 u8 keyid = tcp_rsk(req)->ao_keyid; 3996 u8 rnext = tcp_rsk(req)->ao_rcv_next; 3997 3998 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3999 keyid, -1); 4000 /* If there is no matching key - avoid sending anything, 4001 * especially usigned segments. It could try harder and lookup 4002 * for another peer-matching key, but the peer has requested 4003 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 4004 */ 4005 if (unlikely(!ao_key)) { 4006 trace_tcp_ao_synack_no_key(sk, keyid, rnext); 4007 rcu_read_unlock(); 4008 kfree_skb(skb); 4009 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 4010 keyid); 4011 return NULL; 4012 } 4013 key.ao_key = ao_key; 4014 key.type = TCP_KEY_AO; 4015 #endif 4016 } else { 4017 #ifdef CONFIG_TCP_MD5SIG 4018 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 4019 req_to_sk(req)); 4020 if (key.md5_key) 4021 key.type = TCP_KEY_MD5; 4022 #endif 4023 } 4024 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 4025 /* bpf program will be interested in the tcp_flags */ 4026 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 4027 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 4028 &key, foc, synack_type, syn_skb) 4029 + sizeof(*th); 4030 4031 skb_push(skb, tcp_header_size); 4032 skb_reset_transport_header(skb); 4033 4034 th = (struct tcphdr *)skb->data; 4035 memset(th, 0, sizeof(struct tcphdr)); 4036 th->syn = 1; 4037 th->ack = 1; 4038 tcp_ecn_make_synack(req, th); 4039 th->source = htons(ireq->ir_num); 4040 th->dest = ireq->ir_rmt_port; 4041 skb->mark = ireq->ir_mark; 4042 skb->ip_summed = CHECKSUM_PARTIAL; 4043 th->seq = htonl(tcp_rsk(req)->snt_isn); 4044 /* XXX data is queued and acked as is. No buffer/window check */ 4045 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 4046 4047 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 4048 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 4049 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 4050 th->doff = (tcp_header_size >> 2); 4051 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 4052 4053 /* Okay, we have all we need - do the md5 hash if needed */ 4054 if (tcp_key_is_md5(&key)) { 4055 #ifdef CONFIG_TCP_MD5SIG 4056 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 4057 key.md5_key, req_to_sk(req), skb); 4058 #endif 4059 } else if (tcp_key_is_ao(&key)) { 4060 #ifdef CONFIG_TCP_AO 4061 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 4062 key.ao_key, req, skb, 4063 opts.hash_location - (u8 *)th, 0); 4064 #endif 4065 } 4066 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4067 rcu_read_unlock(); 4068 #endif 4069 4070 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 4071 synack_type, &opts); 4072 4073 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 4074 tcp_add_tx_delay(skb, tp); 4075 4076 return skb; 4077 } 4078 EXPORT_IPV6_MOD(tcp_make_synack); 4079 4080 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 4081 { 4082 struct inet_connection_sock *icsk = inet_csk(sk); 4083 const struct tcp_congestion_ops *ca; 4084 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 4085 4086 if (ca_key == TCP_CA_UNSPEC) 4087 return; 4088 4089 rcu_read_lock(); 4090 ca = tcp_ca_find_key(ca_key); 4091 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 4092 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 4093 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 4094 icsk->icsk_ca_ops = ca; 4095 } 4096 rcu_read_unlock(); 4097 } 4098 4099 /* Do all connect socket setups that can be done AF independent. */ 4100 static void tcp_connect_init(struct sock *sk) 4101 { 4102 const struct dst_entry *dst = __sk_dst_get(sk); 4103 struct tcp_sock *tp = tcp_sk(sk); 4104 __u8 rcv_wscale; 4105 u16 user_mss; 4106 u32 rcv_wnd; 4107 4108 /* We'll fix this up when we get a response from the other end. 4109 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 4110 */ 4111 tp->tcp_header_len = sizeof(struct tcphdr); 4112 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 4113 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 4114 4115 tcp_ao_connect_init(sk); 4116 4117 /* If user gave his TCP_MAXSEG, record it to clamp */ 4118 user_mss = READ_ONCE(tp->rx_opt.user_mss); 4119 if (user_mss) 4120 tp->rx_opt.mss_clamp = user_mss; 4121 tp->max_window = 0; 4122 tcp_mtup_init(sk); 4123 tcp_sync_mss(sk, dst_mtu(dst)); 4124 4125 tcp_ca_dst_init(sk, dst); 4126 4127 if (!tp->window_clamp) 4128 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 4129 