xref: /linux/net/ipv4/tcp_output.c (revision d8f87aa5fa0a4276491fa8ef436cd22605a3f9ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/tcp_ecn.h>
42 #include <net/mptcp.h>
43 #include <net/smc.h>
44 #include <net/proto_memory.h>
45 #include <net/psp.h>
46 
47 #include <linux/compiler.h>
48 #include <linux/gfp.h>
49 #include <linux/module.h>
50 #include <linux/static_key.h>
51 #include <linux/skbuff_ref.h>
52 
53 #include <trace/events/tcp.h>
54 
55 /* Refresh clocks of a TCP socket,
56  * ensuring monotically increasing values.
57  */
58 void tcp_mstamp_refresh(struct tcp_sock *tp)
59 {
60 	u64 val = tcp_clock_ns();
61 
62 	tp->tcp_clock_cache = val;
63 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
64 }
65 
66 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
67 			   int push_one, gfp_t gfp);
68 
69 /* Account for new data that has been sent to the network. */
70 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
71 {
72 	struct inet_connection_sock *icsk = inet_csk(sk);
73 	struct tcp_sock *tp = tcp_sk(sk);
74 	unsigned int prior_packets = tp->packets_out;
75 
76 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
77 
78 	__skb_unlink(skb, &sk->sk_write_queue);
79 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
80 
81 	if (tp->highest_sack == NULL)
82 		tp->highest_sack = skb;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
86 		tcp_rearm_rto(sk);
87 
88 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
89 		      tcp_skb_pcount(skb));
90 	tcp_check_space(sk);
91 }
92 
93 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
94  * window scaling factor due to loss of precision.
95  * If window has been shrunk, what should we make? It is not clear at all.
96  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98  * invalid. OK, let's make this for now:
99  */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 	const struct tcp_sock *tp = tcp_sk(sk);
103 
104 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
105 	    (tp->rx_opt.wscale_ok &&
106 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
107 		return tp->snd_nxt;
108 	else
109 		return tcp_wnd_end(tp);
110 }
111 
112 /* Calculate mss to advertise in SYN segment.
113  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
114  *
115  * 1. It is independent of path mtu.
116  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
117  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
118  *    attached devices, because some buggy hosts are confused by
119  *    large MSS.
120  * 4. We do not make 3, we advertise MSS, calculated from first
121  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
122  *    This may be overridden via information stored in routing table.
123  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
124  *    probably even Jumbo".
125  */
126 static __u16 tcp_advertise_mss(struct sock *sk)
127 {
128 	struct tcp_sock *tp = tcp_sk(sk);
129 	const struct dst_entry *dst = __sk_dst_get(sk);
130 	int mss = tp->advmss;
131 
132 	if (dst) {
133 		unsigned int metric = dst_metric_advmss(dst);
134 
135 		if (metric < mss) {
136 			mss = metric;
137 			tp->advmss = mss;
138 		}
139 	}
140 
141 	return (__u16)mss;
142 }
143 
144 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
145  * This is the first part of cwnd validation mechanism.
146  */
147 void tcp_cwnd_restart(struct sock *sk, s32 delta)
148 {
149 	struct tcp_sock *tp = tcp_sk(sk);
150 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
151 	u32 cwnd = tcp_snd_cwnd(tp);
152 
153 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
154 
155 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
156 	restart_cwnd = min(restart_cwnd, cwnd);
157 
158 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
159 		cwnd >>= 1;
160 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
161 	tp->snd_cwnd_stamp = tcp_jiffies32;
162 	tp->snd_cwnd_used = 0;
163 }
164 
165 /* Congestion state accounting after a packet has been sent. */
166 static void tcp_event_data_sent(struct tcp_sock *tp,
167 				struct sock *sk)
168 {
169 	struct inet_connection_sock *icsk = inet_csk(sk);
170 	const u32 now = tcp_jiffies32;
171 
172 	if (tcp_packets_in_flight(tp) == 0)
173 		tcp_ca_event(sk, CA_EVENT_TX_START);
174 
175 	tp->lsndtime = now;
176 
177 	/* If it is a reply for ato after last received
178 	 * packet, increase pingpong count.
179 	 */
180 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
181 		inet_csk_inc_pingpong_cnt(sk);
182 }
183 
184 /* Account for an ACK we sent. */
185 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
186 {
187 	struct tcp_sock *tp = tcp_sk(sk);
188 
189 	if (unlikely(tp->compressed_ack)) {
190 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
191 			      tp->compressed_ack);
192 		tp->compressed_ack = 0;
193 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
194 			__sock_put(sk);
195 	}
196 
197 	if (unlikely(rcv_nxt != tp->rcv_nxt))
198 		return;  /* Special ACK sent by DCTCP to reflect ECN */
199 	tcp_dec_quickack_mode(sk);
200 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
201 }
202 
203 /* Determine a window scaling and initial window to offer.
204  * Based on the assumption that the given amount of space
205  * will be offered. Store the results in the tp structure.
206  * NOTE: for smooth operation initial space offering should
207  * be a multiple of mss if possible. We assume here that mss >= 1.
208  * This MUST be enforced by all callers.
209  */
210 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
211 			       __u32 *rcv_wnd, __u32 *__window_clamp,
212 			       int wscale_ok, __u8 *rcv_wscale,
213 			       __u32 init_rcv_wnd)
214 {
215 	unsigned int space = (__space < 0 ? 0 : __space);
216 	u32 window_clamp = READ_ONCE(*__window_clamp);
217 
218 	/* If no clamp set the clamp to the max possible scaled window */
219 	if (window_clamp == 0)
220 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
221 	space = min(window_clamp, space);
222 
223 	/* Quantize space offering to a multiple of mss if possible. */
224 	if (space > mss)
225 		space = rounddown(space, mss);
226 
227 	/* NOTE: offering an initial window larger than 32767
228 	 * will break some buggy TCP stacks. If the admin tells us
229 	 * it is likely we could be speaking with such a buggy stack
230 	 * we will truncate our initial window offering to 32K-1
231 	 * unless the remote has sent us a window scaling option,
232 	 * which we interpret as a sign the remote TCP is not
233 	 * misinterpreting the window field as a signed quantity.
234 	 */
235 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
236 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 	else
238 		(*rcv_wnd) = space;
239 
240 	if (init_rcv_wnd)
241 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
242 
243 	*rcv_wscale = 0;
244 	if (wscale_ok) {
245 		/* Set window scaling on max possible window */
246 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
247 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
248 		space = min_t(u32, space, window_clamp);
249 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
250 				      0, TCP_MAX_WSCALE);
251 	}
252 	/* Set the clamp no higher than max representable value */
253 	WRITE_ONCE(*__window_clamp,
254 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
255 }
256 EXPORT_IPV6_MOD(tcp_select_initial_window);
257 
258 /* Chose a new window to advertise, update state in tcp_sock for the
259  * socket, and return result with RFC1323 scaling applied.  The return
260  * value can be stuffed directly into th->window for an outgoing
261  * frame.
262  */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 	struct tcp_sock *tp = tcp_sk(sk);
266 	struct net *net = sock_net(sk);
267 	u32 old_win = tp->rcv_wnd;
268 	u32 cur_win, new_win;
269 
270 	/* Make the window 0 if we failed to queue the data because we
271 	 * are out of memory.
272 	 */
273 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
274 		tp->pred_flags = 0;
275 		tp->rcv_wnd = 0;
276 		tp->rcv_wup = tp->rcv_nxt;
277 		return 0;
278 	}
279 
280 	cur_win = tcp_receive_window(tp);
281 	new_win = __tcp_select_window(sk);
282 	if (new_win < cur_win) {
283 		/* Danger Will Robinson!
284 		 * Don't update rcv_wup/rcv_wnd here or else
285 		 * we will not be able to advertise a zero
286 		 * window in time.  --DaveM
287 		 *
288 		 * Relax Will Robinson.
289 		 */
290 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
291 			/* Never shrink the offered window */
292 			if (new_win == 0)
293 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
294 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
295 		}
296 	}
297 
298 	tp->rcv_wnd = new_win;
299 	tp->rcv_wup = tp->rcv_nxt;
300 
301 	/* Make sure we do not exceed the maximum possible
302 	 * scaled window.
303 	 */
304 	if (!tp->rx_opt.rcv_wscale &&
305 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
306 		new_win = min(new_win, MAX_TCP_WINDOW);
307 	else
308 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
309 
310 	/* RFC1323 scaling applied */
311 	new_win >>= tp->rx_opt.rcv_wscale;
312 
313 	/* If we advertise zero window, disable fast path. */
314 	if (new_win == 0) {
315 		tp->pred_flags = 0;
316 		if (old_win)
317 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
318 	} else if (old_win == 0) {
319 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
320 	}
321 
322 	return new_win;
323 }
324 
325 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
326  * be sent.
327  */
328 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
329 			 struct tcphdr *th, int tcp_header_len)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 
333 	if (!tcp_ecn_mode_any(tp))
334 		return;
335 
336 	if (tcp_ecn_mode_accecn(tp)) {
337 		if (!tcp_accecn_ace_fail_recv(tp))
338 			INET_ECN_xmit(sk);
339 		tcp_accecn_set_ace(tp, skb, th);
340 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ACCECN;
341 	} else {
342 		/* Not-retransmitted data segment: set ECT and inject CWR. */
343 		if (skb->len != tcp_header_len &&
344 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
345 			INET_ECN_xmit(sk);
346 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
347 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
348 				th->cwr = 1;
349 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
350 			}
351 		} else if (!tcp_ca_needs_ecn(sk)) {
352 			/* ACK or retransmitted segment: clear ECT|CE */
353 			INET_ECN_dontxmit(sk);
354 		}
355 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
356 			th->ece = 1;
357 	}
358 }
359 
360 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
361  * auto increment end seqno.
362  */
363 static void tcp_init_nondata_skb(struct sk_buff *skb, struct sock *sk,
364 				 u32 seq, u16 flags)
365 {
366 	skb->ip_summed = CHECKSUM_PARTIAL;
367 
368 	TCP_SKB_CB(skb)->tcp_flags = flags;
369 
370 	tcp_skb_pcount_set(skb, 1);
371 	psp_enqueue_set_decrypted(sk, skb);
372 
373 	TCP_SKB_CB(skb)->seq = seq;
374 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
375 		seq++;
376 	TCP_SKB_CB(skb)->end_seq = seq;
377 }
378 
379 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
380 {
381 	return tp->snd_una != tp->snd_up;
382 }
383 
384 #define OPTION_SACK_ADVERTISE	BIT(0)
385 #define OPTION_TS		BIT(1)
386 #define OPTION_MD5		BIT(2)
387 #define OPTION_WSCALE		BIT(3)
388 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
389 #define OPTION_SMC		BIT(9)
390 #define OPTION_MPTCP		BIT(10)
391 #define OPTION_AO		BIT(11)
392 #define OPTION_ACCECN		BIT(12)
393 
394 static void smc_options_write(__be32 *ptr, u16 *options)
395 {
396 #if IS_ENABLED(CONFIG_SMC)
397 	if (static_branch_unlikely(&tcp_have_smc)) {
398 		if (unlikely(OPTION_SMC & *options)) {
399 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
400 				       (TCPOPT_NOP  << 16) |
401 				       (TCPOPT_EXP <<  8) |
402 				       (TCPOLEN_EXP_SMC_BASE));
403 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
404 		}
405 	}
406 #endif
407 }
408 
409 struct tcp_out_options {
410 	u16 options;		/* bit field of OPTION_* */
411 	u16 mss;		/* 0 to disable */
412 	u8 ws;			/* window scale, 0 to disable */
413 	u8 num_sack_blocks;	/* number of SACK blocks to include */
414 	u8 num_accecn_fields:7,	/* number of AccECN fields needed */
415 	   use_synack_ecn_bytes:1; /* Use synack_ecn_bytes or not */
416 	u8 hash_size;		/* bytes in hash_location */
417 	u8 bpf_opt_len;		/* length of BPF hdr option */
418 	__u8 *hash_location;	/* temporary pointer, overloaded */
419 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
420 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
421 	struct mptcp_out_options mptcp;
422 };
423 
424 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
425 				struct tcp_sock *tp,
426 				struct tcp_out_options *opts)
427 {
428 #if IS_ENABLED(CONFIG_MPTCP)
429 	if (unlikely(OPTION_MPTCP & opts->options))
430 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
431 #endif
432 }
433 
434 #ifdef CONFIG_CGROUP_BPF
435 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
436 					enum tcp_synack_type synack_type)
437 {
438 	if (unlikely(!skb))
439 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
440 
441 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
442 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
443 
444 	return 0;
445 }
446 
447 /* req, syn_skb and synack_type are used when writing synack */
448 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
449 				  struct request_sock *req,
450 				  struct sk_buff *syn_skb,
451 				  enum tcp_synack_type synack_type,
452 				  struct tcp_out_options *opts,
453 				  unsigned int *remaining)
454 {
455 	struct bpf_sock_ops_kern sock_ops;
456 	int err;
457 
458 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
459 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
460 	    !*remaining)
461 		return;
462 
463 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
464 
465 	/* init sock_ops */
466 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
467 
468 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
469 
470 	if (req) {
471 		/* The listen "sk" cannot be passed here because
472 		 * it is not locked.  It would not make too much
473 		 * sense to do bpf_setsockopt(listen_sk) based
474 		 * on individual connection request also.
475 		 *
476 		 * Thus, "req" is passed here and the cgroup-bpf-progs
477 		 * of the listen "sk" will be run.
478 		 *
479 		 * "req" is also used here for fastopen even the "sk" here is
480 		 * a fullsock "child" sk.  It is to keep the behavior
481 		 * consistent between fastopen and non-fastopen on
482 		 * the bpf programming side.
483 		 */
484 		sock_ops.sk = (struct sock *)req;
485 		sock_ops.syn_skb = syn_skb;
486 	} else {
487 		sock_owned_by_me(sk);
488 
489 		sock_ops.is_fullsock = 1;
490 		sock_ops.is_locked_tcp_sock = 1;
491 		sock_ops.sk = sk;
492 	}
493 
494 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
495 	sock_ops.remaining_opt_len = *remaining;
496 	/* tcp_current_mss() does not pass a skb */
497 	if (skb)
498 		bpf_skops_init_skb(&sock_ops, skb, 0);
499 
500 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
501 
502 	if (err || sock_ops.remaining_opt_len == *remaining)
503 		return;
504 
505 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
506 	/* round up to 4 bytes */
507 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
508 
509 	*remaining -= opts->bpf_opt_len;
510 }
511 
512 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
513 				    struct request_sock *req,
514 				    struct sk_buff *syn_skb,
515 				    enum tcp_synack_type synack_type,
516 				    struct tcp_out_options *opts)
517 {
518 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
519 	struct bpf_sock_ops_kern sock_ops;
520 	int err;
521 
522 	if (likely(!max_opt_len))
523 		return;
524 
525 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
526 
527 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
528 
529 	if (req) {
530 		sock_ops.sk = (struct sock *)req;
531 		sock_ops.syn_skb = syn_skb;
532 	} else {
533 		sock_owned_by_me(sk);
534 
535 		sock_ops.is_fullsock = 1;
536 		sock_ops.is_locked_tcp_sock = 1;
537 		sock_ops.sk = sk;
538 	}
539 
540 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
541 	sock_ops.remaining_opt_len = max_opt_len;
542 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
543 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
544 
545 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
546 
547 	if (err)
548 		nr_written = 0;
549 	else
550 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
551 
552 	if (nr_written < max_opt_len)
553 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
554 		       max_opt_len - nr_written);
555 }
556 #else
557 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
558 				  struct request_sock *req,
559 				  struct sk_buff *syn_skb,
560 				  enum tcp_synack_type synack_type,
561 				  struct tcp_out_options *opts,
562 				  unsigned int *remaining)
563 {
564 }
565 
566 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
567 				    struct request_sock *req,
568 				    struct sk_buff *syn_skb,
569 				    enum tcp_synack_type synack_type,
570 				    struct tcp_out_options *opts)
571 {
572 }
573 #endif
574 
575 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
576 				      const struct tcp_request_sock *tcprsk,
577 				      struct tcp_out_options *opts,
578 				      struct tcp_key *key, __be32 *ptr)
579 {
580 #ifdef CONFIG_TCP_AO
581 	u8 maclen = tcp_ao_maclen(key->ao_key);
582 
583 	if (tcprsk) {
584 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
585 
586 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
587 			       (tcprsk->ao_keyid << 8) |
588 			       (tcprsk->ao_rcv_next));
589 	} else {
590 		struct tcp_ao_key *rnext_key;
591 		struct tcp_ao_info *ao_info;
592 
593 		ao_info = rcu_dereference_check(tp->ao_info,
594 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
595 		rnext_key = READ_ONCE(ao_info->rnext_key);
596 		if (WARN_ON_ONCE(!rnext_key))
597 			return ptr;
598 		*ptr++ = htonl((TCPOPT_AO << 24) |
599 			       (tcp_ao_len(key->ao_key) << 16) |
600 			       (key->ao_key->sndid << 8) |
601 			       (rnext_key->rcvid));
602 	}
603 	opts->hash_location = (__u8 *)ptr;
604 	ptr += maclen / sizeof(*ptr);
605 	if (unlikely(maclen % sizeof(*ptr))) {
606 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
607 		ptr++;
608 	}
609 #endif
610 	return ptr;
611 }
612 
613 /* Initial values for AccECN option, ordered is based on ECN field bits
614  * similar to received_ecn_bytes. Used for SYN/ACK AccECN option.
615  */
616 static const u32 synack_ecn_bytes[3] = { 0, 0, 0 };
617 
618 /* Write previously computed TCP options to the packet.
619  *
620  * Beware: Something in the Internet is very sensitive to the ordering of
621  * TCP options, we learned this through the hard way, so be careful here.
622  * Luckily we can at least blame others for their non-compliance but from
623  * inter-operability perspective it seems that we're somewhat stuck with
624  * the ordering which we have been using if we want to keep working with
625  * those broken things (not that it currently hurts anybody as there isn't
626  * particular reason why the ordering would need to be changed).
627  *
628  * At least SACK_PERM as the first option is known to lead to a disaster
629  * (but it may well be that other scenarios fail similarly).
