xref: /linux/net/ipv4/tcp_output.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 #include <net/proto_memory.h>
43 
44 #include <linux/compiler.h>
45 #include <linux/gfp.h>
46 #include <linux/module.h>
47 #include <linux/static_key.h>
48 #include <linux/skbuff_ref.h>
49 
50 #include <trace/events/tcp.h>
51 
52 /* Refresh clocks of a TCP socket,
53  * ensuring monotically increasing values.
54  */
55 void tcp_mstamp_refresh(struct tcp_sock *tp)
56 {
57 	u64 val = tcp_clock_ns();
58 
59 	tp->tcp_clock_cache = val;
60 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 }
62 
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 			   int push_one, gfp_t gfp);
65 
66 /* Account for new data that has been sent to the network. */
67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 	struct inet_connection_sock *icsk = inet_csk(sk);
70 	struct tcp_sock *tp = tcp_sk(sk);
71 	unsigned int prior_packets = tp->packets_out;
72 
73 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
74 
75 	__skb_unlink(skb, &sk->sk_write_queue);
76 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77 
78 	if (tp->highest_sack == NULL)
79 		tp->highest_sack = skb;
80 
81 	tp->packets_out += tcp_skb_pcount(skb);
82 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 		tcp_rearm_rto(sk);
84 
85 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
86 		      tcp_skb_pcount(skb));
87 	tcp_check_space(sk);
88 }
89 
90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91  * window scaling factor due to loss of precision.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102 	    (tp->rx_opt.wscale_ok &&
103 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 		return tp->snd_nxt;
105 	else
106 		return tcp_wnd_end(tp);
107 }
108 
109 /* Calculate mss to advertise in SYN segment.
110  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111  *
112  * 1. It is independent of path mtu.
113  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115  *    attached devices, because some buggy hosts are confused by
116  *    large MSS.
117  * 4. We do not make 3, we advertise MSS, calculated from first
118  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
119  *    This may be overridden via information stored in routing table.
120  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121  *    probably even Jumbo".
122  */
123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125 	struct tcp_sock *tp = tcp_sk(sk);
126 	const struct dst_entry *dst = __sk_dst_get(sk);
127 	int mss = tp->advmss;
128 
129 	if (dst) {
130 		unsigned int metric = dst_metric_advmss(dst);
131 
132 		if (metric < mss) {
133 			mss = metric;
134 			tp->advmss = mss;
135 		}
136 	}
137 
138 	return (__u16)mss;
139 }
140 
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142  * This is the first part of cwnd validation mechanism.
143  */
144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148 	u32 cwnd = tcp_snd_cwnd(tp);
149 
150 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151 
152 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
153 	restart_cwnd = min(restart_cwnd, cwnd);
154 
155 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156 		cwnd >>= 1;
157 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
158 	tp->snd_cwnd_stamp = tcp_jiffies32;
159 	tp->snd_cwnd_used = 0;
160 }
161 
162 /* Congestion state accounting after a packet has been sent. */
163 static void tcp_event_data_sent(struct tcp_sock *tp,
164 				struct sock *sk)
165 {
166 	struct inet_connection_sock *icsk = inet_csk(sk);
167 	const u32 now = tcp_jiffies32;
168 
169 	if (tcp_packets_in_flight(tp) == 0)
170 		tcp_ca_event(sk, CA_EVENT_TX_START);
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, increase pingpong count.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 		inet_csk_inc_pingpong_cnt(sk);
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183 {
184 	struct tcp_sock *tp = tcp_sk(sk);
185 
186 	if (unlikely(tp->compressed_ack)) {
187 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 			      tp->compressed_ack);
189 		tp->compressed_ack = 0;
190 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 			__sock_put(sk);
192 	}
193 
194 	if (unlikely(rcv_nxt != tp->rcv_nxt))
195 		return;  /* Special ACK sent by DCTCP to reflect ECN */
196 	tcp_dec_quickack_mode(sk);
197 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199 
200 /* Determine a window scaling and initial window to offer.
201  * Based on the assumption that the given amount of space
202  * will be offered. Store the results in the tp structure.
203  * NOTE: for smooth operation initial space offering should
204  * be a multiple of mss if possible. We assume here that mss >= 1.
205  * This MUST be enforced by all callers.
206  */
207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 			       __u32 *rcv_wnd, __u32 *__window_clamp,
209 			       int wscale_ok, __u8 *rcv_wscale,
210 			       __u32 init_rcv_wnd)
211 {
212 	unsigned int space = (__space < 0 ? 0 : __space);
213 	u32 window_clamp = READ_ONCE(*__window_clamp);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (window_clamp == 0)
217 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
218 	space = min(window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = rounddown(space, mss);
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = space;
236 
237 	if (init_rcv_wnd)
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240 	*rcv_wscale = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window */
243 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
244 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
245 		space = min_t(u32, space, window_clamp);
246 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 				      0, TCP_MAX_WSCALE);
248 	}
249 	/* Set the clamp no higher than max representable value */
250 	WRITE_ONCE(*__window_clamp,
251 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
252 }
253 EXPORT_SYMBOL(tcp_select_initial_window);
254 
255 /* Chose a new window to advertise, update state in tcp_sock for the
256  * socket, and return result with RFC1323 scaling applied.  The return
257  * value can be stuffed directly into th->window for an outgoing
258  * frame.
259  */
260 static u16 tcp_select_window(struct sock *sk)
261 {
262 	struct tcp_sock *tp = tcp_sk(sk);
263 	struct net *net = sock_net(sk);
264 	u32 old_win = tp->rcv_wnd;
265 	u32 cur_win, new_win;
266 
267 	/* Make the window 0 if we failed to queue the data because we
268 	 * are out of memory. The window is temporary, so we don't store
269 	 * it on the socket.
270 	 */
271 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
272 		return 0;
273 
274 	cur_win = tcp_receive_window(tp);
275 	new_win = __tcp_select_window(sk);
276 	if (new_win < cur_win) {
277 		/* Danger Will Robinson!
278 		 * Don't update rcv_wup/rcv_wnd here or else
279 		 * we will not be able to advertise a zero
280 		 * window in time.  --DaveM
281 		 *
282 		 * Relax Will Robinson.
283 		 */
284 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
285 			/* Never shrink the offered window */
286 			if (new_win == 0)
287 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
288 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289 		}
290 	}
291 
292 	tp->rcv_wnd = new_win;
293 	tp->rcv_wup = tp->rcv_nxt;
294 
295 	/* Make sure we do not exceed the maximum possible
296 	 * scaled window.
297 	 */
298 	if (!tp->rx_opt.rcv_wscale &&
299 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
300 		new_win = min(new_win, MAX_TCP_WINDOW);
301 	else
302 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303 
304 	/* RFC1323 scaling applied */
305 	new_win >>= tp->rx_opt.rcv_wscale;
306 
307 	/* If we advertise zero window, disable fast path. */
308 	if (new_win == 0) {
309 		tp->pred_flags = 0;
310 		if (old_win)
311 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
312 	} else if (old_win == 0) {
313 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
314 	}
315 
316 	return new_win;
317 }
318 
319 /* Packet ECN state for a SYN-ACK */
320 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
321 {
322 	const struct tcp_sock *tp = tcp_sk(sk);
323 
324 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
325 	if (!(tp->ecn_flags & TCP_ECN_OK))
326 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
327 	else if (tcp_ca_needs_ecn(sk) ||
328 		 tcp_bpf_ca_needs_ecn(sk))
329 		INET_ECN_xmit(sk);
330 }
331 
332 /* Packet ECN state for a SYN.  */
333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
334 {
335 	struct tcp_sock *tp = tcp_sk(sk);
336 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
337 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
338 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
339 
340 	if (!use_ecn) {
341 		const struct dst_entry *dst = __sk_dst_get(sk);
342 
343 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
344 			use_ecn = true;
345 	}
346 
347 	tp->ecn_flags = 0;
348 
349 	if (use_ecn) {
350 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
351 		tp->ecn_flags = TCP_ECN_OK;
352 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
353 			INET_ECN_xmit(sk);
354 	}
355 }
356 
357 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
358 {
359 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
360 		/* tp->ecn_flags are cleared at a later point in time when
361 		 * SYN ACK is ultimatively being received.
362 		 */
363 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
364 }
365 
366 static void
367 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
368 {
369 	if (inet_rsk(req)->ecn_ok)
370 		th->ece = 1;
371 }
372 
373 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
374  * be sent.
375  */
376 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
377 			 struct tcphdr *th, int tcp_header_len)
378 {
379 	struct tcp_sock *tp = tcp_sk(sk);
380 
381 	if (tp->ecn_flags & TCP_ECN_OK) {
382 		/* Not-retransmitted data segment: set ECT and inject CWR. */
383 		if (skb->len != tcp_header_len &&
384 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
385 			INET_ECN_xmit(sk);
386 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
387 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
388 				th->cwr = 1;
389 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
390 			}
391 		} else if (!tcp_ca_needs_ecn(sk)) {
392 			/* ACK or retransmitted segment: clear ECT|CE */
393 			INET_ECN_dontxmit(sk);
394 		}
395 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
396 			th->ece = 1;
397 	}
398 }
399 
400 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
401  * auto increment end seqno.
402  */
403 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
404 {
405 	skb->ip_summed = CHECKSUM_PARTIAL;
406 
407 	TCP_SKB_CB(skb)->tcp_flags = flags;
408 
409 	tcp_skb_pcount_set(skb, 1);
410 
411 	TCP_SKB_CB(skb)->seq = seq;
412 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
413 		seq++;
414 	TCP_SKB_CB(skb)->end_seq = seq;
415 }
416 
417 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
418 {
419 	return tp->snd_una != tp->snd_up;
420 }
421 
422 #define OPTION_SACK_ADVERTISE	BIT(0)
423 #define OPTION_TS		BIT(1)
424 #define OPTION_MD5		BIT(2)
425 #define OPTION_WSCALE		BIT(3)
426 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
427 #define OPTION_SMC		BIT(9)
428 #define OPTION_MPTCP		BIT(10)
429 #define OPTION_AO		BIT(11)
430 
431 static void smc_options_write(__be32 *ptr, u16 *options)
432 {
433 #if IS_ENABLED(CONFIG_SMC)
434 	if (static_branch_unlikely(&tcp_have_smc)) {
435 		if (unlikely(OPTION_SMC & *options)) {
436 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
437 				       (TCPOPT_NOP  << 16) |
438 				       (TCPOPT_EXP <<  8) |
439 				       (TCPOLEN_EXP_SMC_BASE));
440 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
441 		}
442 	}
443 #endif
444 }
445 
446 struct tcp_out_options {
447 	u16 options;		/* bit field of OPTION_* */
448 	u16 mss;		/* 0 to disable */
449 	u8 ws;			/* window scale, 0 to disable */
450 	u8 num_sack_blocks;	/* number of SACK blocks to include */
451 	u8 hash_size;		/* bytes in hash_location */
452 	u8 bpf_opt_len;		/* length of BPF hdr option */
453 	__u8 *hash_location;	/* temporary pointer, overloaded */
454 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
455 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
456 	struct mptcp_out_options mptcp;
457 };
458 
459 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
460 				struct tcp_sock *tp,
461 				struct tcp_out_options *opts)
462 {
463 #if IS_ENABLED(CONFIG_MPTCP)
464 	if (unlikely(OPTION_MPTCP & opts->options))
465 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
466 #endif
467 }
468 
469 #ifdef CONFIG_CGROUP_BPF
470 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
471 					enum tcp_synack_type synack_type)
472 {
473 	if (unlikely(!skb))
474 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
475 
476 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
477 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
478 
479 	return 0;
480 }
481 
482 /* req, syn_skb and synack_type are used when writing synack */
483 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
484 				  struct request_sock *req,
485 				  struct sk_buff *syn_skb,
486 				  enum tcp_synack_type synack_type,
487 				  struct tcp_out_options *opts,
488 				  unsigned int *remaining)
489 {
490 	struct bpf_sock_ops_kern sock_ops;
491 	int err;
492 
493 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
494 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
495 	    !*remaining)
496 		return;
497 
498 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
499 
500 	/* init sock_ops */
501 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
502 
503 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
504 
505 	if (req) {
506 		/* The listen "sk" cannot be passed here because
507 		 * it is not locked.  It would not make too much
508 		 * sense to do bpf_setsockopt(listen_sk) based
509 		 * on individual connection request also.
510 		 *
511 		 * Thus, "req" is passed here and the cgroup-bpf-progs
512 		 * of the listen "sk" will be run.
513 		 *
514 		 * "req" is also used here for fastopen even the "sk" here is
515 		 * a fullsock "child" sk.  It is to keep the behavior
516 		 * consistent between fastopen and non-fastopen on
517 		 * the bpf programming side.
518 		 */
519 		sock_ops.sk = (struct sock *)req;
520 		sock_ops.syn_skb = syn_skb;
521 	} else {
522 		sock_owned_by_me(sk);
523 
524 		sock_ops.is_fullsock = 1;
525 		sock_ops.sk = sk;
526 	}
527 
528 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
529 	sock_ops.remaining_opt_len = *remaining;
530 	/* tcp_current_mss() does not pass a skb */
531 	if (skb)
532 		bpf_skops_init_skb(&sock_ops, skb, 0);
533 
534 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
535 
536 	if (err || sock_ops.remaining_opt_len == *remaining)
537 		return;
538 
539 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
540 	/* round up to 4 bytes */
541 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
542 
543 	*remaining -= opts->bpf_opt_len;
544 }
545 
546 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
547 				    struct request_sock *req,
548 				    struct sk_buff *syn_skb,
549 				    enum tcp_synack_type synack_type,
550 				    struct tcp_out_options *opts)
551 {
552 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
553 	struct bpf_sock_ops_kern sock_ops;
554 	int err;
555 
556 	if (likely(!max_opt_len))
557 		return;
558 
559 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
560 
561 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
562 
563 	if (req) {
564 		sock_ops.sk = (struct sock *)req;
565 		sock_ops.syn_skb = syn_skb;
566 	} else {
567 		sock_owned_by_me(sk);
568 
569 		sock_ops.is_fullsock = 1;
570 		sock_ops.sk = sk;
571 	}
572 
573 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
574 	sock_ops.remaining_opt_len = max_opt_len;
575 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
576 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
577 
578 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
579 
580 	if (err)
581 		nr_written = 0;
582 	else
583 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
584 
585 	if (nr_written < max_opt_len)
586 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
587 		       max_opt_len - nr_written);
588 }
589 #else
590 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
591 				  struct request_sock *req,
592 				  struct sk_buff *syn_skb,
593 				  enum tcp_synack_type synack_type,
594 				  struct tcp_out_options *opts,
595 				  unsigned int *remaining)
596 {
597 }
598 
599 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
600 				    struct request_sock *req,
601 				    struct sk_buff *syn_skb,
602 				    enum tcp_synack_type synack_type,
603 				    struct tcp_out_options *opts)
604 {
605 }
606 #endif
607 
608 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
609 				      const struct tcp_request_sock *tcprsk,
610 				      struct tcp_out_options *opts,
611 				      struct tcp_key *key, __be32 *ptr)
612 {
613 #ifdef CONFIG_TCP_AO
614 	u8 maclen = tcp_ao_maclen(key->ao_key);
615 
616 	if (tcprsk) {
617 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
618 
619 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
620 			       (tcprsk->ao_keyid << 8) |
621 			       (tcprsk->ao_rcv_next));
622 	} else {
623 		struct tcp_ao_key *rnext_key;
624 		struct tcp_ao_info *ao_info;
625 
626 		ao_info = rcu_dereference_check(tp->ao_info,
627 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
628 		rnext_key = READ_ONCE(ao_info->rnext_key);
629 		if (WARN_ON_ONCE(!rnext_key))
630 			return ptr;
631 		*ptr++ = htonl((TCPOPT_AO << 24) |
632 			       (tcp_ao_len(key->ao_key) << 16) |
633 			       (key->ao_key->sndid << 8) |
634 			       (rnext_key->rcvid));
635 	}
636 	opts->hash_location = (__u8 *)ptr;
637 	ptr += maclen / sizeof(*ptr);
638 	if (unlikely(maclen % sizeof(*ptr))) {
639 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
640 		ptr++;
641 	}
642 #endif
643 	return ptr;
644 }
645 
646 /* Write previously computed TCP options to the packet.
647  *
648  * Beware: Something in the Internet is very sensitive to the ordering of
649  * TCP options, we learned this through the hard way, so be careful here.
650  * Luckily we can at least blame others for their non-compliance but from
651  * inter-operability perspective it seems that we're somewhat stuck with
652  * the ordering which we have been using if we want to keep working with
653  * those broken things (not that it currently hurts anybody as there isn't
654  * particular reason why the ordering would need to be changed).
655  *
656  * At least SACK_PERM as the first option is known to lead to a disaster
657  * (but it may well be that other scenarios fail similarly).
