xref: /linux/net/ipv4/tcp_output.c (revision c411ed854584a71b0e86ac3019b60e4789d88086)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_jiffies32;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_jiffies32;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	tp->lsndtime = now;
169 
170 	/* If it is a reply for ato after last received
171 	 * packet, enter pingpong mode.
172 	 */
173 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 		icsk->icsk_ack.pingpong = 1;
175 }
176 
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 	tcp_dec_quickack_mode(sk, pkts);
181 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183 
184 
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 	/* Initial receive window should be twice of TCP_INIT_CWND to
188 	 * enable proper sending of new unsent data during fast recovery
189 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 	 * limit when mss is larger than 1460.
191 	 */
192 	u32 init_rwnd = TCP_INIT_CWND * 2;
193 
194 	if (mss > 1460)
195 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 	return init_rwnd;
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (sysctl_tcp_workaround_signed_windows)
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = space;
234 
235 	(*rcv_wscale) = 0;
236 	if (wscale_ok) {
237 		/* Set window scaling on max possible window */
238 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
239 		space = max_t(u32, space, sysctl_rmem_max);
240 		space = min_t(u32, space, *window_clamp);
241 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
242 			space >>= 1;
243 			(*rcv_wscale)++;
244 		}
245 	}
246 
247 	if (mss > (1 << *rcv_wscale)) {
248 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
249 			init_rcv_wnd = tcp_default_init_rwnd(mss);
250 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 	}
252 
253 	/* Set the clamp no higher than max representable value */
254 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
255 }
256 EXPORT_SYMBOL(tcp_select_initial_window);
257 
258 /* Chose a new window to advertise, update state in tcp_sock for the
259  * socket, and return result with RFC1323 scaling applied.  The return
260  * value can be stuffed directly into th->window for an outgoing
261  * frame.
262  */
263 static u16 tcp_select_window(struct sock *sk)
264 {
265 	struct tcp_sock *tp = tcp_sk(sk);
266 	u32 old_win = tp->rcv_wnd;
267 	u32 cur_win = tcp_receive_window(tp);
268 	u32 new_win = __tcp_select_window(sk);
269 
270 	/* Never shrink the offered window */
271 	if (new_win < cur_win) {
272 		/* Danger Will Robinson!
273 		 * Don't update rcv_wup/rcv_wnd here or else
274 		 * we will not be able to advertise a zero
275 		 * window in time.  --DaveM
276 		 *
277 		 * Relax Will Robinson.
278 		 */
279 		if (new_win == 0)
280 			NET_INC_STATS(sock_net(sk),
281 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
282 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
283 	}
284 	tp->rcv_wnd = new_win;
285 	tp->rcv_wup = tp->rcv_nxt;
286 
287 	/* Make sure we do not exceed the maximum possible
288 	 * scaled window.
289 	 */
290 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
291 		new_win = min(new_win, MAX_TCP_WINDOW);
292 	else
293 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
294 
295 	/* RFC1323 scaling applied */
296 	new_win >>= tp->rx_opt.rcv_wscale;
297 
298 	if (new_win == 0) {
299 		if (old_win)
300 			NET_INC_STATS(sock_net(sk),
301 				      LINUX_MIB_TCPTOZEROWINDOWADV);
302 	} else if (old_win == 0) {
303 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
304 	}
305 
306 	return new_win;
307 }
308 
309 /* Packet ECN state for a SYN-ACK */
310 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
311 {
312 	const struct tcp_sock *tp = tcp_sk(sk);
313 
314 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
315 	if (!(tp->ecn_flags & TCP_ECN_OK))
316 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
317 	else if (tcp_ca_needs_ecn(sk) ||
318 		 tcp_bpf_ca_needs_ecn(sk))
319 		INET_ECN_xmit(sk);
320 }
321 
322 /* Packet ECN state for a SYN.  */
323 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
324 {
325 	struct tcp_sock *tp = tcp_sk(sk);
326 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
327 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
329 
330 	if (!use_ecn) {
331 		const struct dst_entry *dst = __sk_dst_get(sk);
332 
333 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
334 			use_ecn = true;
335 	}
336 
337 	tp->ecn_flags = 0;
338 
339 	if (use_ecn) {
340 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 		tp->ecn_flags = TCP_ECN_OK;
342 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
343 			INET_ECN_xmit(sk);
344 	}
345 }
346 
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 {
349 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 		/* tp->ecn_flags are cleared at a later point in time when
351 		 * SYN ACK is ultimatively being received.
352 		 */
353 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
354 }
355 
356 static void
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 {
359 	if (inet_rsk(req)->ecn_ok)
360 		th->ece = 1;
361 }
362 
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
364  * be sent.
365  */
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 			 struct tcphdr *th, int tcp_header_len)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 
371 	if (tp->ecn_flags & TCP_ECN_OK) {
372 		/* Not-retransmitted data segment: set ECT and inject CWR. */
373 		if (skb->len != tcp_header_len &&
374 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 			INET_ECN_xmit(sk);
376 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 				th->cwr = 1;
379 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 			}
381 		} else if (!tcp_ca_needs_ecn(sk)) {
382 			/* ACK or retransmitted segment: clear ECT|CE */
383 			INET_ECN_dontxmit(sk);
384 		}
385 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
386 			th->ece = 1;
387 	}
388 }
389 
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391  * auto increment end seqno.
392  */
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 {
395 	skb->ip_summed = CHECKSUM_PARTIAL;
396 	skb->csum = 0;
397 
398 	TCP_SKB_CB(skb)->tcp_flags = flags;
399 	TCP_SKB_CB(skb)->sacked = 0;
400 
401 	tcp_skb_pcount_set(skb, 1);
402 
403 	TCP_SKB_CB(skb)->seq = seq;
404 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
405 		seq++;
406 	TCP_SKB_CB(skb)->end_seq = seq;
407 }
408 
409 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
410 {
411 	return tp->snd_una != tp->snd_up;
412 }
413 
414 #define OPTION_SACK_ADVERTISE	(1 << 0)
415 #define OPTION_TS		(1 << 1)
416 #define OPTION_MD5		(1 << 2)
417 #define OPTION_WSCALE		(1 << 3)
418 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
419 
420 struct tcp_out_options {
421 	u16 options;		/* bit field of OPTION_* */
422 	u16 mss;		/* 0 to disable */
423 	u8 ws;			/* window scale, 0 to disable */
424 	u8 num_sack_blocks;	/* number of SACK blocks to include */
425 	u8 hash_size;		/* bytes in hash_location */
426 	__u8 *hash_location;	/* temporary pointer, overloaded */
427 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
428 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
429 };
430 
431 /* Write previously computed TCP options to the packet.
432  *
433  * Beware: Something in the Internet is very sensitive to the ordering of
434  * TCP options, we learned this through the hard way, so be careful here.
435  * Luckily we can at least blame others for their non-compliance but from
436  * inter-operability perspective it seems that we're somewhat stuck with
437  * the ordering which we have been using if we want to keep working with
438  * those broken things (not that it currently hurts anybody as there isn't
439  * particular reason why the ordering would need to be changed).
440  *
441  * At least SACK_PERM as the first option is known to lead to a disaster
442  * (but it may well be that other scenarios fail similarly).
443  */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 			      struct tcp_out_options *opts)
446 {
447 	u16 options = opts->options;	/* mungable copy */
448 
449 	if (unlikely(OPTION_MD5 & options)) {
450 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 		/* overload cookie hash location */
453 		opts->hash_location = (__u8 *)ptr;
454 		ptr += 4;
455 	}
456 
457 	if (unlikely(opts->mss)) {
458 		*ptr++ = htonl((TCPOPT_MSS << 24) |
459 			       (TCPOLEN_MSS << 16) |
460 			       opts->mss);
461 	}
462 
463 	if (likely(OPTION_TS & options)) {
464 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 				       (TCPOLEN_SACK_PERM << 16) |
467 				       (TCPOPT_TIMESTAMP << 8) |
468 				       TCPOLEN_TIMESTAMP);
469 			options &= ~OPTION_SACK_ADVERTISE;
470 		} else {
471 			*ptr++ = htonl((TCPOPT_NOP << 24) |
472 				       (TCPOPT_NOP << 16) |
473 				       (TCPOPT_TIMESTAMP << 8) |
474 				       TCPOLEN_TIMESTAMP);
475 		}
476 		*ptr++ = htonl(opts->tsval);
477 		*ptr++ = htonl(opts->tsecr);
478 	}
479 
480 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 		*ptr++ = htonl((TCPOPT_NOP << 24) |
482 			       (TCPOPT_NOP << 16) |
483 			       (TCPOPT_SACK_PERM << 8) |
484 			       TCPOLEN_SACK_PERM);
485 	}
486 
487 	if (unlikely(OPTION_WSCALE & options)) {
488 		*ptr++ = htonl((TCPOPT_NOP << 24) |
489 			       (TCPOPT_WINDOW << 16) |
490 			       (TCPOLEN_WINDOW << 8) |
491 			       opts->ws);
492 	}
493 
494 	if (unlikely(opts->num_sack_blocks)) {
495 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 			tp->duplicate_sack : tp->selective_acks;
497 		int this_sack;
498 
499 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
500 			       (TCPOPT_NOP  << 16) |
501 			       (TCPOPT_SACK <<  8) |
502 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 						     TCPOLEN_SACK_PERBLOCK)));
504 
505 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 		     ++this_sack) {
507 			*ptr++ = htonl(sp[this_sack].start_seq);
508 			*ptr++ = htonl(sp[this_sack].end_seq);
509 		}
510 
511 		tp->rx_opt.dsack = 0;
512 	}
513 
514 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 		u8 *p = (u8 *)ptr;
517 		u32 len; /* Fast Open option length */
518 
519 		if (foc->exp) {
520 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 				     TCPOPT_FASTOPEN_MAGIC);
523 			p += TCPOLEN_EXP_FASTOPEN_BASE;
524 		} else {
525 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 			*p++ = TCPOPT_FASTOPEN;
527 			*p++ = len;
528 		}
529 
530 		memcpy(p, foc->val, foc->len);
531 		if ((len & 3) == 2) {
532 			p[foc->len] = TCPOPT_NOP;
533 			p[foc->len + 1] = TCPOPT_NOP;
534 		}
535 		ptr += (len + 3) >> 2;
536 	}
537 }
538 
539 /* Compute TCP options for SYN packets. This is not the final
540  * network wire format yet.
541  */
542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
543 				struct tcp_out_options *opts,
544 				struct tcp_md5sig_key **md5)
545 {
546 	struct tcp_sock *tp = tcp_sk(sk);
547 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
548 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
549 
550 #ifdef CONFIG_TCP_MD5SIG
551 	*md5 = tp->af_specific->md5_lookup(sk, sk);
552 	if (*md5) {
553 		opts->options |= OPTION_MD5;
554 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
555 	}
556 #else
557 	*md5 = NULL;
558 #endif
559 
560 	/* We always get an MSS option.  The option bytes which will be seen in
561 	 * normal data packets should timestamps be used, must be in the MSS
562 	 * advertised.  But we subtract them from tp->mss_cache so that
563 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
564 	 * fact here if necessary.  If we don't do this correctly, as a
565 	 * receiver we won't recognize data packets as being full sized when we
566 	 * should, and thus we won't abide by the delayed ACK rules correctly.
567 	 * SACKs don't matter, we never delay an ACK when we have any of those
568 	 * going out.  */
569 	opts->mss = tcp_advertise_mss(sk);
570 	remaining -= TCPOLEN_MSS_ALIGNED;
571 
572 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
573 		opts->options |= OPTION_TS;
574 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
575 		opts->tsecr = tp->rx_opt.ts_recent;
576 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
577 	}
578 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
579 		opts->ws = tp->rx_opt.rcv_wscale;
580 		opts->options |= OPTION_WSCALE;
581 		remaining -= TCPOLEN_WSCALE_ALIGNED;
582 	}
583 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
584 		opts->options |= OPTION_SACK_ADVERTISE;
585 		if (unlikely(!(OPTION_TS & opts->options)))
586 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
587 	}
588 
589 	if (fastopen && fastopen->cookie.len >= 0) {
590 		u32 need = fastopen->cookie.len;
591 
592 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
593 					       TCPOLEN_FASTOPEN_BASE;
594 		need = (need + 3) & ~3U;  /* Align to 32 bits */
595 		if (remaining >= need) {
596 			opts->options |= OPTION_FAST_OPEN_COOKIE;
597 			opts->fastopen_cookie = &fastopen->cookie;
598 			remaining -= need;
599 			tp->syn_fastopen = 1;
600 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
601 		}
602 	}
603 
604 	return MAX_TCP_OPTION_SPACE - remaining;
605 }
606 
607 /* Set up TCP options for SYN-ACKs. */
608 static unsigned int tcp_synack_options(struct request_sock *req,
609 				       unsigned int mss, struct sk_buff *skb,
610 				       struct tcp_out_options *opts,
611 				       const struct tcp_md5sig_key *md5,
612 				       struct tcp_fastopen_cookie *foc)
613 {
614 	struct inet_request_sock *ireq = inet_rsk(req);
615 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
616 
617 #ifdef CONFIG_TCP_MD5SIG
618 	if (md5) {
619 		opts->options |= OPTION_MD5;
620 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
621 
622 		/* We can't fit any SACK blocks in a packet with MD5 + TS
623 		 * options. There was discussion about disabling SACK
624 		 * rather than TS in order to fit in better with old,
625 		 * buggy kernels, but that was deemed to be unnecessary.