630  */
631 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
632 			      const struct tcp_request_sock *tcprsk,
633 			      struct tcp_out_options *opts,
634 			      struct tcp_key *key)
635 {
636 	u8 leftover_highbyte = TCPOPT_NOP; /* replace 1st NOP if avail */
637 	u8 leftover_lowbyte = TCPOPT_NOP;  /* replace 2nd NOP in succession */
638 	__be32 *ptr = (__be32 *)(th + 1);
639 	u16 options = opts->options;	/* mungable copy */
640 
641 	if (tcp_key_is_md5(key)) {
642 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
643 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
644 		/* overload cookie hash location */
645 		opts->hash_location = (__u8 *)ptr;
646 		ptr += 4;
647 	} else if (tcp_key_is_ao(key)) {
648 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
649 	}
650 	if (unlikely(opts->mss)) {
651 		*ptr++ = htonl((TCPOPT_MSS << 24) |
652 			       (TCPOLEN_MSS << 16) |
653 			       opts->mss);
654 	}
655 
656 	if (likely(OPTION_TS & options)) {
657 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
658 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
659 				       (TCPOLEN_SACK_PERM << 16) |
660 				       (TCPOPT_TIMESTAMP << 8) |
661 				       TCPOLEN_TIMESTAMP);
662 			options &= ~OPTION_SACK_ADVERTISE;
663 		} else {
664 			*ptr++ = htonl((TCPOPT_NOP << 24) |
665 				       (TCPOPT_NOP << 16) |
666 				       (TCPOPT_TIMESTAMP << 8) |
667 				       TCPOLEN_TIMESTAMP);
668 		}
669 		*ptr++ = htonl(opts->tsval);
670 		*ptr++ = htonl(opts->tsecr);
671 	}
672 
673 	if (OPTION_ACCECN & options) {
674 		const u32 *ecn_bytes = opts->use_synack_ecn_bytes ?
675 				       synack_ecn_bytes :
676 				       tp->received_ecn_bytes;
677 		const u8 ect0_idx = INET_ECN_ECT_0 - 1;
678 		const u8 ect1_idx = INET_ECN_ECT_1 - 1;
679 		const u8 ce_idx = INET_ECN_CE - 1;
680 		u32 e0b;
681 		u32 e1b;
682 		u32 ceb;
683 		u8 len;
684 
685 		e0b = ecn_bytes[ect0_idx] + TCP_ACCECN_E0B_INIT_OFFSET;
686 		e1b = ecn_bytes[ect1_idx] + TCP_ACCECN_E1B_INIT_OFFSET;
687 		ceb = ecn_bytes[ce_idx] + TCP_ACCECN_CEB_INIT_OFFSET;
688 		len = TCPOLEN_ACCECN_BASE +
689 		      opts->num_accecn_fields * TCPOLEN_ACCECN_PERFIELD;
690 
691 		if (opts->num_accecn_fields == 2) {
692 			*ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) |
693 				       ((e1b >> 8) & 0xffff));
694 			*ptr++ = htonl(((e1b & 0xff) << 24) |
695 				       (ceb & 0xffffff));
696 		} else if (opts->num_accecn_fields == 1) {
697 			*ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) |
698 				       ((e1b >> 8) & 0xffff));
699 			leftover_highbyte = e1b & 0xff;
700 			leftover_lowbyte = TCPOPT_NOP;
701 		} else if (opts->num_accecn_fields == 0) {
702 			leftover_highbyte = TCPOPT_ACCECN1;
703 			leftover_lowbyte = len;
704 		} else if (opts->num_accecn_fields == 3) {
705 			*ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) |
706 				       ((e1b >> 8) & 0xffff));
707 			*ptr++ = htonl(((e1b & 0xff) << 24) |
708 				       (ceb & 0xffffff));
709 			*ptr++ = htonl(((e0b & 0xffffff) << 8) |
710 				       TCPOPT_NOP);
711 		}
712 		if (tp) {
713 			tp->accecn_minlen = 0;
714 			tp->accecn_opt_tstamp = tp->tcp_mstamp;
715 			if (tp->accecn_opt_demand)
716 				tp->accecn_opt_demand--;
717 		}
718 	}
719 
720 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
721 		*ptr++ = htonl((leftover_highbyte << 24) |
722 			       (leftover_lowbyte << 16) |
723 			       (TCPOPT_SACK_PERM << 8) |
724 			       TCPOLEN_SACK_PERM);
725 		leftover_highbyte = TCPOPT_NOP;
726 		leftover_lowbyte = TCPOPT_NOP;
727 	}
728 
729 	if (unlikely(OPTION_WSCALE & options)) {
730 		u8 highbyte = TCPOPT_NOP;
731 
732 		/* Do not split the leftover 2-byte to fit into a single
733 		 * NOP, i.e., replace this NOP only when 1 byte is leftover
734 		 * within leftover_highbyte.
735 		 */
736 		if (unlikely(leftover_highbyte != TCPOPT_NOP &&
737 			     leftover_lowbyte == TCPOPT_NOP)) {
738 			highbyte = leftover_highbyte;
739 			leftover_highbyte = TCPOPT_NOP;
740 		}
741 		*ptr++ = htonl((highbyte << 24) |
742 			       (TCPOPT_WINDOW << 16) |
743 			       (TCPOLEN_WINDOW << 8) |
744 			       opts->ws);
745 	}
746 
747 	if (unlikely(opts->num_sack_blocks)) {
748 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
749 			tp->duplicate_sack : tp->selective_acks;
750 		int this_sack;
751 
752 		*ptr++ = htonl((leftover_highbyte << 24) |
753 			       (leftover_lowbyte << 16) |
754 			       (TCPOPT_SACK <<  8) |
755 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
756 						     TCPOLEN_SACK_PERBLOCK)));
757 		leftover_highbyte = TCPOPT_NOP;
758 		leftover_lowbyte = TCPOPT_NOP;
759 
760 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
761 		     ++this_sack) {
762 			*ptr++ = htonl(sp[this_sack].start_seq);
763 			*ptr++ = htonl(sp[this_sack].end_seq);
764 		}
765 
766 		tp->rx_opt.dsack = 0;
767 	} else if (unlikely(leftover_highbyte != TCPOPT_NOP ||
768 			    leftover_lowbyte != TCPOPT_NOP)) {
769 		*ptr++ = htonl((leftover_highbyte << 24) |
770 			       (leftover_lowbyte << 16) |
771 			       (TCPOPT_NOP << 8) |
772 			       TCPOPT_NOP);
773 		leftover_highbyte = TCPOPT_NOP;
774 		leftover_lowbyte = TCPOPT_NOP;
775 	}
776 
777 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
778 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
779 		u8 *p = (u8 *)ptr;
780 		u32 len; /* Fast Open option length */
781 
782 		if (foc->exp) {
783 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
784 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
785 				     TCPOPT_FASTOPEN_MAGIC);
786 			p += TCPOLEN_EXP_FASTOPEN_BASE;
787 		} else {
788 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
789 			*p++ = TCPOPT_FASTOPEN;
790 			*p++ = len;
791 		}
792 
793 		memcpy(p, foc->val, foc->len);
794 		if ((len & 3) == 2) {
795 			p[foc->len] = TCPOPT_NOP;
796 			p[foc->len + 1] = TCPOPT_NOP;
797 		}
798 		ptr += (len + 3) >> 2;
799 	}
800 
801 	smc_options_write(ptr, &options);
802 
803 	mptcp_options_write(th, ptr, tp, opts);
804 }
805 
806 static void smc_set_option(struct tcp_sock *tp,
807 			   struct tcp_out_options *opts,
808 			   unsigned int *remaining)
809 {
810 #if IS_ENABLED(CONFIG_SMC)
811 	if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc) {
812 		tp->syn_smc = !!smc_call_hsbpf(1, tp, syn_option);
813 		/* re-check syn_smc */
814 		if (tp->syn_smc &&
815 		    *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
816 			opts->options |= OPTION_SMC;
817 			*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
818 		}
819 	}
820 #endif
821 }
822 
823 static void smc_set_option_cond(const struct tcp_sock *tp,
824 				struct inet_request_sock *ireq,
825 				struct tcp_out_options *opts,
826 				unsigned int *remaining)
827 {
828 #if IS_ENABLED(CONFIG_SMC)
829 	if (static_branch_unlikely(&tcp_have_smc) && tp->syn_smc && ireq->smc_ok) {
830 		ireq->smc_ok = !!smc_call_hsbpf(1, tp, synack_option, ireq);
831 		/* re-check smc_ok */
832 		if (ireq->smc_ok &&
833 		    *remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
834 			opts->options |= OPTION_SMC;
835 			*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
836 		}
837 	}
838 #endif
839 }
840 
841 static void mptcp_set_option_cond(const struct request_sock *req,
842 				  struct tcp_out_options *opts,
843 				  unsigned int *remaining)
844 {
845 	if (rsk_is_mptcp(req)) {
846 		unsigned int size;
847 
848 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
849 			if (*remaining >= size) {
850 				opts->options |= OPTION_MPTCP;
851 				*remaining -= size;
852 			}
853 		}
854 	}
855 }
856 
857 static u32 tcp_synack_options_combine_saving(struct tcp_out_options *opts)
858 {
859 	/* How much there's room for combining with the alignment padding? */
860 	if ((opts->options & (OPTION_SACK_ADVERTISE | OPTION_TS)) ==
861 	    OPTION_SACK_ADVERTISE)
862 		return 2;
863 	else if (opts->options & OPTION_WSCALE)
864 		return 1;
865 	return 0;
866 }
867 
868 /* Calculates how long AccECN option will fit to @remaining option space.
869  *
870  * AccECN option can sometimes replace NOPs used for alignment of other
871  * TCP options (up to @max_combine_saving available).
872  *
873  * Only solutions with at least @required AccECN fields are accepted.
874  *
875  * Returns: The size of the AccECN option excluding space repurposed from
876  * the alignment of the other options.
877  */
878 static int tcp_options_fit_accecn(struct tcp_out_options *opts, int required,
879 				  int remaining)
880 {
881 	int size = TCP_ACCECN_MAXSIZE;
882 	int sack_blocks_reduce = 0;
883 	int max_combine_saving;
884 	int rem = remaining;
885 	int align_size;
886 
887 	if (opts->use_synack_ecn_bytes)
888 		max_combine_saving = tcp_synack_options_combine_saving(opts);
889 	else
890 		max_combine_saving = opts->num_sack_blocks > 0 ? 2 : 0;
891 	opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS;
892 	while (opts->num_accecn_fields >= required) {
893 		/* Pad to dword if cannot combine */
894 		if ((size & 0x3) > max_combine_saving)
895 			align_size = ALIGN(size, 4);
896 		else
897 			align_size = ALIGN_DOWN(size, 4);
898 
899 		if (rem >= align_size) {
900 			size = align_size;
901 			break;
902 		} else if (opts->num_accecn_fields == required &&
903 			   opts->num_sack_blocks > 2 &&
904 			   required > 0) {
905 			/* Try to fit the option by removing one SACK block */
906 			opts->num_sack_blocks--;
907 			sack_blocks_reduce++;
908 			rem = rem + TCPOLEN_SACK_PERBLOCK;
909 
910 			opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS;
911 			size = TCP_ACCECN_MAXSIZE;
912 			continue;
913 		}
914 
915 		opts->num_accecn_fields--;
916 		size -= TCPOLEN_ACCECN_PERFIELD;
917 	}
918 	if (sack_blocks_reduce > 0) {
919 		if (opts->num_accecn_fields >= required)
920 			size -= sack_blocks_reduce * TCPOLEN_SACK_PERBLOCK;
921 		else
922 			opts->num_sack_blocks += sack_blocks_reduce;
923 	}
924 	if (opts->num_accecn_fields < required)
925 		return 0;
926 
927 	opts->options |= OPTION_ACCECN;
928 	return size;
929 }
930 
931 /* Compute TCP options for SYN packets. This is not the final
932  * network wire format yet.
933  */
934 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
935 				struct tcp_out_options *opts,
936 				struct tcp_key *key)
937 {
938 	struct tcp_sock *tp = tcp_sk(sk);
939 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
940 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
941 	bool timestamps;
942 
943 	/* Better than switch (key.type) as it has static branches */
944 	if (tcp_key_is_md5(key)) {
945 		timestamps = false;
946 		opts->options |= OPTION_MD5;
947 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
948 	} else {
949 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
950 		if (tcp_key_is_ao(key)) {
951 			opts->options |= OPTION_AO;
952 			remaining -= tcp_ao_len_aligned(key->ao_key);
953 		}
954 	}
955 
956 	/* We always get an MSS option.  The option bytes which will be seen in
957 	 * normal data packets should timestamps be used, must be in the MSS
958 	 * advertised.  But we subtract them from tp->mss_cache so that
959 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
960 	 * fact here if necessary.  If we don't do this correctly, as a
961 	 * receiver we won't recognize data packets as being full sized when we
962 	 * should, and thus we won't abide by the delayed ACK rules correctly.
963 	 * SACKs don't matter, we never delay an ACK when we have any of those
964 	 * going out.  */
965 	opts->mss = tcp_advertise_mss(sk);
966 	remaining -= TCPOLEN_MSS_ALIGNED;
967 
968 	if (likely(timestamps)) {
969 		opts->options |= OPTION_TS;
970 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
971 		opts->tsecr = tp->rx_opt.ts_recent;
972 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
973 	}
974 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
975 		opts->ws = tp->rx_opt.rcv_wscale;
976 		opts->options |= OPTION_WSCALE;
977 		remaining -= TCPOLEN_WSCALE_ALIGNED;
978 	}
979 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
980 		opts->options |= OPTION_SACK_ADVERTISE;
981 		if (unlikely(!(OPTION_TS & opts->options)))
982 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
983 	}
984 
985 	if (fastopen && fastopen->cookie.len >= 0) {
986 		u32 need = fastopen->cookie.len;
987 
988 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
989 					       TCPOLEN_FASTOPEN_BASE;
990 		need = (need + 3) & ~3U;  /* Align to 32 bits */
991 		if (remaining >= need) {
992 			opts->options |= OPTION_FAST_OPEN_COOKIE;
993 			opts->fastopen_cookie = &fastopen->cookie;
994 			remaining -= need;
995 			tp->syn_fastopen = 1;
996 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
997 		}
998 	}
999 
1000 	smc_set_option(tp, opts, &remaining);
1001 
1002 	if (sk_is_mptcp(sk)) {
1003 		unsigned int size;
1004 
1005 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
1006 			if (remaining >= size) {
1007 				opts->options |= OPTION_MPTCP;
1008 				remaining -= size;
1009 			}
1010 		}
1011 	}
1012 
1013 	/* Simultaneous open SYN/ACK needs AccECN option but not SYN.
1014 	 * It is attempted to negotiate the use of AccECN also on the first
1015 	 * retransmitted SYN, as mentioned in "3.1.4.1. Retransmitted SYNs"
1016 	 * of AccECN draft.
1017 	 */
1018 	if (unlikely((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK) &&
1019 		     tcp_ecn_mode_accecn(tp) &&
1020 		     inet_csk(sk)->icsk_retransmits < 2 &&
1021 		     READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) &&
1022 		     remaining >= TCPOLEN_ACCECN_BASE)) {
1023 		opts->use_synack_ecn_bytes = 1;
1024 		remaining -= tcp_options_fit_accecn(opts, 0, remaining);
1025 	}
1026 
1027 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1028 
1029 	return MAX_TCP_OPTION_SPACE - remaining;
1030 }
1031 
1032 /* Set up TCP options for SYN-ACKs. */
1033 static unsigned int tcp_synack_options(const struct sock *sk,
1034 				       struct request_sock *req,
1035 				       unsigned int mss, struct sk_buff *skb,
1036 				       struct tcp_out_options *opts,
1037 				       const struct tcp_key *key,
1038 				       struct tcp_fastopen_cookie *foc,
1039 				       enum tcp_synack_type synack_type,
1040 				       struct sk_buff *syn_skb)
1041 {
1042 	struct inet_request_sock *ireq = inet_rsk(req);
1043 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
1044 	struct tcp_request_sock *treq = tcp_rsk(req);
1045 
1046 	if (tcp_key_is_md5(key)) {
1047 		opts->options |= OPTION_MD5;
1048 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
1049 
1050 		/* We can't fit any SACK blocks in a packet with MD5 + TS
1051 		 * options. There was discussion about disabling SACK
1052 		 * rather than TS in order to fit in better with old,
1053 		 * buggy kernels, but that was deemed to be unnecessary.
1054 		 */
1055 		if (synack_type != TCP_SYNACK_COOKIE)
1056 			ireq->tstamp_ok &= !ireq->sack_ok;
1057 	} else if (tcp_key_is_ao(key)) {
1058 		opts->options |= OPTION_AO;
1059 		remaining -= tcp_ao_len_aligned(key->ao_key);
1060 		ireq->tstamp_ok &= !ireq->sack_ok;
1061 	}
1062 
1063 	/* We always send an MSS option. */
1064 	opts->mss = mss;
1065 	remaining -= TCPOLEN_MSS_ALIGNED;
1066 
1067 	if (likely(ireq->wscale_ok)) {
1068 		opts->ws = ireq->rcv_wscale;
1069 		opts->options |= OPTION_WSCALE;
1070 		remaining -= TCPOLEN_WSCALE_ALIGNED;
1071 	}
1072 	if (likely(ireq->tstamp_ok)) {
1073 		opts->options |= OPTION_TS;
1074 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
1075 			      tcp_rsk(req)->ts_off;
1076 		if (!tcp_rsk(req)->snt_tsval_first) {
1077 			if (!opts->tsval)
1078 				opts->tsval = ~0U;
1079 			tcp_rsk(req)->snt_tsval_first = opts->tsval;
1080 		}
1081 		WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval);
1082 		opts->tsecr = req->ts_recent;
1083 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
1084 	}
1085 	if (likely(ireq->sack_ok)) {
1086 		opts->options |= OPTION_SACK_ADVERTISE;
1087 		if (unlikely(!ireq->tstamp_ok))
1088 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
1089 	}
1090 	if (foc != NULL && foc->len >= 0) {
1091 		u32 need = foc->len;
1092 
1093 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
1094 				   TCPOLEN_FASTOPEN_BASE;
1095 		need = (need + 3) & ~3U;  /* Align to 32 bits */
1096 		if (remaining >= need) {
1097 			opts->options |= OPTION_FAST_OPEN_COOKIE;
1098 			opts->fastopen_cookie = foc;
1099 			remaining -= need;
1100 		}
1101 	}
1102 
1103 	mptcp_set_option_cond(req, opts, &remaining);
1104 
1105 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
1106 
1107 	if (treq->accecn_ok &&
1108 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) &&
1109 	    req->num_timeout < 1 && remaining >= TCPOLEN_ACCECN_BASE) {
1110 		opts->use_synack_ecn_bytes = 1;
1111 		remaining -= tcp_options_fit_accecn(opts, 0, remaining);
1112 	}
1113 
1114 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
1115 			      synack_type, opts, &remaining);
1116 
1117 	return MAX_TCP_OPTION_SPACE - remaining;
1118 }
1119 
1120 /* Compute TCP options for ESTABLISHED sockets. This is not the
1121  * final wire format yet.
1122  */
1123 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
1124 					struct tcp_out_options *opts,
1125 					struct tcp_key *key)
1126 {
1127 	struct tcp_sock *tp = tcp_sk(sk);
1128 	unsigned int size = 0;
1129 	unsigned int eff_sacks;
1130 
1131 	opts->options = 0;
1132 
1133 	/* Better than switch (key.type) as it has static branches */
1134 	if (tcp_key_is_md5(key)) {
1135 		opts->options |= OPTION_MD5;
1136 		size += TCPOLEN_MD5SIG_ALIGNED;
1137 	} else if (tcp_key_is_ao(key)) {
1138 		opts->options |= OPTION_AO;
1139 		size += tcp_ao_len_aligned(key->ao_key);
1140 	}
1141 
1142 	if (likely(tp->rx_opt.tstamp_ok)) {
1143 		opts->options |= OPTION_TS;
1144 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1145 				tp->tsoffset : 0;
1146 		opts->tsecr = tp->rx_opt.ts_recent;
1147 		size += TCPOLEN_TSTAMP_ALIGNED;
1148 	}
1149 
1150 	/* MPTCP options have precedence over SACK for the limited TCP
1151 	 * option space because a MPTCP connection would be forced to
1152 	 * fall back to regular TCP if a required multipath option is
1153 	 * missing. SACK still gets a chance to use whatever space is
1154 	 * left.
