xref: /linux/net/ipv4/tcp_output.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct inet_connection_sock *icsk = inet_csk(sk);
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	unsigned int prior_packets = tp->packets_out;
80 
81 	tcp_advance_send_head(sk, skb);
82 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 		tcp_rearm_rto(sk);
88 	}
89 }
90 
91 /* SND.NXT, if window was not shrunk.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	s32 delta = tcp_time_stamp - tp->lsndtime;
145 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_time_stamp;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_time_stamp;
166 	const struct dst_entry *dst = __sk_dst_get(sk);
167 
168 	if (sysctl_tcp_slow_start_after_idle &&
169 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 			icsk->icsk_ack.pingpong = 1;
180 }
181 
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 	tcp_dec_quickack_mode(sk, pkts);
186 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188 
189 
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 	/* Initial receive window should be twice of TCP_INIT_CWND to
193 	 * enable proper sending of new unsent data during fast recovery
194 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 	 * limit when mss is larger than 1460.
196 	 */
197 	u32 init_rwnd = TCP_INIT_CWND * 2;
198 
199 	if (mss > 1460)
200 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 	return init_rwnd;
202 }
203 
204 /* Determine a window scaling and initial window to offer.
205  * Based on the assumption that the given amount of space
206  * will be offered. Store the results in the tp structure.
207  * NOTE: for smooth operation initial space offering should
208  * be a multiple of mss if possible. We assume here that mss >= 1.
209  * This MUST be enforced by all callers.
210  */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 			       __u32 *rcv_wnd, __u32 *window_clamp,
213 			       int wscale_ok, __u8 *rcv_wscale,
214 			       __u32 init_rcv_wnd)
215 {
216 	unsigned int space = (__space < 0 ? 0 : __space);
217 
218 	/* If no clamp set the clamp to the max possible scaled window */
219 	if (*window_clamp == 0)
220 		(*window_clamp) = (65535 << 14);
221 	space = min(*window_clamp, space);
222 
223 	/* Quantize space offering to a multiple of mss if possible. */
224 	if (space > mss)
225 		space = (space / mss) * mss;
226 
227 	/* NOTE: offering an initial window larger than 32767
228 	 * will break some buggy TCP stacks. If the admin tells us
229 	 * it is likely we could be speaking with such a buggy stack
230 	 * we will truncate our initial window offering to 32K-1
231 	 * unless the remote has sent us a window scaling option,
232 	 * which we interpret as a sign the remote TCP is not
233 	 * misinterpreting the window field as a signed quantity.
234 	 */
235 	if (sysctl_tcp_workaround_signed_windows)
236 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 	else
238 		(*rcv_wnd) = space;
239 
240 	(*rcv_wscale) = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window
243 		 * See RFC1323 for an explanation of the limit to 14
244 		 */
245 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 		space = min_t(u32, space, *window_clamp);
247 		while (space > 65535 && (*rcv_wscale) < 14) {
248 			space >>= 1;
249 			(*rcv_wscale)++;
250 		}
251 	}
252 
253 	if (mss > (1 << *rcv_wscale)) {
254 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 			init_rcv_wnd = tcp_default_init_rwnd(mss);
256 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 	}
258 
259 	/* Set the clamp no higher than max representable value */
260 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263 
264 /* Chose a new window to advertise, update state in tcp_sock for the
265  * socket, and return result with RFC1323 scaling applied.  The return
266  * value can be stuffed directly into th->window for an outgoing
267  * frame.
268  */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 	struct tcp_sock *tp = tcp_sk(sk);
272 	u32 cur_win = tcp_receive_window(tp);
273 	u32 new_win = __tcp_select_window(sk);
274 
275 	/* Never shrink the offered window */
276 	if (new_win < cur_win) {
277 		/* Danger Will Robinson!
278 		 * Don't update rcv_wup/rcv_wnd here or else
279 		 * we will not be able to advertise a zero
280 		 * window in time.  --DaveM
281 		 *
282 		 * Relax Will Robinson.
283 		 */
284 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 	}
286 	tp->rcv_wnd = new_win;
287 	tp->rcv_wup = tp->rcv_nxt;
288 
289 	/* Make sure we do not exceed the maximum possible
290 	 * scaled window.
291 	 */
292 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
293 		new_win = min(new_win, MAX_TCP_WINDOW);
294 	else
295 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
296 
297 	/* RFC1323 scaling applied */
298 	new_win >>= tp->rx_opt.rcv_wscale;
299 
300 	/* If we advertise zero window, disable fast path. */
301 	if (new_win == 0)
302 		tp->pred_flags = 0;
303 
304 	return new_win;
305 }
306 
307 /* Packet ECN state for a SYN-ACK */
308 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
309 {
310 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
311 	if (!(tp->ecn_flags & TCP_ECN_OK))
312 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
313 }
314 
315 /* Packet ECN state for a SYN.  */
316 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
317 {
318 	struct tcp_sock *tp = tcp_sk(sk);
319 
320 	tp->ecn_flags = 0;
321 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
322 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
323 		tp->ecn_flags = TCP_ECN_OK;
324 	}
325 }
326 
327 static __inline__ void
328 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
329 {
330 	if (inet_rsk(req)->ecn_ok)
331 		th->ece = 1;
332 }
333 
334 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
335  * be sent.
336  */
337 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
338 				int tcp_header_len)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	if (tp->ecn_flags & TCP_ECN_OK) {
343 		/* Not-retransmitted data segment: set ECT and inject CWR. */
344 		if (skb->len != tcp_header_len &&
345 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
346 			INET_ECN_xmit(sk);
347 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
348 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
349 				tcp_hdr(skb)->cwr = 1;
350 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
351 			}
352 		} else {
353 			/* ACK or retransmitted segment: clear ECT|CE */
354 			INET_ECN_dontxmit(sk);
355 		}
356 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
357 			tcp_hdr(skb)->ece = 1;
358 	}
359 }
360 
361 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
362  * auto increment end seqno.
363  */
364 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
365 {
366 	skb->ip_summed = CHECKSUM_PARTIAL;
367 	skb->csum = 0;
368 
369 	TCP_SKB_CB(skb)->tcp_flags = flags;
370 	TCP_SKB_CB(skb)->sacked = 0;
371 
372 	skb_shinfo(skb)->gso_segs = 1;
373 	skb_shinfo(skb)->gso_size = 0;
374 	skb_shinfo(skb)->gso_type = 0;
375 
376 	TCP_SKB_CB(skb)->seq = seq;
377 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
378 		seq++;
379 	TCP_SKB_CB(skb)->end_seq = seq;
380 }
381 
382 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
383 {
384 	return tp->snd_una != tp->snd_up;
385 }
386 
387 #define OPTION_SACK_ADVERTISE	(1 << 0)
388 #define OPTION_TS		(1 << 1)
389 #define OPTION_MD5		(1 << 2)
390 #define OPTION_WSCALE		(1 << 3)
391 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
392 
393 struct tcp_out_options {
394 	u16 options;		/* bit field of OPTION_* */
395 	u16 mss;		/* 0 to disable */
396 	u8 ws;			/* window scale, 0 to disable */
397 	u8 num_sack_blocks;	/* number of SACK blocks to include */
398 	u8 hash_size;		/* bytes in hash_location */
399 	__u8 *hash_location;	/* temporary pointer, overloaded */
400 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
401 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
402 };
403 
404 /* Write previously computed TCP options to the packet.
405  *
406  * Beware: Something in the Internet is very sensitive to the ordering of
407  * TCP options, we learned this through the hard way, so be careful here.
408  * Luckily we can at least blame others for their non-compliance but from
409  * inter-operatibility perspective it seems that we're somewhat stuck with
410  * the ordering which we have been using if we want to keep working with
411  * those broken things (not that it currently hurts anybody as there isn't
412  * particular reason why the ordering would need to be changed).
413  *
414  * At least SACK_PERM as the first option is known to lead to a disaster
415  * (but it may well be that other scenarios fail similarly).
416  */
417 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
418 			      struct tcp_out_options *opts)
419 {
420 	u16 options = opts->options;	/* mungable copy */
421 
422 	if (unlikely(OPTION_MD5 & options)) {
423 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
424 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
425 		/* overload cookie hash location */
426 		opts->hash_location = (__u8 *)ptr;
427 		ptr += 4;
428 	}
429 
430 	if (unlikely(opts->mss)) {
431 		*ptr++ = htonl((TCPOPT_MSS << 24) |
432 			       (TCPOLEN_MSS << 16) |
433 			       opts->mss);
434 	}
435 
436 	if (likely(OPTION_TS & options)) {
437 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
438 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
439 				       (TCPOLEN_SACK_PERM << 16) |
440 				       (TCPOPT_TIMESTAMP << 8) |
441 				       TCPOLEN_TIMESTAMP);
442 			options &= ~OPTION_SACK_ADVERTISE;
443 		} else {
444 			*ptr++ = htonl((TCPOPT_NOP << 24) |
445 				       (TCPOPT_NOP << 16) |
446 				       (TCPOPT_TIMESTAMP << 8) |
447 				       TCPOLEN_TIMESTAMP);
448 		}
449 		*ptr++ = htonl(opts->tsval);
450 		*ptr++ = htonl(opts->tsecr);
451 	}
452 
453 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
454 		*ptr++ = htonl((TCPOPT_NOP << 24) |
455 			       (TCPOPT_NOP << 16) |
456 			       (TCPOPT_SACK_PERM << 8) |
457 			       TCPOLEN_SACK_PERM);
458 	}
459 
460 	if (unlikely(OPTION_WSCALE & options)) {
461 		*ptr++ = htonl((TCPOPT_NOP << 24) |
462 			       (TCPOPT_WINDOW << 16) |
463 			       (TCPOLEN_WINDOW << 8) |
464 			       opts->ws);
465 	}
466 
467 	if (unlikely(opts->num_sack_blocks)) {
468 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
469 			tp->duplicate_sack : tp->selective_acks;
470 		int this_sack;
471 
472 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
473 			       (TCPOPT_NOP  << 16) |
474 			       (TCPOPT_SACK <<  8) |
475 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
476 						     TCPOLEN_SACK_PERBLOCK)));
477 
478 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
479 		     ++this_sack) {
480 			*ptr++ = htonl(sp[this_sack].start_seq);
481 			*ptr++ = htonl(sp[this_sack].end_seq);
482 		}
483 
484 		tp->rx_opt.dsack = 0;
485 	}
486 
487 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
488 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
489 
490 		*ptr++ = htonl((TCPOPT_EXP << 24) |
491 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
492 			       TCPOPT_FASTOPEN_MAGIC);
493 
494 		memcpy(ptr, foc->val, foc->len);
495 		if ((foc->len & 3) == 2) {
496 			u8 *align = ((u8 *)ptr) + foc->len;
497 			align[0] = align[1] = TCPOPT_NOP;
498 		}
499 		ptr += (foc->len + 3) >> 2;
500 	}
501 }
502 
503 /* Compute TCP options for SYN packets. This is not the final
504  * network wire format yet.
505  */
506 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
507 				struct tcp_out_options *opts,
508 				struct tcp_md5sig_key **md5)
509 {
510 	struct tcp_sock *tp = tcp_sk(sk);
511 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
512 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
513 
514 #ifdef CONFIG_TCP_MD5SIG
515 	*md5 = tp->af_specific->md5_lookup(sk, sk);
516 	if (*md5) {
517 		opts->options |= OPTION_MD5;
518 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
519 	}
520 #else
521 	*md5 = NULL;
522 #endif
523 
524 	/* We always get an MSS option.  The option bytes which will be seen in
525 	 * normal data packets should timestamps be used, must be in the MSS
526 	 * advertised.  But we subtract them from tp->mss_cache so that
527 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
528 	 * fact here if necessary.  If we don't do this correctly, as a
529 	 * receiver we won't recognize data packets as being full sized when we
530 	 * should, and thus we won't abide by the delayed ACK rules correctly.