626 		 */
627 		ireq->tstamp_ok &= !ireq->sack_ok;
628 	}
629 #endif
630 
631 	/* We always send an MSS option. */
632 	opts->mss = mss;
633 	remaining -= TCPOLEN_MSS_ALIGNED;
634 
635 	if (likely(ireq->wscale_ok)) {
636 		opts->ws = ireq->rcv_wscale;
637 		opts->options |= OPTION_WSCALE;
638 		remaining -= TCPOLEN_WSCALE_ALIGNED;
639 	}
640 	if (likely(ireq->tstamp_ok)) {
641 		opts->options |= OPTION_TS;
642 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
643 		opts->tsecr = req->ts_recent;
644 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
645 	}
646 	if (likely(ireq->sack_ok)) {
647 		opts->options |= OPTION_SACK_ADVERTISE;
648 		if (unlikely(!ireq->tstamp_ok))
649 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
650 	}
651 	if (foc != NULL && foc->len >= 0) {
652 		u32 need = foc->len;
653 
654 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
655 				   TCPOLEN_FASTOPEN_BASE;
656 		need = (need + 3) & ~3U;  /* Align to 32 bits */
657 		if (remaining >= need) {
658 			opts->options |= OPTION_FAST_OPEN_COOKIE;
659 			opts->fastopen_cookie = foc;
660 			remaining -= need;
661 		}
662 	}
663 
664 	return MAX_TCP_OPTION_SPACE - remaining;
665 }
666 
667 /* Compute TCP options for ESTABLISHED sockets. This is not the
668  * final wire format yet.
669  */
670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
671 					struct tcp_out_options *opts,
672 					struct tcp_md5sig_key **md5)
673 {
674 	struct tcp_sock *tp = tcp_sk(sk);
675 	unsigned int size = 0;
676 	unsigned int eff_sacks;
677 
678 	opts->options = 0;
679 
680 #ifdef CONFIG_TCP_MD5SIG
681 	*md5 = tp->af_specific->md5_lookup(sk, sk);
682 	if (unlikely(*md5)) {
683 		opts->options |= OPTION_MD5;
684 		size += TCPOLEN_MD5SIG_ALIGNED;
685 	}
686 #else
687 	*md5 = NULL;
688 #endif
689 
690 	if (likely(tp->rx_opt.tstamp_ok)) {
691 		opts->options |= OPTION_TS;
692 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
693 		opts->tsecr = tp->rx_opt.ts_recent;
694 		size += TCPOLEN_TSTAMP_ALIGNED;
695 	}
696 
697 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
698 	if (unlikely(eff_sacks)) {
699 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
700 		opts->num_sack_blocks =
701 			min_t(unsigned int, eff_sacks,
702 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
703 			      TCPOLEN_SACK_PERBLOCK);
704 		size += TCPOLEN_SACK_BASE_ALIGNED +
705 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
706 	}
707 
708 	return size;
709 }
710 
711 
712 /* TCP SMALL QUEUES (TSQ)
713  *
714  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
715  * to reduce RTT and bufferbloat.
716  * We do this using a special skb destructor (tcp_wfree).
717  *
718  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
719  * needs to be reallocated in a driver.
720  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
721  *
722  * Since transmit from skb destructor is forbidden, we use a tasklet
723  * to process all sockets that eventually need to send more skbs.
724  * We use one tasklet per cpu, with its own queue of sockets.
725  */
726 struct tsq_tasklet {
727 	struct tasklet_struct	tasklet;
728 	struct list_head	head; /* queue of tcp sockets */
729 };
730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
731 
732 static void tcp_tsq_handler(struct sock *sk)
733 {
734 	if ((1 << sk->sk_state) &
735 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
736 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
737 		struct tcp_sock *tp = tcp_sk(sk);
738 
739 		if (tp->lost_out > tp->retrans_out &&
740 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
741 			tcp_xmit_retransmit_queue(sk);
742 
743 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
744 			       0, GFP_ATOMIC);
745 	}
746 }
747 /*
748  * One tasklet per cpu tries to send more skbs.
749  * We run in tasklet context but need to disable irqs when
750  * transferring tsq->head because tcp_wfree() might
751  * interrupt us (non NAPI drivers)
752  */
753 static void tcp_tasklet_func(unsigned long data)
754 {
755 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
756 	LIST_HEAD(list);
757 	unsigned long flags;
758 	struct list_head *q, *n;
759 	struct tcp_sock *tp;
760 	struct sock *sk;
761 
762 	local_irq_save(flags);
763 	list_splice_init(&tsq->head, &list);
764 	local_irq_restore(flags);
765 
766 	list_for_each_safe(q, n, &list) {
767 		tp = list_entry(q, struct tcp_sock, tsq_node);
768 		list_del(&tp->tsq_node);
769 
770 		sk = (struct sock *)tp;
771 		smp_mb__before_atomic();
772 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
773 
774 		if (!sk->sk_lock.owned &&
775 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
776 			bh_lock_sock(sk);
777 			if (!sock_owned_by_user(sk)) {
778 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
779 				tcp_tsq_handler(sk);
780 			}
781 			bh_unlock_sock(sk);
782 		}
783 
784 		sk_free(sk);
785 	}
786 }
787 
788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
789 			  TCPF_WRITE_TIMER_DEFERRED |	\
790 			  TCPF_DELACK_TIMER_DEFERRED |	\
791 			  TCPF_MTU_REDUCED_DEFERRED)
792 /**
793  * tcp_release_cb - tcp release_sock() callback
794  * @sk: socket
795  *
796  * called from release_sock() to perform protocol dependent
797  * actions before socket release.
798  */
799 void tcp_release_cb(struct sock *sk)
800 {
801 	unsigned long flags, nflags;
802 
803 	/* perform an atomic operation only if at least one flag is set */
804 	do {
805 		flags = sk->sk_tsq_flags;
806 		if (!(flags & TCP_DEFERRED_ALL))
807 			return;
808 		nflags = flags & ~TCP_DEFERRED_ALL;
809 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
810 
811 	if (flags & TCPF_TSQ_DEFERRED)
812 		tcp_tsq_handler(sk);
813 
814 	/* Here begins the tricky part :
815 	 * We are called from release_sock() with :
816 	 * 1) BH disabled
817 	 * 2) sk_lock.slock spinlock held
818 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 	 *
820 	 * But following code is meant to be called from BH handlers,
821 	 * so we should keep BH disabled, but early release socket ownership
822 	 */
823 	sock_release_ownership(sk);
824 
825 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
826 		tcp_write_timer_handler(sk);
827 		__sock_put(sk);
828 	}
829 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
830 		tcp_delack_timer_handler(sk);
831 		__sock_put(sk);
832 	}
833 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
834 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 		__sock_put(sk);
836 	}
837 }
838 EXPORT_SYMBOL(tcp_release_cb);
839 
840 void __init tcp_tasklet_init(void)
841 {
842 	int i;
843 
844 	for_each_possible_cpu(i) {
845 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846 
847 		INIT_LIST_HEAD(&tsq->head);
848 		tasklet_init(&tsq->tasklet,
849 			     tcp_tasklet_func,
850 			     (unsigned long)tsq);
851 	}
852 }
853 
854 /*
855  * Write buffer destructor automatically called from kfree_skb.
856  * We can't xmit new skbs from this context, as we might already
857  * hold qdisc lock.
858  */
859 void tcp_wfree(struct sk_buff *skb)
860 {
861 	struct sock *sk = skb->sk;
862 	struct tcp_sock *tp = tcp_sk(sk);
863 	unsigned long flags, nval, oval;
864 
865 	/* Keep one reference on sk_wmem_alloc.
866 	 * Will be released by sk_free() from here or tcp_tasklet_func()
867 	 */
868 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
869 
870 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
871 	 * Wait until our queues (qdisc + devices) are drained.
872 	 * This gives :
873 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
874 	 * - chance for incoming ACK (processed by another cpu maybe)
875 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
876 	 */
877 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
878 		goto out;
879 
880 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
881 		struct tsq_tasklet *tsq;
882 		bool empty;
883 
884 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
885 			goto out;
886 
887 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
888 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
889 		if (nval != oval)
890 			continue;
891 
892 		/* queue this socket to tasklet queue */
893 		local_irq_save(flags);
894 		tsq = this_cpu_ptr(&tsq_tasklet);
895 		empty = list_empty(&tsq->head);
896 		list_add(&tp->tsq_node, &tsq->head);
897 		if (empty)
898 			tasklet_schedule(&tsq->tasklet);
899 		local_irq_restore(flags);
900 		return;
901 	}
902 out:
903 	sk_free(sk);
904 }
905 
906 /* Note: Called under hard irq.
907  * We can not call TCP stack right away.
908  */
909 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
910 {
911 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
912 	struct sock *sk = (struct sock *)tp;
913 	unsigned long nval, oval;
914 
915 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
916 		struct tsq_tasklet *tsq;
917 		bool empty;
918 
919 		if (oval & TSQF_QUEUED)
920 			break;
921 
922 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
923 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
924 		if (nval != oval)
925 			continue;
926 
927 		if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
928 			break;
929 		/* queue this socket to tasklet queue */
930 		tsq = this_cpu_ptr(&tsq_tasklet);
931 		empty = list_empty(&tsq->head);
932 		list_add(&tp->tsq_node, &tsq->head);
933 		if (empty)
934 			tasklet_schedule(&tsq->tasklet);
935 		break;
936 	}
937 	return HRTIMER_NORESTART;
938 }
939 
940 /* BBR congestion control needs pacing.
941  * Same remark for SO_MAX_PACING_RATE.
942  * sch_fq packet scheduler is efficiently handling pacing,
943  * but is not always installed/used.
944  * Return true if TCP stack should pace packets itself.
945  */
946 static bool tcp_needs_internal_pacing(const struct sock *sk)
947 {
948 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
949 }
950 
951 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
952 {
953 	u64 len_ns;
954 	u32 rate;
955 
956 	if (!tcp_needs_internal_pacing(sk))
957 		return;
958 	rate = sk->sk_pacing_rate;
959 	if (!rate || rate == ~0U)
960 		return;
961 
962 	/* Should account for header sizes as sch_fq does,
963 	 * but lets make things simple.
964 	 */
965 	len_ns = (u64)skb->len * NSEC_PER_SEC;
966 	do_div(len_ns, rate);
967 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
968 		      ktime_add_ns(ktime_get(), len_ns),
969 		      HRTIMER_MODE_ABS_PINNED);
970 }
971 
972 /* This routine actually transmits TCP packets queued in by
973  * tcp_do_sendmsg().  This is used by both the initial
974  * transmission and possible later retransmissions.
975  * All SKB's seen here are completely headerless.  It is our
976  * job to build the TCP header, and pass the packet down to
977  * IP so it can do the same plus pass the packet off to the
978  * device.
979  *
980  * We are working here with either a clone of the original
981  * SKB, or a fresh unique copy made by the retransmit engine.
982  */
983 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
984 			    gfp_t gfp_mask)
985 {
986 	const struct inet_connection_sock *icsk = inet_csk(sk);
987 	struct inet_sock *inet;
988 	struct tcp_sock *tp;
989 	struct tcp_skb_cb *tcb;
990 	struct tcp_out_options opts;
991 	unsigned int tcp_options_size, tcp_header_size;
992 	struct tcp_md5sig_key *md5;
993 	struct tcphdr *th;
994 	int err;
995 
996 	BUG_ON(!skb || !tcp_skb_pcount(skb));
997 	tp = tcp_sk(sk);
998 
999 	skb->skb_mstamp = tp->tcp_mstamp;
1000 	if (clone_it) {
1001 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1002 			- tp->snd_una;
1003 		tcp_rate_skb_sent(sk, skb);
1004 
1005 		if (unlikely(skb_cloned(skb)))
1006 			skb = pskb_copy(skb, gfp_mask);
1007 		else
1008 			skb = skb_clone(skb, gfp_mask);
1009 		if (unlikely(!skb))
1010 			return -ENOBUFS;
1011 	}
1012 
1013 	inet = inet_sk(sk);
1014 	tcb = TCP_SKB_CB(skb);
1015 	memset(&opts, 0, sizeof(opts));
1016 
1017 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1018 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1019 	else
1020 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1021 							   &md5);
1022 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1023 
1024 	/* if no packet is in qdisc/device queue, then allow XPS to select
1025 	 * another queue. We can be called from tcp_tsq_handler()
1026 	 * which holds one reference to sk_wmem_alloc.
1027 	 *
1028 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1029 	 * One way to get this would be to set skb->truesize = 2 on them.
1030 	 */
1031 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1032 
1033 	/* If we had to use memory reserve to allocate this skb,
1034 	 * this might cause drops if packet is looped back :
1035 	 * Other socket might not have SOCK_MEMALLOC.
1036 	 * Packets not looped back do not care about pfmemalloc.
1037 	 */
1038 	skb->pfmemalloc = 0;
1039 
1040 	skb_push(skb, tcp_header_size);
1041 	skb_reset_transport_header(skb);
1042 
1043 	skb_orphan(skb);
1044 	skb->sk = sk;
1045 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1046 	skb_set_hash_from_sk(skb, sk);
1047 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1048 
1049 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1050 
1051 	/* Build TCP header and checksum it. */
1052 	th = (struct tcphdr *)skb->data;
1053 	th->source		= inet->inet_sport;
1054 	th->dest		= inet->inet_dport;
1055 	th->seq			= htonl(tcb->seq);
1056 	th->ack_seq		= htonl(tp->rcv_nxt);
1057 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1058 					tcb->tcp_flags);
1059 
1060 	th->check		= 0;
1061 	th->urg_ptr		= 0;
1062 
1063 	/* The urg_mode check is necessary during a below snd_una win probe */
1064 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1065 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1066 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1067 			th->urg = 1;
1068 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1069 			th->urg_ptr = htons(0xFFFF);
1070 			th->urg = 1;
1071 		}
1072 	}
1073 
1074 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1075 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1076 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1077 		th->window      = htons(tcp_select_window(sk));
1078 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1079 	} else {
1080 		/* RFC1323: The window in SYN & SYN/ACK segments
1081 		 * is never scaled.