1155 	 */
1156 	if (sk_is_mptcp(sk)) {
1157 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1158 		unsigned int opt_size = 0;
1159 
1160 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1161 					      &opts->mptcp)) {
1162 			opts->options |= OPTION_MPTCP;
1163 			size += opt_size;
1164 		}
1165 	}
1166 
1167 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1168 	if (unlikely(eff_sacks)) {
1169 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1170 		if (likely(remaining >= TCPOLEN_SACK_BASE_ALIGNED +
1171 					TCPOLEN_SACK_PERBLOCK)) {
1172 			opts->num_sack_blocks =
1173 				min_t(unsigned int, eff_sacks,
1174 				      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1175 				      TCPOLEN_SACK_PERBLOCK);
1176 
1177 			size += TCPOLEN_SACK_BASE_ALIGNED +
1178 				opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1179 		} else {
1180 			opts->num_sack_blocks = 0;
1181 		}
1182 	} else {
1183 		opts->num_sack_blocks = 0;
1184 	}
1185 
1186 	if (tcp_ecn_mode_accecn(tp)) {
1187 		int ecn_opt = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option);
1188 
1189 		if (ecn_opt && tp->saw_accecn_opt && !tcp_accecn_opt_fail_send(tp) &&
1190 		    (ecn_opt >= TCP_ACCECN_OPTION_FULL || tp->accecn_opt_demand ||
1191 		     tcp_accecn_option_beacon_check(sk))) {
1192 			opts->use_synack_ecn_bytes = 0;
1193 			size += tcp_options_fit_accecn(opts, tp->accecn_minlen,
1194 						       MAX_TCP_OPTION_SPACE - size);
1195 		}
1196 	}
1197 
1198 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1199 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1200 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1201 
1202 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1203 
1204 		size = MAX_TCP_OPTION_SPACE - remaining;
1205 	}
1206 
1207 	return size;
1208 }
1209 
1210 
1211 /* TCP SMALL QUEUES (TSQ)
1212  *
1213  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1214  * to reduce RTT and bufferbloat.
1215  * We do this using a special skb destructor (tcp_wfree).
1216  *
1217  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1218  * needs to be reallocated in a driver.
1219  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1220  *
1221  * Since transmit from skb destructor is forbidden, we use a BH work item
1222  * to process all sockets that eventually need to send more skbs.
1223  * We use one work item per cpu, with its own queue of sockets.
1224  */
1225 struct tsq_work {
1226 	struct work_struct	work;
1227 	struct list_head	head; /* queue of tcp sockets */
1228 };
1229 static DEFINE_PER_CPU(struct tsq_work, tsq_work);
1230 
1231 static void tcp_tsq_write(struct sock *sk)
1232 {
1233 	if ((1 << sk->sk_state) &
1234 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1235 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1236 		struct tcp_sock *tp = tcp_sk(sk);
1237 
1238 		if (tp->lost_out > tp->retrans_out &&
1239 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1240 			tcp_mstamp_refresh(tp);
1241 			tcp_xmit_retransmit_queue(sk);
1242 		}
1243 
1244 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1245 			       0, GFP_ATOMIC);
1246 	}
1247 }
1248 
1249 static void tcp_tsq_handler(struct sock *sk)
1250 {
1251 	bh_lock_sock(sk);
1252 	if (!sock_owned_by_user(sk))
1253 		tcp_tsq_write(sk);
1254 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1255 		sock_hold(sk);
1256 	bh_unlock_sock(sk);
1257 }
1258 /*
1259  * One work item per cpu tries to send more skbs.
1260  * We run in BH context but need to disable irqs when
1261  * transferring tsq->head because tcp_wfree() might
1262  * interrupt us (non NAPI drivers)
1263  */
1264 static void tcp_tsq_workfn(struct work_struct *work)
1265 {
1266 	struct tsq_work *tsq = container_of(work, struct tsq_work, work);
1267 	LIST_HEAD(list);
1268 	unsigned long flags;
1269 	struct list_head *q, *n;
1270 	struct tcp_sock *tp;
1271 	struct sock *sk;
1272 
1273 	local_irq_save(flags);
1274 	list_splice_init(&tsq->head, &list);
1275 	local_irq_restore(flags);
1276 
1277 	list_for_each_safe(q, n, &list) {
1278 		tp = list_entry(q, struct tcp_sock, tsq_node);
1279 		list_del(&tp->tsq_node);
1280 
1281 		sk = (struct sock *)tp;
1282 		smp_mb__before_atomic();
1283 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1284 
1285 		tcp_tsq_handler(sk);
1286 		sk_free(sk);
1287 	}
1288 }
1289 
1290 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1291 			  TCPF_WRITE_TIMER_DEFERRED |	\
1292 			  TCPF_DELACK_TIMER_DEFERRED |	\
1293 			  TCPF_MTU_REDUCED_DEFERRED |	\
1294 			  TCPF_ACK_DEFERRED)
1295 /**
1296  * tcp_release_cb - tcp release_sock() callback
1297  * @sk: socket
1298  *
1299  * called from release_sock() to perform protocol dependent
1300  * actions before socket release.
1301  */
1302 void tcp_release_cb(struct sock *sk)
1303 {
1304 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1305 	unsigned long nflags;
1306 
1307 	/* perform an atomic operation only if at least one flag is set */
1308 	do {
1309 		if (!(flags & TCP_DEFERRED_ALL))
1310 			return;
1311 		nflags = flags & ~TCP_DEFERRED_ALL;
1312 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1313 
1314 	if (flags & TCPF_TSQ_DEFERRED) {
1315 		tcp_tsq_write(sk);
1316 		__sock_put(sk);
1317 	}
1318 
1319 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1320 		tcp_write_timer_handler(sk);
1321 		__sock_put(sk);
1322 	}
1323 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1324 		tcp_delack_timer_handler(sk);
1325 		__sock_put(sk);
1326 	}
1327 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1328 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1329 		__sock_put(sk);
1330 	}
1331 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1332 		tcp_send_ack(sk);
1333 }
1334 EXPORT_IPV6_MOD(tcp_release_cb);
1335 
1336 void __init tcp_tsq_work_init(void)
1337 {
1338 	int i;
1339 
1340 	for_each_possible_cpu(i) {
1341 		struct tsq_work *tsq = &per_cpu(tsq_work, i);
1342 
1343 		INIT_LIST_HEAD(&tsq->head);
1344 		INIT_WORK(&tsq->work, tcp_tsq_workfn);
1345 	}
1346 }
1347 
1348 /*
1349  * Write buffer destructor automatically called from kfree_skb.
1350  * We can't xmit new skbs from this context, as we might already
1351  * hold qdisc lock.
1352  */
1353 void tcp_wfree(struct sk_buff *skb)
1354 {
1355 	struct sock *sk = skb->sk;
1356 	struct tcp_sock *tp = tcp_sk(sk);
1357 	unsigned long flags, nval, oval;
1358 	struct tsq_work *tsq;
1359 	bool empty;
1360 
1361 	/* Keep one reference on sk_wmem_alloc.
1362 	 * Will be released by sk_free() from here or tcp_tsq_workfn()
1363 	 */
1364 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1365 
1366 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1367 	 * Wait until our queues (qdisc + devices) are drained.
1368 	 * This gives :
1369 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1370 	 * - chance for incoming ACK (processed by another cpu maybe)
1371 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1372 	 */
1373 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1374 		goto out;
1375 
1376 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1377 	do {
1378 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1379 			goto out;
1380 
1381 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1382 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1383 
1384 	/* queue this socket to BH workqueue */
1385 	local_irq_save(flags);
1386 	tsq = this_cpu_ptr(&tsq_work);
1387 	empty = list_empty(&tsq->head);
1388 	list_add(&tp->tsq_node, &tsq->head);
1389 	if (empty)
1390 		queue_work(system_bh_wq, &tsq->work);
1391 	local_irq_restore(flags);
1392 	return;
1393 out:
1394 	sk_free(sk);
1395 }
1396 
1397 /* Note: Called under soft irq.
1398  * We can call TCP stack right away, unless socket is owned by user.
1399  */
1400 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1401 {
1402 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1403 	struct sock *sk = (struct sock *)tp;
1404 
1405 	tcp_tsq_handler(sk);
1406 	sock_put(sk);
1407 
1408 	return HRTIMER_NORESTART;
1409 }
1410 
1411 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1412 				      u64 prior_wstamp)
1413 {
1414 	struct tcp_sock *tp = tcp_sk(sk);
1415 
1416 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1417 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1418 
1419 		/* Original sch_fq does not pace first 10 MSS
1420 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1421 		 * this is a minor annoyance.
1422 		 */
1423 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1424 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1425 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1426 
1427 			/* take into account OS jitter */
1428 			len_ns -= min_t(u64, len_ns / 2, credit);
1429 			tp->tcp_wstamp_ns += len_ns;
1430 		}
1431 	}
1432 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1433 }
1434 
1435 /* Snapshot the current delivery information in the skb, to generate
1436  * a rate sample later when the skb is (s)acked in tcp_rate_skb_delivered().
1437  */
1438 static void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb)
1439 {
1440 	struct tcp_sock *tp = tcp_sk(sk);
1441 
1442 	 /* In general we need to start delivery rate samples from the
1443 	  * time we received the most recent ACK, to ensure we include
1444 	  * the full time the network needs to deliver all in-flight
1445 	  * packets. If there are no packets in flight yet, then we
1446 	  * know that any ACKs after now indicate that the network was
1447 	  * able to deliver those packets completely in the sampling
1448 	  * interval between now and the next ACK.
1449 	  *
1450 	  * Note that we use packets_out instead of tcp_packets_in_flight(tp)
1451 	  * because the latter is a guess based on RTO and loss-marking
1452 	  * heuristics. We don't want spurious RTOs or loss markings to cause
1453 	  * a spuriously small time interval, causing a spuriously high
1454 	  * bandwidth estimate.
1455 	  */
1456 	if (!tp->packets_out) {
1457 		u64 tstamp_us = tcp_skb_timestamp_us(skb);
1458 
1459 		tp->first_tx_mstamp  = tstamp_us;
1460 		tp->delivered_mstamp = tstamp_us;
1461 	}
1462 
1463 	TCP_SKB_CB(skb)->tx.first_tx_mstamp	= tp->first_tx_mstamp;
1464 	TCP_SKB_CB(skb)->tx.delivered_mstamp	= tp->delivered_mstamp;
1465 	TCP_SKB_CB(skb)->tx.delivered		= tp->delivered;
1466 	TCP_SKB_CB(skb)->tx.delivered_ce	= tp->delivered_ce;
1467 	TCP_SKB_CB(skb)->tx.is_app_limited	= tp->app_limited ? 1 : 0;
1468 }
1469 
1470 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1471 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1472 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1473 
1474 /* This routine actually transmits TCP packets queued in by
1475  * tcp_do_sendmsg().  This is used by both the initial
1476  * transmission and possible later retransmissions.
1477  * All SKB's seen here are completely headerless.  It is our
1478  * job to build the TCP header, and pass the packet down to
1479  * IP so it can do the same plus pass the packet off to the
1480  * device.
1481  *
1482  * We are working here with either a clone of the original
1483  * SKB, or a fresh unique copy made by the retransmit engine.
1484  */
1485 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1486 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1487 {
1488 	const struct inet_connection_sock *icsk = inet_csk(sk);
1489 	struct inet_sock *inet;
1490 	struct tcp_sock *tp;
1491 	struct tcp_skb_cb *tcb;
1492 	struct tcp_out_options opts;
1493 	unsigned int tcp_options_size, tcp_header_size;
1494 	struct sk_buff *oskb = NULL;
1495 	struct tcp_key key;
1496 	struct tcphdr *th;
1497 	u64 prior_wstamp;
1498 	int err;
1499 
1500 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1501 	tp = tcp_sk(sk);
1502 	prior_wstamp = tp->tcp_wstamp_ns;
1503 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1504 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1505 	if (clone_it) {
1506 		oskb = skb;
1507 
1508 		tcp_skb_tsorted_save(oskb) {
1509 			if (unlikely(skb_cloned(oskb)))
1510 				skb = pskb_copy(oskb, gfp_mask);
1511 			else
1512 				skb = skb_clone(oskb, gfp_mask);
1513 		} tcp_skb_tsorted_restore(oskb);
1514 
1515 		if (unlikely(!skb))
1516 			return -ENOBUFS;
1517 		/* retransmit skbs might have a non zero value in skb->dev
1518 		 * because skb->dev is aliased with skb->rbnode.rb_left
1519 		 */
1520 		skb->dev = NULL;
1521 	}
1522 
1523 	inet = inet_sk(sk);
1524 	tcb = TCP_SKB_CB(skb);
1525 	memset(&opts, 0, sizeof(opts));
1526 
1527 	tcp_get_current_key(sk, &key);
1528 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1529 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1530 	} else {
1531 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1532 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1533 		 * at receiver : This slightly improve GRO performance.
1534 		 * Note that we do not force the PSH flag for non GSO packets,
1535 		 * because they might be sent under high congestion events,
1536 		 * and in this case it is better to delay the delivery of 1-MSS
1537 		 * packets and thus the corresponding ACK packet that would
1538 		 * release the following packet.
1539 		 */
1540 		if (tcp_skb_pcount(skb) > 1)
1541 			tcb->tcp_flags |= TCPHDR_PSH;
1542 	}
1543 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1544 
1545 	/* We set skb->ooo_okay to one if this packet can select
1546 	 * a different TX queue than prior packets of this flow,
1547 	 * to avoid self inflicted reorders.
1548 	 * The 'other' queue decision is based on current cpu number
1549 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1550 	 * We can switch to another (and better) queue if:
1551 	 * 1) No packet with payload is in qdisc/device queues.
1552 	 *    Delays in TX completion can defeat the test
1553 	 *    even if packets were already sent.
1554 	 * 2) Or rtx queue is empty.
1555 	 *    This mitigates above case if ACK packets for
1556 	 *    all prior packets were already processed.
1557 	 */
1558 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1559 			tcp_rtx_queue_empty(sk);
1560 
1561 	/* If we had to use memory reserve to allocate this skb,
1562 	 * this might cause drops if packet is looped back :
1563 	 * Other socket might not have SOCK_MEMALLOC.
1564 	 * Packets not looped back do not care about pfmemalloc.
1565 	 */
1566 	skb->pfmemalloc = 0;
1567 
1568 	skb_push(skb, tcp_header_size);
1569 	skb_reset_transport_header(skb);
1570 
1571 	skb_orphan(skb);
1572 	skb->sk = sk;
1573 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1574 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1575 
1576 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1577 
1578 	/* Build TCP header and checksum it. */
1579 	th = (struct tcphdr *)skb->data;
1580 	th->source		= inet->inet_sport;
1581 	th->dest		= inet->inet_dport;
1582 	th->seq			= htonl(tcb->seq);
1583 	th->ack_seq		= htonl(rcv_nxt);
1584 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1585 					(tcb->tcp_flags & TCPHDR_FLAGS_MASK));
1586 
1587 	th->check		= 0;
1588 	th->urg_ptr		= 0;
1589 
1590 	/* The urg_mode check is necessary during a below snd_una win probe */
1591 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1592 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1593 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1594 			th->urg = 1;
1595 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1596 			th->urg_ptr = htons(0xFFFF);
1597 			th->urg = 1;
1598 		}
1599 	}
1600 
1601 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1602 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1603 		th->window      = htons(tcp_select_window(sk));
1604 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1605 	} else {
1606 		/* RFC1323: The window in SYN & SYN/ACK segments
1607 		 * is never scaled.
1608 		 */
1609 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1610 	}
1611 
1612 	tcp_options_write(th, tp, NULL, &opts, &key);
1613 
1614 	if (tcp_key_is_md5(&key)) {
1615 #ifdef CONFIG_TCP_MD5SIG
1616 		/* Calculate the MD5 hash, as we have all we need now */
1617 		sk_gso_disable(sk);
1618 		tp->af_specific->calc_md5_hash(opts.hash_location,
1619 					       key.md5_key, sk, skb);
1620 #endif
1621 	} else if (tcp_key_is_ao(&key)) {
1622 		int err;
1623 
1624 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1625 					  opts.hash_location);
1626 		if (err) {
1627 			sk_skb_reason_drop(sk, skb, SKB_DROP_REASON_NOT_SPECIFIED);
1628 			return -ENOMEM;
1629 		}
1630 	}
1631 
1632 	/* BPF prog is the last one writing header option */
1633 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1634 
1635 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1636 			   tcp_v6_send_check, tcp_v4_send_check,
1637 			   sk, skb);
1638 
1639 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1640 		tcp_event_ack_sent(sk, rcv_nxt);
1641 
1642 	if (skb->len != tcp_header_size) {
1643 		tcp_event_data_sent(tp, sk);
1644 		tp->data_segs_out += tcp_skb_pcount(skb);
1645 		tp->bytes_sent += skb->len - tcp_header_size;
1646 	}
1647 
1648 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1649 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1650 			      tcp_skb_pcount(skb));
1651 
1652 	tp->segs_out += tcp_skb_pcount(skb);
1653 	skb_set_hash_from_sk(skb, sk);
1654 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1655 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1656 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1657 
1658 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1659 
1660 	/* Cleanup our debris for IP stacks */
1661 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1662 			       sizeof(struct inet6_skb_parm)));
1663 
1664 	tcp_add_tx_delay(skb, tp);
1665 
1666 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1667 				 inet6_csk_xmit, ip_queue_xmit,
1668 				 sk, skb, &inet->cork.fl);
1669 
1670 	if (unlikely(err > 0)) {
1671 		tcp_enter_cwr(sk);
1672 		err = net_xmit_eval(err);
1673 	}
1674 	if (!err && oskb) {
1675 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1676 		tcp_rate_skb_sent(sk, oskb);
1677 	}
1678 	return err;
1679 }
1680 
1681 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1682 			    gfp_t gfp_mask)
1683 {
1684 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1685 				  tcp_sk(sk)->rcv_nxt);
1686 }
1687 
1688 /* This routine just queues the buffer for sending.
1689  *
1690  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1691  * otherwise socket can stall.
1692  */
1693 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1694 {
1695 	struct tcp_sock *tp = tcp_sk(sk);
1696 
1697 	/* Advance write_seq and place onto the write_queue. */
1698 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1699 	__skb_header_release(skb);
1700 	psp_enqueue_set_decrypted(sk, skb);
1701 	tcp_add_write_queue_tail(sk, skb);
1702 	sk_wmem_queued_add(sk, skb->truesize);
1703 	sk_mem_charge(sk, skb->truesize);
1704 }
1705 
1706 /* Initialize TSO segments for a packet. */
1707 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1708 {
1709 	int tso_segs;
1710 
1711 	if (skb->len <= mss_now) {
1712 		/* Avoid the costly divide in the normal
1713 		 * non-TSO case.