531 	 * SACKs don't matter, we never delay an ACK when we have any of those
532 	 * going out.  */
533 	opts->mss = tcp_advertise_mss(sk);
534 	remaining -= TCPOLEN_MSS_ALIGNED;
535 
536 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
537 		opts->options |= OPTION_TS;
538 		opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
539 		opts->tsecr = tp->rx_opt.ts_recent;
540 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
541 	}
542 	if (likely(sysctl_tcp_window_scaling)) {
543 		opts->ws = tp->rx_opt.rcv_wscale;
544 		opts->options |= OPTION_WSCALE;
545 		remaining -= TCPOLEN_WSCALE_ALIGNED;
546 	}
547 	if (likely(sysctl_tcp_sack)) {
548 		opts->options |= OPTION_SACK_ADVERTISE;
549 		if (unlikely(!(OPTION_TS & opts->options)))
550 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
551 	}
552 
553 	if (fastopen && fastopen->cookie.len >= 0) {
554 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
555 		need = (need + 3) & ~3U;  /* Align to 32 bits */
556 		if (remaining >= need) {
557 			opts->options |= OPTION_FAST_OPEN_COOKIE;
558 			opts->fastopen_cookie = &fastopen->cookie;
559 			remaining -= need;
560 			tp->syn_fastopen = 1;
561 		}
562 	}
563 
564 	return MAX_TCP_OPTION_SPACE - remaining;
565 }
566 
567 /* Set up TCP options for SYN-ACKs. */
568 static unsigned int tcp_synack_options(struct sock *sk,
569 				   struct request_sock *req,
570 				   unsigned int mss, struct sk_buff *skb,
571 				   struct tcp_out_options *opts,
572 				   struct tcp_md5sig_key **md5,
573 				   struct tcp_fastopen_cookie *foc)
574 {
575 	struct inet_request_sock *ireq = inet_rsk(req);
576 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
577 
578 #ifdef CONFIG_TCP_MD5SIG
579 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
580 	if (*md5) {
581 		opts->options |= OPTION_MD5;
582 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
583 
584 		/* We can't fit any SACK blocks in a packet with MD5 + TS
585 		 * options. There was discussion about disabling SACK
586 		 * rather than TS in order to fit in better with old,
587 		 * buggy kernels, but that was deemed to be unnecessary.
588 		 */
589 		ireq->tstamp_ok &= !ireq->sack_ok;
590 	}
591 #else
592 	*md5 = NULL;
593 #endif
594 
595 	/* We always send an MSS option. */
596 	opts->mss = mss;
597 	remaining -= TCPOLEN_MSS_ALIGNED;
598 
599 	if (likely(ireq->wscale_ok)) {
600 		opts->ws = ireq->rcv_wscale;
601 		opts->options |= OPTION_WSCALE;
602 		remaining -= TCPOLEN_WSCALE_ALIGNED;
603 	}
604 	if (likely(ireq->tstamp_ok)) {
605 		opts->options |= OPTION_TS;
606 		opts->tsval = TCP_SKB_CB(skb)->when;
607 		opts->tsecr = req->ts_recent;
608 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
609 	}
610 	if (likely(ireq->sack_ok)) {
611 		opts->options |= OPTION_SACK_ADVERTISE;
612 		if (unlikely(!ireq->tstamp_ok))
613 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
614 	}
615 	if (foc != NULL) {
616 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
617 		need = (need + 3) & ~3U;  /* Align to 32 bits */
618 		if (remaining >= need) {
619 			opts->options |= OPTION_FAST_OPEN_COOKIE;
620 			opts->fastopen_cookie = foc;
621 			remaining -= need;
622 		}
623 	}
624 
625 	return MAX_TCP_OPTION_SPACE - remaining;
626 }
627 
628 /* Compute TCP options for ESTABLISHED sockets. This is not the
629  * final wire format yet.
630  */
631 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
632 					struct tcp_out_options *opts,
633 					struct tcp_md5sig_key **md5)
634 {
635 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
636 	struct tcp_sock *tp = tcp_sk(sk);
637 	unsigned int size = 0;
638 	unsigned int eff_sacks;
639 
640 	opts->options = 0;
641 
642 #ifdef CONFIG_TCP_MD5SIG
643 	*md5 = tp->af_specific->md5_lookup(sk, sk);
644 	if (unlikely(*md5)) {
645 		opts->options |= OPTION_MD5;
646 		size += TCPOLEN_MD5SIG_ALIGNED;
647 	}
648 #else
649 	*md5 = NULL;
650 #endif
651 
652 	if (likely(tp->rx_opt.tstamp_ok)) {
653 		opts->options |= OPTION_TS;
654 		opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
655 		opts->tsecr = tp->rx_opt.ts_recent;
656 		size += TCPOLEN_TSTAMP_ALIGNED;
657 	}
658 
659 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
660 	if (unlikely(eff_sacks)) {
661 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
662 		opts->num_sack_blocks =
663 			min_t(unsigned int, eff_sacks,
664 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
665 			      TCPOLEN_SACK_PERBLOCK);
666 		size += TCPOLEN_SACK_BASE_ALIGNED +
667 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
668 	}
669 
670 	return size;
671 }
672 
673 
674 /* TCP SMALL QUEUES (TSQ)
675  *
676  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
677  * to reduce RTT and bufferbloat.
678  * We do this using a special skb destructor (tcp_wfree).
679  *
680  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
681  * needs to be reallocated in a driver.
682  * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
683  *
684  * Since transmit from skb destructor is forbidden, we use a tasklet
685  * to process all sockets that eventually need to send more skbs.
686  * We use one tasklet per cpu, with its own queue of sockets.
687  */
688 struct tsq_tasklet {
689 	struct tasklet_struct	tasklet;
690 	struct list_head	head; /* queue of tcp sockets */
691 };
692 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
693 
694 static void tcp_tsq_handler(struct sock *sk)
695 {
696 	if ((1 << sk->sk_state) &
697 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
698 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
699 		tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
700 }
701 /*
702  * One tasklest per cpu tries to send more skbs.
703  * We run in tasklet context but need to disable irqs when
704  * transfering tsq->head because tcp_wfree() might
705  * interrupt us (non NAPI drivers)
706  */
707 static void tcp_tasklet_func(unsigned long data)
708 {
709 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
710 	LIST_HEAD(list);
711 	unsigned long flags;
712 	struct list_head *q, *n;
713 	struct tcp_sock *tp;
714 	struct sock *sk;
715 
716 	local_irq_save(flags);
717 	list_splice_init(&tsq->head, &list);
718 	local_irq_restore(flags);
719 
720 	list_for_each_safe(q, n, &list) {
721 		tp = list_entry(q, struct tcp_sock, tsq_node);
722 		list_del(&tp->tsq_node);
723 
724 		sk = (struct sock *)tp;
725 		bh_lock_sock(sk);
726 
727 		if (!sock_owned_by_user(sk)) {
728 			tcp_tsq_handler(sk);
729 		} else {
730 			/* defer the work to tcp_release_cb() */
731 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
732 		}
733 		bh_unlock_sock(sk);
734 
735 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
736 		sk_free(sk);
737 	}
738 }
739 
740 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
741 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
742 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
743 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
744 /**
745  * tcp_release_cb - tcp release_sock() callback
746  * @sk: socket
747  *
748  * called from release_sock() to perform protocol dependent
749  * actions before socket release.
750  */
751 void tcp_release_cb(struct sock *sk)
752 {
753 	struct tcp_sock *tp = tcp_sk(sk);
754 	unsigned long flags, nflags;
755 
756 	/* perform an atomic operation only if at least one flag is set */
757 	do {
758 		flags = tp->tsq_flags;
759 		if (!(flags & TCP_DEFERRED_ALL))
760 			return;
761 		nflags = flags & ~TCP_DEFERRED_ALL;
762 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
763 
764 	if (flags & (1UL << TCP_TSQ_DEFERRED))
765 		tcp_tsq_handler(sk);
766 
767 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
768 		tcp_write_timer_handler(sk);
769 		__sock_put(sk);
770 	}
771 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
772 		tcp_delack_timer_handler(sk);
773 		__sock_put(sk);
774 	}
775 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
776 		sk->sk_prot->mtu_reduced(sk);
777 		__sock_put(sk);
778 	}
779 }
780 EXPORT_SYMBOL(tcp_release_cb);
781 
782 void __init tcp_tasklet_init(void)
783 {
784 	int i;
785 
786 	for_each_possible_cpu(i) {
787 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
788 
789 		INIT_LIST_HEAD(&tsq->head);
790 		tasklet_init(&tsq->tasklet,
791 			     tcp_tasklet_func,
792 			     (unsigned long)tsq);
793 	}
794 }
795 
796 /*
797  * Write buffer destructor automatically called from kfree_skb.
798  * We cant xmit new skbs from this context, as we might already
799  * hold qdisc lock.
800  */
801 void tcp_wfree(struct sk_buff *skb)
802 {
803 	struct sock *sk = skb->sk;
804 	struct tcp_sock *tp = tcp_sk(sk);
805 
806 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
807 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
808 		unsigned long flags;
809 		struct tsq_tasklet *tsq;
810 
811 		/* Keep a ref on socket.
812 		 * This last ref will be released in tcp_tasklet_func()
813 		 */
814 		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
815 
816 		/* queue this socket to tasklet queue */
817 		local_irq_save(flags);
818 		tsq = &__get_cpu_var(tsq_tasklet);
819 		list_add(&tp->tsq_node, &tsq->head);
820 		tasklet_schedule(&tsq->tasklet);
821 		local_irq_restore(flags);
822 	} else {
823 		sock_wfree(skb);
824 	}
825 }
826 
827 /* This routine actually transmits TCP packets queued in by
828  * tcp_do_sendmsg().  This is used by both the initial
829  * transmission and possible later retransmissions.
830  * All SKB's seen here are completely headerless.  It is our
831  * job to build the TCP header, and pass the packet down to
832  * IP so it can do the same plus pass the packet off to the
833  * device.
834  *
835  * We are working here with either a clone of the original
836  * SKB, or a fresh unique copy made by the retransmit engine.
837  */
838 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
839 			    gfp_t gfp_mask)
840 {
841 	const struct inet_connection_sock *icsk = inet_csk(sk);
842 	struct inet_sock *inet;
843 	struct tcp_sock *tp;
844 	struct tcp_skb_cb *tcb;
845 	struct tcp_out_options opts;
846 	unsigned int tcp_options_size, tcp_header_size;
847 	struct tcp_md5sig_key *md5;
848 	struct tcphdr *th;
849 	int err;
850 
851 	BUG_ON(!skb || !tcp_skb_pcount(skb));
852 
853 	if (clone_it) {
854 		const struct sk_buff *fclone = skb + 1;
855 
856 		/* If congestion control is doing timestamping, we must
857 		 * take such a timestamp before we potentially clone/copy.
858 		 */
859 		if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
860 			__net_timestamp(skb);
861 
862 		if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
863 			     fclone->fclone == SKB_FCLONE_CLONE))
864 			NET_INC_STATS_BH(sock_net(sk),
865 					 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
866 
867 		if (unlikely(skb_cloned(skb)))
868 			skb = pskb_copy(skb, gfp_mask);
869 		else
870 			skb = skb_clone(skb, gfp_mask);
871 		if (unlikely(!skb))
872 			return -ENOBUFS;
873 	}
874 
875 	inet = inet_sk(sk);
876 	tp = tcp_sk(sk);
877 	tcb = TCP_SKB_CB(skb);
878 	memset(&opts, 0, sizeof(opts));
879 
880 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
881 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
882 	else
883 		tcp_options_size = tcp_established_options(sk, skb, &opts,
884 							   &md5);
885 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
886 
887 	if (tcp_packets_in_flight(tp) == 0)
888 		tcp_ca_event(sk, CA_EVENT_TX_START);
889 
890 	/* if no packet is in qdisc/device queue, then allow XPS to select
891 	 * another queue.
892 	 */
893 	skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
894 
895 	skb_push(skb, tcp_header_size);
896 	skb_reset_transport_header(skb);
897 
898 	skb_orphan(skb);
899 	skb->sk = sk;
900 	skb->destructor = tcp_wfree;
901 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
902 
903 	/* Build TCP header and checksum it. */
904 	th = tcp_hdr(skb);
905 	th->source		= inet->inet_sport;
906 	th->dest		= inet->inet_dport;
907 	th->seq			= htonl(tcb->seq);
908 	th->ack_seq		= htonl(tp->rcv_nxt);
909 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
910 					tcb->tcp_flags);
911 
912 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
913 		/* RFC1323: The window in SYN & SYN/ACK segments
914 		 * is never scaled.
