1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 int sysctl_tcp_mtu_probing __read_mostly = 0; 63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 64 65 /* By default, RFC2861 behavior. */ 66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 67 68 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */ 69 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size); 70 71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 72 int push_one, gfp_t gfp); 73 74 /* Account for new data that has been sent to the network. */ 75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 76 { 77 struct tcp_sock *tp = tcp_sk(sk); 78 unsigned int prior_packets = tp->packets_out; 79 80 tcp_advance_send_head(sk, skb); 81 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 82 83 /* Don't override Nagle indefinitely with F-RTO */ 84 if (tp->frto_counter == 2) 85 tp->frto_counter = 3; 86 87 tp->packets_out += tcp_skb_pcount(skb); 88 if (!prior_packets || tp->early_retrans_delayed) 89 tcp_rearm_rto(sk); 90 } 91 92 /* SND.NXT, if window was not shrunk. 93 * If window has been shrunk, what should we make? It is not clear at all. 94 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 95 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 96 * invalid. OK, let's make this for now: 97 */ 98 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 99 { 100 const struct tcp_sock *tp = tcp_sk(sk); 101 102 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 103 return tp->snd_nxt; 104 else 105 return tcp_wnd_end(tp); 106 } 107 108 /* Calculate mss to advertise in SYN segment. 109 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 110 * 111 * 1. It is independent of path mtu. 112 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 113 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 114 * attached devices, because some buggy hosts are confused by 115 * large MSS. 116 * 4. We do not make 3, we advertise MSS, calculated from first 117 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 118 * This may be overridden via information stored in routing table. 119 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 120 * probably even Jumbo". 121 */ 122 static __u16 tcp_advertise_mss(struct sock *sk) 123 { 124 struct tcp_sock *tp = tcp_sk(sk); 125 const struct dst_entry *dst = __sk_dst_get(sk); 126 int mss = tp->advmss; 127 128 if (dst) { 129 unsigned int metric = dst_metric_advmss(dst); 130 131 if (metric < mss) { 132 mss = metric; 133 tp->advmss = mss; 134 } 135 } 136 137 return (__u16)mss; 138 } 139 140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 141 * This is the first part of cwnd validation mechanism. */ 142 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 s32 delta = tcp_time_stamp - tp->lsndtime; 146 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 147 u32 cwnd = tp->snd_cwnd; 148 149 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 150 151 tp->snd_ssthresh = tcp_current_ssthresh(sk); 152 restart_cwnd = min(restart_cwnd, cwnd); 153 154 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 155 cwnd >>= 1; 156 tp->snd_cwnd = max(cwnd, restart_cwnd); 157 tp->snd_cwnd_stamp = tcp_time_stamp; 158 tp->snd_cwnd_used = 0; 159 } 160 161 /* Congestion state accounting after a packet has been sent. */ 162 static void tcp_event_data_sent(struct tcp_sock *tp, 163 struct sock *sk) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 const u32 now = tcp_time_stamp; 167 168 if (sysctl_tcp_slow_start_after_idle && 169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 170 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 178 icsk->icsk_ack.pingpong = 1; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 183 { 184 tcp_dec_quickack_mode(sk, pkts); 185 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 186 } 187 188 /* Determine a window scaling and initial window to offer. 189 * Based on the assumption that the given amount of space 190 * will be offered. Store the results in the tp structure. 191 * NOTE: for smooth operation initial space offering should 192 * be a multiple of mss if possible. We assume here that mss >= 1. 193 * This MUST be enforced by all callers. 194 */ 195 void tcp_select_initial_window(int __space, __u32 mss, 196 __u32 *rcv_wnd, __u32 *window_clamp, 197 int wscale_ok, __u8 *rcv_wscale, 198 __u32 init_rcv_wnd) 199 { 200 unsigned int space = (__space < 0 ? 0 : __space); 201 202 /* If no clamp set the clamp to the max possible scaled window */ 203 if (*window_clamp == 0) 204 (*window_clamp) = (65535 << 14); 205 space = min(*window_clamp, space); 206 207 /* Quantize space offering to a multiple of mss if possible. */ 208 if (space > mss) 209 space = (space / mss) * mss; 210 211 /* NOTE: offering an initial window larger than 32767 212 * will break some buggy TCP stacks. If the admin tells us 213 * it is likely we could be speaking with such a buggy stack 214 * we will truncate our initial window offering to 32K-1 215 * unless the remote has sent us a window scaling option, 216 * which we interpret as a sign the remote TCP is not 217 * misinterpreting the window field as a signed quantity. 218 */ 219 if (sysctl_tcp_workaround_signed_windows) 220 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 221 else 222 (*rcv_wnd) = space; 223 224 (*rcv_wscale) = 0; 225 if (wscale_ok) { 226 /* Set window scaling on max possible window 227 * See RFC1323 for an explanation of the limit to 14 228 */ 229 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 230 space = min_t(u32, space, *window_clamp); 231 while (space > 65535 && (*rcv_wscale) < 14) { 232 space >>= 1; 233 (*rcv_wscale)++; 234 } 235 } 236 237 /* Set initial window to a value enough for senders starting with 238 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place 239 * a limit on the initial window when mss is larger than 1460. 240 */ 241 if (mss > (1 << *rcv_wscale)) { 242 int init_cwnd = TCP_DEFAULT_INIT_RCVWND; 243 if (mss > 1460) 244 init_cwnd = 245 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 246 /* when initializing use the value from init_rcv_wnd 247 * rather than the default from above 248 */ 249 if (init_rcv_wnd) 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 else 252 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss); 253 } 254 255 /* Set the clamp no higher than max representable value */ 256 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 257 } 258 EXPORT_SYMBOL(tcp_select_initial_window); 259 260 /* Chose a new window to advertise, update state in tcp_sock for the 261 * socket, and return result with RFC1323 scaling applied. The return 262 * value can be stuffed directly into th->window for an outgoing 263 * frame. 264 */ 265 static u16 tcp_select_window(struct sock *sk) 266 { 267 struct tcp_sock *tp = tcp_sk(sk); 268 u32 cur_win = tcp_receive_window(tp); 269 u32 new_win = __tcp_select_window(sk); 270 271 /* Never shrink the offered window */ 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 281 } 282 tp->rcv_wnd = new_win; 283 tp->rcv_wup = tp->rcv_nxt; 284 285 /* Make sure we do not exceed the maximum possible 286 * scaled window. 287 */ 288 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 289 new_win = min(new_win, MAX_TCP_WINDOW); 290 else 291 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 292 293 /* RFC1323 scaling applied */ 294 new_win >>= tp->rx_opt.rcv_wscale; 295 296 /* If we advertise zero window, disable fast path. */ 297 if (new_win == 0) 298 tp->pred_flags = 0; 299 300 return new_win; 301 } 302 303 /* Packet ECN state for a SYN-ACK */ 304 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 305 { 306 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 307 if (!(tp->ecn_flags & TCP_ECN_OK)) 308 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 309 } 310 311 /* Packet ECN state for a SYN. */ 312 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 313 { 314 struct tcp_sock *tp = tcp_sk(sk); 315 316 tp->ecn_flags = 0; 317 if (sysctl_tcp_ecn == 1) { 318 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 319 tp->ecn_flags = TCP_ECN_OK; 320 } 321 } 322 323 static __inline__ void 324 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 325 { 326 if (inet_rsk(req)->ecn_ok) 327 th->ece = 1; 328 } 329 330 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 331 * be sent. 332 */ 333 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 334 int tcp_header_len) 335 { 336 struct tcp_sock *tp = tcp_sk(sk); 337 338 if (tp->ecn_flags & TCP_ECN_OK) { 339 /* Not-retransmitted data segment: set ECT and inject CWR. */ 340 if (skb->len != tcp_header_len && 341 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 342 INET_ECN_xmit(sk); 343 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 344 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 345 tcp_hdr(skb)->cwr = 1; 346 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 347 } 348 } else { 349 /* ACK or retransmitted segment: clear ECT|CE */ 350 INET_ECN_dontxmit(sk); 351 } 352 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 353 tcp_hdr(skb)->ece = 1; 354 } 355 } 356 357 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 358 * auto increment end seqno. 359 */ 360 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 361 { 362 skb->ip_summed = CHECKSUM_PARTIAL; 363 skb->csum = 0; 364 365 TCP_SKB_CB(skb)->tcp_flags = flags; 366 TCP_SKB_CB(skb)->sacked = 0; 367 368 skb_shinfo(skb)->gso_segs = 1; 369 skb_shinfo(skb)->gso_size = 0; 370 skb_shinfo(skb)->gso_type = 0; 371 372 TCP_SKB_CB(skb)->seq = seq; 373 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 374 seq++; 375 TCP_SKB_CB(skb)->end_seq = seq; 376 } 377 378 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 379 { 380 return tp->snd_una != tp->snd_up; 381 } 382 383 #define OPTION_SACK_ADVERTISE (1 << 0) 384 #define OPTION_TS (1 << 1) 385 #define OPTION_MD5 (1 << 2) 386 #define OPTION_WSCALE (1 << 3) 387 #define OPTION_COOKIE_EXTENSION (1 << 4) 388 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 389 390 struct tcp_out_options { 391 u16 options; /* bit field of OPTION_* */ 392 u16 mss; /* 0 to disable */ 393 u8 ws; /* window scale, 0 to disable */ 394 u8 num_sack_blocks; /* number of SACK blocks to include */ 395 u8 hash_size; /* bytes in hash_location */ 396 __u8 *hash_location; /* temporary pointer, overloaded */ 397 __u32 tsval, tsecr; /* need to include OPTION_TS */ 398 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 399 }; 400 401 /* The sysctl int routines are generic, so check consistency here. 402 */ 403 static u8 tcp_cookie_size_check(u8 desired) 404 { 405 int cookie_size; 406 407 if (desired > 0) 408 /* previously specified */ 409 return desired; 410 411 cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size); 412 if (cookie_size <= 0) 413 /* no default specified */ 414 return 0; 415 416 if (cookie_size <= TCP_COOKIE_MIN) 417 /* value too small, specify minimum */ 418 return TCP_COOKIE_MIN; 419 420 if (cookie_size >= TCP_COOKIE_MAX) 421 /* value too large, specify maximum */ 422 return TCP_COOKIE_MAX; 423 424 if (cookie_size & 1) 425 /* 8-bit multiple, illegal, fix it */ 426 cookie_size++; 427 428 return (u8)cookie_size; 429 } 430 431 /* Write previously computed TCP options to the packet. 432 * 433 * Beware: Something in the Internet is very sensitive to the ordering of 434 * TCP options, we learned this through the hard way, so be careful here. 435 * Luckily we can at least blame others for their non-compliance but from 436 * inter-operatibility perspective it seems that we're somewhat stuck with 437 * the ordering which we have been using if we want to keep working with 438 * those broken things (not that it currently hurts anybody as there isn't 439 * particular reason why the ordering would need to be changed). 440 * 441 * At least SACK_PERM as the first option is known to lead to a disaster 442 * (but it may well be that other scenarios fail similarly). 443 */ 444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 445 struct tcp_out_options *opts) 446 { 447 u16 options = opts->options; /* mungable copy */ 448 449 /* Having both authentication and cookies for security is redundant, 450 * and there's certainly not enough room. Instead, the cookie-less 451 * extension variant is proposed. 