1714 		 */
1715 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1716 		tcp_skb_pcount_set(skb, 1);
1717 		return 1;
1718 	}
1719 	TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1720 	tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1721 	tcp_skb_pcount_set(skb, tso_segs);
1722 	return tso_segs;
1723 }
1724 
1725 /* Pcount in the middle of the write queue got changed, we need to do various
1726  * tweaks to fix counters
1727  */
1728 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1729 {
1730 	struct tcp_sock *tp = tcp_sk(sk);
1731 
1732 	tp->packets_out -= decr;
1733 
1734 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1735 		tp->sacked_out -= decr;
1736 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1737 		tp->retrans_out -= decr;
1738 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1739 		tp->lost_out -= decr;
1740 
1741 	/* Reno case is special. Sigh... */
1742 	if (tcp_is_reno(tp) && decr > 0)
1743 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1744 
1745 	tcp_verify_left_out(tp);
1746 }
1747 
1748 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1749 {
1750 	return TCP_SKB_CB(skb)->txstamp_ack ||
1751 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1752 }
1753 
1754 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1755 {
1756 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1757 
1758 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1759 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1760 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1761 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1762 
1763 		shinfo->tx_flags &= ~tsflags;
1764 		shinfo2->tx_flags |= tsflags;
1765 		swap(shinfo->tskey, shinfo2->tskey);
1766 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1767 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1768 	}
1769 }
1770 
1771 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1772 {
1773 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1774 	TCP_SKB_CB(skb)->eor = 0;
1775 }
1776 
1777 /* Insert buff after skb on the write or rtx queue of sk.  */
1778 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1779 					 struct sk_buff *buff,
1780 					 struct sock *sk,
1781 					 enum tcp_queue tcp_queue)
1782 {
1783 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1784 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1785 	else
1786 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1787 }
1788 
1789 /* Function to create two new TCP segments.  Shrinks the given segment
1790  * to the specified size and appends a new segment with the rest of the
1791  * packet to the list.  This won't be called frequently, I hope.
1792  * Remember, these are still headerless SKBs at this point.
1793  */
1794 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1795 		 struct sk_buff *skb, u32 len,
1796 		 unsigned int mss_now, gfp_t gfp)
1797 {
1798 	struct tcp_sock *tp = tcp_sk(sk);
1799 	struct sk_buff *buff;
1800 	int old_factor;
1801 	long limit;
1802 	u16 flags;
1803 	int nlen;
1804 
1805 	if (WARN_ON(len > skb->len))
1806 		return -EINVAL;
1807 
1808 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1809 
1810 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1811 	 * We need some allowance to not penalize applications setting small
1812 	 * SO_SNDBUF values.
1813 	 * Also allow first and last skb in retransmit queue to be split.
1814 	 */
1815 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1816 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1817 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1818 		     skb != tcp_rtx_queue_head(sk) &&
1819 		     skb != tcp_rtx_queue_tail(sk))) {
1820 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1821 		return -ENOMEM;
1822 	}
1823 
1824 	if (skb_unclone_keeptruesize(skb, gfp))
1825 		return -ENOMEM;
1826 
1827 	/* Get a new skb... force flag on. */
1828 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1829 	if (!buff)
1830 		return -ENOMEM; /* We'll just try again later. */
1831 	skb_copy_decrypted(buff, skb);
1832 	mptcp_skb_ext_copy(buff, skb);
1833 
1834 	sk_wmem_queued_add(sk, buff->truesize);
1835 	sk_mem_charge(sk, buff->truesize);
1836 	nlen = skb->len - len;
1837 	buff->truesize += nlen;
1838 	skb->truesize -= nlen;
1839 
1840 	/* Correct the sequence numbers. */
1841 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1842 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1843 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1844 
1845 	/* PSH and FIN should only be set in the second packet. */
1846 	flags = TCP_SKB_CB(skb)->tcp_flags;
1847 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1848 	TCP_SKB_CB(buff)->tcp_flags = flags;
1849 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1850 	tcp_skb_fragment_eor(skb, buff);
1851 
1852 	skb_split(skb, buff, len);
1853 
1854 	skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1855 	tcp_fragment_tstamp(skb, buff);
1856 
1857 	old_factor = tcp_skb_pcount(skb);
1858 
1859 	/* Fix up tso_factor for both original and new SKB.  */
1860 	tcp_set_skb_tso_segs(skb, mss_now);
1861 	tcp_set_skb_tso_segs(buff, mss_now);
1862 
1863 	/* Update delivered info for the new segment */
1864 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1865 
1866 	/* If this packet has been sent out already, we must
1867 	 * adjust the various packet counters.
1868 	 */
1869 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1870 		int diff = old_factor - tcp_skb_pcount(skb) -
1871 			tcp_skb_pcount(buff);
1872 
1873 		if (diff)
1874 			tcp_adjust_pcount(sk, skb, diff);
1875 	}
1876 
1877 	/* Link BUFF into the send queue. */
1878 	__skb_header_release(buff);
1879 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1880 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1881 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1882 
1883 	return 0;
1884 }
1885 
1886 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1887  * data is not copied, but immediately discarded.
1888  */
1889 static int __pskb_trim_head(struct sk_buff *skb, int len)
1890 {
1891 	struct skb_shared_info *shinfo;
1892 	int i, k, eat;
1893 
1894 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1895 	eat = len;
1896 	k = 0;
1897 	shinfo = skb_shinfo(skb);
1898 	for (i = 0; i < shinfo->nr_frags; i++) {
1899 		int size = skb_frag_size(&shinfo->frags[i]);
1900 
1901 		if (size <= eat) {
1902 			skb_frag_unref(skb, i);
1903 			eat -= size;
1904 		} else {
1905 			shinfo->frags[k] = shinfo->frags[i];
1906 			if (eat) {
1907 				skb_frag_off_add(&shinfo->frags[k], eat);
1908 				skb_frag_size_sub(&shinfo->frags[k], eat);
1909 				eat = 0;
1910 			}
1911 			k++;
1912 		}
1913 	}
1914 	shinfo->nr_frags = k;
1915 
1916 	skb->data_len -= len;
1917 	skb->len = skb->data_len;
1918 	return len;
1919 }
1920 
1921 /* Remove acked data from a packet in the transmit queue. */
1922 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1923 {
1924 	u32 delta_truesize;
1925 
1926 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1927 		return -ENOMEM;
1928 
1929 	delta_truesize = __pskb_trim_head(skb, len);
1930 
1931 	TCP_SKB_CB(skb)->seq += len;
1932 
1933 	skb->truesize	   -= delta_truesize;
1934 	sk_wmem_queued_add(sk, -delta_truesize);
1935 	if (!skb_zcopy_pure(skb))
1936 		sk_mem_uncharge(sk, delta_truesize);
1937 
1938 	/* Any change of skb->len requires recalculation of tso factor. */
1939 	if (tcp_skb_pcount(skb) > 1)
1940 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1941 
1942 	return 0;
1943 }
1944 
1945 /* Calculate MSS not accounting any TCP options.  */
1946 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1947 {
1948 	const struct tcp_sock *tp = tcp_sk(sk);
1949 	const struct inet_connection_sock *icsk = inet_csk(sk);
1950 	int mss_now;
1951 
1952 	/* Calculate base mss without TCP options:
1953 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1954 	 */
1955 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1956 
1957 	/* Clamp it (mss_clamp does not include tcp options) */
1958 	if (mss_now > tp->rx_opt.mss_clamp)
1959 		mss_now = tp->rx_opt.mss_clamp;
1960 
1961 	/* Now subtract optional transport overhead */
1962 	mss_now -= icsk->icsk_ext_hdr_len;
1963 
1964 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1965 	mss_now = max(mss_now,
1966 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1967 	return mss_now;
1968 }
1969 
1970 /* Calculate MSS. Not accounting for SACKs here.  */
1971 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1972 {
1973 	/* Subtract TCP options size, not including SACKs */
1974 	return __tcp_mtu_to_mss(sk, pmtu) -
1975 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1976 }
1977 EXPORT_IPV6_MOD(tcp_mtu_to_mss);
1978 
1979 /* Inverse of above */
1980 int tcp_mss_to_mtu(struct sock *sk, int mss)
1981 {
1982 	const struct tcp_sock *tp = tcp_sk(sk);
1983 	const struct inet_connection_sock *icsk = inet_csk(sk);
1984 
1985 	return mss +
1986 	      tp->tcp_header_len +
1987 	      icsk->icsk_ext_hdr_len +
1988 	      icsk->icsk_af_ops->net_header_len;
1989 }
1990 EXPORT_SYMBOL(tcp_mss_to_mtu);
1991 
1992 /* MTU probing init per socket */
1993 void tcp_mtup_init(struct sock *sk)
1994 {
1995 	struct tcp_sock *tp = tcp_sk(sk);
1996 	struct inet_connection_sock *icsk = inet_csk(sk);
1997 	struct net *net = sock_net(sk);
1998 
1999 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
2000 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
2001 			       icsk->icsk_af_ops->net_header_len;
2002 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
2003 	icsk->icsk_mtup.probe_size = 0;
2004 	if (icsk->icsk_mtup.enabled)
2005 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2006 }
2007 
2008 /* This function synchronize snd mss to current pmtu/exthdr set.
2009 
2010    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
2011    for TCP options, but includes only bare TCP header.
2012 
2013    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
2014    It is minimum of user_mss and mss received with SYN.
2015    It also does not include TCP options.
2016 
2017    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
2018 
2019    tp->mss_cache is current effective sending mss, including
2020    all tcp options except for SACKs. It is evaluated,
2021    taking into account current pmtu, but never exceeds
2022    tp->rx_opt.mss_clamp.
2023 
2024    NOTE1. rfc1122 clearly states that advertised MSS
2025    DOES NOT include either tcp or ip options.
2026 
2027    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
2028    are READ ONLY outside this function.		--ANK (980731)
2029  */
2030 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
2031 {
2032 	struct tcp_sock *tp = tcp_sk(sk);
2033 	struct inet_connection_sock *icsk = inet_csk(sk);
2034 	int mss_now;
2035 
2036 	if (icsk->icsk_mtup.search_high > pmtu)
2037 		icsk->icsk_mtup.search_high = pmtu;
2038 
2039 	mss_now = tcp_mtu_to_mss(sk, pmtu);
2040 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
2041 
2042 	/* And store cached results */
2043 	icsk->icsk_pmtu_cookie = pmtu;
2044 	if (icsk->icsk_mtup.enabled)
2045 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
2046 	tp->mss_cache = mss_now;
2047 
2048 	return mss_now;
2049 }
2050 EXPORT_IPV6_MOD(tcp_sync_mss);
2051 
2052 /* Compute the current effective MSS, taking SACKs and IP options,
2053  * and even PMTU discovery events into account.
2054  */
2055 unsigned int tcp_current_mss(struct sock *sk)
2056 {
2057 	const struct tcp_sock *tp = tcp_sk(sk);
2058 	const struct dst_entry *dst = __sk_dst_get(sk);
2059 	u32 mss_now;
2060 	unsigned int header_len;
2061 	struct tcp_out_options opts;
2062 	struct tcp_key key;
2063 
2064 	mss_now = tp->mss_cache;
2065 
2066 	if (dst) {
2067 		u32 mtu = dst_mtu(dst);
2068 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
2069 			mss_now = tcp_sync_mss(sk, mtu);
2070 	}
2071 	tcp_get_current_key(sk, &key);
2072 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
2073 		     sizeof(struct tcphdr);
2074 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
2075 	 * some common options. If this is an odd packet (because we have SACK
2076 	 * blocks etc) then our calculated header_len will be different, and
2077 	 * we have to adjust mss_now correspondingly */
2078 	if (header_len != tp->tcp_header_len) {
2079 		int delta = (int) header_len - tp->tcp_header_len;
2080 		mss_now -= delta;
2081 	}
2082 
2083 	return mss_now;
2084 }
2085 
2086 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
2087  * As additional protections, we do not touch cwnd in retransmission phases,
2088  * and if application hit its sndbuf limit recently.
2089  */
2090 static void tcp_cwnd_application_limited(struct sock *sk)
2091 {
2092 	struct tcp_sock *tp = tcp_sk(sk);
2093 
2094 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
2095 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
2096 		/* Limited by application or receiver window. */
2097 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
2098 		u32 win_used = max(tp->snd_cwnd_used, init_win);
2099 		if (win_used < tcp_snd_cwnd(tp)) {
2100 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
2101 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
2102 		}
2103 		tp->snd_cwnd_used = 0;
2104 	}
2105 	tp->snd_cwnd_stamp = tcp_jiffies32;
2106 }
2107 
2108 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
2109 {
2110 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2111 	struct tcp_sock *tp = tcp_sk(sk);
2112 
2113 	/* Track the strongest available signal of the degree to which the cwnd
2114 	 * is fully utilized. If cwnd-limited then remember that fact for the
2115 	 * current window. If not cwnd-limited then track the maximum number of
2116 	 * outstanding packets in the current window. (If cwnd-limited then we
2117 	 * chose to not update tp->max_packets_out to avoid an extra else
2118 	 * clause with no functional impact.)
2119 	 */
2120 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
2121 	    is_cwnd_limited ||
2122 	    (!tp->is_cwnd_limited &&
2123 	     tp->packets_out > tp->max_packets_out)) {
2124 		tp->is_cwnd_limited = is_cwnd_limited;
2125 		tp->max_packets_out = tp->packets_out;
2126 		tp->cwnd_usage_seq = tp->snd_nxt;
2127 	}
2128 
2129 	if (tcp_is_cwnd_limited(sk)) {
2130 		/* Network is feed fully. */
2131 		tp->snd_cwnd_used = 0;
2132 		tp->snd_cwnd_stamp = tcp_jiffies32;
2133 	} else {
2134 		/* Network starves. */
2135 		if (tp->packets_out > tp->snd_cwnd_used)
2136 			tp->snd_cwnd_used = tp->packets_out;
2137 
2138 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
2139 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
2140 		    !ca_ops->cong_control)
2141 			tcp_cwnd_application_limited(sk);
2142 
2143 		/* The following conditions together indicate the starvation
2144 		 * is caused by insufficient sender buffer:
2145 		 * 1) just sent some data (see tcp_write_xmit)
2146 		 * 2) not cwnd limited (this else condition)
2147 		 * 3) no more data to send (tcp_write_queue_empty())
2148 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
2149 		 */
2150 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
2151 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
2152 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
2153 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
2154 	}
2155 }
2156 
2157 /* Minshall's variant of the Nagle send check. */
2158 static bool tcp_minshall_check(const struct tcp_sock *tp)
2159 {
2160 	return after(tp->snd_sml, tp->snd_una) &&
2161 		!after(tp->snd_sml, tp->snd_nxt);
2162 }
2163 
2164 /* Update snd_sml if this skb is under mss
2165  * Note that a TSO packet might end with a sub-mss segment
2166  * The test is really :
2167  * if ((skb->len % mss) != 0)
2168  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
2169  * But we can avoid doing the divide again given we already have
2170  *  skb_pcount = skb->len / mss_now
2171  */
2172 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
2173 				const struct sk_buff *skb)
2174 {
2175 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
2176 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
2177 }
2178 
2179 /* Return false, if packet can be sent now without violation Nagle's rules:
2180  * 1. It is full sized. (provided by caller in %partial bool)
2181  * 2. Or it contains FIN. (already checked by caller)
2182  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
2183  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
2184  *    With Minshall's modification: all sent small packets are ACKed.
2185  */
2186 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
2187 			    int nonagle)
2188 {
2189 	return partial &&
2190 		((nonagle & TCP_NAGLE_CORK) ||
2191 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2192 }
2193 
2194 /* Return how many segs we'd like on a TSO packet,
2195  * depending on current pacing rate, and how close the peer is.
2196  *
2197  * Rationale is:
2198  * - For close peers, we rather send bigger packets to reduce
2199  *   cpu costs, because occasional losses will be repaired fast.
2200  * - For long distance/rtt flows, we would like to get ACK clocking
2201  *   with 1 ACK per ms.
2202  *
2203  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2204  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2205  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2206  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2207  */
2208 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2209 			    int min_tso_segs)
2210 {
2211 	unsigned long bytes;
2212 	u32 r;
2213 
2214 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2215 
2216 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2217 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2218 		bytes += sk->sk_gso_max_size >> r;
2219 
2220 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2221 
2222 	return max_t(u32, bytes / mss_now, min_tso_segs);
2223 }
2224 
2225 /* Return the number of segments we want in the skb we are transmitting.
2226  * See if congestion control module wants to decide; otherwise, autosize.
2227  */
2228 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2229 {
2230 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2231 	u32 min_tso, tso_segs;
2232 
2233 	min_tso = ca_ops->min_tso_segs ?
2234 			ca_ops->min_tso_segs(sk) :
2235 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2236 
2237 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2238 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2239 }
2240 
2241 /* Returns the portion of skb which can be sent right away */
2242 static unsigned int tcp_mss_split_point(const struct sock *sk,
2243 					const struct sk_buff *skb,
2244 					unsigned int mss_now,
2245 					unsigned int max_segs,
2246 					int nonagle)
2247 {
2248 	const struct tcp_sock *tp = tcp_sk(sk);
2249 	u32 partial, needed, window, max_len;
2250 
2251 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2252 	max_len = mss_now * max_segs;
2253 
2254 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2255 		return max_len;
2256 
2257 	needed = min(skb->len, window);
2258 
2259 	if (max_len <= needed)
2260 		return max_len;
2261 
2262 	partial = needed % mss_now;
2263 	/* If last segment is not a full MSS, check if Nagle rules allow us
2264 	 * to include this last segment in this skb.
2265 	 * Otherwise, we'll split the skb at last MSS boundary
2266 	 */
2267 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2268 		return needed - partial;
2269 
2270 	return needed;
2271 }
2272 
2273 /* Can at least one segment of SKB be sent right now, according to the
2274  * congestion window rules?  If so, return how many segments are allowed.
2275  */
2276 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2277 {
2278 	u32 in_flight, cwnd, halfcwnd;
2279 
2280 	in_flight = tcp_packets_in_flight(tp);
2281 	cwnd = tcp_snd_cwnd(tp);
2282 	if (in_flight >= cwnd)
2283 		return 0;
2284 
2285 	/* For better scheduling, ensure we have at least
2286 	 * 2 GSO packets in flight.
2287 	 */
2288 	halfcwnd = max(cwnd >> 1, 1U);
2289 	return min(halfcwnd, cwnd - in_flight);
2290 }
2291 
2292 /* Initialize TSO state of a skb.
2293  * This must be invoked the first time we consider transmitting
2294  * SKB onto the wire.
2295  */
2296 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2297 {
2298 	int tso_segs = tcp_skb_pcount(skb);
2299 
2300 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2301 		return tcp_set_skb_tso_segs(skb, mss_now);
2302 
2303 	return tso_segs;
2304 }
2305 
2306 
2307 /* Return true if the Nagle test allows this packet to be
2308  * sent now.
