xref: /linux/net/ipv4/tcp_output.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */
69 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct tcp_sock *tp = tcp_sk(sk);
78 	unsigned int prior_packets = tp->packets_out;
79 
80 	tcp_advance_send_head(sk, skb);
81 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
82 
83 	/* Don't override Nagle indefinitely with F-RTO */
84 	if (tp->frto_counter == 2)
85 		tp->frto_counter = 3;
86 
87 	tp->packets_out += tcp_skb_pcount(skb);
88 	if (!prior_packets || tp->early_retrans_delayed)
89 		tcp_rearm_rto(sk);
90 }
91 
92 /* SND.NXT, if window was not shrunk.
93  * If window has been shrunk, what should we make? It is not clear at all.
94  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
95  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
96  * invalid. OK, let's make this for now:
97  */
98 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 {
100 	const struct tcp_sock *tp = tcp_sk(sk);
101 
102 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
103 		return tp->snd_nxt;
104 	else
105 		return tcp_wnd_end(tp);
106 }
107 
108 /* Calculate mss to advertise in SYN segment.
109  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110  *
111  * 1. It is independent of path mtu.
112  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
113  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
114  *    attached devices, because some buggy hosts are confused by
115  *    large MSS.
116  * 4. We do not make 3, we advertise MSS, calculated from first
117  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
118  *    This may be overridden via information stored in routing table.
119  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
120  *    probably even Jumbo".
121  */
122 static __u16 tcp_advertise_mss(struct sock *sk)
123 {
124 	struct tcp_sock *tp = tcp_sk(sk);
125 	const struct dst_entry *dst = __sk_dst_get(sk);
126 	int mss = tp->advmss;
127 
128 	if (dst) {
129 		unsigned int metric = dst_metric_advmss(dst);
130 
131 		if (metric < mss) {
132 			mss = metric;
133 			tp->advmss = mss;
134 		}
135 	}
136 
137 	return (__u16)mss;
138 }
139 
140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
141  * This is the first part of cwnd validation mechanism. */
142 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	s32 delta = tcp_time_stamp - tp->lsndtime;
146 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
147 	u32 cwnd = tp->snd_cwnd;
148 
149 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150 
151 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
152 	restart_cwnd = min(restart_cwnd, cwnd);
153 
154 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155 		cwnd >>= 1;
156 	tp->snd_cwnd = max(cwnd, restart_cwnd);
157 	tp->snd_cwnd_stamp = tcp_time_stamp;
158 	tp->snd_cwnd_used = 0;
159 }
160 
161 /* Congestion state accounting after a packet has been sent. */
162 static void tcp_event_data_sent(struct tcp_sock *tp,
163 				struct sock *sk)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const u32 now = tcp_time_stamp;
167 
168 	if (sysctl_tcp_slow_start_after_idle &&
169 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 		icsk->icsk_ack.pingpong = 1;
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
183 {
184 	tcp_dec_quickack_mode(sk, pkts);
185 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
186 }
187 
188 /* Determine a window scaling and initial window to offer.
189  * Based on the assumption that the given amount of space
190  * will be offered. Store the results in the tp structure.
191  * NOTE: for smooth operation initial space offering should
192  * be a multiple of mss if possible. We assume here that mss >= 1.
193  * This MUST be enforced by all callers.
194  */
195 void tcp_select_initial_window(int __space, __u32 mss,
196 			       __u32 *rcv_wnd, __u32 *window_clamp,
197 			       int wscale_ok, __u8 *rcv_wscale,
198 			       __u32 init_rcv_wnd)
199 {
200 	unsigned int space = (__space < 0 ? 0 : __space);
201 
202 	/* If no clamp set the clamp to the max possible scaled window */
203 	if (*window_clamp == 0)
204 		(*window_clamp) = (65535 << 14);
205 	space = min(*window_clamp, space);
206 
207 	/* Quantize space offering to a multiple of mss if possible. */
208 	if (space > mss)
209 		space = (space / mss) * mss;
210 
211 	/* NOTE: offering an initial window larger than 32767
212 	 * will break some buggy TCP stacks. If the admin tells us
213 	 * it is likely we could be speaking with such a buggy stack
214 	 * we will truncate our initial window offering to 32K-1
215 	 * unless the remote has sent us a window scaling option,
216 	 * which we interpret as a sign the remote TCP is not
217 	 * misinterpreting the window field as a signed quantity.
218 	 */
219 	if (sysctl_tcp_workaround_signed_windows)
220 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
221 	else
222 		(*rcv_wnd) = space;
223 
224 	(*rcv_wscale) = 0;
225 	if (wscale_ok) {
226 		/* Set window scaling on max possible window
227 		 * See RFC1323 for an explanation of the limit to 14
228 		 */
229 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
230 		space = min_t(u32, space, *window_clamp);
231 		while (space > 65535 && (*rcv_wscale) < 14) {
232 			space >>= 1;
233 			(*rcv_wscale)++;
234 		}
235 	}
236 
237 	/* Set initial window to a value enough for senders starting with
238 	 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
239 	 * a limit on the initial window when mss is larger than 1460.
240 	 */
241 	if (mss > (1 << *rcv_wscale)) {
242 		int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
243 		if (mss > 1460)
244 			init_cwnd =
245 			max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
246 		/* when initializing use the value from init_rcv_wnd
247 		 * rather than the default from above
248 		 */
249 		if (init_rcv_wnd)
250 			*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 		else
252 			*rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
253 	}
254 
255 	/* Set the clamp no higher than max representable value */
256 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
257 }
258 EXPORT_SYMBOL(tcp_select_initial_window);
259 
260 /* Chose a new window to advertise, update state in tcp_sock for the
261  * socket, and return result with RFC1323 scaling applied.  The return
262  * value can be stuffed directly into th->window for an outgoing
263  * frame.
264  */
265 static u16 tcp_select_window(struct sock *sk)
266 {
267 	struct tcp_sock *tp = tcp_sk(sk);
268 	u32 cur_win = tcp_receive_window(tp);
269 	u32 new_win = __tcp_select_window(sk);
270 
271 	/* Never shrink the offered window */
272 	if (new_win < cur_win) {
273 		/* Danger Will Robinson!
274 		 * Don't update rcv_wup/rcv_wnd here or else
275 		 * we will not be able to advertise a zero
276 		 * window in time.  --DaveM
277 		 *
278 		 * Relax Will Robinson.
279 		 */
280 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
281 	}
282 	tp->rcv_wnd = new_win;
283 	tp->rcv_wup = tp->rcv_nxt;
284 
285 	/* Make sure we do not exceed the maximum possible
286 	 * scaled window.
287 	 */
288 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
289 		new_win = min(new_win, MAX_TCP_WINDOW);
290 	else
291 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
292 
293 	/* RFC1323 scaling applied */
294 	new_win >>= tp->rx_opt.rcv_wscale;
295 
296 	/* If we advertise zero window, disable fast path. */
297 	if (new_win == 0)
298 		tp->pred_flags = 0;
299 
300 	return new_win;
301 }
302 
303 /* Packet ECN state for a SYN-ACK */
304 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
305 {
306 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
307 	if (!(tp->ecn_flags & TCP_ECN_OK))
308 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
309 }
310 
311 /* Packet ECN state for a SYN.  */
312 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
313 {
314 	struct tcp_sock *tp = tcp_sk(sk);
315 
316 	tp->ecn_flags = 0;
317 	if (sysctl_tcp_ecn == 1) {
318 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
319 		tp->ecn_flags = TCP_ECN_OK;
320 	}
321 }
322 
323 static __inline__ void
324 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
325 {
326 	if (inet_rsk(req)->ecn_ok)
327 		th->ece = 1;
328 }
329 
330 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
331  * be sent.
332  */
333 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
334 				int tcp_header_len)
335 {
336 	struct tcp_sock *tp = tcp_sk(sk);
337 
338 	if (tp->ecn_flags & TCP_ECN_OK) {
339 		/* Not-retransmitted data segment: set ECT and inject CWR. */
340 		if (skb->len != tcp_header_len &&
341 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
342 			INET_ECN_xmit(sk);
343 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
344 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
345 				tcp_hdr(skb)->cwr = 1;
346 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
347 			}
348 		} else {
349 			/* ACK or retransmitted segment: clear ECT|CE */
350 			INET_ECN_dontxmit(sk);
351 		}
352 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
353 			tcp_hdr(skb)->ece = 1;
354 	}
355 }
356 
357 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
358  * auto increment end seqno.
359  */
360 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
361 {
362 	skb->ip_summed = CHECKSUM_PARTIAL;
363 	skb->csum = 0;
364 
365 	TCP_SKB_CB(skb)->tcp_flags = flags;
366 	TCP_SKB_CB(skb)->sacked = 0;
367 
368 	skb_shinfo(skb)->gso_segs = 1;
369 	skb_shinfo(skb)->gso_size = 0;
370 	skb_shinfo(skb)->gso_type = 0;
371 
372 	TCP_SKB_CB(skb)->seq = seq;
373 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
374 		seq++;
375 	TCP_SKB_CB(skb)->end_seq = seq;
376 }
377 
378 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
379 {
380 	return tp->snd_una != tp->snd_up;
381 }
382 
383 #define OPTION_SACK_ADVERTISE	(1 << 0)
384 #define OPTION_TS		(1 << 1)
385 #define OPTION_MD5		(1 << 2)
386 #define OPTION_WSCALE		(1 << 3)
387 #define OPTION_COOKIE_EXTENSION	(1 << 4)
388 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
389 
390 struct tcp_out_options {
391 	u16 options;		/* bit field of OPTION_* */
392 	u16 mss;		/* 0 to disable */
393 	u8 ws;			/* window scale, 0 to disable */
394 	u8 num_sack_blocks;	/* number of SACK blocks to include */
395 	u8 hash_size;		/* bytes in hash_location */
396 	__u8 *hash_location;	/* temporary pointer, overloaded */
397 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
398 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
399 };
400 
401 /* The sysctl int routines are generic, so check consistency here.
402  */
403 static u8 tcp_cookie_size_check(u8 desired)
404 {
405 	int cookie_size;
406 
407 	if (desired > 0)
408 		/* previously specified */
409 		return desired;
410 
411 	cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size);
412 	if (cookie_size <= 0)
413 		/* no default specified */
414 		return 0;
415 
416 	if (cookie_size <= TCP_COOKIE_MIN)
417 		/* value too small, specify minimum */
418 		return TCP_COOKIE_MIN;
419 
420 	if (cookie_size >= TCP_COOKIE_MAX)
421 		/* value too large, specify maximum */
422 		return TCP_COOKIE_MAX;
423 
424 	if (cookie_size & 1)
425 		/* 8-bit multiple, illegal, fix it */
426 		cookie_size++;
427 
428 	return (u8)cookie_size;
429 }
430 
431 /* Write previously computed TCP options to the packet.
432  *
433  * Beware: Something in the Internet is very sensitive to the ordering of
434  * TCP options, we learned this through the hard way, so be careful here.
435  * Luckily we can at least blame others for their non-compliance but from
436  * inter-operatibility perspective it seems that we're somewhat stuck with
437  * the ordering which we have been using if we want to keep working with
438  * those broken things (not that it currently hurts anybody as there isn't
439  * particular reason why the ordering would need to be changed).
440  *
441  * At least SACK_PERM as the first option is known to lead to a disaster
442  * (but it may well be that other scenarios fail similarly).
443  */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 			      struct tcp_out_options *opts)
446 {
447 	u16 options = opts->options;	/* mungable copy */
448 
449 	/* Having both authentication and cookies for security is redundant,
450 	 * and there's certainly not enough room.  Instead, the cookie-less
451 	 * extension variant is proposed.
452 	 *
453 	 * Consider the pessimal case with authentication.  The options
454 	 * could look like:
455 	 *   COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40
456 	 */
457 	if (unlikely(OPTION_MD5 & options)) {
458 		if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
459 			*ptr++ = htonl((TCPOPT_COOKIE << 24) |
460 				       (TCPOLEN_COOKIE_BASE << 16) |
461 				       (TCPOPT_MD5SIG << 8) |
462 				       TCPOLEN_MD5SIG);
463 		} else {
464 			*ptr++ = htonl((TCPOPT_NOP << 24) |
465 				       (TCPOPT_NOP << 16) |
466 				       (TCPOPT_MD5SIG << 8) |
467 				       TCPOLEN_MD5SIG);
468 		}
469 		options &= ~OPTION_COOKIE_EXTENSION;
470 		/* overload cookie hash location */
471 		opts->hash_location = (__u8 *)ptr;
472 		ptr += 4;
473 	}
474 
475 	if (unlikely(opts->mss)) {
476 		*ptr++ = htonl((TCPOPT_MSS << 24) |
477 			       (TCPOLEN_MSS << 16) |
478 			       opts->mss);
479 	}
480 
481 	if (likely(OPTION_TS & options)) {
482 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
484 				       (TCPOLEN_SACK_PERM << 16) |
485 				       (TCPOPT_TIMESTAMP << 8) |
486 				       TCPOLEN_TIMESTAMP);
487 			options &= ~OPTION_SACK_ADVERTISE;
488 		} else {
489 			*ptr++ = htonl((TCPOPT_NOP << 24) |
490 				       (TCPOPT_NOP << 16) |
491 				       (TCPOPT_TIMESTAMP << 8) |
492 				       TCPOLEN_TIMESTAMP);
493 		}
494 		*ptr++ = htonl(opts->tsval);
495 		*ptr++ = htonl(opts->tsecr);
496 	}
497 
498 	/* Specification requires after timestamp, so do it now.