452 * 453 * Consider the pessimal case with authentication. The options 454 * could look like: 455 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40 456 */ 457 if (unlikely(OPTION_MD5 & options)) { 458 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 459 *ptr++ = htonl((TCPOPT_COOKIE << 24) | 460 (TCPOLEN_COOKIE_BASE << 16) | 461 (TCPOPT_MD5SIG << 8) | 462 TCPOLEN_MD5SIG); 463 } else { 464 *ptr++ = htonl((TCPOPT_NOP << 24) | 465 (TCPOPT_NOP << 16) | 466 (TCPOPT_MD5SIG << 8) | 467 TCPOLEN_MD5SIG); 468 } 469 options &= ~OPTION_COOKIE_EXTENSION; 470 /* overload cookie hash location */ 471 opts->hash_location = (__u8 *)ptr; 472 ptr += 4; 473 } 474 475 if (unlikely(opts->mss)) { 476 *ptr++ = htonl((TCPOPT_MSS << 24) | 477 (TCPOLEN_MSS << 16) | 478 opts->mss); 479 } 480 481 if (likely(OPTION_TS & options)) { 482 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 483 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 484 (TCPOLEN_SACK_PERM << 16) | 485 (TCPOPT_TIMESTAMP << 8) | 486 TCPOLEN_TIMESTAMP); 487 options &= ~OPTION_SACK_ADVERTISE; 488 } else { 489 *ptr++ = htonl((TCPOPT_NOP << 24) | 490 (TCPOPT_NOP << 16) | 491 (TCPOPT_TIMESTAMP << 8) | 492 TCPOLEN_TIMESTAMP); 493 } 494 *ptr++ = htonl(opts->tsval); 495 *ptr++ = htonl(opts->tsecr); 496 } 497 498 /* Specification requires after timestamp, so do it now. 499 * 500 * Consider the pessimal case without authentication. The options 501 * could look like: 502 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40 503 */ 504 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 505 __u8 *cookie_copy = opts->hash_location; 506 u8 cookie_size = opts->hash_size; 507 508 /* 8-bit multiple handled in tcp_cookie_size_check() above, 509 * and elsewhere. 510 */ 511 if (0x2 & cookie_size) { 512 __u8 *p = (__u8 *)ptr; 513 514 /* 16-bit multiple */ 515 *p++ = TCPOPT_COOKIE; 516 *p++ = TCPOLEN_COOKIE_BASE + cookie_size; 517 *p++ = *cookie_copy++; 518 *p++ = *cookie_copy++; 519 ptr++; 520 cookie_size -= 2; 521 } else { 522 /* 32-bit multiple */ 523 *ptr++ = htonl(((TCPOPT_NOP << 24) | 524 (TCPOPT_NOP << 16) | 525 (TCPOPT_COOKIE << 8) | 526 TCPOLEN_COOKIE_BASE) + 527 cookie_size); 528 } 529 530 if (cookie_size > 0) { 531 memcpy(ptr, cookie_copy, cookie_size); 532 ptr += (cookie_size / 4); 533 } 534 } 535 536 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 537 *ptr++ = htonl((TCPOPT_NOP << 24) | 538 (TCPOPT_NOP << 16) | 539 (TCPOPT_SACK_PERM << 8) | 540 TCPOLEN_SACK_PERM); 541 } 542 543 if (unlikely(OPTION_WSCALE & options)) { 544 *ptr++ = htonl((TCPOPT_NOP << 24) | 545 (TCPOPT_WINDOW << 16) | 546 (TCPOLEN_WINDOW << 8) | 547 opts->ws); 548 } 549 550 if (unlikely(opts->num_sack_blocks)) { 551 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 552 tp->duplicate_sack : tp->selective_acks; 553 int this_sack; 554 555 *ptr++ = htonl((TCPOPT_NOP << 24) | 556 (TCPOPT_NOP << 16) | 557 (TCPOPT_SACK << 8) | 558 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 559 TCPOLEN_SACK_PERBLOCK))); 560 561 for (this_sack = 0; this_sack < opts->num_sack_blocks; 562 ++this_sack) { 563 *ptr++ = htonl(sp[this_sack].start_seq); 564 *ptr++ = htonl(sp[this_sack].end_seq); 565 } 566 567 tp->rx_opt.dsack = 0; 568 } 569 570 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 571 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 572 573 *ptr++ = htonl((TCPOPT_EXP << 24) | 574 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 575 TCPOPT_FASTOPEN_MAGIC); 576 577 memcpy(ptr, foc->val, foc->len); 578 if ((foc->len & 3) == 2) { 579 u8 *align = ((u8 *)ptr) + foc->len; 580 align[0] = align[1] = TCPOPT_NOP; 581 } 582 ptr += (foc->len + 3) >> 2; 583 } 584 } 585 586 /* Compute TCP options for SYN packets. This is not the final 587 * network wire format yet. 588 */ 589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 590 struct tcp_out_options *opts, 591 struct tcp_md5sig_key **md5) 592 { 593 struct tcp_sock *tp = tcp_sk(sk); 594 struct tcp_cookie_values *cvp = tp->cookie_values; 595 unsigned int remaining = MAX_TCP_OPTION_SPACE; 596 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ? 597 tcp_cookie_size_check(cvp->cookie_desired) : 598 0; 599 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 600 601 #ifdef CONFIG_TCP_MD5SIG 602 *md5 = tp->af_specific->md5_lookup(sk, sk); 603 if (*md5) { 604 opts->options |= OPTION_MD5; 605 remaining -= TCPOLEN_MD5SIG_ALIGNED; 606 } 607 #else 608 *md5 = NULL; 609 #endif 610 611 /* We always get an MSS option. The option bytes which will be seen in 612 * normal data packets should timestamps be used, must be in the MSS 613 * advertised. But we subtract them from tp->mss_cache so that 614 * calculations in tcp_sendmsg are simpler etc. So account for this 615 * fact here if necessary. If we don't do this correctly, as a 616 * receiver we won't recognize data packets as being full sized when we 617 * should, and thus we won't abide by the delayed ACK rules correctly. 618 * SACKs don't matter, we never delay an ACK when we have any of those 619 * going out. */ 620 opts->mss = tcp_advertise_mss(sk); 621 remaining -= TCPOLEN_MSS_ALIGNED; 622 623 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 624 opts->options |= OPTION_TS; 625 opts->tsval = TCP_SKB_CB(skb)->when; 626 opts->tsecr = tp->rx_opt.ts_recent; 627 remaining -= TCPOLEN_TSTAMP_ALIGNED; 628 } 629 if (likely(sysctl_tcp_window_scaling)) { 630 opts->ws = tp->rx_opt.rcv_wscale; 631 opts->options |= OPTION_WSCALE; 632 remaining -= TCPOLEN_WSCALE_ALIGNED; 633 } 634 if (likely(sysctl_tcp_sack)) { 635 opts->options |= OPTION_SACK_ADVERTISE; 636 if (unlikely(!(OPTION_TS & opts->options))) 637 remaining -= TCPOLEN_SACKPERM_ALIGNED; 638 } 639 640 if (fastopen && fastopen->cookie.len >= 0) { 641 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 642 need = (need + 3) & ~3U; /* Align to 32 bits */ 643 if (remaining >= need) { 644 opts->options |= OPTION_FAST_OPEN_COOKIE; 645 opts->fastopen_cookie = &fastopen->cookie; 646 remaining -= need; 647 tp->syn_fastopen = 1; 648 } 649 } 650 /* Note that timestamps are required by the specification. 651 * 652 * Odd numbers of bytes are prohibited by the specification, ensuring 653 * that the cookie is 16-bit aligned, and the resulting cookie pair is 654 * 32-bit aligned. 655 */ 656 if (*md5 == NULL && 657 (OPTION_TS & opts->options) && 658 cookie_size > 0) { 659 int need = TCPOLEN_COOKIE_BASE + cookie_size; 660 661 if (0x2 & need) { 662 /* 32-bit multiple */ 663 need += 2; /* NOPs */ 664 665 if (need > remaining) { 666 /* try shrinking cookie to fit */ 667 cookie_size -= 2; 668 need -= 4; 669 } 670 } 671 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) { 672 cookie_size -= 4; 673 need -= 4; 674 } 675 if (TCP_COOKIE_MIN <= cookie_size) { 676 opts->options |= OPTION_COOKIE_EXTENSION; 677 opts->hash_location = (__u8 *)&cvp->cookie_pair[0]; 678 opts->hash_size = cookie_size; 679 680 /* Remember for future incarnations. */ 681 cvp->cookie_desired = cookie_size; 682 683 if (cvp->cookie_desired != cvp->cookie_pair_size) { 684 /* Currently use random bytes as a nonce, 685 * assuming these are completely unpredictable 686 * by hostile users of the same system. 687 */ 688 get_random_bytes(&cvp->cookie_pair[0], 689 cookie_size); 690 cvp->cookie_pair_size = cookie_size; 691 } 692 693 remaining -= need; 694 } 695 } 696 return MAX_TCP_OPTION_SPACE - remaining; 697 } 698 699 /* Set up TCP options for SYN-ACKs. */ 700 static unsigned int tcp_synack_options(struct sock *sk, 701 struct request_sock *req, 702 unsigned int mss, struct sk_buff *skb, 703 struct tcp_out_options *opts, 704 struct tcp_md5sig_key **md5, 705 struct tcp_extend_values *xvp) 706 { 707 struct inet_request_sock *ireq = inet_rsk(req); 708 unsigned int remaining = MAX_TCP_OPTION_SPACE; 709 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ? 710 xvp->cookie_plus : 711 0; 712 713 #ifdef CONFIG_TCP_MD5SIG 714 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 715 if (*md5) { 716 opts->options |= OPTION_MD5; 717 remaining -= TCPOLEN_MD5SIG_ALIGNED; 718 719 /* We can't fit any SACK blocks in a packet with MD5 + TS 720 * options. There was discussion about disabling SACK 721 * rather than TS in order to fit in better with old, 722 * buggy kernels, but that was deemed to be unnecessary. 723 */ 724 ireq->tstamp_ok &= !ireq->sack_ok; 725 } 726 #else 727 *md5 = NULL; 728 #endif 729 730 /* We always send an MSS option. */ 731 opts->mss = mss; 732 remaining -= TCPOLEN_MSS_ALIGNED; 733 734 if (likely(ireq->wscale_ok)) { 735 opts->ws = ireq->rcv_wscale; 736 opts->options |= OPTION_WSCALE; 737 remaining -= TCPOLEN_WSCALE_ALIGNED; 738 } 739 if (likely(ireq->tstamp_ok)) { 740 opts->options |= OPTION_TS; 741 opts->tsval = TCP_SKB_CB(skb)->when; 742 opts->tsecr = req->ts_recent; 743 remaining -= TCPOLEN_TSTAMP_ALIGNED; 744 } 745 if (likely(ireq->sack_ok)) { 746 opts->options |= OPTION_SACK_ADVERTISE; 747 if (unlikely(!ireq->tstamp_ok)) 748 remaining -= TCPOLEN_SACKPERM_ALIGNED; 749 } 750 751 /* Similar rationale to tcp_syn_options() applies here, too. 752 * If the <SYN> options fit, the same options should fit now! 753 */ 754 if (*md5 == NULL && 755 ireq->tstamp_ok && 756 cookie_plus > TCPOLEN_COOKIE_BASE) { 757 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */ 758 759 if (0x2 & need) { 760 /* 32-bit multiple */ 761 need += 2; /* NOPs */ 762 } 763 if (need <= remaining) { 764 opts->options |= OPTION_COOKIE_EXTENSION; 765 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE; 766 remaining -= need; 767 } else { 768 /* There's no error return, so flag it. */ 769 xvp->cookie_out_never = 1; /* true */ 770 opts->hash_size = 0; 771 } 772 } 773 return MAX_TCP_OPTION_SPACE - remaining; 774 } 775 776 /* Compute TCP options for ESTABLISHED sockets. This is not the 777 * final wire format yet. 778 */ 779 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 780 struct tcp_out_options *opts, 781 struct tcp_md5sig_key **md5) 782 { 783 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 784 struct tcp_sock *tp = tcp_sk(sk); 785 unsigned int size = 0; 786 unsigned int eff_sacks; 787 788 #ifdef CONFIG_TCP_MD5SIG 789 *md5 = tp->af_specific->md5_lookup(sk, sk); 790 if (unlikely(*md5)) { 791 opts->options |= OPTION_MD5; 792 size += TCPOLEN_MD5SIG_ALIGNED; 793 } 794 #else 795 *md5 = NULL; 796 #endif 797 798 if (likely(tp->rx_opt.tstamp_ok)) { 799 opts->options |= OPTION_TS; 800 opts->tsval = tcb ? tcb->when : 0; 801 opts->tsecr = tp->rx_opt.ts_recent; 802 size += TCPOLEN_TSTAMP_ALIGNED; 803 } 804 805 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 806 if (unlikely(eff_sacks)) { 807 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 808 opts->num_sack_blocks = 809 min_t(unsigned int, eff_sacks, 810 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 811 TCPOLEN_SACK_PERBLOCK); 812 size += TCPOLEN_SACK_BASE_ALIGNED + 813 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 814 } 815 816 return size; 817 } 818 819 820 /* TCP SMALL QUEUES (TSQ) 821 * 822 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 823 * to reduce RTT and bufferbloat. 824 * We do this using a special skb destructor (tcp_wfree). 825 * 826 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 827 * needs to be reallocated in a driver. 828 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc 829 * 830 * Since transmit from skb destructor is forbidden, we use a tasklet 831 * to process all sockets that eventually need to send more skbs. 832 * We use one tasklet per cpu, with its own queue of sockets. 833 */ 834 struct tsq_tasklet { 835 struct tasklet_struct tasklet; 836 struct list_head head; /* queue of tcp sockets */ 837 }; 838 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 839 840 static void tcp_tsq_handler(struct sock *sk) 841 { 842 if ((1 << sk->sk_state) & 843 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 844 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 845 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC); 846 } 847 /* 848 * One tasklest per cpu tries to send more skbs. 849 * We run in tasklet context but need to disable irqs when 850 * transfering tsq->head because tcp_wfree() might 851 * interrupt us (non NAPI drivers) 852 */ 853 static void tcp_tasklet_func(unsigned long data) 854 { 855 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 856 LIST_HEAD(list); 857 unsigned long flags; 858 struct list_head *q, *n; 859 struct tcp_sock *tp; 860 struct sock *sk; 861 862 local_irq_save(flags); 863 list_splice_init(&tsq->head, &list); 864 local_irq_restore(flags); 865 866 list_for_each_safe(q, n, &list) { 867 tp = list_entry(q, struct tcp_sock, tsq_node); 868 list_del(&tp->tsq_node); 869 870 sk = (struct sock *)tp; 871 bh_lock_sock(sk); 872 873 if (!sock_owned_by_user(sk)) { 874 tcp_tsq_handler(sk); 875 } else { 876 /* defer the work to tcp_release_cb() */ 877 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 878 } 879 bh_unlock_sock(sk); 880 881 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 882 sk_free(sk); 883 } 884 } 885 886 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 887 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 888 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 889 (1UL << TCP_MTU_REDUCED_DEFERRED)) 890 /** 891 * tcp_release_cb - tcp release_sock() callback 892 * @sk: socket 893 * 894 * called from release_sock() to perform protocol dependent 895 * actions before socket release. 