658  */
659 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
660 			      const struct tcp_request_sock *tcprsk,
661 			      struct tcp_out_options *opts,
662 			      struct tcp_key *key)
663 {
664 	__be32 *ptr = (__be32 *)(th + 1);
665 	u16 options = opts->options;	/* mungable copy */
666 
667 	if (tcp_key_is_md5(key)) {
668 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
669 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
670 		/* overload cookie hash location */
671 		opts->hash_location = (__u8 *)ptr;
672 		ptr += 4;
673 	} else if (tcp_key_is_ao(key)) {
674 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
675 	}
676 	if (unlikely(opts->mss)) {
677 		*ptr++ = htonl((TCPOPT_MSS << 24) |
678 			       (TCPOLEN_MSS << 16) |
679 			       opts->mss);
680 	}
681 
682 	if (likely(OPTION_TS & options)) {
683 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
684 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
685 				       (TCPOLEN_SACK_PERM << 16) |
686 				       (TCPOPT_TIMESTAMP << 8) |
687 				       TCPOLEN_TIMESTAMP);
688 			options &= ~OPTION_SACK_ADVERTISE;
689 		} else {
690 			*ptr++ = htonl((TCPOPT_NOP << 24) |
691 				       (TCPOPT_NOP << 16) |
692 				       (TCPOPT_TIMESTAMP << 8) |
693 				       TCPOLEN_TIMESTAMP);
694 		}
695 		*ptr++ = htonl(opts->tsval);
696 		*ptr++ = htonl(opts->tsecr);
697 	}
698 
699 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
700 		*ptr++ = htonl((TCPOPT_NOP << 24) |
701 			       (TCPOPT_NOP << 16) |
702 			       (TCPOPT_SACK_PERM << 8) |
703 			       TCPOLEN_SACK_PERM);
704 	}
705 
706 	if (unlikely(OPTION_WSCALE & options)) {
707 		*ptr++ = htonl((TCPOPT_NOP << 24) |
708 			       (TCPOPT_WINDOW << 16) |
709 			       (TCPOLEN_WINDOW << 8) |
710 			       opts->ws);
711 	}
712 
713 	if (unlikely(opts->num_sack_blocks)) {
714 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
715 			tp->duplicate_sack : tp->selective_acks;
716 		int this_sack;
717 
718 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
719 			       (TCPOPT_NOP  << 16) |
720 			       (TCPOPT_SACK <<  8) |
721 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
722 						     TCPOLEN_SACK_PERBLOCK)));
723 
724 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
725 		     ++this_sack) {
726 			*ptr++ = htonl(sp[this_sack].start_seq);
727 			*ptr++ = htonl(sp[this_sack].end_seq);
728 		}
729 
730 		tp->rx_opt.dsack = 0;
731 	}
732 
733 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
734 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
735 		u8 *p = (u8 *)ptr;
736 		u32 len; /* Fast Open option length */
737 
738 		if (foc->exp) {
739 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
740 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
741 				     TCPOPT_FASTOPEN_MAGIC);
742 			p += TCPOLEN_EXP_FASTOPEN_BASE;
743 		} else {
744 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
745 			*p++ = TCPOPT_FASTOPEN;
746 			*p++ = len;
747 		}
748 
749 		memcpy(p, foc->val, foc->len);
750 		if ((len & 3) == 2) {
751 			p[foc->len] = TCPOPT_NOP;
752 			p[foc->len + 1] = TCPOPT_NOP;
753 		}
754 		ptr += (len + 3) >> 2;
755 	}
756 
757 	smc_options_write(ptr, &options);
758 
759 	mptcp_options_write(th, ptr, tp, opts);
760 }
761 
762 static void smc_set_option(const struct tcp_sock *tp,
763 			   struct tcp_out_options *opts,
764 			   unsigned int *remaining)
765 {
766 #if IS_ENABLED(CONFIG_SMC)
767 	if (static_branch_unlikely(&tcp_have_smc)) {
768 		if (tp->syn_smc) {
769 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
770 				opts->options |= OPTION_SMC;
771 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
772 			}
773 		}
774 	}
775 #endif
776 }
777 
778 static void smc_set_option_cond(const struct tcp_sock *tp,
779 				const struct inet_request_sock *ireq,
780 				struct tcp_out_options *opts,
781 				unsigned int *remaining)
782 {
783 #if IS_ENABLED(CONFIG_SMC)
784 	if (static_branch_unlikely(&tcp_have_smc)) {
785 		if (tp->syn_smc && ireq->smc_ok) {
786 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
787 				opts->options |= OPTION_SMC;
788 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
789 			}
790 		}
791 	}
792 #endif
793 }
794 
795 static void mptcp_set_option_cond(const struct request_sock *req,
796 				  struct tcp_out_options *opts,
797 				  unsigned int *remaining)
798 {
799 	if (rsk_is_mptcp(req)) {
800 		unsigned int size;
801 
802 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
803 			if (*remaining >= size) {
804 				opts->options |= OPTION_MPTCP;
805 				*remaining -= size;
806 			}
807 		}
808 	}
809 }
810 
811 /* Compute TCP options for SYN packets. This is not the final
812  * network wire format yet.
813  */
814 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
815 				struct tcp_out_options *opts,
816 				struct tcp_key *key)
817 {
818 	struct tcp_sock *tp = tcp_sk(sk);
819 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
820 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
821 	bool timestamps;
822 
823 	/* Better than switch (key.type) as it has static branches */
824 	if (tcp_key_is_md5(key)) {
825 		timestamps = false;
826 		opts->options |= OPTION_MD5;
827 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
828 	} else {
829 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
830 		if (tcp_key_is_ao(key)) {
831 			opts->options |= OPTION_AO;
832 			remaining -= tcp_ao_len_aligned(key->ao_key);
833 		}
834 	}
835 
836 	/* We always get an MSS option.  The option bytes which will be seen in
837 	 * normal data packets should timestamps be used, must be in the MSS
838 	 * advertised.  But we subtract them from tp->mss_cache so that
839 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
840 	 * fact here if necessary.  If we don't do this correctly, as a
841 	 * receiver we won't recognize data packets as being full sized when we
842 	 * should, and thus we won't abide by the delayed ACK rules correctly.
843 	 * SACKs don't matter, we never delay an ACK when we have any of those
844 	 * going out.  */
845 	opts->mss = tcp_advertise_mss(sk);
846 	remaining -= TCPOLEN_MSS_ALIGNED;
847 
848 	if (likely(timestamps)) {
849 		opts->options |= OPTION_TS;
850 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
851 		opts->tsecr = tp->rx_opt.ts_recent;
852 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
853 	}
854 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
855 		opts->ws = tp->rx_opt.rcv_wscale;
856 		opts->options |= OPTION_WSCALE;
857 		remaining -= TCPOLEN_WSCALE_ALIGNED;
858 	}
859 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
860 		opts->options |= OPTION_SACK_ADVERTISE;
861 		if (unlikely(!(OPTION_TS & opts->options)))
862 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
863 	}
864 
865 	if (fastopen && fastopen->cookie.len >= 0) {
866 		u32 need = fastopen->cookie.len;
867 
868 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
869 					       TCPOLEN_FASTOPEN_BASE;
870 		need = (need + 3) & ~3U;  /* Align to 32 bits */
871 		if (remaining >= need) {
872 			opts->options |= OPTION_FAST_OPEN_COOKIE;
873 			opts->fastopen_cookie = &fastopen->cookie;
874 			remaining -= need;
875 			tp->syn_fastopen = 1;
876 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
877 		}
878 	}
879 
880 	smc_set_option(tp, opts, &remaining);
881 
882 	if (sk_is_mptcp(sk)) {
883 		unsigned int size;
884 
885 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
886 			opts->options |= OPTION_MPTCP;
887 			remaining -= size;
888 		}
889 	}
890 
891 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
892 
893 	return MAX_TCP_OPTION_SPACE - remaining;
894 }
895 
896 /* Set up TCP options for SYN-ACKs. */
897 static unsigned int tcp_synack_options(const struct sock *sk,
898 				       struct request_sock *req,
899 				       unsigned int mss, struct sk_buff *skb,
900 				       struct tcp_out_options *opts,
901 				       const struct tcp_key *key,
902 				       struct tcp_fastopen_cookie *foc,
903 				       enum tcp_synack_type synack_type,
904 				       struct sk_buff *syn_skb)
905 {
906 	struct inet_request_sock *ireq = inet_rsk(req);
907 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
908 
909 	if (tcp_key_is_md5(key)) {
910 		opts->options |= OPTION_MD5;
911 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
912 
913 		/* We can't fit any SACK blocks in a packet with MD5 + TS
914 		 * options. There was discussion about disabling SACK
915 		 * rather than TS in order to fit in better with old,
916 		 * buggy kernels, but that was deemed to be unnecessary.
917 		 */
918 		if (synack_type != TCP_SYNACK_COOKIE)
919 			ireq->tstamp_ok &= !ireq->sack_ok;
920 	} else if (tcp_key_is_ao(key)) {
921 		opts->options |= OPTION_AO;
922 		remaining -= tcp_ao_len_aligned(key->ao_key);
923 		ireq->tstamp_ok &= !ireq->sack_ok;
924 	}
925 
926 	/* We always send an MSS option. */
927 	opts->mss = mss;
928 	remaining -= TCPOLEN_MSS_ALIGNED;
929 
930 	if (likely(ireq->wscale_ok)) {
931 		opts->ws = ireq->rcv_wscale;
932 		opts->options |= OPTION_WSCALE;
933 		remaining -= TCPOLEN_WSCALE_ALIGNED;
934 	}
935 	if (likely(ireq->tstamp_ok)) {
936 		opts->options |= OPTION_TS;
937 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
938 			      tcp_rsk(req)->ts_off;
939 		opts->tsecr = READ_ONCE(req->ts_recent);
940 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
941 	}
942 	if (likely(ireq->sack_ok)) {
943 		opts->options |= OPTION_SACK_ADVERTISE;
944 		if (unlikely(!ireq->tstamp_ok))
945 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
946 	}
947 	if (foc != NULL && foc->len >= 0) {
948 		u32 need = foc->len;
949 
950 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
951 				   TCPOLEN_FASTOPEN_BASE;
952 		need = (need + 3) & ~3U;  /* Align to 32 bits */
953 		if (remaining >= need) {
954 			opts->options |= OPTION_FAST_OPEN_COOKIE;
955 			opts->fastopen_cookie = foc;
956 			remaining -= need;
957 		}
958 	}
959 
960 	mptcp_set_option_cond(req, opts, &remaining);
961 
962 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
963 
964 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
965 			      synack_type, opts, &remaining);
966 
967 	return MAX_TCP_OPTION_SPACE - remaining;
968 }
969 
970 /* Compute TCP options for ESTABLISHED sockets. This is not the
971  * final wire format yet.
972  */
973 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
974 					struct tcp_out_options *opts,
975 					struct tcp_key *key)
976 {
977 	struct tcp_sock *tp = tcp_sk(sk);
978 	unsigned int size = 0;
979 	unsigned int eff_sacks;
980 
981 	opts->options = 0;
982 
983 	/* Better than switch (key.type) as it has static branches */
984 	if (tcp_key_is_md5(key)) {
985 		opts->options |= OPTION_MD5;
986 		size += TCPOLEN_MD5SIG_ALIGNED;
987 	} else if (tcp_key_is_ao(key)) {
988 		opts->options |= OPTION_AO;
989 		size += tcp_ao_len_aligned(key->ao_key);
990 	}
991 
992 	if (likely(tp->rx_opt.tstamp_ok)) {
993 		opts->options |= OPTION_TS;
994 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
995 				tp->tsoffset : 0;
996 		opts->tsecr = tp->rx_opt.ts_recent;
997 		size += TCPOLEN_TSTAMP_ALIGNED;
998 	}
999 
1000 	/* MPTCP options have precedence over SACK for the limited TCP
1001 	 * option space because a MPTCP connection would be forced to
1002 	 * fall back to regular TCP if a required multipath option is
1003 	 * missing. SACK still gets a chance to use whatever space is
1004 	 * left.
1005 	 */
1006 	if (sk_is_mptcp(sk)) {
1007 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1008 		unsigned int opt_size = 0;
1009 
1010 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1011 					      &opts->mptcp)) {
1012 			opts->options |= OPTION_MPTCP;
1013 			size += opt_size;
1014 		}
1015 	}
1016 
1017 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1018 	if (unlikely(eff_sacks)) {
1019 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1020 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1021 					 TCPOLEN_SACK_PERBLOCK))
1022 			return size;
1023 
1024 		opts->num_sack_blocks =
1025 			min_t(unsigned int, eff_sacks,
1026 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1027 			      TCPOLEN_SACK_PERBLOCK);
1028 
1029 		size += TCPOLEN_SACK_BASE_ALIGNED +
1030 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1031 	}
1032 
1033 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1034 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1035 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1036 
1037 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1038 
1039 		size = MAX_TCP_OPTION_SPACE - remaining;
1040 	}
1041 
1042 	return size;
1043 }
1044 
1045 
1046 /* TCP SMALL QUEUES (TSQ)
1047  *
1048  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1049  * to reduce RTT and bufferbloat.
1050  * We do this using a special skb destructor (tcp_wfree).
1051  *
1052  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1053  * needs to be reallocated in a driver.
1054  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1055  *
1056  * Since transmit from skb destructor is forbidden, we use a tasklet
1057  * to process all sockets that eventually need to send more skbs.
1058  * We use one tasklet per cpu, with its own queue of sockets.
1059  */
1060 struct tsq_tasklet {
1061 	struct tasklet_struct	tasklet;
1062 	struct list_head	head; /* queue of tcp sockets */
1063 };
1064 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1065 
1066 static void tcp_tsq_write(struct sock *sk)
1067 {
1068 	if ((1 << sk->sk_state) &
1069 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1070 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1071 		struct tcp_sock *tp = tcp_sk(sk);
1072 
1073 		if (tp->lost_out > tp->retrans_out &&
1074 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1075 			tcp_mstamp_refresh(tp);
1076 			tcp_xmit_retransmit_queue(sk);
1077 		}
1078 
1079 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1080 			       0, GFP_ATOMIC);
1081 	}
1082 }
1083 
1084 static void tcp_tsq_handler(struct sock *sk)
1085 {
1086 	bh_lock_sock(sk);
1087 	if (!sock_owned_by_user(sk))
1088 		tcp_tsq_write(sk);
1089 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1090 		sock_hold(sk);
1091 	bh_unlock_sock(sk);
1092 }
1093 /*
1094  * One tasklet per cpu tries to send more skbs.
1095  * We run in tasklet context but need to disable irqs when
1096  * transferring tsq->head because tcp_wfree() might
1097  * interrupt us (non NAPI drivers)
1098  */
1099 static void tcp_tasklet_func(struct tasklet_struct *t)
1100 {
1101 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1102 	LIST_HEAD(list);
1103 	unsigned long flags;
1104 	struct list_head *q, *n;
1105 	struct tcp_sock *tp;
1106 	struct sock *sk;
1107 
1108 	local_irq_save(flags);
1109 	list_splice_init(&tsq->head, &list);
1110 	local_irq_restore(flags);
1111 
1112 	list_for_each_safe(q, n, &list) {
1113 		tp = list_entry(q, struct tcp_sock, tsq_node);
1114 		list_del(&tp->tsq_node);
1115 
1116 		sk = (struct sock *)tp;
1117 		smp_mb__before_atomic();
1118 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1119 
1120 		tcp_tsq_handler(sk);
1121 		sk_free(sk);
1122 	}
1123 }
1124 
1125 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1126 			  TCPF_WRITE_TIMER_DEFERRED |	\
1127 			  TCPF_DELACK_TIMER_DEFERRED |	\
1128 			  TCPF_MTU_REDUCED_DEFERRED |	\
1129 			  TCPF_ACK_DEFERRED)
1130 /**
1131  * tcp_release_cb - tcp release_sock() callback
1132  * @sk: socket
1133  *
1134  * called from release_sock() to perform protocol dependent
1135  * actions before socket release.
1136  */
1137 void tcp_release_cb(struct sock *sk)
1138 {
1139 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1140 	unsigned long nflags;
1141 
1142 	/* perform an atomic operation only if at least one flag is set */
1143 	do {
1144 		if (!(flags & TCP_DEFERRED_ALL))
1145 			return;
1146 		nflags = flags & ~TCP_DEFERRED_ALL;
1147 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1148 
1149 	if (flags & TCPF_TSQ_DEFERRED) {
1150 		tcp_tsq_write(sk);
1151 		__sock_put(sk);
1152 	}
1153 
1154 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1155 		tcp_write_timer_handler(sk);
1156 		__sock_put(sk);
1157 	}
1158 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1159 		tcp_delack_timer_handler(sk);
1160 		__sock_put(sk);
1161 	}
1162 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1163 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1164 		__sock_put(sk);
1165 	}
1166 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1167 		tcp_send_ack(sk);
1168 }
1169 EXPORT_SYMBOL(tcp_release_cb);
1170 
1171 void __init tcp_tasklet_init(void)
1172 {
1173 	int i;
1174 
1175 	for_each_possible_cpu(i) {
1176 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1177 
1178 		INIT_LIST_HEAD(&tsq->head);
1179 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1180 	}
1181 }
1182 
1183 /*
1184  * Write buffer destructor automatically called from kfree_skb.