915 		 */
916 		th->window	= htons(min(tp->rcv_wnd, 65535U));
917 	} else {
918 		th->window	= htons(tcp_select_window(sk));
919 	}
920 	th->check		= 0;
921 	th->urg_ptr		= 0;
922 
923 	/* The urg_mode check is necessary during a below snd_una win probe */
924 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
925 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
926 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
927 			th->urg = 1;
928 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
929 			th->urg_ptr = htons(0xFFFF);
930 			th->urg = 1;
931 		}
932 	}
933 
934 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
935 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
936 		TCP_ECN_send(sk, skb, tcp_header_size);
937 
938 #ifdef CONFIG_TCP_MD5SIG
939 	/* Calculate the MD5 hash, as we have all we need now */
940 	if (md5) {
941 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
942 		tp->af_specific->calc_md5_hash(opts.hash_location,
943 					       md5, sk, NULL, skb);
944 	}
945 #endif
946 
947 	icsk->icsk_af_ops->send_check(sk, skb);
948 
949 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
950 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
951 
952 	if (skb->len != tcp_header_size)
953 		tcp_event_data_sent(tp, sk);
954 
955 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
956 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
957 			      tcp_skb_pcount(skb));
958 
959 	err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
960 	if (likely(err <= 0))
961 		return err;
962 
963 	tcp_enter_cwr(sk, 1);
964 
965 	return net_xmit_eval(err);
966 }
967 
968 /* This routine just queues the buffer for sending.
969  *
970  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
971  * otherwise socket can stall.
972  */
973 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
974 {
975 	struct tcp_sock *tp = tcp_sk(sk);
976 
977 	/* Advance write_seq and place onto the write_queue. */
978 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
979 	skb_header_release(skb);
980 	tcp_add_write_queue_tail(sk, skb);
981 	sk->sk_wmem_queued += skb->truesize;
982 	sk_mem_charge(sk, skb->truesize);
983 }
984 
985 /* Initialize TSO segments for a packet. */
986 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
987 				 unsigned int mss_now)
988 {
989 	/* Make sure we own this skb before messing gso_size/gso_segs */
990 	WARN_ON_ONCE(skb_cloned(skb));
991 
992 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
993 		/* Avoid the costly divide in the normal
994 		 * non-TSO case.
995 		 */
996 		skb_shinfo(skb)->gso_segs = 1;
997 		skb_shinfo(skb)->gso_size = 0;
998 		skb_shinfo(skb)->gso_type = 0;
999 	} else {
1000 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1001 		skb_shinfo(skb)->gso_size = mss_now;
1002 		skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1003 	}
1004 }
1005 
1006 /* When a modification to fackets out becomes necessary, we need to check
1007  * skb is counted to fackets_out or not.
1008  */
1009 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1010 				   int decr)
1011 {
1012 	struct tcp_sock *tp = tcp_sk(sk);
1013 
1014 	if (!tp->sacked_out || tcp_is_reno(tp))
1015 		return;
1016 
1017 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1018 		tp->fackets_out -= decr;
1019 }
1020 
1021 /* Pcount in the middle of the write queue got changed, we need to do various
1022  * tweaks to fix counters
1023  */
1024 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1025 {
1026 	struct tcp_sock *tp = tcp_sk(sk);
1027 
1028 	tp->packets_out -= decr;
1029 
1030 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1031 		tp->sacked_out -= decr;
1032 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1033 		tp->retrans_out -= decr;
1034 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1035 		tp->lost_out -= decr;
1036 
1037 	/* Reno case is special. Sigh... */
1038 	if (tcp_is_reno(tp) && decr > 0)
1039 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1040 
1041 	tcp_adjust_fackets_out(sk, skb, decr);
1042 
1043 	if (tp->lost_skb_hint &&
1044 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1045 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1046 		tp->lost_cnt_hint -= decr;
1047 
1048 	tcp_verify_left_out(tp);
1049 }
1050 
1051 /* Function to create two new TCP segments.  Shrinks the given segment
1052  * to the specified size and appends a new segment with the rest of the
1053  * packet to the list.  This won't be called frequently, I hope.
1054  * Remember, these are still headerless SKBs at this point.
1055  */
1056 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1057 		 unsigned int mss_now)
1058 {
1059 	struct tcp_sock *tp = tcp_sk(sk);
1060 	struct sk_buff *buff;
1061 	int nsize, old_factor;
1062 	int nlen;
1063 	u8 flags;
1064 
1065 	if (WARN_ON(len > skb->len))
1066 		return -EINVAL;
1067 
1068 	nsize = skb_headlen(skb) - len;
1069 	if (nsize < 0)
1070 		nsize = 0;
1071 
1072 	if (skb_unclone(skb, GFP_ATOMIC))
1073 		return -ENOMEM;
1074 
1075 	/* Get a new skb... force flag on. */
1076 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1077 	if (buff == NULL)
1078 		return -ENOMEM; /* We'll just try again later. */
1079 
1080 	sk->sk_wmem_queued += buff->truesize;
1081 	sk_mem_charge(sk, buff->truesize);
1082 	nlen = skb->len - len - nsize;
1083 	buff->truesize += nlen;
1084 	skb->truesize -= nlen;
1085 
1086 	/* Correct the sequence numbers. */
1087 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1088 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1089 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1090 
1091 	/* PSH and FIN should only be set in the second packet. */
1092 	flags = TCP_SKB_CB(skb)->tcp_flags;
1093 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1094 	TCP_SKB_CB(buff)->tcp_flags = flags;
1095 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1096 
1097 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1098 		/* Copy and checksum data tail into the new buffer. */
1099 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1100 						       skb_put(buff, nsize),
1101 						       nsize, 0);
1102 
1103 		skb_trim(skb, len);
1104 
1105 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1106 	} else {
1107 		skb->ip_summed = CHECKSUM_PARTIAL;
1108 		skb_split(skb, buff, len);
1109 	}
1110 
1111 	buff->ip_summed = skb->ip_summed;
1112 
1113 	/* Looks stupid, but our code really uses when of
1114 	 * skbs, which it never sent before. --ANK
1115 	 */
1116 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1117 	buff->tstamp = skb->tstamp;
1118 
1119 	old_factor = tcp_skb_pcount(skb);
1120 
1121 	/* Fix up tso_factor for both original and new SKB.  */
1122 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1123 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1124 
1125 	/* If this packet has been sent out already, we must
1126 	 * adjust the various packet counters.
1127 	 */
1128 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1129 		int diff = old_factor - tcp_skb_pcount(skb) -
1130 			tcp_skb_pcount(buff);
1131 
1132 		if (diff)
1133 			tcp_adjust_pcount(sk, skb, diff);
1134 	}
1135 
1136 	/* Link BUFF into the send queue. */
1137 	skb_header_release(buff);
1138 	tcp_insert_write_queue_after(skb, buff, sk);
1139 
1140 	return 0;
1141 }
1142 
1143 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1144  * eventually). The difference is that pulled data not copied, but
1145  * immediately discarded.
1146  */
1147 static void __pskb_trim_head(struct sk_buff *skb, int len)
1148 {
1149 	int i, k, eat;
1150 
1151 	eat = min_t(int, len, skb_headlen(skb));
1152 	if (eat) {
1153 		__skb_pull(skb, eat);
1154 		len -= eat;
1155 		if (!len)
1156 			return;
1157 	}
1158 	eat = len;
1159 	k = 0;
1160 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1162 
1163 		if (size <= eat) {
1164 			skb_frag_unref(skb, i);
1165 			eat -= size;
1166 		} else {
1167 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1168 			if (eat) {
1169 				skb_shinfo(skb)->frags[k].page_offset += eat;
1170 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1171 				eat = 0;
1172 			}
1173 			k++;
1174 		}
1175 	}
1176 	skb_shinfo(skb)->nr_frags = k;
1177 
1178 	skb_reset_tail_pointer(skb);
1179 	skb->data_len -= len;
1180 	skb->len = skb->data_len;
1181 }
1182 
1183 /* Remove acked data from a packet in the transmit queue. */
1184 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1185 {
1186 	if (skb_unclone(skb, GFP_ATOMIC))
1187 		return -ENOMEM;
1188 
1189 	__pskb_trim_head(skb, len);
1190 
1191 	TCP_SKB_CB(skb)->seq += len;
1192 	skb->ip_summed = CHECKSUM_PARTIAL;
1193 
1194 	skb->truesize	     -= len;
1195 	sk->sk_wmem_queued   -= len;
1196 	sk_mem_uncharge(sk, len);
1197 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1198 
1199 	/* Any change of skb->len requires recalculation of tso factor. */
1200 	if (tcp_skb_pcount(skb) > 1)
1201 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1202 
1203 	return 0;
1204 }
1205 
1206 /* Calculate MSS not accounting any TCP options.  */
1207 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1208 {
1209 	const struct tcp_sock *tp = tcp_sk(sk);
1210 	const struct inet_connection_sock *icsk = inet_csk(sk);
1211 	int mss_now;
1212 
1213 	/* Calculate base mss without TCP options:
1214 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1215 	 */
1216 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1217 
1218 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1219 	if (icsk->icsk_af_ops->net_frag_header_len) {
1220 		const struct dst_entry *dst = __sk_dst_get(sk);
1221 
1222 		if (dst && dst_allfrag(dst))
1223 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1224 	}
1225 
1226 	/* Clamp it (mss_clamp does not include tcp options) */
1227 	if (mss_now > tp->rx_opt.mss_clamp)
1228 		mss_now = tp->rx_opt.mss_clamp;
1229 
1230 	/* Now subtract optional transport overhead */
1231 	mss_now -= icsk->icsk_ext_hdr_len;
1232 
1233 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1234 	if (mss_now < 48)
1235 		mss_now = 48;
1236 	return mss_now;
1237 }
1238 
1239 /* Calculate MSS. Not accounting for SACKs here.  */
1240 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1241 {
1242 	/* Subtract TCP options size, not including SACKs */
1243 	return __tcp_mtu_to_mss(sk, pmtu) -
1244 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1245 }
1246 
1247 /* Inverse of above */
1248 int tcp_mss_to_mtu(struct sock *sk, int mss)
1249 {
1250 	const struct tcp_sock *tp = tcp_sk(sk);
1251 	const struct inet_connection_sock *icsk = inet_csk(sk);
1252 	int mtu;
1253 
1254 	mtu = mss +
1255 	      tp->tcp_header_len +
1256 	      icsk->icsk_ext_hdr_len +
1257 	      icsk->icsk_af_ops->net_header_len;
1258 
1259 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1260 	if (icsk->icsk_af_ops->net_frag_header_len) {
1261 		const struct dst_entry *dst = __sk_dst_get(sk);
1262 
1263 		if (dst && dst_allfrag(dst))
1264 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1265 	}
1266 	return mtu;
1267 }
1268 
1269 /* MTU probing init per socket */
1270 void tcp_mtup_init(struct sock *sk)
1271 {
1272 	struct tcp_sock *tp = tcp_sk(sk);
1273 	struct inet_connection_sock *icsk = inet_csk(sk);
1274 
1275 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1276 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1277 			       icsk->icsk_af_ops->net_header_len;
1278 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1279 	icsk->icsk_mtup.probe_size = 0;
1280 }
1281 EXPORT_SYMBOL(tcp_mtup_init);
1282 
1283 /* This function synchronize snd mss to current pmtu/exthdr set.
1284 
1285    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1286    for TCP options, but includes only bare TCP header.
1287 
1288    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1289    It is minimum of user_mss and mss received with SYN.
1290    It also does not include TCP options.
1291 
1292    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1293 
1294    tp->mss_cache is current effective sending mss, including
1295    all tcp options except for SACKs. It is evaluated,
1296    taking into account current pmtu, but never exceeds
1297    tp->rx_opt.mss_clamp.