896 */ 897 void tcp_release_cb(struct sock *sk) 898 { 899 struct tcp_sock *tp = tcp_sk(sk); 900 unsigned long flags, nflags; 901 902 /* perform an atomic operation only if at least one flag is set */ 903 do { 904 flags = tp->tsq_flags; 905 if (!(flags & TCP_DEFERRED_ALL)) 906 return; 907 nflags = flags & ~TCP_DEFERRED_ALL; 908 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 909 910 if (flags & (1UL << TCP_TSQ_DEFERRED)) 911 tcp_tsq_handler(sk); 912 913 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) 914 tcp_write_timer_handler(sk); 915 916 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) 917 tcp_delack_timer_handler(sk); 918 919 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) 920 sk->sk_prot->mtu_reduced(sk); 921 } 922 EXPORT_SYMBOL(tcp_release_cb); 923 924 void __init tcp_tasklet_init(void) 925 { 926 int i; 927 928 for_each_possible_cpu(i) { 929 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 930 931 INIT_LIST_HEAD(&tsq->head); 932 tasklet_init(&tsq->tasklet, 933 tcp_tasklet_func, 934 (unsigned long)tsq); 935 } 936 } 937 938 /* 939 * Write buffer destructor automatically called from kfree_skb. 940 * We cant xmit new skbs from this context, as we might already 941 * hold qdisc lock. 942 */ 943 void tcp_wfree(struct sk_buff *skb) 944 { 945 struct sock *sk = skb->sk; 946 struct tcp_sock *tp = tcp_sk(sk); 947 948 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 949 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 950 unsigned long flags; 951 struct tsq_tasklet *tsq; 952 953 /* Keep a ref on socket. 954 * This last ref will be released in tcp_tasklet_func() 955 */ 956 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc); 957 958 /* queue this socket to tasklet queue */ 959 local_irq_save(flags); 960 tsq = &__get_cpu_var(tsq_tasklet); 961 list_add(&tp->tsq_node, &tsq->head); 962 tasklet_schedule(&tsq->tasklet); 963 local_irq_restore(flags); 964 } else { 965 sock_wfree(skb); 966 } 967 } 968 969 /* This routine actually transmits TCP packets queued in by 970 * tcp_do_sendmsg(). This is used by both the initial 971 * transmission and possible later retransmissions. 972 * All SKB's seen here are completely headerless. It is our 973 * job to build the TCP header, and pass the packet down to 974 * IP so it can do the same plus pass the packet off to the 975 * device. 976 * 977 * We are working here with either a clone of the original 978 * SKB, or a fresh unique copy made by the retransmit engine. 979 */ 980 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 981 gfp_t gfp_mask) 982 { 983 const struct inet_connection_sock *icsk = inet_csk(sk); 984 struct inet_sock *inet; 985 struct tcp_sock *tp; 986 struct tcp_skb_cb *tcb; 987 struct tcp_out_options opts; 988 unsigned int tcp_options_size, tcp_header_size; 989 struct tcp_md5sig_key *md5; 990 struct tcphdr *th; 991 int err; 992 993 BUG_ON(!skb || !tcp_skb_pcount(skb)); 994 995 /* If congestion control is doing timestamping, we must 996 * take such a timestamp before we potentially clone/copy. 997 */ 998 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 999 __net_timestamp(skb); 1000 1001 if (likely(clone_it)) { 1002 if (unlikely(skb_cloned(skb))) 1003 skb = pskb_copy(skb, gfp_mask); 1004 else 1005 skb = skb_clone(skb, gfp_mask); 1006 if (unlikely(!skb)) 1007 return -ENOBUFS; 1008 } 1009 1010 inet = inet_sk(sk); 1011 tp = tcp_sk(sk); 1012 tcb = TCP_SKB_CB(skb); 1013 memset(&opts, 0, sizeof(opts)); 1014 1015 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1016 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1017 else 1018 tcp_options_size = tcp_established_options(sk, skb, &opts, 1019 &md5); 1020 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1021 1022 if (tcp_packets_in_flight(tp) == 0) { 1023 tcp_ca_event(sk, CA_EVENT_TX_START); 1024 skb->ooo_okay = 1; 1025 } else 1026 skb->ooo_okay = 0; 1027 1028 skb_push(skb, tcp_header_size); 1029 skb_reset_transport_header(skb); 1030 1031 skb_orphan(skb); 1032 skb->sk = sk; 1033 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ? 1034 tcp_wfree : sock_wfree; 1035 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 1036 1037 /* Build TCP header and checksum it. */ 1038 th = tcp_hdr(skb); 1039 th->source = inet->inet_sport; 1040 th->dest = inet->inet_dport; 1041 th->seq = htonl(tcb->seq); 1042 th->ack_seq = htonl(tp->rcv_nxt); 1043 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1044 tcb->tcp_flags); 1045 1046 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1047 /* RFC1323: The window in SYN & SYN/ACK segments 1048 * is never scaled. 1049 */ 1050 th->window = htons(min(tp->rcv_wnd, 65535U)); 1051 } else { 1052 th->window = htons(tcp_select_window(sk)); 1053 } 1054 th->check = 0; 1055 th->urg_ptr = 0; 1056 1057 /* The urg_mode check is necessary during a below snd_una win probe */ 1058 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1059 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1060 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1061 th->urg = 1; 1062 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1063 th->urg_ptr = htons(0xFFFF); 1064 th->urg = 1; 1065 } 1066 } 1067 1068 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1069 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 1070 TCP_ECN_send(sk, skb, tcp_header_size); 1071 1072 #ifdef CONFIG_TCP_MD5SIG 1073 /* Calculate the MD5 hash, as we have all we need now */ 1074 if (md5) { 1075 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1076 tp->af_specific->calc_md5_hash(opts.hash_location, 1077 md5, sk, NULL, skb); 1078 } 1079 #endif 1080 1081 icsk->icsk_af_ops->send_check(sk, skb); 1082 1083 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1084 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1085 1086 if (skb->len != tcp_header_size) 1087 tcp_event_data_sent(tp, sk); 1088 1089 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1090 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1091 tcp_skb_pcount(skb)); 1092 1093 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 1094 if (likely(err <= 0)) 1095 return err; 1096 1097 tcp_enter_cwr(sk, 1); 1098 1099 return net_xmit_eval(err); 1100 } 1101 1102 /* This routine just queues the buffer for sending. 1103 * 1104 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1105 * otherwise socket can stall. 1106 */ 1107 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1108 { 1109 struct tcp_sock *tp = tcp_sk(sk); 1110 1111 /* Advance write_seq and place onto the write_queue. */ 1112 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1113 skb_header_release(skb); 1114 tcp_add_write_queue_tail(sk, skb); 1115 sk->sk_wmem_queued += skb->truesize; 1116 sk_mem_charge(sk, skb->truesize); 1117 } 1118 1119 /* Initialize TSO segments for a packet. */ 1120 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 1121 unsigned int mss_now) 1122 { 1123 if (skb->len <= mss_now || !sk_can_gso(sk) || 1124 skb->ip_summed == CHECKSUM_NONE) { 1125 /* Avoid the costly divide in the normal 1126 * non-TSO case. 1127 */ 1128 skb_shinfo(skb)->gso_segs = 1; 1129 skb_shinfo(skb)->gso_size = 0; 1130 skb_shinfo(skb)->gso_type = 0; 1131 } else { 1132 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 1133 skb_shinfo(skb)->gso_size = mss_now; 1134 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1135 } 1136 } 1137 1138 /* When a modification to fackets out becomes necessary, we need to check 1139 * skb is counted to fackets_out or not. 1140 */ 1141 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1142 int decr) 1143 { 1144 struct tcp_sock *tp = tcp_sk(sk); 1145 1146 if (!tp->sacked_out || tcp_is_reno(tp)) 1147 return; 1148 1149 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1150 tp->fackets_out -= decr; 1151 } 1152 1153 /* Pcount in the middle of the write queue got changed, we need to do various 1154 * tweaks to fix counters 1155 */ 1156 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1157 { 1158 struct tcp_sock *tp = tcp_sk(sk); 1159 1160 tp->packets_out -= decr; 1161 1162 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1163 tp->sacked_out -= decr; 1164 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1165 tp->retrans_out -= decr; 1166 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1167 tp->lost_out -= decr; 1168 1169 /* Reno case is special. Sigh... */ 1170 if (tcp_is_reno(tp) && decr > 0) 1171 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1172 1173 tcp_adjust_fackets_out(sk, skb, decr); 1174 1175 if (tp->lost_skb_hint && 1176 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1177 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1178 tp->lost_cnt_hint -= decr; 1179 1180 tcp_verify_left_out(tp); 1181 } 1182 1183 /* Function to create two new TCP segments. Shrinks the given segment 1184 * to the specified size and appends a new segment with the rest of the 1185 * packet to the list. This won't be called frequently, I hope. 1186 * Remember, these are still headerless SKBs at this point. 1187 */ 1188 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1189 unsigned int mss_now) 1190 { 1191 struct tcp_sock *tp = tcp_sk(sk); 1192 struct sk_buff *buff; 1193 int nsize, old_factor; 1194 int nlen; 1195 u8 flags; 1196 1197 if (WARN_ON(len > skb->len)) 1198 return -EINVAL; 1199 1200 nsize = skb_headlen(skb) - len; 1201 if (nsize < 0) 1202 nsize = 0; 1203 1204 if (skb_cloned(skb) && 1205 skb_is_nonlinear(skb) && 1206 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1207 return -ENOMEM; 1208 1209 /* Get a new skb... force flag on. */ 1210 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1211 if (buff == NULL) 1212 return -ENOMEM; /* We'll just try again later. */ 1213 1214 sk->sk_wmem_queued += buff->truesize; 1215 sk_mem_charge(sk, buff->truesize); 1216 nlen = skb->len - len - nsize; 1217 buff->truesize += nlen; 1218 skb->truesize -= nlen; 1219 1220 /* Correct the sequence numbers. */ 1221 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1222 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1223 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1224 1225 /* PSH and FIN should only be set in the second packet. */ 1226 flags = TCP_SKB_CB(skb)->tcp_flags; 1227 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1228 TCP_SKB_CB(buff)->tcp_flags = flags; 1229 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1230 1231 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1232 /* Copy and checksum data tail into the new buffer. */ 1233 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1234 skb_put(buff, nsize), 1235 nsize, 0); 1236 1237 skb_trim(skb, len); 1238 1239 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1240 } else { 1241 skb->ip_summed = CHECKSUM_PARTIAL; 1242 skb_split(skb, buff, len); 1243 } 1244 1245 buff->ip_summed = skb->ip_summed; 1246 1247 /* Looks stupid, but our code really uses when of 1248 * skbs, which it never sent before. --ANK 1249 */ 1250 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1251 buff->tstamp = skb->tstamp; 1252 1253 old_factor = tcp_skb_pcount(skb); 1254 1255 /* Fix up tso_factor for both original and new SKB. */ 1256 tcp_set_skb_tso_segs(sk, skb, mss_now); 1257 tcp_set_skb_tso_segs(sk, buff, mss_now); 1258 1259 /* If this packet has been sent out already, we must 1260 * adjust the various packet counters. 1261 */ 1262 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1263 int diff = old_factor - tcp_skb_pcount(skb) - 1264 tcp_skb_pcount(buff); 1265 1266 if (diff) 1267 tcp_adjust_pcount(sk, skb, diff); 1268 } 1269 1270 /* Link BUFF into the send queue. */ 1271 skb_header_release(buff); 1272 tcp_insert_write_queue_after(skb, buff, sk); 1273 1274 return 0; 1275 } 1276 1277 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1278 * eventually). The difference is that pulled data not copied, but 1279 * immediately discarded. 