1185  * We can't xmit new skbs from this context, as we might already
1186  * hold qdisc lock.
1187  */
1188 void tcp_wfree(struct sk_buff *skb)
1189 {
1190 	struct sock *sk = skb->sk;
1191 	struct tcp_sock *tp = tcp_sk(sk);
1192 	unsigned long flags, nval, oval;
1193 	struct tsq_tasklet *tsq;
1194 	bool empty;
1195 
1196 	/* Keep one reference on sk_wmem_alloc.
1197 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1198 	 */
1199 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1200 
1201 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1202 	 * Wait until our queues (qdisc + devices) are drained.
1203 	 * This gives :
1204 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1205 	 * - chance for incoming ACK (processed by another cpu maybe)
1206 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1207 	 */
1208 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1209 		goto out;
1210 
1211 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1212 	do {
1213 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1214 			goto out;
1215 
1216 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1217 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1218 
1219 	/* queue this socket to tasklet queue */
1220 	local_irq_save(flags);
1221 	tsq = this_cpu_ptr(&tsq_tasklet);
1222 	empty = list_empty(&tsq->head);
1223 	list_add(&tp->tsq_node, &tsq->head);
1224 	if (empty)
1225 		tasklet_schedule(&tsq->tasklet);
1226 	local_irq_restore(flags);
1227 	return;
1228 out:
1229 	sk_free(sk);
1230 }
1231 
1232 /* Note: Called under soft irq.
1233  * We can call TCP stack right away, unless socket is owned by user.
1234  */
1235 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1236 {
1237 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1238 	struct sock *sk = (struct sock *)tp;
1239 
1240 	tcp_tsq_handler(sk);
1241 	sock_put(sk);
1242 
1243 	return HRTIMER_NORESTART;
1244 }
1245 
1246 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1247 				      u64 prior_wstamp)
1248 {
1249 	struct tcp_sock *tp = tcp_sk(sk);
1250 
1251 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1252 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1253 
1254 		/* Original sch_fq does not pace first 10 MSS
1255 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1256 		 * this is a minor annoyance.
1257 		 */
1258 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1259 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1260 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1261 
1262 			/* take into account OS jitter */
1263 			len_ns -= min_t(u64, len_ns / 2, credit);
1264 			tp->tcp_wstamp_ns += len_ns;
1265 		}
1266 	}
1267 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1268 }
1269 
1270 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1271 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1272 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1273 
1274 /* This routine actually transmits TCP packets queued in by
1275  * tcp_do_sendmsg().  This is used by both the initial
1276  * transmission and possible later retransmissions.
1277  * All SKB's seen here are completely headerless.  It is our
1278  * job to build the TCP header, and pass the packet down to
1279  * IP so it can do the same plus pass the packet off to the
1280  * device.
1281  *
1282  * We are working here with either a clone of the original
1283  * SKB, or a fresh unique copy made by the retransmit engine.
1284  */
1285 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1286 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1287 {
1288 	const struct inet_connection_sock *icsk = inet_csk(sk);
1289 	struct inet_sock *inet;
1290 	struct tcp_sock *tp;
1291 	struct tcp_skb_cb *tcb;
1292 	struct tcp_out_options opts;
1293 	unsigned int tcp_options_size, tcp_header_size;
1294 	struct sk_buff *oskb = NULL;
1295 	struct tcp_key key;
1296 	struct tcphdr *th;
1297 	u64 prior_wstamp;
1298 	int err;
1299 
1300 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1301 	tp = tcp_sk(sk);
1302 	prior_wstamp = tp->tcp_wstamp_ns;
1303 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1304 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1305 	if (clone_it) {
1306 		oskb = skb;
1307 
1308 		tcp_skb_tsorted_save(oskb) {
1309 			if (unlikely(skb_cloned(oskb)))
1310 				skb = pskb_copy(oskb, gfp_mask);
1311 			else
1312 				skb = skb_clone(oskb, gfp_mask);
1313 		} tcp_skb_tsorted_restore(oskb);
1314 
1315 		if (unlikely(!skb))
1316 			return -ENOBUFS;
1317 		/* retransmit skbs might have a non zero value in skb->dev
1318 		 * because skb->dev is aliased with skb->rbnode.rb_left
1319 		 */
1320 		skb->dev = NULL;
1321 	}
1322 
1323 	inet = inet_sk(sk);
1324 	tcb = TCP_SKB_CB(skb);
1325 	memset(&opts, 0, sizeof(opts));
1326 
1327 	tcp_get_current_key(sk, &key);
1328 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1329 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1330 	} else {
1331 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1332 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1333 		 * at receiver : This slightly improve GRO performance.
1334 		 * Note that we do not force the PSH flag for non GSO packets,
1335 		 * because they might be sent under high congestion events,
1336 		 * and in this case it is better to delay the delivery of 1-MSS
1337 		 * packets and thus the corresponding ACK packet that would
1338 		 * release the following packet.
1339 		 */
1340 		if (tcp_skb_pcount(skb) > 1)
1341 			tcb->tcp_flags |= TCPHDR_PSH;
1342 	}
1343 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1344 
1345 	/* We set skb->ooo_okay to one if this packet can select
1346 	 * a different TX queue than prior packets of this flow,
1347 	 * to avoid self inflicted reorders.
1348 	 * The 'other' queue decision is based on current cpu number
1349 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1350 	 * We can switch to another (and better) queue if:
1351 	 * 1) No packet with payload is in qdisc/device queues.
1352 	 *    Delays in TX completion can defeat the test
1353 	 *    even if packets were already sent.
1354 	 * 2) Or rtx queue is empty.
1355 	 *    This mitigates above case if ACK packets for
1356 	 *    all prior packets were already processed.
1357 	 */
1358 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1359 			tcp_rtx_queue_empty(sk);
1360 
1361 	/* If we had to use memory reserve to allocate this skb,
1362 	 * this might cause drops if packet is looped back :
1363 	 * Other socket might not have SOCK_MEMALLOC.
1364 	 * Packets not looped back do not care about pfmemalloc.
1365 	 */
1366 	skb->pfmemalloc = 0;
1367 
1368 	skb_push(skb, tcp_header_size);
1369 	skb_reset_transport_header(skb);
1370 
1371 	skb_orphan(skb);
1372 	skb->sk = sk;
1373 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1374 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1375 
1376 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1377 
1378 	/* Build TCP header and checksum it. */
1379 	th = (struct tcphdr *)skb->data;
1380 	th->source		= inet->inet_sport;
1381 	th->dest		= inet->inet_dport;
1382 	th->seq			= htonl(tcb->seq);
1383 	th->ack_seq		= htonl(rcv_nxt);
1384 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1385 					tcb->tcp_flags);
1386 
1387 	th->check		= 0;
1388 	th->urg_ptr		= 0;
1389 
1390 	/* The urg_mode check is necessary during a below snd_una win probe */
1391 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1392 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1393 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1394 			th->urg = 1;
1395 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1396 			th->urg_ptr = htons(0xFFFF);
1397 			th->urg = 1;
1398 		}
1399 	}
1400 
1401 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1402 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1403 		th->window      = htons(tcp_select_window(sk));
1404 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1405 	} else {
1406 		/* RFC1323: The window in SYN & SYN/ACK segments
1407 		 * is never scaled.
1408 		 */
1409 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1410 	}
1411 
1412 	tcp_options_write(th, tp, NULL, &opts, &key);
1413 
1414 	if (tcp_key_is_md5(&key)) {
1415 #ifdef CONFIG_TCP_MD5SIG
1416 		/* Calculate the MD5 hash, as we have all we need now */
1417 		sk_gso_disable(sk);
1418 		tp->af_specific->calc_md5_hash(opts.hash_location,
1419 					       key.md5_key, sk, skb);
1420 #endif
1421 	} else if (tcp_key_is_ao(&key)) {
1422 		int err;
1423 
1424 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1425 					  opts.hash_location);
1426 		if (err) {
1427 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1428 			return -ENOMEM;
1429 		}
1430 	}
1431 
1432 	/* BPF prog is the last one writing header option */
1433 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1434 
1435 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1436 			   tcp_v6_send_check, tcp_v4_send_check,
1437 			   sk, skb);
1438 
1439 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1440 		tcp_event_ack_sent(sk, rcv_nxt);
1441 
1442 	if (skb->len != tcp_header_size) {
1443 		tcp_event_data_sent(tp, sk);
1444 		tp->data_segs_out += tcp_skb_pcount(skb);
1445 		tp->bytes_sent += skb->len - tcp_header_size;
1446 	}
1447 
1448 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1449 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1450 			      tcp_skb_pcount(skb));
1451 
1452 	tp->segs_out += tcp_skb_pcount(skb);
1453 	skb_set_hash_from_sk(skb, sk);
1454 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1455 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1456 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1457 
1458 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1459 
1460 	/* Cleanup our debris for IP stacks */
1461 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1462 			       sizeof(struct inet6_skb_parm)));
1463 
1464 	tcp_add_tx_delay(skb, tp);
1465 
1466 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1467 				 inet6_csk_xmit, ip_queue_xmit,
1468 				 sk, skb, &inet->cork.fl);
1469 
1470 	if (unlikely(err > 0)) {
1471 		tcp_enter_cwr(sk);
1472 		err = net_xmit_eval(err);
1473 	}
1474 	if (!err && oskb) {
1475 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1476 		tcp_rate_skb_sent(sk, oskb);
1477 	}
1478 	return err;
1479 }
1480 
1481 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1482 			    gfp_t gfp_mask)
1483 {
1484 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1485 				  tcp_sk(sk)->rcv_nxt);
1486 }
1487 
1488 /* This routine just queues the buffer for sending.
1489  *
1490  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1491  * otherwise socket can stall.
1492  */
1493 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1494 {
1495 	struct tcp_sock *tp = tcp_sk(sk);
1496 
1497 	/* Advance write_seq and place onto the write_queue. */
1498 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1499 	__skb_header_release(skb);
1500 	tcp_add_write_queue_tail(sk, skb);
1501 	sk_wmem_queued_add(sk, skb->truesize);
1502 	sk_mem_charge(sk, skb->truesize);
1503 }
1504 
1505 /* Initialize TSO segments for a packet. */
1506 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1507 {
1508 	int tso_segs;
1509 
1510 	if (skb->len <= mss_now) {
1511 		/* Avoid the costly divide in the normal
1512 		 * non-TSO case.
1513 		 */
1514 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1515 		tcp_skb_pcount_set(skb, 1);
1516 		return 1;
1517 	}
1518 	TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1519 	tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1520 	tcp_skb_pcount_set(skb, tso_segs);
1521 	return tso_segs;
1522 }
1523 
1524 /* Pcount in the middle of the write queue got changed, we need to do various
1525  * tweaks to fix counters
1526  */
1527 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1528 {
1529 	struct tcp_sock *tp = tcp_sk(sk);
1530 
1531 	tp->packets_out -= decr;
1532 
1533 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1534 		tp->sacked_out -= decr;
1535 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1536 		tp->retrans_out -= decr;
1537 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1538 		tp->lost_out -= decr;
1539 
1540 	/* Reno case is special. Sigh... */
1541 	if (tcp_is_reno(tp) && decr > 0)
1542 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1543 
1544 	if (tp->lost_skb_hint &&
1545 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1546 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1547 		tp->lost_cnt_hint -= decr;
1548 
1549 	tcp_verify_left_out(tp);
1550 }
1551 
1552 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1553 {
1554 	return TCP_SKB_CB(skb)->txstamp_ack ||
1555 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1556 }
1557 
1558 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1559 {
1560 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1561 
1562 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1563 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1564 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1565 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1566 
1567 		shinfo->tx_flags &= ~tsflags;
1568 		shinfo2->tx_flags |= tsflags;
1569 		swap(shinfo->tskey, shinfo2->tskey);
1570 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1571 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1572 	}
1573 }
1574 
1575 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1576 {
1577 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1578 	TCP_SKB_CB(skb)->eor = 0;
1579 }
1580 
1581 /* Insert buff after skb on the write or rtx queue of sk.  */
1582 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1583 					 struct sk_buff *buff,
1584 					 struct sock *sk,
1585 					 enum tcp_queue tcp_queue)
1586 {
1587 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1588 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1589 	else
1590 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1591 }
1592 
1593 /* Function to create two new TCP segments.  Shrinks the given segment
1594  * to the specified size and appends a new segment with the rest of the
1595  * packet to the list.  This won't be called frequently, I hope.
1596  * Remember, these are still headerless SKBs at this point.
1597  */
1598 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1599 		 struct sk_buff *skb, u32 len,
1600 		 unsigned int mss_now, gfp_t gfp)
1601 {
1602 	struct tcp_sock *tp = tcp_sk(sk);
1603 	struct sk_buff *buff;
1604 	int old_factor;
1605 	long limit;
1606 	int nlen;
1607 	u8 flags;
1608 
1609 	if (WARN_ON(len > skb->len))
1610 		return -EINVAL;
1611 
1612 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1613 
1614 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1615 	 * We need some allowance to not penalize applications setting small
1616 	 * SO_SNDBUF values.
1617 	 * Also allow first and last skb in retransmit queue to be split.
1618 	 */
1619 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1620 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1621 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1622 		     skb != tcp_rtx_queue_head(sk) &&
1623 		     skb != tcp_rtx_queue_tail(sk))) {
1624 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1625 		return -ENOMEM;
1626 	}
1627 
1628 	if (skb_unclone_keeptruesize(skb, gfp))
1629 		return -ENOMEM;
1630 
1631 	/* Get a new skb... force flag on. */
1632 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1633 	if (!buff)
1634 		return -ENOMEM; /* We'll just try again later. */
1635 	skb_copy_decrypted(buff, skb);
1636 	mptcp_skb_ext_copy(buff, skb);
1637 
1638 	sk_wmem_queued_add(sk, buff->truesize);
1639 	sk_mem_charge(sk, buff->truesize);
1640 	nlen = skb->len - len;
1641 	buff->truesize += nlen;
1642 	skb->truesize -= nlen;
1643 
1644 	/* Correct the sequence numbers. */
1645 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1646 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1647 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1648 
1649 	/* PSH and FIN should only be set in the second packet. */
1650 	flags = TCP_SKB_CB(skb)->tcp_flags;
1651 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1652 	TCP_SKB_CB(buff)->tcp_flags = flags;
1653 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1654 	tcp_skb_fragment_eor(skb, buff);
1655 
1656 	skb_split(skb, buff, len);
1657 
1658 	skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1659 	tcp_fragment_tstamp(skb, buff);
1660 
1661 	old_factor = tcp_skb_pcount(skb);
1662 
1663 	/* Fix up tso_factor for both original and new SKB.  */
1664 	tcp_set_skb_tso_segs(skb, mss_now);
1665 	tcp_set_skb_tso_segs(buff, mss_now);
1666 
1667 	/* Update delivered info for the new segment */
1668 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1669 
1670 	/* If this packet has been sent out already, we must
1671 	 * adjust the various packet counters.
1672 	 */
1673 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1674 		int diff = old_factor - tcp_skb_pcount(skb) -
1675 			tcp_skb_pcount(buff);
1676 
1677 		if (diff)
1678 			tcp_adjust_pcount(sk, skb, diff);
1679 	}
1680 
1681 	/* Link BUFF into the send queue. */
1682 	__skb_header_release(buff);
1683 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1684 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1685 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1686 
1687 	return 0;
1688 }
1689 
1690 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1691  * data is not copied, but immediately discarded.