499 	 *
500 	 * Consider the pessimal case without authentication.  The options
501 	 * could look like:
502 	 *   MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40
503 	 */
504 	if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
505 		__u8 *cookie_copy = opts->hash_location;
506 		u8 cookie_size = opts->hash_size;
507 
508 		/* 8-bit multiple handled in tcp_cookie_size_check() above,
509 		 * and elsewhere.
510 		 */
511 		if (0x2 & cookie_size) {
512 			__u8 *p = (__u8 *)ptr;
513 
514 			/* 16-bit multiple */
515 			*p++ = TCPOPT_COOKIE;
516 			*p++ = TCPOLEN_COOKIE_BASE + cookie_size;
517 			*p++ = *cookie_copy++;
518 			*p++ = *cookie_copy++;
519 			ptr++;
520 			cookie_size -= 2;
521 		} else {
522 			/* 32-bit multiple */
523 			*ptr++ = htonl(((TCPOPT_NOP << 24) |
524 					(TCPOPT_NOP << 16) |
525 					(TCPOPT_COOKIE << 8) |
526 					TCPOLEN_COOKIE_BASE) +
527 				       cookie_size);
528 		}
529 
530 		if (cookie_size > 0) {
531 			memcpy(ptr, cookie_copy, cookie_size);
532 			ptr += (cookie_size / 4);
533 		}
534 	}
535 
536 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
537 		*ptr++ = htonl((TCPOPT_NOP << 24) |
538 			       (TCPOPT_NOP << 16) |
539 			       (TCPOPT_SACK_PERM << 8) |
540 			       TCPOLEN_SACK_PERM);
541 	}
542 
543 	if (unlikely(OPTION_WSCALE & options)) {
544 		*ptr++ = htonl((TCPOPT_NOP << 24) |
545 			       (TCPOPT_WINDOW << 16) |
546 			       (TCPOLEN_WINDOW << 8) |
547 			       opts->ws);
548 	}
549 
550 	if (unlikely(opts->num_sack_blocks)) {
551 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
552 			tp->duplicate_sack : tp->selective_acks;
553 		int this_sack;
554 
555 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
556 			       (TCPOPT_NOP  << 16) |
557 			       (TCPOPT_SACK <<  8) |
558 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
559 						     TCPOLEN_SACK_PERBLOCK)));
560 
561 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
562 		     ++this_sack) {
563 			*ptr++ = htonl(sp[this_sack].start_seq);
564 			*ptr++ = htonl(sp[this_sack].end_seq);
565 		}
566 
567 		tp->rx_opt.dsack = 0;
568 	}
569 
570 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
571 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
572 
573 		*ptr++ = htonl((TCPOPT_EXP << 24) |
574 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
575 			       TCPOPT_FASTOPEN_MAGIC);
576 
577 		memcpy(ptr, foc->val, foc->len);
578 		if ((foc->len & 3) == 2) {
579 			u8 *align = ((u8 *)ptr) + foc->len;
580 			align[0] = align[1] = TCPOPT_NOP;
581 		}
582 		ptr += (foc->len + 3) >> 2;
583 	}
584 }
585 
586 /* Compute TCP options for SYN packets. This is not the final
587  * network wire format yet.
588  */
589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
590 				struct tcp_out_options *opts,
591 				struct tcp_md5sig_key **md5)
592 {
593 	struct tcp_sock *tp = tcp_sk(sk);
594 	struct tcp_cookie_values *cvp = tp->cookie_values;
595 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
596 	u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ?
597 			 tcp_cookie_size_check(cvp->cookie_desired) :
598 			 0;
599 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
600 
601 #ifdef CONFIG_TCP_MD5SIG
602 	*md5 = tp->af_specific->md5_lookup(sk, sk);
603 	if (*md5) {
604 		opts->options |= OPTION_MD5;
605 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
606 	}
607 #else
608 	*md5 = NULL;
609 #endif
610 
611 	/* We always get an MSS option.  The option bytes which will be seen in
612 	 * normal data packets should timestamps be used, must be in the MSS
613 	 * advertised.  But we subtract them from tp->mss_cache so that
614 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
615 	 * fact here if necessary.  If we don't do this correctly, as a
616 	 * receiver we won't recognize data packets as being full sized when we
617 	 * should, and thus we won't abide by the delayed ACK rules correctly.
618 	 * SACKs don't matter, we never delay an ACK when we have any of those
619 	 * going out.  */
620 	opts->mss = tcp_advertise_mss(sk);
621 	remaining -= TCPOLEN_MSS_ALIGNED;
622 
623 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
624 		opts->options |= OPTION_TS;
625 		opts->tsval = TCP_SKB_CB(skb)->when;
626 		opts->tsecr = tp->rx_opt.ts_recent;
627 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
628 	}
629 	if (likely(sysctl_tcp_window_scaling)) {
630 		opts->ws = tp->rx_opt.rcv_wscale;
631 		opts->options |= OPTION_WSCALE;
632 		remaining -= TCPOLEN_WSCALE_ALIGNED;
633 	}
634 	if (likely(sysctl_tcp_sack)) {
635 		opts->options |= OPTION_SACK_ADVERTISE;
636 		if (unlikely(!(OPTION_TS & opts->options)))
637 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
638 	}
639 
640 	if (fastopen && fastopen->cookie.len >= 0) {
641 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
642 		need = (need + 3) & ~3U;  /* Align to 32 bits */
643 		if (remaining >= need) {
644 			opts->options |= OPTION_FAST_OPEN_COOKIE;
645 			opts->fastopen_cookie = &fastopen->cookie;
646 			remaining -= need;
647 			tp->syn_fastopen = 1;
648 		}
649 	}
650 	/* Note that timestamps are required by the specification.
651 	 *
652 	 * Odd numbers of bytes are prohibited by the specification, ensuring
653 	 * that the cookie is 16-bit aligned, and the resulting cookie pair is
654 	 * 32-bit aligned.
655 	 */
656 	if (*md5 == NULL &&
657 	    (OPTION_TS & opts->options) &&
658 	    cookie_size > 0) {
659 		int need = TCPOLEN_COOKIE_BASE + cookie_size;
660 
661 		if (0x2 & need) {
662 			/* 32-bit multiple */
663 			need += 2; /* NOPs */
664 
665 			if (need > remaining) {
666 				/* try shrinking cookie to fit */
667 				cookie_size -= 2;
668 				need -= 4;
669 			}
670 		}
671 		while (need > remaining && TCP_COOKIE_MIN <= cookie_size) {
672 			cookie_size -= 4;
673 			need -= 4;
674 		}
675 		if (TCP_COOKIE_MIN <= cookie_size) {
676 			opts->options |= OPTION_COOKIE_EXTENSION;
677 			opts->hash_location = (__u8 *)&cvp->cookie_pair[0];
678 			opts->hash_size = cookie_size;
679 
680 			/* Remember for future incarnations. */
681 			cvp->cookie_desired = cookie_size;
682 
683 			if (cvp->cookie_desired != cvp->cookie_pair_size) {
684 				/* Currently use random bytes as a nonce,
685 				 * assuming these are completely unpredictable
686 				 * by hostile users of the same system.
687 				 */
688 				get_random_bytes(&cvp->cookie_pair[0],
689 						 cookie_size);
690 				cvp->cookie_pair_size = cookie_size;
691 			}
692 
693 			remaining -= need;
694 		}
695 	}
696 	return MAX_TCP_OPTION_SPACE - remaining;
697 }
698 
699 /* Set up TCP options for SYN-ACKs. */
700 static unsigned int tcp_synack_options(struct sock *sk,
701 				   struct request_sock *req,
702 				   unsigned int mss, struct sk_buff *skb,
703 				   struct tcp_out_options *opts,
704 				   struct tcp_md5sig_key **md5,
705 				   struct tcp_extend_values *xvp)
706 {
707 	struct inet_request_sock *ireq = inet_rsk(req);
708 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
709 	u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ?
710 			 xvp->cookie_plus :
711 			 0;
712 
713 #ifdef CONFIG_TCP_MD5SIG
714 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
715 	if (*md5) {
716 		opts->options |= OPTION_MD5;
717 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
718 
719 		/* We can't fit any SACK blocks in a packet with MD5 + TS
720 		 * options. There was discussion about disabling SACK
721 		 * rather than TS in order to fit in better with old,
722 		 * buggy kernels, but that was deemed to be unnecessary.
723 		 */
724 		ireq->tstamp_ok &= !ireq->sack_ok;
725 	}
726 #else
727 	*md5 = NULL;
728 #endif
729 
730 	/* We always send an MSS option. */
731 	opts->mss = mss;
732 	remaining -= TCPOLEN_MSS_ALIGNED;
733 
734 	if (likely(ireq->wscale_ok)) {
735 		opts->ws = ireq->rcv_wscale;
736 		opts->options |= OPTION_WSCALE;
737 		remaining -= TCPOLEN_WSCALE_ALIGNED;
738 	}
739 	if (likely(ireq->tstamp_ok)) {
740 		opts->options |= OPTION_TS;
741 		opts->tsval = TCP_SKB_CB(skb)->when;
742 		opts->tsecr = req->ts_recent;
743 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
744 	}
745 	if (likely(ireq->sack_ok)) {
746 		opts->options |= OPTION_SACK_ADVERTISE;
747 		if (unlikely(!ireq->tstamp_ok))
748 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
749 	}
750 
751 	/* Similar rationale to tcp_syn_options() applies here, too.
752 	 * If the <SYN> options fit, the same options should fit now!
753 	 */
754 	if (*md5 == NULL &&
755 	    ireq->tstamp_ok &&
756 	    cookie_plus > TCPOLEN_COOKIE_BASE) {
757 		int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */
758 
759 		if (0x2 & need) {
760 			/* 32-bit multiple */
761 			need += 2; /* NOPs */
762 		}
763 		if (need <= remaining) {
764 			opts->options |= OPTION_COOKIE_EXTENSION;
765 			opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE;
766 			remaining -= need;
767 		} else {
768 			/* There's no error return, so flag it. */
769 			xvp->cookie_out_never = 1; /* true */
770 			opts->hash_size = 0;
771 		}
772 	}
773 	return MAX_TCP_OPTION_SPACE - remaining;
774 }
775 
776 /* Compute TCP options for ESTABLISHED sockets. This is not the
777  * final wire format yet.
778  */
779 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
780 					struct tcp_out_options *opts,
781 					struct tcp_md5sig_key **md5)
782 {
783 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
784 	struct tcp_sock *tp = tcp_sk(sk);
785 	unsigned int size = 0;
786 	unsigned int eff_sacks;
787 
788 #ifdef CONFIG_TCP_MD5SIG
789 	*md5 = tp->af_specific->md5_lookup(sk, sk);
790 	if (unlikely(*md5)) {
791 		opts->options |= OPTION_MD5;
792 		size += TCPOLEN_MD5SIG_ALIGNED;
793 	}
794 #else
795 	*md5 = NULL;
796 #endif
797 
798 	if (likely(tp->rx_opt.tstamp_ok)) {
799 		opts->options |= OPTION_TS;
800 		opts->tsval = tcb ? tcb->when : 0;
801 		opts->tsecr = tp->rx_opt.ts_recent;
802 		size += TCPOLEN_TSTAMP_ALIGNED;
803 	}
804 
805 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
806 	if (unlikely(eff_sacks)) {
807 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
808 		opts->num_sack_blocks =
809 			min_t(unsigned int, eff_sacks,
810 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
811 			      TCPOLEN_SACK_PERBLOCK);
812 		size += TCPOLEN_SACK_BASE_ALIGNED +
813 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
814 	}
815 
816 	return size;
817 }
818 
819 
820 /* TCP SMALL QUEUES (TSQ)
821  *
822  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
823  * to reduce RTT and bufferbloat.
824  * We do this using a special skb destructor (tcp_wfree).
825  *
826  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
827  * needs to be reallocated in a driver.
828  * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
829  *
830  * Since transmit from skb destructor is forbidden, we use a tasklet
831  * to process all sockets that eventually need to send more skbs.
832  * We use one tasklet per cpu, with its own queue of sockets.