1280 */ 1281 static void __pskb_trim_head(struct sk_buff *skb, int len) 1282 { 1283 int i, k, eat; 1284 1285 eat = min_t(int, len, skb_headlen(skb)); 1286 if (eat) { 1287 __skb_pull(skb, eat); 1288 skb->avail_size -= eat; 1289 len -= eat; 1290 if (!len) 1291 return; 1292 } 1293 eat = len; 1294 k = 0; 1295 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1296 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1297 1298 if (size <= eat) { 1299 skb_frag_unref(skb, i); 1300 eat -= size; 1301 } else { 1302 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1303 if (eat) { 1304 skb_shinfo(skb)->frags[k].page_offset += eat; 1305 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1306 eat = 0; 1307 } 1308 k++; 1309 } 1310 } 1311 skb_shinfo(skb)->nr_frags = k; 1312 1313 skb_reset_tail_pointer(skb); 1314 skb->data_len -= len; 1315 skb->len = skb->data_len; 1316 } 1317 1318 /* Remove acked data from a packet in the transmit queue. */ 1319 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1320 { 1321 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1322 return -ENOMEM; 1323 1324 __pskb_trim_head(skb, len); 1325 1326 TCP_SKB_CB(skb)->seq += len; 1327 skb->ip_summed = CHECKSUM_PARTIAL; 1328 1329 skb->truesize -= len; 1330 sk->sk_wmem_queued -= len; 1331 sk_mem_uncharge(sk, len); 1332 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1333 1334 /* Any change of skb->len requires recalculation of tso factor. */ 1335 if (tcp_skb_pcount(skb) > 1) 1336 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1337 1338 return 0; 1339 } 1340 1341 /* Calculate MSS. Not accounting for SACKs here. */ 1342 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1343 { 1344 const struct tcp_sock *tp = tcp_sk(sk); 1345 const struct inet_connection_sock *icsk = inet_csk(sk); 1346 int mss_now; 1347 1348 /* Calculate base mss without TCP options: 1349 It is MMS_S - sizeof(tcphdr) of rfc1122 1350 */ 1351 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1352 1353 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1354 if (icsk->icsk_af_ops->net_frag_header_len) { 1355 const struct dst_entry *dst = __sk_dst_get(sk); 1356 1357 if (dst && dst_allfrag(dst)) 1358 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1359 } 1360 1361 /* Clamp it (mss_clamp does not include tcp options) */ 1362 if (mss_now > tp->rx_opt.mss_clamp) 1363 mss_now = tp->rx_opt.mss_clamp; 1364 1365 /* Now subtract optional transport overhead */ 1366 mss_now -= icsk->icsk_ext_hdr_len; 1367 1368 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1369 if (mss_now < 48) 1370 mss_now = 48; 1371 1372 /* Now subtract TCP options size, not including SACKs */ 1373 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 1374 1375 return mss_now; 1376 } 1377 1378 /* Inverse of above */ 1379 int tcp_mss_to_mtu(struct sock *sk, int mss) 1380 { 1381 const struct tcp_sock *tp = tcp_sk(sk); 1382 const struct inet_connection_sock *icsk = inet_csk(sk); 1383 int mtu; 1384 1385 mtu = mss + 1386 tp->tcp_header_len + 1387 icsk->icsk_ext_hdr_len + 1388 icsk->icsk_af_ops->net_header_len; 1389 1390 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1391 if (icsk->icsk_af_ops->net_frag_header_len) { 1392 const struct dst_entry *dst = __sk_dst_get(sk); 1393 1394 if (dst && dst_allfrag(dst)) 1395 mtu += icsk->icsk_af_ops->net_frag_header_len; 1396 } 1397 return mtu; 1398 } 1399 1400 /* MTU probing init per socket */ 1401 void tcp_mtup_init(struct sock *sk) 1402 { 1403 struct tcp_sock *tp = tcp_sk(sk); 1404 struct inet_connection_sock *icsk = inet_csk(sk); 1405 1406 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1407 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1408 icsk->icsk_af_ops->net_header_len; 1409 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1410 icsk->icsk_mtup.probe_size = 0; 1411 } 1412 EXPORT_SYMBOL(tcp_mtup_init); 1413 1414 /* This function synchronize snd mss to current pmtu/exthdr set. 1415 1416 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1417 for TCP options, but includes only bare TCP header. 1418 1419 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1420 It is minimum of user_mss and mss received with SYN. 1421 It also does not include TCP options. 1422 1423 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1424 1425 tp->mss_cache is current effective sending mss, including 1426 all tcp options except for SACKs. It is evaluated, 1427 taking into account current pmtu, but never exceeds 1428 tp->rx_opt.mss_clamp. 1429 1430 NOTE1. rfc1122 clearly states that advertised MSS 1431 DOES NOT include either tcp or ip options. 1432 1433 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1434 are READ ONLY outside this function. --ANK (980731) 1435 */ 1436 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1437 { 1438 struct tcp_sock *tp = tcp_sk(sk); 1439 struct inet_connection_sock *icsk = inet_csk(sk); 1440 int mss_now; 1441 1442 if (icsk->icsk_mtup.search_high > pmtu) 1443 icsk->icsk_mtup.search_high = pmtu; 1444 1445 mss_now = tcp_mtu_to_mss(sk, pmtu); 1446 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1447 1448 /* And store cached results */ 1449 icsk->icsk_pmtu_cookie = pmtu; 1450 if (icsk->icsk_mtup.enabled) 1451 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1452 tp->mss_cache = mss_now; 1453 1454 return mss_now; 1455 } 1456 EXPORT_SYMBOL(tcp_sync_mss); 1457 1458 /* Compute the current effective MSS, taking SACKs and IP options, 1459 * and even PMTU discovery events into account. 1460 */ 1461 unsigned int tcp_current_mss(struct sock *sk) 1462 { 1463 const struct tcp_sock *tp = tcp_sk(sk); 1464 const struct dst_entry *dst = __sk_dst_get(sk); 1465 u32 mss_now; 1466 unsigned int header_len; 1467 struct tcp_out_options opts; 1468 struct tcp_md5sig_key *md5; 1469 1470 mss_now = tp->mss_cache; 1471 1472 if (dst) { 1473 u32 mtu = dst_mtu(dst); 1474 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1475 mss_now = tcp_sync_mss(sk, mtu); 1476 } 1477 1478 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1479 sizeof(struct tcphdr); 1480 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1481 * some common options. If this is an odd packet (because we have SACK 1482 * blocks etc) then our calculated header_len will be different, and 1483 * we have to adjust mss_now correspondingly */ 1484 if (header_len != tp->tcp_header_len) { 1485 int delta = (int) header_len - tp->tcp_header_len; 1486 mss_now -= delta; 1487 } 1488 1489 return mss_now; 1490 } 1491 1492 /* Congestion window validation. (RFC2861) */ 1493 static void tcp_cwnd_validate(struct sock *sk) 1494 { 1495 struct tcp_sock *tp = tcp_sk(sk); 1496 1497 if (tp->packets_out >= tp->snd_cwnd) { 1498 /* Network is feed fully. */ 1499 tp->snd_cwnd_used = 0; 1500 tp->snd_cwnd_stamp = tcp_time_stamp; 1501 } else { 1502 /* Network starves. */ 1503 if (tp->packets_out > tp->snd_cwnd_used) 1504 tp->snd_cwnd_used = tp->packets_out; 1505 1506 if (sysctl_tcp_slow_start_after_idle && 1507 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1508 tcp_cwnd_application_limited(sk); 1509 } 1510 } 1511 1512 /* Returns the portion of skb which can be sent right away without 1513 * introducing MSS oddities to segment boundaries. In rare cases where 1514 * mss_now != mss_cache, we will request caller to create a small skb 1515 * per input skb which could be mostly avoided here (if desired). 1516 * 1517 * We explicitly want to create a request for splitting write queue tail 1518 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1519 * thus all the complexity (cwnd_len is always MSS multiple which we 1520 * return whenever allowed by the other factors). Basically we need the 1521 * modulo only when the receiver window alone is the limiting factor or 1522 * when we would be allowed to send the split-due-to-Nagle skb fully. 1523 */ 1524 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb, 1525 unsigned int mss_now, unsigned int cwnd) 1526 { 1527 const struct tcp_sock *tp = tcp_sk(sk); 1528 u32 needed, window, cwnd_len; 1529 1530 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1531 cwnd_len = mss_now * cwnd; 1532 1533 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk))) 1534 return cwnd_len; 1535 1536 needed = min(skb->len, window); 1537 1538 if (cwnd_len <= needed) 1539 return cwnd_len; 1540 1541 return needed - needed % mss_now; 1542 } 1543 1544 /* Can at least one segment of SKB be sent right now, according to the 1545 * congestion window rules? If so, return how many segments are allowed. 1546 */ 1547 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1548 const struct sk_buff *skb) 1549 { 1550 u32 in_flight, cwnd; 1551 1552 /* Don't be strict about the congestion window for the final FIN. */ 1553 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1554 tcp_skb_pcount(skb) == 1) 1555 return 1; 1556 1557 in_flight = tcp_packets_in_flight(tp); 1558 cwnd = tp->snd_cwnd; 1559 if (in_flight < cwnd) 1560 return (cwnd - in_flight); 1561 1562 return 0; 1563 } 1564 1565 /* Initialize TSO state of a skb. 1566 * This must be invoked the first time we consider transmitting 1567 * SKB onto the wire. 1568 */ 1569 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1570 unsigned int mss_now) 1571 { 1572 int tso_segs = tcp_skb_pcount(skb); 1573 1574 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1575 tcp_set_skb_tso_segs(sk, skb, mss_now); 1576 tso_segs = tcp_skb_pcount(skb); 1577 } 1578 return tso_segs; 1579 } 1580 1581 /* Minshall's variant of the Nagle send check. */ 1582 static inline bool tcp_minshall_check(const struct tcp_sock *tp) 1583 { 1584 return after(tp->snd_sml, tp->snd_una) && 1585 !after(tp->snd_sml, tp->snd_nxt); 1586 } 1587 1588 /* Return false, if packet can be sent now without violation Nagle's rules: 1589 * 1. It is full sized. 1590 * 2. Or it contains FIN. (already checked by caller) 1591 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1592 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1593 * With Minshall's modification: all sent small packets are ACKed. 1594 */ 1595 static inline bool tcp_nagle_check(const struct tcp_sock *tp, 1596 const struct sk_buff *skb, 1597 unsigned int mss_now, int nonagle) 1598 { 1599 return skb->len < mss_now && 1600 ((nonagle & TCP_NAGLE_CORK) || 1601 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1602 } 1603 1604 /* Return true if the Nagle test allows this packet to be 1605 * sent now. 1606 */ 1607 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1608 unsigned int cur_mss, int nonagle) 1609 { 1610 /* Nagle rule does not apply to frames, which sit in the middle of the 1611 * write_queue (they have no chances to get new data). 1612 * 1613 * This is implemented in the callers, where they modify the 'nonagle' 1614 * argument based upon the location of SKB in the send queue. 1615 */ 1616 if (nonagle & TCP_NAGLE_PUSH) 1617 return true; 1618 1619 /* Don't use the nagle rule for urgent data (or for the final FIN). 1620 * Nagle can be ignored during F-RTO too (see RFC4138). 1621 */ 1622 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) || 1623 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1624 return true; 1625 1626 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1627 return true; 1628 1629 return false; 1630 } 1631 1632 /* Does at least the first segment of SKB fit into the send window? */ 1633 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1634 const struct sk_buff *skb, 1635 unsigned int cur_mss) 1636 { 1637 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1638 1639 if (skb->len > cur_mss) 1640 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1641 1642 return !after(end_seq, tcp_wnd_end(tp)); 1643 } 1644 1645 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1646 * should be put on the wire right now. If so, it returns the number of 1647 * packets allowed by the congestion window. 1648 */ 1649 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1650 unsigned int cur_mss, int nonagle) 1651 { 1652 const struct tcp_sock *tp = tcp_sk(sk); 1653 unsigned int cwnd_quota; 1654 1655 tcp_init_tso_segs(sk, skb, cur_mss); 1656 1657 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1658 return 0; 1659 1660 cwnd_quota = tcp_cwnd_test(tp, skb); 1661 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1662 cwnd_quota = 0; 1663 1664 return cwnd_quota; 1665 } 1666 1667 /* Test if sending is allowed right now. */ 1668 bool tcp_may_send_now(struct sock *sk) 1669 { 1670 const struct tcp_sock *tp = tcp_sk(sk); 1671 struct sk_buff *skb = tcp_send_head(sk); 1672 1673 return skb && 1674 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1675 (tcp_skb_is_last(sk, skb) ? 