1082 		 */
1083 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1084 	}
1085 #ifdef CONFIG_TCP_MD5SIG
1086 	/* Calculate the MD5 hash, as we have all we need now */
1087 	if (md5) {
1088 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1089 		tp->af_specific->calc_md5_hash(opts.hash_location,
1090 					       md5, sk, skb);
1091 	}
1092 #endif
1093 
1094 	icsk->icsk_af_ops->send_check(sk, skb);
1095 
1096 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1097 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1098 
1099 	if (skb->len != tcp_header_size) {
1100 		tcp_event_data_sent(tp, sk);
1101 		tp->data_segs_out += tcp_skb_pcount(skb);
1102 		tcp_internal_pacing(sk, skb);
1103 	}
1104 
1105 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1106 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1107 			      tcp_skb_pcount(skb));
1108 
1109 	tp->segs_out += tcp_skb_pcount(skb);
1110 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1111 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1112 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1113 
1114 	/* Our usage of tstamp should remain private */
1115 	skb->tstamp = 0;
1116 
1117 	/* Cleanup our debris for IP stacks */
1118 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1119 			       sizeof(struct inet6_skb_parm)));
1120 
1121 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1122 
1123 	if (likely(err <= 0))
1124 		return err;
1125 
1126 	tcp_enter_cwr(sk);
1127 
1128 	return net_xmit_eval(err);
1129 }
1130 
1131 /* This routine just queues the buffer for sending.
1132  *
1133  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1134  * otherwise socket can stall.
1135  */
1136 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1137 {
1138 	struct tcp_sock *tp = tcp_sk(sk);
1139 
1140 	/* Advance write_seq and place onto the write_queue. */
1141 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1142 	__skb_header_release(skb);
1143 	tcp_add_write_queue_tail(sk, skb);
1144 	sk->sk_wmem_queued += skb->truesize;
1145 	sk_mem_charge(sk, skb->truesize);
1146 }
1147 
1148 /* Initialize TSO segments for a packet. */
1149 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1150 {
1151 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1152 		/* Avoid the costly divide in the normal
1153 		 * non-TSO case.
1154 		 */
1155 		tcp_skb_pcount_set(skb, 1);
1156 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1157 	} else {
1158 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1159 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1160 	}
1161 }
1162 
1163 /* When a modification to fackets out becomes necessary, we need to check
1164  * skb is counted to fackets_out or not.
1165  */
1166 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1167 				   int decr)
1168 {
1169 	struct tcp_sock *tp = tcp_sk(sk);
1170 
1171 	if (!tp->sacked_out || tcp_is_reno(tp))
1172 		return;
1173 
1174 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1175 		tp->fackets_out -= decr;
1176 }
1177 
1178 /* Pcount in the middle of the write queue got changed, we need to do various
1179  * tweaks to fix counters
1180  */
1181 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1182 {
1183 	struct tcp_sock *tp = tcp_sk(sk);
1184 
1185 	tp->packets_out -= decr;
1186 
1187 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1188 		tp->sacked_out -= decr;
1189 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1190 		tp->retrans_out -= decr;
1191 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1192 		tp->lost_out -= decr;
1193 
1194 	/* Reno case is special. Sigh... */
1195 	if (tcp_is_reno(tp) && decr > 0)
1196 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1197 
1198 	tcp_adjust_fackets_out(sk, skb, decr);
1199 
1200 	if (tp->lost_skb_hint &&
1201 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1202 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1203 		tp->lost_cnt_hint -= decr;
1204 
1205 	tcp_verify_left_out(tp);
1206 }
1207 
1208 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1209 {
1210 	return TCP_SKB_CB(skb)->txstamp_ack ||
1211 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1212 }
1213 
1214 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1215 {
1216 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1217 
1218 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1219 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1220 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1221 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1222 
1223 		shinfo->tx_flags &= ~tsflags;
1224 		shinfo2->tx_flags |= tsflags;
1225 		swap(shinfo->tskey, shinfo2->tskey);
1226 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1227 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1228 	}
1229 }
1230 
1231 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1232 {
1233 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1234 	TCP_SKB_CB(skb)->eor = 0;
1235 }
1236 
1237 /* Function to create two new TCP segments.  Shrinks the given segment
1238  * to the specified size and appends a new segment with the rest of the
1239  * packet to the list.  This won't be called frequently, I hope.
1240  * Remember, these are still headerless SKBs at this point.
1241  */
1242 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1243 		 unsigned int mss_now, gfp_t gfp)
1244 {
1245 	struct tcp_sock *tp = tcp_sk(sk);
1246 	struct sk_buff *buff;
1247 	int nsize, old_factor;
1248 	int nlen;
1249 	u8 flags;
1250 
1251 	if (WARN_ON(len > skb->len))
1252 		return -EINVAL;
1253 
1254 	nsize = skb_headlen(skb) - len;
1255 	if (nsize < 0)
1256 		nsize = 0;
1257 
1258 	if (skb_unclone(skb, gfp))
1259 		return -ENOMEM;
1260 
1261 	/* Get a new skb... force flag on. */
1262 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1263 	if (!buff)
1264 		return -ENOMEM; /* We'll just try again later. */
1265 
1266 	sk->sk_wmem_queued += buff->truesize;
1267 	sk_mem_charge(sk, buff->truesize);
1268 	nlen = skb->len - len - nsize;
1269 	buff->truesize += nlen;
1270 	skb->truesize -= nlen;
1271 
1272 	/* Correct the sequence numbers. */
1273 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1274 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1275 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1276 
1277 	/* PSH and FIN should only be set in the second packet. */
1278 	flags = TCP_SKB_CB(skb)->tcp_flags;
1279 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1280 	TCP_SKB_CB(buff)->tcp_flags = flags;
1281 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1282 	tcp_skb_fragment_eor(skb, buff);
1283 
1284 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1285 		/* Copy and checksum data tail into the new buffer. */
1286 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1287 						       skb_put(buff, nsize),
1288 						       nsize, 0);
1289 
1290 		skb_trim(skb, len);
1291 
1292 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1293 	} else {
1294 		skb->ip_summed = CHECKSUM_PARTIAL;
1295 		skb_split(skb, buff, len);
1296 	}
1297 
1298 	buff->ip_summed = skb->ip_summed;
1299 
1300 	buff->tstamp = skb->tstamp;
1301 	tcp_fragment_tstamp(skb, buff);
1302 
1303 	old_factor = tcp_skb_pcount(skb);
1304 
1305 	/* Fix up tso_factor for both original and new SKB.  */
1306 	tcp_set_skb_tso_segs(skb, mss_now);
1307 	tcp_set_skb_tso_segs(buff, mss_now);
1308 
1309 	/* Update delivered info for the new segment */
1310 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1311 
1312 	/* If this packet has been sent out already, we must
1313 	 * adjust the various packet counters.
1314 	 */
1315 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1316 		int diff = old_factor - tcp_skb_pcount(skb) -
1317 			tcp_skb_pcount(buff);
1318 
1319 		if (diff)
1320 			tcp_adjust_pcount(sk, skb, diff);
1321 	}
1322 
1323 	/* Link BUFF into the send queue. */
1324 	__skb_header_release(buff);
1325 	tcp_insert_write_queue_after(skb, buff, sk);
1326 
1327 	return 0;
1328 }
1329 
1330 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1331  * data is not copied, but immediately discarded.
1332  */
1333 static int __pskb_trim_head(struct sk_buff *skb, int len)
1334 {
1335 	struct skb_shared_info *shinfo;
1336 	int i, k, eat;
1337 
1338 	eat = min_t(int, len, skb_headlen(skb));
1339 	if (eat) {
1340 		__skb_pull(skb, eat);
1341 		len -= eat;
1342 		if (!len)
1343 			return 0;
1344 	}
1345 	eat = len;
1346 	k = 0;
1347 	shinfo = skb_shinfo(skb);
1348 	for (i = 0; i < shinfo->nr_frags; i++) {
1349 		int size = skb_frag_size(&shinfo->frags[i]);
1350 
1351 		if (size <= eat) {
1352 			skb_frag_unref(skb, i);
1353 			eat -= size;
1354 		} else {
1355 			shinfo->frags[k] = shinfo->frags[i];
1356 			if (eat) {
1357 				shinfo->frags[k].page_offset += eat;
1358 				skb_frag_size_sub(&shinfo->frags[k], eat);
1359 				eat = 0;
1360 			}
1361 			k++;
1362 		}
1363 	}
1364 	shinfo->nr_frags = k;
1365 
1366 	skb->data_len -= len;
1367 	skb->len = skb->data_len;
1368 	return len;
1369 }
1370 
1371 /* Remove acked data from a packet in the transmit queue. */
1372 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1373 {
1374 	u32 delta_truesize;
1375 
1376 	if (skb_unclone(skb, GFP_ATOMIC))
1377 		return -ENOMEM;
1378 
1379 	delta_truesize = __pskb_trim_head(skb, len);
1380 
1381 	TCP_SKB_CB(skb)->seq += len;
1382 	skb->ip_summed = CHECKSUM_PARTIAL;
1383 
1384 	if (delta_truesize) {
1385 		skb->truesize	   -= delta_truesize;
1386 		sk->sk_wmem_queued -= delta_truesize;
1387 		sk_mem_uncharge(sk, delta_truesize);
1388 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1389 	}
1390 
1391 	/* Any change of skb->len requires recalculation of tso factor. */
1392 	if (tcp_skb_pcount(skb) > 1)
1393 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1394 
1395 	return 0;
1396 }
1397 
1398 /* Calculate MSS not accounting any TCP options.  */
1399 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1400 {
1401 	const struct tcp_sock *tp = tcp_sk(sk);
1402 	const struct inet_connection_sock *icsk = inet_csk(sk);
1403 	int mss_now;
1404 
1405 	/* Calculate base mss without TCP options:
1406 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1407 	 */
1408 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1409 
1410 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1411 	if (icsk->icsk_af_ops->net_frag_header_len) {
1412 		const struct dst_entry *dst = __sk_dst_get(sk);
1413 
1414 		if (dst && dst_allfrag(dst))
1415 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1416 	}
1417 
1418 	/* Clamp it (mss_clamp does not include tcp options) */
1419 	if (mss_now > tp->rx_opt.mss_clamp)
1420 		mss_now = tp->rx_opt.mss_clamp;
1421 
1422 	/* Now subtract optional transport overhead */
1423 	mss_now -= icsk->icsk_ext_hdr_len;
1424 
1425 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1426 	if (mss_now < 48)
1427 		mss_now = 48;
1428 	return mss_now;
1429 }
1430 
1431 /* Calculate MSS. Not accounting for SACKs here.  */
1432 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1433 {
1434 	/* Subtract TCP options size, not including SACKs */
1435 	return __tcp_mtu_to_mss(sk, pmtu) -
1436 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1437 }
1438 
1439 /* Inverse of above */
1440 int tcp_mss_to_mtu(struct sock *sk, int mss)
1441 {
1442 	const struct tcp_sock *tp = tcp_sk(sk);
1443 	const struct inet_connection_sock *icsk = inet_csk(sk);
1444 	int mtu;
1445 
1446 	mtu = mss +
1447 	      tp->tcp_header_len +
1448 	      icsk->icsk_ext_hdr_len +
1449 	      icsk->icsk_af_ops->net_header_len;
1450 
1451 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1452 	if (icsk->icsk_af_ops->net_frag_header_len) {
1453 		const struct dst_entry *dst = __sk_dst_get(sk);
1454 
1455 		if (dst && dst_allfrag(dst))
1456 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1457 	}
1458 	return mtu;
1459 }
1460 EXPORT_SYMBOL(tcp_mss_to_mtu);
1461 
1462 /* MTU probing init per socket */
1463 void tcp_mtup_init(struct sock *sk)
1464 {
1465 	struct tcp_sock *tp = tcp_sk(sk);
1466 	struct inet_connection_sock *icsk = inet_csk(sk);
1467 	struct net *net = sock_net(sk);
1468 
1469 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1470 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1471 			       icsk->icsk_af_ops->net_header_len;
1472 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1473 	icsk->icsk_mtup.probe_size = 0;
1474 	if (icsk->icsk_mtup.enabled)
1475 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1476 }
1477 EXPORT_SYMBOL(tcp_mtup_init);
1478 
1479 /* This function synchronize snd mss to current pmtu/exthdr set.
1480 
1481    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1482    for TCP options, but includes only bare TCP header.
1483 
1484    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1485    It is minimum of user_mss and mss received with SYN.
1486    It also does not include TCP options.
1487 
1488    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1489 
1490    tp->mss_cache is current effective sending mss, including
1491    all tcp options except for SACKs. It is evaluated,
1492    taking into account current pmtu, but never exceeds
1493    tp->rx_opt.mss_clamp.
1494 
1495    NOTE1. rfc1122 clearly states that advertised MSS
1496    DOES NOT include either tcp or ip options.
1497 
1498    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1499    are READ ONLY outside this function.		--ANK (980731)
1500  */
1501 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1502 {
1503 	struct tcp_sock *tp = tcp_sk(sk);
1504 	struct inet_connection_sock *icsk = inet_csk(sk);
1505 	int mss_now;
1506 
1507 	if (icsk->icsk_mtup.search_high > pmtu)
1508 		icsk->icsk_mtup.search_high = pmtu;
1509 
1510 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1511 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1512 
1513 	/* And store cached results */
1514 	icsk->icsk_pmtu_cookie = pmtu;
1515 	if (icsk->icsk_mtup.enabled)
1516 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1517 	tp->mss_cache = mss_now;
1518 
1519 	return mss_now;
1520 }
1521 EXPORT_SYMBOL(tcp_sync_mss);
1522 
1523 /* Compute the current effective MSS, taking SACKs and IP options,
1524  * and even PMTU discovery events into account.