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 4130 4131 tcp_initialize_rcv_mss(sk); 4132 4133 /* limit the window selection if the user enforce a smaller rx buffer */ 4134 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 4135 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 4136 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 4137 4138 rcv_wnd = tcp_rwnd_init_bpf(sk); 4139 if (rcv_wnd == 0) 4140 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 4141 4142 tcp_select_initial_window(sk, tcp_full_space(sk), 4143 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 4144 &tp->rcv_wnd, 4145 &tp->window_clamp, 4146 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 4147 &rcv_wscale, 4148 rcv_wnd); 4149 4150 tp->rx_opt.rcv_wscale = rcv_wscale; 4151 tp->rcv_ssthresh = tp->rcv_wnd; 4152 4153 WRITE_ONCE(sk->sk_err, 0); 4154 sock_reset_flag(sk, SOCK_DONE); 4155 tp->snd_wnd = 0; 4156 tcp_init_wl(tp, 0); 4157 tcp_write_queue_purge(sk); 4158 tp->snd_una = tp->write_seq; 4159 tp->snd_sml = tp->write_seq; 4160 tp->snd_up = tp->write_seq; 4161 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4162 4163 if (likely(!tp->repair)) 4164 tp->rcv_nxt = 0; 4165 else 4166 tp->rcv_tstamp = tcp_jiffies32; 4167 tp->rcv_wup = tp->rcv_nxt; 4168 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 4169 4170 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 4171 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 4172 tcp_clear_retrans(tp); 4173 } 4174 4175 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 4176 { 4177 struct tcp_sock *tp = tcp_sk(sk); 4178 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 4179 4180 tcb->end_seq += skb->len; 4181 __skb_header_release(skb); 4182 sk_wmem_queued_add(sk, skb->truesize); 4183 sk_mem_charge(sk, skb->truesize); 4184 WRITE_ONCE(tp->write_seq, tcb->end_seq); 4185 tp->packets_out += tcp_skb_pcount(skb); 4186 } 4187 4188 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 4189 * queue a data-only packet after the regular SYN, such that regular SYNs 4190 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 4191 * only the SYN sequence, the data are retransmitted in the first ACK. 4192 * If cookie is not cached or other error occurs, falls back to send a 4193 * regular SYN with Fast Open cookie request option. 4194 */ 4195 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 4196 { 4197 struct inet_connection_sock *icsk = inet_csk(sk); 4198 struct tcp_sock *tp = tcp_sk(sk); 4199 struct tcp_fastopen_request *fo = tp->fastopen_req; 4200 struct page_frag *pfrag = sk_page_frag(sk); 4201 struct sk_buff *syn_data; 4202 int space, err = 0; 4203 4204 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 4205 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 4206 goto fallback; 4207 4208 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 4209 * user-MSS. Reserve maximum option space for middleboxes that add 4210 * private TCP options. The cost is reduced data space in SYN :( 4211 */ 4212 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 4213 /* Sync mss_cache after updating the mss_clamp */ 4214 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4215 4216 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 4217 MAX_TCP_OPTION_SPACE; 4218 4219 space = min_t(size_t, space, fo->size); 4220 4221 if (space && 4222 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 4223 pfrag, sk->sk_allocation)) 4224 goto fallback; 4225 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 4226 if (!syn_data) 4227 goto fallback; 4228 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 4229 if (space) { 4230 space = min_t(size_t, space, pfrag->size - pfrag->offset); 4231 space = tcp_wmem_schedule(sk, space); 4232 } 4233 if (space) { 4234 space = copy_page_from_iter(pfrag->page, pfrag->offset, 4235 space, &fo->data->msg_iter); 4236 if (unlikely(!space)) { 4237 tcp_skb_tsorted_anchor_cleanup(syn_data); 4238 kfree_skb(syn_data); 4239 goto fallback; 4240 } 4241 skb_fill_page_desc(syn_data, 0, pfrag->page, 4242 pfrag->offset, space); 4243 page_ref_inc(pfrag->page); 4244 pfrag->offset += space; 4245 skb_len_add(syn_data, space); 4246 skb_zcopy_set(syn_data, fo->uarg, NULL); 4247 } 4248 /* No more data pending in inet_wait_for_connect() */ 4249 if (space == fo->size) 4250 fo->data = NULL; 4251 fo->copied = space; 4252 4253 tcp_connect_queue_skb(sk, syn_data); 4254 if (syn_data->len) 4255 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4256 4257 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4258 4259 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC); 4260 4261 /* Now full SYN+DATA was cloned and sent (or not), 4262 * remove the SYN from the original skb (syn_data) 4263 * we keep in write queue in case of a retransmit, as we 4264 * also have the SYN packet (with no data) in the same queue. 