1676 tp->nonagle : TCP_NAGLE_PUSH)); 1677 } 1678 1679 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1680 * which is put after SKB on the list. It is very much like 1681 * tcp_fragment() except that it may make several kinds of assumptions 1682 * in order to speed up the splitting operation. In particular, we 1683 * know that all the data is in scatter-gather pages, and that the 1684 * packet has never been sent out before (and thus is not cloned). 1685 */ 1686 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1687 unsigned int mss_now, gfp_t gfp) 1688 { 1689 struct sk_buff *buff; 1690 int nlen = skb->len - len; 1691 u8 flags; 1692 1693 /* All of a TSO frame must be composed of paged data. */ 1694 if (skb->len != skb->data_len) 1695 return tcp_fragment(sk, skb, len, mss_now); 1696 1697 buff = sk_stream_alloc_skb(sk, 0, gfp); 1698 if (unlikely(buff == NULL)) 1699 return -ENOMEM; 1700 1701 sk->sk_wmem_queued += buff->truesize; 1702 sk_mem_charge(sk, buff->truesize); 1703 buff->truesize += nlen; 1704 skb->truesize -= nlen; 1705 1706 /* Correct the sequence numbers. */ 1707 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1708 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1709 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1710 1711 /* PSH and FIN should only be set in the second packet. */ 1712 flags = TCP_SKB_CB(skb)->tcp_flags; 1713 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1714 TCP_SKB_CB(buff)->tcp_flags = flags; 1715 1716 /* This packet was never sent out yet, so no SACK bits. */ 1717 TCP_SKB_CB(buff)->sacked = 0; 1718 1719 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1720 skb_split(skb, buff, len); 1721 1722 /* Fix up tso_factor for both original and new SKB. */ 1723 tcp_set_skb_tso_segs(sk, skb, mss_now); 1724 tcp_set_skb_tso_segs(sk, buff, mss_now); 1725 1726 /* Link BUFF into the send queue. */ 1727 skb_header_release(buff); 1728 tcp_insert_write_queue_after(skb, buff, sk); 1729 1730 return 0; 1731 } 1732 1733 /* Try to defer sending, if possible, in order to minimize the amount 1734 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1735 * 1736 * This algorithm is from John Heffner. 1737 */ 1738 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1739 { 1740 struct tcp_sock *tp = tcp_sk(sk); 1741 const struct inet_connection_sock *icsk = inet_csk(sk); 1742 u32 send_win, cong_win, limit, in_flight; 1743 int win_divisor; 1744 1745 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1746 goto send_now; 1747 1748 if (icsk->icsk_ca_state != TCP_CA_Open) 1749 goto send_now; 1750 1751 /* Defer for less than two clock ticks. */ 1752 if (tp->tso_deferred && 1753 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1754 goto send_now; 1755 1756 in_flight = tcp_packets_in_flight(tp); 1757 1758 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1759 1760 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1761 1762 /* From in_flight test above, we know that cwnd > in_flight. */ 1763 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1764 1765 limit = min(send_win, cong_win); 1766 1767 /* If a full-sized TSO skb can be sent, do it. */ 1768 if (limit >= sk->sk_gso_max_size) 1769 goto send_now; 1770 1771 /* Middle in queue won't get any more data, full sendable already? */ 1772 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1773 goto send_now; 1774 1775 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1776 if (win_divisor) { 1777 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1778 1779 /* If at least some fraction of a window is available, 1780 * just use it. 1781 */ 1782 chunk /= win_divisor; 1783 if (limit >= chunk) 1784 goto send_now; 1785 } else { 1786 /* Different approach, try not to defer past a single 1787 * ACK. Receiver should ACK every other full sized 1788 * frame, so if we have space for more than 3 frames 1789 * then send now. 1790 */ 1791 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1792 goto send_now; 1793 } 1794 1795 /* Ok, it looks like it is advisable to defer. */ 1796 tp->tso_deferred = 1 | (jiffies << 1); 1797 1798 return true; 1799 1800 send_now: 1801 tp->tso_deferred = 0; 1802 return false; 1803 } 1804 1805 /* Create a new MTU probe if we are ready. 1806 * MTU probe is regularly attempting to increase the path MTU by 1807 * deliberately sending larger packets. This discovers routing 1808 * changes resulting in larger path MTUs. 1809 * 1810 * Returns 0 if we should wait to probe (no cwnd available), 1811 * 1 if a probe was sent, 1812 * -1 otherwise 1813 */ 1814 static int tcp_mtu_probe(struct sock *sk) 1815 { 1816 struct tcp_sock *tp = tcp_sk(sk); 1817 struct inet_connection_sock *icsk = inet_csk(sk); 1818 struct sk_buff *skb, *nskb, *next; 1819 int len; 1820 int probe_size; 1821 int size_needed; 1822 int copy; 1823 int mss_now; 1824 1825 /* Not currently probing/verifying, 1826 * not in recovery, 1827 * have enough cwnd, and 1828 * not SACKing (the variable headers throw things off) */ 1829 if (!icsk->icsk_mtup.enabled || 1830 icsk->icsk_mtup.probe_size || 1831 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1832 tp->snd_cwnd < 11 || 1833 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1834 return -1; 1835 1836 /* Very simple search strategy: just double the MSS. */ 1837 mss_now = tcp_current_mss(sk); 1838 probe_size = 2 * tp->mss_cache; 1839 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1840 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1841 /* TODO: set timer for probe_converge_event */ 1842 return -1; 1843 } 1844 1845 /* Have enough data in the send queue to probe? */ 1846 if (tp->write_seq - tp->snd_nxt < size_needed) 1847 return -1; 1848 1849 if (tp->snd_wnd < size_needed) 1850 return -1; 1851 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1852 return 0; 1853 1854 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1855 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1856 if (!tcp_packets_in_flight(tp)) 1857 return -1; 1858 else 1859 return 0; 1860 } 1861 1862 /* We're allowed to probe. Build it now. */ 1863 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1864 return -1; 1865 sk->sk_wmem_queued += nskb->truesize; 1866 sk_mem_charge(sk, nskb->truesize); 1867 1868 skb = tcp_send_head(sk); 1869 1870 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1871 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1872 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1873 TCP_SKB_CB(nskb)->sacked = 0; 1874 nskb->csum = 0; 1875 nskb->ip_summed = skb->ip_summed; 1876 1877 tcp_insert_write_queue_before(nskb, skb, sk); 1878 1879 len = 0; 1880 tcp_for_write_queue_from_safe(skb, next, sk) { 1881 copy = min_t(int, skb->len, probe_size - len); 1882 if (nskb->ip_summed) 1883 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1884 else 1885 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1886 skb_put(nskb, copy), 1887 copy, nskb->csum); 1888 1889 if (skb->len <= copy) { 1890 /* We've eaten all the data from this skb. 1891 * Throw it away. */ 1892 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1893 tcp_unlink_write_queue(skb, sk); 1894 sk_wmem_free_skb(sk, skb); 1895 } else { 1896 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1897 ~(TCPHDR_FIN|TCPHDR_PSH); 1898 if (!skb_shinfo(skb)->nr_frags) { 1899 skb_pull(skb, copy); 1900 if (skb->ip_summed != CHECKSUM_PARTIAL) 1901 skb->csum = csum_partial(skb->data, 1902 skb->len, 0); 1903 } else { 1904 __pskb_trim_head(skb, copy); 1905 tcp_set_skb_tso_segs(sk, skb, mss_now); 1906 } 1907 TCP_SKB_CB(skb)->seq += copy; 1908 } 1909 1910 len += copy; 1911 1912 if (len >= probe_size) 1913 break; 1914 } 1915 tcp_init_tso_segs(sk, nskb, nskb->len); 1916 1917 /* We're ready to send. If this fails, the probe will 1918 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1919 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1920 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1921 /* Decrement cwnd here because we are sending 1922 * effectively two packets. */ 1923 tp->snd_cwnd--; 1924 tcp_event_new_data_sent(sk, nskb); 1925 1926 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1927 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1928 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1929 1930 return 1; 1931 } 1932 1933 return -1; 1934 } 1935 1936 /* This routine writes packets to the network. It advances the 1937 * send_head. This happens as incoming acks open up the remote 1938 * window for us. 1939 * 1940 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1941 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1942 * account rare use of URG, this is not a big flaw. 1943 * 1944 * Returns true, if no segments are in flight and we have queued segments, 1945 * but cannot send anything now because of SWS or another problem. 1946 */ 1947 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1948 int push_one, gfp_t gfp) 1949 { 1950 struct tcp_sock *tp = tcp_sk(sk); 1951 struct sk_buff *skb; 1952 unsigned int tso_segs, sent_pkts; 1953 int cwnd_quota; 1954 int result; 1955 1956 sent_pkts = 0; 1957 1958 if (!push_one) { 1959 /* Do MTU probing. */ 1960 result = tcp_mtu_probe(sk); 1961 if (!result) { 1962 return false; 1963 } else if (result > 0) { 1964 sent_pkts = 1; 1965 } 1966 } 1967 1968 while ((skb = tcp_send_head(sk))) { 1969 unsigned int limit; 1970 1971 1972 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1973 BUG_ON(!tso_segs); 1974 1975 cwnd_quota = tcp_cwnd_test(tp, skb); 1976 if (!cwnd_quota) 1977 break; 1978 1979 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1980 break; 1981 1982 if (tso_segs == 1) { 1983 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1984 (tcp_skb_is_last(sk, skb) ? 1985 nonagle : TCP_NAGLE_PUSH)))) 1986 break; 1987 } else { 1988 if (!push_one && tcp_tso_should_defer(sk, skb)) 1989 break; 1990 } 1991 1992 /* TSQ : sk_wmem_alloc accounts skb truesize, 1993 * including skb overhead. But thats OK. 1994 */ 1995 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) { 1996 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 1997 break; 1998 } 1999 limit = mss_now; 2000 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2001 limit = tcp_mss_split_point(sk, skb, mss_now, 2002 cwnd_quota); 2003 2004 if (skb->len > limit && 2005 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2006 break; 2007 2008 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2009 2010 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2011 break; 2012 2013 /* Advance the send_head. This one is sent out. 2014 * This call will increment packets_out. 2015 */ 2016 tcp_event_new_data_sent(sk, skb); 2017 2018 tcp_minshall_update(tp, mss_now, skb); 2019 sent_pkts += tcp_skb_pcount(skb); 2020 2021 if (push_one) 2022 break; 2023 } 2024 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery) 2025 tp->prr_out += sent_pkts; 2026 2027 if (likely(sent_pkts)) { 2028 tcp_cwnd_validate(sk); 2029 return false; 2030 } 2031 return !tp->packets_out && tcp_send_head(sk); 2032 } 2033 2034 /* Push out any pending frames which were held back due to 2035 * TCP_CORK or attempt at coalescing tiny packets. 2036 * The socket must be locked by the caller. 2037 */ 2038 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2039 int nonagle) 2040 { 2041 /* If we are closed, the bytes will have to remain here. 2042 * In time closedown will finish, we empty the write queue and 2043 * all will be happy. 2044 */ 2045 if (unlikely(sk->sk_state == TCP_CLOSE)) 2046 return; 2047 2048 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC)) 2049 tcp_check_probe_timer(sk); 2050 } 2051 2052 /* Send _single_ skb sitting at the send head. This function requires 2053 * true push pending frames to setup probe timer etc. 2054 */ 2055 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2056 { 2057 struct sk_buff *skb = tcp_send_head(sk); 2058 2059 BUG_ON(!skb || skb->len < mss_now); 2060 2061 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2062 } 2063 2064 /* This function returns the amount that we can raise the 2065 * usable window based on the following constraints 2066 * 2067 * 1. The window can never be shrunk once it is offered (RFC 793) 2068 * 2. We limit memory per socket 2069 * 2070 * RFC 1122: 2071 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2072 * RECV.NEXT + RCV.WIN fixed until: 2073 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2074 * 2075 * i.e. don't raise the right edge of the window until you can raise 2076 * it at least MSS bytes. 2077 * 2078 * Unfortunately, the recommended algorithm breaks header prediction, 2079 * since header prediction assumes th->window stays fixed. 