1525  */
1526 unsigned int tcp_current_mss(struct sock *sk)
1527 {
1528 	const struct tcp_sock *tp = tcp_sk(sk);
1529 	const struct dst_entry *dst = __sk_dst_get(sk);
1530 	u32 mss_now;
1531 	unsigned int header_len;
1532 	struct tcp_out_options opts;
1533 	struct tcp_md5sig_key *md5;
1534 
1535 	mss_now = tp->mss_cache;
1536 
1537 	if (dst) {
1538 		u32 mtu = dst_mtu(dst);
1539 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1540 			mss_now = tcp_sync_mss(sk, mtu);
1541 	}
1542 
1543 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1544 		     sizeof(struct tcphdr);
1545 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1546 	 * some common options. If this is an odd packet (because we have SACK
1547 	 * blocks etc) then our calculated header_len will be different, and
1548 	 * we have to adjust mss_now correspondingly */
1549 	if (header_len != tp->tcp_header_len) {
1550 		int delta = (int) header_len - tp->tcp_header_len;
1551 		mss_now -= delta;
1552 	}
1553 
1554 	return mss_now;
1555 }
1556 
1557 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1558  * As additional protections, we do not touch cwnd in retransmission phases,
1559  * and if application hit its sndbuf limit recently.
1560  */
1561 static void tcp_cwnd_application_limited(struct sock *sk)
1562 {
1563 	struct tcp_sock *tp = tcp_sk(sk);
1564 
1565 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1566 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1567 		/* Limited by application or receiver window. */
1568 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1569 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1570 		if (win_used < tp->snd_cwnd) {
1571 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1572 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1573 		}
1574 		tp->snd_cwnd_used = 0;
1575 	}
1576 	tp->snd_cwnd_stamp = tcp_jiffies32;
1577 }
1578 
1579 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1580 {
1581 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1582 	struct tcp_sock *tp = tcp_sk(sk);
1583 
1584 	/* Track the maximum number of outstanding packets in each
1585 	 * window, and remember whether we were cwnd-limited then.
1586 	 */
1587 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1588 	    tp->packets_out > tp->max_packets_out) {
1589 		tp->max_packets_out = tp->packets_out;
1590 		tp->max_packets_seq = tp->snd_nxt;
1591 		tp->is_cwnd_limited = is_cwnd_limited;
1592 	}
1593 
1594 	if (tcp_is_cwnd_limited(sk)) {
1595 		/* Network is feed fully. */
1596 		tp->snd_cwnd_used = 0;
1597 		tp->snd_cwnd_stamp = tcp_jiffies32;
1598 	} else {
1599 		/* Network starves. */
1600 		if (tp->packets_out > tp->snd_cwnd_used)
1601 			tp->snd_cwnd_used = tp->packets_out;
1602 
1603 		if (sysctl_tcp_slow_start_after_idle &&
1604 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1605 		    !ca_ops->cong_control)
1606 			tcp_cwnd_application_limited(sk);
1607 
1608 		/* The following conditions together indicate the starvation
1609 		 * is caused by insufficient sender buffer:
1610 		 * 1) just sent some data (see tcp_write_xmit)
1611 		 * 2) not cwnd limited (this else condition)
1612 		 * 3) no more data to send (null tcp_send_head )
1613 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1614 		 */
1615 		if (!tcp_send_head(sk) && sk->sk_socket &&
1616 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1617 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1618 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1619 	}
1620 }
1621 
1622 /* Minshall's variant of the Nagle send check. */
1623 static bool tcp_minshall_check(const struct tcp_sock *tp)
1624 {
1625 	return after(tp->snd_sml, tp->snd_una) &&
1626 		!after(tp->snd_sml, tp->snd_nxt);
1627 }
1628 
1629 /* Update snd_sml if this skb is under mss
1630  * Note that a TSO packet might end with a sub-mss segment
1631  * The test is really :
1632  * if ((skb->len % mss) != 0)
1633  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1634  * But we can avoid doing the divide again given we already have
1635  *  skb_pcount = skb->len / mss_now
1636  */
1637 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1638 				const struct sk_buff *skb)
1639 {
1640 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1641 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1642 }
1643 
1644 /* Return false, if packet can be sent now without violation Nagle's rules:
1645  * 1. It is full sized. (provided by caller in %partial bool)
1646  * 2. Or it contains FIN. (already checked by caller)
1647  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1648  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1649  *    With Minshall's modification: all sent small packets are ACKed.
1650  */
1651 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1652 			    int nonagle)
1653 {
1654 	return partial &&
1655 		((nonagle & TCP_NAGLE_CORK) ||
1656 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1657 }
1658 
1659 /* Return how many segs we'd like on a TSO packet,
1660  * to send one TSO packet per ms
1661  */
1662 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1663 		     int min_tso_segs)
1664 {
1665 	u32 bytes, segs;
1666 
1667 	bytes = min(sk->sk_pacing_rate >> 10,
1668 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1669 
1670 	/* Goal is to send at least one packet per ms,
1671 	 * not one big TSO packet every 100 ms.
1672 	 * This preserves ACK clocking and is consistent
1673 	 * with tcp_tso_should_defer() heuristic.
1674 	 */
1675 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1676 
1677 	return min_t(u32, segs, sk->sk_gso_max_segs);
1678 }
1679 EXPORT_SYMBOL(tcp_tso_autosize);
1680 
1681 /* Return the number of segments we want in the skb we are transmitting.
1682  * See if congestion control module wants to decide; otherwise, autosize.
1683  */
1684 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1685 {
1686 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1687 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1688 
1689 	return tso_segs ? :
1690 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1691 }
1692 
1693 /* Returns the portion of skb which can be sent right away */
1694 static unsigned int tcp_mss_split_point(const struct sock *sk,
1695 					const struct sk_buff *skb,
1696 					unsigned int mss_now,
1697 					unsigned int max_segs,
1698 					int nonagle)
1699 {
1700 	const struct tcp_sock *tp = tcp_sk(sk);
1701 	u32 partial, needed, window, max_len;
1702 
1703 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1704 	max_len = mss_now * max_segs;
1705 
1706 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1707 		return max_len;
1708 
1709 	needed = min(skb->len, window);
1710 
1711 	if (max_len <= needed)
1712 		return max_len;
1713 
1714 	partial = needed % mss_now;
1715 	/* If last segment is not a full MSS, check if Nagle rules allow us
1716 	 * to include this last segment in this skb.
1717 	 * Otherwise, we'll split the skb at last MSS boundary
1718 	 */
1719 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1720 		return needed - partial;
1721 
1722 	return needed;
1723 }
1724 
1725 /* Can at least one segment of SKB be sent right now, according to the
1726  * congestion window rules?  If so, return how many segments are allowed.
1727  */
1728 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1729 					 const struct sk_buff *skb)
1730 {
1731 	u32 in_flight, cwnd, halfcwnd;
1732 
1733 	/* Don't be strict about the congestion window for the final FIN.  */
1734 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1735 	    tcp_skb_pcount(skb) == 1)
1736 		return 1;
1737 
1738 	in_flight = tcp_packets_in_flight(tp);
1739 	cwnd = tp->snd_cwnd;
1740 	if (in_flight >= cwnd)
1741 		return 0;
1742 
1743 	/* For better scheduling, ensure we have at least
1744 	 * 2 GSO packets in flight.
1745 	 */
1746 	halfcwnd = max(cwnd >> 1, 1U);
1747 	return min(halfcwnd, cwnd - in_flight);
1748 }
1749 
1750 /* Initialize TSO state of a skb.
1751  * This must be invoked the first time we consider transmitting
1752  * SKB onto the wire.
1753  */
1754 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1755 {
1756 	int tso_segs = tcp_skb_pcount(skb);
1757 
1758 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1759 		tcp_set_skb_tso_segs(skb, mss_now);
1760 		tso_segs = tcp_skb_pcount(skb);
1761 	}
1762 	return tso_segs;
1763 }
1764 
1765 
1766 /* Return true if the Nagle test allows this packet to be
1767  * sent now.
1768  */
1769 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1770 				  unsigned int cur_mss, int nonagle)
1771 {
1772 	/* Nagle rule does not apply to frames, which sit in the middle of the
1773 	 * write_queue (they have no chances to get new data).
1774 	 *
1775 	 * This is implemented in the callers, where they modify the 'nonagle'
1776 	 * argument based upon the location of SKB in the send queue.
1777 	 */
1778 	if (nonagle & TCP_NAGLE_PUSH)
1779 		return true;
1780 
1781 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1782 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1783 		return true;
1784 
1785 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1786 		return true;
1787 
1788 	return false;
1789 }
1790 
1791 /* Does at least the first segment of SKB fit into the send window? */
1792 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1793 			     const struct sk_buff *skb,
1794 			     unsigned int cur_mss)
1795 {
1796 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1797 
1798 	if (skb->len > cur_mss)
1799 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1800 
1801 	return !after(end_seq, tcp_wnd_end(tp));
1802 }
1803 
1804 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1805  * should be put on the wire right now.  If so, it returns the number of
1806  * packets allowed by the congestion window.
1807  */
1808 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1809 				 unsigned int cur_mss, int nonagle)
1810 {
1811 	const struct tcp_sock *tp = tcp_sk(sk);
1812 	unsigned int cwnd_quota;
1813 
1814 	tcp_init_tso_segs(skb, cur_mss);
1815 
1816 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1817 		return 0;
1818 
1819 	cwnd_quota = tcp_cwnd_test(tp, skb);
1820 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1821 		cwnd_quota = 0;
1822 
1823 	return cwnd_quota;
1824 }
1825 
1826 /* Test if sending is allowed right now. */
1827 bool tcp_may_send_now(struct sock *sk)
1828 {
1829 	const struct tcp_sock *tp = tcp_sk(sk);
1830 	struct sk_buff *skb = tcp_send_head(sk);
1831 
1832 	return skb &&
1833 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1834 			     (tcp_skb_is_last(sk, skb) ?
1835 			      tp->nonagle : TCP_NAGLE_PUSH));
1836 }
1837 
1838 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1839  * which is put after SKB on the list.  It is very much like
1840  * tcp_fragment() except that it may make several kinds of assumptions
1841  * in order to speed up the splitting operation.  In particular, we
1842  * know that all the data is in scatter-gather pages, and that the
1843  * packet has never been sent out before (and thus is not cloned).
1844  */
1845 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1846 			unsigned int mss_now, gfp_t gfp)
1847 {
1848 	struct sk_buff *buff;
1849 	int nlen = skb->len - len;
1850 	u8 flags;
1851 
1852 	/* All of a TSO frame must be composed of paged data.  */
1853 	if (skb->len != skb->data_len)
1854 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1855 
1856 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1857 	if (unlikely(!buff))
1858 		return -ENOMEM;
1859 
1860 	sk->sk_wmem_queued += buff->truesize;
1861 	sk_mem_charge(sk, buff->truesize);
1862 	buff->truesize += nlen;
1863 	skb->truesize -= nlen;
1864 
1865 	/* Correct the sequence numbers. */
1866 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1867 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1868 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1869 
1870 	/* PSH and FIN should only be set in the second packet. */
1871 	flags = TCP_SKB_CB(skb)->tcp_flags;
1872 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1873 	TCP_SKB_CB(buff)->tcp_flags = flags;
1874 
1875 	/* This packet was never sent out yet, so no SACK bits. */
1876 	TCP_SKB_CB(buff)->sacked = 0;
1877 
1878 	tcp_skb_fragment_eor(skb, buff);
1879 
1880 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1881 	skb_split(skb, buff, len);
1882 	tcp_fragment_tstamp(skb, buff);
1883 
1884 	/* Fix up tso_factor for both original and new SKB.  */
1885 	tcp_set_skb_tso_segs(skb, mss_now);
1886 	tcp_set_skb_tso_segs(buff, mss_now);
1887 
1888 	/* Link BUFF into the send queue. */
1889 	__skb_header_release(buff);
1890 	tcp_insert_write_queue_after(skb, buff, sk);
1891 
1892 	return 0;
1893 }
1894 
1895 /* Try to defer sending, if possible, in order to minimize the amount
1896  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1897  *
1898  * This algorithm is from John Heffner.
1899  */
1900 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1901 				 bool *is_cwnd_limited, u32 max_segs)
1902 {
1903 	const struct inet_connection_sock *icsk = inet_csk(sk);
1904 	u32 age, send_win, cong_win, limit, in_flight;
1905 	struct tcp_sock *tp = tcp_sk(sk);
1906 	struct sk_buff *head;
1907 	int win_divisor;
1908 
1909 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1910 		goto send_now;
1911 
1912 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1913 		goto send_now;
1914 
1915 	/* Avoid bursty behavior by allowing defer
1916 	 * only if the last write was recent.
1917 	 */
1918 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1919 		goto send_now;
1920 
1921 	in_flight = tcp_packets_in_flight(tp);
1922 
1923 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1924 
1925 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1926 
1927 	/* From in_flight test above, we know that cwnd > in_flight.  */
1928 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1929 
1930 	limit = min(send_win, cong_win);
1931 
1932 	/* If a full-sized TSO skb can be sent, do it. */
1933 	if (limit >= max_segs * tp->mss_cache)
1934 		goto send_now;
1935 
1936 	/* Middle in queue won't get any more data, full sendable already? */
1937 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1938 		goto send_now;
1939 
1940 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1941 	if (win_divisor) {
1942 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1943 
1944 		/* If at least some fraction of a window is available,
1945 		 * just use it.
1946 		 */
1947 		chunk /= win_divisor;
1948 		if (limit >= chunk)
1949 			goto send_now;
1950 	} else {
1951 		/* Different approach, try not to defer past a single
1952 		 * ACK.  Receiver should ACK every other full sized
1953 		 * frame, so if we have space for more than 3 frames
1954 		 * then send now.
1955 		 */
1956 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1957 			goto send_now;
1958 	}
1959 
1960 	head = tcp_write_queue_head(sk);
1961 
1962 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1963 	/* If next ACK is likely to come too late (half srtt), do not defer */
1964 	if (age < (tp->srtt_us >> 4))
1965 		goto send_now;
1966 
1967 	/* Ok, it looks like it is advisable to defer. */
1968 
1969 	if (cong_win < send_win && cong_win <= skb->len)
1970 		*is_cwnd_limited = true;
1971 
1972 	return true;
1973 
1974 send_now:
1975 	return false;
1976 }
1977 
1978 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1979 {
1980 	struct inet_connection_sock *icsk = inet_csk(sk);
1981 	struct tcp_sock *tp = tcp_sk(sk);
1982 	struct net *net = sock_net(sk);
1983 	u32 interval;
1984 	s32 delta;
1985 
1986 	interval = net->ipv4.sysctl_tcp_probe_interval;
1987 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1988 	if (unlikely(delta >= interval * HZ)) {
1989 		int mss = tcp_current_mss(sk);
1990 
1991 		/* Update current search range */
1992 		icsk->icsk_mtup.probe_size = 0;
1993 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1994 			sizeof(struct tcphdr) +
1995 			icsk->icsk_af_ops->net_header_len;
1996 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1997 
1998 		/* Update probe time stamp */
1999 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2000 	}
2001 }
2002 
2003 /* Create a new MTU probe if we are ready.