2309  */
2310 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2311 				  unsigned int cur_mss, int nonagle)
2312 {
2313 	/* Nagle rule does not apply to frames, which sit in the middle of the
2314 	 * write_queue (they have no chances to get new data).
2315 	 *
2316 	 * This is implemented in the callers, where they modify the 'nonagle'
2317 	 * argument based upon the location of SKB in the send queue.
2318 	 */
2319 	if (nonagle & TCP_NAGLE_PUSH)
2320 		return true;
2321 
2322 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2323 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2324 		return true;
2325 
2326 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2327 		return true;
2328 
2329 	return false;
2330 }
2331 
2332 /* Does at least the first segment of SKB fit into the send window? */
2333 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2334 			     const struct sk_buff *skb,
2335 			     unsigned int cur_mss)
2336 {
2337 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2338 
2339 	if (skb->len > cur_mss)
2340 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2341 
2342 	return !after(end_seq, tcp_wnd_end(tp));
2343 }
2344 
2345 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2346  * which is put after SKB on the list.  It is very much like
2347  * tcp_fragment() except that it may make several kinds of assumptions
2348  * in order to speed up the splitting operation.  In particular, we
2349  * know that all the data is in scatter-gather pages, and that the
2350  * packet has never been sent out before (and thus is not cloned).
2351  */
2352 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2353 			unsigned int mss_now, gfp_t gfp)
2354 {
2355 	int nlen = skb->len - len;
2356 	struct sk_buff *buff;
2357 	u16 flags;
2358 
2359 	/* All of a TSO frame must be composed of paged data.  */
2360 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2361 
2362 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2363 	if (unlikely(!buff))
2364 		return -ENOMEM;
2365 	skb_copy_decrypted(buff, skb);
2366 	mptcp_skb_ext_copy(buff, skb);
2367 
2368 	sk_wmem_queued_add(sk, buff->truesize);
2369 	sk_mem_charge(sk, buff->truesize);
2370 	buff->truesize += nlen;
2371 	skb->truesize -= nlen;
2372 
2373 	/* Correct the sequence numbers. */
2374 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2375 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2376 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2377 
2378 	/* PSH and FIN should only be set in the second packet. */
2379 	flags = TCP_SKB_CB(skb)->tcp_flags;
2380 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2381 	TCP_SKB_CB(buff)->tcp_flags = flags;
2382 
2383 	tcp_skb_fragment_eor(skb, buff);
2384 
2385 	skb_split(skb, buff, len);
2386 	tcp_fragment_tstamp(skb, buff);
2387 
2388 	/* Fix up tso_factor for both original and new SKB.  */
2389 	tcp_set_skb_tso_segs(skb, mss_now);
2390 	tcp_set_skb_tso_segs(buff, mss_now);
2391 
2392 	/* Link BUFF into the send queue. */
2393 	__skb_header_release(buff);
2394 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2395 
2396 	return 0;
2397 }
2398 
2399 /* Try to defer sending, if possible, in order to minimize the amount
2400  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2401  *
2402  * This algorithm is from John Heffner.
2403  */
2404 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2405 				 bool *is_cwnd_limited,
2406 				 bool *is_rwnd_limited,
2407 				 u32 max_segs)
2408 {
2409 	const struct inet_connection_sock *icsk = inet_csk(sk);
2410 	u32 send_win, cong_win, limit, in_flight, threshold;
2411 	u64 srtt_in_ns, expected_ack, how_far_is_the_ack;
2412 	struct tcp_sock *tp = tcp_sk(sk);
2413 	struct sk_buff *head;
2414 	int win_divisor;
2415 	s64 delta;
2416 
2417 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2418 		goto send_now;
2419 
2420 	/* Avoid bursty behavior by allowing defer
2421 	 * only if the last write was recent (1 ms).
2422 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2423 	 * packets waiting in a qdisc or device for EDT delivery.
2424 	 */
2425 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2426 	if (delta > 0)
2427 		goto send_now;
2428 
2429 	in_flight = tcp_packets_in_flight(tp);
2430 
2431 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2432 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2433 
2434 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2435 
2436 	/* From in_flight test above, we know that cwnd > in_flight.  */
2437 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2438 
2439 	limit = min(send_win, cong_win);
2440 
2441 	/* If a full-sized TSO skb can be sent, do it. */
2442 	if (limit >= max_segs * tp->mss_cache)
2443 		goto send_now;
2444 
2445 	/* Middle in queue won't get any more data, full sendable already? */
2446 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2447 		goto send_now;
2448 
2449 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2450 	if (win_divisor) {
2451 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2452 
2453 		/* If at least some fraction of a window is available,
2454 		 * just use it.
2455 		 */
2456 		chunk /= win_divisor;
2457 		if (limit >= chunk)
2458 			goto send_now;
2459 	} else {
2460 		/* Different approach, try not to defer past a single
2461 		 * ACK.  Receiver should ACK every other full sized
2462 		 * frame, so if we have space for more than 3 frames
2463 		 * then send now.
2464 		 */
2465 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2466 			goto send_now;
2467 	}
2468 
2469 	/* TODO : use tsorted_sent_queue ? */
2470 	head = tcp_rtx_queue_head(sk);
2471 	if (!head)
2472 		goto send_now;
2473 
2474 	srtt_in_ns = (u64)(NSEC_PER_USEC >> 3) * tp->srtt_us;
2475 	/* When is the ACK expected ? */
2476 	expected_ack = head->tstamp + srtt_in_ns;
2477 	/* How far from now is the ACK expected ? */
2478 	how_far_is_the_ack = expected_ack - tp->tcp_clock_cache;
2479 
2480 	/* If next ACK is likely to come too late,
2481 	 * ie in more than min(1ms, half srtt), do not defer.
2482 	 */
2483 	threshold = min(srtt_in_ns >> 1, NSEC_PER_MSEC);
2484 
2485 	if ((s64)(how_far_is_the_ack - threshold) > 0)
2486 		goto send_now;
2487 
2488 	/* Ok, it looks like it is advisable to defer.
2489 	 * Three cases are tracked :
2490 	 * 1) We are cwnd-limited
2491 	 * 2) We are rwnd-limited
2492 	 * 3) We are application limited.
2493 	 */
2494 	if (cong_win < send_win) {
2495 		if (cong_win <= skb->len) {
2496 			*is_cwnd_limited = true;
2497 			return true;
2498 		}
2499 	} else {
2500 		if (send_win <= skb->len) {
2501 			*is_rwnd_limited = true;
2502 			return true;
2503 		}
2504 	}
2505 
2506 	/* If this packet won't get more data, do not wait. */
2507 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2508 	    TCP_SKB_CB(skb)->eor)
2509 		goto send_now;
2510 
2511 	return true;
2512 
2513 send_now:
2514 	return false;
2515 }
2516 
2517 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2518 {
2519 	struct inet_connection_sock *icsk = inet_csk(sk);
2520 	struct tcp_sock *tp = tcp_sk(sk);
2521 	struct net *net = sock_net(sk);
2522 	u32 interval;
2523 	s32 delta;
2524 
2525 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2526 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2527 	if (unlikely(delta >= interval * HZ)) {
2528 		int mss = tcp_current_mss(sk);
2529 
2530 		/* Update current search range */
2531 		icsk->icsk_mtup.probe_size = 0;
2532 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2533 			sizeof(struct tcphdr) +
2534 			icsk->icsk_af_ops->net_header_len;
2535 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2536 
2537 		/* Update probe time stamp */
2538 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2539 	}
2540 }
2541 
2542 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2543 {
2544 	struct sk_buff *skb, *next;
2545 
2546 	skb = tcp_send_head(sk);
2547 	tcp_for_write_queue_from_safe(skb, next, sk) {
2548 		if (len <= skb->len)
2549 			break;
2550 
2551 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2552 			return false;
2553 
2554 		len -= skb->len;
2555 	}
2556 
2557 	return true;
2558 }
2559 
2560 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2561 			     int probe_size)
2562 {
2563 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2564 	int i, todo, len = 0, nr_frags = 0;
2565 	const struct sk_buff *skb;
2566 
2567 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2568 		return -ENOMEM;
2569 
2570 	skb_queue_walk(&sk->sk_write_queue, skb) {
2571 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2572 
2573 		if (skb_headlen(skb))
2574 			return -EINVAL;
2575 
2576 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2577 			if (len >= probe_size)
2578 				goto commit;
2579 			todo = min_t(int, skb_frag_size(fragfrom),
2580 				     probe_size - len);
2581 			len += todo;
2582 			if (lastfrag &&
2583 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2584 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2585 						      skb_frag_size(lastfrag)) {
2586 				skb_frag_size_add(lastfrag, todo);
2587 				continue;
2588 			}
2589 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2590 				return -E2BIG;
2591 			skb_frag_page_copy(fragto, fragfrom);
2592 			skb_frag_off_copy(fragto, fragfrom);
2593 			skb_frag_size_set(fragto, todo);
2594 			nr_frags++;
2595 			lastfrag = fragto++;
2596 		}
2597 	}
2598 commit:
2599 	WARN_ON_ONCE(len != probe_size);
2600 	for (i = 0; i < nr_frags; i++)
2601 		skb_frag_ref(to, i);
2602 
2603 	skb_shinfo(to)->nr_frags = nr_frags;
2604 	to->truesize += probe_size;
2605 	to->len += probe_size;
2606 	to->data_len += probe_size;
2607 	__skb_header_release(to);
2608 	return 0;
2609 }
2610 
2611 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2612  * all its payload was moved to another one (dst).
2613  * Make sure to transfer tcp_flags, eor, and tstamp.
2614  */
2615 static void tcp_eat_one_skb(struct sock *sk,
2616 			    struct sk_buff *dst,
2617 			    struct sk_buff *src)
2618 {
2619 	TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2620 	TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2621 	tcp_skb_collapse_tstamp(dst, src);
2622 	tcp_unlink_write_queue(src, sk);
2623 	tcp_wmem_free_skb(sk, src);
2624 }
2625 
2626 /* Create a new MTU probe if we are ready.
2627  * MTU probe is regularly attempting to increase the path MTU by
2628  * deliberately sending larger packets.  This discovers routing
2629  * changes resulting in larger path MTUs.
2630  *
2631  * Returns 0 if we should wait to probe (no cwnd available),
2632  *         1 if a probe was sent,
2633  *         -1 otherwise
2634  */
2635 static int tcp_mtu_probe(struct sock *sk)
2636 {
2637 	struct inet_connection_sock *icsk = inet_csk(sk);
2638 	struct tcp_sock *tp = tcp_sk(sk);
2639 	struct sk_buff *skb, *nskb, *next;
2640 	struct net *net = sock_net(sk);
2641 	int probe_size;
2642 	int size_needed;
2643 	int copy, len;
2644 	int mss_now;
2645 	int interval;
2646 
2647 	/* Not currently probing/verifying,
2648 	 * not in recovery,
2649 	 * have enough cwnd, and
2650 	 * not SACKing (the variable headers throw things off)
2651 	 */
2652 	if (likely(!icsk->icsk_mtup.enabled ||
2653 		   icsk->icsk_mtup.probe_size ||
2654 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2655 		   tcp_snd_cwnd(tp) < 11 ||
2656 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2657 		return -1;
2658 
2659 	/* Use binary search for probe_size between tcp_mss_base,
2660 	 * and current mss_clamp. if (search_high - search_low)
2661 	 * smaller than a threshold, backoff from probing.
2662 	 */
2663 	mss_now = tcp_current_mss(sk);
2664 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2665 				    icsk->icsk_mtup.search_low) >> 1);
2666 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2667 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2668 	/* When misfortune happens, we are reprobing actively,
2669 	 * and then reprobe timer has expired. We stick with current
2670 	 * probing process by not resetting search range to its orignal.
2671 	 */
2672 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2673 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2674 		/* Check whether enough time has elaplased for
2675 		 * another round of probing.
2676 		 */
2677 		tcp_mtu_check_reprobe(sk);
2678 		return -1;
2679 	}
2680 
2681 	/* Have enough data in the send queue to probe? */
2682 	if (tp->write_seq - tp->snd_nxt < size_needed)
2683 		return -1;
2684 
2685 	if (tp->snd_wnd < size_needed)
2686 		return -1;
2687 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2688 		return 0;
2689 
2690 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2691 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2692 		if (!tcp_packets_in_flight(tp))
2693 			return -1;
2694 		else
2695 			return 0;
2696 	}
2697 
2698 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2699 		return -1;
2700 
2701 	/* We're allowed to probe.  Build it now. */
2702 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2703 	if (!nskb)
2704 		return -1;
2705 
2706 	/* build the payload, and be prepared to abort if this fails. */
2707 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2708 		tcp_skb_tsorted_anchor_cleanup(nskb);
2709 		consume_skb(nskb);
2710 		return -1;
2711 	}
2712 	sk_wmem_queued_add(sk, nskb->truesize);
2713 	sk_mem_charge(sk, nskb->truesize);
2714 
2715 	skb = tcp_send_head(sk);
2716 	skb_copy_decrypted(nskb, skb);
2717 	mptcp_skb_ext_copy(nskb, skb);
2718 
2719 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2720 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2721 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2722 
2723 	tcp_insert_write_queue_before(nskb, skb, sk);
2724 	tcp_highest_sack_replace(sk, skb, nskb);
2725 
2726 	len = 0;
2727 	tcp_for_write_queue_from_safe(skb, next, sk) {
2728 		copy = min_t(int, skb->len, probe_size - len);
2729 
2730 		if (skb->len <= copy) {
2731 			tcp_eat_one_skb(sk, nskb, skb);
2732 		} else {
2733 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2734 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2735 			__pskb_trim_head(skb, copy);
2736 			tcp_set_skb_tso_segs(skb, mss_now);
2737 			TCP_SKB_CB(skb)->seq += copy;
2738 		}
2739 
2740 		len += copy;
2741 
2742 		if (len >= probe_size)
2743 			break;
2744 	}
2745 	tcp_init_tso_segs(nskb, nskb->len);
2746 
2747 	/* We're ready to send.  If this fails, the probe will
2748 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2749 	 */
2750 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2751 		/* Decrement cwnd here because we are sending
2752 		 * effectively two packets. */
2753 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2754 		tcp_event_new_data_sent(sk, nskb);
2755 
2756 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2757 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2758 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2759 
2760 		return 1;
2761 	}
2762 
2763 	return -1;
2764 }
2765 
2766 static bool tcp_pacing_check(struct sock *sk)
2767 {
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 
2770 	if (!tcp_needs_internal_pacing(sk))
2771 		return false;
2772 
2773 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2774 		return false;
2775 
2776 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2777 		hrtimer_start(&tp->pacing_timer,
2778 			      ns_to_ktime(tp->tcp_wstamp_ns),
2779 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2780 		sock_hold(sk);
2781 	}
2782 	return true;
2783 }
2784 
2785 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2786 {
2787 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2788 
2789 	/* No skb in the rtx queue. */
2790 	if (!node)
2791 		return true;
2792 
2793 	/* Only one skb in rtx queue. */
2794 	return !node->rb_left && !node->rb_right;
2795 }
2796 
2797 /* TCP Small Queues :
2798  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2799  * (These limits are doubled for retransmits)
2800  * This allows for :
2801  *  - better RTT estimation and ACK scheduling
2802  *  - faster recovery
2803  *  - high rates
2804  * Alas, some drivers / subsystems require a fair amount
2805  * of queued bytes to ensure line rate.
2806  * One example is wifi aggregation (802.11 AMPDU)
2807  */
2808 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2809 				  unsigned int factor)
2810 {
2811 	unsigned long limit;
2812 
2813 	limit = max_t(unsigned long,
2814 		      2 * skb->truesize,
2815 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2816 	limit = min_t(unsigned long, limit,
2817 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2818 	limit <<= factor;
2819 
2820 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2821 	    tcp_sk(sk)->tcp_tx_delay) {
2822 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2823 				  tcp_sk(sk)->tcp_tx_delay;
2824 
2825 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2826 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2827 		 * USEC_PER_SEC is approximated by 2^20.
2828 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2829 		 */
2830 		extra_bytes >>= (20 - 1);
2831 		limit += extra_bytes;
2832 	}
2833 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2834 		/* Always send skb if rtx queue is empty or has one skb.
2835 		 * No need to wait for TX completion to call us back,
2836 		 * after softirq schedule.
2837 		 * This helps when TX completions are delayed too much.
2838 		 */
2839 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2840 			return false;
2841 
2842 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2843 		/* It is possible TX completion already happened
2844 		 * before we set TSQ_THROTTLED, so we must
2845 		 * test again the condition.
2846 		 */
2847 		smp_mb__after_atomic();
2848 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2849 			return true;
2850 	}
2851 	return false;
2852 }
2853 
2854 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2855 {
2856 	const u32 now = tcp_jiffies32;
2857 	enum tcp_chrono old = tp->chrono_type;
2858 
2859 	if (old > TCP_CHRONO_UNSPEC)
2860 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2861 	tp->chrono_start = now;
2862 	tp->chrono_type = new;
2863 }
2864 
2865 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2866 {
2867 	struct tcp_sock *tp = tcp_sk(sk);
2868 
2869 	/* If there are multiple conditions worthy of tracking in a
2870 	 * chronograph then the highest priority enum takes precedence
2871 	 * over the other conditions. So that if something "more interesting"
2872 	 * starts happening, stop the previous chrono and start a new one.
2873 	 */
2874 	if (type > tp->chrono_type)
2875 		tcp_chrono_set(tp, type);
2876 }
2877 
2878 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2879 {
2880 	struct tcp_sock *tp = tcp_sk(sk);
2881 
2882 
2883 	/* There are multiple conditions worthy of tracking in a
2884 	 * chronograph, so that the highest priority enum takes
2885 	 * precedence over the other conditions (see tcp_chrono_start).
2886 	 * If a condition stops, we only stop chrono tracking if
2887 	 * it's the "most interesting" or current chrono we are
2888 	 * tracking and starts busy chrono if we have pending data.
2889 	 */
2890 	if (tcp_rtx_and_write_queues_empty(sk))
2891 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2892 	else if (type == tp->chrono_type)
2893 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2894 }
2895 
2896 /* First skb in the write queue is smaller than ideal packet size.
2897  * Check if we can move payload from the second skb in the queue.
2898  */
2899 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2900 {
2901 	struct sk_buff *next_skb = skb->next;
2902 	unsigned int nlen;
2903 
2904 	if (tcp_skb_is_last(sk, skb))
2905 		return;
2906 
2907 	if (!tcp_skb_can_collapse(skb, next_skb))
2908 		return;
2909 
2910 	nlen = min_t(u32, amount, next_skb->len);
2911 	if (!nlen || !skb_shift(skb, next_skb, nlen))
2912 		return;
2913 
2914 	TCP_SKB_CB(skb)->end_seq += nlen;
2915 	TCP_SKB_CB(next_skb)->seq += nlen;
2916 
2917 	if (!next_skb->len) {
2918 		/* In case FIN is set, we need to update end_seq */
2919 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2920 
2921 		tcp_eat_one_skb(sk, skb, next_skb);
2922 	}
2923 }
2924 
2925 /* This routine writes packets to the network.  It advances the
2926  * send_head.  This happens as incoming acks open up the remote
2927  * window for us.