4265 */ 4266 TCP_SKB_CB(syn_data)->seq++; 4267 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4268 if (!err) { 4269 tp->syn_data = (fo->copied > 0); 4270 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4271 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4272 goto done; 4273 } 4274 4275 /* data was not sent, put it in write_queue */ 4276 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4277 tp->packets_out -= tcp_skb_pcount(syn_data); 4278 4279 fallback: 4280 /* Send a regular SYN with Fast Open cookie request option */ 4281 if (fo->cookie.len > 0) 4282 fo->cookie.len = 0; 4283 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4284 if (err) 4285 tp->syn_fastopen = 0; 4286 done: 4287 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4288 return err; 4289 } 4290 4291 /* Build a SYN and send it off. */ 4292 int tcp_connect(struct sock *sk) 4293 { 4294 struct tcp_sock *tp = tcp_sk(sk); 4295 struct sk_buff *buff; 4296 int err; 4297 4298 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4299 4300 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4301 /* Has to be checked late, after setting daddr/saddr/ops. 4302 * Return error if the peer has both a md5 and a tcp-ao key 4303 * configured as this is ambiguous. 4304 */ 4305 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4306 lockdep_sock_is_held(sk)))) { 4307 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4308 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4309 struct tcp_ao_info *ao_info; 4310 4311 ao_info = rcu_dereference_check(tp->ao_info, 4312 lockdep_sock_is_held(sk)); 4313 if (ao_info) { 4314 /* This is an extra check: tcp_ao_required() in 4315 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4316 * md5 keys on ao_required socket. 4317 */ 4318 needs_ao |= ao_info->ao_required; 4319 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4320 } 4321 if (needs_md5 && needs_ao) 4322 return -EKEYREJECTED; 4323 4324 /* If we have a matching md5 key and no matching tcp-ao key 4325 * then free up ao_info if allocated. 4326 */ 4327 if (needs_md5) { 4328 tcp_ao_destroy_sock(sk, false); 4329 } else if (needs_ao) { 4330 tcp_clear_md5_list(sk); 4331 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4332 lockdep_sock_is_held(sk))); 4333 } 4334 } 4335 #endif 4336 #ifdef CONFIG_TCP_AO 4337 if (unlikely(rcu_dereference_protected(tp->ao_info, 4338 lockdep_sock_is_held(sk)))) { 4339 /* Don't allow connecting if ao is configured but no 4340 * matching key is found. 4341 */ 4342 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4343 return -EKEYREJECTED; 4344 } 4345 #endif 4346 4347 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4348 return -EHOSTUNREACH; /* Routing failure or similar. */ 4349 4350 tcp_connect_init(sk); 4351 4352 if (unlikely(tp->repair)) { 4353 tcp_finish_connect(sk, NULL); 4354 return 0; 4355 } 4356 4357 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4358 if (unlikely(!buff)) 4359 return -ENOBUFS; 4360 4361 /* SYN eats a sequence byte, write_seq updated by 4362 * tcp_connect_queue_skb(). 4363 */ 4364 tcp_init_nondata_skb(buff, sk, tp->write_seq, TCPHDR_SYN); 4365 tcp_mstamp_refresh(tp); 4366 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4367 tcp_connect_queue_skb(sk, buff); 4368 tcp_ecn_send_syn(sk, buff); 4369 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4370 4371 /* Send off SYN; include data in Fast Open. */ 4372 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4373 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4374 if (err == -ECONNREFUSED) 4375 return err; 4376 4377 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4378 * in order to make this packet get counted in tcpOutSegs. 