1298 
1299    NOTE1. rfc1122 clearly states that advertised MSS
1300    DOES NOT include either tcp or ip options.
1301 
1302    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1303    are READ ONLY outside this function.		--ANK (980731)
1304  */
1305 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1306 {
1307 	struct tcp_sock *tp = tcp_sk(sk);
1308 	struct inet_connection_sock *icsk = inet_csk(sk);
1309 	int mss_now;
1310 
1311 	if (icsk->icsk_mtup.search_high > pmtu)
1312 		icsk->icsk_mtup.search_high = pmtu;
1313 
1314 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1315 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1316 
1317 	/* And store cached results */
1318 	icsk->icsk_pmtu_cookie = pmtu;
1319 	if (icsk->icsk_mtup.enabled)
1320 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1321 	tp->mss_cache = mss_now;
1322 
1323 	return mss_now;
1324 }
1325 EXPORT_SYMBOL(tcp_sync_mss);
1326 
1327 /* Compute the current effective MSS, taking SACKs and IP options,
1328  * and even PMTU discovery events into account.
1329  */
1330 unsigned int tcp_current_mss(struct sock *sk)
1331 {
1332 	const struct tcp_sock *tp = tcp_sk(sk);
1333 	const struct dst_entry *dst = __sk_dst_get(sk);
1334 	u32 mss_now;
1335 	unsigned int header_len;
1336 	struct tcp_out_options opts;
1337 	struct tcp_md5sig_key *md5;
1338 
1339 	mss_now = tp->mss_cache;
1340 
1341 	if (dst) {
1342 		u32 mtu = dst_mtu(dst);
1343 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1344 			mss_now = tcp_sync_mss(sk, mtu);
1345 	}
1346 
1347 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1348 		     sizeof(struct tcphdr);
1349 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1350 	 * some common options. If this is an odd packet (because we have SACK
1351 	 * blocks etc) then our calculated header_len will be different, and
1352 	 * we have to adjust mss_now correspondingly */
1353 	if (header_len != tp->tcp_header_len) {
1354 		int delta = (int) header_len - tp->tcp_header_len;
1355 		mss_now -= delta;
1356 	}
1357 
1358 	return mss_now;
1359 }
1360 
1361 /* Congestion window validation. (RFC2861) */
1362 static void tcp_cwnd_validate(struct sock *sk)
1363 {
1364 	struct tcp_sock *tp = tcp_sk(sk);
1365 
1366 	if (tp->packets_out >= tp->snd_cwnd) {
1367 		/* Network is feed fully. */
1368 		tp->snd_cwnd_used = 0;
1369 		tp->snd_cwnd_stamp = tcp_time_stamp;
1370 	} else {
1371 		/* Network starves. */
1372 		if (tp->packets_out > tp->snd_cwnd_used)
1373 			tp->snd_cwnd_used = tp->packets_out;
1374 
1375 		if (sysctl_tcp_slow_start_after_idle &&
1376 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1377 			tcp_cwnd_application_limited(sk);
1378 	}
1379 }
1380 
1381 /* Returns the portion of skb which can be sent right away without
1382  * introducing MSS oddities to segment boundaries. In rare cases where
1383  * mss_now != mss_cache, we will request caller to create a small skb
1384  * per input skb which could be mostly avoided here (if desired).
1385  *
1386  * We explicitly want to create a request for splitting write queue tail
1387  * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1388  * thus all the complexity (cwnd_len is always MSS multiple which we
1389  * return whenever allowed by the other factors). Basically we need the
1390  * modulo only when the receiver window alone is the limiting factor or
1391  * when we would be allowed to send the split-due-to-Nagle skb fully.
1392  */
1393 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1394 					unsigned int mss_now, unsigned int max_segs)
1395 {
1396 	const struct tcp_sock *tp = tcp_sk(sk);
1397 	u32 needed, window, max_len;
1398 
1399 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1400 	max_len = mss_now * max_segs;
1401 
1402 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1403 		return max_len;
1404 
1405 	needed = min(skb->len, window);
1406 
1407 	if (max_len <= needed)
1408 		return max_len;
1409 
1410 	return needed - needed % mss_now;
1411 }
1412 
1413 /* Can at least one segment of SKB be sent right now, according to the
1414  * congestion window rules?  If so, return how many segments are allowed.
1415  */
1416 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1417 					 const struct sk_buff *skb)
1418 {
1419 	u32 in_flight, cwnd;
1420 
1421 	/* Don't be strict about the congestion window for the final FIN.  */
1422 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1423 	    tcp_skb_pcount(skb) == 1)
1424 		return 1;
1425 
1426 	in_flight = tcp_packets_in_flight(tp);
1427 	cwnd = tp->snd_cwnd;
1428 	if (in_flight < cwnd)
1429 		return (cwnd - in_flight);
1430 
1431 	return 0;
1432 }
1433 
1434 /* Initialize TSO state of a skb.
1435  * This must be invoked the first time we consider transmitting
1436  * SKB onto the wire.
1437  */
1438 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1439 			     unsigned int mss_now)
1440 {
1441 	int tso_segs = tcp_skb_pcount(skb);
1442 
1443 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1444 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1445 		tso_segs = tcp_skb_pcount(skb);
1446 	}
1447 	return tso_segs;
1448 }
1449 
1450 /* Minshall's variant of the Nagle send check. */
1451 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1452 {
1453 	return after(tp->snd_sml, tp->snd_una) &&
1454 		!after(tp->snd_sml, tp->snd_nxt);
1455 }
1456 
1457 /* Return false, if packet can be sent now without violation Nagle's rules:
1458  * 1. It is full sized.
1459  * 2. Or it contains FIN. (already checked by caller)
1460  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1461  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1462  *    With Minshall's modification: all sent small packets are ACKed.
1463  */
1464 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1465 				  const struct sk_buff *skb,
1466 				  unsigned int mss_now, int nonagle)
1467 {
1468 	return skb->len < mss_now &&
1469 		((nonagle & TCP_NAGLE_CORK) ||
1470 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1471 }
1472 
1473 /* Return true if the Nagle test allows this packet to be
1474  * sent now.
1475  */
1476 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1477 				  unsigned int cur_mss, int nonagle)
1478 {
1479 	/* Nagle rule does not apply to frames, which sit in the middle of the
1480 	 * write_queue (they have no chances to get new data).
1481 	 *
1482 	 * This is implemented in the callers, where they modify the 'nonagle'
1483 	 * argument based upon the location of SKB in the send queue.
1484 	 */
1485 	if (nonagle & TCP_NAGLE_PUSH)
1486 		return true;
1487 
1488 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1489 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1490 		return true;
1491 
1492 	if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1493 		return true;
1494 
1495 	return false;
1496 }
1497 
1498 /* Does at least the first segment of SKB fit into the send window? */
1499 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1500 			     const struct sk_buff *skb,
1501 			     unsigned int cur_mss)
1502 {
1503 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1504 
1505 	if (skb->len > cur_mss)
1506 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1507 
1508 	return !after(end_seq, tcp_wnd_end(tp));
1509 }
1510 
1511 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1512  * should be put on the wire right now.  If so, it returns the number of
1513  * packets allowed by the congestion window.
1514  */
1515 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1516 				 unsigned int cur_mss, int nonagle)
1517 {
1518 	const struct tcp_sock *tp = tcp_sk(sk);
1519 	unsigned int cwnd_quota;
1520 
1521 	tcp_init_tso_segs(sk, skb, cur_mss);
1522 
1523 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1524 		return 0;
1525 
1526 	cwnd_quota = tcp_cwnd_test(tp, skb);
1527 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1528 		cwnd_quota = 0;
1529 
1530 	return cwnd_quota;
1531 }
1532 
1533 /* Test if sending is allowed right now. */
1534 bool tcp_may_send_now(struct sock *sk)
1535 {
1536 	const struct tcp_sock *tp = tcp_sk(sk);
1537 	struct sk_buff *skb = tcp_send_head(sk);
1538 
1539 	return skb &&
1540 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1541 			     (tcp_skb_is_last(sk, skb) ?
1542 			      tp->nonagle : TCP_NAGLE_PUSH));
1543 }
1544 
1545 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1546  * which is put after SKB on the list.  It is very much like
1547  * tcp_fragment() except that it may make several kinds of assumptions
1548  * in order to speed up the splitting operation.  In particular, we
1549  * know that all the data is in scatter-gather pages, and that the
1550  * packet has never been sent out before (and thus is not cloned).
1551  */
1552 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1553 			unsigned int mss_now, gfp_t gfp)
1554 {
1555 	struct sk_buff *buff;
1556 	int nlen = skb->len - len;
1557 	u8 flags;
1558 
1559 	/* All of a TSO frame must be composed of paged data.  */
1560 	if (skb->len != skb->data_len)
1561 		return tcp_fragment(sk, skb, len, mss_now);
1562 
1563 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1564 	if (unlikely(buff == NULL))
1565 		return -ENOMEM;
1566 
1567 	sk->sk_wmem_queued += buff->truesize;
1568 	sk_mem_charge(sk, buff->truesize);
1569 	buff->truesize += nlen;
1570 	skb->truesize -= nlen;
1571 
1572 	/* Correct the sequence numbers. */
1573 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1574 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1575 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1576 
1577 	/* PSH and FIN should only be set in the second packet. */
1578 	flags = TCP_SKB_CB(skb)->tcp_flags;
1579 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1580 	TCP_SKB_CB(buff)->tcp_flags = flags;
1581 
1582 	/* This packet was never sent out yet, so no SACK bits. */
1583 	TCP_SKB_CB(buff)->sacked = 0;
1584 
1585 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1586 	skb_split(skb, buff, len);
1587 
1588 	/* Fix up tso_factor for both original and new SKB.  */
1589 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1590 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1591 
1592 	/* Link BUFF into the send queue. */
1593 	skb_header_release(buff);
1594 	tcp_insert_write_queue_after(skb, buff, sk);
1595 
1596 	return 0;
1597 }
1598 
1599 /* Try to defer sending, if possible, in order to minimize the amount
1600  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1601  *
1602  * This algorithm is from John Heffner.
1603  */
1604 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1605 {
1606 	struct tcp_sock *tp = tcp_sk(sk);
1607 	const struct inet_connection_sock *icsk = inet_csk(sk);
1608 	u32 send_win, cong_win, limit, in_flight;
1609 	int win_divisor;
1610 
1611 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1612 		goto send_now;
1613 
1614 	if (icsk->icsk_ca_state != TCP_CA_Open)
1615 		goto send_now;
1616 
1617 	/* Defer for less than two clock ticks. */
1618 	if (tp->tso_deferred &&
1619 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1620 		goto send_now;
1621 
1622 	in_flight = tcp_packets_in_flight(tp);
1623 
1624 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1625 
1626 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1627 
1628 	/* From in_flight test above, we know that cwnd > in_flight.  */
1629 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1630 
1631 	limit = min(send_win, cong_win);
1632 
1633 	/* If a full-sized TSO skb can be sent, do it. */
1634 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1635 			   tp->xmit_size_goal_segs * tp->mss_cache))
1636 		goto send_now;
1637 
1638 	/* Middle in queue won't get any more data, full sendable already? */
1639 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1640 		goto send_now;
1641 
1642 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1643 	if (win_divisor) {
1644 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1645 
1646 		/* If at least some fraction of a window is available,
1647 		 * just use it.
1648 		 */
1649 		chunk /= win_divisor;
1650 		if (limit >= chunk)
1651 			goto send_now;
1652 	} else {
1653 		/* Different approach, try not to defer past a single
1654 		 * ACK.  Receiver should ACK every other full sized
1655 		 * frame, so if we have space for more than 3 frames
1656 		 * then send now.
1657 		 */
1658 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1659 			goto send_now;
1660 	}
1661 
1662 	/* Ok, it looks like it is advisable to defer.
1663 	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1664 	 */
1665 	if (!tp->tso_deferred)
1666 		tp->tso_deferred = 1 | (jiffies << 1);
1667 
1668 	return true;
1669 
1670 send_now:
1671 	tp->tso_deferred = 0;
1672 	return false;
1673 }
1674 
1675 /* Create a new MTU probe if we are ready.
1676  * MTU probe is regularly attempting to increase the path MTU by
1677  * deliberately sending larger packets.  This discovers routing
1678  * changes resulting in larger path MTUs.