2004  * MTU probe is regularly attempting to increase the path MTU by
2005  * deliberately sending larger packets.  This discovers routing
2006  * changes resulting in larger path MTUs.
2007  *
2008  * Returns 0 if we should wait to probe (no cwnd available),
2009  *         1 if a probe was sent,
2010  *         -1 otherwise
2011  */
2012 static int tcp_mtu_probe(struct sock *sk)
2013 {
2014 	struct inet_connection_sock *icsk = inet_csk(sk);
2015 	struct tcp_sock *tp = tcp_sk(sk);
2016 	struct sk_buff *skb, *nskb, *next;
2017 	struct net *net = sock_net(sk);
2018 	int probe_size;
2019 	int size_needed;
2020 	int copy, len;
2021 	int mss_now;
2022 	int interval;
2023 
2024 	/* Not currently probing/verifying,
2025 	 * not in recovery,
2026 	 * have enough cwnd, and
2027 	 * not SACKing (the variable headers throw things off)
2028 	 */
2029 	if (likely(!icsk->icsk_mtup.enabled ||
2030 		   icsk->icsk_mtup.probe_size ||
2031 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2032 		   tp->snd_cwnd < 11 ||
2033 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2034 		return -1;
2035 
2036 	/* Use binary search for probe_size between tcp_mss_base,
2037 	 * and current mss_clamp. if (search_high - search_low)
2038 	 * smaller than a threshold, backoff from probing.
2039 	 */
2040 	mss_now = tcp_current_mss(sk);
2041 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2042 				    icsk->icsk_mtup.search_low) >> 1);
2043 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2044 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2045 	/* When misfortune happens, we are reprobing actively,
2046 	 * and then reprobe timer has expired. We stick with current
2047 	 * probing process by not resetting search range to its orignal.
2048 	 */
2049 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2050 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2051 		/* Check whether enough time has elaplased for
2052 		 * another round of probing.
2053 		 */
2054 		tcp_mtu_check_reprobe(sk);
2055 		return -1;
2056 	}
2057 
2058 	/* Have enough data in the send queue to probe? */
2059 	if (tp->write_seq - tp->snd_nxt < size_needed)
2060 		return -1;
2061 
2062 	if (tp->snd_wnd < size_needed)
2063 		return -1;
2064 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2065 		return 0;
2066 
2067 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2068 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2069 		if (!tcp_packets_in_flight(tp))
2070 			return -1;
2071 		else
2072 			return 0;
2073 	}
2074 
2075 	/* We're allowed to probe.  Build it now. */
2076 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2077 	if (!nskb)
2078 		return -1;
2079 	sk->sk_wmem_queued += nskb->truesize;
2080 	sk_mem_charge(sk, nskb->truesize);
2081 
2082 	skb = tcp_send_head(sk);
2083 
2084 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2085 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2086 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2087 	TCP_SKB_CB(nskb)->sacked = 0;
2088 	nskb->csum = 0;
2089 	nskb->ip_summed = skb->ip_summed;
2090 
2091 	tcp_insert_write_queue_before(nskb, skb, sk);
2092 
2093 	len = 0;
2094 	tcp_for_write_queue_from_safe(skb, next, sk) {
2095 		copy = min_t(int, skb->len, probe_size - len);
2096 		if (nskb->ip_summed) {
2097 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2098 		} else {
2099 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2100 							     skb_put(nskb, copy),
2101 							     copy, 0);
2102 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2103 		}
2104 
2105 		if (skb->len <= copy) {
2106 			/* We've eaten all the data from this skb.
2107 			 * Throw it away. */
2108 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2109 			tcp_unlink_write_queue(skb, sk);
2110 			sk_wmem_free_skb(sk, skb);
2111 		} else {
2112 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2113 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2114 			if (!skb_shinfo(skb)->nr_frags) {
2115 				skb_pull(skb, copy);
2116 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2117 					skb->csum = csum_partial(skb->data,
2118 								 skb->len, 0);
2119 			} else {
2120 				__pskb_trim_head(skb, copy);
2121 				tcp_set_skb_tso_segs(skb, mss_now);
2122 			}
2123 			TCP_SKB_CB(skb)->seq += copy;
2124 		}
2125 
2126 		len += copy;
2127 
2128 		if (len >= probe_size)
2129 			break;
2130 	}
2131 	tcp_init_tso_segs(nskb, nskb->len);
2132 
2133 	/* We're ready to send.  If this fails, the probe will
2134 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2135 	 */
2136 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2137 		/* Decrement cwnd here because we are sending
2138 		 * effectively two packets. */
2139 		tp->snd_cwnd--;
2140 		tcp_event_new_data_sent(sk, nskb);
2141 
2142 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2143 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2144 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2145 
2146 		return 1;
2147 	}
2148 
2149 	return -1;
2150 }
2151 
2152 static bool tcp_pacing_check(const struct sock *sk)
2153 {
2154 	return tcp_needs_internal_pacing(sk) &&
2155 	       hrtimer_active(&tcp_sk(sk)->pacing_timer);
2156 }
2157 
2158 /* TCP Small Queues :
2159  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2160  * (These limits are doubled for retransmits)
2161  * This allows for :
2162  *  - better RTT estimation and ACK scheduling
2163  *  - faster recovery
2164  *  - high rates
2165  * Alas, some drivers / subsystems require a fair amount
2166  * of queued bytes to ensure line rate.
2167  * One example is wifi aggregation (802.11 AMPDU)
2168  */
2169 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2170 				  unsigned int factor)
2171 {
2172 	unsigned int limit;
2173 
2174 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2175 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2176 	limit <<= factor;
2177 
2178 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2179 		/* Always send the 1st or 2nd skb in write queue.
2180 		 * No need to wait for TX completion to call us back,
2181 		 * after softirq/tasklet schedule.
2182 		 * This helps when TX completions are delayed too much.
2183 		 */
2184 		if (skb == sk->sk_write_queue.next ||
2185 		    skb->prev == sk->sk_write_queue.next)
2186 			return false;
2187 
2188 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2189 		/* It is possible TX completion already happened
2190 		 * before we set TSQ_THROTTLED, so we must
2191 		 * test again the condition.
2192 		 */
2193 		smp_mb__after_atomic();
2194 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2195 			return true;
2196 	}
2197 	return false;
2198 }
2199 
2200 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2201 {
2202 	const u32 now = tcp_jiffies32;
2203 	enum tcp_chrono old = tp->chrono_type;
2204 
2205 	if (old > TCP_CHRONO_UNSPEC)
2206 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2207 	tp->chrono_start = now;
2208 	tp->chrono_type = new;
2209 }
2210 
2211 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2212 {
2213 	struct tcp_sock *tp = tcp_sk(sk);
2214 
2215 	/* If there are multiple conditions worthy of tracking in a
2216 	 * chronograph then the highest priority enum takes precedence
2217 	 * over the other conditions. So that if something "more interesting"
2218 	 * starts happening, stop the previous chrono and start a new one.
2219 	 */
2220 	if (type > tp->chrono_type)
2221 		tcp_chrono_set(tp, type);
2222 }
2223 
2224 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2225 {
2226 	struct tcp_sock *tp = tcp_sk(sk);
2227 
2228 
2229 	/* There are multiple conditions worthy of tracking in a
2230 	 * chronograph, so that the highest priority enum takes
2231 	 * precedence over the other conditions (see tcp_chrono_start).
2232 	 * If a condition stops, we only stop chrono tracking if
2233 	 * it's the "most interesting" or current chrono we are
2234 	 * tracking and starts busy chrono if we have pending data.
2235 	 */
2236 	if (tcp_write_queue_empty(sk))
2237 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2238 	else if (type == tp->chrono_type)
2239 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2240 }
2241 
2242 /* This routine writes packets to the network.  It advances the
2243  * send_head.  This happens as incoming acks open up the remote
2244  * window for us.
2245  *
2246  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2247  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2248  * account rare use of URG, this is not a big flaw.
2249  *
2250  * Send at most one packet when push_one > 0. Temporarily ignore
2251  * cwnd limit to force at most one packet out when push_one == 2.
2252 
2253  * Returns true, if no segments are in flight and we have queued segments,
2254  * but cannot send anything now because of SWS or another problem.
2255  */
2256 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2257 			   int push_one, gfp_t gfp)
2258 {
2259 	struct tcp_sock *tp = tcp_sk(sk);
2260 	struct sk_buff *skb;
2261 	unsigned int tso_segs, sent_pkts;
2262 	int cwnd_quota;
2263 	int result;
2264 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2265 	u32 max_segs;
2266 
2267 	sent_pkts = 0;
2268 
2269 	if (!push_one) {
2270 		/* Do MTU probing. */
2271 		result = tcp_mtu_probe(sk);
2272 		if (!result) {
2273 			return false;
2274 		} else if (result > 0) {
2275 			sent_pkts = 1;
2276 		}
2277 	}
2278 
2279 	max_segs = tcp_tso_segs(sk, mss_now);
2280 	tcp_mstamp_refresh(tp);
2281 	while ((skb = tcp_send_head(sk))) {
2282 		unsigned int limit;
2283 
2284 		if (tcp_pacing_check(sk))
2285 			break;
2286 
2287 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2288 		BUG_ON(!tso_segs);
2289 
2290 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2291 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2292 			skb->skb_mstamp = tp->tcp_mstamp;
2293 			goto repair; /* Skip network transmission */
2294 		}
2295 
2296 		cwnd_quota = tcp_cwnd_test(tp, skb);
2297 		if (!cwnd_quota) {
2298 			if (push_one == 2)
2299 				/* Force out a loss probe pkt. */
2300 				cwnd_quota = 1;
2301 			else
2302 				break;
2303 		}
2304 
2305 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2306 			is_rwnd_limited = true;
2307 			break;
2308 		}
2309 
2310 		if (tso_segs == 1) {
2311 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2312 						     (tcp_skb_is_last(sk, skb) ?
2313 						      nonagle : TCP_NAGLE_PUSH))))
2314 				break;
2315 		} else {
2316 			if (!push_one &&
2317 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2318 						 max_segs))
2319 				break;
2320 		}
2321 
2322 		limit = mss_now;
2323 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2324 			limit = tcp_mss_split_point(sk, skb, mss_now,
2325 						    min_t(unsigned int,
2326 							  cwnd_quota,
2327 							  max_segs),
2328 						    nonagle);
2329 
2330 		if (skb->len > limit &&
2331 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2332 			break;
2333 
2334 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2335 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2336 		if (tcp_small_queue_check(sk, skb, 0))
2337 			break;
2338 
2339 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2340 			break;
2341 
2342 repair:
2343 		/* Advance the send_head.  This one is sent out.
2344 		 * This call will increment packets_out.
2345 		 */
2346 		tcp_event_new_data_sent(sk, skb);
2347 
2348 		tcp_minshall_update(tp, mss_now, skb);
2349 		sent_pkts += tcp_skb_pcount(skb);
2350 
2351 		if (push_one)
2352 			break;
2353 	}
2354 
2355 	if (is_rwnd_limited)
2356 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2357 	else
2358 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2359 
2360 	if (likely(sent_pkts)) {
2361 		if (tcp_in_cwnd_reduction(sk))
2362 			tp->prr_out += sent_pkts;
2363 
2364 		/* Send one loss probe per tail loss episode. */
2365 		if (push_one != 2)
2366 			tcp_schedule_loss_probe(sk);
2367 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2368 		tcp_cwnd_validate(sk, is_cwnd_limited);
2369 		return false;
2370 	}
2371 	return !tp->packets_out && tcp_send_head(sk);
2372 }
2373 
2374 bool tcp_schedule_loss_probe(struct sock *sk)
2375 {
2376 	struct inet_connection_sock *icsk = inet_csk(sk);
2377 	struct tcp_sock *tp = tcp_sk(sk);
2378 	u32 timeout, rto_delta_us;
2379 
2380 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2381 	 * finishes.
2382 	 */
2383 	if (tp->fastopen_rsk)
2384 		return false;
2385 
2386 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2387 	 * in Open state, that are either limited by cwnd or application.
2388 	 */
2389 	if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2390 	    !tp->packets_out || !tcp_is_sack(tp) ||
2391 	    icsk->icsk_ca_state != TCP_CA_Open)
2392 		return false;
2393 
2394 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2395 	     tcp_send_head(sk))
2396 		return false;
2397 
2398 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2399 	 * for delayed ack when there's one outstanding packet. If no RTT
2400 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2401 	 */
2402 	if (tp->srtt_us) {
2403 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2404 		if (tp->packets_out == 1)
2405 			timeout += TCP_RTO_MIN;
2406 		else
2407 			timeout += TCP_TIMEOUT_MIN;
2408 	} else {
2409 		timeout = TCP_TIMEOUT_INIT;
2410 	}
2411 
2412 	/* If the RTO formula yields an earlier time, then use that time. */
2413 	rto_delta_us = tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2414 	if (rto_delta_us > 0)
2415 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2416 
2417 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2418 				  TCP_RTO_MAX);
2419 	return true;
2420 }
2421 
2422 /* Thanks to skb fast clones, we can detect if a prior transmit of
2423  * a packet is still in a qdisc or driver queue.
2424  * In this case, there is very little point doing a retransmit !
2425  */
2426 static bool skb_still_in_host_queue(const struct sock *sk,
2427 				    const struct sk_buff *skb)
2428 {
2429 	if (unlikely(skb_fclone_busy(sk, skb))) {
2430 		NET_INC_STATS(sock_net(sk),
2431 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2432 		return true;
2433 	}
2434 	return false;
2435 }
2436 
2437 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2438  * retransmit the last segment.