4379 */ 4380 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4381 tp->pushed_seq = tp->write_seq; 4382 buff = tcp_send_head(sk); 4383 if (unlikely(buff)) { 4384 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4385 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4386 } 4387 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4388 4389 /* Timer for repeating the SYN until an answer. */ 4390 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4391 inet_csk(sk)->icsk_rto, false); 4392 return 0; 4393 } 4394 EXPORT_SYMBOL(tcp_connect); 4395 4396 u32 tcp_delack_max(const struct sock *sk) 4397 { 4398 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1; 4399 4400 return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min); 4401 } 4402 4403 /* Send out a delayed ack, the caller does the policy checking 4404 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4405 * for details. 4406 */ 4407 void tcp_send_delayed_ack(struct sock *sk) 4408 { 4409 struct inet_connection_sock *icsk = inet_csk(sk); 4410 int ato = icsk->icsk_ack.ato; 4411 unsigned long timeout; 4412 4413 if (ato > TCP_DELACK_MIN) { 4414 const struct tcp_sock *tp = tcp_sk(sk); 4415 int max_ato = HZ / 2; 4416 4417 if (inet_csk_in_pingpong_mode(sk) || 4418 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4419 max_ato = TCP_DELACK_MAX; 4420 4421 /* Slow path, intersegment interval is "high". */ 4422 4423 /* If some rtt estimate is known, use it to bound delayed ack. 4424 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4425 * directly. 4426 */ 4427 if (tp->srtt_us) { 4428 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4429 TCP_DELACK_MIN); 4430 4431 if (rtt < max_ato) 4432 max_ato = rtt; 4433 } 4434 4435 ato = min(ato, max_ato); 4436 } 4437 4438 ato = min_t(u32, ato, tcp_delack_max(sk)); 4439 4440 /* Stay within the limit we were given */ 4441 timeout = jiffies + ato; 4442 4443 /* Use new timeout only if there wasn't a older one earlier. */ 4444 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4445 /* If delack timer is about to expire, send ACK now. */ 4446 if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) { 4447 tcp_send_ack(sk); 4448 return; 4449 } 4450 4451 if (!time_before(timeout, icsk_delack_timeout(icsk))) 4452 timeout = icsk_delack_timeout(icsk); 4453 } 4454 smp_store_release(&icsk->icsk_ack.pending, 4455 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 4456 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4457 } 4458 4459 /* This routine sends an ack and also updates the window. */ 4460 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags) 4461 { 4462 struct sk_buff *buff; 4463 4464 /* If we have been reset, we may not send again. */ 4465 if (sk->sk_state == TCP_CLOSE) 4466 return; 4467 4468 /* We are not putting this on the write queue, so 4469 * tcp_transmit_skb() will set the ownership to this 4470 * sock. 4471 */ 4472 buff = alloc_skb(MAX_TCP_HEADER, 4473 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4474 if (unlikely(!buff)) { 4475 struct inet_connection_sock *icsk = inet_csk(sk); 4476 unsigned long delay; 4477 4478 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4479 if (delay < tcp_rto_max(sk)) 4480 icsk->icsk_ack.retry++; 4481 inet_csk_schedule_ack(sk); 4482 icsk->icsk_ack.ato = TCP_ATO_MIN; 4483 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false); 4484 return; 4485 } 4486 4487 /* Reserve space for headers and prepare control bits. */ 4488 skb_reserve(buff, MAX_TCP_HEADER); 4489 tcp_init_nondata_skb(buff, sk, 4490 tcp_acceptable_seq(sk), TCPHDR_ACK | flags); 4491 4492 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4493 * too much. 4494 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4495 */ 4496 skb_set_tcp_pure_ack(buff); 4497 4498 /* Send it off, this clears delayed acks for us. */ 4499 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4500 } 4501 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4502 4503 void tcp_send_ack(struct sock *sk) 4504 { 4505 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0); 4506 } 4507 4508 /* This routine sends a packet with an out of date sequence 4509 * number. It assumes the other end will try to ack it. 4510 * 4511 * Question: what should we make while urgent mode? 4512 * 4.4BSD forces sending single byte of data. We cannot send 4513 * out of window data, because we have SND.NXT==SND.MAX... 4514 * 4515 * Current solution: to send TWO zero-length segments in urgent mode: 4516 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4517 * out-of-date with SND.UNA-1 to probe window. 