1679  *
1680  * Returns 0 if we should wait to probe (no cwnd available),
1681  *         1 if a probe was sent,
1682  *         -1 otherwise
1683  */
1684 static int tcp_mtu_probe(struct sock *sk)
1685 {
1686 	struct tcp_sock *tp = tcp_sk(sk);
1687 	struct inet_connection_sock *icsk = inet_csk(sk);
1688 	struct sk_buff *skb, *nskb, *next;
1689 	int len;
1690 	int probe_size;
1691 	int size_needed;
1692 	int copy;
1693 	int mss_now;
1694 
1695 	/* Not currently probing/verifying,
1696 	 * not in recovery,
1697 	 * have enough cwnd, and
1698 	 * not SACKing (the variable headers throw things off) */
1699 	if (!icsk->icsk_mtup.enabled ||
1700 	    icsk->icsk_mtup.probe_size ||
1701 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1702 	    tp->snd_cwnd < 11 ||
1703 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1704 		return -1;
1705 
1706 	/* Very simple search strategy: just double the MSS. */
1707 	mss_now = tcp_current_mss(sk);
1708 	probe_size = 2 * tp->mss_cache;
1709 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1710 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1711 		/* TODO: set timer for probe_converge_event */
1712 		return -1;
1713 	}
1714 
1715 	/* Have enough data in the send queue to probe? */
1716 	if (tp->write_seq - tp->snd_nxt < size_needed)
1717 		return -1;
1718 
1719 	if (tp->snd_wnd < size_needed)
1720 		return -1;
1721 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1722 		return 0;
1723 
1724 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1725 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1726 		if (!tcp_packets_in_flight(tp))
1727 			return -1;
1728 		else
1729 			return 0;
1730 	}
1731 
1732 	/* We're allowed to probe.  Build it now. */
1733 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1734 		return -1;
1735 	sk->sk_wmem_queued += nskb->truesize;
1736 	sk_mem_charge(sk, nskb->truesize);
1737 
1738 	skb = tcp_send_head(sk);
1739 
1740 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1741 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1742 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1743 	TCP_SKB_CB(nskb)->sacked = 0;
1744 	nskb->csum = 0;
1745 	nskb->ip_summed = skb->ip_summed;
1746 
1747 	tcp_insert_write_queue_before(nskb, skb, sk);
1748 
1749 	len = 0;
1750 	tcp_for_write_queue_from_safe(skb, next, sk) {
1751 		copy = min_t(int, skb->len, probe_size - len);
1752 		if (nskb->ip_summed)
1753 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1754 		else
1755 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1756 							    skb_put(nskb, copy),
1757 							    copy, nskb->csum);
1758 
1759 		if (skb->len <= copy) {
1760 			/* We've eaten all the data from this skb.
1761 			 * Throw it away. */
1762 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1763 			tcp_unlink_write_queue(skb, sk);
1764 			sk_wmem_free_skb(sk, skb);
1765 		} else {
1766 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1767 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1768 			if (!skb_shinfo(skb)->nr_frags) {
1769 				skb_pull(skb, copy);
1770 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1771 					skb->csum = csum_partial(skb->data,
1772 								 skb->len, 0);
1773 			} else {
1774 				__pskb_trim_head(skb, copy);
1775 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1776 			}
1777 			TCP_SKB_CB(skb)->seq += copy;
1778 		}
1779 
1780 		len += copy;
1781 
1782 		if (len >= probe_size)
1783 			break;
1784 	}
1785 	tcp_init_tso_segs(sk, nskb, nskb->len);
1786 
1787 	/* We're ready to send.  If this fails, the probe will
1788 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1789 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1790 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1791 		/* Decrement cwnd here because we are sending
1792 		 * effectively two packets. */
1793 		tp->snd_cwnd--;
1794 		tcp_event_new_data_sent(sk, nskb);
1795 
1796 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1797 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1798 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1799 
1800 		return 1;
1801 	}
1802 
1803 	return -1;
1804 }
1805 
1806 /* This routine writes packets to the network.  It advances the
1807  * send_head.  This happens as incoming acks open up the remote
1808  * window for us.
1809  *
1810  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1811  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1812  * account rare use of URG, this is not a big flaw.
1813  *
1814  * Send at most one packet when push_one > 0. Temporarily ignore
1815  * cwnd limit to force at most one packet out when push_one == 2.
1816 
1817  * Returns true, if no segments are in flight and we have queued segments,
1818  * but cannot send anything now because of SWS or another problem.
1819  */
1820 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1821 			   int push_one, gfp_t gfp)
1822 {
1823 	struct tcp_sock *tp = tcp_sk(sk);
1824 	struct sk_buff *skb;
1825 	unsigned int tso_segs, sent_pkts;
1826 	int cwnd_quota;
1827 	int result;
1828 
1829 	sent_pkts = 0;
1830 
1831 	if (!push_one) {
1832 		/* Do MTU probing. */
1833 		result = tcp_mtu_probe(sk);
1834 		if (!result) {
1835 			return false;
1836 		} else if (result > 0) {
1837 			sent_pkts = 1;
1838 		}
1839 	}
1840 
1841 	while ((skb = tcp_send_head(sk))) {
1842 		unsigned int limit;
1843 
1844 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1845 		BUG_ON(!tso_segs);
1846 
1847 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1848 			goto repair; /* Skip network transmission */
1849 
1850 		cwnd_quota = tcp_cwnd_test(tp, skb);
1851 		if (!cwnd_quota) {
1852 			if (push_one == 2)
1853 				/* Force out a loss probe pkt. */
1854 				cwnd_quota = 1;
1855 			else
1856 				break;
1857 		}
1858 
1859 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1860 			break;
1861 
1862 		if (tso_segs == 1) {
1863 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1864 						     (tcp_skb_is_last(sk, skb) ?
1865 						      nonagle : TCP_NAGLE_PUSH))))
1866 				break;
1867 		} else {
1868 			if (!push_one && tcp_tso_should_defer(sk, skb))
1869 				break;
1870 		}
1871 
1872 		/* TCP Small Queues :
1873 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1874 		 * This allows for :
1875 		 *  - better RTT estimation and ACK scheduling
1876 		 *  - faster recovery
1877 		 *  - high rates
1878 		 * Alas, some drivers / subsystems require a fair amount
1879 		 * of queued bytes to ensure line rate.
1880 		 * One example is wifi aggregation (802.11 AMPDU)
1881 		 */
1882 		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1883 			      sk->sk_pacing_rate >> 10);
1884 
1885 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1886 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1887 			break;
1888 		}
1889 
1890 		limit = mss_now;
1891 		if (tso_segs > 1 && !tcp_urg_mode(tp))
1892 			limit = tcp_mss_split_point(sk, skb, mss_now,
1893 						    min_t(unsigned int,
1894 							  cwnd_quota,
1895 							  sk->sk_gso_max_segs));
1896 
1897 		if (skb->len > limit &&
1898 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1899 			break;
1900 
1901 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1902 
1903 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1904 			break;
1905 
1906 repair:
1907 		/* Advance the send_head.  This one is sent out.
1908 		 * This call will increment packets_out.
1909 		 */
1910 		tcp_event_new_data_sent(sk, skb);
1911 
1912 		tcp_minshall_update(tp, mss_now, skb);
1913 		sent_pkts += tcp_skb_pcount(skb);
1914 
1915 		if (push_one)
1916 			break;
1917 	}
1918 
1919 	if (likely(sent_pkts)) {
1920 		if (tcp_in_cwnd_reduction(sk))
1921 			tp->prr_out += sent_pkts;
1922 
1923 		/* Send one loss probe per tail loss episode. */
1924 		if (push_one != 2)
1925 			tcp_schedule_loss_probe(sk);
1926 		tcp_cwnd_validate(sk);
1927 		return false;
1928 	}
1929 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1930 }
1931 
1932 bool tcp_schedule_loss_probe(struct sock *sk)
1933 {
1934 	struct inet_connection_sock *icsk = inet_csk(sk);
1935 	struct tcp_sock *tp = tcp_sk(sk);
1936 	u32 timeout, tlp_time_stamp, rto_time_stamp;
1937 	u32 rtt = tp->srtt >> 3;
1938 
1939 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1940 		return false;
1941 	/* No consecutive loss probes. */
1942 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1943 		tcp_rearm_rto(sk);
1944 		return false;
1945 	}
1946 	/* Don't do any loss probe on a Fast Open connection before 3WHS
1947 	 * finishes.
1948 	 */
1949 	if (sk->sk_state == TCP_SYN_RECV)
1950 		return false;
1951 
1952 	/* TLP is only scheduled when next timer event is RTO. */
1953 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1954 		return false;
1955 
1956 	/* Schedule a loss probe in 2*RTT for SACK capable connections
1957 	 * in Open state, that are either limited by cwnd or application.
1958 	 */
1959 	if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1960 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1961 		return false;
1962 
1963 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1964 	     tcp_send_head(sk))
1965 		return false;
1966 
1967 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1968 	 * for delayed ack when there's one outstanding packet.
1969 	 */
1970 	timeout = rtt << 1;
1971 	if (tp->packets_out == 1)
1972 		timeout = max_t(u32, timeout,
1973 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
1974 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1975 
1976 	/* If RTO is shorter, just schedule TLP in its place. */
1977 	tlp_time_stamp = tcp_time_stamp + timeout;
1978 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
1979 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
1980 		s32 delta = rto_time_stamp - tcp_time_stamp;
1981 		if (delta > 0)
1982 			timeout = delta;
1983 	}
1984 
1985 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
1986 				  TCP_RTO_MAX);
1987 	return true;
1988 }
1989 
1990 /* When probe timeout (PTO) fires, send a new segment if one exists, else
1991  * retransmit the last segment.
1992  */
1993 void tcp_send_loss_probe(struct sock *sk)
1994 {
1995 	struct tcp_sock *tp = tcp_sk(sk);
1996 	struct sk_buff *skb;
1997 	int pcount;
1998 	int mss = tcp_current_mss(sk);
1999 	int err = -1;
2000 
2001 	if (tcp_send_head(sk) != NULL) {
2002 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2003 		goto rearm_timer;
2004 	}
2005 
2006 	/* At most one outstanding TLP retransmission. */
2007 	if (tp->tlp_high_seq)
2008 		goto rearm_timer;
2009 
2010 	/* Retransmit last segment. */
2011 	skb = tcp_write_queue_tail(sk);
2012 	if (WARN_ON(!skb))
2013 		goto rearm_timer;
2014 
2015 	pcount = tcp_skb_pcount(skb);
2016 	if (WARN_ON(!pcount))
2017 		goto rearm_timer;
2018 
2019 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2020 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2021 			goto rearm_timer;
2022 		skb = tcp_write_queue_tail(sk);
2023 	}
2024 
2025 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2026 		goto rearm_timer;
2027 
2028 	/* Probe with zero data doesn't trigger fast recovery. */
2029 	if (skb->len > 0)
2030 		err = __tcp_retransmit_skb(sk, skb);
2031 
2032 	/* Record snd_nxt for loss detection. */
2033 	if (likely(!err))
2034 		tp->tlp_high_seq = tp->snd_nxt;
2035 
2036 rearm_timer:
2037 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2038 				  inet_csk(sk)->icsk_rto,
2039 				  TCP_RTO_MAX);
2040 
2041 	if (likely(!err))
2042 		NET_INC_STATS_BH(sock_net(sk),
2043 				 LINUX_MIB_TCPLOSSPROBES);
2044 	return;
2045 }
2046 
2047 /* Push out any pending frames which were held back due to
2048  * TCP_CORK or attempt at coalescing tiny packets.
2049  * The socket must be locked by the caller.
2050  */
2051 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2052 			       int nonagle)
2053 {
2054 	/* If we are closed, the bytes will have to remain here.
2055 	 * In time closedown will finish, we empty the write queue and
2056 	 * all will be happy.
2057 	 */
2058 	if (unlikely(sk->sk_state == TCP_CLOSE))
2059 		return;
2060 
2061 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2062 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2063 		tcp_check_probe_timer(sk);
2064 }
2065 
2066 /* Send _single_ skb sitting at the send head. This function requires
2067  * true push pending frames to setup probe timer etc.