833  */
834 struct tsq_tasklet {
835 	struct tasklet_struct	tasklet;
836 	struct list_head	head; /* queue of tcp sockets */
837 };
838 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
839 
840 static void tcp_tsq_handler(struct sock *sk)
841 {
842 	if ((1 << sk->sk_state) &
843 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
844 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
845 		tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
846 }
847 /*
848  * One tasklest per cpu tries to send more skbs.
849  * We run in tasklet context but need to disable irqs when
850  * transfering tsq->head because tcp_wfree() might
851  * interrupt us (non NAPI drivers)
852  */
853 static void tcp_tasklet_func(unsigned long data)
854 {
855 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
856 	LIST_HEAD(list);
857 	unsigned long flags;
858 	struct list_head *q, *n;
859 	struct tcp_sock *tp;
860 	struct sock *sk;
861 
862 	local_irq_save(flags);
863 	list_splice_init(&tsq->head, &list);
864 	local_irq_restore(flags);
865 
866 	list_for_each_safe(q, n, &list) {
867 		tp = list_entry(q, struct tcp_sock, tsq_node);
868 		list_del(&tp->tsq_node);
869 
870 		sk = (struct sock *)tp;
871 		bh_lock_sock(sk);
872 
873 		if (!sock_owned_by_user(sk)) {
874 			tcp_tsq_handler(sk);
875 		} else {
876 			/* defer the work to tcp_release_cb() */
877 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
878 		}
879 		bh_unlock_sock(sk);
880 
881 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
882 		sk_free(sk);
883 	}
884 }
885 
886 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
887 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
888 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
889 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
890 /**
891  * tcp_release_cb - tcp release_sock() callback
892  * @sk: socket
893  *
894  * called from release_sock() to perform protocol dependent
895  * actions before socket release.
896  */
897 void tcp_release_cb(struct sock *sk)
898 {
899 	struct tcp_sock *tp = tcp_sk(sk);
900 	unsigned long flags, nflags;
901 
902 	/* perform an atomic operation only if at least one flag is set */
903 	do {
904 		flags = tp->tsq_flags;
905 		if (!(flags & TCP_DEFERRED_ALL))
906 			return;
907 		nflags = flags & ~TCP_DEFERRED_ALL;
908 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
909 
910 	if (flags & (1UL << TCP_TSQ_DEFERRED))
911 		tcp_tsq_handler(sk);
912 
913 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED))
914 		tcp_write_timer_handler(sk);
915 
916 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED))
917 		tcp_delack_timer_handler(sk);
918 
919 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED))
920 		sk->sk_prot->mtu_reduced(sk);
921 }
922 EXPORT_SYMBOL(tcp_release_cb);
923 
924 void __init tcp_tasklet_init(void)
925 {
926 	int i;
927 
928 	for_each_possible_cpu(i) {
929 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
930 
931 		INIT_LIST_HEAD(&tsq->head);
932 		tasklet_init(&tsq->tasklet,
933 			     tcp_tasklet_func,
934 			     (unsigned long)tsq);
935 	}
936 }
937 
938 /*
939  * Write buffer destructor automatically called from kfree_skb.
940  * We cant xmit new skbs from this context, as we might already
941  * hold qdisc lock.
942  */
943 void tcp_wfree(struct sk_buff *skb)
944 {
945 	struct sock *sk = skb->sk;
946 	struct tcp_sock *tp = tcp_sk(sk);
947 
948 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
949 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
950 		unsigned long flags;
951 		struct tsq_tasklet *tsq;
952 
953 		/* Keep a ref on socket.
954 		 * This last ref will be released in tcp_tasklet_func()
955 		 */
956 		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
957 
958 		/* queue this socket to tasklet queue */
959 		local_irq_save(flags);
960 		tsq = &__get_cpu_var(tsq_tasklet);
961 		list_add(&tp->tsq_node, &tsq->head);
962 		tasklet_schedule(&tsq->tasklet);
963 		local_irq_restore(flags);
964 	} else {
965 		sock_wfree(skb);
966 	}
967 }
968 
969 /* This routine actually transmits TCP packets queued in by
970  * tcp_do_sendmsg().  This is used by both the initial
971  * transmission and possible later retransmissions.
972  * All SKB's seen here are completely headerless.  It is our
973  * job to build the TCP header, and pass the packet down to
974  * IP so it can do the same plus pass the packet off to the
975  * device.
976  *
977  * We are working here with either a clone of the original
978  * SKB, or a fresh unique copy made by the retransmit engine.
979  */
980 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
981 			    gfp_t gfp_mask)
982 {
983 	const struct inet_connection_sock *icsk = inet_csk(sk);
984 	struct inet_sock *inet;
985 	struct tcp_sock *tp;
986 	struct tcp_skb_cb *tcb;
987 	struct tcp_out_options opts;
988 	unsigned int tcp_options_size, tcp_header_size;
989 	struct tcp_md5sig_key *md5;
990 	struct tcphdr *th;
991 	int err;
992 
993 	BUG_ON(!skb || !tcp_skb_pcount(skb));
994 
995 	/* If congestion control is doing timestamping, we must
996 	 * take such a timestamp before we potentially clone/copy.
997 	 */
998 	if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
999 		__net_timestamp(skb);
1000 
1001 	if (likely(clone_it)) {
1002 		if (unlikely(skb_cloned(skb)))
1003 			skb = pskb_copy(skb, gfp_mask);
1004 		else
1005 			skb = skb_clone(skb, gfp_mask);
1006 		if (unlikely(!skb))
1007 			return -ENOBUFS;
1008 	}
1009 
1010 	inet = inet_sk(sk);
1011 	tp = tcp_sk(sk);
1012 	tcb = TCP_SKB_CB(skb);
1013 	memset(&opts, 0, sizeof(opts));
1014 
1015 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1016 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1017 	else
1018 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1019 							   &md5);
1020 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1021 
1022 	if (tcp_packets_in_flight(tp) == 0) {
1023 		tcp_ca_event(sk, CA_EVENT_TX_START);
1024 		skb->ooo_okay = 1;
1025 	} else
1026 		skb->ooo_okay = 0;
1027 
1028 	skb_push(skb, tcp_header_size);
1029 	skb_reset_transport_header(skb);
1030 
1031 	skb_orphan(skb);
1032 	skb->sk = sk;
1033 	skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
1034 			  tcp_wfree : sock_wfree;
1035 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1036 
1037 	/* Build TCP header and checksum it. */
1038 	th = tcp_hdr(skb);
1039 	th->source		= inet->inet_sport;
1040 	th->dest		= inet->inet_dport;
1041 	th->seq			= htonl(tcb->seq);
1042 	th->ack_seq		= htonl(tp->rcv_nxt);
1043 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1044 					tcb->tcp_flags);
1045 
1046 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1047 		/* RFC1323: The window in SYN & SYN/ACK segments
1048 		 * is never scaled.
1049 		 */
1050 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1051 	} else {
1052 		th->window	= htons(tcp_select_window(sk));
1053 	}
1054 	th->check		= 0;
1055 	th->urg_ptr		= 0;
1056 
1057 	/* The urg_mode check is necessary during a below snd_una win probe */
1058 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1059 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1060 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1061 			th->urg = 1;
1062 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1063 			th->urg_ptr = htons(0xFFFF);
1064 			th->urg = 1;
1065 		}
1066 	}
1067 
1068 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1069 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
1070 		TCP_ECN_send(sk, skb, tcp_header_size);
1071 
1072 #ifdef CONFIG_TCP_MD5SIG
1073 	/* Calculate the MD5 hash, as we have all we need now */
1074 	if (md5) {
1075 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1076 		tp->af_specific->calc_md5_hash(opts.hash_location,
1077 					       md5, sk, NULL, skb);
1078 	}
1079 #endif
1080 
1081 	icsk->icsk_af_ops->send_check(sk, skb);
1082 
1083 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1084 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1085 
1086 	if (skb->len != tcp_header_size)
1087 		tcp_event_data_sent(tp, sk);
1088 
1089 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1090 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1091 			      tcp_skb_pcount(skb));
1092 
1093 	err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
1094 	if (likely(err <= 0))
1095 		return err;
1096 
1097 	tcp_enter_cwr(sk, 1);
1098 
1099 	return net_xmit_eval(err);
1100 }
1101 
1102 /* This routine just queues the buffer for sending.
1103  *
1104  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1105  * otherwise socket can stall.
1106  */
1107 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1108 {
1109 	struct tcp_sock *tp = tcp_sk(sk);
1110 
1111 	/* Advance write_seq and place onto the write_queue. */
1112 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1113 	skb_header_release(skb);
1114 	tcp_add_write_queue_tail(sk, skb);
1115 	sk->sk_wmem_queued += skb->truesize;
1116 	sk_mem_charge(sk, skb->truesize);
1117 }
1118 
1119 /* Initialize TSO segments for a packet. */
1120 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1121 				 unsigned int mss_now)
1122 {
1123 	if (skb->len <= mss_now || !sk_can_gso(sk) ||
1124 	    skb->ip_summed == CHECKSUM_NONE) {
1125 		/* Avoid the costly divide in the normal
1126 		 * non-TSO case.
1127 		 */
1128 		skb_shinfo(skb)->gso_segs = 1;
1129 		skb_shinfo(skb)->gso_size = 0;
1130 		skb_shinfo(skb)->gso_type = 0;
1131 	} else {
1132 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1133 		skb_shinfo(skb)->gso_size = mss_now;
1134 		skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1135 	}
1136 }
1137 
1138 /* When a modification to fackets out becomes necessary, we need to check
1139  * skb is counted to fackets_out or not.
1140  */
1141 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1142 				   int decr)
1143 {
1144 	struct tcp_sock *tp = tcp_sk(sk);
1145 
1146 	if (!tp->sacked_out || tcp_is_reno(tp))
1147 		return;
1148 
1149 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1150 		tp->fackets_out -= decr;
1151 }
1152 
1153 /* Pcount in the middle of the write queue got changed, we need to do various
1154  * tweaks to fix counters
1155  */
1156 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1157 {
1158 	struct tcp_sock *tp = tcp_sk(sk);
1159 
1160 	tp->packets_out -= decr;
1161 
1162 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1163 		tp->sacked_out -= decr;
1164 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1165 		tp->retrans_out -= decr;
1166 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1167 		tp->lost_out -= decr;
1168 
1169 	/* Reno case is special. Sigh... */
1170 	if (tcp_is_reno(tp) && decr > 0)
1171 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1172 
1173 	tcp_adjust_fackets_out(sk, skb, decr);
1174 
1175 	if (tp->lost_skb_hint &&
1176 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1177 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1178 		tp->lost_cnt_hint -= decr;
1179 
1180 	tcp_verify_left_out(tp);
1181 }
1182 
1183 /* Function to create two new TCP segments.  Shrinks the given segment
1184  * to the specified size and appends a new segment with the rest of the
1185  * packet to the list.  This won't be called frequently, I hope.
1186  * Remember, these are still headerless SKBs at this point.
1187  */
1188 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1189 		 unsigned int mss_now)
1190 {
1191 	struct tcp_sock *tp = tcp_sk(sk);
1192 	struct sk_buff *buff;
1193 	int nsize, old_factor;
1194 	int nlen;
1195 	u8 flags;
1196 
1197 	if (WARN_ON(len > skb->len))
1198 		return -EINVAL;
1199 
1200 	nsize = skb_headlen(skb) - len;
1201 	if (nsize < 0)
1202 		nsize = 0;
1203 
1204 	if (skb_cloned(skb) &&
1205 	    skb_is_nonlinear(skb) &&
1206 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1207 		return -ENOMEM;
1208 
1209 	/* Get a new skb... force flag on. */
1210 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1211 	if (buff == NULL)
1212 		return -ENOMEM; /* We'll just try again later. */
1213 
1214 	sk->sk_wmem_queued += buff->truesize;
1215 	sk_mem_charge(sk, buff->truesize);
1216 	nlen = skb->len - len - nsize;
1217 	buff->truesize += nlen;
1218 	skb->truesize -= nlen;
1219 
1220 	/* Correct the sequence numbers. */
1221 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1222 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1223 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1224 
1225 	/* PSH and FIN should only be set in the second packet. */
1226 	flags = TCP_SKB_CB(skb)->tcp_flags;
1227 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1228 	TCP_SKB_CB(buff)->tcp_flags = flags;
1229 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1230 
1231 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1232 		/* Copy and checksum data tail into the new buffer. */
1233 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1234 						       skb_put(buff, nsize),
1235 						       nsize, 0);
1236 
1237 		skb_trim(skb, len);
1238 
1239 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1240 	} else {
1241 		skb->ip_summed = CHECKSUM_PARTIAL;
1242 		skb_split(skb, buff, len);
1243 	}
1244 
1245 	buff->ip_summed = skb->ip_summed;
1246 
1247 	/* Looks stupid, but our code really uses when of
1248 	 * skbs, which it never sent before. --ANK
1249 	 */
1250 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1251 	buff->tstamp = skb->tstamp;
1252 
1253 	old_factor = tcp_skb_pcount(skb);
1254 
1255 	/* Fix up tso_factor for both original and new SKB.  */
1256 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1257 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1258 
1259 	/* If this packet has been sent out already, we must
1260 	 * adjust the various packet counters.