2080 * 2081 * Strictly speaking, keeping th->window fixed violates the receiver 2082 * side SWS prevention criteria. The problem is that under this rule 2083 * a stream of single byte packets will cause the right side of the 2084 * window to always advance by a single byte. 2085 * 2086 * Of course, if the sender implements sender side SWS prevention 2087 * then this will not be a problem. 2088 * 2089 * BSD seems to make the following compromise: 2090 * 2091 * If the free space is less than the 1/4 of the maximum 2092 * space available and the free space is less than 1/2 mss, 2093 * then set the window to 0. 2094 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2095 * Otherwise, just prevent the window from shrinking 2096 * and from being larger than the largest representable value. 2097 * 2098 * This prevents incremental opening of the window in the regime 2099 * where TCP is limited by the speed of the reader side taking 2100 * data out of the TCP receive queue. It does nothing about 2101 * those cases where the window is constrained on the sender side 2102 * because the pipeline is full. 2103 * 2104 * BSD also seems to "accidentally" limit itself to windows that are a 2105 * multiple of MSS, at least until the free space gets quite small. 2106 * This would appear to be a side effect of the mbuf implementation. 2107 * Combining these two algorithms results in the observed behavior 2108 * of having a fixed window size at almost all times. 2109 * 2110 * Below we obtain similar behavior by forcing the offered window to 2111 * a multiple of the mss when it is feasible to do so. 2112 * 2113 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2114 * Regular options like TIMESTAMP are taken into account. 2115 */ 2116 u32 __tcp_select_window(struct sock *sk) 2117 { 2118 struct inet_connection_sock *icsk = inet_csk(sk); 2119 struct tcp_sock *tp = tcp_sk(sk); 2120 /* MSS for the peer's data. Previous versions used mss_clamp 2121 * here. I don't know if the value based on our guesses 2122 * of peer's MSS is better for the performance. It's more correct 2123 * but may be worse for the performance because of rcv_mss 2124 * fluctuations. --SAW 1998/11/1 2125 */ 2126 int mss = icsk->icsk_ack.rcv_mss; 2127 int free_space = tcp_space(sk); 2128 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 2129 int window; 2130 2131 if (mss > full_space) 2132 mss = full_space; 2133 2134 if (free_space < (full_space >> 1)) { 2135 icsk->icsk_ack.quick = 0; 2136 2137 if (sk_under_memory_pressure(sk)) 2138 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2139 4U * tp->advmss); 2140 2141 if (free_space < mss) 2142 return 0; 2143 } 2144 2145 if (free_space > tp->rcv_ssthresh) 2146 free_space = tp->rcv_ssthresh; 2147 2148 /* Don't do rounding if we are using window scaling, since the 2149 * scaled window will not line up with the MSS boundary anyway. 2150 */ 2151 window = tp->rcv_wnd; 2152 if (tp->rx_opt.rcv_wscale) { 2153 window = free_space; 2154 2155 /* Advertise enough space so that it won't get scaled away. 2156 * Import case: prevent zero window announcement if 2157 * 1<<rcv_wscale > mss. 2158 */ 2159 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2160 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2161 << tp->rx_opt.rcv_wscale); 2162 } else { 2163 /* Get the largest window that is a nice multiple of mss. 2164 * Window clamp already applied above. 2165 * If our current window offering is within 1 mss of the 2166 * free space we just keep it. This prevents the divide 2167 * and multiply from happening most of the time. 2168 * We also don't do any window rounding when the free space 2169 * is too small. 2170 */ 2171 if (window <= free_space - mss || window > free_space) 2172 window = (free_space / mss) * mss; 2173 else if (mss == full_space && 2174 free_space > window + (full_space >> 1)) 2175 window = free_space; 2176 } 2177 2178 return window; 2179 } 2180 2181 /* Collapses two adjacent SKB's during retransmission. */ 2182 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2183 { 2184 struct tcp_sock *tp = tcp_sk(sk); 2185 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2186 int skb_size, next_skb_size; 2187 2188 skb_size = skb->len; 2189 next_skb_size = next_skb->len; 2190 2191 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2192 2193 tcp_highest_sack_combine(sk, next_skb, skb); 2194 2195 tcp_unlink_write_queue(next_skb, sk); 2196 2197 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2198 next_skb_size); 2199 2200 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2201 skb->ip_summed = CHECKSUM_PARTIAL; 2202 2203 if (skb->ip_summed != CHECKSUM_PARTIAL) 2204 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2205 2206 /* Update sequence range on original skb. */ 2207 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2208 2209 /* Merge over control information. This moves PSH/FIN etc. over */ 2210 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2211 2212 /* All done, get rid of second SKB and account for it so 2213 * packet counting does not break. 2214 */ 2215 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2216 2217 /* changed transmit queue under us so clear hints */ 2218 tcp_clear_retrans_hints_partial(tp); 2219 if (next_skb == tp->retransmit_skb_hint) 2220 tp->retransmit_skb_hint = skb; 2221 2222 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2223 2224 sk_wmem_free_skb(sk, next_skb); 2225 } 2226 2227 /* Check if coalescing SKBs is legal. */ 2228 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2229 { 2230 if (tcp_skb_pcount(skb) > 1) 2231 return false; 2232 /* TODO: SACK collapsing could be used to remove this condition */ 2233 if (skb_shinfo(skb)->nr_frags != 0) 2234 return false; 2235 if (skb_cloned(skb)) 2236 return false; 2237 if (skb == tcp_send_head(sk)) 2238 return false; 2239 /* Some heurestics for collapsing over SACK'd could be invented */ 2240 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2241 return false; 2242 2243 return true; 2244 } 2245 2246 /* Collapse packets in the retransmit queue to make to create 2247 * less packets on the wire. This is only done on retransmission. 2248 */ 2249 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2250 int space) 2251 { 2252 struct tcp_sock *tp = tcp_sk(sk); 2253 struct sk_buff *skb = to, *tmp; 2254 bool first = true; 2255 2256 if (!sysctl_tcp_retrans_collapse) 2257 return; 2258 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2259 return; 2260 2261 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2262 if (!tcp_can_collapse(sk, skb)) 2263 break; 2264 2265 space -= skb->len; 2266 2267 if (first) { 2268 first = false; 2269 continue; 2270 } 2271 2272 if (space < 0) 2273 break; 2274 /* Punt if not enough space exists in the first SKB for 2275 * the data in the second 2276 */ 2277 if (skb->len > skb_availroom(to)) 2278 break; 2279 2280 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2281 break; 2282 2283 tcp_collapse_retrans(sk, to); 2284 } 2285 } 2286 2287 /* This retransmits one SKB. Policy decisions and retransmit queue 2288 * state updates are done by the caller. Returns non-zero if an 2289 * error occurred which prevented the send. 2290 */ 2291 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2292 { 2293 struct tcp_sock *tp = tcp_sk(sk); 2294 struct inet_connection_sock *icsk = inet_csk(sk); 2295 unsigned int cur_mss; 2296 int err; 2297 2298 /* Inconslusive MTU probe */ 2299 if (icsk->icsk_mtup.probe_size) { 2300 icsk->icsk_mtup.probe_size = 0; 2301 } 2302 2303 /* Do not sent more than we queued. 1/4 is reserved for possible 2304 * copying overhead: fragmentation, tunneling, mangling etc. 2305 */ 2306 if (atomic_read(&sk->sk_wmem_alloc) > 2307 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2308 return -EAGAIN; 2309 2310 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2311 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2312 BUG(); 2313 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2314 return -ENOMEM; 2315 } 2316 2317 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2318 return -EHOSTUNREACH; /* Routing failure or similar. */ 2319 2320 cur_mss = tcp_current_mss(sk); 2321 2322 /* If receiver has shrunk his window, and skb is out of 2323 * new window, do not retransmit it. The exception is the 2324 * case, when window is shrunk to zero. In this case 2325 * our retransmit serves as a zero window probe. 2326 */ 2327 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2328 TCP_SKB_CB(skb)->seq != tp->snd_una) 2329 return -EAGAIN; 2330 2331 if (skb->len > cur_mss) { 2332 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2333 return -ENOMEM; /* We'll try again later. */ 2334 } else { 2335 int oldpcount = tcp_skb_pcount(skb); 2336 2337 if (unlikely(oldpcount > 1)) { 2338 tcp_init_tso_segs(sk, skb, cur_mss); 2339 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2340 } 2341 } 2342 2343 tcp_retrans_try_collapse(sk, skb, cur_mss); 2344 2345 /* Some Solaris stacks overoptimize and ignore the FIN on a 2346 * retransmit when old data is attached. So strip it off 2347 * since it is cheap to do so and saves bytes on the network. 2348 */ 2349 if (skb->len > 0 && 2350 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2351 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 2352 if (!pskb_trim(skb, 0)) { 2353 /* Reuse, even though it does some unnecessary work */ 2354 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, 2355 TCP_SKB_CB(skb)->tcp_flags); 2356 skb->ip_summed = CHECKSUM_NONE; 2357 } 2358 } 2359 2360 /* Make a copy, if the first transmission SKB clone we made 2361 * is still in somebody's hands, else make a clone. 2362 */ 2363 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2364 2365 /* make sure skb->data is aligned on arches that require it */ 2366 if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) { 2367 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2368 GFP_ATOMIC); 2369 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2370 -ENOBUFS; 2371 } else { 2372 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2373 } 2374 2375 if (err == 0) { 2376 /* Update global TCP statistics. */ 2377 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2378 2379 tp->total_retrans++; 2380 2381 #if FASTRETRANS_DEBUG > 0 2382 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2383 net_dbg_ratelimited("retrans_out leaked\n"); 2384 } 2385 #endif 2386 if (!tp->retrans_out) 2387 tp->lost_retrans_low = tp->snd_nxt; 2388 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2389 tp->retrans_out += tcp_skb_pcount(skb); 2390 2391 /* Save stamp of the first retransmit. */ 2392 if (!tp->retrans_stamp) 2393 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2394 2395 tp->undo_retrans += tcp_skb_pcount(skb); 2396 2397 /* snd_nxt is stored to detect loss of retransmitted segment, 2398 * see tcp_input.c tcp_sacktag_write_queue(). 2399 */ 2400 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2401 } 2402 return err; 2403 } 2404 2405 /* Check if we forward retransmits are possible in the current 2406 * window/congestion state. 2407 */ 2408 static bool tcp_can_forward_retransmit(struct sock *sk) 2409 { 2410 const struct inet_connection_sock *icsk = inet_csk(sk); 2411 const struct tcp_sock *tp = tcp_sk(sk); 2412 2413 /* Forward retransmissions are possible only during Recovery. */ 2414 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2415 return false; 2416 2417 /* No forward retransmissions in Reno are possible. */ 2418 if (tcp_is_reno(tp)) 2419 return false; 2420 2421 /* Yeah, we have to make difficult choice between forward transmission 2422 * and retransmission... Both ways have their merits... 2423 * 2424 * For now we do not retransmit anything, while we have some new 2425 * segments to send. In the other cases, follow rule 3 for 2426 * NextSeg() specified in RFC3517. 2427 */ 2428 2429 if (tcp_may_send_now(sk)) 2430 return false; 2431 2432 return true; 2433 } 2434 2435 /* This gets called after a retransmit timeout, and the initially 2436 * retransmitted data is acknowledged. It tries to continue 2437 * resending the rest of the retransmit queue, until either 2438 * we've sent it all or the congestion window limit is reached. 2439 * If doing SACK, the first ACK which comes back for a timeout 2440 * based retransmit packet might feed us FACK information again. 2441 * If so, we use it to avoid unnecessarily retransmissions. 