2439  */
2440 void tcp_send_loss_probe(struct sock *sk)
2441 {
2442 	struct tcp_sock *tp = tcp_sk(sk);
2443 	struct sk_buff *skb;
2444 	int pcount;
2445 	int mss = tcp_current_mss(sk);
2446 
2447 	skb = tcp_send_head(sk);
2448 	if (skb) {
2449 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2450 			pcount = tp->packets_out;
2451 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2452 			if (tp->packets_out > pcount)
2453 				goto probe_sent;
2454 			goto rearm_timer;
2455 		}
2456 		skb = tcp_write_queue_prev(sk, skb);
2457 	} else {
2458 		skb = tcp_write_queue_tail(sk);
2459 	}
2460 
2461 	/* At most one outstanding TLP retransmission. */
2462 	if (tp->tlp_high_seq)
2463 		goto rearm_timer;
2464 
2465 	/* Retransmit last segment. */
2466 	if (WARN_ON(!skb))
2467 		goto rearm_timer;
2468 
2469 	if (skb_still_in_host_queue(sk, skb))
2470 		goto rearm_timer;
2471 
2472 	pcount = tcp_skb_pcount(skb);
2473 	if (WARN_ON(!pcount))
2474 		goto rearm_timer;
2475 
2476 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2477 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2478 					  GFP_ATOMIC)))
2479 			goto rearm_timer;
2480 		skb = tcp_write_queue_next(sk, skb);
2481 	}
2482 
2483 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2484 		goto rearm_timer;
2485 
2486 	if (__tcp_retransmit_skb(sk, skb, 1))
2487 		goto rearm_timer;
2488 
2489 	/* Record snd_nxt for loss detection. */
2490 	tp->tlp_high_seq = tp->snd_nxt;
2491 
2492 probe_sent:
2493 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2494 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2495 	inet_csk(sk)->icsk_pending = 0;
2496 rearm_timer:
2497 	tcp_rearm_rto(sk);
2498 }
2499 
2500 /* Push out any pending frames which were held back due to
2501  * TCP_CORK or attempt at coalescing tiny packets.
2502  * The socket must be locked by the caller.
2503  */
2504 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2505 			       int nonagle)
2506 {
2507 	/* If we are closed, the bytes will have to remain here.
2508 	 * In time closedown will finish, we empty the write queue and
2509 	 * all will be happy.
2510 	 */
2511 	if (unlikely(sk->sk_state == TCP_CLOSE))
2512 		return;
2513 
2514 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2515 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2516 		tcp_check_probe_timer(sk);
2517 }
2518 
2519 /* Send _single_ skb sitting at the send head. This function requires
2520  * true push pending frames to setup probe timer etc.
2521  */
2522 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2523 {
2524 	struct sk_buff *skb = tcp_send_head(sk);
2525 
2526 	BUG_ON(!skb || skb->len < mss_now);
2527 
2528 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2529 }
2530 
2531 /* This function returns the amount that we can raise the
2532  * usable window based on the following constraints
2533  *
2534  * 1. The window can never be shrunk once it is offered (RFC 793)
2535  * 2. We limit memory per socket
2536  *
2537  * RFC 1122:
2538  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2539  *  RECV.NEXT + RCV.WIN fixed until:
2540  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2541  *
2542  * i.e. don't raise the right edge of the window until you can raise
2543  * it at least MSS bytes.
2544  *
2545  * Unfortunately, the recommended algorithm breaks header prediction,
2546  * since header prediction assumes th->window stays fixed.
2547  *
2548  * Strictly speaking, keeping th->window fixed violates the receiver
2549  * side SWS prevention criteria. The problem is that under this rule
2550  * a stream of single byte packets will cause the right side of the
2551  * window to always advance by a single byte.
2552  *
2553  * Of course, if the sender implements sender side SWS prevention
2554  * then this will not be a problem.
2555  *
2556  * BSD seems to make the following compromise:
2557  *
2558  *	If the free space is less than the 1/4 of the maximum
2559  *	space available and the free space is less than 1/2 mss,
2560  *	then set the window to 0.
2561  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2562  *	Otherwise, just prevent the window from shrinking
2563  *	and from being larger than the largest representable value.
2564  *
2565  * This prevents incremental opening of the window in the regime
2566  * where TCP is limited by the speed of the reader side taking
2567  * data out of the TCP receive queue. It does nothing about
2568  * those cases where the window is constrained on the sender side
2569  * because the pipeline is full.
2570  *
2571  * BSD also seems to "accidentally" limit itself to windows that are a
2572  * multiple of MSS, at least until the free space gets quite small.
2573  * This would appear to be a side effect of the mbuf implementation.
2574  * Combining these two algorithms results in the observed behavior
2575  * of having a fixed window size at almost all times.
2576  *
2577  * Below we obtain similar behavior by forcing the offered window to
2578  * a multiple of the mss when it is feasible to do so.
2579  *
2580  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2581  * Regular options like TIMESTAMP are taken into account.
2582  */
2583 u32 __tcp_select_window(struct sock *sk)
2584 {
2585 	struct inet_connection_sock *icsk = inet_csk(sk);
2586 	struct tcp_sock *tp = tcp_sk(sk);
2587 	/* MSS for the peer's data.  Previous versions used mss_clamp
2588 	 * here.  I don't know if the value based on our guesses
2589 	 * of peer's MSS is better for the performance.  It's more correct
2590 	 * but may be worse for the performance because of rcv_mss
2591 	 * fluctuations.  --SAW  1998/11/1
2592 	 */
2593 	int mss = icsk->icsk_ack.rcv_mss;
2594 	int free_space = tcp_space(sk);
2595 	int allowed_space = tcp_full_space(sk);
2596 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2597 	int window;
2598 
2599 	if (unlikely(mss > full_space)) {
2600 		mss = full_space;
2601 		if (mss <= 0)
2602 			return 0;
2603 	}
2604 	if (free_space < (full_space >> 1)) {
2605 		icsk->icsk_ack.quick = 0;
2606 
2607 		if (tcp_under_memory_pressure(sk))
2608 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2609 					       4U * tp->advmss);
2610 
2611 		/* free_space might become our new window, make sure we don't
2612 		 * increase it due to wscale.
2613 		 */
2614 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2615 
2616 		/* if free space is less than mss estimate, or is below 1/16th
2617 		 * of the maximum allowed, try to move to zero-window, else
2618 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2619 		 * new incoming data is dropped due to memory limits.
2620 		 * With large window, mss test triggers way too late in order
2621 		 * to announce zero window in time before rmem limit kicks in.
2622 		 */
2623 		if (free_space < (allowed_space >> 4) || free_space < mss)
2624 			return 0;
2625 	}
2626 
2627 	if (free_space > tp->rcv_ssthresh)
2628 		free_space = tp->rcv_ssthresh;
2629 
2630 	/* Don't do rounding if we are using window scaling, since the
2631 	 * scaled window will not line up with the MSS boundary anyway.
2632 	 */
2633 	if (tp->rx_opt.rcv_wscale) {
2634 		window = free_space;
2635 
2636 		/* Advertise enough space so that it won't get scaled away.
2637 		 * Import case: prevent zero window announcement if
2638 		 * 1<<rcv_wscale > mss.
2639 		 */
2640 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2641 	} else {
2642 		window = tp->rcv_wnd;
2643 		/* Get the largest window that is a nice multiple of mss.
2644 		 * Window clamp already applied above.
2645 		 * If our current window offering is within 1 mss of the
2646 		 * free space we just keep it. This prevents the divide
2647 		 * and multiply from happening most of the time.
2648 		 * We also don't do any window rounding when the free space
2649 		 * is too small.
2650 		 */
2651 		if (window <= free_space - mss || window > free_space)
2652 			window = rounddown(free_space, mss);
2653 		else if (mss == full_space &&
2654 			 free_space > window + (full_space >> 1))
2655 			window = free_space;
2656 	}
2657 
2658 	return window;
2659 }
2660 
2661 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2662 			     const struct sk_buff *next_skb)
2663 {
2664 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2665 		const struct skb_shared_info *next_shinfo =
2666 			skb_shinfo(next_skb);
2667 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2668 
2669 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2670 		shinfo->tskey = next_shinfo->tskey;
2671 		TCP_SKB_CB(skb)->txstamp_ack |=
2672 			TCP_SKB_CB(next_skb)->txstamp_ack;
2673 	}
2674 }
2675 
2676 /* Collapses two adjacent SKB's during retransmission. */
2677 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2678 {
2679 	struct tcp_sock *tp = tcp_sk(sk);
2680 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2681 	int skb_size, next_skb_size;
2682 
2683 	skb_size = skb->len;
2684 	next_skb_size = next_skb->len;
2685 
2686 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2687 
2688 	if (next_skb_size) {
2689 		if (next_skb_size <= skb_availroom(skb))
2690 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2691 				      next_skb_size);
2692 		else if (!skb_shift(skb, next_skb, next_skb_size))
2693 			return false;
2694 	}
2695 	tcp_highest_sack_combine(sk, next_skb, skb);
2696 
2697 	tcp_unlink_write_queue(next_skb, sk);
2698 
2699 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2700 		skb->ip_summed = CHECKSUM_PARTIAL;
2701 
2702 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2703 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2704 
2705 	/* Update sequence range on original skb. */
2706 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2707 
2708 	/* Merge over control information. This moves PSH/FIN etc. over */
2709 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2710 
2711 	/* All done, get rid of second SKB and account for it so
2712 	 * packet counting does not break.
2713 	 */
2714 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2715 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2716 
2717 	/* changed transmit queue under us so clear hints */
2718 	tcp_clear_retrans_hints_partial(tp);
2719 	if (next_skb == tp->retransmit_skb_hint)
2720 		tp->retransmit_skb_hint = skb;
2721 
2722 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2723 
2724 	tcp_skb_collapse_tstamp(skb, next_skb);
2725 
2726 	sk_wmem_free_skb(sk, next_skb);
2727 	return true;
2728 }
2729 
2730 /* Check if coalescing SKBs is legal. */
2731 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2732 {
2733 	if (tcp_skb_pcount(skb) > 1)
2734 		return false;
2735 	if (skb_cloned(skb))
2736 		return false;
2737 	if (skb == tcp_send_head(sk))
2738 		return false;
2739 	/* Some heuristics for collapsing over SACK'd could be invented */
2740 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2741 		return false;
2742 
2743 	return true;
2744 }
2745 
2746 /* Collapse packets in the retransmit queue to make to create
2747  * less packets on the wire. This is only done on retransmission.
2748  */
2749 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2750 				     int space)
2751 {
2752 	struct tcp_sock *tp = tcp_sk(sk);
2753 	struct sk_buff *skb = to, *tmp;
2754 	bool first = true;
2755 
2756 	if (!sysctl_tcp_retrans_collapse)
2757 		return;
2758 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2759 		return;
2760 
2761 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2762 		if (!tcp_can_collapse(sk, skb))
2763 			break;
2764 
2765 		if (!tcp_skb_can_collapse_to(to))
2766 			break;
2767 
2768 		space -= skb->len;
2769 
2770 		if (first) {
2771 			first = false;
2772 			continue;
2773 		}
2774 
2775 		if (space < 0)
2776 			break;
2777 
2778 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2779 			break;
2780 
2781 		if (!tcp_collapse_retrans(sk, to))
2782 			break;
2783 	}
2784 }
2785 
2786 /* This retransmits one SKB.  Policy decisions and retransmit queue
2787  * state updates are done by the caller.  Returns non-zero if an
2788  * error occurred which prevented the send.
2789  */
2790 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2791 {
2792 	struct inet_connection_sock *icsk = inet_csk(sk);
2793 	struct tcp_sock *tp = tcp_sk(sk);
2794 	unsigned int cur_mss;
2795 	int diff, len, err;
2796 
2797 
2798 	/* Inconclusive MTU probe */
2799 	if (icsk->icsk_mtup.probe_size)
2800 		icsk->icsk_mtup.probe_size = 0;
2801 
2802 	/* Do not sent more than we queued. 1/4 is reserved for possible
2803 	 * copying overhead: fragmentation, tunneling, mangling etc.
2804 	 */
2805 	if (refcount_read(&sk->sk_wmem_alloc) >
2806 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2807 		  sk->sk_sndbuf))
2808 		return -EAGAIN;
2809 
2810 	if (skb_still_in_host_queue(sk, skb))
2811 		return -EBUSY;
2812 
2813 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2814 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2815 			BUG();
2816 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2817 			return -ENOMEM;
2818 	}
2819 
2820 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2821 		return -EHOSTUNREACH; /* Routing failure or similar. */
2822 
2823 	cur_mss = tcp_current_mss(sk);
2824 
2825 	/* If receiver has shrunk his window, and skb is out of
2826 	 * new window, do not retransmit it. The exception is the
2827 	 * case, when window is shrunk to zero. In this case
2828 	 * our retransmit serves as a zero window probe.
2829 	 */
2830 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2831 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2832 		return -EAGAIN;
2833 
2834 	len = cur_mss * segs;
2835 	if (skb->len > len) {
2836 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2837 			return -ENOMEM; /* We'll try again later. */
2838 	} else {
2839 		if (skb_unclone(skb, GFP_ATOMIC))
2840 			return -ENOMEM;
2841 
2842 		diff = tcp_skb_pcount(skb);
2843 		tcp_set_skb_tso_segs(skb, cur_mss);
2844 		diff -= tcp_skb_pcount(skb);
2845 		if (diff)
2846 			tcp_adjust_pcount(sk, skb, diff);
2847 		if (skb->len < cur_mss)
2848 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2849 	}
2850 
2851 	/* RFC3168, section 6.1.1.1. ECN fallback */
2852 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2853 		tcp_ecn_clear_syn(sk, skb);
2854 
2855 	/* Update global and local TCP statistics. */
2856 	segs = tcp_skb_pcount(skb);
2857 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2858 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2859 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2860 	tp->total_retrans += segs;
2861 
2862 	/* make sure skb->data is aligned on arches that require it
2863 	 * and check if ack-trimming & collapsing extended the headroom
2864 	 * beyond what csum_start can cover.