1261 	 */
1262 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1263 		int diff = old_factor - tcp_skb_pcount(skb) -
1264 			tcp_skb_pcount(buff);
1265 
1266 		if (diff)
1267 			tcp_adjust_pcount(sk, skb, diff);
1268 	}
1269 
1270 	/* Link BUFF into the send queue. */
1271 	skb_header_release(buff);
1272 	tcp_insert_write_queue_after(skb, buff, sk);
1273 
1274 	return 0;
1275 }
1276 
1277 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1278  * eventually). The difference is that pulled data not copied, but
1279  * immediately discarded.
1280  */
1281 static void __pskb_trim_head(struct sk_buff *skb, int len)
1282 {
1283 	int i, k, eat;
1284 
1285 	eat = min_t(int, len, skb_headlen(skb));
1286 	if (eat) {
1287 		__skb_pull(skb, eat);
1288 		skb->avail_size -= eat;
1289 		len -= eat;
1290 		if (!len)
1291 			return;
1292 	}
1293 	eat = len;
1294 	k = 0;
1295 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1296 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1297 
1298 		if (size <= eat) {
1299 			skb_frag_unref(skb, i);
1300 			eat -= size;
1301 		} else {
1302 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1303 			if (eat) {
1304 				skb_shinfo(skb)->frags[k].page_offset += eat;
1305 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1306 				eat = 0;
1307 			}
1308 			k++;
1309 		}
1310 	}
1311 	skb_shinfo(skb)->nr_frags = k;
1312 
1313 	skb_reset_tail_pointer(skb);
1314 	skb->data_len -= len;
1315 	skb->len = skb->data_len;
1316 }
1317 
1318 /* Remove acked data from a packet in the transmit queue. */
1319 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1320 {
1321 	if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1322 		return -ENOMEM;
1323 
1324 	__pskb_trim_head(skb, len);
1325 
1326 	TCP_SKB_CB(skb)->seq += len;
1327 	skb->ip_summed = CHECKSUM_PARTIAL;
1328 
1329 	skb->truesize	     -= len;
1330 	sk->sk_wmem_queued   -= len;
1331 	sk_mem_uncharge(sk, len);
1332 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1333 
1334 	/* Any change of skb->len requires recalculation of tso factor. */
1335 	if (tcp_skb_pcount(skb) > 1)
1336 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1337 
1338 	return 0;
1339 }
1340 
1341 /* Calculate MSS. Not accounting for SACKs here.  */
1342 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1343 {
1344 	const struct tcp_sock *tp = tcp_sk(sk);
1345 	const struct inet_connection_sock *icsk = inet_csk(sk);
1346 	int mss_now;
1347 
1348 	/* Calculate base mss without TCP options:
1349 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1350 	 */
1351 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1352 
1353 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1354 	if (icsk->icsk_af_ops->net_frag_header_len) {
1355 		const struct dst_entry *dst = __sk_dst_get(sk);
1356 
1357 		if (dst && dst_allfrag(dst))
1358 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1359 	}
1360 
1361 	/* Clamp it (mss_clamp does not include tcp options) */
1362 	if (mss_now > tp->rx_opt.mss_clamp)
1363 		mss_now = tp->rx_opt.mss_clamp;
1364 
1365 	/* Now subtract optional transport overhead */
1366 	mss_now -= icsk->icsk_ext_hdr_len;
1367 
1368 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1369 	if (mss_now < 48)
1370 		mss_now = 48;
1371 
1372 	/* Now subtract TCP options size, not including SACKs */
1373 	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
1374 
1375 	return mss_now;
1376 }
1377 
1378 /* Inverse of above */
1379 int tcp_mss_to_mtu(struct sock *sk, int mss)
1380 {
1381 	const struct tcp_sock *tp = tcp_sk(sk);
1382 	const struct inet_connection_sock *icsk = inet_csk(sk);
1383 	int mtu;
1384 
1385 	mtu = mss +
1386 	      tp->tcp_header_len +
1387 	      icsk->icsk_ext_hdr_len +
1388 	      icsk->icsk_af_ops->net_header_len;
1389 
1390 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1391 	if (icsk->icsk_af_ops->net_frag_header_len) {
1392 		const struct dst_entry *dst = __sk_dst_get(sk);
1393 
1394 		if (dst && dst_allfrag(dst))
1395 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1396 	}
1397 	return mtu;
1398 }
1399 
1400 /* MTU probing init per socket */
1401 void tcp_mtup_init(struct sock *sk)
1402 {
1403 	struct tcp_sock *tp = tcp_sk(sk);
1404 	struct inet_connection_sock *icsk = inet_csk(sk);
1405 
1406 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1407 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1408 			       icsk->icsk_af_ops->net_header_len;
1409 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1410 	icsk->icsk_mtup.probe_size = 0;
1411 }
1412 EXPORT_SYMBOL(tcp_mtup_init);
1413 
1414 /* This function synchronize snd mss to current pmtu/exthdr set.
1415 
1416    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1417    for TCP options, but includes only bare TCP header.
1418 
1419    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1420    It is minimum of user_mss and mss received with SYN.
1421    It also does not include TCP options.
1422 
1423    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1424 
1425    tp->mss_cache is current effective sending mss, including
1426    all tcp options except for SACKs. It is evaluated,
1427    taking into account current pmtu, but never exceeds
1428    tp->rx_opt.mss_clamp.
1429 
1430    NOTE1. rfc1122 clearly states that advertised MSS
1431    DOES NOT include either tcp or ip options.
1432 
1433    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1434    are READ ONLY outside this function.		--ANK (980731)
1435  */
1436 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1437 {
1438 	struct tcp_sock *tp = tcp_sk(sk);
1439 	struct inet_connection_sock *icsk = inet_csk(sk);
1440 	int mss_now;
1441 
1442 	if (icsk->icsk_mtup.search_high > pmtu)
1443 		icsk->icsk_mtup.search_high = pmtu;
1444 
1445 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1446 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1447 
1448 	/* And store cached results */
1449 	icsk->icsk_pmtu_cookie = pmtu;
1450 	if (icsk->icsk_mtup.enabled)
1451 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1452 	tp->mss_cache = mss_now;
1453 
1454 	return mss_now;
1455 }
1456 EXPORT_SYMBOL(tcp_sync_mss);
1457 
1458 /* Compute the current effective MSS, taking SACKs and IP options,
1459  * and even PMTU discovery events into account.
1460  */
1461 unsigned int tcp_current_mss(struct sock *sk)
1462 {
1463 	const struct tcp_sock *tp = tcp_sk(sk);
1464 	const struct dst_entry *dst = __sk_dst_get(sk);
1465 	u32 mss_now;
1466 	unsigned int header_len;
1467 	struct tcp_out_options opts;
1468 	struct tcp_md5sig_key *md5;
1469 
1470 	mss_now = tp->mss_cache;
1471 
1472 	if (dst) {
1473 		u32 mtu = dst_mtu(dst);
1474 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1475 			mss_now = tcp_sync_mss(sk, mtu);
1476 	}
1477 
1478 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1479 		     sizeof(struct tcphdr);
1480 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1481 	 * some common options. If this is an odd packet (because we have SACK
1482 	 * blocks etc) then our calculated header_len will be different, and
1483 	 * we have to adjust mss_now correspondingly */
1484 	if (header_len != tp->tcp_header_len) {
1485 		int delta = (int) header_len - tp->tcp_header_len;
1486 		mss_now -= delta;
1487 	}
1488 
1489 	return mss_now;
1490 }
1491 
1492 /* Congestion window validation. (RFC2861) */
1493 static void tcp_cwnd_validate(struct sock *sk)
1494 {
1495 	struct tcp_sock *tp = tcp_sk(sk);
1496 
1497 	if (tp->packets_out >= tp->snd_cwnd) {
1498 		/* Network is feed fully. */
1499 		tp->snd_cwnd_used = 0;
1500 		tp->snd_cwnd_stamp = tcp_time_stamp;
1501 	} else {
1502 		/* Network starves. */
1503 		if (tp->packets_out > tp->snd_cwnd_used)
1504 			tp->snd_cwnd_used = tp->packets_out;
1505 
1506 		if (sysctl_tcp_slow_start_after_idle &&
1507 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1508 			tcp_cwnd_application_limited(sk);
1509 	}
1510 }
1511 
1512 /* Returns the portion of skb which can be sent right away without
1513  * introducing MSS oddities to segment boundaries. In rare cases where
1514  * mss_now != mss_cache, we will request caller to create a small skb
1515  * per input skb which could be mostly avoided here (if desired).
1516  *
1517  * We explicitly want to create a request for splitting write queue tail
1518  * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1519  * thus all the complexity (cwnd_len is always MSS multiple which we
1520  * return whenever allowed by the other factors). Basically we need the
1521  * modulo only when the receiver window alone is the limiting factor or
1522  * when we would be allowed to send the split-due-to-Nagle skb fully.
1523  */
1524 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1525 					unsigned int mss_now, unsigned int cwnd)
1526 {
1527 	const struct tcp_sock *tp = tcp_sk(sk);
1528 	u32 needed, window, cwnd_len;
1529 
1530 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1531 	cwnd_len = mss_now * cwnd;
1532 
1533 	if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
1534 		return cwnd_len;
1535 
1536 	needed = min(skb->len, window);
1537 
1538 	if (cwnd_len <= needed)
1539 		return cwnd_len;
1540 
1541 	return needed - needed % mss_now;
1542 }
1543 
1544 /* Can at least one segment of SKB be sent right now, according to the
1545  * congestion window rules?  If so, return how many segments are allowed.
1546  */
1547 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1548 					 const struct sk_buff *skb)
1549 {
1550 	u32 in_flight, cwnd;
1551 
1552 	/* Don't be strict about the congestion window for the final FIN.  */
1553 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1554 	    tcp_skb_pcount(skb) == 1)
1555 		return 1;
1556 
1557 	in_flight = tcp_packets_in_flight(tp);
1558 	cwnd = tp->snd_cwnd;
1559 	if (in_flight < cwnd)
1560 		return (cwnd - in_flight);
1561 
1562 	return 0;
1563 }
1564 
1565 /* Initialize TSO state of a skb.
1566  * This must be invoked the first time we consider transmitting
1567  * SKB onto the wire.
1568  */
1569 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1570 			     unsigned int mss_now)
1571 {
1572 	int tso_segs = tcp_skb_pcount(skb);
1573 
1574 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1575 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1576 		tso_segs = tcp_skb_pcount(skb);
1577 	}
1578 	return tso_segs;
1579 }
1580 
1581 /* Minshall's variant of the Nagle send check. */
1582 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1583 {
1584 	return after(tp->snd_sml, tp->snd_una) &&
1585 		!after(tp->snd_sml, tp->snd_nxt);
1586 }
1587 
1588 /* Return false, if packet can be sent now without violation Nagle's rules:
1589  * 1. It is full sized.
1590  * 2. Or it contains FIN. (already checked by caller)
1591  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1592  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1593  *    With Minshall's modification: all sent small packets are ACKed.
1594  */
1595 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1596 				  const struct sk_buff *skb,
1597 				  unsigned int mss_now, int nonagle)
1598 {
1599 	return skb->len < mss_now &&
1600 		((nonagle & TCP_NAGLE_CORK) ||
1601 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1602 }
1603 
1604 /* Return true if the Nagle test allows this packet to be
1605  * sent now.
1606  */
1607 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1608 				  unsigned int cur_mss, int nonagle)
1609 {
1610 	/* Nagle rule does not apply to frames, which sit in the middle of the
1611 	 * write_queue (they have no chances to get new data).
1612 	 *
1613 	 * This is implemented in the callers, where they modify the 'nonagle'
1614 	 * argument based upon the location of SKB in the send queue.
1615 	 */
1616 	if (nonagle & TCP_NAGLE_PUSH)
1617 		return true;
1618 
1619 	/* Don't use the nagle rule for urgent data (or for the final FIN).
1620 	 * Nagle can be ignored during F-RTO too (see RFC4138).
1621 	 */
1622 	if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1623 	    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1624 		return true;
1625 
1626 	if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1627 		return true;
1628 
1629 	return false;
1630 }
1631 
1632 /* Does at least the first segment of SKB fit into the send window? */
1633 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1634 			     const struct sk_buff *skb,
1635 			     unsigned int cur_mss)
1636 {
1637 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1638 
1639 	if (skb->len > cur_mss)
1640 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1641 
1642 	return !after(end_seq, tcp_wnd_end(tp));
1643 }
1644 
1645 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1646  * should be put on the wire right now.  If so, it returns the number of
1647  * packets allowed by the congestion window.