1692  */
1693 static int __pskb_trim_head(struct sk_buff *skb, int len)
1694 {
1695 	struct skb_shared_info *shinfo;
1696 	int i, k, eat;
1697 
1698 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1699 	eat = len;
1700 	k = 0;
1701 	shinfo = skb_shinfo(skb);
1702 	for (i = 0; i < shinfo->nr_frags; i++) {
1703 		int size = skb_frag_size(&shinfo->frags[i]);
1704 
1705 		if (size <= eat) {
1706 			skb_frag_unref(skb, i);
1707 			eat -= size;
1708 		} else {
1709 			shinfo->frags[k] = shinfo->frags[i];
1710 			if (eat) {
1711 				skb_frag_off_add(&shinfo->frags[k], eat);
1712 				skb_frag_size_sub(&shinfo->frags[k], eat);
1713 				eat = 0;
1714 			}
1715 			k++;
1716 		}
1717 	}
1718 	shinfo->nr_frags = k;
1719 
1720 	skb->data_len -= len;
1721 	skb->len = skb->data_len;
1722 	return len;
1723 }
1724 
1725 /* Remove acked data from a packet in the transmit queue. */
1726 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1727 {
1728 	u32 delta_truesize;
1729 
1730 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1731 		return -ENOMEM;
1732 
1733 	delta_truesize = __pskb_trim_head(skb, len);
1734 
1735 	TCP_SKB_CB(skb)->seq += len;
1736 
1737 	skb->truesize	   -= delta_truesize;
1738 	sk_wmem_queued_add(sk, -delta_truesize);
1739 	if (!skb_zcopy_pure(skb))
1740 		sk_mem_uncharge(sk, delta_truesize);
1741 
1742 	/* Any change of skb->len requires recalculation of tso factor. */
1743 	if (tcp_skb_pcount(skb) > 1)
1744 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1745 
1746 	return 0;
1747 }
1748 
1749 /* Calculate MSS not accounting any TCP options.  */
1750 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1751 {
1752 	const struct tcp_sock *tp = tcp_sk(sk);
1753 	const struct inet_connection_sock *icsk = inet_csk(sk);
1754 	int mss_now;
1755 
1756 	/* Calculate base mss without TCP options:
1757 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1758 	 */
1759 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1760 
1761 	/* Clamp it (mss_clamp does not include tcp options) */
1762 	if (mss_now > tp->rx_opt.mss_clamp)
1763 		mss_now = tp->rx_opt.mss_clamp;
1764 
1765 	/* Now subtract optional transport overhead */
1766 	mss_now -= icsk->icsk_ext_hdr_len;
1767 
1768 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1769 	mss_now = max(mss_now,
1770 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1771 	return mss_now;
1772 }
1773 
1774 /* Calculate MSS. Not accounting for SACKs here.  */
1775 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1776 {
1777 	/* Subtract TCP options size, not including SACKs */
1778 	return __tcp_mtu_to_mss(sk, pmtu) -
1779 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1780 }
1781 EXPORT_SYMBOL(tcp_mtu_to_mss);
1782 
1783 /* Inverse of above */
1784 int tcp_mss_to_mtu(struct sock *sk, int mss)
1785 {
1786 	const struct tcp_sock *tp = tcp_sk(sk);
1787 	const struct inet_connection_sock *icsk = inet_csk(sk);
1788 
1789 	return mss +
1790 	      tp->tcp_header_len +
1791 	      icsk->icsk_ext_hdr_len +
1792 	      icsk->icsk_af_ops->net_header_len;
1793 }
1794 EXPORT_SYMBOL(tcp_mss_to_mtu);
1795 
1796 /* MTU probing init per socket */
1797 void tcp_mtup_init(struct sock *sk)
1798 {
1799 	struct tcp_sock *tp = tcp_sk(sk);
1800 	struct inet_connection_sock *icsk = inet_csk(sk);
1801 	struct net *net = sock_net(sk);
1802 
1803 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1804 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1805 			       icsk->icsk_af_ops->net_header_len;
1806 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1807 	icsk->icsk_mtup.probe_size = 0;
1808 	if (icsk->icsk_mtup.enabled)
1809 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1810 }
1811 EXPORT_SYMBOL(tcp_mtup_init);
1812 
1813 /* This function synchronize snd mss to current pmtu/exthdr set.
1814 
1815    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1816    for TCP options, but includes only bare TCP header.
1817 
1818    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1819    It is minimum of user_mss and mss received with SYN.
1820    It also does not include TCP options.
1821 
1822    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1823 
1824    tp->mss_cache is current effective sending mss, including
1825    all tcp options except for SACKs. It is evaluated,
1826    taking into account current pmtu, but never exceeds
1827    tp->rx_opt.mss_clamp.
1828 
1829    NOTE1. rfc1122 clearly states that advertised MSS
1830    DOES NOT include either tcp or ip options.
1831 
1832    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1833    are READ ONLY outside this function.		--ANK (980731)
1834  */
1835 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1836 {
1837 	struct tcp_sock *tp = tcp_sk(sk);
1838 	struct inet_connection_sock *icsk = inet_csk(sk);
1839 	int mss_now;
1840 
1841 	if (icsk->icsk_mtup.search_high > pmtu)
1842 		icsk->icsk_mtup.search_high = pmtu;
1843 
1844 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1845 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1846 
1847 	/* And store cached results */
1848 	icsk->icsk_pmtu_cookie = pmtu;
1849 	if (icsk->icsk_mtup.enabled)
1850 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1851 	tp->mss_cache = mss_now;
1852 
1853 	return mss_now;
1854 }
1855 EXPORT_SYMBOL(tcp_sync_mss);
1856 
1857 /* Compute the current effective MSS, taking SACKs and IP options,
1858  * and even PMTU discovery events into account.
1859  */
1860 unsigned int tcp_current_mss(struct sock *sk)
1861 {
1862 	const struct tcp_sock *tp = tcp_sk(sk);
1863 	const struct dst_entry *dst = __sk_dst_get(sk);
1864 	u32 mss_now;
1865 	unsigned int header_len;
1866 	struct tcp_out_options opts;
1867 	struct tcp_key key;
1868 
1869 	mss_now = tp->mss_cache;
1870 
1871 	if (dst) {
1872 		u32 mtu = dst_mtu(dst);
1873 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1874 			mss_now = tcp_sync_mss(sk, mtu);
1875 	}
1876 	tcp_get_current_key(sk, &key);
1877 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1878 		     sizeof(struct tcphdr);
1879 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1880 	 * some common options. If this is an odd packet (because we have SACK
1881 	 * blocks etc) then our calculated header_len will be different, and
1882 	 * we have to adjust mss_now correspondingly */
1883 	if (header_len != tp->tcp_header_len) {
1884 		int delta = (int) header_len - tp->tcp_header_len;
1885 		mss_now -= delta;
1886 	}
1887 
1888 	return mss_now;
1889 }
1890 
1891 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1892  * As additional protections, we do not touch cwnd in retransmission phases,
1893  * and if application hit its sndbuf limit recently.
1894  */
1895 static void tcp_cwnd_application_limited(struct sock *sk)
1896 {
1897 	struct tcp_sock *tp = tcp_sk(sk);
1898 
1899 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1900 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1901 		/* Limited by application or receiver window. */
1902 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1903 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1904 		if (win_used < tcp_snd_cwnd(tp)) {
1905 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1906 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1907 		}
1908 		tp->snd_cwnd_used = 0;
1909 	}
1910 	tp->snd_cwnd_stamp = tcp_jiffies32;
1911 }
1912 
1913 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1914 {
1915 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1916 	struct tcp_sock *tp = tcp_sk(sk);
1917 
1918 	/* Track the strongest available signal of the degree to which the cwnd
1919 	 * is fully utilized. If cwnd-limited then remember that fact for the
1920 	 * current window. If not cwnd-limited then track the maximum number of
1921 	 * outstanding packets in the current window. (If cwnd-limited then we
1922 	 * chose to not update tp->max_packets_out to avoid an extra else
1923 	 * clause with no functional impact.)
1924 	 */
1925 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1926 	    is_cwnd_limited ||
1927 	    (!tp->is_cwnd_limited &&
1928 	     tp->packets_out > tp->max_packets_out)) {
1929 		tp->is_cwnd_limited = is_cwnd_limited;
1930 		tp->max_packets_out = tp->packets_out;
1931 		tp->cwnd_usage_seq = tp->snd_nxt;
1932 	}
1933 
1934 	if (tcp_is_cwnd_limited(sk)) {
1935 		/* Network is feed fully. */
1936 		tp->snd_cwnd_used = 0;
1937 		tp->snd_cwnd_stamp = tcp_jiffies32;
1938 	} else {
1939 		/* Network starves. */
1940 		if (tp->packets_out > tp->snd_cwnd_used)
1941 			tp->snd_cwnd_used = tp->packets_out;
1942 
1943 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1944 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1945 		    !ca_ops->cong_control)
1946 			tcp_cwnd_application_limited(sk);
1947 
1948 		/* The following conditions together indicate the starvation
1949 		 * is caused by insufficient sender buffer:
1950 		 * 1) just sent some data (see tcp_write_xmit)
1951 		 * 2) not cwnd limited (this else condition)
1952 		 * 3) no more data to send (tcp_write_queue_empty())
1953 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1954 		 */
1955 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1956 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1957 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1958 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1959 	}
1960 }
1961 
1962 /* Minshall's variant of the Nagle send check. */
1963 static bool tcp_minshall_check(const struct tcp_sock *tp)
1964 {
1965 	return after(tp->snd_sml, tp->snd_una) &&
1966 		!after(tp->snd_sml, tp->snd_nxt);
1967 }
1968 
1969 /* Update snd_sml if this skb is under mss
1970  * Note that a TSO packet might end with a sub-mss segment
1971  * The test is really :
1972  * if ((skb->len % mss) != 0)
1973  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1974  * But we can avoid doing the divide again given we already have
1975  *  skb_pcount = skb->len / mss_now
1976  */
1977 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1978 				const struct sk_buff *skb)
1979 {
1980 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1981 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1982 }
1983 
1984 /* Return false, if packet can be sent now without violation Nagle's rules:
1985  * 1. It is full sized. (provided by caller in %partial bool)
1986  * 2. Or it contains FIN. (already checked by caller)
1987  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1988  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1989  *    With Minshall's modification: all sent small packets are ACKed.
1990  */
1991 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1992 			    int nonagle)
1993 {
1994 	return partial &&
1995 		((nonagle & TCP_NAGLE_CORK) ||
1996 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1997 }
1998 
1999 /* Return how many segs we'd like on a TSO packet,
2000  * depending on current pacing rate, and how close the peer is.
2001  *
2002  * Rationale is:
2003  * - For close peers, we rather send bigger packets to reduce
2004  *   cpu costs, because occasional losses will be repaired fast.
2005  * - For long distance/rtt flows, we would like to get ACK clocking
2006  *   with 1 ACK per ms.
2007  *
2008  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2009  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2010  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2011  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2012  */
2013 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2014 			    int min_tso_segs)
2015 {
2016 	unsigned long bytes;
2017 	u32 r;
2018 
2019 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2020 
2021 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2022 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2023 		bytes += sk->sk_gso_max_size >> r;
2024 
2025 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2026 
2027 	return max_t(u32, bytes / mss_now, min_tso_segs);
2028 }
2029 
2030 /* Return the number of segments we want in the skb we are transmitting.
2031  * See if congestion control module wants to decide; otherwise, autosize.
2032  */
2033 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2034 {
2035 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2036 	u32 min_tso, tso_segs;
2037 
2038 	min_tso = ca_ops->min_tso_segs ?
2039 			ca_ops->min_tso_segs(sk) :
2040 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2041 
2042 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2043 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2044 }
2045 
2046 /* Returns the portion of skb which can be sent right away */
2047 static unsigned int tcp_mss_split_point(const struct sock *sk,
2048 					const struct sk_buff *skb,
2049 					unsigned int mss_now,
2050 					unsigned int max_segs,
2051 					int nonagle)
2052 {
2053 	const struct tcp_sock *tp = tcp_sk(sk);
2054 	u32 partial, needed, window, max_len;
2055 
2056 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2057 	max_len = mss_now * max_segs;
2058 
2059 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2060 		return max_len;
2061 
2062 	needed = min(skb->len, window);
2063 
2064 	if (max_len <= needed)
2065 		return max_len;
2066 
2067 	partial = needed % mss_now;
2068 	/* If last segment is not a full MSS, check if Nagle rules allow us
2069 	 * to include this last segment in this skb.
2070 	 * Otherwise, we'll split the skb at last MSS boundary
2071 	 */
2072 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2073 		return needed - partial;
2074 
2075 	return needed;
2076 }
2077 
2078 /* Can at least one segment of SKB be sent right now, according to the
2079  * congestion window rules?  If so, return how many segments are allowed.
2080  */
2081 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2082 {
2083 	u32 in_flight, cwnd, halfcwnd;
2084 
2085 	in_flight = tcp_packets_in_flight(tp);
2086 	cwnd = tcp_snd_cwnd(tp);
2087 	if (in_flight >= cwnd)
2088 		return 0;
2089 
2090 	/* For better scheduling, ensure we have at least
2091 	 * 2 GSO packets in flight.
2092 	 */
2093 	halfcwnd = max(cwnd >> 1, 1U);
2094 	return min(halfcwnd, cwnd - in_flight);
2095 }
2096 
2097 /* Initialize TSO state of a skb.
2098  * This must be invoked the first time we consider transmitting
2099  * SKB onto the wire.
2100  */
2101 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2102 {
2103 	int tso_segs = tcp_skb_pcount(skb);
2104 
2105 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2106 		return tcp_set_skb_tso_segs(skb, mss_now);
2107 
2108 	return tso_segs;
2109 }
2110 
2111 
2112 /* Return true if the Nagle test allows this packet to be
2113  * sent now.
2114  */
2115 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2116 				  unsigned int cur_mss, int nonagle)
2117 {
2118 	/* Nagle rule does not apply to frames, which sit in the middle of the
2119 	 * write_queue (they have no chances to get new data).
2120 	 *
2121 	 * This is implemented in the callers, where they modify the 'nonagle'
2122 	 * argument based upon the location of SKB in the send queue.
2123 	 */
2124 	if (nonagle & TCP_NAGLE_PUSH)
2125 		return true;
2126 
2127 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2128 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2129 		return true;
2130 
2131 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2132 		return true;
2133 
2134 	return false;
2135 }
2136 
2137 /* Does at least the first segment of SKB fit into the send window? */
2138 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2139 			     const struct sk_buff *skb,
2140 			     unsigned int cur_mss)
2141 {
2142 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2143 
2144 	if (skb->len > cur_mss)
2145 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2146 
2147 	return !after(end_seq, tcp_wnd_end(tp));
2148 }
2149 
2150 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2151  * which is put after SKB on the list.  It is very much like
2152  * tcp_fragment() except that it may make several kinds of assumptions
2153  * in order to speed up the splitting operation.  In particular, we
2154  * know that all the data is in scatter-gather pages, and that the
2155  * packet has never been sent out before (and thus is not cloned).
2156  */
2157 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2158 			unsigned int mss_now, gfp_t gfp)
2159 {
2160 	int nlen = skb->len - len;
2161 	struct sk_buff *buff;
2162 	u8 flags;
2163 
2164 	/* All of a TSO frame must be composed of paged data.  */
2165 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2166 
2167 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2168 	if (unlikely(!buff))
2169 		return -ENOMEM;
2170 	skb_copy_decrypted(buff, skb);
2171 	mptcp_skb_ext_copy(buff, skb);
2172 
2173 	sk_wmem_queued_add(sk, buff->truesize);
2174 	sk_mem_charge(sk, buff->truesize);
2175 	buff->truesize += nlen;
2176 	skb->truesize -= nlen;
2177 
2178 	/* Correct the sequence numbers. */
2179 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2180 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2181 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2182 
2183 	/* PSH and FIN should only be set in the second packet. */
2184 	flags = TCP_SKB_CB(skb)->tcp_flags;
2185 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2186 	TCP_SKB_CB(buff)->tcp_flags = flags;
2187 
2188 	tcp_skb_fragment_eor(skb, buff);
2189 
2190 	skb_split(skb, buff, len);
2191 	tcp_fragment_tstamp(skb, buff);
2192 
2193 	/* Fix up tso_factor for both original and new SKB.  */
2194 	tcp_set_skb_tso_segs(skb, mss_now);
2195 	tcp_set_skb_tso_segs(buff, mss_now);
2196 
2197 	/* Link BUFF into the send queue. */
2198 	__skb_header_release(buff);
2199 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2200 
2201 	return 0;
2202 }
2203 
2204 /* Try to defer sending, if possible, in order to minimize the amount
2205  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2206  *
2207  * This algorithm is from John Heffner.
2208  */
2209 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2210 				 bool *is_cwnd_limited,
2211 				 bool *is_rwnd_limited,
2212 				 u32 max_segs)
2213 {
2214 	const struct inet_connection_sock *icsk = inet_csk(sk);
2215 	u32 send_win, cong_win, limit, in_flight;
2216 	struct tcp_sock *tp = tcp_sk(sk);
2217 	struct sk_buff *head;
2218 	int win_divisor;
2219 	s64 delta;
2220 
2221 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2222 		goto send_now;
2223 
2224 	/* Avoid bursty behavior by allowing defer
2225 	 * only if the last write was recent (1 ms).
2226 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2227 	 * packets waiting in a qdisc or device for EDT delivery.
2228 	 */
2229 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2230 	if (delta > 0)
2231 		goto send_now;
2232 
2233 	in_flight = tcp_packets_in_flight(tp);
2234 
2235 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2236 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2237 
2238 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2239 
2240 	/* From in_flight test above, we know that cwnd > in_flight.  */
2241 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2242 
2243 	limit = min(send_win, cong_win);
2244 
2245 	/* If a full-sized TSO skb can be sent, do it. */
2246 	if (limit >= max_segs * tp->mss_cache)
2247 		goto send_now;
2248 
2249 	/* Middle in queue won't get any more data, full sendable already? */
2250 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2251 		goto send_now;
2252 
2253 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2254 	if (win_divisor) {
2255 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2256 
2257 		/* If at least some fraction of a window is available,
2258 		 * just use it.
2259 		 */
2260 		chunk /= win_divisor;
2261 		if (limit >= chunk)
2262 			goto send_now;
2263 	} else {
2264 		/* Different approach, try not to defer past a single
2265 		 * ACK.  Receiver should ACK every other full sized
2266 		 * frame, so if we have space for more than 3 frames
2267 		 * then send now.