2442 */ 2443 void tcp_xmit_retransmit_queue(struct sock *sk) 2444 { 2445 const struct inet_connection_sock *icsk = inet_csk(sk); 2446 struct tcp_sock *tp = tcp_sk(sk); 2447 struct sk_buff *skb; 2448 struct sk_buff *hole = NULL; 2449 u32 last_lost; 2450 int mib_idx; 2451 int fwd_rexmitting = 0; 2452 2453 if (!tp->packets_out) 2454 return; 2455 2456 if (!tp->lost_out) 2457 tp->retransmit_high = tp->snd_una; 2458 2459 if (tp->retransmit_skb_hint) { 2460 skb = tp->retransmit_skb_hint; 2461 last_lost = TCP_SKB_CB(skb)->end_seq; 2462 if (after(last_lost, tp->retransmit_high)) 2463 last_lost = tp->retransmit_high; 2464 } else { 2465 skb = tcp_write_queue_head(sk); 2466 last_lost = tp->snd_una; 2467 } 2468 2469 tcp_for_write_queue_from(skb, sk) { 2470 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2471 2472 if (skb == tcp_send_head(sk)) 2473 break; 2474 /* we could do better than to assign each time */ 2475 if (hole == NULL) 2476 tp->retransmit_skb_hint = skb; 2477 2478 /* Assume this retransmit will generate 2479 * only one packet for congestion window 2480 * calculation purposes. This works because 2481 * tcp_retransmit_skb() will chop up the 2482 * packet to be MSS sized and all the 2483 * packet counting works out. 2484 */ 2485 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2486 return; 2487 2488 if (fwd_rexmitting) { 2489 begin_fwd: 2490 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2491 break; 2492 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2493 2494 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2495 tp->retransmit_high = last_lost; 2496 if (!tcp_can_forward_retransmit(sk)) 2497 break; 2498 /* Backtrack if necessary to non-L'ed skb */ 2499 if (hole != NULL) { 2500 skb = hole; 2501 hole = NULL; 2502 } 2503 fwd_rexmitting = 1; 2504 goto begin_fwd; 2505 2506 } else if (!(sacked & TCPCB_LOST)) { 2507 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2508 hole = skb; 2509 continue; 2510 2511 } else { 2512 last_lost = TCP_SKB_CB(skb)->end_seq; 2513 if (icsk->icsk_ca_state != TCP_CA_Loss) 2514 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2515 else 2516 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2517 } 2518 2519 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2520 continue; 2521 2522 if (tcp_retransmit_skb(sk, skb)) { 2523 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2524 return; 2525 } 2526 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2527 2528 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery) 2529 tp->prr_out += tcp_skb_pcount(skb); 2530 2531 if (skb == tcp_write_queue_head(sk)) 2532 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2533 inet_csk(sk)->icsk_rto, 2534 TCP_RTO_MAX); 2535 } 2536 } 2537 2538 /* Send a fin. The caller locks the socket for us. This cannot be 2539 * allowed to fail queueing a FIN frame under any circumstances. 2540 */ 2541 void tcp_send_fin(struct sock *sk) 2542 { 2543 struct tcp_sock *tp = tcp_sk(sk); 2544 struct sk_buff *skb = tcp_write_queue_tail(sk); 2545 int mss_now; 2546 2547 /* Optimization, tack on the FIN if we have a queue of 2548 * unsent frames. But be careful about outgoing SACKS 2549 * and IP options. 2550 */ 2551 mss_now = tcp_current_mss(sk); 2552 2553 if (tcp_send_head(sk) != NULL) { 2554 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2555 TCP_SKB_CB(skb)->end_seq++; 2556 tp->write_seq++; 2557 } else { 2558 /* Socket is locked, keep trying until memory is available. */ 2559 for (;;) { 2560 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2561 sk->sk_allocation); 2562 if (skb) 2563 break; 2564 yield(); 2565 } 2566 2567 /* Reserve space for headers and prepare control bits. */ 2568 skb_reserve(skb, MAX_TCP_HEADER); 2569 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2570 tcp_init_nondata_skb(skb, tp->write_seq, 2571 TCPHDR_ACK | TCPHDR_FIN); 2572 tcp_queue_skb(sk, skb); 2573 } 2574 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2575 } 2576 2577 /* We get here when a process closes a file descriptor (either due to 2578 * an explicit close() or as a byproduct of exit()'ing) and there 2579 * was unread data in the receive queue. This behavior is recommended 2580 * by RFC 2525, section 2.17. -DaveM 2581 */ 2582 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2583 { 2584 struct sk_buff *skb; 2585 2586 /* NOTE: No TCP options attached and we never retransmit this. */ 2587 skb = alloc_skb(MAX_TCP_HEADER, priority); 2588 if (!skb) { 2589 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2590 return; 2591 } 2592 2593 /* Reserve space for headers and prepare control bits. */ 2594 skb_reserve(skb, MAX_TCP_HEADER); 2595 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2596 TCPHDR_ACK | TCPHDR_RST); 2597 /* Send it off. */ 2598 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2599 if (tcp_transmit_skb(sk, skb, 0, priority)) 2600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2601 2602 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2603 } 2604 2605 /* Send a crossed SYN-ACK during socket establishment. 2606 * WARNING: This routine must only be called when we have already sent 2607 * a SYN packet that crossed the incoming SYN that caused this routine 2608 * to get called. If this assumption fails then the initial rcv_wnd 2609 * and rcv_wscale values will not be correct. 2610 */ 2611 int tcp_send_synack(struct sock *sk) 2612 { 2613 struct sk_buff *skb; 2614 2615 skb = tcp_write_queue_head(sk); 2616 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2617 pr_debug("%s: wrong queue state\n", __func__); 2618 return -EFAULT; 2619 } 2620 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2621 if (skb_cloned(skb)) { 2622 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2623 if (nskb == NULL) 2624 return -ENOMEM; 2625 tcp_unlink_write_queue(skb, sk); 2626 skb_header_release(nskb); 2627 __tcp_add_write_queue_head(sk, nskb); 2628 sk_wmem_free_skb(sk, skb); 2629 sk->sk_wmem_queued += nskb->truesize; 2630 sk_mem_charge(sk, nskb->truesize); 2631 skb = nskb; 2632 } 2633 2634 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2635 TCP_ECN_send_synack(tcp_sk(sk), skb); 2636 } 2637 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2638 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2639 } 2640 2641 /** 2642 * tcp_make_synack - Prepare a SYN-ACK. 2643 * sk: listener socket 2644 * dst: dst entry attached to the SYNACK 2645 * req: request_sock pointer 2646 * rvp: request_values pointer 2647 * 2648 * Allocate one skb and build a SYNACK packet. 2649 * @dst is consumed : Caller should not use it again. 2650 */ 2651 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2652 struct request_sock *req, 2653 struct request_values *rvp) 2654 { 2655 struct tcp_out_options opts; 2656 struct tcp_extend_values *xvp = tcp_xv(rvp); 2657 struct inet_request_sock *ireq = inet_rsk(req); 2658 struct tcp_sock *tp = tcp_sk(sk); 2659 const struct tcp_cookie_values *cvp = tp->cookie_values; 2660 struct tcphdr *th; 2661 struct sk_buff *skb; 2662 struct tcp_md5sig_key *md5; 2663 int tcp_header_size; 2664 int mss; 2665 int s_data_desired = 0; 2666 2667 if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired) 2668 s_data_desired = cvp->s_data_desired; 2669 skb = alloc_skb(MAX_TCP_HEADER + 15 + s_data_desired, GFP_ATOMIC); 2670 if (unlikely(!skb)) { 2671 dst_release(dst); 2672 return NULL; 2673 } 2674 /* Reserve space for headers. */ 2675 skb_reserve(skb, MAX_TCP_HEADER); 2676 2677 skb_dst_set(skb, dst); 2678 2679 mss = dst_metric_advmss(dst); 2680 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2681 mss = tp->rx_opt.user_mss; 2682 2683 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2684 __u8 rcv_wscale; 2685 /* Set this up on the first call only */ 2686 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2687 2688 /* limit the window selection if the user enforce a smaller rx buffer */ 2689 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2690 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2691 req->window_clamp = tcp_full_space(sk); 2692 2693 /* tcp_full_space because it is guaranteed to be the first packet */ 2694 tcp_select_initial_window(tcp_full_space(sk), 2695 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2696 &req->rcv_wnd, 2697 &req->window_clamp, 2698 ireq->wscale_ok, 2699 &rcv_wscale, 2700 dst_metric(dst, RTAX_INITRWND)); 2701 ireq->rcv_wscale = rcv_wscale; 2702 } 2703 2704 memset(&opts, 0, sizeof(opts)); 2705 #ifdef CONFIG_SYN_COOKIES 2706 if (unlikely(req->cookie_ts)) 2707 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2708 else 2709 #endif 2710 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2711 tcp_header_size = tcp_synack_options(sk, req, mss, 2712 skb, &opts, &md5, xvp) 2713 + sizeof(*th); 2714 2715 skb_push(skb, tcp_header_size); 2716 skb_reset_transport_header(skb); 2717 2718 th = tcp_hdr(skb); 2719 memset(th, 0, sizeof(struct tcphdr)); 2720 th->syn = 1; 2721 th->ack = 1; 2722 TCP_ECN_make_synack(req, th); 2723 th->source = ireq->loc_port; 2724 th->dest = ireq->rmt_port; 2725 /* Setting of flags are superfluous here for callers (and ECE is 2726 * not even correctly set) 2727 */ 2728 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2729 TCPHDR_SYN | TCPHDR_ACK); 2730 2731 if (OPTION_COOKIE_EXTENSION & opts.options) { 2732 if (s_data_desired) { 2733 u8 *buf = skb_put(skb, s_data_desired); 2734 2735 /* copy data directly from the listening socket. */ 2736 memcpy(buf, cvp->s_data_payload, s_data_desired); 2737 TCP_SKB_CB(skb)->end_seq += s_data_desired; 2738 } 2739 2740 if (opts.hash_size > 0) { 2741 __u32 workspace[SHA_WORKSPACE_WORDS]; 2742 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS]; 2743 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1]; 2744 2745 /* Secret recipe depends on the Timestamp, (future) 2746 * Sequence and Acknowledgment Numbers, Initiator 2747 * Cookie, and others handled by IP variant caller. 2748 */ 2749 *tail-- ^= opts.tsval; 2750 *tail-- ^= tcp_rsk(req)->rcv_isn + 1; 2751 *tail-- ^= TCP_SKB_CB(skb)->seq + 1; 2752 2753 /* recommended */ 2754 *tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source); 2755 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */ 2756 2757 sha_transform((__u32 *)&xvp->cookie_bakery[0], 2758 (char *)mess, 2759 &workspace[0]); 2760 opts.hash_location = 2761 (__u8 *)&xvp->cookie_bakery[0]; 2762 } 2763 } 2764 2765 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2766 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 2767 2768 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2769 th->window = htons(min(req->rcv_wnd, 65535U)); 2770 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2771 th->doff = (tcp_header_size >> 2); 2772 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2773 2774 #ifdef CONFIG_TCP_MD5SIG 2775 /* Okay, we have all we need - do the md5 hash if needed */ 2776 if (md5) { 2777 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2778 md5, NULL, req, skb); 2779 } 2780 #endif 2781 2782 return skb; 2783 } 2784 EXPORT_SYMBOL(tcp_make_synack); 2785 2786 /* Do all connect socket setups that can be done AF independent. */ 2787 void tcp_connect_init(struct sock *sk) 2788 { 2789 const struct dst_entry *dst = __sk_dst_get(sk); 2790 struct tcp_sock *tp = tcp_sk(sk); 2791 __u8 rcv_wscale; 2792 2793 /* We'll fix this up when we get a response from the other end. 2794 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2795 */ 2796 tp->tcp_header_len = sizeof(struct tcphdr) + 2797 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2798 2799 #ifdef CONFIG_TCP_MD5SIG 2800 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2801 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2802 #endif 2803 2804 /* If user gave his TCP_MAXSEG, record it to clamp */ 2805 if (tp->rx_opt.user_mss) 2806 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2807 tp->max_window = 0; 2808 tcp_mtup_init(sk); 2809 tcp_sync_mss(sk, dst_mtu(dst)); 2810 2811 if (!tp->window_clamp) 2812 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2813 tp->advmss = dst_metric_advmss(dst); 2814 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2815 tp->advmss = tp->rx_opt.user_mss; 2816 2817 tcp_initialize_rcv_mss(sk); 2818 2819 /* limit the window selection if the user enforce a smaller rx buffer */ 2820 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2821 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2822 tp->window_clamp = tcp_full_space(sk); 2823 2824 tcp_select_initial_window(tcp_full_space(sk), 2825 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2826 &tp->rcv_wnd, 2827 &tp->window_clamp, 2828 sysctl_tcp_window_scaling, 2829 &rcv_wscale, 2830 dst_metric(dst, RTAX_INITRWND)); 2831 2832 tp->rx_opt.rcv_wscale = rcv_wscale; 2833 tp->rcv_ssthresh = tp->rcv_wnd; 2834 2835 sk->sk_err = 0; 2836 sock_reset_flag(sk, SOCK_DONE); 2837 tp->snd_wnd = 0; 2838 tcp_init_wl(tp, 0); 2839 tp->snd_una = tp->write_seq; 2840 tp->snd_sml = tp->write_seq; 2841 tp->snd_up = tp->write_seq; 2842 tp->snd_nxt = tp->write_seq; 2843 2844 if (likely(!tp->repair)) 2845 tp->rcv_nxt = 0; 2846 tp->rcv_wup = tp->rcv_nxt; 2847 tp->copied_seq = tp->rcv_nxt; 2848 2849 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2850 inet_csk(sk)->icsk_retransmits = 0; 2851 tcp_clear_retrans(tp); 2852 } 2853 2854 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 2855 { 2856 struct tcp_sock *tp = tcp_sk(sk); 2857 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 2858 2859 tcb->end_seq += skb->len; 2860 skb_header_release(skb); 2861 __tcp_add_write_queue_tail(sk, skb); 2862 sk->sk_wmem_queued += skb->truesize; 2863 sk_mem_charge(sk, skb->truesize); 2864 tp->write_seq = tcb->end_seq; 2865 tp->packets_out += tcp_skb_pcount(skb); 2866 } 2867 2868 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 2869 * queue a data-only packet after the regular SYN, such that regular SYNs 2870 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 2871 * only the SYN sequence, the data are retransmitted in the first ACK. 2872 * If cookie is not cached or other error occurs, falls back to send a 2873 * regular SYN with Fast Open cookie request option. 