2865 	 */
2866 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2867 		     skb_headroom(skb) >= 0xFFFF)) {
2868 		struct sk_buff *nskb;
2869 
2870 		skb->skb_mstamp = tp->tcp_mstamp;
2871 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2872 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2873 			     -ENOBUFS;
2874 	} else {
2875 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2876 	}
2877 
2878 	if (likely(!err)) {
2879 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2880 	} else if (err != -EBUSY) {
2881 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2882 	}
2883 	return err;
2884 }
2885 
2886 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2887 {
2888 	struct tcp_sock *tp = tcp_sk(sk);
2889 	int err = __tcp_retransmit_skb(sk, skb, segs);
2890 
2891 	if (err == 0) {
2892 #if FASTRETRANS_DEBUG > 0
2893 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2894 			net_dbg_ratelimited("retrans_out leaked\n");
2895 		}
2896 #endif
2897 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2898 		tp->retrans_out += tcp_skb_pcount(skb);
2899 
2900 		/* Save stamp of the first retransmit. */
2901 		if (!tp->retrans_stamp)
2902 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2903 
2904 	}
2905 
2906 	if (tp->undo_retrans < 0)
2907 		tp->undo_retrans = 0;
2908 	tp->undo_retrans += tcp_skb_pcount(skb);
2909 	return err;
2910 }
2911 
2912 /* This gets called after a retransmit timeout, and the initially
2913  * retransmitted data is acknowledged.  It tries to continue
2914  * resending the rest of the retransmit queue, until either
2915  * we've sent it all or the congestion window limit is reached.
2916  * If doing SACK, the first ACK which comes back for a timeout
2917  * based retransmit packet might feed us FACK information again.
2918  * If so, we use it to avoid unnecessarily retransmissions.
2919  */
2920 void tcp_xmit_retransmit_queue(struct sock *sk)
2921 {
2922 	const struct inet_connection_sock *icsk = inet_csk(sk);
2923 	struct tcp_sock *tp = tcp_sk(sk);
2924 	struct sk_buff *skb;
2925 	struct sk_buff *hole = NULL;
2926 	u32 max_segs;
2927 	int mib_idx;
2928 
2929 	if (!tp->packets_out)
2930 		return;
2931 
2932 	if (tp->retransmit_skb_hint) {
2933 		skb = tp->retransmit_skb_hint;
2934 	} else {
2935 		skb = tcp_write_queue_head(sk);
2936 	}
2937 
2938 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2939 	tcp_for_write_queue_from(skb, sk) {
2940 		__u8 sacked;
2941 		int segs;
2942 
2943 		if (skb == tcp_send_head(sk))
2944 			break;
2945 
2946 		if (tcp_pacing_check(sk))
2947 			break;
2948 
2949 		/* we could do better than to assign each time */
2950 		if (!hole)
2951 			tp->retransmit_skb_hint = skb;
2952 
2953 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2954 		if (segs <= 0)
2955 			return;
2956 		sacked = TCP_SKB_CB(skb)->sacked;
2957 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2958 		 * we need to make sure not sending too bigs TSO packets
2959 		 */
2960 		segs = min_t(int, segs, max_segs);
2961 
2962 		if (tp->retrans_out >= tp->lost_out) {
2963 			break;
2964 		} else if (!(sacked & TCPCB_LOST)) {
2965 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2966 				hole = skb;
2967 			continue;
2968 
2969 		} else {
2970 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2971 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2972 			else
2973 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2974 		}
2975 
2976 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2977 			continue;
2978 
2979 		if (tcp_small_queue_check(sk, skb, 1))
2980 			return;
2981 
2982 		if (tcp_retransmit_skb(sk, skb, segs))
2983 			return;
2984 
2985 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2986 
2987 		if (tcp_in_cwnd_reduction(sk))
2988 			tp->prr_out += tcp_skb_pcount(skb);
2989 
2990 		if (skb == tcp_write_queue_head(sk) &&
2991 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2992 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2993 						  inet_csk(sk)->icsk_rto,
2994 						  TCP_RTO_MAX);
2995 	}
2996 }
2997 
2998 /* We allow to exceed memory limits for FIN packets to expedite
2999  * connection tear down and (memory) recovery.
3000  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3001  * or even be forced to close flow without any FIN.
3002  * In general, we want to allow one skb per socket to avoid hangs
3003  * with edge trigger epoll()
3004  */
3005 void sk_forced_mem_schedule(struct sock *sk, int size)
3006 {
3007 	int amt;
3008 
3009 	if (size <= sk->sk_forward_alloc)
3010 		return;
3011 	amt = sk_mem_pages(size);
3012 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3013 	sk_memory_allocated_add(sk, amt);
3014 
3015 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3016 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3017 }
3018 
3019 /* Send a FIN. The caller locks the socket for us.
3020  * We should try to send a FIN packet really hard, but eventually give up.
3021  */
3022 void tcp_send_fin(struct sock *sk)
3023 {
3024 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3025 	struct tcp_sock *tp = tcp_sk(sk);
3026 
3027 	/* Optimization, tack on the FIN if we have one skb in write queue and
3028 	 * this skb was not yet sent, or we are under memory pressure.
3029 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3030 	 * as TCP stack thinks it has already been transmitted.
3031 	 */
3032 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3033 coalesce:
3034 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3035 		TCP_SKB_CB(tskb)->end_seq++;
3036 		tp->write_seq++;
3037 		if (!tcp_send_head(sk)) {
3038 			/* This means tskb was already sent.
3039 			 * Pretend we included the FIN on previous transmit.
3040 			 * We need to set tp->snd_nxt to the value it would have
3041 			 * if FIN had been sent. This is because retransmit path
3042 			 * does not change tp->snd_nxt.
3043 			 */
3044 			tp->snd_nxt++;
3045 			return;
3046 		}
3047 	} else {
3048 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3049 		if (unlikely(!skb)) {
3050 			if (tskb)
3051 				goto coalesce;
3052 			return;
3053 		}
3054 		skb_reserve(skb, MAX_TCP_HEADER);
3055 		sk_forced_mem_schedule(sk, skb->truesize);
3056 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3057 		tcp_init_nondata_skb(skb, tp->write_seq,
3058 				     TCPHDR_ACK | TCPHDR_FIN);
3059 		tcp_queue_skb(sk, skb);
3060 	}
3061 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3062 }
3063 
3064 /* We get here when a process closes a file descriptor (either due to
3065  * an explicit close() or as a byproduct of exit()'ing) and there
3066  * was unread data in the receive queue.  This behavior is recommended
3067  * by RFC 2525, section 2.17.  -DaveM
3068  */
3069 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3070 {
3071 	struct sk_buff *skb;
3072 
3073 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3074 
3075 	/* NOTE: No TCP options attached and we never retransmit this. */
3076 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3077 	if (!skb) {
3078 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3079 		return;
3080 	}
3081 
3082 	/* Reserve space for headers and prepare control bits. */
3083 	skb_reserve(skb, MAX_TCP_HEADER);
3084 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3085 			     TCPHDR_ACK | TCPHDR_RST);
3086 	tcp_mstamp_refresh(tcp_sk(sk));
3087 	/* Send it off. */
3088 	if (tcp_transmit_skb(sk, skb, 0, priority))
3089 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3090 }
3091 
3092 /* Send a crossed SYN-ACK during socket establishment.
3093  * WARNING: This routine must only be called when we have already sent
3094  * a SYN packet that crossed the incoming SYN that caused this routine
3095  * to get called. If this assumption fails then the initial rcv_wnd
3096  * and rcv_wscale values will not be correct.
3097  */
3098 int tcp_send_synack(struct sock *sk)
3099 {
3100 	struct sk_buff *skb;
3101 
3102 	skb = tcp_write_queue_head(sk);
3103 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3104 		pr_debug("%s: wrong queue state\n", __func__);
3105 		return -EFAULT;
3106 	}
3107 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3108 		if (skb_cloned(skb)) {
3109 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3110 			if (!nskb)
3111 				return -ENOMEM;
3112 			tcp_unlink_write_queue(skb, sk);
3113 			__skb_header_release(nskb);
3114 			__tcp_add_write_queue_head(sk, nskb);
3115 			sk_wmem_free_skb(sk, skb);
3116 			sk->sk_wmem_queued += nskb->truesize;
3117 			sk_mem_charge(sk, nskb->truesize);
3118 			skb = nskb;
3119 		}
3120 
3121 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3122 		tcp_ecn_send_synack(sk, skb);
3123 	}
3124 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3125 }
3126 
3127 /**
3128  * tcp_make_synack - Prepare a SYN-ACK.
3129  * sk: listener socket
3130  * dst: dst entry attached to the SYNACK
3131  * req: request_sock pointer
3132  *
3133  * Allocate one skb and build a SYNACK packet.
3134  * @dst is consumed : Caller should not use it again.
3135  */
3136 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3137 				struct request_sock *req,
3138 				struct tcp_fastopen_cookie *foc,
3139 				enum tcp_synack_type synack_type)
3140 {
3141 	struct inet_request_sock *ireq = inet_rsk(req);
3142 	const struct tcp_sock *tp = tcp_sk(sk);
3143 	struct tcp_md5sig_key *md5 = NULL;
3144 	struct tcp_out_options opts;
3145 	struct sk_buff *skb;
3146 	int tcp_header_size;
3147 	struct tcphdr *th;
3148 	int mss;
3149 
3150 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3151 	if (unlikely(!skb)) {
3152 		dst_release(dst);
3153 		return NULL;
3154 	}
3155 	/* Reserve space for headers. */
3156 	skb_reserve(skb, MAX_TCP_HEADER);
3157 
3158 	switch (synack_type) {
3159 	case TCP_SYNACK_NORMAL:
3160 		skb_set_owner_w(skb, req_to_sk(req));
3161 		break;
3162 	case TCP_SYNACK_COOKIE:
3163 		/* Under synflood, we do not attach skb to a socket,
3164 		 * to avoid false sharing.
3165 		 */
3166 		break;
3167 	case TCP_SYNACK_FASTOPEN:
3168 		/* sk is a const pointer, because we want to express multiple
3169 		 * cpu might call us concurrently.
3170 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3171 		 */
3172 		skb_set_owner_w(skb, (struct sock *)sk);
3173 		break;
3174 	}
3175 	skb_dst_set(skb, dst);
3176 
3177 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3178 
3179 	memset(&opts, 0, sizeof(opts));
3180 #ifdef CONFIG_SYN_COOKIES
3181 	if (unlikely(req->cookie_ts))
3182 		skb->skb_mstamp = cookie_init_timestamp(req);
3183 	else
3184 #endif
3185 		skb->skb_mstamp = tcp_clock_us();
3186 
3187 #ifdef CONFIG_TCP_MD5SIG
3188 	rcu_read_lock();
3189 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3190 #endif
3191 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3192 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3193 			  sizeof(*th);
3194 
3195 	skb_push(skb, tcp_header_size);
3196 	skb_reset_transport_header(skb);
3197 
3198 	th = (struct tcphdr *)skb->data;
3199 	memset(th, 0, sizeof(struct tcphdr));
3200 	th->syn = 1;
3201 	th->ack = 1;
3202 	tcp_ecn_make_synack(req, th);
3203 	th->source = htons(ireq->ir_num);
3204 	th->dest = ireq->ir_rmt_port;
3205 	skb->mark = ireq->ir_mark;
3206 	/* Setting of flags are superfluous here for callers (and ECE is
3207 	 * not even correctly set)
3208 	 */
3209 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3210 			     TCPHDR_SYN | TCPHDR_ACK);
3211 
3212 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3213 	/* XXX data is queued and acked as is. No buffer/window check */
3214 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3215 
3216 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3217 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3218 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3219 	th->doff = (tcp_header_size >> 2);
3220 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3221 
3222 #ifdef CONFIG_TCP_MD5SIG
3223 	/* Okay, we have all we need - do the md5 hash if needed */
3224 	if (md5)
3225 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3226 					       md5, req_to_sk(req), skb);
3227 	rcu_read_unlock();
3228 #endif
3229 
3230 	/* Do not fool tcpdump (if any), clean our debris */
3231 	skb->tstamp = 0;
3232 	return skb;
3233 }
3234 EXPORT_SYMBOL(tcp_make_synack);
3235 
3236 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3237 {
3238 	struct inet_connection_sock *icsk = inet_csk(sk);
3239 	const struct tcp_congestion_ops *ca;
3240 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3241 
3242 	if (ca_key == TCP_CA_UNSPEC)
3243 		return;
3244 
3245 	rcu_read_lock();
3246 	ca = tcp_ca_find_key(ca_key);
3247 	if (likely(ca && try_module_get(ca->owner))) {
3248 		module_put(icsk->icsk_ca_ops->owner);
3249 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3250 		icsk->icsk_ca_ops = ca;
3251 	}
3252 	rcu_read_unlock();
3253 }
3254 
3255 /* Do all connect socket setups that can be done AF independent. */
3256 static void tcp_connect_init(struct sock *sk)
3257 {
3258 	const struct dst_entry *dst = __sk_dst_get(sk);
3259 	struct tcp_sock *tp = tcp_sk(sk);
3260 	__u8 rcv_wscale;
3261 	u32 rcv_wnd;
3262 
3263 	/* We'll fix this up when we get a response from the other end.