2268 		 */
2269 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2270 			goto send_now;
2271 	}
2272 
2273 	/* TODO : use tsorted_sent_queue ? */
2274 	head = tcp_rtx_queue_head(sk);
2275 	if (!head)
2276 		goto send_now;
2277 	delta = tp->tcp_clock_cache - head->tstamp;
2278 	/* If next ACK is likely to come too late (half srtt), do not defer */
2279 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2280 		goto send_now;
2281 
2282 	/* Ok, it looks like it is advisable to defer.
2283 	 * Three cases are tracked :
2284 	 * 1) We are cwnd-limited
2285 	 * 2) We are rwnd-limited
2286 	 * 3) We are application limited.
2287 	 */
2288 	if (cong_win < send_win) {
2289 		if (cong_win <= skb->len) {
2290 			*is_cwnd_limited = true;
2291 			return true;
2292 		}
2293 	} else {
2294 		if (send_win <= skb->len) {
2295 			*is_rwnd_limited = true;
2296 			return true;
2297 		}
2298 	}
2299 
2300 	/* If this packet won't get more data, do not wait. */
2301 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2302 	    TCP_SKB_CB(skb)->eor)
2303 		goto send_now;
2304 
2305 	return true;
2306 
2307 send_now:
2308 	return false;
2309 }
2310 
2311 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2312 {
2313 	struct inet_connection_sock *icsk = inet_csk(sk);
2314 	struct tcp_sock *tp = tcp_sk(sk);
2315 	struct net *net = sock_net(sk);
2316 	u32 interval;
2317 	s32 delta;
2318 
2319 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2320 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2321 	if (unlikely(delta >= interval * HZ)) {
2322 		int mss = tcp_current_mss(sk);
2323 
2324 		/* Update current search range */
2325 		icsk->icsk_mtup.probe_size = 0;
2326 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2327 			sizeof(struct tcphdr) +
2328 			icsk->icsk_af_ops->net_header_len;
2329 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2330 
2331 		/* Update probe time stamp */
2332 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2333 	}
2334 }
2335 
2336 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2337 {
2338 	struct sk_buff *skb, *next;
2339 
2340 	skb = tcp_send_head(sk);
2341 	tcp_for_write_queue_from_safe(skb, next, sk) {
2342 		if (len <= skb->len)
2343 			break;
2344 
2345 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2346 			return false;
2347 
2348 		len -= skb->len;
2349 	}
2350 
2351 	return true;
2352 }
2353 
2354 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2355 			     int probe_size)
2356 {
2357 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2358 	int i, todo, len = 0, nr_frags = 0;
2359 	const struct sk_buff *skb;
2360 
2361 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2362 		return -ENOMEM;
2363 
2364 	skb_queue_walk(&sk->sk_write_queue, skb) {
2365 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2366 
2367 		if (skb_headlen(skb))
2368 			return -EINVAL;
2369 
2370 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2371 			if (len >= probe_size)
2372 				goto commit;
2373 			todo = min_t(int, skb_frag_size(fragfrom),
2374 				     probe_size - len);
2375 			len += todo;
2376 			if (lastfrag &&
2377 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2378 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2379 						      skb_frag_size(lastfrag)) {
2380 				skb_frag_size_add(lastfrag, todo);
2381 				continue;
2382 			}
2383 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2384 				return -E2BIG;
2385 			skb_frag_page_copy(fragto, fragfrom);
2386 			skb_frag_off_copy(fragto, fragfrom);
2387 			skb_frag_size_set(fragto, todo);
2388 			nr_frags++;
2389 			lastfrag = fragto++;
2390 		}
2391 	}
2392 commit:
2393 	WARN_ON_ONCE(len != probe_size);
2394 	for (i = 0; i < nr_frags; i++)
2395 		skb_frag_ref(to, i);
2396 
2397 	skb_shinfo(to)->nr_frags = nr_frags;
2398 	to->truesize += probe_size;
2399 	to->len += probe_size;
2400 	to->data_len += probe_size;
2401 	__skb_header_release(to);
2402 	return 0;
2403 }
2404 
2405 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2406  * all its payload was moved to another one (dst).
2407  * Make sure to transfer tcp_flags, eor, and tstamp.
2408  */
2409 static void tcp_eat_one_skb(struct sock *sk,
2410 			    struct sk_buff *dst,
2411 			    struct sk_buff *src)
2412 {
2413 	TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2414 	TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2415 	tcp_skb_collapse_tstamp(dst, src);
2416 	tcp_unlink_write_queue(src, sk);
2417 	tcp_wmem_free_skb(sk, src);
2418 }
2419 
2420 /* Create a new MTU probe if we are ready.
2421  * MTU probe is regularly attempting to increase the path MTU by
2422  * deliberately sending larger packets.  This discovers routing
2423  * changes resulting in larger path MTUs.
2424  *
2425  * Returns 0 if we should wait to probe (no cwnd available),
2426  *         1 if a probe was sent,
2427  *         -1 otherwise
2428  */
2429 static int tcp_mtu_probe(struct sock *sk)
2430 {
2431 	struct inet_connection_sock *icsk = inet_csk(sk);
2432 	struct tcp_sock *tp = tcp_sk(sk);
2433 	struct sk_buff *skb, *nskb, *next;
2434 	struct net *net = sock_net(sk);
2435 	int probe_size;
2436 	int size_needed;
2437 	int copy, len;
2438 	int mss_now;
2439 	int interval;
2440 
2441 	/* Not currently probing/verifying,
2442 	 * not in recovery,
2443 	 * have enough cwnd, and
2444 	 * not SACKing (the variable headers throw things off)
2445 	 */
2446 	if (likely(!icsk->icsk_mtup.enabled ||
2447 		   icsk->icsk_mtup.probe_size ||
2448 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2449 		   tcp_snd_cwnd(tp) < 11 ||
2450 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2451 		return -1;
2452 
2453 	/* Use binary search for probe_size between tcp_mss_base,
2454 	 * and current mss_clamp. if (search_high - search_low)
2455 	 * smaller than a threshold, backoff from probing.
2456 	 */
2457 	mss_now = tcp_current_mss(sk);
2458 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2459 				    icsk->icsk_mtup.search_low) >> 1);
2460 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2461 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2462 	/* When misfortune happens, we are reprobing actively,
2463 	 * and then reprobe timer has expired. We stick with current
2464 	 * probing process by not resetting search range to its orignal.
2465 	 */
2466 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2467 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2468 		/* Check whether enough time has elaplased for
2469 		 * another round of probing.
2470 		 */
2471 		tcp_mtu_check_reprobe(sk);
2472 		return -1;
2473 	}
2474 
2475 	/* Have enough data in the send queue to probe? */
2476 	if (tp->write_seq - tp->snd_nxt < size_needed)
2477 		return -1;
2478 
2479 	if (tp->snd_wnd < size_needed)
2480 		return -1;
2481 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2482 		return 0;
2483 
2484 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2485 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2486 		if (!tcp_packets_in_flight(tp))
2487 			return -1;
2488 		else
2489 			return 0;
2490 	}
2491 
2492 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2493 		return -1;
2494 
2495 	/* We're allowed to probe.  Build it now. */
2496 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2497 	if (!nskb)
2498 		return -1;
2499 
2500 	/* build the payload, and be prepared to abort if this fails. */
2501 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2502 		tcp_skb_tsorted_anchor_cleanup(nskb);
2503 		consume_skb(nskb);
2504 		return -1;
2505 	}
2506 	sk_wmem_queued_add(sk, nskb->truesize);
2507 	sk_mem_charge(sk, nskb->truesize);
2508 
2509 	skb = tcp_send_head(sk);
2510 	skb_copy_decrypted(nskb, skb);
2511 	mptcp_skb_ext_copy(nskb, skb);
2512 
2513 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2514 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2515 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2516 
2517 	tcp_insert_write_queue_before(nskb, skb, sk);
2518 	tcp_highest_sack_replace(sk, skb, nskb);
2519 
2520 	len = 0;
2521 	tcp_for_write_queue_from_safe(skb, next, sk) {
2522 		copy = min_t(int, skb->len, probe_size - len);
2523 
2524 		if (skb->len <= copy) {
2525 			tcp_eat_one_skb(sk, nskb, skb);
2526 		} else {
2527 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2528 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2529 			__pskb_trim_head(skb, copy);
2530 			tcp_set_skb_tso_segs(skb, mss_now);
2531 			TCP_SKB_CB(skb)->seq += copy;
2532 		}
2533 
2534 		len += copy;
2535 
2536 		if (len >= probe_size)
2537 			break;
2538 	}
2539 	tcp_init_tso_segs(nskb, nskb->len);
2540 
2541 	/* We're ready to send.  If this fails, the probe will
2542 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2543 	 */
2544 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2545 		/* Decrement cwnd here because we are sending
2546 		 * effectively two packets. */
2547 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2548 		tcp_event_new_data_sent(sk, nskb);
2549 
2550 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2551 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2552 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2553 
2554 		return 1;
2555 	}
2556 
2557 	return -1;
2558 }
2559 
2560 static bool tcp_pacing_check(struct sock *sk)
2561 {
2562 	struct tcp_sock *tp = tcp_sk(sk);
2563 
2564 	if (!tcp_needs_internal_pacing(sk))
2565 		return false;
2566 
2567 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2568 		return false;
2569 
2570 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2571 		hrtimer_start(&tp->pacing_timer,
2572 			      ns_to_ktime(tp->tcp_wstamp_ns),
2573 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2574 		sock_hold(sk);
2575 	}
2576 	return true;
2577 }
2578 
2579 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2580 {
2581 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2582 
2583 	/* No skb in the rtx queue. */
2584 	if (!node)
2585 		return true;
2586 
2587 	/* Only one skb in rtx queue. */
2588 	return !node->rb_left && !node->rb_right;
2589 }
2590 
2591 /* TCP Small Queues :
2592  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2593  * (These limits are doubled for retransmits)
2594  * This allows for :
2595  *  - better RTT estimation and ACK scheduling
2596  *  - faster recovery
2597  *  - high rates
2598  * Alas, some drivers / subsystems require a fair amount
2599  * of queued bytes to ensure line rate.
2600  * One example is wifi aggregation (802.11 AMPDU)
2601  */
2602 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2603 				  unsigned int factor)
2604 {
2605 	unsigned long limit;
2606 
2607 	limit = max_t(unsigned long,
2608 		      2 * skb->truesize,
2609 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2610 	if (sk->sk_pacing_status == SK_PACING_NONE)
2611 		limit = min_t(unsigned long, limit,
2612 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2613 	limit <<= factor;
2614 
2615 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2616 	    tcp_sk(sk)->tcp_tx_delay) {
2617 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2618 				  tcp_sk(sk)->tcp_tx_delay;
2619 
2620 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2621 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2622 		 * USEC_PER_SEC is approximated by 2^20.
2623 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2624 		 */
2625 		extra_bytes >>= (20 - 1);
2626 		limit += extra_bytes;
2627 	}
2628 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2629 		/* Always send skb if rtx queue is empty or has one skb.
2630 		 * No need to wait for TX completion to call us back,
2631 		 * after softirq/tasklet schedule.
2632 		 * This helps when TX completions are delayed too much.
2633 		 */
2634 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2635 			return false;
2636 
2637 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2638 		/* It is possible TX completion already happened
2639 		 * before we set TSQ_THROTTLED, so we must
2640 		 * test again the condition.
2641 		 */
2642 		smp_mb__after_atomic();
2643 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2644 			return true;
2645 	}
2646 	return false;
2647 }
2648 
2649 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2650 {
2651 	const u32 now = tcp_jiffies32;
2652 	enum tcp_chrono old = tp->chrono_type;
2653 
2654 	if (old > TCP_CHRONO_UNSPEC)
2655 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2656 	tp->chrono_start = now;
2657 	tp->chrono_type = new;
2658 }
2659 
2660 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2661 {
2662 	struct tcp_sock *tp = tcp_sk(sk);
2663 
2664 	/* If there are multiple conditions worthy of tracking in a
2665 	 * chronograph then the highest priority enum takes precedence
2666 	 * over the other conditions. So that if something "more interesting"
2667 	 * starts happening, stop the previous chrono and start a new one.
2668 	 */
2669 	if (type > tp->chrono_type)
2670 		tcp_chrono_set(tp, type);
2671 }
2672 
2673 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2674 {
2675 	struct tcp_sock *tp = tcp_sk(sk);
2676 
2677 
2678 	/* There are multiple conditions worthy of tracking in a
2679 	 * chronograph, so that the highest priority enum takes
2680 	 * precedence over the other conditions (see tcp_chrono_start).
2681 	 * If a condition stops, we only stop chrono tracking if
2682 	 * it's the "most interesting" or current chrono we are
2683 	 * tracking and starts busy chrono if we have pending data.
2684 	 */
2685 	if (tcp_rtx_and_write_queues_empty(sk))
2686 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2687 	else if (type == tp->chrono_type)
2688 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2689 }
2690 
2691 /* First skb in the write queue is smaller than ideal packet size.
2692  * Check if we can move payload from the second skb in the queue.
2693  */
2694 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2695 {
2696 	struct sk_buff *next_skb = skb->next;
2697 	unsigned int nlen;
2698 
2699 	if (tcp_skb_is_last(sk, skb))
2700 		return;
2701 
2702 	if (!tcp_skb_can_collapse(skb, next_skb))
2703 		return;
2704 
2705 	nlen = min_t(u32, amount, next_skb->len);
2706 	if (!nlen || !skb_shift(skb, next_skb, nlen))
2707 		return;
2708 
2709 	TCP_SKB_CB(skb)->end_seq += nlen;
2710 	TCP_SKB_CB(next_skb)->seq += nlen;
2711 
2712 	if (!next_skb->len) {
2713 		/* In case FIN is set, we need to update end_seq */
2714 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2715 
2716 		tcp_eat_one_skb(sk, skb, next_skb);
2717 	}
2718 }
2719 
2720 /* This routine writes packets to the network.  It advances the
2721  * send_head.  This happens as incoming acks open up the remote
2722  * window for us.
2723  *
2724  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2725  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2726  * account rare use of URG, this is not a big flaw.
2727  *
2728  * Send at most one packet when push_one > 0. Temporarily ignore
2729  * cwnd limit to force at most one packet out when push_one == 2.
2730 
2731  * Returns true, if no segments are in flight and we have queued segments,
2732  * but cannot send anything now because of SWS or another problem.
2733  */
2734 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2735 			   int push_one, gfp_t gfp)
2736 {
2737 	struct tcp_sock *tp = tcp_sk(sk);
2738 	struct sk_buff *skb;
2739 	unsigned int tso_segs, sent_pkts;
2740 	u32 cwnd_quota, max_segs;
2741 	int result;
2742 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2743 
2744 	sent_pkts = 0;
2745 
2746 	tcp_mstamp_refresh(tp);
2747 	if (!push_one) {
2748 		/* Do MTU probing. */
2749 		result = tcp_mtu_probe(sk);
2750 		if (!result) {
2751 			return false;
2752 		} else if (result > 0) {
2753 			sent_pkts = 1;
2754 		}
2755 	}
2756 
2757 	max_segs = tcp_tso_segs(sk, mss_now);
2758 	while ((skb = tcp_send_head(sk))) {
2759 		unsigned int limit;
2760 		int missing_bytes;
2761 
2762 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2763 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2764 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2765 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2766 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2767 			tcp_init_tso_segs(skb, mss_now);
2768 			goto repair; /* Skip network transmission */
2769 		}
2770 
2771 		if (tcp_pacing_check(sk))
2772 			break;
2773 
2774 		cwnd_quota = tcp_cwnd_test(tp);
2775 		if (!cwnd_quota) {
2776 			if (push_one == 2)
2777 				/* Force out a loss probe pkt. */
2778 				cwnd_quota = 1;
2779 			else
2780 				break;
2781 		}
2782 		cwnd_quota = min(cwnd_quota, max_segs);
2783 		missing_bytes = cwnd_quota * mss_now - skb->len;
2784 		if (missing_bytes > 0)
2785 			tcp_grow_skb(sk, skb, missing_bytes);
2786 
2787 		tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2788 
2789 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2790 			is_rwnd_limited = true;
2791 			break;
2792 		}
2793 
2794 		if (tso_segs == 1) {
2795 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2796 						     (tcp_skb_is_last(sk, skb) ?
2797 						      nonagle : TCP_NAGLE_PUSH))))
2798 				break;
2799 		} else {
2800 			if (!push_one &&
2801 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2802 						 &is_rwnd_limited, max_segs))
2803 				break;
2804 		}
2805 
2806 		limit = mss_now;
2807 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2808 			limit = tcp_mss_split_point(sk, skb, mss_now,
2809 						    cwnd_quota,
2810 						    nonagle);
2811 
2812 		if (skb->len > limit &&
2813 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2814 			break;
2815 
2816 		if (tcp_small_queue_check(sk, skb, 0))
2817 			break;
2818 
2819 		/* Argh, we hit an empty skb(), presumably a thread
2820 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2821 		 * We do not want to send a pure-ack packet and have
2822 		 * a strange looking rtx queue with empty packet(s).
