1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_jiffies32; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_jiffies32; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 tp->lsndtime = now; 169 170 /* If it is a reply for ato after last received 171 * packet, enter pingpong mode. 172 */ 173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 174 icsk->icsk_ack.pingpong = 1; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 179 { 180 tcp_dec_quickack_mode(sk, pkts); 181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 182 } 183 184 185 u32 tcp_default_init_rwnd(u32 mss) 186 { 187 /* Initial receive window should be twice of TCP_INIT_CWND to 188 * enable proper sending of new unsent data during fast recovery 189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 190 * limit when mss is larger than 1460. 191 */ 192 u32 init_rwnd = TCP_INIT_CWND * 2; 193 194 if (mss > 1460) 195 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 196 return init_rwnd; 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (sysctl_tcp_workaround_signed_windows) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = space; 234 235 (*rcv_wscale) = 0; 236 if (wscale_ok) { 237 /* Set window scaling on max possible window */ 238 space = max_t(u32, space, sysctl_tcp_rmem[2]); 239 space = max_t(u32, space, sysctl_rmem_max); 240 space = min_t(u32, space, *window_clamp); 241 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 242 space >>= 1; 243 (*rcv_wscale)++; 244 } 245 } 246 247 if (mss > (1 << *rcv_wscale)) { 248 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 249 init_rcv_wnd = tcp_default_init_rwnd(mss); 250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 251 } 252 253 /* Set the clamp no higher than max representable value */ 254 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 255 } 256 EXPORT_SYMBOL(tcp_select_initial_window); 257 258 /* Chose a new window to advertise, update state in tcp_sock for the 259 * socket, and return result with RFC1323 scaling applied. The return 260 * value can be stuffed directly into th->window for an outgoing 261 * frame. 262 */ 263 static u16 tcp_select_window(struct sock *sk) 264 { 265 struct tcp_sock *tp = tcp_sk(sk); 266 u32 old_win = tp->rcv_wnd; 267 u32 cur_win = tcp_receive_window(tp); 268 u32 new_win = __tcp_select_window(sk); 269 270 /* Never shrink the offered window */ 271 if (new_win < cur_win) { 272 /* Danger Will Robinson! 273 * Don't update rcv_wup/rcv_wnd here or else 274 * we will not be able to advertise a zero 275 * window in time. --DaveM 276 * 277 * Relax Will Robinson. 278 */ 279 if (new_win == 0) 280 NET_INC_STATS(sock_net(sk), 281 LINUX_MIB_TCPWANTZEROWINDOWADV); 282 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 283 } 284 tp->rcv_wnd = new_win; 285 tp->rcv_wup = tp->rcv_nxt; 286 287 /* Make sure we do not exceed the maximum possible 288 * scaled window. 289 */ 290 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 291 new_win = min(new_win, MAX_TCP_WINDOW); 292 else 293 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 294 295 /* RFC1323 scaling applied */ 296 new_win >>= tp->rx_opt.rcv_wscale; 297 298 if (new_win == 0) { 299 if (old_win) 300 NET_INC_STATS(sock_net(sk), 301 LINUX_MIB_TCPTOZEROWINDOWADV); 302 } else if (old_win == 0) { 303 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 304 } 305 306 return new_win; 307 } 308 309 /* Packet ECN state for a SYN-ACK */ 310 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 311 { 312 const struct tcp_sock *tp = tcp_sk(sk); 313 314 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 315 if (!(tp->ecn_flags & TCP_ECN_OK)) 316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 317 else if (tcp_ca_needs_ecn(sk) || 318 tcp_bpf_ca_needs_ecn(sk)) 319 INET_ECN_xmit(sk); 320 } 321 322 /* Packet ECN state for a SYN. */ 323 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 324 { 325 struct tcp_sock *tp = tcp_sk(sk); 326 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 328 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 329 330 if (!use_ecn) { 331 const struct dst_entry *dst = __sk_dst_get(sk); 332 333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 334 use_ecn = true; 335 } 336 337 tp->ecn_flags = 0; 338 339 if (use_ecn) { 340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 341 tp->ecn_flags = TCP_ECN_OK; 342 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 343 INET_ECN_xmit(sk); 344 } 345 } 346 347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 348 { 349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 350 /* tp->ecn_flags are cleared at a later point in time when 351 * SYN ACK is ultimatively being received. 352 */ 353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 354 } 355 356 static void 357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 358 { 359 if (inet_rsk(req)->ecn_ok) 360 th->ece = 1; 361 } 362 363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 364 * be sent. 365 */ 366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 367 struct tcphdr *th, int tcp_header_len) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 371 if (tp->ecn_flags & TCP_ECN_OK) { 372 /* Not-retransmitted data segment: set ECT and inject CWR. */ 373 if (skb->len != tcp_header_len && 374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 375 INET_ECN_xmit(sk); 376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 378 th->cwr = 1; 379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 380 } 381 } else if (!tcp_ca_needs_ecn(sk)) { 382 /* ACK or retransmitted segment: clear ECT|CE */ 383 INET_ECN_dontxmit(sk); 384 } 385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 386 th->ece = 1; 387 } 388 } 389 390 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 391 * auto increment end seqno. 