1648  */
1649 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1650 				 unsigned int cur_mss, int nonagle)
1651 {
1652 	const struct tcp_sock *tp = tcp_sk(sk);
1653 	unsigned int cwnd_quota;
1654 
1655 	tcp_init_tso_segs(sk, skb, cur_mss);
1656 
1657 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1658 		return 0;
1659 
1660 	cwnd_quota = tcp_cwnd_test(tp, skb);
1661 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1662 		cwnd_quota = 0;
1663 
1664 	return cwnd_quota;
1665 }
1666 
1667 /* Test if sending is allowed right now. */
1668 bool tcp_may_send_now(struct sock *sk)
1669 {
1670 	const struct tcp_sock *tp = tcp_sk(sk);
1671 	struct sk_buff *skb = tcp_send_head(sk);
1672 
1673 	return skb &&
1674 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1675 			     (tcp_skb_is_last(sk, skb) ?
1676 			      tp->nonagle : TCP_NAGLE_PUSH));
1677 }
1678 
1679 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1680  * which is put after SKB on the list.  It is very much like
1681  * tcp_fragment() except that it may make several kinds of assumptions
1682  * in order to speed up the splitting operation.  In particular, we
1683  * know that all the data is in scatter-gather pages, and that the
1684  * packet has never been sent out before (and thus is not cloned).
1685  */
1686 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1687 			unsigned int mss_now, gfp_t gfp)
1688 {
1689 	struct sk_buff *buff;
1690 	int nlen = skb->len - len;
1691 	u8 flags;
1692 
1693 	/* All of a TSO frame must be composed of paged data.  */
1694 	if (skb->len != skb->data_len)
1695 		return tcp_fragment(sk, skb, len, mss_now);
1696 
1697 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1698 	if (unlikely(buff == NULL))
1699 		return -ENOMEM;
1700 
1701 	sk->sk_wmem_queued += buff->truesize;
1702 	sk_mem_charge(sk, buff->truesize);
1703 	buff->truesize += nlen;
1704 	skb->truesize -= nlen;
1705 
1706 	/* Correct the sequence numbers. */
1707 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1708 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1709 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1710 
1711 	/* PSH and FIN should only be set in the second packet. */
1712 	flags = TCP_SKB_CB(skb)->tcp_flags;
1713 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1714 	TCP_SKB_CB(buff)->tcp_flags = flags;
1715 
1716 	/* This packet was never sent out yet, so no SACK bits. */
1717 	TCP_SKB_CB(buff)->sacked = 0;
1718 
1719 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1720 	skb_split(skb, buff, len);
1721 
1722 	/* Fix up tso_factor for both original and new SKB.  */
1723 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1724 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1725 
1726 	/* Link BUFF into the send queue. */
1727 	skb_header_release(buff);
1728 	tcp_insert_write_queue_after(skb, buff, sk);
1729 
1730 	return 0;
1731 }
1732 
1733 /* Try to defer sending, if possible, in order to minimize the amount
1734  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1735  *
1736  * This algorithm is from John Heffner.
1737  */
1738 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1739 {
1740 	struct tcp_sock *tp = tcp_sk(sk);
1741 	const struct inet_connection_sock *icsk = inet_csk(sk);
1742 	u32 send_win, cong_win, limit, in_flight;
1743 	int win_divisor;
1744 
1745 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1746 		goto send_now;
1747 
1748 	if (icsk->icsk_ca_state != TCP_CA_Open)
1749 		goto send_now;
1750 
1751 	/* Defer for less than two clock ticks. */
1752 	if (tp->tso_deferred &&
1753 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1754 		goto send_now;
1755 
1756 	in_flight = tcp_packets_in_flight(tp);
1757 
1758 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1759 
1760 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1761 
1762 	/* From in_flight test above, we know that cwnd > in_flight.  */
1763 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1764 
1765 	limit = min(send_win, cong_win);
1766 
1767 	/* If a full-sized TSO skb can be sent, do it. */
1768 	if (limit >= sk->sk_gso_max_size)
1769 		goto send_now;
1770 
1771 	/* Middle in queue won't get any more data, full sendable already? */
1772 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1773 		goto send_now;
1774 
1775 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1776 	if (win_divisor) {
1777 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1778 
1779 		/* If at least some fraction of a window is available,
1780 		 * just use it.
1781 		 */
1782 		chunk /= win_divisor;
1783 		if (limit >= chunk)
1784 			goto send_now;
1785 	} else {
1786 		/* Different approach, try not to defer past a single
1787 		 * ACK.  Receiver should ACK every other full sized
1788 		 * frame, so if we have space for more than 3 frames
1789 		 * then send now.
1790 		 */
1791 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1792 			goto send_now;
1793 	}
1794 
1795 	/* Ok, it looks like it is advisable to defer.  */
1796 	tp->tso_deferred = 1 | (jiffies << 1);
1797 
1798 	return true;
1799 
1800 send_now:
1801 	tp->tso_deferred = 0;
1802 	return false;
1803 }
1804 
1805 /* Create a new MTU probe if we are ready.
1806  * MTU probe is regularly attempting to increase the path MTU by
1807  * deliberately sending larger packets.  This discovers routing
1808  * changes resulting in larger path MTUs.
1809  *
1810  * Returns 0 if we should wait to probe (no cwnd available),
1811  *         1 if a probe was sent,
1812  *         -1 otherwise
1813  */
1814 static int tcp_mtu_probe(struct sock *sk)
1815 {
1816 	struct tcp_sock *tp = tcp_sk(sk);
1817 	struct inet_connection_sock *icsk = inet_csk(sk);
1818 	struct sk_buff *skb, *nskb, *next;
1819 	int len;
1820 	int probe_size;
1821 	int size_needed;
1822 	int copy;
1823 	int mss_now;
1824 
1825 	/* Not currently probing/verifying,
1826 	 * not in recovery,
1827 	 * have enough cwnd, and
1828 	 * not SACKing (the variable headers throw things off) */
1829 	if (!icsk->icsk_mtup.enabled ||
1830 	    icsk->icsk_mtup.probe_size ||
1831 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1832 	    tp->snd_cwnd < 11 ||
1833 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1834 		return -1;
1835 
1836 	/* Very simple search strategy: just double the MSS. */
1837 	mss_now = tcp_current_mss(sk);
1838 	probe_size = 2 * tp->mss_cache;
1839 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1840 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1841 		/* TODO: set timer for probe_converge_event */
1842 		return -1;
1843 	}
1844 
1845 	/* Have enough data in the send queue to probe? */
1846 	if (tp->write_seq - tp->snd_nxt < size_needed)
1847 		return -1;
1848 
1849 	if (tp->snd_wnd < size_needed)
1850 		return -1;
1851 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1852 		return 0;
1853 
1854 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1855 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1856 		if (!tcp_packets_in_flight(tp))
1857 			return -1;
1858 		else
1859 			return 0;
1860 	}
1861 
1862 	/* We're allowed to probe.  Build it now. */
1863 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1864 		return -1;
1865 	sk->sk_wmem_queued += nskb->truesize;
1866 	sk_mem_charge(sk, nskb->truesize);
1867 
1868 	skb = tcp_send_head(sk);
1869 
1870 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1871 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1872 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1873 	TCP_SKB_CB(nskb)->sacked = 0;
1874 	nskb->csum = 0;
1875 	nskb->ip_summed = skb->ip_summed;
1876 
1877 	tcp_insert_write_queue_before(nskb, skb, sk);
1878 
1879 	len = 0;
1880 	tcp_for_write_queue_from_safe(skb, next, sk) {
1881 		copy = min_t(int, skb->len, probe_size - len);
1882 		if (nskb->ip_summed)
1883 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1884 		else
1885 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1886 							    skb_put(nskb, copy),
1887 							    copy, nskb->csum);
1888 
1889 		if (skb->len <= copy) {
1890 			/* We've eaten all the data from this skb.
1891 			 * Throw it away. */
1892 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1893 			tcp_unlink_write_queue(skb, sk);
1894 			sk_wmem_free_skb(sk, skb);
1895 		} else {
1896 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1897 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1898 			if (!skb_shinfo(skb)->nr_frags) {
1899 				skb_pull(skb, copy);
1900 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1901 					skb->csum = csum_partial(skb->data,
1902 								 skb->len, 0);
1903 			} else {
1904 				__pskb_trim_head(skb, copy);
1905 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1906 			}
1907 			TCP_SKB_CB(skb)->seq += copy;
1908 		}
1909 
1910 		len += copy;
1911 
1912 		if (len >= probe_size)
1913 			break;
1914 	}
1915 	tcp_init_tso_segs(sk, nskb, nskb->len);
1916 
1917 	/* We're ready to send.  If this fails, the probe will
1918 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1919 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1920 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1921 		/* Decrement cwnd here because we are sending
1922 		 * effectively two packets. */
1923 		tp->snd_cwnd--;
1924 		tcp_event_new_data_sent(sk, nskb);
1925 
1926 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1927 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1928 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1929 
1930 		return 1;
1931 	}
1932 
1933 	return -1;
1934 }
1935 
1936 /* This routine writes packets to the network.  It advances the
1937  * send_head.  This happens as incoming acks open up the remote
1938  * window for us.
1939  *
1940  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1941  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1942  * account rare use of URG, this is not a big flaw.
1943  *
1944  * Returns true, if no segments are in flight and we have queued segments,
1945  * but cannot send anything now because of SWS or another problem.
1946  */
1947 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1948 			   int push_one, gfp_t gfp)
1949 {
1950 	struct tcp_sock *tp = tcp_sk(sk);
1951 	struct sk_buff *skb;
1952 	unsigned int tso_segs, sent_pkts;
1953 	int cwnd_quota;
1954 	int result;
1955 
1956 	sent_pkts = 0;
1957 
1958 	if (!push_one) {
1959 		/* Do MTU probing. */
1960 		result = tcp_mtu_probe(sk);
1961 		if (!result) {
1962 			return false;
1963 		} else if (result > 0) {
1964 			sent_pkts = 1;
1965 		}
1966 	}
1967 
1968 	while ((skb = tcp_send_head(sk))) {
1969 		unsigned int limit;
1970 
1971 
1972 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1973 		BUG_ON(!tso_segs);
1974 
1975 		cwnd_quota = tcp_cwnd_test(tp, skb);
1976 		if (!cwnd_quota)
1977 			break;
1978 
1979 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1980 			break;
1981 
1982 		if (tso_segs == 1) {
1983 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1984 						     (tcp_skb_is_last(sk, skb) ?
1985 						      nonagle : TCP_NAGLE_PUSH))))
1986 				break;
1987 		} else {
1988 			if (!push_one && tcp_tso_should_defer(sk, skb))
1989 				break;
1990 		}
1991 
1992 		/* TSQ : sk_wmem_alloc accounts skb truesize,
1993 		 * including skb overhead. But thats OK.
1994 		 */
1995 		if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
1996 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1997 			break;
1998 		}
1999 		limit = mss_now;
2000 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2001 			limit = tcp_mss_split_point(sk, skb, mss_now,
2002 						    cwnd_quota);
2003 
2004 		if (skb->len > limit &&
2005 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2006 			break;
2007 
2008 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
2009 
2010 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2011 			break;
2012 
2013 		/* Advance the send_head.  This one is sent out.
2014 		 * This call will increment packets_out.
2015 		 */
2016 		tcp_event_new_data_sent(sk, skb);
2017 
2018 		tcp_minshall_update(tp, mss_now, skb);
2019 		sent_pkts += tcp_skb_pcount(skb);
2020 
2021 		if (push_one)
2022 			break;
2023 	}
2024 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery)
2025 		tp->prr_out += sent_pkts;
2026 
2027 	if (likely(sent_pkts)) {
2028 		tcp_cwnd_validate(sk);
2029 		return false;
2030 	}
2031 	return !tp->packets_out && tcp_send_head(sk);
2032 }
2033 
2034 /* Push out any pending frames which were held back due to
2035  * TCP_CORK or attempt at coalescing tiny packets.
2036  * The socket must be locked by the caller.
2037  */
2038 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2039 			       int nonagle)
2040 {
2041 	/* If we are closed, the bytes will have to remain here.
2042 	 * In time closedown will finish, we empty the write queue and
2043 	 * all will be happy.
2044 	 */
2045 	if (unlikely(sk->sk_state == TCP_CLOSE))
2046 		return;
2047 
2048 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC))
2049 		tcp_check_probe_timer(sk);
2050 }
2051 
2052 /* Send _single_ skb sitting at the send head. This function requires
2053  * true push pending frames to setup probe timer etc.