2068  */
2069 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2070 {
2071 	struct sk_buff *skb = tcp_send_head(sk);
2072 
2073 	BUG_ON(!skb || skb->len < mss_now);
2074 
2075 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2076 }
2077 
2078 /* This function returns the amount that we can raise the
2079  * usable window based on the following constraints
2080  *
2081  * 1. The window can never be shrunk once it is offered (RFC 793)
2082  * 2. We limit memory per socket
2083  *
2084  * RFC 1122:
2085  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2086  *  RECV.NEXT + RCV.WIN fixed until:
2087  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2088  *
2089  * i.e. don't raise the right edge of the window until you can raise
2090  * it at least MSS bytes.
2091  *
2092  * Unfortunately, the recommended algorithm breaks header prediction,
2093  * since header prediction assumes th->window stays fixed.
2094  *
2095  * Strictly speaking, keeping th->window fixed violates the receiver
2096  * side SWS prevention criteria. The problem is that under this rule
2097  * a stream of single byte packets will cause the right side of the
2098  * window to always advance by a single byte.
2099  *
2100  * Of course, if the sender implements sender side SWS prevention
2101  * then this will not be a problem.
2102  *
2103  * BSD seems to make the following compromise:
2104  *
2105  *	If the free space is less than the 1/4 of the maximum
2106  *	space available and the free space is less than 1/2 mss,
2107  *	then set the window to 0.
2108  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2109  *	Otherwise, just prevent the window from shrinking
2110  *	and from being larger than the largest representable value.
2111  *
2112  * This prevents incremental opening of the window in the regime
2113  * where TCP is limited by the speed of the reader side taking
2114  * data out of the TCP receive queue. It does nothing about
2115  * those cases where the window is constrained on the sender side
2116  * because the pipeline is full.
2117  *
2118  * BSD also seems to "accidentally" limit itself to windows that are a
2119  * multiple of MSS, at least until the free space gets quite small.
2120  * This would appear to be a side effect of the mbuf implementation.
2121  * Combining these two algorithms results in the observed behavior
2122  * of having a fixed window size at almost all times.
2123  *
2124  * Below we obtain similar behavior by forcing the offered window to
2125  * a multiple of the mss when it is feasible to do so.
2126  *
2127  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2128  * Regular options like TIMESTAMP are taken into account.
2129  */
2130 u32 __tcp_select_window(struct sock *sk)
2131 {
2132 	struct inet_connection_sock *icsk = inet_csk(sk);
2133 	struct tcp_sock *tp = tcp_sk(sk);
2134 	/* MSS for the peer's data.  Previous versions used mss_clamp
2135 	 * here.  I don't know if the value based on our guesses
2136 	 * of peer's MSS is better for the performance.  It's more correct
2137 	 * but may be worse for the performance because of rcv_mss
2138 	 * fluctuations.  --SAW  1998/11/1
2139 	 */
2140 	int mss = icsk->icsk_ack.rcv_mss;
2141 	int free_space = tcp_space(sk);
2142 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2143 	int window;
2144 
2145 	if (mss > full_space)
2146 		mss = full_space;
2147 
2148 	if (free_space < (full_space >> 1)) {
2149 		icsk->icsk_ack.quick = 0;
2150 
2151 		if (sk_under_memory_pressure(sk))
2152 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2153 					       4U * tp->advmss);
2154 
2155 		if (free_space < mss)
2156 			return 0;
2157 	}
2158 
2159 	if (free_space > tp->rcv_ssthresh)
2160 		free_space = tp->rcv_ssthresh;
2161 
2162 	/* Don't do rounding if we are using window scaling, since the
2163 	 * scaled window will not line up with the MSS boundary anyway.
2164 	 */
2165 	window = tp->rcv_wnd;
2166 	if (tp->rx_opt.rcv_wscale) {
2167 		window = free_space;
2168 
2169 		/* Advertise enough space so that it won't get scaled away.
2170 		 * Import case: prevent zero window announcement if
2171 		 * 1<<rcv_wscale > mss.
2172 		 */
2173 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2174 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2175 				  << tp->rx_opt.rcv_wscale);
2176 	} else {
2177 		/* Get the largest window that is a nice multiple of mss.
2178 		 * Window clamp already applied above.
2179 		 * If our current window offering is within 1 mss of the
2180 		 * free space we just keep it. This prevents the divide
2181 		 * and multiply from happening most of the time.
2182 		 * We also don't do any window rounding when the free space
2183 		 * is too small.
2184 		 */
2185 		if (window <= free_space - mss || window > free_space)
2186 			window = (free_space / mss) * mss;
2187 		else if (mss == full_space &&
2188 			 free_space > window + (full_space >> 1))
2189 			window = free_space;
2190 	}
2191 
2192 	return window;
2193 }
2194 
2195 /* Collapses two adjacent SKB's during retransmission. */
2196 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2197 {
2198 	struct tcp_sock *tp = tcp_sk(sk);
2199 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2200 	int skb_size, next_skb_size;
2201 
2202 	skb_size = skb->len;
2203 	next_skb_size = next_skb->len;
2204 
2205 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2206 
2207 	tcp_highest_sack_combine(sk, next_skb, skb);
2208 
2209 	tcp_unlink_write_queue(next_skb, sk);
2210 
2211 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2212 				  next_skb_size);
2213 
2214 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2215 		skb->ip_summed = CHECKSUM_PARTIAL;
2216 
2217 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2218 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2219 
2220 	/* Update sequence range on original skb. */
2221 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2222 
2223 	/* Merge over control information. This moves PSH/FIN etc. over */
2224 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2225 
2226 	/* All done, get rid of second SKB and account for it so
2227 	 * packet counting does not break.
2228 	 */
2229 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2230 
2231 	/* changed transmit queue under us so clear hints */
2232 	tcp_clear_retrans_hints_partial(tp);
2233 	if (next_skb == tp->retransmit_skb_hint)
2234 		tp->retransmit_skb_hint = skb;
2235 
2236 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2237 
2238 	sk_wmem_free_skb(sk, next_skb);
2239 }
2240 
2241 /* Check if coalescing SKBs is legal. */
2242 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2243 {
2244 	if (tcp_skb_pcount(skb) > 1)
2245 		return false;
2246 	/* TODO: SACK collapsing could be used to remove this condition */
2247 	if (skb_shinfo(skb)->nr_frags != 0)
2248 		return false;
2249 	if (skb_cloned(skb))
2250 		return false;
2251 	if (skb == tcp_send_head(sk))
2252 		return false;
2253 	/* Some heurestics for collapsing over SACK'd could be invented */
2254 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2255 		return false;
2256 
2257 	return true;
2258 }
2259 
2260 /* Collapse packets in the retransmit queue to make to create
2261  * less packets on the wire. This is only done on retransmission.
2262  */
2263 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2264 				     int space)
2265 {
2266 	struct tcp_sock *tp = tcp_sk(sk);
2267 	struct sk_buff *skb = to, *tmp;
2268 	bool first = true;
2269 
2270 	if (!sysctl_tcp_retrans_collapse)
2271 		return;
2272 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2273 		return;
2274 
2275 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2276 		if (!tcp_can_collapse(sk, skb))
2277 			break;
2278 
2279 		space -= skb->len;
2280 
2281 		if (first) {
2282 			first = false;
2283 			continue;
2284 		}
2285 
2286 		if (space < 0)
2287 			break;
2288 		/* Punt if not enough space exists in the first SKB for
2289 		 * the data in the second
2290 		 */
2291 		if (skb->len > skb_availroom(to))
2292 			break;
2293 
2294 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2295 			break;
2296 
2297 		tcp_collapse_retrans(sk, to);
2298 	}
2299 }
2300 
2301 /* This retransmits one SKB.  Policy decisions and retransmit queue
2302  * state updates are done by the caller.  Returns non-zero if an
2303  * error occurred which prevented the send.
2304  */
2305 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2306 {
2307 	struct tcp_sock *tp = tcp_sk(sk);
2308 	struct inet_connection_sock *icsk = inet_csk(sk);
2309 	unsigned int cur_mss;
2310 
2311 	/* Inconslusive MTU probe */
2312 	if (icsk->icsk_mtup.probe_size) {
2313 		icsk->icsk_mtup.probe_size = 0;
2314 	}
2315 
2316 	/* Do not sent more than we queued. 1/4 is reserved for possible
2317 	 * copying overhead: fragmentation, tunneling, mangling etc.
2318 	 */
2319 	if (atomic_read(&sk->sk_wmem_alloc) >
2320 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2321 		return -EAGAIN;
2322 
2323 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2324 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2325 			BUG();
2326 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2327 			return -ENOMEM;
2328 	}
2329 
2330 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2331 		return -EHOSTUNREACH; /* Routing failure or similar. */
2332 
2333 	cur_mss = tcp_current_mss(sk);
2334 
2335 	/* If receiver has shrunk his window, and skb is out of
2336 	 * new window, do not retransmit it. The exception is the
2337 	 * case, when window is shrunk to zero. In this case
2338 	 * our retransmit serves as a zero window probe.
2339 	 */
2340 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2341 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2342 		return -EAGAIN;
2343 
2344 	if (skb->len > cur_mss) {
2345 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2346 			return -ENOMEM; /* We'll try again later. */
2347 	} else {
2348 		int oldpcount = tcp_skb_pcount(skb);
2349 
2350 		if (unlikely(oldpcount > 1)) {
2351 			if (skb_unclone(skb, GFP_ATOMIC))
2352 				return -ENOMEM;
2353 			tcp_init_tso_segs(sk, skb, cur_mss);
2354 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2355 		}
2356 	}
2357 
2358 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2359 
2360 	/* Make a copy, if the first transmission SKB clone we made
2361 	 * is still in somebody's hands, else make a clone.
2362 	 */
2363 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2364 
2365 	/* make sure skb->data is aligned on arches that require it
2366 	 * and check if ack-trimming & collapsing extended the headroom
2367 	 * beyond what csum_start can cover.
2368 	 */
2369 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2370 		     skb_headroom(skb) >= 0xFFFF)) {
2371 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2372 						   GFP_ATOMIC);
2373 		return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2374 			      -ENOBUFS;
2375 	} else {
2376 		return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2377 	}
2378 }
2379 
2380 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2381 {
2382 	struct tcp_sock *tp = tcp_sk(sk);
2383 	int err = __tcp_retransmit_skb(sk, skb);
2384 
2385 	if (err == 0) {
2386 		/* Update global TCP statistics. */
2387 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2388 
2389 		tp->total_retrans++;
2390 
2391 #if FASTRETRANS_DEBUG > 0
2392 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2393 			net_dbg_ratelimited("retrans_out leaked\n");
2394 		}
2395 #endif
2396 		if (!tp->retrans_out)
2397 			tp->lost_retrans_low = tp->snd_nxt;
2398 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2399 		tp->retrans_out += tcp_skb_pcount(skb);
2400 
2401 		/* Save stamp of the first retransmit. */
2402 		if (!tp->retrans_stamp)
2403 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2404 
2405 		tp->undo_retrans += tcp_skb_pcount(skb);
2406 
2407 		/* snd_nxt is stored to detect loss of retransmitted segment,
2408 		 * see tcp_input.c tcp_sacktag_write_queue().
2409 		 */
2410 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2411 	} else {
2412 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2413 	}
2414 	return err;
2415 }
2416 
2417 /* Check if we forward retransmits are possible in the current
2418  * window/congestion state.
2419  */
2420 static bool tcp_can_forward_retransmit(struct sock *sk)
2421 {
2422 	const struct inet_connection_sock *icsk = inet_csk(sk);
2423 	const struct tcp_sock *tp = tcp_sk(sk);
2424 
2425 	/* Forward retransmissions are possible only during Recovery. */
2426 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2427 		return false;
2428 
2429 	/* No forward retransmissions in Reno are possible. */
2430 	if (tcp_is_reno(tp))
2431 		return false;
2432 
2433 	/* Yeah, we have to make difficult choice between forward transmission
2434 	 * and retransmission... Both ways have their merits...
2435 	 *
2436 	 * For now we do not retransmit anything, while we have some new
2437 	 * segments to send. In the other cases, follow rule 3 for
2438 	 * NextSeg() specified in RFC3517.
2439 	 */
2440 
2441 	if (tcp_may_send_now(sk))
2442 		return false;
2443 
2444 	return true;
2445 }
2446 
2447 /* This gets called after a retransmit timeout, and the initially
2448  * retransmitted data is acknowledged.  It tries to continue
2449  * resending the rest of the retransmit queue, until either
2450  * we've sent it all or the congestion window limit is reached.