4518 */ 4519 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4520 { 4521 struct tcp_sock *tp = tcp_sk(sk); 4522 struct sk_buff *skb; 4523 4524 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4525 skb = alloc_skb(MAX_TCP_HEADER, 4526 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4527 if (!skb) 4528 return -1; 4529 4530 /* Reserve space for headers and set control bits. */ 4531 skb_reserve(skb, MAX_TCP_HEADER); 4532 /* Use a previous sequence. This should cause the other 4533 * end to send an ack. Don't queue or clone SKB, just 4534 * send it. 4535 */ 4536 tcp_init_nondata_skb(skb, sk, tp->snd_una - !urgent, TCPHDR_ACK); 4537 NET_INC_STATS(sock_net(sk), mib); 4538 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4539 } 4540 4541 /* Called from setsockopt( ... TCP_REPAIR ) */ 4542 void tcp_send_window_probe(struct sock *sk) 4543 { 4544 if (sk->sk_state == TCP_ESTABLISHED) { 4545 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4546 tcp_mstamp_refresh(tcp_sk(sk)); 4547 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4548 } 4549 } 4550 4551 /* Initiate keepalive or window probe from timer. */ 4552 int tcp_write_wakeup(struct sock *sk, int mib) 4553 { 4554 struct tcp_sock *tp = tcp_sk(sk); 4555 struct sk_buff *skb; 4556 4557 if (sk->sk_state == TCP_CLOSE) 4558 return -1; 4559 4560 skb = tcp_send_head(sk); 4561 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4562 int err; 4563 unsigned int mss = tcp_current_mss(sk); 4564 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4565 4566 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4567 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4568 4569 /* We are probing the opening of a window 4570 * but the window size is != 0 4571 * must have been a result SWS avoidance ( sender ) 4572 */ 4573 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4574 skb->len > mss) { 4575 seg_size = min(seg_size, mss); 4576 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4577 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4578 skb, seg_size, mss, GFP_ATOMIC)) 4579 return -1; 4580 } else if (!tcp_skb_pcount(skb)) 4581 tcp_set_skb_tso_segs(skb, mss); 4582 4583 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4584 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4585 if (!err) 4586 tcp_event_new_data_sent(sk, skb); 4587 return err; 4588 } else { 4589 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4590 tcp_xmit_probe_skb(sk, 1, mib); 4591 return tcp_xmit_probe_skb(sk, 0, mib); 4592 } 4593 } 4594 4595 /* A window probe timeout has occurred. If window is not closed send 4596 * a partial packet else a zero probe. 4597 */ 4598 void tcp_send_probe0(struct sock *sk) 4599 { 4600 struct inet_connection_sock *icsk = inet_csk(sk); 4601 struct tcp_sock *tp = tcp_sk(sk); 4602 struct net *net = sock_net(sk); 4603 unsigned long timeout; 4604 int err; 4605 4606 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4607 4608 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4609 /* Cancel probe timer, if it is not required. */ 4610 WRITE_ONCE(icsk->icsk_probes_out, 0); 4611 icsk->icsk_backoff = 0; 4612 icsk->icsk_probes_tstamp = 0; 4613 return; 4614 } 4615 4616 WRITE_ONCE(icsk->icsk_probes_out, icsk->icsk_probes_out + 1); 4617 if (err <= 0) { 4618 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4619 icsk->icsk_backoff++; 4620 timeout = tcp_probe0_when(sk, tcp_rto_max(sk)); 4621 } else { 4622 /* If packet was not sent due to local congestion, 4623 * Let senders fight for local resources conservatively. 4624 */ 4625 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4626 } 4627 4628 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4629 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true); 4630 } 4631 4632 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4633 { 4634 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4635 struct flowi fl; 4636 int res; 4637 4638 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4639 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4640 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4641 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4642 NULL); 4643 if (!res) { 4644 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4645 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4646 if (unlikely(tcp_passive_fastopen(sk))) { 4647 /* sk has const attribute because listeners are lockless. 4648 * However in this case, we are dealing with a passive fastopen 4649 * socket thus we can change total_retrans value. 4650 */ 4651 tcp_sk_rw(sk)->total_retrans++; 4652 } 4653 trace_tcp_retransmit_synack(sk, req); 4654 WRITE_ONCE(req->num_retrans, req->num_retrans + 1); 4655 } 4656 return res; 4657 } 4658 EXPORT_IPV6_MOD(tcp_rtx_synack); 4659