2823 		 */
2824 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2825 			break;
2826 
2827 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2828 			break;
2829 
2830 repair:
2831 		/* Advance the send_head.  This one is sent out.
2832 		 * This call will increment packets_out.
2833 		 */
2834 		tcp_event_new_data_sent(sk, skb);
2835 
2836 		tcp_minshall_update(tp, mss_now, skb);
2837 		sent_pkts += tcp_skb_pcount(skb);
2838 
2839 		if (push_one)
2840 			break;
2841 	}
2842 
2843 	if (is_rwnd_limited)
2844 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2845 	else
2846 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2847 
2848 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2849 	if (likely(sent_pkts || is_cwnd_limited))
2850 		tcp_cwnd_validate(sk, is_cwnd_limited);
2851 
2852 	if (likely(sent_pkts)) {
2853 		if (tcp_in_cwnd_reduction(sk))
2854 			tp->prr_out += sent_pkts;
2855 
2856 		/* Send one loss probe per tail loss episode. */
2857 		if (push_one != 2)
2858 			tcp_schedule_loss_probe(sk, false);
2859 		return false;
2860 	}
2861 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2862 }
2863 
2864 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2865 {
2866 	struct inet_connection_sock *icsk = inet_csk(sk);
2867 	struct tcp_sock *tp = tcp_sk(sk);
2868 	u32 timeout, timeout_us, rto_delta_us;
2869 	int early_retrans;
2870 
2871 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2872 	 * finishes.
2873 	 */
2874 	if (rcu_access_pointer(tp->fastopen_rsk))
2875 		return false;
2876 
2877 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2878 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2879 	 * not in loss recovery, that are either limited by cwnd or application.
2880 	 */
2881 	if ((early_retrans != 3 && early_retrans != 4) ||
2882 	    !tp->packets_out || !tcp_is_sack(tp) ||
2883 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2884 	     icsk->icsk_ca_state != TCP_CA_CWR))
2885 		return false;
2886 
2887 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2888 	 * for delayed ack when there's one outstanding packet. If no RTT
2889 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2890 	 */
2891 	if (tp->srtt_us) {
2892 		timeout_us = tp->srtt_us >> 2;
2893 		if (tp->packets_out == 1)
2894 			timeout_us += tcp_rto_min_us(sk);
2895 		else
2896 			timeout_us += TCP_TIMEOUT_MIN_US;
2897 		timeout = usecs_to_jiffies(timeout_us);
2898 	} else {
2899 		timeout = TCP_TIMEOUT_INIT;
2900 	}
2901 
2902 	/* If the RTO formula yields an earlier time, then use that time. */
2903 	rto_delta_us = advancing_rto ?
2904 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2905 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2906 	if (rto_delta_us > 0)
2907 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2908 
2909 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2910 	return true;
2911 }
2912 
2913 /* Thanks to skb fast clones, we can detect if a prior transmit of
2914  * a packet is still in a qdisc or driver queue.
2915  * In this case, there is very little point doing a retransmit !
2916  */
2917 static bool skb_still_in_host_queue(struct sock *sk,
2918 				    const struct sk_buff *skb)
2919 {
2920 	if (unlikely(skb_fclone_busy(sk, skb))) {
2921 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2922 		smp_mb__after_atomic();
2923 		if (skb_fclone_busy(sk, skb)) {
2924 			NET_INC_STATS(sock_net(sk),
2925 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2926 			return true;
2927 		}
2928 	}
2929 	return false;
2930 }
2931 
2932 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2933  * retransmit the last segment.
2934  */
2935 void tcp_send_loss_probe(struct sock *sk)
2936 {
2937 	struct tcp_sock *tp = tcp_sk(sk);
2938 	struct sk_buff *skb;
2939 	int pcount;
2940 	int mss = tcp_current_mss(sk);
2941 
2942 	/* At most one outstanding TLP */
2943 	if (tp->tlp_high_seq)
2944 		goto rearm_timer;
2945 
2946 	tp->tlp_retrans = 0;
2947 	skb = tcp_send_head(sk);
2948 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2949 		pcount = tp->packets_out;
2950 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2951 		if (tp->packets_out > pcount)
2952 			goto probe_sent;
2953 		goto rearm_timer;
2954 	}
2955 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2956 	if (unlikely(!skb)) {
2957 		WARN_ONCE(tp->packets_out,
2958 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2959 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2960 		inet_csk(sk)->icsk_pending = 0;
2961 		return;
2962 	}
2963 
2964 	if (skb_still_in_host_queue(sk, skb))
2965 		goto rearm_timer;
2966 
2967 	pcount = tcp_skb_pcount(skb);
2968 	if (WARN_ON(!pcount))
2969 		goto rearm_timer;
2970 
2971 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2972 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2973 					  (pcount - 1) * mss, mss,
2974 					  GFP_ATOMIC)))
2975 			goto rearm_timer;
2976 		skb = skb_rb_next(skb);
2977 	}
2978 
2979 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2980 		goto rearm_timer;
2981 
2982 	if (__tcp_retransmit_skb(sk, skb, 1))
2983 		goto rearm_timer;
2984 
2985 	tp->tlp_retrans = 1;
2986 
2987 probe_sent:
2988 	/* Record snd_nxt for loss detection. */
2989 	tp->tlp_high_seq = tp->snd_nxt;
2990 
2991 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2992 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2993 	inet_csk(sk)->icsk_pending = 0;
2994 rearm_timer:
2995 	tcp_rearm_rto(sk);
2996 }
2997 
2998 /* Push out any pending frames which were held back due to
2999  * TCP_CORK or attempt at coalescing tiny packets.
3000  * The socket must be locked by the caller.
3001  */
3002 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3003 			       int nonagle)
3004 {
3005 	/* If we are closed, the bytes will have to remain here.
3006 	 * In time closedown will finish, we empty the write queue and
3007 	 * all will be happy.
3008 	 */
3009 	if (unlikely(sk->sk_state == TCP_CLOSE))
3010 		return;
3011 
3012 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3013 			   sk_gfp_mask(sk, GFP_ATOMIC)))
3014 		tcp_check_probe_timer(sk);
3015 }
3016 
3017 /* Send _single_ skb sitting at the send head. This function requires
3018  * true push pending frames to setup probe timer etc.
3019  */
3020 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3021 {
3022 	struct sk_buff *skb = tcp_send_head(sk);
3023 
3024 	BUG_ON(!skb || skb->len < mss_now);
3025 
3026 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3027 }
3028 
3029 /* This function returns the amount that we can raise the
3030  * usable window based on the following constraints
3031  *
3032  * 1. The window can never be shrunk once it is offered (RFC 793)
3033  * 2. We limit memory per socket
3034  *
3035  * RFC 1122:
3036  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3037  *  RECV.NEXT + RCV.WIN fixed until:
3038  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3039  *
3040  * i.e. don't raise the right edge of the window until you can raise
3041  * it at least MSS bytes.
3042  *
3043  * Unfortunately, the recommended algorithm breaks header prediction,
3044  * since header prediction assumes th->window stays fixed.
3045  *
3046  * Strictly speaking, keeping th->window fixed violates the receiver
3047  * side SWS prevention criteria. The problem is that under this rule
3048  * a stream of single byte packets will cause the right side of the
3049  * window to always advance by a single byte.
3050  *
3051  * Of course, if the sender implements sender side SWS prevention
3052  * then this will not be a problem.
3053  *
3054  * BSD seems to make the following compromise:
3055  *
3056  *	If the free space is less than the 1/4 of the maximum
3057  *	space available and the free space is less than 1/2 mss,
3058  *	then set the window to 0.
3059  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3060  *	Otherwise, just prevent the window from shrinking
3061  *	and from being larger than the largest representable value.
3062  *
3063  * This prevents incremental opening of the window in the regime
3064  * where TCP is limited by the speed of the reader side taking
3065  * data out of the TCP receive queue. It does nothing about
3066  * those cases where the window is constrained on the sender side
3067  * because the pipeline is full.
3068  *
3069  * BSD also seems to "accidentally" limit itself to windows that are a
3070  * multiple of MSS, at least until the free space gets quite small.
3071  * This would appear to be a side effect of the mbuf implementation.
3072  * Combining these two algorithms results in the observed behavior
3073  * of having a fixed window size at almost all times.
3074  *
3075  * Below we obtain similar behavior by forcing the offered window to
3076  * a multiple of the mss when it is feasible to do so.
3077  *
3078  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3079  * Regular options like TIMESTAMP are taken into account.
3080  */
3081 u32 __tcp_select_window(struct sock *sk)
3082 {
3083 	struct inet_connection_sock *icsk = inet_csk(sk);
3084 	struct tcp_sock *tp = tcp_sk(sk);
3085 	struct net *net = sock_net(sk);
3086 	/* MSS for the peer's data.  Previous versions used mss_clamp
3087 	 * here.  I don't know if the value based on our guesses
3088 	 * of peer's MSS is better for the performance.  It's more correct
3089 	 * but may be worse for the performance because of rcv_mss
3090 	 * fluctuations.  --SAW  1998/11/1
3091 	 */
3092 	int mss = icsk->icsk_ack.rcv_mss;
3093 	int free_space = tcp_space(sk);
3094 	int allowed_space = tcp_full_space(sk);
3095 	int full_space, window;
3096 
3097 	if (sk_is_mptcp(sk))
3098 		mptcp_space(sk, &free_space, &allowed_space);
3099 
3100 	full_space = min_t(int, tp->window_clamp, allowed_space);
3101 
3102 	if (unlikely(mss > full_space)) {
3103 		mss = full_space;
3104 		if (mss <= 0)
3105 			return 0;
3106 	}
3107 
3108 	/* Only allow window shrink if the sysctl is enabled and we have
3109 	 * a non-zero scaling factor in effect.
3110 	 */
3111 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3112 		goto shrink_window_allowed;
3113 
3114 	/* do not allow window to shrink */
3115 
3116 	if (free_space < (full_space >> 1)) {
3117 		icsk->icsk_ack.quick = 0;
3118 
3119 		if (tcp_under_memory_pressure(sk))
3120 			tcp_adjust_rcv_ssthresh(sk);
3121 
3122 		/* free_space might become our new window, make sure we don't
3123 		 * increase it due to wscale.
3124 		 */
3125 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3126 
3127 		/* if free space is less than mss estimate, or is below 1/16th
3128 		 * of the maximum allowed, try to move to zero-window, else
3129 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3130 		 * new incoming data is dropped due to memory limits.
3131 		 * With large window, mss test triggers way too late in order
3132 		 * to announce zero window in time before rmem limit kicks in.
3133 		 */
3134 		if (free_space < (allowed_space >> 4) || free_space < mss)
3135 			return 0;
3136 	}
3137 
3138 	if (free_space > tp->rcv_ssthresh)
3139 		free_space = tp->rcv_ssthresh;
3140 
3141 	/* Don't do rounding if we are using window scaling, since the
3142 	 * scaled window will not line up with the MSS boundary anyway.
3143 	 */
3144 	if (tp->rx_opt.rcv_wscale) {
3145 		window = free_space;
3146 
3147 		/* Advertise enough space so that it won't get scaled away.
3148 		 * Import case: prevent zero window announcement if
3149 		 * 1<<rcv_wscale > mss.
3150 		 */
3151 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3152 	} else {
3153 		window = tp->rcv_wnd;
3154 		/* Get the largest window that is a nice multiple of mss.
3155 		 * Window clamp already applied above.
3156 		 * If our current window offering is within 1 mss of the
3157 		 * free space we just keep it. This prevents the divide
3158 		 * and multiply from happening most of the time.
3159 		 * We also don't do any window rounding when the free space
3160 		 * is too small.
3161 		 */
3162 		if (window <= free_space - mss || window > free_space)
3163 			window = rounddown(free_space, mss);
3164 		else if (mss == full_space &&
3165 			 free_space > window + (full_space >> 1))
3166 			window = free_space;
3167 	}
3168 
3169 	return window;
3170 
3171 shrink_window_allowed:
3172 	/* new window should always be an exact multiple of scaling factor */
3173 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3174 
3175 	if (free_space < (full_space >> 1)) {
3176 		icsk->icsk_ack.quick = 0;
3177 
3178 		if (tcp_under_memory_pressure(sk))
3179 			tcp_adjust_rcv_ssthresh(sk);
3180 
3181 		/* if free space is too low, return a zero window */
3182 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3183 			free_space < (1 << tp->rx_opt.rcv_wscale))
3184 			return 0;
3185 	}
3186 
3187 	if (free_space > tp->rcv_ssthresh) {
3188 		free_space = tp->rcv_ssthresh;
3189 		/* new window should always be an exact multiple of scaling factor
3190 		 *
3191 		 * For this case, we ALIGN "up" (increase free_space) because
3192 		 * we know free_space is not zero here, it has been reduced from
3193 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3194 		 * (unlike sk_rcvbuf).
3195 		 */
3196 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3197 	}
3198 
3199 	return free_space;
3200 }
3201 
3202 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3203 			     const struct sk_buff *next_skb)
3204 {
3205 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3206 		const struct skb_shared_info *next_shinfo =
3207 			skb_shinfo(next_skb);
3208 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3209 
3210 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3211 		shinfo->tskey = next_shinfo->tskey;
3212 		TCP_SKB_CB(skb)->txstamp_ack |=
3213 			TCP_SKB_CB(next_skb)->txstamp_ack;
3214 	}
3215 }
3216 
3217 /* Collapses two adjacent SKB's during retransmission. */
3218 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3219 {
3220 	struct tcp_sock *tp = tcp_sk(sk);
3221 	struct sk_buff *next_skb = skb_rb_next(skb);
3222 	int next_skb_size;
3223 
3224 	next_skb_size = next_skb->len;
3225 
3226 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3227 
3228 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3229 		return false;
3230 
3231 	tcp_highest_sack_replace(sk, next_skb, skb);
3232 
3233 	/* Update sequence range on original skb. */
3234 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3235 
3236 	/* Merge over control information. This moves PSH/FIN etc. over */
3237 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3238 
3239 	/* All done, get rid of second SKB and account for it so
3240 	 * packet counting does not break.
3241 	 */
3242 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3243 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3244 
3245 	/* changed transmit queue under us so clear hints */
3246 	tcp_clear_retrans_hints_partial(tp);
3247 	if (next_skb == tp->retransmit_skb_hint)
3248 		tp->retransmit_skb_hint = skb;
3249 
3250 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3251 
3252 	tcp_skb_collapse_tstamp(skb, next_skb);
3253 
3254 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3255 	return true;
3256 }
3257 
3258 /* Check if coalescing SKBs is legal. */
3259 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3260 {
3261 	if (tcp_skb_pcount(skb) > 1)
3262 		return false;
3263 	if (skb_cloned(skb))
3264 		return false;
3265 	if (!skb_frags_readable(skb))
3266 		return false;
3267 	/* Some heuristics for collapsing over SACK'd could be invented */
3268 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3269 		return false;
3270 
3271 	return true;
3272 }
3273 
3274 /* Collapse packets in the retransmit queue to make to create
3275  * less packets on the wire. This is only done on retransmission.
3276  */
3277 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3278 				     int space)
3279 {
3280 	struct tcp_sock *tp = tcp_sk(sk);
3281 	struct sk_buff *skb = to, *tmp;
3282 	bool first = true;
3283 
3284 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3285 		return;
3286 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3287 		return;
3288 
3289 	skb_rbtree_walk_from_safe(skb, tmp) {
3290 		if (!tcp_can_collapse(sk, skb))
3291 			break;
3292 
3293 		if (!tcp_skb_can_collapse(to, skb))
3294 			break;
3295 
3296 		space -= skb->len;
3297 
3298 		if (first) {
3299 			first = false;
3300 			continue;
3301 		}
3302 
3303 		if (space < 0)
3304 			break;
3305 
3306 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3307 			break;
3308 
3309 		if (!tcp_collapse_retrans(sk, to))
3310 			break;
3311 	}
3312 }
3313 
3314 /* This retransmits one SKB.  Policy decisions and retransmit queue
3315  * state updates are done by the caller.  Returns non-zero if an
3316  * error occurred which prevented the send.
3317  */
3318 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3319 {
3320 	struct inet_connection_sock *icsk = inet_csk(sk);
3321 	struct tcp_sock *tp = tcp_sk(sk);
3322 	unsigned int cur_mss;
3323 	int diff, len, err;
3324 	int avail_wnd;
3325 
3326 	/* Inconclusive MTU probe */
3327 	if (icsk->icsk_mtup.probe_size)
3328 		icsk->icsk_mtup.probe_size = 0;
3329 
3330 	if (skb_still_in_host_queue(sk, skb))
3331 		return -EBUSY;
3332 
3333 start:
3334 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3335 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3336 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3337 			TCP_SKB_CB(skb)->seq++;
3338 			goto start;
3339 		}
3340 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3341 			WARN_ON_ONCE(1);
3342 			return -EINVAL;
3343 		}
3344 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3345 			return -ENOMEM;
3346 	}
3347 
3348 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3349 		return -EHOSTUNREACH; /* Routing failure or similar. */
3350 
3351 	cur_mss = tcp_current_mss(sk);
3352 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3353 
3354 	/* If receiver has shrunk his window, and skb is out of
3355 	 * new window, do not retransmit it. The exception is the
3356 	 * case, when window is shrunk to zero. In this case
3357 	 * our retransmit of one segment serves as a zero window probe.