2451  * If doing SACK, the first ACK which comes back for a timeout
2452  * based retransmit packet might feed us FACK information again.
2453  * If so, we use it to avoid unnecessarily retransmissions.
2454  */
2455 void tcp_xmit_retransmit_queue(struct sock *sk)
2456 {
2457 	const struct inet_connection_sock *icsk = inet_csk(sk);
2458 	struct tcp_sock *tp = tcp_sk(sk);
2459 	struct sk_buff *skb;
2460 	struct sk_buff *hole = NULL;
2461 	u32 last_lost;
2462 	int mib_idx;
2463 	int fwd_rexmitting = 0;
2464 
2465 	if (!tp->packets_out)
2466 		return;
2467 
2468 	if (!tp->lost_out)
2469 		tp->retransmit_high = tp->snd_una;
2470 
2471 	if (tp->retransmit_skb_hint) {
2472 		skb = tp->retransmit_skb_hint;
2473 		last_lost = TCP_SKB_CB(skb)->end_seq;
2474 		if (after(last_lost, tp->retransmit_high))
2475 			last_lost = tp->retransmit_high;
2476 	} else {
2477 		skb = tcp_write_queue_head(sk);
2478 		last_lost = tp->snd_una;
2479 	}
2480 
2481 	tcp_for_write_queue_from(skb, sk) {
2482 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2483 
2484 		if (skb == tcp_send_head(sk))
2485 			break;
2486 		/* we could do better than to assign each time */
2487 		if (hole == NULL)
2488 			tp->retransmit_skb_hint = skb;
2489 
2490 		/* Assume this retransmit will generate
2491 		 * only one packet for congestion window
2492 		 * calculation purposes.  This works because
2493 		 * tcp_retransmit_skb() will chop up the
2494 		 * packet to be MSS sized and all the
2495 		 * packet counting works out.
2496 		 */
2497 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2498 			return;
2499 
2500 		if (fwd_rexmitting) {
2501 begin_fwd:
2502 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2503 				break;
2504 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2505 
2506 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2507 			tp->retransmit_high = last_lost;
2508 			if (!tcp_can_forward_retransmit(sk))
2509 				break;
2510 			/* Backtrack if necessary to non-L'ed skb */
2511 			if (hole != NULL) {
2512 				skb = hole;
2513 				hole = NULL;
2514 			}
2515 			fwd_rexmitting = 1;
2516 			goto begin_fwd;
2517 
2518 		} else if (!(sacked & TCPCB_LOST)) {
2519 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2520 				hole = skb;
2521 			continue;
2522 
2523 		} else {
2524 			last_lost = TCP_SKB_CB(skb)->end_seq;
2525 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2526 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2527 			else
2528 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2529 		}
2530 
2531 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2532 			continue;
2533 
2534 		if (tcp_retransmit_skb(sk, skb))
2535 			return;
2536 
2537 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2538 
2539 		if (tcp_in_cwnd_reduction(sk))
2540 			tp->prr_out += tcp_skb_pcount(skb);
2541 
2542 		if (skb == tcp_write_queue_head(sk))
2543 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2544 						  inet_csk(sk)->icsk_rto,
2545 						  TCP_RTO_MAX);
2546 	}
2547 }
2548 
2549 /* Send a fin.  The caller locks the socket for us.  This cannot be
2550  * allowed to fail queueing a FIN frame under any circumstances.
2551  */
2552 void tcp_send_fin(struct sock *sk)
2553 {
2554 	struct tcp_sock *tp = tcp_sk(sk);
2555 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2556 	int mss_now;
2557 
2558 	/* Optimization, tack on the FIN if we have a queue of
2559 	 * unsent frames.  But be careful about outgoing SACKS
2560 	 * and IP options.
2561 	 */
2562 	mss_now = tcp_current_mss(sk);
2563 
2564 	if (tcp_send_head(sk) != NULL) {
2565 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2566 		TCP_SKB_CB(skb)->end_seq++;
2567 		tp->write_seq++;
2568 	} else {
2569 		/* Socket is locked, keep trying until memory is available. */
2570 		for (;;) {
2571 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2572 					       sk->sk_allocation);
2573 			if (skb)
2574 				break;
2575 			yield();
2576 		}
2577 
2578 		/* Reserve space for headers and prepare control bits. */
2579 		skb_reserve(skb, MAX_TCP_HEADER);
2580 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2581 		tcp_init_nondata_skb(skb, tp->write_seq,
2582 				     TCPHDR_ACK | TCPHDR_FIN);
2583 		tcp_queue_skb(sk, skb);
2584 	}
2585 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2586 }
2587 
2588 /* We get here when a process closes a file descriptor (either due to
2589  * an explicit close() or as a byproduct of exit()'ing) and there
2590  * was unread data in the receive queue.  This behavior is recommended
2591  * by RFC 2525, section 2.17.  -DaveM
2592  */
2593 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2594 {
2595 	struct sk_buff *skb;
2596 
2597 	/* NOTE: No TCP options attached and we never retransmit this. */
2598 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2599 	if (!skb) {
2600 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2601 		return;
2602 	}
2603 
2604 	/* Reserve space for headers and prepare control bits. */
2605 	skb_reserve(skb, MAX_TCP_HEADER);
2606 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2607 			     TCPHDR_ACK | TCPHDR_RST);
2608 	/* Send it off. */
2609 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2610 	if (tcp_transmit_skb(sk, skb, 0, priority))
2611 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2612 
2613 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2614 }
2615 
2616 /* Send a crossed SYN-ACK during socket establishment.
2617  * WARNING: This routine must only be called when we have already sent
2618  * a SYN packet that crossed the incoming SYN that caused this routine
2619  * to get called. If this assumption fails then the initial rcv_wnd
2620  * and rcv_wscale values will not be correct.
2621  */
2622 int tcp_send_synack(struct sock *sk)
2623 {
2624 	struct sk_buff *skb;
2625 
2626 	skb = tcp_write_queue_head(sk);
2627 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2628 		pr_debug("%s: wrong queue state\n", __func__);
2629 		return -EFAULT;
2630 	}
2631 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2632 		if (skb_cloned(skb)) {
2633 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2634 			if (nskb == NULL)
2635 				return -ENOMEM;
2636 			tcp_unlink_write_queue(skb, sk);
2637 			skb_header_release(nskb);
2638 			__tcp_add_write_queue_head(sk, nskb);
2639 			sk_wmem_free_skb(sk, skb);
2640 			sk->sk_wmem_queued += nskb->truesize;
2641 			sk_mem_charge(sk, nskb->truesize);
2642 			skb = nskb;
2643 		}
2644 
2645 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2646 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2647 	}
2648 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2649 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2650 }
2651 
2652 /**
2653  * tcp_make_synack - Prepare a SYN-ACK.
2654  * sk: listener socket
2655  * dst: dst entry attached to the SYNACK
2656  * req: request_sock pointer
2657  *
2658  * Allocate one skb and build a SYNACK packet.
2659  * @dst is consumed : Caller should not use it again.
2660  */
2661 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2662 				struct request_sock *req,
2663 				struct tcp_fastopen_cookie *foc)
2664 {
2665 	struct tcp_out_options opts;
2666 	struct inet_request_sock *ireq = inet_rsk(req);
2667 	struct tcp_sock *tp = tcp_sk(sk);
2668 	struct tcphdr *th;
2669 	struct sk_buff *skb;
2670 	struct tcp_md5sig_key *md5;
2671 	int tcp_header_size;
2672 	int mss;
2673 
2674 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2675 	if (unlikely(!skb)) {
2676 		dst_release(dst);
2677 		return NULL;
2678 	}
2679 	/* Reserve space for headers. */
2680 	skb_reserve(skb, MAX_TCP_HEADER);
2681 
2682 	skb_dst_set(skb, dst);
2683 	security_skb_owned_by(skb, sk);
2684 
2685 	mss = dst_metric_advmss(dst);
2686 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2687 		mss = tp->rx_opt.user_mss;
2688 
2689 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2690 		__u8 rcv_wscale;
2691 		/* Set this up on the first call only */
2692 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2693 
2694 		/* limit the window selection if the user enforce a smaller rx buffer */
2695 		if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2696 		    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2697 			req->window_clamp = tcp_full_space(sk);
2698 
2699 		/* tcp_full_space because it is guaranteed to be the first packet */
2700 		tcp_select_initial_window(tcp_full_space(sk),
2701 			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2702 			&req->rcv_wnd,
2703 			&req->window_clamp,
2704 			ireq->wscale_ok,
2705 			&rcv_wscale,
2706 			dst_metric(dst, RTAX_INITRWND));
2707 		ireq->rcv_wscale = rcv_wscale;
2708 	}
2709 
2710 	memset(&opts, 0, sizeof(opts));
2711 #ifdef CONFIG_SYN_COOKIES
2712 	if (unlikely(req->cookie_ts))
2713 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2714 	else
2715 #endif
2716 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2717 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2718 					     foc) + sizeof(*th);
2719 
2720 	skb_push(skb, tcp_header_size);
2721 	skb_reset_transport_header(skb);
2722 
2723 	th = tcp_hdr(skb);
2724 	memset(th, 0, sizeof(struct tcphdr));
2725 	th->syn = 1;
2726 	th->ack = 1;
2727 	TCP_ECN_make_synack(req, th);
2728 	th->source = htons(ireq->ir_num);
2729 	th->dest = ireq->ir_rmt_port;
2730 	/* Setting of flags are superfluous here for callers (and ECE is
2731 	 * not even correctly set)
2732 	 */
2733 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2734 			     TCPHDR_SYN | TCPHDR_ACK);
2735 
2736 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2737 	/* XXX data is queued and acked as is. No buffer/window check */
2738 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2739 
2740 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2741 	th->window = htons(min(req->rcv_wnd, 65535U));
2742 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2743 	th->doff = (tcp_header_size >> 2);
2744 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2745 
2746 #ifdef CONFIG_TCP_MD5SIG
2747 	/* Okay, we have all we need - do the md5 hash if needed */
2748 	if (md5) {
2749 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2750 					       md5, NULL, req, skb);
2751 	}
2752 #endif
2753 
2754 	return skb;
2755 }
2756 EXPORT_SYMBOL(tcp_make_synack);
2757 
2758 /* Do all connect socket setups that can be done AF independent. */
2759 void tcp_connect_init(struct sock *sk)
2760 {
2761 	const struct dst_entry *dst = __sk_dst_get(sk);
2762 	struct tcp_sock *tp = tcp_sk(sk);
2763 	__u8 rcv_wscale;
2764 
2765 	/* We'll fix this up when we get a response from the other end.
2766 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2767 	 */
2768 	tp->tcp_header_len = sizeof(struct tcphdr) +
2769 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2770 
2771 #ifdef CONFIG_TCP_MD5SIG
2772 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2773 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2774 #endif
2775 
2776 	/* If user gave his TCP_MAXSEG, record it to clamp */
2777 	if (tp->rx_opt.user_mss)
2778 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2779 	tp->max_window = 0;
2780 	tcp_mtup_init(sk);
2781 	tcp_sync_mss(sk, dst_mtu(dst));
2782 
2783 	if (!tp->window_clamp)
2784 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2785 	tp->advmss = dst_metric_advmss(dst);
2786 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2787 		tp->advmss = tp->rx_opt.user_mss;
2788 
2789 	tcp_initialize_rcv_mss(sk);
2790 
2791 	/* limit the window selection if the user enforce a smaller rx buffer */
2792 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2793 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2794 		tp->window_clamp = tcp_full_space(sk);
2795 
2796 	tcp_select_initial_window(tcp_full_space(sk),
2797 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2798 				  &tp->rcv_wnd,
2799 				  &tp->window_clamp,
2800 				  sysctl_tcp_window_scaling,
2801 				  &rcv_wscale,
2802 				  dst_metric(dst, RTAX_INITRWND));
2803 
2804 	tp->rx_opt.rcv_wscale = rcv_wscale;
2805 	tp->rcv_ssthresh = tp->rcv_wnd;
2806 
2807 	sk->sk_err = 0;
2808 	sock_reset_flag(sk, SOCK_DONE);
2809 	tp->snd_wnd = 0;
2810 	tcp_init_wl(tp, 0);
2811 	tp->snd_una = tp->write_seq;
2812 	tp->snd_sml = tp->write_seq;
2813 	tp->snd_up = tp->write_seq;
2814 	tp->snd_nxt = tp->write_seq;
2815 
2816 	if (likely(!tp->repair))
2817 		tp->rcv_nxt = 0;
2818 	else
2819 		tp->rcv_tstamp = tcp_time_stamp;
2820 	tp->rcv_wup = tp->rcv_nxt;
2821 	tp->copied_seq = tp->rcv_nxt;
2822 
2823 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2824 	inet_csk(sk)->icsk_retransmits = 0;
2825 	tcp_clear_retrans(tp);
2826 }
2827 
2828 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2829 {
2830 	struct tcp_sock *tp = tcp_sk(sk);
2831 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2832 
2833 	tcb->end_seq += skb->len;
2834 	skb_header_release(skb);
2835 	__tcp_add_write_queue_tail(sk, skb);
2836 	sk->sk_wmem_queued += skb->truesize;
2837 	sk_mem_charge(sk, skb->truesize);
2838 	tp->write_seq = tcb->end_seq;
2839 	tp->packets_out += tcp_skb_pcount(skb);
2840 }
2841 
2842 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2843  * queue a data-only packet after the regular SYN, such that regular SYNs
2844  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2845  * only the SYN sequence, the data are retransmitted in the first ACK.