2054  */
2055 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2056 {
2057 	struct sk_buff *skb = tcp_send_head(sk);
2058 
2059 	BUG_ON(!skb || skb->len < mss_now);
2060 
2061 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2062 }
2063 
2064 /* This function returns the amount that we can raise the
2065  * usable window based on the following constraints
2066  *
2067  * 1. The window can never be shrunk once it is offered (RFC 793)
2068  * 2. We limit memory per socket
2069  *
2070  * RFC 1122:
2071  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2072  *  RECV.NEXT + RCV.WIN fixed until:
2073  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2074  *
2075  * i.e. don't raise the right edge of the window until you can raise
2076  * it at least MSS bytes.
2077  *
2078  * Unfortunately, the recommended algorithm breaks header prediction,
2079  * since header prediction assumes th->window stays fixed.
2080  *
2081  * Strictly speaking, keeping th->window fixed violates the receiver
2082  * side SWS prevention criteria. The problem is that under this rule
2083  * a stream of single byte packets will cause the right side of the
2084  * window to always advance by a single byte.
2085  *
2086  * Of course, if the sender implements sender side SWS prevention
2087  * then this will not be a problem.
2088  *
2089  * BSD seems to make the following compromise:
2090  *
2091  *	If the free space is less than the 1/4 of the maximum
2092  *	space available and the free space is less than 1/2 mss,
2093  *	then set the window to 0.
2094  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2095  *	Otherwise, just prevent the window from shrinking
2096  *	and from being larger than the largest representable value.
2097  *
2098  * This prevents incremental opening of the window in the regime
2099  * where TCP is limited by the speed of the reader side taking
2100  * data out of the TCP receive queue. It does nothing about
2101  * those cases where the window is constrained on the sender side
2102  * because the pipeline is full.
2103  *
2104  * BSD also seems to "accidentally" limit itself to windows that are a
2105  * multiple of MSS, at least until the free space gets quite small.
2106  * This would appear to be a side effect of the mbuf implementation.
2107  * Combining these two algorithms results in the observed behavior
2108  * of having a fixed window size at almost all times.
2109  *
2110  * Below we obtain similar behavior by forcing the offered window to
2111  * a multiple of the mss when it is feasible to do so.
2112  *
2113  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2114  * Regular options like TIMESTAMP are taken into account.
2115  */
2116 u32 __tcp_select_window(struct sock *sk)
2117 {
2118 	struct inet_connection_sock *icsk = inet_csk(sk);
2119 	struct tcp_sock *tp = tcp_sk(sk);
2120 	/* MSS for the peer's data.  Previous versions used mss_clamp
2121 	 * here.  I don't know if the value based on our guesses
2122 	 * of peer's MSS is better for the performance.  It's more correct
2123 	 * but may be worse for the performance because of rcv_mss
2124 	 * fluctuations.  --SAW  1998/11/1
2125 	 */
2126 	int mss = icsk->icsk_ack.rcv_mss;
2127 	int free_space = tcp_space(sk);
2128 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2129 	int window;
2130 
2131 	if (mss > full_space)
2132 		mss = full_space;
2133 
2134 	if (free_space < (full_space >> 1)) {
2135 		icsk->icsk_ack.quick = 0;
2136 
2137 		if (sk_under_memory_pressure(sk))
2138 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2139 					       4U * tp->advmss);
2140 
2141 		if (free_space < mss)
2142 			return 0;
2143 	}
2144 
2145 	if (free_space > tp->rcv_ssthresh)
2146 		free_space = tp->rcv_ssthresh;
2147 
2148 	/* Don't do rounding if we are using window scaling, since the
2149 	 * scaled window will not line up with the MSS boundary anyway.
2150 	 */
2151 	window = tp->rcv_wnd;
2152 	if (tp->rx_opt.rcv_wscale) {
2153 		window = free_space;
2154 
2155 		/* Advertise enough space so that it won't get scaled away.
2156 		 * Import case: prevent zero window announcement if
2157 		 * 1<<rcv_wscale > mss.
2158 		 */
2159 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2160 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2161 				  << tp->rx_opt.rcv_wscale);
2162 	} else {
2163 		/* Get the largest window that is a nice multiple of mss.
2164 		 * Window clamp already applied above.
2165 		 * If our current window offering is within 1 mss of the
2166 		 * free space we just keep it. This prevents the divide
2167 		 * and multiply from happening most of the time.
2168 		 * We also don't do any window rounding when the free space
2169 		 * is too small.
2170 		 */
2171 		if (window <= free_space - mss || window > free_space)
2172 			window = (free_space / mss) * mss;
2173 		else if (mss == full_space &&
2174 			 free_space > window + (full_space >> 1))
2175 			window = free_space;
2176 	}
2177 
2178 	return window;
2179 }
2180 
2181 /* Collapses two adjacent SKB's during retransmission. */
2182 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2183 {
2184 	struct tcp_sock *tp = tcp_sk(sk);
2185 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2186 	int skb_size, next_skb_size;
2187 
2188 	skb_size = skb->len;
2189 	next_skb_size = next_skb->len;
2190 
2191 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2192 
2193 	tcp_highest_sack_combine(sk, next_skb, skb);
2194 
2195 	tcp_unlink_write_queue(next_skb, sk);
2196 
2197 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2198 				  next_skb_size);
2199 
2200 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2201 		skb->ip_summed = CHECKSUM_PARTIAL;
2202 
2203 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2204 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2205 
2206 	/* Update sequence range on original skb. */
2207 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2208 
2209 	/* Merge over control information. This moves PSH/FIN etc. over */
2210 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2211 
2212 	/* All done, get rid of second SKB and account for it so
2213 	 * packet counting does not break.
2214 	 */
2215 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2216 
2217 	/* changed transmit queue under us so clear hints */
2218 	tcp_clear_retrans_hints_partial(tp);
2219 	if (next_skb == tp->retransmit_skb_hint)
2220 		tp->retransmit_skb_hint = skb;
2221 
2222 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2223 
2224 	sk_wmem_free_skb(sk, next_skb);
2225 }
2226 
2227 /* Check if coalescing SKBs is legal. */
2228 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2229 {
2230 	if (tcp_skb_pcount(skb) > 1)
2231 		return false;
2232 	/* TODO: SACK collapsing could be used to remove this condition */
2233 	if (skb_shinfo(skb)->nr_frags != 0)
2234 		return false;
2235 	if (skb_cloned(skb))
2236 		return false;
2237 	if (skb == tcp_send_head(sk))
2238 		return false;
2239 	/* Some heurestics for collapsing over SACK'd could be invented */
2240 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2241 		return false;
2242 
2243 	return true;
2244 }
2245 
2246 /* Collapse packets in the retransmit queue to make to create
2247  * less packets on the wire. This is only done on retransmission.
2248  */
2249 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2250 				     int space)
2251 {
2252 	struct tcp_sock *tp = tcp_sk(sk);
2253 	struct sk_buff *skb = to, *tmp;
2254 	bool first = true;
2255 
2256 	if (!sysctl_tcp_retrans_collapse)
2257 		return;
2258 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2259 		return;
2260 
2261 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2262 		if (!tcp_can_collapse(sk, skb))
2263 			break;
2264 
2265 		space -= skb->len;
2266 
2267 		if (first) {
2268 			first = false;
2269 			continue;
2270 		}
2271 
2272 		if (space < 0)
2273 			break;
2274 		/* Punt if not enough space exists in the first SKB for
2275 		 * the data in the second
2276 		 */
2277 		if (skb->len > skb_availroom(to))
2278 			break;
2279 
2280 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2281 			break;
2282 
2283 		tcp_collapse_retrans(sk, to);
2284 	}
2285 }
2286 
2287 /* This retransmits one SKB.  Policy decisions and retransmit queue
2288  * state updates are done by the caller.  Returns non-zero if an
2289  * error occurred which prevented the send.
2290  */
2291 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2292 {
2293 	struct tcp_sock *tp = tcp_sk(sk);
2294 	struct inet_connection_sock *icsk = inet_csk(sk);
2295 	unsigned int cur_mss;
2296 	int err;
2297 
2298 	/* Inconslusive MTU probe */
2299 	if (icsk->icsk_mtup.probe_size) {
2300 		icsk->icsk_mtup.probe_size = 0;
2301 	}
2302 
2303 	/* Do not sent more than we queued. 1/4 is reserved for possible
2304 	 * copying overhead: fragmentation, tunneling, mangling etc.
2305 	 */
2306 	if (atomic_read(&sk->sk_wmem_alloc) >
2307 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2308 		return -EAGAIN;
2309 
2310 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2311 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2312 			BUG();
2313 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2314 			return -ENOMEM;
2315 	}
2316 
2317 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2318 		return -EHOSTUNREACH; /* Routing failure or similar. */
2319 
2320 	cur_mss = tcp_current_mss(sk);
2321 
2322 	/* If receiver has shrunk his window, and skb is out of
2323 	 * new window, do not retransmit it. The exception is the
2324 	 * case, when window is shrunk to zero. In this case
2325 	 * our retransmit serves as a zero window probe.
2326 	 */
2327 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2328 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2329 		return -EAGAIN;
2330 
2331 	if (skb->len > cur_mss) {
2332 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2333 			return -ENOMEM; /* We'll try again later. */
2334 	} else {
2335 		int oldpcount = tcp_skb_pcount(skb);
2336 
2337 		if (unlikely(oldpcount > 1)) {
2338 			tcp_init_tso_segs(sk, skb, cur_mss);
2339 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2340 		}
2341 	}
2342 
2343 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2344 
2345 	/* Some Solaris stacks overoptimize and ignore the FIN on a
2346 	 * retransmit when old data is attached.  So strip it off
2347 	 * since it is cheap to do so and saves bytes on the network.
2348 	 */
2349 	if (skb->len > 0 &&
2350 	    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2351 	    tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2352 		if (!pskb_trim(skb, 0)) {
2353 			/* Reuse, even though it does some unnecessary work */
2354 			tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2355 					     TCP_SKB_CB(skb)->tcp_flags);
2356 			skb->ip_summed = CHECKSUM_NONE;
2357 		}
2358 	}
2359 
2360 	/* Make a copy, if the first transmission SKB clone we made
2361 	 * is still in somebody's hands, else make a clone.
2362 	 */
2363 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2364 
2365 	/* make sure skb->data is aligned on arches that require it */
2366 	if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) {
2367 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2368 						   GFP_ATOMIC);
2369 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2370 			     -ENOBUFS;
2371 	} else {
2372 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2373 	}
2374 
2375 	if (err == 0) {
2376 		/* Update global TCP statistics. */
2377 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2378 
2379 		tp->total_retrans++;
2380 
2381 #if FASTRETRANS_DEBUG > 0
2382 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2383 			net_dbg_ratelimited("retrans_out leaked\n");
2384 		}
2385 #endif
2386 		if (!tp->retrans_out)
2387 			tp->lost_retrans_low = tp->snd_nxt;
2388 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2389 		tp->retrans_out += tcp_skb_pcount(skb);
2390 
2391 		/* Save stamp of the first retransmit. */
2392 		if (!tp->retrans_stamp)
2393 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2394 
2395 		tp->undo_retrans += tcp_skb_pcount(skb);
2396 
2397 		/* snd_nxt is stored to detect loss of retransmitted segment,
2398 		 * see tcp_input.c tcp_sacktag_write_queue().
2399 		 */
2400 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2401 	}
2402 	return err;
2403 }
2404 
2405 /* Check if we forward retransmits are possible in the current
2406  * window/congestion state.
2407  */
2408 static bool tcp_can_forward_retransmit(struct sock *sk)
2409 {
2410 	const struct inet_connection_sock *icsk = inet_csk(sk);
2411 	const struct tcp_sock *tp = tcp_sk(sk);
2412 
2413 	/* Forward retransmissions are possible only during Recovery. */
2414 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2415 		return false;
2416 
2417 	/* No forward retransmissions in Reno are possible. */
2418 	if (tcp_is_reno(tp))
2419 		return false;
2420 
2421 	/* Yeah, we have to make difficult choice between forward transmission
2422 	 * and retransmission... Both ways have their merits...
2423 	 *
2424 	 * For now we do not retransmit anything, while we have some new
2425 	 * segments to send. In the other cases, follow rule 3 for
2426 	 * NextSeg() specified in RFC3517.
2427 	 */
2428 
2429 	if (tcp_may_send_now(sk))
2430 		return false;
2431 
2432 	return true;
2433 }
2434 
2435 /* This gets called after a retransmit timeout, and the initially
2436  * retransmitted data is acknowledged.  It tries to continue
2437  * resending the rest of the retransmit queue, until either
2438  * we've sent it all or the congestion window limit is reached.
2439  * If doing SACK, the first ACK which comes back for a timeout
2440  * based retransmit packet might feed us FACK information again.