2874 */ 2875 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 2876 { 2877 struct tcp_sock *tp = tcp_sk(sk); 2878 struct tcp_fastopen_request *fo = tp->fastopen_req; 2879 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen; 2880 struct sk_buff *syn_data = NULL, *data; 2881 unsigned long last_syn_loss = 0; 2882 2883 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 2884 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 2885 &syn_loss, &last_syn_loss); 2886 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 2887 if (syn_loss > 1 && 2888 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 2889 fo->cookie.len = -1; 2890 goto fallback; 2891 } 2892 2893 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 2894 fo->cookie.len = -1; 2895 else if (fo->cookie.len <= 0) 2896 goto fallback; 2897 2898 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 2899 * user-MSS. Reserve maximum option space for middleboxes that add 2900 * private TCP options. The cost is reduced data space in SYN :( 2901 */ 2902 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 2903 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2904 space = tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 2905 MAX_TCP_OPTION_SPACE; 2906 2907 syn_data = skb_copy_expand(syn, skb_headroom(syn), space, 2908 sk->sk_allocation); 2909 if (syn_data == NULL) 2910 goto fallback; 2911 2912 for (i = 0; i < iovlen && syn_data->len < space; ++i) { 2913 struct iovec *iov = &fo->data->msg_iov[i]; 2914 unsigned char __user *from = iov->iov_base; 2915 int len = iov->iov_len; 2916 2917 if (syn_data->len + len > space) 2918 len = space - syn_data->len; 2919 else if (i + 1 == iovlen) 2920 /* No more data pending in inet_wait_for_connect() */ 2921 fo->data = NULL; 2922 2923 if (skb_add_data(syn_data, from, len)) 2924 goto fallback; 2925 } 2926 2927 /* Queue a data-only packet after the regular SYN for retransmission */ 2928 data = pskb_copy(syn_data, sk->sk_allocation); 2929 if (data == NULL) 2930 goto fallback; 2931 TCP_SKB_CB(data)->seq++; 2932 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN; 2933 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH); 2934 tcp_connect_queue_skb(sk, data); 2935 fo->copied = data->len; 2936 2937 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) { 2938 tp->syn_data = (fo->copied > 0); 2939 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 2940 goto done; 2941 } 2942 syn_data = NULL; 2943 2944 fallback: 2945 /* Send a regular SYN with Fast Open cookie request option */ 2946 if (fo->cookie.len > 0) 2947 fo->cookie.len = 0; 2948 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 2949 if (err) 2950 tp->syn_fastopen = 0; 2951 kfree_skb(syn_data); 2952 done: 2953 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 2954 return err; 2955 } 2956 2957 /* Build a SYN and send it off. */ 2958 int tcp_connect(struct sock *sk) 2959 { 2960 struct tcp_sock *tp = tcp_sk(sk); 2961 struct sk_buff *buff; 2962 int err; 2963 2964 tcp_connect_init(sk); 2965 2966 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2967 if (unlikely(buff == NULL)) 2968 return -ENOBUFS; 2969 2970 /* Reserve space for headers. */ 2971 skb_reserve(buff, MAX_TCP_HEADER); 2972 2973 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 2974 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp; 2975 tcp_connect_queue_skb(sk, buff); 2976 TCP_ECN_send_syn(sk, buff); 2977 2978 /* Send off SYN; include data in Fast Open. */ 2979 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 2980 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2981 if (err == -ECONNREFUSED) 2982 return err; 2983 2984 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2985 * in order to make this packet get counted in tcpOutSegs. 2986 */ 2987 tp->snd_nxt = tp->write_seq; 2988 tp->pushed_seq = tp->write_seq; 2989 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2990 2991 /* Timer for repeating the SYN until an answer. */ 2992 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2993 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2994 return 0; 2995 } 2996 EXPORT_SYMBOL(tcp_connect); 2997 2998 /* Send out a delayed ack, the caller does the policy checking 2999 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3000 * for details. 3001 */ 3002 void tcp_send_delayed_ack(struct sock *sk) 3003 { 3004 struct inet_connection_sock *icsk = inet_csk(sk); 3005 int ato = icsk->icsk_ack.ato; 3006 unsigned long timeout; 3007 3008 if (ato > TCP_DELACK_MIN) { 3009 const struct tcp_sock *tp = tcp_sk(sk); 3010 int max_ato = HZ / 2; 3011 3012 if (icsk->icsk_ack.pingpong || 3013 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3014 max_ato = TCP_DELACK_MAX; 3015 3016 /* Slow path, intersegment interval is "high". */ 3017 3018 /* If some rtt estimate is known, use it to bound delayed ack. 3019 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3020 * directly. 3021 */ 3022 if (tp->srtt) { 3023 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 3024 3025 if (rtt < max_ato) 3026 max_ato = rtt; 3027 } 3028 3029 ato = min(ato, max_ato); 3030 } 3031 3032 /* Stay within the limit we were given */ 3033 timeout = jiffies + ato; 3034 3035 /* Use new timeout only if there wasn't a older one earlier. */ 3036 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3037 /* If delack timer was blocked or is about to expire, 3038 * send ACK now. 3039 */ 3040 if (icsk->icsk_ack.blocked || 3041 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3042 tcp_send_ack(sk); 3043 return; 3044 } 3045 3046 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3047 timeout = icsk->icsk_ack.timeout; 3048 } 3049 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3050 icsk->icsk_ack.timeout = timeout; 3051 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3052 } 3053 3054 /* This routine sends an ack and also updates the window. */ 3055 void tcp_send_ack(struct sock *sk) 3056 { 3057 struct sk_buff *buff; 3058 3059 /* If we have been reset, we may not send again. */ 3060 if (sk->sk_state == TCP_CLOSE) 3061 return; 3062 3063 /* We are not putting this on the write queue, so 3064 * tcp_transmit_skb() will set the ownership to this 3065 * sock. 3066 */ 3067 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3068 if (buff == NULL) { 3069 inet_csk_schedule_ack(sk); 3070 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3071 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3072 TCP_DELACK_MAX, TCP_RTO_MAX); 3073 return; 3074 } 3075 3076 /* Reserve space for headers and prepare control bits. */ 3077 skb_reserve(buff, MAX_TCP_HEADER); 3078 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3079 3080 /* Send it off, this clears delayed acks for us. */ 3081 TCP_SKB_CB(buff)->when = tcp_time_stamp; 3082 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); 3083 } 3084 3085 /* This routine sends a packet with an out of date sequence 3086 * number. It assumes the other end will try to ack it. 3087 * 3088 * Question: what should we make while urgent mode? 3089 * 4.4BSD forces sending single byte of data. We cannot send 3090 * out of window data, because we have SND.NXT==SND.MAX... 3091 * 3092 * Current solution: to send TWO zero-length segments in urgent mode: 3093 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3094 * out-of-date with SND.UNA-1 to probe window. 3095 */ 3096 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3097 { 3098 struct tcp_sock *tp = tcp_sk(sk); 3099 struct sk_buff *skb; 3100 3101 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3102 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3103 if (skb == NULL) 3104 return -1; 3105 3106 /* Reserve space for headers and set control bits. */ 3107 skb_reserve(skb, MAX_TCP_HEADER); 3108 /* Use a previous sequence. This should cause the other 3109 * end to send an ack. Don't queue or clone SKB, just 3110 * send it. 3111 */ 3112 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3113 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3114 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3115 } 3116 3117 void tcp_send_window_probe(struct sock *sk) 3118 { 3119 if (sk->sk_state == TCP_ESTABLISHED) { 3120 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3121 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq; 3122 tcp_xmit_probe_skb(sk, 0); 3123 } 3124 } 3125 3126 /* Initiate keepalive or window probe from timer. */ 3127 int tcp_write_wakeup(struct sock *sk) 3128 { 3129 struct tcp_sock *tp = tcp_sk(sk); 3130 struct sk_buff *skb; 3131 3132 if (sk->sk_state == TCP_CLOSE) 3133 return -1; 3134 3135 if ((skb = tcp_send_head(sk)) != NULL && 3136 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3137 int err; 3138 unsigned int mss = tcp_current_mss(sk); 3139 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3140 3141 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3142 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3143 3144 /* We are probing the opening of a window 3145 * but the window size is != 0 3146 * must have been a result SWS avoidance ( sender ) 3147 */ 3148 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3149 skb->len > mss) { 3150 seg_size = min(seg_size, mss); 3151 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3152 if (tcp_fragment(sk, skb, seg_size, mss)) 3153 return -1; 3154 } else if (!tcp_skb_pcount(skb)) 3155 tcp_set_skb_tso_segs(sk, skb, mss); 3156 3157 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3158 TCP_SKB_CB(skb)->when = tcp_time_stamp; 3159 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3160 if (!err) 3161 tcp_event_new_data_sent(sk, skb); 3162 return err; 3163 } else { 3164 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3165 tcp_xmit_probe_skb(sk, 1); 3166 return tcp_xmit_probe_skb(sk, 0); 3167 } 3168 } 3169 3170 /* A window probe timeout has occurred. If window is not closed send 3171 * a partial packet else a zero probe. 3172 */ 3173 void tcp_send_probe0(struct sock *sk) 3174 { 3175 struct inet_connection_sock *icsk = inet_csk(sk); 3176 struct tcp_sock *tp = tcp_sk(sk); 3177 int err; 3178 3179 err = tcp_write_wakeup(sk); 3180 3181 if (tp->packets_out || !tcp_send_head(sk)) { 3182 /* Cancel probe timer, if it is not required. */ 3183 icsk->icsk_probes_out = 0; 3184 icsk->icsk_backoff = 0; 3185 return; 3186 } 3187 3188 if (err <= 0) { 3189 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3190 icsk->icsk_backoff++; 3191 icsk->icsk_probes_out++; 3192 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3193 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3194 TCP_RTO_MAX); 3195 } else { 3196 /* If packet was not sent due to local congestion, 3197 * do not backoff and do not remember icsk_probes_out. 3198 * Let local senders to fight for local resources. 3199 * 3200 * Use accumulated backoff yet. 3201 */ 3202 if (!icsk->icsk_probes_out) 3203 icsk->icsk_probes_out = 1; 3204 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3205 min(icsk->icsk_rto << icsk->icsk_backoff, 3206 TCP_RESOURCE_PROBE_INTERVAL), 3207 TCP_RTO_MAX); 3208 } 3209 } 3210