2928  *
2929  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2930  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2931  * account rare use of URG, this is not a big flaw.
2932  *
2933  * Send at most one packet when push_one > 0. Temporarily ignore
2934  * cwnd limit to force at most one packet out when push_one == 2.
2935 
2936  * Returns true, if no segments are in flight and we have queued segments,
2937  * but cannot send anything now because of SWS or another problem.
2938  */
2939 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2940 			   int push_one, gfp_t gfp)
2941 {
2942 	struct tcp_sock *tp = tcp_sk(sk);
2943 	struct sk_buff *skb;
2944 	unsigned int tso_segs, sent_pkts;
2945 	u32 cwnd_quota, max_segs;
2946 	int result;
2947 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2948 
2949 	sent_pkts = 0;
2950 
2951 	tcp_mstamp_refresh(tp);
2952 
2953 	/* AccECN option beacon depends on mstamp, it may change mss */
2954 	if (tcp_ecn_mode_accecn(tp) && tcp_accecn_option_beacon_check(sk))
2955 		mss_now = tcp_current_mss(sk);
2956 
2957 	if (!push_one) {
2958 		/* Do MTU probing. */
2959 		result = tcp_mtu_probe(sk);
2960 		if (!result) {
2961 			return false;
2962 		} else if (result > 0) {
2963 			sent_pkts = 1;
2964 		}
2965 	}
2966 
2967 	max_segs = tcp_tso_segs(sk, mss_now);
2968 	while ((skb = tcp_send_head(sk))) {
2969 		unsigned int limit;
2970 		int missing_bytes;
2971 
2972 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2973 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2974 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2975 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2976 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2977 			tcp_init_tso_segs(skb, mss_now);
2978 			goto repair; /* Skip network transmission */
2979 		}
2980 
2981 		if (tcp_pacing_check(sk))
2982 			break;
2983 
2984 		cwnd_quota = tcp_cwnd_test(tp);
2985 		if (!cwnd_quota) {
2986 			if (push_one == 2)
2987 				/* Force out a loss probe pkt. */
2988 				cwnd_quota = 1;
2989 			else
2990 				break;
2991 		}
2992 		cwnd_quota = min(cwnd_quota, max_segs);
2993 		missing_bytes = cwnd_quota * mss_now - skb->len;
2994 		if (missing_bytes > 0)
2995 			tcp_grow_skb(sk, skb, missing_bytes);
2996 
2997 		tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2998 
2999 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
3000 			is_rwnd_limited = true;
3001 			break;
3002 		}
3003 
3004 		if (tso_segs == 1) {
3005 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
3006 						     (tcp_skb_is_last(sk, skb) ?
3007 						      nonagle : TCP_NAGLE_PUSH))))
3008 				break;
3009 		} else {
3010 			if (!push_one &&
3011 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
3012 						 &is_rwnd_limited, max_segs))
3013 				break;
3014 		}
3015 
3016 		limit = mss_now;
3017 		if (tso_segs > 1 && !tcp_urg_mode(tp))
3018 			limit = tcp_mss_split_point(sk, skb, mss_now,
3019 						    cwnd_quota,
3020 						    nonagle);
3021 
3022 		if (skb->len > limit &&
3023 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
3024 			break;
3025 
3026 		if (tcp_small_queue_check(sk, skb, 0))
3027 			break;
3028 
3029 		/* Argh, we hit an empty skb(), presumably a thread
3030 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
3031 		 * We do not want to send a pure-ack packet and have
3032 		 * a strange looking rtx queue with empty packet(s).
3033 		 */
3034 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
3035 			break;
3036 
3037 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
3038 			break;
3039 
3040 repair:
3041 		/* Advance the send_head.  This one is sent out.
3042 		 * This call will increment packets_out.
3043 		 */
3044 		tcp_event_new_data_sent(sk, skb);
3045 
3046 		tcp_minshall_update(tp, mss_now, skb);
3047 		sent_pkts += tcp_skb_pcount(skb);
3048 
3049 		if (push_one)
3050 			break;
3051 	}
3052 
3053 	if (is_rwnd_limited)
3054 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
3055 	else
3056 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
3057 
3058 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
3059 	if (likely(sent_pkts || is_cwnd_limited))
3060 		tcp_cwnd_validate(sk, is_cwnd_limited);
3061 
3062 	if (likely(sent_pkts)) {
3063 		if (tcp_in_cwnd_reduction(sk))
3064 			tp->prr_out += sent_pkts;
3065 
3066 		/* Send one loss probe per tail loss episode. */
3067 		if (push_one != 2)
3068 			tcp_schedule_loss_probe(sk, false);
3069 		return false;
3070 	}
3071 	return !tp->packets_out && !tcp_write_queue_empty(sk);
3072 }
3073 
3074 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
3075 {
3076 	struct inet_connection_sock *icsk = inet_csk(sk);
3077 	struct tcp_sock *tp = tcp_sk(sk);
3078 	u32 timeout, timeout_us, rto_delta_us;
3079 	int early_retrans;
3080 
3081 	/* Don't do any loss probe on a Fast Open connection before 3WHS
3082 	 * finishes.
3083 	 */
3084 	if (rcu_access_pointer(tp->fastopen_rsk))
3085 		return false;
3086 
3087 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
3088 	/* Schedule a loss probe in 2*RTT for SACK capable connections
3089 	 * not in loss recovery, that are either limited by cwnd or application.
3090 	 */
3091 	if ((early_retrans != 3 && early_retrans != 4) ||
3092 	    !tp->packets_out || !tcp_is_sack(tp) ||
3093 	    (icsk->icsk_ca_state != TCP_CA_Open &&
3094 	     icsk->icsk_ca_state != TCP_CA_CWR))
3095 		return false;
3096 
3097 	/* Probe timeout is 2*rtt. Add minimum RTO to account
3098 	 * for delayed ack when there's one outstanding packet. If no RTT
3099 	 * sample is available then probe after TCP_TIMEOUT_INIT.
3100 	 */
3101 	if (tp->srtt_us) {
3102 		timeout_us = tp->srtt_us >> 2;
3103 		if (tp->packets_out == 1)
3104 			timeout_us += tcp_rto_min_us(sk);
3105 		else
3106 			timeout_us += TCP_TIMEOUT_MIN_US;
3107 		timeout = usecs_to_jiffies(timeout_us);
3108 	} else {
3109 		timeout = TCP_TIMEOUT_INIT;
3110 	}
3111 
3112 	/* If the RTO formula yields an earlier time, then use that time. */
3113 	rto_delta_us = advancing_rto ?
3114 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
3115 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
3116 	if (rto_delta_us > 0)
3117 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
3118 
3119 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true);
3120 	return true;
3121 }
3122 
3123 /* Thanks to skb fast clones, we can detect if a prior transmit of
3124  * a packet is still in a qdisc or driver queue.
3125  * In this case, there is very little point doing a retransmit !
3126  */
3127 static bool skb_still_in_host_queue(struct sock *sk,
3128 				    const struct sk_buff *skb)
3129 {
3130 	if (unlikely(skb_fclone_busy(sk, skb))) {
3131 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
3132 		smp_mb__after_atomic();
3133 		if (skb_fclone_busy(sk, skb)) {
3134 			NET_INC_STATS(sock_net(sk),
3135 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
3136 			return true;
3137 		}
3138 	}
3139 	return false;
3140 }
3141 
3142 /* When probe timeout (PTO) fires, try send a new segment if possible, else
3143  * retransmit the last segment.
3144  */
3145 void tcp_send_loss_probe(struct sock *sk)
3146 {
3147 	struct tcp_sock *tp = tcp_sk(sk);
3148 	struct sk_buff *skb;
3149 	int pcount;
3150 	int mss = tcp_current_mss(sk);
3151 
3152 	/* At most one outstanding TLP */
3153 	if (tp->tlp_high_seq)
3154 		goto rearm_timer;
3155 
3156 	tp->tlp_retrans = 0;
3157 	skb = tcp_send_head(sk);
3158 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
3159 		pcount = tp->packets_out;
3160 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
3161 		if (tp->packets_out > pcount)
3162 			goto probe_sent;
3163 		goto rearm_timer;
3164 	}
3165 	skb = skb_rb_last(&sk->tcp_rtx_queue);
3166 	if (unlikely(!skb)) {
3167 		tcp_warn_once(sk, tp->packets_out, "invalid inflight: ");
3168 		smp_store_release(&inet_csk(sk)->icsk_pending, 0);
3169 		return;
3170 	}
3171 
3172 	if (skb_still_in_host_queue(sk, skb))
3173 		goto rearm_timer;
3174 
3175 	pcount = tcp_skb_pcount(skb);
3176 	if (WARN_ON(!pcount))
3177 		goto rearm_timer;
3178 
3179 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
3180 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
3181 					  (pcount - 1) * mss, mss,
3182 					  GFP_ATOMIC)))
3183 			goto rearm_timer;
3184 		skb = skb_rb_next(skb);
3185 	}
3186 
3187 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
3188 		goto rearm_timer;
3189 
3190 	if (__tcp_retransmit_skb(sk, skb, 1))
3191 		goto rearm_timer;
3192 
3193 	tp->tlp_retrans = 1;
3194 
3195 probe_sent:
3196 	/* Record snd_nxt for loss detection. */
3197 	tp->tlp_high_seq = tp->snd_nxt;
3198 
3199 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
3200 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
3201 	smp_store_release(&inet_csk(sk)->icsk_pending, 0);
3202 rearm_timer:
3203 	tcp_rearm_rto(sk);
3204 }
3205 
3206 /* Push out any pending frames which were held back due to
3207  * TCP_CORK or attempt at coalescing tiny packets.
3208  * The socket must be locked by the caller.
3209  */
3210 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3211 			       int nonagle)
3212 {
3213 	/* If we are closed, the bytes will have to remain here.
3214 	 * In time closedown will finish, we empty the write queue and
3215 	 * all will be happy.
3216 	 */
3217 	if (unlikely(sk->sk_state == TCP_CLOSE))
3218 		return;
3219 
3220 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3221 			   sk_gfp_mask(sk, GFP_ATOMIC)))
3222 		tcp_check_probe_timer(sk);
3223 }
3224 
3225 /* Send _single_ skb sitting at the send head. This function requires
3226  * true push pending frames to setup probe timer etc.
3227  */
3228 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3229 {
3230 	struct sk_buff *skb = tcp_send_head(sk);
3231 
3232 	BUG_ON(!skb || skb->len < mss_now);
3233 
3234 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3235 }
3236 
3237 /* This function returns the amount that we can raise the
3238  * usable window based on the following constraints
3239  *
3240  * 1. The window can never be shrunk once it is offered (RFC 793)
3241  * 2. We limit memory per socket
3242  *
3243  * RFC 1122:
3244  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3245  *  RECV.NEXT + RCV.WIN fixed until:
3246  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3247  *
3248  * i.e. don't raise the right edge of the window until you can raise
3249  * it at least MSS bytes.
3250  *
3251  * Unfortunately, the recommended algorithm breaks header prediction,
3252  * since header prediction assumes th->window stays fixed.
3253  *
3254  * Strictly speaking, keeping th->window fixed violates the receiver
3255  * side SWS prevention criteria. The problem is that under this rule
3256  * a stream of single byte packets will cause the right side of the
3257  * window to always advance by a single byte.
3258  *
3259  * Of course, if the sender implements sender side SWS prevention
3260  * then this will not be a problem.
3261  *
3262  * BSD seems to make the following compromise:
3263  *
3264  *	If the free space is less than the 1/4 of the maximum
3265  *	space available and the free space is less than 1/2 mss,
3266  *	then set the window to 0.
3267  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3268  *	Otherwise, just prevent the window from shrinking
3269  *	and from being larger than the largest representable value.
3270  *
3271  * This prevents incremental opening of the window in the regime
3272  * where TCP is limited by the speed of the reader side taking
3273  * data out of the TCP receive queue. It does nothing about
3274  * those cases where the window is constrained on the sender side
3275  * because the pipeline is full.
3276  *
3277  * BSD also seems to "accidentally" limit itself to windows that are a
3278  * multiple of MSS, at least until the free space gets quite small.
3279  * This would appear to be a side effect of the mbuf implementation.
3280  * Combining these two algorithms results in the observed behavior
3281  * of having a fixed window size at almost all times.
3282  *
3283  * Below we obtain similar behavior by forcing the offered window to
3284  * a multiple of the mss when it is feasible to do so.
3285  *
3286  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3287  * Regular options like TIMESTAMP are taken into account.
3288  */
3289 u32 __tcp_select_window(struct sock *sk)
3290 {
3291 	struct inet_connection_sock *icsk = inet_csk(sk);
3292 	struct tcp_sock *tp = tcp_sk(sk);
3293 	struct net *net = sock_net(sk);
3294 	/* MSS for the peer's data.  Previous versions used mss_clamp
3295 	 * here.  I don't know if the value based on our guesses
3296 	 * of peer's MSS is better for the performance.  It's more correct
3297 	 * but may be worse for the performance because of rcv_mss
3298 	 * fluctuations.  --SAW  1998/11/1
3299 	 */
3300 	int mss = icsk->icsk_ack.rcv_mss;
3301 	int free_space = tcp_space(sk);
3302 	int allowed_space = tcp_full_space(sk);
3303 	int full_space, window;
3304 
3305 	if (sk_is_mptcp(sk))
3306 		mptcp_space(sk, &free_space, &allowed_space);
3307 
3308 	full_space = min_t(int, tp->window_clamp, allowed_space);
3309 
3310 	if (unlikely(mss > full_space)) {
3311 		mss = full_space;
3312 		if (mss <= 0)
3313 			return 0;
3314 	}
3315 
3316 	/* Only allow window shrink if the sysctl is enabled and we have
3317 	 * a non-zero scaling factor in effect.
3318 	 */
3319 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3320 		goto shrink_window_allowed;
3321 
3322 	/* do not allow window to shrink */
3323 
3324 	if (free_space < (full_space >> 1)) {
3325 		icsk->icsk_ack.quick = 0;
3326 
3327 		if (tcp_under_memory_pressure(sk))
3328 			tcp_adjust_rcv_ssthresh(sk);
3329 
3330 		/* free_space might become our new window, make sure we don't
3331 		 * increase it due to wscale.
3332 		 */
3333 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3334 
3335 		/* if free space is less than mss estimate, or is below 1/16th
3336 		 * of the maximum allowed, try to move to zero-window, else
3337 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3338 		 * new incoming data is dropped due to memory limits.
3339 		 * With large window, mss test triggers way too late in order
3340 		 * to announce zero window in time before rmem limit kicks in.
3341 		 */
3342 		if (free_space < (allowed_space >> 4) || free_space < mss)
3343 			return 0;
3344 	}
3345 
3346 	if (free_space > tp->rcv_ssthresh)
3347 		free_space = tp->rcv_ssthresh;
3348 
3349 	/* Don't do rounding if we are using window scaling, since the
3350 	 * scaled window will not line up with the MSS boundary anyway.
3351 	 */
3352 	if (tp->rx_opt.rcv_wscale) {
3353 		window = free_space;
3354 
3355 		/* Advertise enough space so that it won't get scaled away.
3356 		 * Import case: prevent zero window announcement if
3357 		 * 1<<rcv_wscale > mss.
3358 		 */
3359 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3360 	} else {
3361 		window = tp->rcv_wnd;
3362 		/* Get the largest window that is a nice multiple of mss.
3363 		 * Window clamp already applied above.
3364 		 * If our current window offering is within 1 mss of the
3365 		 * free space we just keep it. This prevents the divide
3366 		 * and multiply from happening most of the time.
3367 		 * We also don't do any window rounding when the free space
3368 		 * is too small.
3369 		 */
3370 		if (window <= free_space - mss || window > free_space)
3371 			window = rounddown(free_space, mss);
3372 		else if (mss == full_space &&
3373 			 free_space > window + (full_space >> 1))
3374 			window = free_space;
3375 	}
3376 
3377 	return window;
3378 
3379 shrink_window_allowed:
3380 	/* new window should always be an exact multiple of scaling factor */
3381 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3382 
3383 	if (free_space < (full_space >> 1)) {
3384 		icsk->icsk_ack.quick = 0;
3385 
3386 		if (tcp_under_memory_pressure(sk))
3387 			tcp_adjust_rcv_ssthresh(sk);
3388 
3389 		/* if free space is too low, return a zero window */
3390 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3391 			free_space < (1 << tp->rx_opt.rcv_wscale))
3392 			return 0;
3393 	}
3394 
3395 	if (free_space > tp->rcv_ssthresh) {
3396 		free_space = tp->rcv_ssthresh;
3397 		/* new window should always be an exact multiple of scaling factor
3398 		 *
3399 		 * For this case, we ALIGN "up" (increase free_space) because
3400 		 * we know free_space is not zero here, it has been reduced from
3401 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3402 		 * (unlike sk_rcvbuf).
3403 		 */
3404 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3405 	}
3406 
3407 	return free_space;
3408 }
3409 
3410 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3411 			     const struct sk_buff *next_skb)
3412 {
3413 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3414 		const struct skb_shared_info *next_shinfo =
3415 			skb_shinfo(next_skb);
3416 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3417 
3418 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3419 		shinfo->tskey = next_shinfo->tskey;
3420 		TCP_SKB_CB(skb)->txstamp_ack |=
3421 			TCP_SKB_CB(next_skb)->txstamp_ack;
3422 	}
3423 }
3424 
3425 /* Collapses two adjacent SKB's during retransmission. */
3426 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3427 {
3428 	struct tcp_sock *tp = tcp_sk(sk);
3429 	struct sk_buff *next_skb = skb_rb_next(skb);
3430 	int next_skb_size;
3431 
3432 	next_skb_size = next_skb->len;
3433 
3434 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3435 
3436 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3437 		return false;
3438 
3439 	tcp_highest_sack_replace(sk, next_skb, skb);
3440 
3441 	/* Update sequence range on original skb. */
3442 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3443 
3444 	/* Merge over control information. This moves PSH/FIN etc. over */
3445 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3446 
3447 	/* All done, get rid of second SKB and account for it so
3448 	 * packet counting does not break.
3449 	 */
3450 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3451 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3452 
3453 	/* changed transmit queue under us so clear hints */
3454 	if (next_skb == tp->retransmit_skb_hint)
3455 		tp->retransmit_skb_hint = skb;
3456 
3457 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3458 
3459 	tcp_skb_collapse_tstamp(skb, next_skb);
3460 
3461 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3462 	return true;
3463 }
3464 
3465 /* Check if coalescing SKBs is legal. */
3466 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3467 {
3468 	if (tcp_skb_pcount(skb) > 1)
3469 		return false;
3470 	if (skb_cloned(skb))
3471 		return false;
3472 	if (!skb_frags_readable(skb))
3473 		return false;
3474 	/* Some heuristics for collapsing over SACK'd could be invented */
3475 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3476 		return false;
3477 
3478 	return true;
3479 }
3480 
3481 /* Collapse packets in the retransmit queue to make to create
3482  * less packets on the wire. This is only done on retransmission.