2441  * If so, we use it to avoid unnecessarily retransmissions.
2442  */
2443 void tcp_xmit_retransmit_queue(struct sock *sk)
2444 {
2445 	const struct inet_connection_sock *icsk = inet_csk(sk);
2446 	struct tcp_sock *tp = tcp_sk(sk);
2447 	struct sk_buff *skb;
2448 	struct sk_buff *hole = NULL;
2449 	u32 last_lost;
2450 	int mib_idx;
2451 	int fwd_rexmitting = 0;
2452 
2453 	if (!tp->packets_out)
2454 		return;
2455 
2456 	if (!tp->lost_out)
2457 		tp->retransmit_high = tp->snd_una;
2458 
2459 	if (tp->retransmit_skb_hint) {
2460 		skb = tp->retransmit_skb_hint;
2461 		last_lost = TCP_SKB_CB(skb)->end_seq;
2462 		if (after(last_lost, tp->retransmit_high))
2463 			last_lost = tp->retransmit_high;
2464 	} else {
2465 		skb = tcp_write_queue_head(sk);
2466 		last_lost = tp->snd_una;
2467 	}
2468 
2469 	tcp_for_write_queue_from(skb, sk) {
2470 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2471 
2472 		if (skb == tcp_send_head(sk))
2473 			break;
2474 		/* we could do better than to assign each time */
2475 		if (hole == NULL)
2476 			tp->retransmit_skb_hint = skb;
2477 
2478 		/* Assume this retransmit will generate
2479 		 * only one packet for congestion window
2480 		 * calculation purposes.  This works because
2481 		 * tcp_retransmit_skb() will chop up the
2482 		 * packet to be MSS sized and all the
2483 		 * packet counting works out.
2484 		 */
2485 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2486 			return;
2487 
2488 		if (fwd_rexmitting) {
2489 begin_fwd:
2490 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2491 				break;
2492 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2493 
2494 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2495 			tp->retransmit_high = last_lost;
2496 			if (!tcp_can_forward_retransmit(sk))
2497 				break;
2498 			/* Backtrack if necessary to non-L'ed skb */
2499 			if (hole != NULL) {
2500 				skb = hole;
2501 				hole = NULL;
2502 			}
2503 			fwd_rexmitting = 1;
2504 			goto begin_fwd;
2505 
2506 		} else if (!(sacked & TCPCB_LOST)) {
2507 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2508 				hole = skb;
2509 			continue;
2510 
2511 		} else {
2512 			last_lost = TCP_SKB_CB(skb)->end_seq;
2513 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2514 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2515 			else
2516 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2517 		}
2518 
2519 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2520 			continue;
2521 
2522 		if (tcp_retransmit_skb(sk, skb)) {
2523 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2524 			return;
2525 		}
2526 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2527 
2528 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery)
2529 			tp->prr_out += tcp_skb_pcount(skb);
2530 
2531 		if (skb == tcp_write_queue_head(sk))
2532 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2533 						  inet_csk(sk)->icsk_rto,
2534 						  TCP_RTO_MAX);
2535 	}
2536 }
2537 
2538 /* Send a fin.  The caller locks the socket for us.  This cannot be
2539  * allowed to fail queueing a FIN frame under any circumstances.
2540  */
2541 void tcp_send_fin(struct sock *sk)
2542 {
2543 	struct tcp_sock *tp = tcp_sk(sk);
2544 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2545 	int mss_now;
2546 
2547 	/* Optimization, tack on the FIN if we have a queue of
2548 	 * unsent frames.  But be careful about outgoing SACKS
2549 	 * and IP options.
2550 	 */
2551 	mss_now = tcp_current_mss(sk);
2552 
2553 	if (tcp_send_head(sk) != NULL) {
2554 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2555 		TCP_SKB_CB(skb)->end_seq++;
2556 		tp->write_seq++;
2557 	} else {
2558 		/* Socket is locked, keep trying until memory is available. */
2559 		for (;;) {
2560 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2561 					       sk->sk_allocation);
2562 			if (skb)
2563 				break;
2564 			yield();
2565 		}
2566 
2567 		/* Reserve space for headers and prepare control bits. */
2568 		skb_reserve(skb, MAX_TCP_HEADER);
2569 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2570 		tcp_init_nondata_skb(skb, tp->write_seq,
2571 				     TCPHDR_ACK | TCPHDR_FIN);
2572 		tcp_queue_skb(sk, skb);
2573 	}
2574 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2575 }
2576 
2577 /* We get here when a process closes a file descriptor (either due to
2578  * an explicit close() or as a byproduct of exit()'ing) and there
2579  * was unread data in the receive queue.  This behavior is recommended
2580  * by RFC 2525, section 2.17.  -DaveM
2581  */
2582 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2583 {
2584 	struct sk_buff *skb;
2585 
2586 	/* NOTE: No TCP options attached and we never retransmit this. */
2587 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2588 	if (!skb) {
2589 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2590 		return;
2591 	}
2592 
2593 	/* Reserve space for headers and prepare control bits. */
2594 	skb_reserve(skb, MAX_TCP_HEADER);
2595 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2596 			     TCPHDR_ACK | TCPHDR_RST);
2597 	/* Send it off. */
2598 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2599 	if (tcp_transmit_skb(sk, skb, 0, priority))
2600 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2601 
2602 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2603 }
2604 
2605 /* Send a crossed SYN-ACK during socket establishment.
2606  * WARNING: This routine must only be called when we have already sent
2607  * a SYN packet that crossed the incoming SYN that caused this routine
2608  * to get called. If this assumption fails then the initial rcv_wnd
2609  * and rcv_wscale values will not be correct.
2610  */
2611 int tcp_send_synack(struct sock *sk)
2612 {
2613 	struct sk_buff *skb;
2614 
2615 	skb = tcp_write_queue_head(sk);
2616 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2617 		pr_debug("%s: wrong queue state\n", __func__);
2618 		return -EFAULT;
2619 	}
2620 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2621 		if (skb_cloned(skb)) {
2622 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2623 			if (nskb == NULL)
2624 				return -ENOMEM;
2625 			tcp_unlink_write_queue(skb, sk);
2626 			skb_header_release(nskb);
2627 			__tcp_add_write_queue_head(sk, nskb);
2628 			sk_wmem_free_skb(sk, skb);
2629 			sk->sk_wmem_queued += nskb->truesize;
2630 			sk_mem_charge(sk, nskb->truesize);
2631 			skb = nskb;
2632 		}
2633 
2634 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2635 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2636 	}
2637 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2638 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2639 }
2640 
2641 /**
2642  * tcp_make_synack - Prepare a SYN-ACK.
2643  * sk: listener socket
2644  * dst: dst entry attached to the SYNACK
2645  * req: request_sock pointer
2646  * rvp: request_values pointer
2647  *
2648  * Allocate one skb and build a SYNACK packet.
2649  * @dst is consumed : Caller should not use it again.
2650  */
2651 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2652 				struct request_sock *req,
2653 				struct request_values *rvp)
2654 {
2655 	struct tcp_out_options opts;
2656 	struct tcp_extend_values *xvp = tcp_xv(rvp);
2657 	struct inet_request_sock *ireq = inet_rsk(req);
2658 	struct tcp_sock *tp = tcp_sk(sk);
2659 	const struct tcp_cookie_values *cvp = tp->cookie_values;
2660 	struct tcphdr *th;
2661 	struct sk_buff *skb;
2662 	struct tcp_md5sig_key *md5;
2663 	int tcp_header_size;
2664 	int mss;
2665 	int s_data_desired = 0;
2666 
2667 	if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired)
2668 		s_data_desired = cvp->s_data_desired;
2669 	skb = alloc_skb(MAX_TCP_HEADER + 15 + s_data_desired, GFP_ATOMIC);
2670 	if (unlikely(!skb)) {
2671 		dst_release(dst);
2672 		return NULL;
2673 	}
2674 	/* Reserve space for headers. */
2675 	skb_reserve(skb, MAX_TCP_HEADER);
2676 
2677 	skb_dst_set(skb, dst);
2678 
2679 	mss = dst_metric_advmss(dst);
2680 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2681 		mss = tp->rx_opt.user_mss;
2682 
2683 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2684 		__u8 rcv_wscale;
2685 		/* Set this up on the first call only */
2686 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2687 
2688 		/* limit the window selection if the user enforce a smaller rx buffer */
2689 		if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2690 		    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2691 			req->window_clamp = tcp_full_space(sk);
2692 
2693 		/* tcp_full_space because it is guaranteed to be the first packet */
2694 		tcp_select_initial_window(tcp_full_space(sk),
2695 			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2696 			&req->rcv_wnd,
2697 			&req->window_clamp,
2698 			ireq->wscale_ok,
2699 			&rcv_wscale,
2700 			dst_metric(dst, RTAX_INITRWND));
2701 		ireq->rcv_wscale = rcv_wscale;
2702 	}
2703 
2704 	memset(&opts, 0, sizeof(opts));
2705 #ifdef CONFIG_SYN_COOKIES
2706 	if (unlikely(req->cookie_ts))
2707 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2708 	else
2709 #endif
2710 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2711 	tcp_header_size = tcp_synack_options(sk, req, mss,
2712 					     skb, &opts, &md5, xvp)
2713 			+ sizeof(*th);
2714 
2715 	skb_push(skb, tcp_header_size);
2716 	skb_reset_transport_header(skb);
2717 
2718 	th = tcp_hdr(skb);
2719 	memset(th, 0, sizeof(struct tcphdr));
2720 	th->syn = 1;
2721 	th->ack = 1;
2722 	TCP_ECN_make_synack(req, th);
2723 	th->source = ireq->loc_port;
2724 	th->dest = ireq->rmt_port;
2725 	/* Setting of flags are superfluous here for callers (and ECE is
2726 	 * not even correctly set)
2727 	 */
2728 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2729 			     TCPHDR_SYN | TCPHDR_ACK);
2730 
2731 	if (OPTION_COOKIE_EXTENSION & opts.options) {
2732 		if (s_data_desired) {
2733 			u8 *buf = skb_put(skb, s_data_desired);
2734 
2735 			/* copy data directly from the listening socket. */
2736 			memcpy(buf, cvp->s_data_payload, s_data_desired);
2737 			TCP_SKB_CB(skb)->end_seq += s_data_desired;
2738 		}
2739 
2740 		if (opts.hash_size > 0) {
2741 			__u32 workspace[SHA_WORKSPACE_WORDS];
2742 			u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS];
2743 			u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1];
2744 
2745 			/* Secret recipe depends on the Timestamp, (future)
2746 			 * Sequence and Acknowledgment Numbers, Initiator
2747 			 * Cookie, and others handled by IP variant caller.
2748 			 */
2749 			*tail-- ^= opts.tsval;
2750 			*tail-- ^= tcp_rsk(req)->rcv_isn + 1;
2751 			*tail-- ^= TCP_SKB_CB(skb)->seq + 1;
2752 
2753 			/* recommended */
2754 			*tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source);
2755 			*tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */
2756 
2757 			sha_transform((__u32 *)&xvp->cookie_bakery[0],
2758 				      (char *)mess,
2759 				      &workspace[0]);
2760 			opts.hash_location =
2761 				(__u8 *)&xvp->cookie_bakery[0];
2762 		}
2763 	}
2764 
2765 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2766 	th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2767 
2768 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2769 	th->window = htons(min(req->rcv_wnd, 65535U));
2770 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2771 	th->doff = (tcp_header_size >> 2);
2772 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2773 
2774 #ifdef CONFIG_TCP_MD5SIG
2775 	/* Okay, we have all we need - do the md5 hash if needed */
2776 	if (md5) {
2777 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2778 					       md5, NULL, req, skb);
2779 	}
2780 #endif
2781 
2782 	return skb;
2783 }
2784 EXPORT_SYMBOL(tcp_make_synack);
2785 
2786 /* Do all connect socket setups that can be done AF independent. */
2787 void tcp_connect_init(struct sock *sk)
2788 {
2789 	const struct dst_entry *dst = __sk_dst_get(sk);
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 	__u8 rcv_wscale;
2792 
2793 	/* We'll fix this up when we get a response from the other end.