3358 	 */
3359 	if (avail_wnd <= 0) {
3360 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3361 			return -EAGAIN;
3362 		avail_wnd = cur_mss;
3363 	}
3364 
3365 	len = cur_mss * segs;
3366 	if (len > avail_wnd) {
3367 		len = rounddown(avail_wnd, cur_mss);
3368 		if (!len)
3369 			len = avail_wnd;
3370 	}
3371 	if (skb->len > len) {
3372 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3373 				 cur_mss, GFP_ATOMIC))
3374 			return -ENOMEM; /* We'll try again later. */
3375 	} else {
3376 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3377 			return -ENOMEM;
3378 
3379 		diff = tcp_skb_pcount(skb);
3380 		tcp_set_skb_tso_segs(skb, cur_mss);
3381 		diff -= tcp_skb_pcount(skb);
3382 		if (diff)
3383 			tcp_adjust_pcount(sk, skb, diff);
3384 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3385 		if (skb->len < avail_wnd)
3386 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3387 	}
3388 
3389 	/* RFC3168, section 6.1.1.1. ECN fallback */
3390 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3391 		tcp_ecn_clear_syn(sk, skb);
3392 
3393 	/* Update global and local TCP statistics. */
3394 	segs = tcp_skb_pcount(skb);
3395 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3396 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3397 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3398 	tp->total_retrans += segs;
3399 	tp->bytes_retrans += skb->len;
3400 
3401 	/* make sure skb->data is aligned on arches that require it
3402 	 * and check if ack-trimming & collapsing extended the headroom
3403 	 * beyond what csum_start can cover.
3404 	 */
3405 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3406 		     skb_headroom(skb) >= 0xFFFF)) {
3407 		struct sk_buff *nskb;
3408 
3409 		tcp_skb_tsorted_save(skb) {
3410 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3411 			if (nskb) {
3412 				nskb->dev = NULL;
3413 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3414 			} else {
3415 				err = -ENOBUFS;
3416 			}
3417 		} tcp_skb_tsorted_restore(skb);
3418 
3419 		if (!err) {
3420 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3421 			tcp_rate_skb_sent(sk, skb);
3422 		}
3423 	} else {
3424 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3425 	}
3426 
3427 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3428 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3429 				  TCP_SKB_CB(skb)->seq, segs, err);
3430 
3431 	if (likely(!err)) {
3432 		trace_tcp_retransmit_skb(sk, skb);
3433 	} else if (err != -EBUSY) {
3434 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3435 	}
3436 
3437 	/* To avoid taking spuriously low RTT samples based on a timestamp
3438 	 * for a transmit that never happened, always mark EVER_RETRANS
3439 	 */
3440 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3441 
3442 	return err;
3443 }
3444 
3445 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3446 {
3447 	struct tcp_sock *tp = tcp_sk(sk);
3448 	int err = __tcp_retransmit_skb(sk, skb, segs);
3449 
3450 	if (err == 0) {
3451 #if FASTRETRANS_DEBUG > 0
3452 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3453 			net_dbg_ratelimited("retrans_out leaked\n");
3454 		}
3455 #endif
3456 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3457 		tp->retrans_out += tcp_skb_pcount(skb);
3458 	}
3459 
3460 	/* Save stamp of the first (attempted) retransmit. */
3461 	if (!tp->retrans_stamp)
3462 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3463 
3464 	if (tp->undo_retrans < 0)
3465 		tp->undo_retrans = 0;
3466 	tp->undo_retrans += tcp_skb_pcount(skb);
3467 	return err;
3468 }
3469 
3470 /* This gets called after a retransmit timeout, and the initially
3471  * retransmitted data is acknowledged.  It tries to continue
3472  * resending the rest of the retransmit queue, until either
3473  * we've sent it all or the congestion window limit is reached.
3474  */
3475 void tcp_xmit_retransmit_queue(struct sock *sk)
3476 {
3477 	const struct inet_connection_sock *icsk = inet_csk(sk);
3478 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3479 	struct tcp_sock *tp = tcp_sk(sk);
3480 	bool rearm_timer = false;
3481 	u32 max_segs;
3482 	int mib_idx;
3483 
3484 	if (!tp->packets_out)
3485 		return;
3486 
3487 	rtx_head = tcp_rtx_queue_head(sk);
3488 	skb = tp->retransmit_skb_hint ?: rtx_head;
3489 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3490 	skb_rbtree_walk_from(skb) {
3491 		__u8 sacked;
3492 		int segs;
3493 
3494 		if (tcp_pacing_check(sk))
3495 			break;
3496 
3497 		/* we could do better than to assign each time */
3498 		if (!hole)
3499 			tp->retransmit_skb_hint = skb;
3500 
3501 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3502 		if (segs <= 0)
3503 			break;
3504 		sacked = TCP_SKB_CB(skb)->sacked;
3505 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3506 		 * we need to make sure not sending too bigs TSO packets
3507 		 */
3508 		segs = min_t(int, segs, max_segs);
3509 
3510 		if (tp->retrans_out >= tp->lost_out) {
3511 			break;
3512 		} else if (!(sacked & TCPCB_LOST)) {
3513 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3514 				hole = skb;
3515 			continue;
3516 
3517 		} else {
3518 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3519 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3520 			else
3521 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3522 		}
3523 
3524 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3525 			continue;
3526 
3527 		if (tcp_small_queue_check(sk, skb, 1))
3528 			break;
3529 
3530 		if (tcp_retransmit_skb(sk, skb, segs))
3531 			break;
3532 
3533 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3534 
3535 		if (tcp_in_cwnd_reduction(sk))
3536 			tp->prr_out += tcp_skb_pcount(skb);
3537 
3538 		if (skb == rtx_head &&
3539 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3540 			rearm_timer = true;
3541 
3542 	}
3543 	if (rearm_timer)
3544 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3545 				     inet_csk(sk)->icsk_rto,
3546 				     TCP_RTO_MAX);
3547 }
3548 
3549 /* We allow to exceed memory limits for FIN packets to expedite
3550  * connection tear down and (memory) recovery.
3551  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3552  * or even be forced to close flow without any FIN.
3553  * In general, we want to allow one skb per socket to avoid hangs
3554  * with edge trigger epoll()
3555  */
3556 void sk_forced_mem_schedule(struct sock *sk, int size)
3557 {
3558 	int delta, amt;
3559 
3560 	delta = size - sk->sk_forward_alloc;
3561 	if (delta <= 0)
3562 		return;
3563 	amt = sk_mem_pages(delta);
3564 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3565 	sk_memory_allocated_add(sk, amt);
3566 
3567 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3568 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3569 					gfp_memcg_charge() | __GFP_NOFAIL);
3570 }
3571 
3572 /* Send a FIN. The caller locks the socket for us.
3573  * We should try to send a FIN packet really hard, but eventually give up.
3574  */
3575 void tcp_send_fin(struct sock *sk)
3576 {
3577 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3578 	struct tcp_sock *tp = tcp_sk(sk);
3579 
3580 	/* Optimization, tack on the FIN if we have one skb in write queue and
3581 	 * this skb was not yet sent, or we are under memory pressure.
3582 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3583 	 * as TCP stack thinks it has already been transmitted.
3584 	 */
3585 	tskb = tail;
3586 	if (!tskb && tcp_under_memory_pressure(sk))
3587 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3588 
3589 	if (tskb) {
3590 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3591 		TCP_SKB_CB(tskb)->end_seq++;
3592 		tp->write_seq++;
3593 		if (!tail) {
3594 			/* This means tskb was already sent.
3595 			 * Pretend we included the FIN on previous transmit.
3596 			 * We need to set tp->snd_nxt to the value it would have
3597 			 * if FIN had been sent. This is because retransmit path
3598 			 * does not change tp->snd_nxt.
3599 			 */
3600 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3601 			return;
3602 		}
3603 	} else {
3604 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3605 				       sk_gfp_mask(sk, GFP_ATOMIC |
3606 						       __GFP_NOWARN));
3607 		if (unlikely(!skb))
3608 			return;
3609 
3610 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3611 		skb_reserve(skb, MAX_TCP_HEADER);
3612 		sk_forced_mem_schedule(sk, skb->truesize);
3613 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3614 		tcp_init_nondata_skb(skb, tp->write_seq,
3615 				     TCPHDR_ACK | TCPHDR_FIN);
3616 		tcp_queue_skb(sk, skb);
3617 	}
3618 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3619 }
3620 
3621 /* We get here when a process closes a file descriptor (either due to
3622  * an explicit close() or as a byproduct of exit()'ing) and there
3623  * was unread data in the receive queue.  This behavior is recommended
3624  * by RFC 2525, section 2.17.  -DaveM
3625  */
3626 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3627 			   enum sk_rst_reason reason)
3628 {
3629 	struct sk_buff *skb;
3630 
3631 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3632 
3633 	/* NOTE: No TCP options attached and we never retransmit this. */
3634 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3635 	if (!skb) {
3636 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3637 		return;
3638 	}
3639 
3640 	/* Reserve space for headers and prepare control bits. */
3641 	skb_reserve(skb, MAX_TCP_HEADER);
3642 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3643 			     TCPHDR_ACK | TCPHDR_RST);
3644 	tcp_mstamp_refresh(tcp_sk(sk));
3645 	/* Send it off. */
3646 	if (tcp_transmit_skb(sk, skb, 0, priority))
3647 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3648 
3649 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3650 	 * skb here is different to the troublesome skb, so use NULL
3651 	 */
3652 	trace_tcp_send_reset(sk, NULL, reason);
3653 }
3654 
3655 /* Send a crossed SYN-ACK during socket establishment.
3656  * WARNING: This routine must only be called when we have already sent
3657  * a SYN packet that crossed the incoming SYN that caused this routine
3658  * to get called. If this assumption fails then the initial rcv_wnd
3659  * and rcv_wscale values will not be correct.
3660  */
3661 int tcp_send_synack(struct sock *sk)
3662 {
3663 	struct sk_buff *skb;
3664 
3665 	skb = tcp_rtx_queue_head(sk);
3666 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3667 		pr_err("%s: wrong queue state\n", __func__);
3668 		return -EFAULT;
3669 	}
3670 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3671 		if (skb_cloned(skb)) {
3672 			struct sk_buff *nskb;
3673 
3674 			tcp_skb_tsorted_save(skb) {
3675 				nskb = skb_copy(skb, GFP_ATOMIC);
3676 			} tcp_skb_tsorted_restore(skb);
3677 			if (!nskb)
3678 				return -ENOMEM;
3679 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3680 			tcp_highest_sack_replace(sk, skb, nskb);
3681 			tcp_rtx_queue_unlink_and_free(skb, sk);
3682 			__skb_header_release(nskb);
3683 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3684 			sk_wmem_queued_add(sk, nskb->truesize);
3685 			sk_mem_charge(sk, nskb->truesize);
3686 			skb = nskb;
3687 		}
3688 
3689 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3690 		tcp_ecn_send_synack(sk, skb);
3691 	}
3692 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3693 }
3694 
3695 /**
3696  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3697  * @sk: listener socket
3698  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3699  *       should not use it again.
3700  * @req: request_sock pointer
3701  * @foc: cookie for tcp fast open
3702  * @synack_type: Type of synack to prepare
3703  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3704  */
3705 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3706 				struct request_sock *req,
3707 				struct tcp_fastopen_cookie *foc,
3708 				enum tcp_synack_type synack_type,
3709 				struct sk_buff *syn_skb)
3710 {
3711 	struct inet_request_sock *ireq = inet_rsk(req);
3712 	const struct tcp_sock *tp = tcp_sk(sk);
3713 	struct tcp_out_options opts;
3714 	struct tcp_key key = {};
3715 	struct sk_buff *skb;
3716 	int tcp_header_size;
3717 	struct tcphdr *th;
3718 	int mss;
3719 	u64 now;
3720 
3721 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3722 	if (unlikely(!skb)) {
3723 		dst_release(dst);
3724 		return NULL;
3725 	}
3726 	/* Reserve space for headers. */
3727 	skb_reserve(skb, MAX_TCP_HEADER);
3728 
3729 	switch (synack_type) {
3730 	case TCP_SYNACK_NORMAL:
3731 		skb_set_owner_w(skb, req_to_sk(req));
3732 		break;
3733 	case TCP_SYNACK_COOKIE:
3734 		/* Under synflood, we do not attach skb to a socket,
3735 		 * to avoid false sharing.
3736 		 */
3737 		break;
3738 	case TCP_SYNACK_FASTOPEN:
3739 		/* sk is a const pointer, because we want to express multiple
3740 		 * cpu might call us concurrently.
3741 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3742 		 */
3743 		skb_set_owner_w(skb, (struct sock *)sk);
3744 		break;
3745 	}
3746 	skb_dst_set(skb, dst);
3747 
3748 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3749 
3750 	memset(&opts, 0, sizeof(opts));
3751 	now = tcp_clock_ns();
3752 #ifdef CONFIG_SYN_COOKIES
3753 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3754 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3755 				      SKB_CLOCK_MONOTONIC);
3756 	else
3757 #endif
3758 	{
3759 		skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3760 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3761 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3762 	}
3763 
3764 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3765 	rcu_read_lock();
3766 #endif
3767 	if (tcp_rsk_used_ao(req)) {
3768 #ifdef CONFIG_TCP_AO
3769 		struct tcp_ao_key *ao_key = NULL;
3770 		u8 keyid = tcp_rsk(req)->ao_keyid;
3771 		u8 rnext = tcp_rsk(req)->ao_rcv_next;
3772 
3773 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3774 							    keyid, -1);
3775 		/* If there is no matching key - avoid sending anything,
3776 		 * especially usigned segments. It could try harder and lookup
3777 		 * for another peer-matching key, but the peer has requested
3778 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3779 		 */
3780 		if (unlikely(!ao_key)) {
3781 			trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3782 			rcu_read_unlock();
3783 			kfree_skb(skb);
3784 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3785 					     keyid);
3786 			return NULL;
3787 		}
3788 		key.ao_key = ao_key;
3789 		key.type = TCP_KEY_AO;
3790 #endif
3791 	} else {
3792 #ifdef CONFIG_TCP_MD5SIG
3793 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3794 					req_to_sk(req));
3795 		if (key.md5_key)
3796 			key.type = TCP_KEY_MD5;
3797 #endif
3798 	}
3799 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3800 	/* bpf program will be interested in the tcp_flags */
3801 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3802 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3803 					     &key, foc, synack_type, syn_skb)
3804 					+ sizeof(*th);
3805 
3806 	skb_push(skb, tcp_header_size);
3807 	skb_reset_transport_header(skb);
3808 
3809 	th = (struct tcphdr *)skb->data;
3810 	memset(th, 0, sizeof(struct tcphdr));
3811 	th->syn = 1;
3812 	th->ack = 1;
3813 	tcp_ecn_make_synack(req, th);
3814 	th->source = htons(ireq->ir_num);
3815 	th->dest = ireq->ir_rmt_port;
3816 	skb->mark = ireq->ir_mark;
3817 	skb->ip_summed = CHECKSUM_PARTIAL;
3818 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3819 	/* XXX data is queued and acked as is. No buffer/window check */
3820 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3821 
3822 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3823 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3824 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3825 	th->doff = (tcp_header_size >> 2);
3826 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3827 
3828 	/* Okay, we have all we need - do the md5 hash if needed */
3829 	if (tcp_key_is_md5(&key)) {
3830 #ifdef CONFIG_TCP_MD5SIG
3831 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3832 					key.md5_key, req_to_sk(req), skb);
3833 #endif
3834 	} else if (tcp_key_is_ao(&key)) {
3835 #ifdef CONFIG_TCP_AO
3836 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3837 					key.ao_key, req, skb,
3838 					opts.hash_location - (u8 *)th, 0);
3839 #endif
3840 	}
3841 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3842 	rcu_read_unlock();
3843 #endif
3844 
3845 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3846 				synack_type, &opts);
3847 
3848 	skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3849 	tcp_add_tx_delay(skb, tp);
3850 
3851 	return skb;
3852 }
3853 EXPORT_SYMBOL(tcp_make_synack);
3854 
3855 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3856 {
3857 	struct inet_connection_sock *icsk = inet_csk(sk);
3858 	const struct tcp_congestion_ops *ca;
3859 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3860 
3861 	if (ca_key == TCP_CA_UNSPEC)
3862 		return;
3863 
3864 	rcu_read_lock();
3865 	ca = tcp_ca_find_key(ca_key);
3866 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3867 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3868 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3869 		icsk->icsk_ca_ops = ca;
3870 	}
3871 	rcu_read_unlock();
3872 }
3873 
3874 /* Do all connect socket setups that can be done AF independent. */
3875 static void tcp_connect_init(struct sock *sk)
3876 {
3877 	const struct dst_entry *dst = __sk_dst_get(sk);
3878 	struct tcp_sock *tp = tcp_sk(sk);
3879 	__u8 rcv_wscale;
3880 	u32 rcv_wnd;
3881 
3882 	/* We'll fix this up when we get a response from the other end.