3483  */
3484 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3485 				     int space)
3486 {
3487 	struct tcp_sock *tp = tcp_sk(sk);
3488 	struct sk_buff *skb = to, *tmp;
3489 	bool first = true;
3490 
3491 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3492 		return;
3493 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3494 		return;
3495 
3496 	skb_rbtree_walk_from_safe(skb, tmp) {
3497 		if (!tcp_can_collapse(sk, skb))
3498 			break;
3499 
3500 		if (!tcp_skb_can_collapse(to, skb))
3501 			break;
3502 
3503 		space -= skb->len;
3504 
3505 		if (first) {
3506 			first = false;
3507 			continue;
3508 		}
3509 
3510 		if (space < 0)
3511 			break;
3512 
3513 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3514 			break;
3515 
3516 		if (!tcp_collapse_retrans(sk, to))
3517 			break;
3518 	}
3519 }
3520 
3521 /* This retransmits one SKB.  Policy decisions and retransmit queue
3522  * state updates are done by the caller.  Returns non-zero if an
3523  * error occurred which prevented the send.
3524  */
3525 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3526 {
3527 	struct inet_connection_sock *icsk = inet_csk(sk);
3528 	struct tcp_sock *tp = tcp_sk(sk);
3529 	unsigned int cur_mss;
3530 	int diff, len, err;
3531 	int avail_wnd;
3532 
3533 	/* Inconclusive MTU probe */
3534 	if (icsk->icsk_mtup.probe_size)
3535 		icsk->icsk_mtup.probe_size = 0;
3536 
3537 	if (skb_still_in_host_queue(sk, skb)) {
3538 		err = -EBUSY;
3539 		goto out;
3540 	}
3541 
3542 start:
3543 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3544 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3545 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3546 			TCP_SKB_CB(skb)->seq++;
3547 			goto start;
3548 		}
3549 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3550 			WARN_ON_ONCE(1);
3551 			err = -EINVAL;
3552 			goto out;
3553 		}
3554 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) {
3555 			err = -ENOMEM;
3556 			goto out;
3557 		}
3558 	}
3559 
3560 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) {
3561 		err = -EHOSTUNREACH; /* Routing failure or similar. */
3562 		goto out;
3563 	}
3564 
3565 	cur_mss = tcp_current_mss(sk);
3566 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3567 
3568 	/* If receiver has shrunk his window, and skb is out of
3569 	 * new window, do not retransmit it. The exception is the
3570 	 * case, when window is shrunk to zero. In this case
3571 	 * our retransmit of one segment serves as a zero window probe.
3572 	 */
3573 	if (avail_wnd <= 0) {
3574 		if (TCP_SKB_CB(skb)->seq != tp->snd_una) {
3575 			err = -EAGAIN;
3576 			goto out;
3577 		}
3578 		avail_wnd = cur_mss;
3579 	}
3580 
3581 	len = cur_mss * segs;
3582 	if (len > avail_wnd) {
3583 		len = rounddown(avail_wnd, cur_mss);
3584 		if (!len)
3585 			len = avail_wnd;
3586 	}
3587 	if (skb->len > len) {
3588 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3589 				 cur_mss, GFP_ATOMIC)) {
3590 			err = -ENOMEM;  /* We'll try again later. */
3591 			goto out;
3592 		}
3593 	} else {
3594 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) {
3595 			err = -ENOMEM;
3596 			goto out;
3597 		}
3598 
3599 		diff = tcp_skb_pcount(skb);
3600 		tcp_set_skb_tso_segs(skb, cur_mss);
3601 		diff -= tcp_skb_pcount(skb);
3602 		if (diff)
3603 			tcp_adjust_pcount(sk, skb, diff);
3604 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3605 		if (skb->len < avail_wnd)
3606 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3607 	}
3608 
3609 	/* RFC3168, section 6.1.1.1. ECN fallback
3610 	 * As AccECN uses the same SYN flags (+ AE), this check covers both
3611 	 * cases.
3612 	 */
3613 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3614 		tcp_ecn_clear_syn(sk, skb);
3615 
3616 	/* Update global and local TCP statistics. */
3617 	segs = tcp_skb_pcount(skb);
3618 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3619 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3620 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3621 	tp->total_retrans += segs;
3622 	tp->bytes_retrans += skb->len;
3623 
3624 	/* make sure skb->data is aligned on arches that require it
3625 	 * and check if ack-trimming & collapsing extended the headroom
3626 	 * beyond what csum_start can cover.
3627 	 */
3628 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3629 		     skb_headroom(skb) >= 0xFFFF)) {
3630 		struct sk_buff *nskb;
3631 
3632 		tcp_skb_tsorted_save(skb) {
3633 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3634 			if (nskb) {
3635 				nskb->dev = NULL;
3636 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3637 			} else {
3638 				err = -ENOBUFS;
3639 			}
3640 		} tcp_skb_tsorted_restore(skb);
3641 
3642 		if (!err) {
3643 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3644 			tcp_rate_skb_sent(sk, skb);
3645 		}
3646 	} else {
3647 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3648 	}
3649 
3650 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3651 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3652 				  TCP_SKB_CB(skb)->seq, segs, err);
3653 
3654 	if (unlikely(err) && err != -EBUSY)
3655 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3656 
3657 	/* To avoid taking spuriously low RTT samples based on a timestamp
3658 	 * for a transmit that never happened, always mark EVER_RETRANS
3659 	 */
3660 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3661 
3662 out:
3663 	trace_tcp_retransmit_skb(sk, skb, err);
3664 	return err;
3665 }
3666 
3667 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3668 {
3669 	struct tcp_sock *tp = tcp_sk(sk);
3670 	int err = __tcp_retransmit_skb(sk, skb, segs);
3671 
3672 	if (err == 0) {
3673 #if FASTRETRANS_DEBUG > 0
3674 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3675 			net_dbg_ratelimited("retrans_out leaked\n");
3676 		}
3677 #endif
3678 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3679 		tp->retrans_out += tcp_skb_pcount(skb);
3680 	}
3681 
3682 	/* Save stamp of the first (attempted) retransmit. */
3683 	if (!tp->retrans_stamp)
3684 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3685 
3686 	if (tp->undo_retrans < 0)
3687 		tp->undo_retrans = 0;
3688 	tp->undo_retrans += tcp_skb_pcount(skb);
3689 	return err;
3690 }
3691 
3692 /* This gets called after a retransmit timeout, and the initially
3693  * retransmitted data is acknowledged.  It tries to continue
3694  * resending the rest of the retransmit queue, until either
3695  * we've sent it all or the congestion window limit is reached.
3696  */
3697 void tcp_xmit_retransmit_queue(struct sock *sk)
3698 {
3699 	const struct inet_connection_sock *icsk = inet_csk(sk);
3700 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3701 	struct tcp_sock *tp = tcp_sk(sk);
3702 	bool rearm_timer = false;
3703 	u32 max_segs;
3704 	int mib_idx;
3705 
3706 	if (!tp->packets_out)
3707 		return;
3708 
3709 	rtx_head = tcp_rtx_queue_head(sk);
3710 	skb = tp->retransmit_skb_hint ?: rtx_head;
3711 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3712 	skb_rbtree_walk_from(skb) {
3713 		__u8 sacked;
3714 		int segs;
3715 
3716 		if (tcp_pacing_check(sk))
3717 			break;
3718 
3719 		/* we could do better than to assign each time */
3720 		if (!hole)
3721 			tp->retransmit_skb_hint = skb;
3722 
3723 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3724 		if (segs <= 0)
3725 			break;
3726 		sacked = TCP_SKB_CB(skb)->sacked;
3727 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3728 		 * we need to make sure not sending too bigs TSO packets
3729 		 */
3730 		segs = min_t(int, segs, max_segs);
3731 
3732 		if (tp->retrans_out >= tp->lost_out) {
3733 			break;
3734 		} else if (!(sacked & TCPCB_LOST)) {
3735 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3736 				hole = skb;
3737 			continue;
3738 
3739 		} else {
3740 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3741 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3742 			else
3743 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3744 		}
3745 
3746 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3747 			continue;
3748 
3749 		if (tcp_small_queue_check(sk, skb, 1))
3750 			break;
3751 
3752 		if (tcp_retransmit_skb(sk, skb, segs))
3753 			break;
3754 
3755 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3756 
3757 		if (tcp_in_cwnd_reduction(sk))
3758 			tp->prr_out += tcp_skb_pcount(skb);
3759 
3760 		if (skb == rtx_head &&
3761 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3762 			rearm_timer = true;
3763 
3764 	}
3765 	if (rearm_timer)
3766 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3767 				     inet_csk(sk)->icsk_rto, true);
3768 }
3769 
3770 /* We allow to exceed memory limits for FIN packets to expedite
3771  * connection tear down and (memory) recovery.
3772  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3773  * or even be forced to close flow without any FIN.
3774  * In general, we want to allow one skb per socket to avoid hangs
3775  * with edge trigger epoll()
3776  */
3777 void sk_forced_mem_schedule(struct sock *sk, int size)
3778 {
3779 	int delta, amt;
3780 
3781 	delta = size - sk->sk_forward_alloc;
3782 	if (delta <= 0)
3783 		return;
3784 
3785 	amt = sk_mem_pages(delta);
3786 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3787 
3788 	if (mem_cgroup_sk_enabled(sk))
3789 		mem_cgroup_sk_charge(sk, amt, gfp_memcg_charge() | __GFP_NOFAIL);
3790 
3791 	if (sk->sk_bypass_prot_mem)
3792 		return;
3793 
3794 	sk_memory_allocated_add(sk, amt);
3795 }
3796 
3797 /* Send a FIN. The caller locks the socket for us.
3798  * We should try to send a FIN packet really hard, but eventually give up.
3799  */
3800 void tcp_send_fin(struct sock *sk)
3801 {
3802 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3803 	struct tcp_sock *tp = tcp_sk(sk);
3804 
3805 	/* Optimization, tack on the FIN if we have one skb in write queue and
3806 	 * this skb was not yet sent, or we are under memory pressure.
3807 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3808 	 * as TCP stack thinks it has already been transmitted.
3809 	 */
3810 	tskb = tail;
3811 	if (!tskb && tcp_under_memory_pressure(sk))
3812 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3813 
3814 	if (tskb) {
3815 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3816 		TCP_SKB_CB(tskb)->end_seq++;
3817 		tp->write_seq++;
3818 		if (!tail) {
3819 			/* This means tskb was already sent.
3820 			 * Pretend we included the FIN on previous transmit.
3821 			 * We need to set tp->snd_nxt to the value it would have
3822 			 * if FIN had been sent. This is because retransmit path
3823 			 * does not change tp->snd_nxt.
3824 			 */
3825 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3826 			return;
3827 		}
3828 	} else {
3829 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3830 				       sk_gfp_mask(sk, GFP_ATOMIC |
3831 						       __GFP_NOWARN));
3832 		if (unlikely(!skb))
3833 			return;
3834 
3835 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3836 		skb_reserve(skb, MAX_TCP_HEADER);
3837 		sk_forced_mem_schedule(sk, skb->truesize);
3838 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3839 		tcp_init_nondata_skb(skb, sk, tp->write_seq,
3840 				     TCPHDR_ACK | TCPHDR_FIN);
3841 		tcp_queue_skb(sk, skb);
3842 	}
3843 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3844 }
3845 
3846 /* We get here when a process closes a file descriptor (either due to
3847  * an explicit close() or as a byproduct of exit()'ing) and there
3848  * was unread data in the receive queue.  This behavior is recommended
3849  * by RFC 2525, section 2.17.  -DaveM
3850  */
3851 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3852 			   enum sk_rst_reason reason)
3853 {
3854 	struct sk_buff *skb;
3855 
3856 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3857 
3858 	/* NOTE: No TCP options attached and we never retransmit this. */
3859 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3860 	if (!skb) {
3861 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3862 		return;
3863 	}
3864 
3865 	/* Reserve space for headers and prepare control bits. */
3866 	skb_reserve(skb, MAX_TCP_HEADER);
3867 	tcp_init_nondata_skb(skb, sk, tcp_acceptable_seq(sk),
3868 			     TCPHDR_ACK | TCPHDR_RST);
3869 	tcp_mstamp_refresh(tcp_sk(sk));
3870 	/* Send it off. */
3871 	if (tcp_transmit_skb(sk, skb, 0, priority))
3872 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3873 
3874 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3875 	 * skb here is different to the troublesome skb, so use NULL
3876 	 */
3877 	trace_tcp_send_reset(sk, NULL, reason);
3878 }
3879 
3880 /* Send a crossed SYN-ACK during socket establishment.
3881  * WARNING: This routine must only be called when we have already sent
3882  * a SYN packet that crossed the incoming SYN that caused this routine
3883  * to get called. If this assumption fails then the initial rcv_wnd
3884  * and rcv_wscale values will not be correct.
3885  */
3886 int tcp_send_synack(struct sock *sk)
3887 {
3888 	struct sk_buff *skb;
3889 
3890 	skb = tcp_rtx_queue_head(sk);
3891 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3892 		pr_err("%s: wrong queue state\n", __func__);
3893 		return -EFAULT;
3894 	}
3895 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3896 		if (skb_cloned(skb)) {
3897 			struct sk_buff *nskb;
3898 
3899 			tcp_skb_tsorted_save(skb) {
3900 				nskb = skb_copy(skb, GFP_ATOMIC);
3901 			} tcp_skb_tsorted_restore(skb);
3902 			if (!nskb)
3903 				return -ENOMEM;
3904 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3905 			tcp_highest_sack_replace(sk, skb, nskb);
3906 			tcp_rtx_queue_unlink_and_free(skb, sk);
3907 			__skb_header_release(nskb);
3908 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3909 			sk_wmem_queued_add(sk, nskb->truesize);
3910 			sk_mem_charge(sk, nskb->truesize);
3911 			skb = nskb;
3912 		}
3913 
3914 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3915 		tcp_ecn_send_synack(sk, skb);
3916 	}
3917 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3918 }
3919 
3920 /**
3921  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3922  * @sk: listener socket
3923  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3924  *       should not use it again.
3925  * @req: request_sock pointer
3926  * @foc: cookie for tcp fast open
3927  * @synack_type: Type of synack to prepare
3928  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3929  */
3930 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3931 				struct request_sock *req,
3932 				struct tcp_fastopen_cookie *foc,
3933 				enum tcp_synack_type synack_type,
3934 				struct sk_buff *syn_skb)
3935 {
3936 	struct inet_request_sock *ireq = inet_rsk(req);
3937 	const struct tcp_sock *tp = tcp_sk(sk);
3938 	struct tcp_out_options opts;
3939 	struct tcp_key key = {};
3940 	struct sk_buff *skb;
3941 	int tcp_header_size;
3942 	struct tcphdr *th;
3943 	int mss;
3944 	u64 now;
3945 
3946 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3947 	if (unlikely(!skb)) {
3948 		dst_release(dst);
3949 		return NULL;
3950 	}
3951 	/* Reserve space for headers. */
3952 	skb_reserve(skb, MAX_TCP_HEADER);
3953 
3954 	switch (synack_type) {
3955 	case TCP_SYNACK_NORMAL:
3956 		skb_set_owner_edemux(skb, req_to_sk(req));
3957 		break;
3958 	case TCP_SYNACK_COOKIE:
3959 		/* Under synflood, we do not attach skb to a socket,
3960 		 * to avoid false sharing.
3961 		 */
3962 		break;
3963 	case TCP_SYNACK_FASTOPEN:
3964 		/* sk is a const pointer, because we want to express multiple
3965 		 * cpu might call us concurrently.
3966 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3967 		 */
3968 		skb_set_owner_w(skb, (struct sock *)sk);
3969 		break;
3970 	}
3971 	skb_dst_set(skb, dst);
3972 
3973 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3974 
3975 	memset(&opts, 0, sizeof(opts));
3976 	now = tcp_clock_ns();
3977 #ifdef CONFIG_SYN_COOKIES
3978 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3979 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3980 				      SKB_CLOCK_MONOTONIC);
3981 	else
3982 #endif
3983 	{
3984 		skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3985 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3986 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3987 	}
3988 
3989 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3990 	rcu_read_lock();
3991 #endif
3992 	if (tcp_rsk_used_ao(req)) {
3993 #ifdef CONFIG_TCP_AO
3994 		struct tcp_ao_key *ao_key = NULL;
3995 		u8 keyid = tcp_rsk(req)->ao_keyid;
3996 		u8 rnext = tcp_rsk(req)->ao_rcv_next;
3997 
3998 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3999 							    keyid, -1);
4000 		/* If there is no matching key - avoid sending anything,
4001 		 * especially usigned segments. It could try harder and lookup
4002 		 * for another peer-matching key, but the peer has requested
4003 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
4004 		 */
4005 		if (unlikely(!ao_key)) {
4006 			trace_tcp_ao_synack_no_key(sk, keyid, rnext);
4007 			rcu_read_unlock();
4008 			kfree_skb(skb);
4009 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
4010 					     keyid);
4011 			return NULL;
4012 		}
4013 		key.ao_key = ao_key;
4014 		key.type = TCP_KEY_AO;
4015 #endif
4016 	} else {
4017 #ifdef CONFIG_TCP_MD5SIG
4018 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
4019 					req_to_sk(req));
4020 		if (key.md5_key)
4021 			key.type = TCP_KEY_MD5;
4022 #endif
4023 	}
4024 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
4025 	/* bpf program will be interested in the tcp_flags */
4026 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
4027 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
4028 					     &key, foc, synack_type, syn_skb)
4029 					+ sizeof(*th);
4030 
4031 	skb_push(skb, tcp_header_size);
4032 	skb_reset_transport_header(skb);
4033 
4034 	th = (struct tcphdr *)skb->data;
4035 	memset(th, 0, sizeof(struct tcphdr));
4036 	th->syn = 1;
4037 	th->ack = 1;
4038 	tcp_ecn_make_synack(req, th);
4039 	th->source = htons(ireq->ir_num);
4040 	th->dest = ireq->ir_rmt_port;
4041 	skb->mark = ireq->ir_mark;
4042 	skb->ip_summed = CHECKSUM_PARTIAL;
4043 	th->seq = htonl(tcp_rsk(req)->snt_isn);
4044 	/* XXX data is queued and acked as is. No buffer/window check */
4045 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
4046 
4047 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
4048 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
4049 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
4050 	th->doff = (tcp_header_size >> 2);
4051 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
4052 
4053 	/* Okay, we have all we need - do the md5 hash if needed */
4054 	if (tcp_key_is_md5(&key)) {
4055 #ifdef CONFIG_TCP_MD5SIG
4056 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
4057 					key.md5_key, req_to_sk(req), skb);
4058 #endif
4059 	} else if (tcp_key_is_ao(&key)) {
4060 #ifdef CONFIG_TCP_AO
4061 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
4062 					key.ao_key, req, skb,
4063 					opts.hash_location - (u8 *)th, 0);
4064 #endif
4065 	}
4066 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4067 	rcu_read_unlock();
4068 #endif
4069 
4070 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
4071 				synack_type, &opts);
4072 
4073 	skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
4074 	tcp_add_tx_delay(skb, tp);
4075 
4076 	return skb;
4077 }
4078 EXPORT_IPV6_MOD(tcp_make_synack);
4079 
4080 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
4081 {
4082 	struct inet_connection_sock *icsk = inet_csk(sk);
4083 	const struct tcp_congestion_ops *ca;
4084 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
4085 
4086 	if (ca_key == TCP_CA_UNSPEC)
4087 		return;
4088 
4089 	rcu_read_lock();
4090 	ca = tcp_ca_find_key(ca_key);
4091 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
4092 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
4093 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
4094 		icsk->icsk_ca_ops = ca;
4095 	}
4096 	rcu_read_unlock();
4097 }
4098 
4099 /* Do all connect socket setups that can be done AF independent. */
4100 static void tcp_connect_init(struct sock *sk)
4101 {
4102 	const struct dst_entry *dst = __sk_dst_get(sk);
4103 	struct tcp_sock *tp = tcp_sk(sk);
4104 	__u8 rcv_wscale;
4105 	u16 user_mss;
4106 	u32 rcv_wnd;
4107 
4108 	/* We'll fix this up when we get a response from the other end.