2846  * If cookie is not cached or other error occurs, falls back to send a
2847  * regular SYN with Fast Open cookie request option.
2848  */
2849 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2850 {
2851 	struct tcp_sock *tp = tcp_sk(sk);
2852 	struct tcp_fastopen_request *fo = tp->fastopen_req;
2853 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2854 	struct sk_buff *syn_data = NULL, *data;
2855 	unsigned long last_syn_loss = 0;
2856 
2857 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2858 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2859 			       &syn_loss, &last_syn_loss);
2860 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2861 	if (syn_loss > 1 &&
2862 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2863 		fo->cookie.len = -1;
2864 		goto fallback;
2865 	}
2866 
2867 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2868 		fo->cookie.len = -1;
2869 	else if (fo->cookie.len <= 0)
2870 		goto fallback;
2871 
2872 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2873 	 * user-MSS. Reserve maximum option space for middleboxes that add
2874 	 * private TCP options. The cost is reduced data space in SYN :(
2875 	 */
2876 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2877 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2878 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2879 		MAX_TCP_OPTION_SPACE;
2880 
2881 	syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2882 				   sk->sk_allocation);
2883 	if (syn_data == NULL)
2884 		goto fallback;
2885 
2886 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2887 		struct iovec *iov = &fo->data->msg_iov[i];
2888 		unsigned char __user *from = iov->iov_base;
2889 		int len = iov->iov_len;
2890 
2891 		if (syn_data->len + len > space)
2892 			len = space - syn_data->len;
2893 		else if (i + 1 == iovlen)
2894 			/* No more data pending in inet_wait_for_connect() */
2895 			fo->data = NULL;
2896 
2897 		if (skb_add_data(syn_data, from, len))
2898 			goto fallback;
2899 	}
2900 
2901 	/* Queue a data-only packet after the regular SYN for retransmission */
2902 	data = pskb_copy(syn_data, sk->sk_allocation);
2903 	if (data == NULL)
2904 		goto fallback;
2905 	TCP_SKB_CB(data)->seq++;
2906 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2907 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2908 	tcp_connect_queue_skb(sk, data);
2909 	fo->copied = data->len;
2910 
2911 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2912 		tp->syn_data = (fo->copied > 0);
2913 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2914 		goto done;
2915 	}
2916 	syn_data = NULL;
2917 
2918 fallback:
2919 	/* Send a regular SYN with Fast Open cookie request option */
2920 	if (fo->cookie.len > 0)
2921 		fo->cookie.len = 0;
2922 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2923 	if (err)
2924 		tp->syn_fastopen = 0;
2925 	kfree_skb(syn_data);
2926 done:
2927 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
2928 	return err;
2929 }
2930 
2931 /* Build a SYN and send it off. */
2932 int tcp_connect(struct sock *sk)
2933 {
2934 	struct tcp_sock *tp = tcp_sk(sk);
2935 	struct sk_buff *buff;
2936 	int err;
2937 
2938 	tcp_connect_init(sk);
2939 
2940 	if (unlikely(tp->repair)) {
2941 		tcp_finish_connect(sk, NULL);
2942 		return 0;
2943 	}
2944 
2945 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2946 	if (unlikely(buff == NULL))
2947 		return -ENOBUFS;
2948 
2949 	/* Reserve space for headers. */
2950 	skb_reserve(buff, MAX_TCP_HEADER);
2951 
2952 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2953 	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2954 	tcp_connect_queue_skb(sk, buff);
2955 	TCP_ECN_send_syn(sk, buff);
2956 
2957 	/* Send off SYN; include data in Fast Open. */
2958 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2959 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2960 	if (err == -ECONNREFUSED)
2961 		return err;
2962 
2963 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
2964 	 * in order to make this packet get counted in tcpOutSegs.
2965 	 */
2966 	tp->snd_nxt = tp->write_seq;
2967 	tp->pushed_seq = tp->write_seq;
2968 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2969 
2970 	/* Timer for repeating the SYN until an answer. */
2971 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2972 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2973 	return 0;
2974 }
2975 EXPORT_SYMBOL(tcp_connect);
2976 
2977 /* Send out a delayed ack, the caller does the policy checking
2978  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
2979  * for details.
2980  */
2981 void tcp_send_delayed_ack(struct sock *sk)
2982 {
2983 	struct inet_connection_sock *icsk = inet_csk(sk);
2984 	int ato = icsk->icsk_ack.ato;
2985 	unsigned long timeout;
2986 
2987 	if (ato > TCP_DELACK_MIN) {
2988 		const struct tcp_sock *tp = tcp_sk(sk);
2989 		int max_ato = HZ / 2;
2990 
2991 		if (icsk->icsk_ack.pingpong ||
2992 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2993 			max_ato = TCP_DELACK_MAX;
2994 
2995 		/* Slow path, intersegment interval is "high". */
2996 
2997 		/* If some rtt estimate is known, use it to bound delayed ack.
2998 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2999 		 * directly.
3000 		 */
3001 		if (tp->srtt) {
3002 			int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3003 
3004 			if (rtt < max_ato)
3005 				max_ato = rtt;
3006 		}
3007 
3008 		ato = min(ato, max_ato);
3009 	}
3010 
3011 	/* Stay within the limit we were given */
3012 	timeout = jiffies + ato;
3013 
3014 	/* Use new timeout only if there wasn't a older one earlier. */
3015 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3016 		/* If delack timer was blocked or is about to expire,
3017 		 * send ACK now.
3018 		 */
3019 		if (icsk->icsk_ack.blocked ||
3020 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3021 			tcp_send_ack(sk);
3022 			return;
3023 		}
3024 
3025 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3026 			timeout = icsk->icsk_ack.timeout;
3027 	}
3028 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3029 	icsk->icsk_ack.timeout = timeout;
3030 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3031 }
3032 
3033 /* This routine sends an ack and also updates the window. */
3034 void tcp_send_ack(struct sock *sk)
3035 {
3036 	struct sk_buff *buff;
3037 
3038 	/* If we have been reset, we may not send again. */
3039 	if (sk->sk_state == TCP_CLOSE)
3040 		return;
3041 
3042 	/* We are not putting this on the write queue, so
3043 	 * tcp_transmit_skb() will set the ownership to this
3044 	 * sock.
3045 	 */
3046 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3047 	if (buff == NULL) {
3048 		inet_csk_schedule_ack(sk);
3049 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3050 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3051 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3052 		return;
3053 	}
3054 
3055 	/* Reserve space for headers and prepare control bits. */
3056 	skb_reserve(buff, MAX_TCP_HEADER);
3057 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3058 
3059 	/* Send it off, this clears delayed acks for us. */
3060 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3061 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3062 }
3063 
3064 /* This routine sends a packet with an out of date sequence
3065  * number. It assumes the other end will try to ack it.
3066  *
3067  * Question: what should we make while urgent mode?
3068  * 4.4BSD forces sending single byte of data. We cannot send
3069  * out of window data, because we have SND.NXT==SND.MAX...
3070  *
3071  * Current solution: to send TWO zero-length segments in urgent mode:
3072  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3073  * out-of-date with SND.UNA-1 to probe window.
3074  */
3075 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3076 {
3077 	struct tcp_sock *tp = tcp_sk(sk);
3078 	struct sk_buff *skb;
3079 
3080 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3081 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3082 	if (skb == NULL)
3083 		return -1;
3084 
3085 	/* Reserve space for headers and set control bits. */
3086 	skb_reserve(skb, MAX_TCP_HEADER);
3087 	/* Use a previous sequence.  This should cause the other
3088 	 * end to send an ack.  Don't queue or clone SKB, just
3089 	 * send it.
3090 	 */
3091 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3092 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3093 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3094 }
3095 
3096 void tcp_send_window_probe(struct sock *sk)
3097 {
3098 	if (sk->sk_state == TCP_ESTABLISHED) {
3099 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3100 		tcp_xmit_probe_skb(sk, 0);
3101 	}
3102 }
3103 
3104 /* Initiate keepalive or window probe from timer. */
3105 int tcp_write_wakeup(struct sock *sk)
3106 {
3107 	struct tcp_sock *tp = tcp_sk(sk);
3108 	struct sk_buff *skb;
3109 
3110 	if (sk->sk_state == TCP_CLOSE)
3111 		return -1;
3112 
3113 	if ((skb = tcp_send_head(sk)) != NULL &&
3114 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3115 		int err;
3116 		unsigned int mss = tcp_current_mss(sk);
3117 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3118 
3119 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3120 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3121 
3122 		/* We are probing the opening of a window
3123 		 * but the window size is != 0
3124 		 * must have been a result SWS avoidance ( sender )
3125 		 */
3126 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3127 		    skb->len > mss) {
3128 			seg_size = min(seg_size, mss);
3129 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3130 			if (tcp_fragment(sk, skb, seg_size, mss))
3131 				return -1;
3132 		} else if (!tcp_skb_pcount(skb))
3133 			tcp_set_skb_tso_segs(sk, skb, mss);
3134 
3135 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3136 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3137 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3138 		if (!err)
3139 			tcp_event_new_data_sent(sk, skb);
3140 		return err;
3141 	} else {
3142 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3143 			tcp_xmit_probe_skb(sk, 1);
3144 		return tcp_xmit_probe_skb(sk, 0);
3145 	}
3146 }
3147 
3148 /* A window probe timeout has occurred.  If window is not closed send
3149  * a partial packet else a zero probe.
3150  */
3151 void tcp_send_probe0(struct sock *sk)
3152 {
3153 	struct inet_connection_sock *icsk = inet_csk(sk);
3154 	struct tcp_sock *tp = tcp_sk(sk);
3155 	int err;
3156 
3157 	err = tcp_write_wakeup(sk);
3158 
3159 	if (tp->packets_out || !tcp_send_head(sk)) {
3160 		/* Cancel probe timer, if it is not required. */
3161 		icsk->icsk_probes_out = 0;
3162 		icsk->icsk_backoff = 0;
3163 		return;
3164 	}
3165 
3166 	if (err <= 0) {
3167 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3168 			icsk->icsk_backoff++;
3169 		icsk->icsk_probes_out++;
3170 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3171 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3172 					  TCP_RTO_MAX);
3173 	} else {
3174 		/* If packet was not sent due to local congestion,
3175 		 * do not backoff and do not remember icsk_probes_out.
3176 		 * Let local senders to fight for local resources.
3177 		 *
3178 		 * Use accumulated backoff yet.
3179 		 */
3180 		if (!icsk->icsk_probes_out)
3181 			icsk->icsk_probes_out = 1;
3182 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3183 					  min(icsk->icsk_rto << icsk->icsk_backoff,
3184 					      TCP_RESOURCE_PROBE_INTERVAL),
3185 					  TCP_RTO_MAX);
3186 	}
3187 }
3188