3883 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3884 	 */
3885 	tp->tcp_header_len = sizeof(struct tcphdr);
3886 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3887 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3888 
3889 	tcp_ao_connect_init(sk);
3890 
3891 	/* If user gave his TCP_MAXSEG, record it to clamp */
3892 	if (tp->rx_opt.user_mss)
3893 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3894 	tp->max_window = 0;
3895 	tcp_mtup_init(sk);
3896 	tcp_sync_mss(sk, dst_mtu(dst));
3897 
3898 	tcp_ca_dst_init(sk, dst);
3899 
3900 	if (!tp->window_clamp)
3901 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3902 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3903 
3904 	tcp_initialize_rcv_mss(sk);
3905 
3906 	/* limit the window selection if the user enforce a smaller rx buffer */
3907 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3908 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3909 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3910 
3911 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3912 	if (rcv_wnd == 0)
3913 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3914 
3915 	tcp_select_initial_window(sk, tcp_full_space(sk),
3916 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3917 				  &tp->rcv_wnd,
3918 				  &tp->window_clamp,
3919 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3920 				  &rcv_wscale,
3921 				  rcv_wnd);
3922 
3923 	tp->rx_opt.rcv_wscale = rcv_wscale;
3924 	tp->rcv_ssthresh = tp->rcv_wnd;
3925 
3926 	WRITE_ONCE(sk->sk_err, 0);
3927 	sock_reset_flag(sk, SOCK_DONE);
3928 	tp->snd_wnd = 0;
3929 	tcp_init_wl(tp, 0);
3930 	tcp_write_queue_purge(sk);
3931 	tp->snd_una = tp->write_seq;
3932 	tp->snd_sml = tp->write_seq;
3933 	tp->snd_up = tp->write_seq;
3934 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3935 
3936 	if (likely(!tp->repair))
3937 		tp->rcv_nxt = 0;
3938 	else
3939 		tp->rcv_tstamp = tcp_jiffies32;
3940 	tp->rcv_wup = tp->rcv_nxt;
3941 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3942 
3943 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3944 	inet_csk(sk)->icsk_retransmits = 0;
3945 	tcp_clear_retrans(tp);
3946 }
3947 
3948 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3949 {
3950 	struct tcp_sock *tp = tcp_sk(sk);
3951 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3952 
3953 	tcb->end_seq += skb->len;
3954 	__skb_header_release(skb);
3955 	sk_wmem_queued_add(sk, skb->truesize);
3956 	sk_mem_charge(sk, skb->truesize);
3957 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3958 	tp->packets_out += tcp_skb_pcount(skb);
3959 }
3960 
3961 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3962  * queue a data-only packet after the regular SYN, such that regular SYNs
3963  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3964  * only the SYN sequence, the data are retransmitted in the first ACK.
3965  * If cookie is not cached or other error occurs, falls back to send a
3966  * regular SYN with Fast Open cookie request option.
3967  */
3968 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3969 {
3970 	struct inet_connection_sock *icsk = inet_csk(sk);
3971 	struct tcp_sock *tp = tcp_sk(sk);
3972 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3973 	struct page_frag *pfrag = sk_page_frag(sk);
3974 	struct sk_buff *syn_data;
3975 	int space, err = 0;
3976 
3977 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3978 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3979 		goto fallback;
3980 
3981 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3982 	 * user-MSS. Reserve maximum option space for middleboxes that add
3983 	 * private TCP options. The cost is reduced data space in SYN :(
3984 	 */
3985 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3986 	/* Sync mss_cache after updating the mss_clamp */
3987 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3988 
3989 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3990 		MAX_TCP_OPTION_SPACE;
3991 
3992 	space = min_t(size_t, space, fo->size);
3993 
3994 	if (space &&
3995 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3996 				  pfrag, sk->sk_allocation))
3997 		goto fallback;
3998 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3999 	if (!syn_data)
4000 		goto fallback;
4001 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4002 	if (space) {
4003 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
4004 		space = tcp_wmem_schedule(sk, space);
4005 	}
4006 	if (space) {
4007 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
4008 					    space, &fo->data->msg_iter);
4009 		if (unlikely(!space)) {
4010 			tcp_skb_tsorted_anchor_cleanup(syn_data);
4011 			kfree_skb(syn_data);
4012 			goto fallback;
4013 		}
4014 		skb_fill_page_desc(syn_data, 0, pfrag->page,
4015 				   pfrag->offset, space);
4016 		page_ref_inc(pfrag->page);
4017 		pfrag->offset += space;
4018 		skb_len_add(syn_data, space);
4019 		skb_zcopy_set(syn_data, fo->uarg, NULL);
4020 	}
4021 	/* No more data pending in inet_wait_for_connect() */
4022 	if (space == fo->size)
4023 		fo->data = NULL;
4024 	fo->copied = space;
4025 
4026 	tcp_connect_queue_skb(sk, syn_data);
4027 	if (syn_data->len)
4028 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4029 
4030 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4031 
4032 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4033 
4034 	/* Now full SYN+DATA was cloned and sent (or not),
4035 	 * remove the SYN from the original skb (syn_data)
4036 	 * we keep in write queue in case of a retransmit, as we
4037 	 * also have the SYN packet (with no data) in the same queue.
4038 	 */
4039 	TCP_SKB_CB(syn_data)->seq++;
4040 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4041 	if (!err) {
4042 		tp->syn_data = (fo->copied > 0);
4043 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4044 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4045 		goto done;
4046 	}
4047 
4048 	/* data was not sent, put it in write_queue */
4049 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4050 	tp->packets_out -= tcp_skb_pcount(syn_data);
4051 
4052 fallback:
4053 	/* Send a regular SYN with Fast Open cookie request option */
4054 	if (fo->cookie.len > 0)
4055 		fo->cookie.len = 0;
4056 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4057 	if (err)
4058 		tp->syn_fastopen = 0;
4059 done:
4060 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4061 	return err;
4062 }
4063 
4064 /* Build a SYN and send it off. */
4065 int tcp_connect(struct sock *sk)
4066 {
4067 	struct tcp_sock *tp = tcp_sk(sk);
4068 	struct sk_buff *buff;
4069 	int err;
4070 
4071 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4072 
4073 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4074 	/* Has to be checked late, after setting daddr/saddr/ops.
4075 	 * Return error if the peer has both a md5 and a tcp-ao key
4076 	 * configured as this is ambiguous.
4077 	 */
4078 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4079 					       lockdep_sock_is_held(sk)))) {
4080 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4081 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4082 		struct tcp_ao_info *ao_info;
4083 
4084 		ao_info = rcu_dereference_check(tp->ao_info,
4085 						lockdep_sock_is_held(sk));
4086 		if (ao_info) {
4087 			/* This is an extra check: tcp_ao_required() in
4088 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4089 			 * md5 keys on ao_required socket.
4090 			 */
4091 			needs_ao |= ao_info->ao_required;
4092 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4093 		}
4094 		if (needs_md5 && needs_ao)
4095 			return -EKEYREJECTED;
4096 
4097 		/* If we have a matching md5 key and no matching tcp-ao key
4098 		 * then free up ao_info if allocated.
4099 		 */
4100 		if (needs_md5) {
4101 			tcp_ao_destroy_sock(sk, false);
4102 		} else if (needs_ao) {
4103 			tcp_clear_md5_list(sk);
4104 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4105 						  lockdep_sock_is_held(sk)));
4106 		}
4107 	}
4108 #endif
4109 #ifdef CONFIG_TCP_AO
4110 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4111 					       lockdep_sock_is_held(sk)))) {
4112 		/* Don't allow connecting if ao is configured but no
4113 		 * matching key is found.
4114 		 */
4115 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4116 			return -EKEYREJECTED;
4117 	}
4118 #endif
4119 
4120 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4121 		return -EHOSTUNREACH; /* Routing failure or similar. */
4122 
4123 	tcp_connect_init(sk);
4124 
4125 	if (unlikely(tp->repair)) {
4126 		tcp_finish_connect(sk, NULL);
4127 		return 0;
4128 	}
4129 
4130 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4131 	if (unlikely(!buff))
4132 		return -ENOBUFS;
4133 
4134 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4135 	tcp_mstamp_refresh(tp);
4136 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4137 	tcp_connect_queue_skb(sk, buff);
4138 	tcp_ecn_send_syn(sk, buff);
4139 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4140 
4141 	/* Send off SYN; include data in Fast Open. */
4142 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4143 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4144 	if (err == -ECONNREFUSED)
4145 		return err;
4146 
4147 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4148 	 * in order to make this packet get counted in tcpOutSegs.
4149 	 */
4150 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4151 	tp->pushed_seq = tp->write_seq;
4152 	buff = tcp_send_head(sk);
4153 	if (unlikely(buff)) {
4154 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4155 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4156 	}
4157 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4158 
4159 	/* Timer for repeating the SYN until an answer. */
4160 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4161 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4162 	return 0;
4163 }
4164 EXPORT_SYMBOL(tcp_connect);
4165 
4166 u32 tcp_delack_max(const struct sock *sk)
4167 {
4168 	u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4169 
4170 	return min(inet_csk(sk)->icsk_delack_max, delack_from_rto_min);
4171 }
4172 
4173 /* Send out a delayed ack, the caller does the policy checking
4174  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4175  * for details.
4176  */
4177 void tcp_send_delayed_ack(struct sock *sk)
4178 {
4179 	struct inet_connection_sock *icsk = inet_csk(sk);
4180 	int ato = icsk->icsk_ack.ato;
4181 	unsigned long timeout;
4182 
4183 	if (ato > TCP_DELACK_MIN) {
4184 		const struct tcp_sock *tp = tcp_sk(sk);
4185 		int max_ato = HZ / 2;
4186 
4187 		if (inet_csk_in_pingpong_mode(sk) ||
4188 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4189 			max_ato = TCP_DELACK_MAX;
4190 
4191 		/* Slow path, intersegment interval is "high". */
4192 
4193 		/* If some rtt estimate is known, use it to bound delayed ack.
4194 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4195 		 * directly.
4196 		 */
4197 		if (tp->srtt_us) {
4198 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4199 					TCP_DELACK_MIN);
4200 
4201 			if (rtt < max_ato)
4202 				max_ato = rtt;
4203 		}
4204 
4205 		ato = min(ato, max_ato);
4206 	}
4207 
4208 	ato = min_t(u32, ato, tcp_delack_max(sk));
4209 
4210 	/* Stay within the limit we were given */
4211 	timeout = jiffies + ato;
4212 
4213 	/* Use new timeout only if there wasn't a older one earlier. */
4214 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4215 		/* If delack timer is about to expire, send ACK now. */
4216 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4217 			tcp_send_ack(sk);
4218 			return;
4219 		}
4220 
4221 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4222 			timeout = icsk->icsk_ack.timeout;
4223 	}
4224 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4225 	icsk->icsk_ack.timeout = timeout;
4226 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4227 }
4228 
4229 /* This routine sends an ack and also updates the window. */
4230 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4231 {
4232 	struct sk_buff *buff;
4233 
4234 	/* If we have been reset, we may not send again. */
4235 	if (sk->sk_state == TCP_CLOSE)
4236 		return;
4237 
4238 	/* We are not putting this on the write queue, so
4239 	 * tcp_transmit_skb() will set the ownership to this
4240 	 * sock.
4241 	 */
4242 	buff = alloc_skb(MAX_TCP_HEADER,
4243 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4244 	if (unlikely(!buff)) {
4245 		struct inet_connection_sock *icsk = inet_csk(sk);
4246 		unsigned long delay;
4247 
4248 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4249 		if (delay < TCP_RTO_MAX)
4250 			icsk->icsk_ack.retry++;
4251 		inet_csk_schedule_ack(sk);
4252 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4253 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4254 		return;
4255 	}
4256 
4257 	/* Reserve space for headers and prepare control bits. */
4258 	skb_reserve(buff, MAX_TCP_HEADER);
4259 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4260 
4261 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4262 	 * too much.
4263 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4264 	 */
4265 	skb_set_tcp_pure_ack(buff);
4266 
4267 	/* Send it off, this clears delayed acks for us. */
4268 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4269 }
4270 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4271 
4272 void tcp_send_ack(struct sock *sk)
4273 {
4274 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4275 }
4276 
4277 /* This routine sends a packet with an out of date sequence
4278  * number. It assumes the other end will try to ack it.
4279  *
4280  * Question: what should we make while urgent mode?
4281  * 4.4BSD forces sending single byte of data. We cannot send
4282  * out of window data, because we have SND.NXT==SND.MAX...
4283  *
4284  * Current solution: to send TWO zero-length segments in urgent mode:
4285  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4286  * out-of-date with SND.UNA-1 to probe window.
4287  */
4288 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4289 {
4290 	struct tcp_sock *tp = tcp_sk(sk);
4291 	struct sk_buff *skb;
4292 
4293 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4294 	skb = alloc_skb(MAX_TCP_HEADER,
4295 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4296 	if (!skb)
4297 		return -1;
4298 
4299 	/* Reserve space for headers and set control bits. */
4300 	skb_reserve(skb, MAX_TCP_HEADER);
4301 	/* Use a previous sequence.  This should cause the other
4302 	 * end to send an ack.  Don't queue or clone SKB, just
4303 	 * send it.
4304 	 */
4305 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4306 	NET_INC_STATS(sock_net(sk), mib);
4307 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4308 }
4309 
4310 /* Called from setsockopt( ... TCP_REPAIR ) */
4311 void tcp_send_window_probe(struct sock *sk)
4312 {
4313 	if (sk->sk_state == TCP_ESTABLISHED) {
4314 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4315 		tcp_mstamp_refresh(tcp_sk(sk));
4316 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4317 	}
4318 }
4319 
4320 /* Initiate keepalive or window probe from timer. */
4321 int tcp_write_wakeup(struct sock *sk, int mib)
4322 {
4323 	struct tcp_sock *tp = tcp_sk(sk);
4324 	struct sk_buff *skb;
4325 
4326 	if (sk->sk_state == TCP_CLOSE)
4327 		return -1;
4328 
4329 	skb = tcp_send_head(sk);
4330 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4331 		int err;
4332 		unsigned int mss = tcp_current_mss(sk);
4333 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4334 
4335 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4336 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4337 
4338 		/* We are probing the opening of a window
4339 		 * but the window size is != 0
4340 		 * must have been a result SWS avoidance ( sender )
4341 		 */
4342 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4343 		    skb->len > mss) {
4344 			seg_size = min(seg_size, mss);
4345 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4346 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4347 					 skb, seg_size, mss, GFP_ATOMIC))
4348 				return -1;
4349 		} else if (!tcp_skb_pcount(skb))
4350 			tcp_set_skb_tso_segs(skb, mss);
4351 
4352 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4353 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4354 		if (!err)
4355 			tcp_event_new_data_sent(sk, skb);
4356 		return err;
4357 	} else {
4358 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4359 			tcp_xmit_probe_skb(sk, 1, mib);
4360 		return tcp_xmit_probe_skb(sk, 0, mib);
4361 	}
4362 }
4363 
4364 /* A window probe timeout has occurred.  If window is not closed send
4365  * a partial packet else a zero probe.
4366  */
4367 void tcp_send_probe0(struct sock *sk)
4368 {
4369 	struct inet_connection_sock *icsk = inet_csk(sk);
4370 	struct tcp_sock *tp = tcp_sk(sk);
4371 	struct net *net = sock_net(sk);
4372 	unsigned long timeout;
4373 	int err;
4374 
4375 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4376 
4377 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4378 		/* Cancel probe timer, if it is not required. */
4379 		icsk->icsk_probes_out = 0;
4380 		icsk->icsk_backoff = 0;
4381 		icsk->icsk_probes_tstamp = 0;
4382 		return;
4383 	}
4384 
4385 	icsk->icsk_probes_out++;
4386 	if (err <= 0) {
4387 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4388 			icsk->icsk_backoff++;
4389 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4390 	} else {
4391 		/* If packet was not sent due to local congestion,
4392 		 * Let senders fight for local resources conservatively.
4393 		 */
4394 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4395 	}
4396 
4397 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4398 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4399 }
4400 
4401 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4402 {
4403 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4404 	struct flowi fl;
4405 	int res;
4406 
4407 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4408 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4409 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4410 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4411 				  NULL);
4412 	if (!res) {
4413 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4414 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4415 		if (unlikely(tcp_passive_fastopen(sk))) {
4416 			/* sk has const attribute because listeners are lockless.
4417 			 * However in this case, we are dealing with a passive fastopen
4418 			 * socket thus we can change total_retrans value.
4419 			 */
4420 			tcp_sk_rw(sk)->total_retrans++;
4421 		}
4422 		trace_tcp_retransmit_synack(sk, req);
4423 	}
4424 	return res;
4425 }
4426 EXPORT_SYMBOL(tcp_rtx_synack);
4427