4109 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
4110 	 */
4111 	tp->tcp_header_len = sizeof(struct tcphdr);
4112 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
4113 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
4114 
4115 	tcp_ao_connect_init(sk);
4116 
4117 	/* If user gave his TCP_MAXSEG, record it to clamp */
4118 	user_mss = READ_ONCE(tp->rx_opt.user_mss);
4119 	if (user_mss)
4120 		tp->rx_opt.mss_clamp = user_mss;
4121 	tp->max_window = 0;
4122 	tcp_mtup_init(sk);
4123 	tcp_sync_mss(sk, dst_mtu(dst));
4124 
4125 	tcp_ca_dst_init(sk, dst);
4126 
4127 	if (!tp->window_clamp)
4128 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
4129 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
4130 
4131 	tcp_initialize_rcv_mss(sk);
4132 
4133 	/* limit the window selection if the user enforce a smaller rx buffer */
4134 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
4135 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
4136 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
4137 
4138 	rcv_wnd = tcp_rwnd_init_bpf(sk);
4139 	if (rcv_wnd == 0)
4140 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
4141 
4142 	tcp_select_initial_window(sk, tcp_full_space(sk),
4143 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
4144 				  &tp->rcv_wnd,
4145 				  &tp->window_clamp,
4146 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
4147 				  &rcv_wscale,
4148 				  rcv_wnd);
4149 
4150 	tp->rx_opt.rcv_wscale = rcv_wscale;
4151 	tp->rcv_ssthresh = tp->rcv_wnd;
4152 
4153 	WRITE_ONCE(sk->sk_err, 0);
4154 	sock_reset_flag(sk, SOCK_DONE);
4155 	tp->snd_wnd = 0;
4156 	tcp_init_wl(tp, 0);
4157 	tcp_write_queue_purge(sk);
4158 	tp->snd_una = tp->write_seq;
4159 	tp->snd_sml = tp->write_seq;
4160 	tp->snd_up = tp->write_seq;
4161 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4162 
4163 	if (likely(!tp->repair))
4164 		tp->rcv_nxt = 0;
4165 	else
4166 		tp->rcv_tstamp = tcp_jiffies32;
4167 	tp->rcv_wup = tp->rcv_nxt;
4168 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
4169 
4170 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
4171 	WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
4172 	tcp_clear_retrans(tp);
4173 }
4174 
4175 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
4176 {
4177 	struct tcp_sock *tp = tcp_sk(sk);
4178 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
4179 
4180 	tcb->end_seq += skb->len;
4181 	__skb_header_release(skb);
4182 	sk_wmem_queued_add(sk, skb->truesize);
4183 	sk_mem_charge(sk, skb->truesize);
4184 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
4185 	tp->packets_out += tcp_skb_pcount(skb);
4186 }
4187 
4188 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
4189  * queue a data-only packet after the regular SYN, such that regular SYNs
4190  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
4191  * only the SYN sequence, the data are retransmitted in the first ACK.
4192  * If cookie is not cached or other error occurs, falls back to send a
4193  * regular SYN with Fast Open cookie request option.
4194  */
4195 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
4196 {
4197 	struct inet_connection_sock *icsk = inet_csk(sk);
4198 	struct tcp_sock *tp = tcp_sk(sk);
4199 	struct tcp_fastopen_request *fo = tp->fastopen_req;
4200 	struct page_frag *pfrag = sk_page_frag(sk);
4201 	struct sk_buff *syn_data;
4202 	int space, err = 0;
4203 
4204 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
4205 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
4206 		goto fallback;
4207 
4208 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
4209 	 * user-MSS. Reserve maximum option space for middleboxes that add
4210 	 * private TCP options. The cost is reduced data space in SYN :(
4211 	 */
4212 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
4213 	/* Sync mss_cache after updating the mss_clamp */
4214 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4215 
4216 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
4217 		MAX_TCP_OPTION_SPACE;
4218 
4219 	space = min_t(size_t, space, fo->size);
4220 
4221 	if (space &&
4222 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
4223 				  pfrag, sk->sk_allocation))
4224 		goto fallback;
4225 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4226 	if (!syn_data)
4227 		goto fallback;
4228 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4229 	if (space) {
4230 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
4231 		space = tcp_wmem_schedule(sk, space);
4232 	}
4233 	if (space) {
4234 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
4235 					    space, &fo->data->msg_iter);
4236 		if (unlikely(!space)) {
4237 			tcp_skb_tsorted_anchor_cleanup(syn_data);
4238 			kfree_skb(syn_data);
4239 			goto fallback;
4240 		}
4241 		skb_fill_page_desc(syn_data, 0, pfrag->page,
4242 				   pfrag->offset, space);
4243 		page_ref_inc(pfrag->page);
4244 		pfrag->offset += space;
4245 		skb_len_add(syn_data, space);
4246 		skb_zcopy_set(syn_data, fo->uarg, NULL);
4247 	}
4248 	/* No more data pending in inet_wait_for_connect() */
4249 	if (space == fo->size)
4250 		fo->data = NULL;
4251 	fo->copied = space;
4252 
4253 	tcp_connect_queue_skb(sk, syn_data);
4254 	if (syn_data->len)
4255 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4256 
4257 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4258 
4259 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4260 
4261 	/* Now full SYN+DATA was cloned and sent (or not),
4262 	 * remove the SYN from the original skb (syn_data)
4263 	 * we keep in write queue in case of a retransmit, as we
4264 	 * also have the SYN packet (with no data) in the same queue.
4265 	 */
4266 	TCP_SKB_CB(syn_data)->seq++;
4267 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4268 	if (!err) {
4269 		tp->syn_data = (fo->copied > 0);
4270 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4271 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4272 		goto done;
4273 	}
4274 
4275 	/* data was not sent, put it in write_queue */
4276 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4277 	tp->packets_out -= tcp_skb_pcount(syn_data);
4278 
4279 fallback:
4280 	/* Send a regular SYN with Fast Open cookie request option */
4281 	if (fo->cookie.len > 0)
4282 		fo->cookie.len = 0;
4283 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4284 	if (err)
4285 		tp->syn_fastopen = 0;
4286 done:
4287 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4288 	return err;
4289 }
4290 
4291 /* Build a SYN and send it off. */
4292 int tcp_connect(struct sock *sk)
4293 {
4294 	struct tcp_sock *tp = tcp_sk(sk);
4295 	struct sk_buff *buff;
4296 	int err;
4297 
4298 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4299 
4300 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4301 	/* Has to be checked late, after setting daddr/saddr/ops.
4302 	 * Return error if the peer has both a md5 and a tcp-ao key
4303 	 * configured as this is ambiguous.
4304 	 */
4305 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4306 					       lockdep_sock_is_held(sk)))) {
4307 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4308 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4309 		struct tcp_ao_info *ao_info;
4310 
4311 		ao_info = rcu_dereference_check(tp->ao_info,
4312 						lockdep_sock_is_held(sk));
4313 		if (ao_info) {
4314 			/* This is an extra check: tcp_ao_required() in
4315 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4316 			 * md5 keys on ao_required socket.
4317 			 */
4318 			needs_ao |= ao_info->ao_required;
4319 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4320 		}
4321 		if (needs_md5 && needs_ao)
4322 			return -EKEYREJECTED;
4323 
4324 		/* If we have a matching md5 key and no matching tcp-ao key
4325 		 * then free up ao_info if allocated.
4326 		 */
4327 		if (needs_md5) {
4328 			tcp_ao_destroy_sock(sk, false);
4329 		} else if (needs_ao) {
4330 			tcp_clear_md5_list(sk);
4331 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4332 						  lockdep_sock_is_held(sk)));
4333 		}
4334 	}
4335 #endif
4336 #ifdef CONFIG_TCP_AO
4337 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4338 					       lockdep_sock_is_held(sk)))) {
4339 		/* Don't allow connecting if ao is configured but no
4340 		 * matching key is found.
4341 		 */
4342 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4343 			return -EKEYREJECTED;
4344 	}
4345 #endif
4346 
4347 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4348 		return -EHOSTUNREACH; /* Routing failure or similar. */
4349 
4350 	tcp_connect_init(sk);
4351 
4352 	if (unlikely(tp->repair)) {
4353 		tcp_finish_connect(sk, NULL);
4354 		return 0;
4355 	}
4356 
4357 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4358 	if (unlikely(!buff))
4359 		return -ENOBUFS;
4360 
4361 	/* SYN eats a sequence byte, write_seq updated by
4362 	 * tcp_connect_queue_skb().
4363 	 */
4364 	tcp_init_nondata_skb(buff, sk, tp->write_seq, TCPHDR_SYN);
4365 	tcp_mstamp_refresh(tp);
4366 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4367 	tcp_connect_queue_skb(sk, buff);
4368 	tcp_ecn_send_syn(sk, buff);
4369 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4370 
4371 	/* Send off SYN; include data in Fast Open. */
4372 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4373 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4374 	if (err == -ECONNREFUSED)
4375 		return err;
4376 
4377 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4378 	 * in order to make this packet get counted in tcpOutSegs.
4379 	 */
4380 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4381 	tp->pushed_seq = tp->write_seq;
4382 	buff = tcp_send_head(sk);
4383 	if (unlikely(buff)) {
4384 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4385 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4386 	}
4387 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4388 
4389 	/* Timer for repeating the SYN until an answer. */
4390 	tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4391 			     inet_csk(sk)->icsk_rto, false);
4392 	return 0;
4393 }
4394 EXPORT_SYMBOL(tcp_connect);
4395 
4396 u32 tcp_delack_max(const struct sock *sk)
4397 {
4398 	u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4399 
4400 	return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min);
4401 }
4402 
4403 /* Send out a delayed ack, the caller does the policy checking
4404  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4405  * for details.
4406  */
4407 void tcp_send_delayed_ack(struct sock *sk)
4408 {
4409 	struct inet_connection_sock *icsk = inet_csk(sk);
4410 	int ato = icsk->icsk_ack.ato;
4411 	unsigned long timeout;
4412 
4413 	if (ato > TCP_DELACK_MIN) {
4414 		const struct tcp_sock *tp = tcp_sk(sk);
4415 		int max_ato = HZ / 2;
4416 
4417 		if (inet_csk_in_pingpong_mode(sk) ||
4418 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4419 			max_ato = TCP_DELACK_MAX;
4420 
4421 		/* Slow path, intersegment interval is "high". */
4422 
4423 		/* If some rtt estimate is known, use it to bound delayed ack.
4424 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4425 		 * directly.
4426 		 */
4427 		if (tp->srtt_us) {
4428 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4429 					TCP_DELACK_MIN);
4430 
4431 			if (rtt < max_ato)
4432 				max_ato = rtt;
4433 		}
4434 
4435 		ato = min(ato, max_ato);
4436 	}
4437 
4438 	ato = min_t(u32, ato, tcp_delack_max(sk));
4439 
4440 	/* Stay within the limit we were given */
4441 	timeout = jiffies + ato;
4442 
4443 	/* Use new timeout only if there wasn't a older one earlier. */
4444 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4445 		/* If delack timer is about to expire, send ACK now. */
4446 		if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) {
4447 			tcp_send_ack(sk);
4448 			return;
4449 		}
4450 
4451 		if (!time_before(timeout, icsk_delack_timeout(icsk)))
4452 			timeout = icsk_delack_timeout(icsk);
4453 	}
4454 	smp_store_release(&icsk->icsk_ack.pending,
4455 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
4456 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4457 }
4458 
4459 /* This routine sends an ack and also updates the window. */
4460 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags)
4461 {
4462 	struct sk_buff *buff;
4463 
4464 	/* If we have been reset, we may not send again. */
4465 	if (sk->sk_state == TCP_CLOSE)
4466 		return;
4467 
4468 	/* We are not putting this on the write queue, so
4469 	 * tcp_transmit_skb() will set the ownership to this
4470 	 * sock.
4471 	 */
4472 	buff = alloc_skb(MAX_TCP_HEADER,
4473 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4474 	if (unlikely(!buff)) {
4475 		struct inet_connection_sock *icsk = inet_csk(sk);
4476 		unsigned long delay;
4477 
4478 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4479 		if (delay < tcp_rto_max(sk))
4480 			icsk->icsk_ack.retry++;
4481 		inet_csk_schedule_ack(sk);
4482 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4483 		tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false);
4484 		return;
4485 	}
4486 
4487 	/* Reserve space for headers and prepare control bits. */
4488 	skb_reserve(buff, MAX_TCP_HEADER);
4489 	tcp_init_nondata_skb(buff, sk,
4490 			     tcp_acceptable_seq(sk), TCPHDR_ACK | flags);
4491 
4492 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4493 	 * too much.
4494 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4495 	 */
4496 	skb_set_tcp_pure_ack(buff);
4497 
4498 	/* Send it off, this clears delayed acks for us. */
4499 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4500 }
4501 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4502 
4503 void tcp_send_ack(struct sock *sk)
4504 {
4505 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0);
4506 }
4507 
4508 /* This routine sends a packet with an out of date sequence
4509  * number. It assumes the other end will try to ack it.
4510  *
4511  * Question: what should we make while urgent mode?
4512  * 4.4BSD forces sending single byte of data. We cannot send
4513  * out of window data, because we have SND.NXT==SND.MAX...
4514  *
4515  * Current solution: to send TWO zero-length segments in urgent mode:
4516  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4517  * out-of-date with SND.UNA-1 to probe window.
4518  */
4519 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4520 {
4521 	struct tcp_sock *tp = tcp_sk(sk);
4522 	struct sk_buff *skb;
4523 
4524 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4525 	skb = alloc_skb(MAX_TCP_HEADER,
4526 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4527 	if (!skb)
4528 		return -1;
4529 
4530 	/* Reserve space for headers and set control bits. */
4531 	skb_reserve(skb, MAX_TCP_HEADER);
4532 	/* Use a previous sequence.  This should cause the other
4533 	 * end to send an ack.  Don't queue or clone SKB, just
4534 	 * send it.
4535 	 */
4536 	tcp_init_nondata_skb(skb, sk, tp->snd_una - !urgent, TCPHDR_ACK);
4537 	NET_INC_STATS(sock_net(sk), mib);
4538 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4539 }
4540 
4541 /* Called from setsockopt( ... TCP_REPAIR ) */
4542 void tcp_send_window_probe(struct sock *sk)
4543 {
4544 	if (sk->sk_state == TCP_ESTABLISHED) {
4545 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4546 		tcp_mstamp_refresh(tcp_sk(sk));
4547 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4548 	}
4549 }
4550 
4551 /* Initiate keepalive or window probe from timer. */
4552 int tcp_write_wakeup(struct sock *sk, int mib)
4553 {
4554 	struct tcp_sock *tp = tcp_sk(sk);
4555 	struct sk_buff *skb;
4556 
4557 	if (sk->sk_state == TCP_CLOSE)
4558 		return -1;
4559 
4560 	skb = tcp_send_head(sk);
4561 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4562 		int err;
4563 		unsigned int mss = tcp_current_mss(sk);
4564 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4565 
4566 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4567 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4568 
4569 		/* We are probing the opening of a window
4570 		 * but the window size is != 0
4571 		 * must have been a result SWS avoidance ( sender )
4572 		 */
4573 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4574 		    skb->len > mss) {
4575 			seg_size = min(seg_size, mss);
4576 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4577 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4578 					 skb, seg_size, mss, GFP_ATOMIC))
4579 				return -1;
4580 		} else if (!tcp_skb_pcount(skb))
4581 			tcp_set_skb_tso_segs(skb, mss);
4582 
4583 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4584 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4585 		if (!err)
4586 			tcp_event_new_data_sent(sk, skb);
4587 		return err;
4588 	} else {
4589 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4590 			tcp_xmit_probe_skb(sk, 1, mib);
4591 		return tcp_xmit_probe_skb(sk, 0, mib);
4592 	}
4593 }
4594 
4595 /* A window probe timeout has occurred.  If window is not closed send
4596  * a partial packet else a zero probe.
4597  */
4598 void tcp_send_probe0(struct sock *sk)
4599 {
4600 	struct inet_connection_sock *icsk = inet_csk(sk);
4601 	struct tcp_sock *tp = tcp_sk(sk);
4602 	struct net *net = sock_net(sk);
4603 	unsigned long timeout;
4604 	int err;
4605 
4606 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4607 
4608 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4609 		/* Cancel probe timer, if it is not required. */
4610 		WRITE_ONCE(icsk->icsk_probes_out, 0);
4611 		icsk->icsk_backoff = 0;
4612 		icsk->icsk_probes_tstamp = 0;
4613 		return;
4614 	}
4615 
4616 	WRITE_ONCE(icsk->icsk_probes_out, icsk->icsk_probes_out + 1);
4617 	if (err <= 0) {
4618 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4619 			icsk->icsk_backoff++;
4620 		timeout = tcp_probe0_when(sk, tcp_rto_max(sk));
4621 	} else {
4622 		/* If packet was not sent due to local congestion,
4623 		 * Let senders fight for local resources conservatively.
4624 		 */
4625 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4626 	}
4627 
4628 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4629 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true);
4630 }
4631 
4632 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4633 {
4634 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4635 	struct flowi fl;
4636 	int res;
4637 
4638 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4639 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4640 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4641 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4642 				  NULL);
4643 	if (!res) {
4644 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4645 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4646 		if (unlikely(tcp_passive_fastopen(sk))) {
4647 			/* sk has const attribute because listeners are lockless.
4648 			 * However in this case, we are dealing with a passive fastopen
4649 			 * socket thus we can change total_retrans value.
4650 			 */
4651 			tcp_sk_rw(sk)->total_retrans++;
4652 		}
4653 		trace_tcp_retransmit_synack(sk, req);
4654 		WRITE_ONCE(req->num_retrans, req->num_retrans + 1);
4655 	}
4656 	return res;
4657 }
4658 EXPORT_IPV6_MOD(tcp_rtx_synack);
4659