2794 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2795 	 */
2796 	tp->tcp_header_len = sizeof(struct tcphdr) +
2797 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2798 
2799 #ifdef CONFIG_TCP_MD5SIG
2800 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2801 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2802 #endif
2803 
2804 	/* If user gave his TCP_MAXSEG, record it to clamp */
2805 	if (tp->rx_opt.user_mss)
2806 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2807 	tp->max_window = 0;
2808 	tcp_mtup_init(sk);
2809 	tcp_sync_mss(sk, dst_mtu(dst));
2810 
2811 	if (!tp->window_clamp)
2812 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2813 	tp->advmss = dst_metric_advmss(dst);
2814 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2815 		tp->advmss = tp->rx_opt.user_mss;
2816 
2817 	tcp_initialize_rcv_mss(sk);
2818 
2819 	/* limit the window selection if the user enforce a smaller rx buffer */
2820 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2821 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2822 		tp->window_clamp = tcp_full_space(sk);
2823 
2824 	tcp_select_initial_window(tcp_full_space(sk),
2825 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2826 				  &tp->rcv_wnd,
2827 				  &tp->window_clamp,
2828 				  sysctl_tcp_window_scaling,
2829 				  &rcv_wscale,
2830 				  dst_metric(dst, RTAX_INITRWND));
2831 
2832 	tp->rx_opt.rcv_wscale = rcv_wscale;
2833 	tp->rcv_ssthresh = tp->rcv_wnd;
2834 
2835 	sk->sk_err = 0;
2836 	sock_reset_flag(sk, SOCK_DONE);
2837 	tp->snd_wnd = 0;
2838 	tcp_init_wl(tp, 0);
2839 	tp->snd_una = tp->write_seq;
2840 	tp->snd_sml = tp->write_seq;
2841 	tp->snd_up = tp->write_seq;
2842 	tp->snd_nxt = tp->write_seq;
2843 
2844 	if (likely(!tp->repair))
2845 		tp->rcv_nxt = 0;
2846 	tp->rcv_wup = tp->rcv_nxt;
2847 	tp->copied_seq = tp->rcv_nxt;
2848 
2849 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2850 	inet_csk(sk)->icsk_retransmits = 0;
2851 	tcp_clear_retrans(tp);
2852 }
2853 
2854 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2855 {
2856 	struct tcp_sock *tp = tcp_sk(sk);
2857 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2858 
2859 	tcb->end_seq += skb->len;
2860 	skb_header_release(skb);
2861 	__tcp_add_write_queue_tail(sk, skb);
2862 	sk->sk_wmem_queued += skb->truesize;
2863 	sk_mem_charge(sk, skb->truesize);
2864 	tp->write_seq = tcb->end_seq;
2865 	tp->packets_out += tcp_skb_pcount(skb);
2866 }
2867 
2868 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2869  * queue a data-only packet after the regular SYN, such that regular SYNs
2870  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2871  * only the SYN sequence, the data are retransmitted in the first ACK.
2872  * If cookie is not cached or other error occurs, falls back to send a
2873  * regular SYN with Fast Open cookie request option.
2874  */
2875 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2876 {
2877 	struct tcp_sock *tp = tcp_sk(sk);
2878 	struct tcp_fastopen_request *fo = tp->fastopen_req;
2879 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2880 	struct sk_buff *syn_data = NULL, *data;
2881 	unsigned long last_syn_loss = 0;
2882 
2883 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2884 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2885 			       &syn_loss, &last_syn_loss);
2886 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2887 	if (syn_loss > 1 &&
2888 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2889 		fo->cookie.len = -1;
2890 		goto fallback;
2891 	}
2892 
2893 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2894 		fo->cookie.len = -1;
2895 	else if (fo->cookie.len <= 0)
2896 		goto fallback;
2897 
2898 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2899 	 * user-MSS. Reserve maximum option space for middleboxes that add
2900 	 * private TCP options. The cost is reduced data space in SYN :(
2901 	 */
2902 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2903 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2904 	space = tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2905 		MAX_TCP_OPTION_SPACE;
2906 
2907 	syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2908 				   sk->sk_allocation);
2909 	if (syn_data == NULL)
2910 		goto fallback;
2911 
2912 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2913 		struct iovec *iov = &fo->data->msg_iov[i];
2914 		unsigned char __user *from = iov->iov_base;
2915 		int len = iov->iov_len;
2916 
2917 		if (syn_data->len + len > space)
2918 			len = space - syn_data->len;
2919 		else if (i + 1 == iovlen)
2920 			/* No more data pending in inet_wait_for_connect() */
2921 			fo->data = NULL;
2922 
2923 		if (skb_add_data(syn_data, from, len))
2924 			goto fallback;
2925 	}
2926 
2927 	/* Queue a data-only packet after the regular SYN for retransmission */
2928 	data = pskb_copy(syn_data, sk->sk_allocation);
2929 	if (data == NULL)
2930 		goto fallback;
2931 	TCP_SKB_CB(data)->seq++;
2932 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2933 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2934 	tcp_connect_queue_skb(sk, data);
2935 	fo->copied = data->len;
2936 
2937 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2938 		tp->syn_data = (fo->copied > 0);
2939 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2940 		goto done;
2941 	}
2942 	syn_data = NULL;
2943 
2944 fallback:
2945 	/* Send a regular SYN with Fast Open cookie request option */
2946 	if (fo->cookie.len > 0)
2947 		fo->cookie.len = 0;
2948 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2949 	if (err)
2950 		tp->syn_fastopen = 0;
2951 	kfree_skb(syn_data);
2952 done:
2953 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
2954 	return err;
2955 }
2956 
2957 /* Build a SYN and send it off. */
2958 int tcp_connect(struct sock *sk)
2959 {
2960 	struct tcp_sock *tp = tcp_sk(sk);
2961 	struct sk_buff *buff;
2962 	int err;
2963 
2964 	tcp_connect_init(sk);
2965 
2966 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2967 	if (unlikely(buff == NULL))
2968 		return -ENOBUFS;
2969 
2970 	/* Reserve space for headers. */
2971 	skb_reserve(buff, MAX_TCP_HEADER);
2972 
2973 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2974 	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2975 	tcp_connect_queue_skb(sk, buff);
2976 	TCP_ECN_send_syn(sk, buff);
2977 
2978 	/* Send off SYN; include data in Fast Open. */
2979 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2980 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2981 	if (err == -ECONNREFUSED)
2982 		return err;
2983 
2984 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
2985 	 * in order to make this packet get counted in tcpOutSegs.
2986 	 */
2987 	tp->snd_nxt = tp->write_seq;
2988 	tp->pushed_seq = tp->write_seq;
2989 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2990 
2991 	/* Timer for repeating the SYN until an answer. */
2992 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2993 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2994 	return 0;
2995 }
2996 EXPORT_SYMBOL(tcp_connect);
2997 
2998 /* Send out a delayed ack, the caller does the policy checking
2999  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3000  * for details.
3001  */
3002 void tcp_send_delayed_ack(struct sock *sk)
3003 {
3004 	struct inet_connection_sock *icsk = inet_csk(sk);
3005 	int ato = icsk->icsk_ack.ato;
3006 	unsigned long timeout;
3007 
3008 	if (ato > TCP_DELACK_MIN) {
3009 		const struct tcp_sock *tp = tcp_sk(sk);
3010 		int max_ato = HZ / 2;
3011 
3012 		if (icsk->icsk_ack.pingpong ||
3013 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3014 			max_ato = TCP_DELACK_MAX;
3015 
3016 		/* Slow path, intersegment interval is "high". */
3017 
3018 		/* If some rtt estimate is known, use it to bound delayed ack.
3019 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3020 		 * directly.
3021 		 */
3022 		if (tp->srtt) {
3023 			int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3024 
3025 			if (rtt < max_ato)
3026 				max_ato = rtt;
3027 		}
3028 
3029 		ato = min(ato, max_ato);
3030 	}
3031 
3032 	/* Stay within the limit we were given */
3033 	timeout = jiffies + ato;
3034 
3035 	/* Use new timeout only if there wasn't a older one earlier. */
3036 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3037 		/* If delack timer was blocked or is about to expire,
3038 		 * send ACK now.
3039 		 */
3040 		if (icsk->icsk_ack.blocked ||
3041 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3042 			tcp_send_ack(sk);
3043 			return;
3044 		}
3045 
3046 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3047 			timeout = icsk->icsk_ack.timeout;
3048 	}
3049 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3050 	icsk->icsk_ack.timeout = timeout;
3051 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3052 }
3053 
3054 /* This routine sends an ack and also updates the window. */
3055 void tcp_send_ack(struct sock *sk)
3056 {
3057 	struct sk_buff *buff;
3058 
3059 	/* If we have been reset, we may not send again. */
3060 	if (sk->sk_state == TCP_CLOSE)
3061 		return;
3062 
3063 	/* We are not putting this on the write queue, so
3064 	 * tcp_transmit_skb() will set the ownership to this
3065 	 * sock.
3066 	 */
3067 	buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3068 	if (buff == NULL) {
3069 		inet_csk_schedule_ack(sk);
3070 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3071 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3072 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3073 		return;
3074 	}
3075 
3076 	/* Reserve space for headers and prepare control bits. */
3077 	skb_reserve(buff, MAX_TCP_HEADER);
3078 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3079 
3080 	/* Send it off, this clears delayed acks for us. */
3081 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3082 	tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
3083 }
3084 
3085 /* This routine sends a packet with an out of date sequence
3086  * number. It assumes the other end will try to ack it.
3087  *
3088  * Question: what should we make while urgent mode?
3089  * 4.4BSD forces sending single byte of data. We cannot send
3090  * out of window data, because we have SND.NXT==SND.MAX...
3091  *
3092  * Current solution: to send TWO zero-length segments in urgent mode:
3093  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3094  * out-of-date with SND.UNA-1 to probe window.
3095  */
3096 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3097 {
3098 	struct tcp_sock *tp = tcp_sk(sk);
3099 	struct sk_buff *skb;
3100 
3101 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3102 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3103 	if (skb == NULL)
3104 		return -1;
3105 
3106 	/* Reserve space for headers and set control bits. */
3107 	skb_reserve(skb, MAX_TCP_HEADER);
3108 	/* Use a previous sequence.  This should cause the other
3109 	 * end to send an ack.  Don't queue or clone SKB, just
3110 	 * send it.
3111 	 */
3112 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3113 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3114 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3115 }
3116 
3117 void tcp_send_window_probe(struct sock *sk)
3118 {
3119 	if (sk->sk_state == TCP_ESTABLISHED) {
3120 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3121 		tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3122 		tcp_xmit_probe_skb(sk, 0);
3123 	}
3124 }
3125 
3126 /* Initiate keepalive or window probe from timer. */
3127 int tcp_write_wakeup(struct sock *sk)
3128 {
3129 	struct tcp_sock *tp = tcp_sk(sk);
3130 	struct sk_buff *skb;
3131 
3132 	if (sk->sk_state == TCP_CLOSE)
3133 		return -1;
3134 
3135 	if ((skb = tcp_send_head(sk)) != NULL &&
3136 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3137 		int err;
3138 		unsigned int mss = tcp_current_mss(sk);
3139 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3140 
3141 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3142 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3143 
3144 		/* We are probing the opening of a window
3145 		 * but the window size is != 0
3146 		 * must have been a result SWS avoidance ( sender )
3147 		 */
3148 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3149 		    skb->len > mss) {
3150 			seg_size = min(seg_size, mss);
3151 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3152 			if (tcp_fragment(sk, skb, seg_size, mss))
3153 				return -1;
3154 		} else if (!tcp_skb_pcount(skb))
3155 			tcp_set_skb_tso_segs(sk, skb, mss);
3156 
3157 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3158 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3159 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3160 		if (!err)
3161 			tcp_event_new_data_sent(sk, skb);
3162 		return err;
3163 	} else {
3164 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3165 			tcp_xmit_probe_skb(sk, 1);
3166 		return tcp_xmit_probe_skb(sk, 0);
3167 	}
3168 }
3169 
3170 /* A window probe timeout has occurred.  If window is not closed send
3171  * a partial packet else a zero probe.
3172  */
3173 void tcp_send_probe0(struct sock *sk)
3174 {
3175 	struct inet_connection_sock *icsk = inet_csk(sk);
3176 	struct tcp_sock *tp = tcp_sk(sk);
3177 	int err;
3178 
3179 	err = tcp_write_wakeup(sk);
3180 
3181 	if (tp->packets_out || !tcp_send_head(sk)) {
3182 		/* Cancel probe timer, if it is not required. */
3183 		icsk->icsk_probes_out = 0;
3184 		icsk->icsk_backoff = 0;
3185 		return;
3186 	}
3187 
3188 	if (err <= 0) {
3189 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3190 			icsk->icsk_backoff++;
3191 		icsk->icsk_probes_out++;
3192 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3193 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3194 					  TCP_RTO_MAX);
3195 	} else {
3196 		/* If packet was not sent due to local congestion,
3197 		 * do not backoff and do not remember icsk_probes_out.
3198 		 * Let local senders to fight for local resources.
3199 		 *
3200 		 * Use accumulated backoff yet.
3201 		 */
3202 		if (!icsk->icsk_probes_out)
3203 			icsk->icsk_probes_out = 1;
3204 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3205 					  min(icsk->icsk_rto << icsk->icsk_backoff,
3206 					      TCP_RESOURCE_PROBE_INTERVAL),
3207 					  TCP_RTO_MAX);
3208 	}
3209 }
3210