3264 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3265 	 */
3266 	tp->tcp_header_len = sizeof(struct tcphdr);
3267 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3268 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3269 
3270 #ifdef CONFIG_TCP_MD5SIG
3271 	if (tp->af_specific->md5_lookup(sk, sk))
3272 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3273 #endif
3274 
3275 	/* If user gave his TCP_MAXSEG, record it to clamp */
3276 	if (tp->rx_opt.user_mss)
3277 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3278 	tp->max_window = 0;
3279 	tcp_mtup_init(sk);
3280 	tcp_sync_mss(sk, dst_mtu(dst));
3281 
3282 	tcp_ca_dst_init(sk, dst);
3283 
3284 	if (!tp->window_clamp)
3285 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3286 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3287 
3288 	tcp_initialize_rcv_mss(sk);
3289 
3290 	/* limit the window selection if the user enforce a smaller rx buffer */
3291 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3292 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3293 		tp->window_clamp = tcp_full_space(sk);
3294 
3295 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3296 	if (rcv_wnd == 0)
3297 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3298 
3299 	tcp_select_initial_window(tcp_full_space(sk),
3300 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3301 				  &tp->rcv_wnd,
3302 				  &tp->window_clamp,
3303 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3304 				  &rcv_wscale,
3305 				  rcv_wnd);
3306 
3307 	tp->rx_opt.rcv_wscale = rcv_wscale;
3308 	tp->rcv_ssthresh = tp->rcv_wnd;
3309 
3310 	sk->sk_err = 0;
3311 	sock_reset_flag(sk, SOCK_DONE);
3312 	tp->snd_wnd = 0;
3313 	tcp_init_wl(tp, 0);
3314 	tp->snd_una = tp->write_seq;
3315 	tp->snd_sml = tp->write_seq;
3316 	tp->snd_up = tp->write_seq;
3317 	tp->snd_nxt = tp->write_seq;
3318 
3319 	if (likely(!tp->repair))
3320 		tp->rcv_nxt = 0;
3321 	else
3322 		tp->rcv_tstamp = tcp_jiffies32;
3323 	tp->rcv_wup = tp->rcv_nxt;
3324 	tp->copied_seq = tp->rcv_nxt;
3325 
3326 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3327 	inet_csk(sk)->icsk_retransmits = 0;
3328 	tcp_clear_retrans(tp);
3329 }
3330 
3331 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3332 {
3333 	struct tcp_sock *tp = tcp_sk(sk);
3334 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3335 
3336 	tcb->end_seq += skb->len;
3337 	__skb_header_release(skb);
3338 	__tcp_add_write_queue_tail(sk, skb);
3339 	sk->sk_wmem_queued += skb->truesize;
3340 	sk_mem_charge(sk, skb->truesize);
3341 	tp->write_seq = tcb->end_seq;
3342 	tp->packets_out += tcp_skb_pcount(skb);
3343 }
3344 
3345 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3346  * queue a data-only packet after the regular SYN, such that regular SYNs
3347  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3348  * only the SYN sequence, the data are retransmitted in the first ACK.
3349  * If cookie is not cached or other error occurs, falls back to send a
3350  * regular SYN with Fast Open cookie request option.
3351  */
3352 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3353 {
3354 	struct tcp_sock *tp = tcp_sk(sk);
3355 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3356 	int space, err = 0;
3357 	struct sk_buff *syn_data;
3358 
3359 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3360 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3361 		goto fallback;
3362 
3363 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3364 	 * user-MSS. Reserve maximum option space for middleboxes that add
3365 	 * private TCP options. The cost is reduced data space in SYN :(
3366 	 */
3367 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3368 
3369 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3370 		MAX_TCP_OPTION_SPACE;
3371 
3372 	space = min_t(size_t, space, fo->size);
3373 
3374 	/* limit to order-0 allocations */
3375 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3376 
3377 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3378 	if (!syn_data)
3379 		goto fallback;
3380 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3381 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3382 	if (space) {
3383 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3384 					    &fo->data->msg_iter);
3385 		if (unlikely(!copied)) {
3386 			kfree_skb(syn_data);
3387 			goto fallback;
3388 		}
3389 		if (copied != space) {
3390 			skb_trim(syn_data, copied);
3391 			space = copied;
3392 		}
3393 	}
3394 	/* No more data pending in inet_wait_for_connect() */
3395 	if (space == fo->size)
3396 		fo->data = NULL;
3397 	fo->copied = space;
3398 
3399 	tcp_connect_queue_skb(sk, syn_data);
3400 	if (syn_data->len)
3401 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3402 
3403 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3404 
3405 	syn->skb_mstamp = syn_data->skb_mstamp;
3406 
3407 	/* Now full SYN+DATA was cloned and sent (or not),
3408 	 * remove the SYN from the original skb (syn_data)
3409 	 * we keep in write queue in case of a retransmit, as we
3410 	 * also have the SYN packet (with no data) in the same queue.
3411 	 */
3412 	TCP_SKB_CB(syn_data)->seq++;
3413 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3414 	if (!err) {
3415 		tp->syn_data = (fo->copied > 0);
3416 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3417 		goto done;
3418 	}
3419 
3420 fallback:
3421 	/* Send a regular SYN with Fast Open cookie request option */
3422 	if (fo->cookie.len > 0)
3423 		fo->cookie.len = 0;
3424 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3425 	if (err)
3426 		tp->syn_fastopen = 0;
3427 done:
3428 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3429 	return err;
3430 }
3431 
3432 /* Build a SYN and send it off. */
3433 int tcp_connect(struct sock *sk)
3434 {
3435 	struct tcp_sock *tp = tcp_sk(sk);
3436 	struct sk_buff *buff;
3437 	int err;
3438 
3439 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3440 
3441 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3442 		return -EHOSTUNREACH; /* Routing failure or similar. */
3443 
3444 	tcp_connect_init(sk);
3445 
3446 	if (unlikely(tp->repair)) {
3447 		tcp_finish_connect(sk, NULL);
3448 		return 0;
3449 	}
3450 
3451 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3452 	if (unlikely(!buff))
3453 		return -ENOBUFS;
3454 
3455 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3456 	tcp_mstamp_refresh(tp);
3457 	tp->retrans_stamp = tcp_time_stamp(tp);
3458 	tcp_connect_queue_skb(sk, buff);
3459 	tcp_ecn_send_syn(sk, buff);
3460 
3461 	/* Send off SYN; include data in Fast Open. */
3462 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3463 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3464 	if (err == -ECONNREFUSED)
3465 		return err;
3466 
3467 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3468 	 * in order to make this packet get counted in tcpOutSegs.
3469 	 */
3470 	tp->snd_nxt = tp->write_seq;
3471 	tp->pushed_seq = tp->write_seq;
3472 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3473 
3474 	/* Timer for repeating the SYN until an answer. */
3475 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3476 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3477 	return 0;
3478 }
3479 EXPORT_SYMBOL(tcp_connect);
3480 
3481 /* Send out a delayed ack, the caller does the policy checking
3482  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3483  * for details.
3484  */
3485 void tcp_send_delayed_ack(struct sock *sk)
3486 {
3487 	struct inet_connection_sock *icsk = inet_csk(sk);
3488 	int ato = icsk->icsk_ack.ato;
3489 	unsigned long timeout;
3490 
3491 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3492 
3493 	if (ato > TCP_DELACK_MIN) {
3494 		const struct tcp_sock *tp = tcp_sk(sk);
3495 		int max_ato = HZ / 2;
3496 
3497 		if (icsk->icsk_ack.pingpong ||
3498 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3499 			max_ato = TCP_DELACK_MAX;
3500 
3501 		/* Slow path, intersegment interval is "high". */
3502 
3503 		/* If some rtt estimate is known, use it to bound delayed ack.
3504 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3505 		 * directly.
3506 		 */
3507 		if (tp->srtt_us) {
3508 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3509 					TCP_DELACK_MIN);
3510 
3511 			if (rtt < max_ato)
3512 				max_ato = rtt;
3513 		}
3514 
3515 		ato = min(ato, max_ato);
3516 	}
3517 
3518 	/* Stay within the limit we were given */
3519 	timeout = jiffies + ato;
3520 
3521 	/* Use new timeout only if there wasn't a older one earlier. */
3522 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3523 		/* If delack timer was blocked or is about to expire,
3524 		 * send ACK now.
3525 		 */
3526 		if (icsk->icsk_ack.blocked ||
3527 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3528 			tcp_send_ack(sk);
3529 			return;
3530 		}
3531 
3532 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3533 			timeout = icsk->icsk_ack.timeout;
3534 	}
3535 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3536 	icsk->icsk_ack.timeout = timeout;
3537 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3538 }
3539 
3540 /* This routine sends an ack and also updates the window. */
3541 void tcp_send_ack(struct sock *sk)
3542 {
3543 	struct sk_buff *buff;
3544 
3545 	/* If we have been reset, we may not send again. */
3546 	if (sk->sk_state == TCP_CLOSE)
3547 		return;
3548 
3549 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3550 
3551 	/* We are not putting this on the write queue, so
3552 	 * tcp_transmit_skb() will set the ownership to this
3553 	 * sock.
3554 	 */
3555 	buff = alloc_skb(MAX_TCP_HEADER,
3556 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3557 	if (unlikely(!buff)) {
3558 		inet_csk_schedule_ack(sk);
3559 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3560 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3561 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3562 		return;
3563 	}
3564 
3565 	/* Reserve space for headers and prepare control bits. */
3566 	skb_reserve(buff, MAX_TCP_HEADER);
3567 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3568 
3569 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3570 	 * too much.
3571 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3572 	 */
3573 	skb_set_tcp_pure_ack(buff);
3574 
3575 	/* Send it off, this clears delayed acks for us. */
3576 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3577 }
3578 EXPORT_SYMBOL_GPL(tcp_send_ack);
3579 
3580 /* This routine sends a packet with an out of date sequence
3581  * number. It assumes the other end will try to ack it.
3582  *
3583  * Question: what should we make while urgent mode?
3584  * 4.4BSD forces sending single byte of data. We cannot send
3585  * out of window data, because we have SND.NXT==SND.MAX...
3586  *
3587  * Current solution: to send TWO zero-length segments in urgent mode:
3588  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3589  * out-of-date with SND.UNA-1 to probe window.
3590  */
3591 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3592 {
3593 	struct tcp_sock *tp = tcp_sk(sk);
3594 	struct sk_buff *skb;
3595 
3596 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3597 	skb = alloc_skb(MAX_TCP_HEADER,
3598 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3599 	if (!skb)
3600 		return -1;
3601 
3602 	/* Reserve space for headers and set control bits. */
3603 	skb_reserve(skb, MAX_TCP_HEADER);
3604 	/* Use a previous sequence.  This should cause the other
3605 	 * end to send an ack.  Don't queue or clone SKB, just
3606 	 * send it.
3607 	 */
3608 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3609 	NET_INC_STATS(sock_net(sk), mib);
3610 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3611 }
3612 
3613 /* Called from setsockopt( ... TCP_REPAIR ) */
3614 void tcp_send_window_probe(struct sock *sk)
3615 {
3616 	if (sk->sk_state == TCP_ESTABLISHED) {
3617 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3618 		tcp_mstamp_refresh(tcp_sk(sk));
3619 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3620 	}
3621 }
3622 
3623 /* Initiate keepalive or window probe from timer. */
3624 int tcp_write_wakeup(struct sock *sk, int mib)
3625 {
3626 	struct tcp_sock *tp = tcp_sk(sk);
3627 	struct sk_buff *skb;
3628 
3629 	if (sk->sk_state == TCP_CLOSE)
3630 		return -1;
3631 
3632 	skb = tcp_send_head(sk);
3633 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3634 		int err;
3635 		unsigned int mss = tcp_current_mss(sk);
3636 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3637 
3638 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3639 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3640 
3641 		/* We are probing the opening of a window
3642 		 * but the window size is != 0
3643 		 * must have been a result SWS avoidance ( sender )
3644 		 */
3645 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3646 		    skb->len > mss) {
3647 			seg_size = min(seg_size, mss);
3648 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3649 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3650 				return -1;
3651 		} else if (!tcp_skb_pcount(skb))
3652 			tcp_set_skb_tso_segs(skb, mss);
3653 
3654 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3655 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3656 		if (!err)
3657 			tcp_event_new_data_sent(sk, skb);
3658 		return err;
3659 	} else {
3660 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3661 			tcp_xmit_probe_skb(sk, 1, mib);
3662 		return tcp_xmit_probe_skb(sk, 0, mib);
3663 	}
3664 }
3665 
3666 /* A window probe timeout has occurred.  If window is not closed send
3667  * a partial packet else a zero probe.
3668  */
3669 void tcp_send_probe0(struct sock *sk)
3670 {
3671 	struct inet_connection_sock *icsk = inet_csk(sk);
3672 	struct tcp_sock *tp = tcp_sk(sk);
3673 	struct net *net = sock_net(sk);
3674 	unsigned long probe_max;
3675 	int err;
3676 
3677 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3678 
3679 	if (tp->packets_out || !tcp_send_head(sk)) {
3680 		/* Cancel probe timer, if it is not required. */
3681 		icsk->icsk_probes_out = 0;
3682 		icsk->icsk_backoff = 0;
3683 		return;
3684 	}
3685 
3686 	if (err <= 0) {
3687 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3688 			icsk->icsk_backoff++;
3689 		icsk->icsk_probes_out++;
3690 		probe_max = TCP_RTO_MAX;
3691 	} else {
3692 		/* If packet was not sent due to local congestion,
3693 		 * do not backoff and do not remember icsk_probes_out.
3694 		 * Let local senders to fight for local resources.
3695 		 *
3696 		 * Use accumulated backoff yet.
3697 		 */
3698 		if (!icsk->icsk_probes_out)
3699 			icsk->icsk_probes_out = 1;
3700 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3701 	}
3702 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3703 				  tcp_probe0_when(sk, probe_max),
3704 				  TCP_RTO_MAX);
3705 }
3706 
3707 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3708 {
3709 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3710 	struct flowi fl;
3711 	int res;
3712 
3713 	tcp_rsk(req)->txhash = net_tx_rndhash();
3714 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3715 	if (!res) {
3716 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3717 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3718 		if (unlikely(tcp_passive_fastopen(sk)))
3719 			tcp_sk(sk)->total_retrans++;
3720 	}
3721 	return res;
3722 }
3723 EXPORT_SYMBOL(tcp_rtx_synack);
3724