392 */ 393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 394 { 395 skb->ip_summed = CHECKSUM_PARTIAL; 396 skb->csum = 0; 397 398 TCP_SKB_CB(skb)->tcp_flags = flags; 399 TCP_SKB_CB(skb)->sacked = 0; 400 401 tcp_skb_pcount_set(skb, 1); 402 403 TCP_SKB_CB(skb)->seq = seq; 404 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 405 seq++; 406 TCP_SKB_CB(skb)->end_seq = seq; 407 } 408 409 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 410 { 411 return tp->snd_una != tp->snd_up; 412 } 413 414 #define OPTION_SACK_ADVERTISE (1 << 0) 415 #define OPTION_TS (1 << 1) 416 #define OPTION_MD5 (1 << 2) 417 #define OPTION_WSCALE (1 << 3) 418 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 419 420 struct tcp_out_options { 421 u16 options; /* bit field of OPTION_* */ 422 u16 mss; /* 0 to disable */ 423 u8 ws; /* window scale, 0 to disable */ 424 u8 num_sack_blocks; /* number of SACK blocks to include */ 425 u8 hash_size; /* bytes in hash_location */ 426 __u8 *hash_location; /* temporary pointer, overloaded */ 427 __u32 tsval, tsecr; /* need to include OPTION_TS */ 428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 429 }; 430 431 /* Write previously computed TCP options to the packet. 432 * 433 * Beware: Something in the Internet is very sensitive to the ordering of 434 * TCP options, we learned this through the hard way, so be careful here. 435 * Luckily we can at least blame others for their non-compliance but from 436 * inter-operability perspective it seems that we're somewhat stuck with 437 * the ordering which we have been using if we want to keep working with 438 * those broken things (not that it currently hurts anybody as there isn't 439 * particular reason why the ordering would need to be changed). 440 * 441 * At least SACK_PERM as the first option is known to lead to a disaster 442 * (but it may well be that other scenarios fail similarly). 443 */ 444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 445 struct tcp_out_options *opts) 446 { 447 u16 options = opts->options; /* mungable copy */ 448 449 if (unlikely(OPTION_MD5 & options)) { 450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 452 /* overload cookie hash location */ 453 opts->hash_location = (__u8 *)ptr; 454 ptr += 4; 455 } 456 457 if (unlikely(opts->mss)) { 458 *ptr++ = htonl((TCPOPT_MSS << 24) | 459 (TCPOLEN_MSS << 16) | 460 opts->mss); 461 } 462 463 if (likely(OPTION_TS & options)) { 464 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 466 (TCPOLEN_SACK_PERM << 16) | 467 (TCPOPT_TIMESTAMP << 8) | 468 TCPOLEN_TIMESTAMP); 469 options &= ~OPTION_SACK_ADVERTISE; 470 } else { 471 *ptr++ = htonl((TCPOPT_NOP << 24) | 472 (TCPOPT_NOP << 16) | 473 (TCPOPT_TIMESTAMP << 8) | 474 TCPOLEN_TIMESTAMP); 475 } 476 *ptr++ = htonl(opts->tsval); 477 *ptr++ = htonl(opts->tsecr); 478 } 479 480 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_SACK_PERM << 8) | 484 TCPOLEN_SACK_PERM); 485 } 486 487 if (unlikely(OPTION_WSCALE & options)) { 488 *ptr++ = htonl((TCPOPT_NOP << 24) | 489 (TCPOPT_WINDOW << 16) | 490 (TCPOLEN_WINDOW << 8) | 491 opts->ws); 492 } 493 494 if (unlikely(opts->num_sack_blocks)) { 495 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 496 tp->duplicate_sack : tp->selective_acks; 497 int this_sack; 498 499 *ptr++ = htonl((TCPOPT_NOP << 24) | 500 (TCPOPT_NOP << 16) | 501 (TCPOPT_SACK << 8) | 502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 503 TCPOLEN_SACK_PERBLOCK))); 504 505 for (this_sack = 0; this_sack < opts->num_sack_blocks; 506 ++this_sack) { 507 *ptr++ = htonl(sp[this_sack].start_seq); 508 *ptr++ = htonl(sp[this_sack].end_seq); 509 } 510 511 tp->rx_opt.dsack = 0; 512 } 513 514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 516 u8 *p = (u8 *)ptr; 517 u32 len; /* Fast Open option length */ 518 519 if (foc->exp) { 520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 522 TCPOPT_FASTOPEN_MAGIC); 523 p += TCPOLEN_EXP_FASTOPEN_BASE; 524 } else { 525 len = TCPOLEN_FASTOPEN_BASE + foc->len; 526 *p++ = TCPOPT_FASTOPEN; 527 *p++ = len; 528 } 529 530 memcpy(p, foc->val, foc->len); 531 if ((len & 3) == 2) { 532 p[foc->len] = TCPOPT_NOP; 533 p[foc->len + 1] = TCPOPT_NOP; 534 } 535 ptr += (len + 3) >> 2; 536 } 537 } 538 539 /* Compute TCP options for SYN packets. This is not the final 540 * network wire format yet. 541 */ 542 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 543 struct tcp_out_options *opts, 544 struct tcp_md5sig_key **md5) 545 { 546 struct tcp_sock *tp = tcp_sk(sk); 547 unsigned int remaining = MAX_TCP_OPTION_SPACE; 548 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 549 550 #ifdef CONFIG_TCP_MD5SIG 551 *md5 = tp->af_specific->md5_lookup(sk, sk); 552 if (*md5) { 553 opts->options |= OPTION_MD5; 554 remaining -= TCPOLEN_MD5SIG_ALIGNED; 555 } 556 #else 557 *md5 = NULL; 558 #endif 559 560 /* We always get an MSS option. The option bytes which will be seen in 561 * normal data packets should timestamps be used, must be in the MSS 562 * advertised. But we subtract them from tp->mss_cache so that 563 * calculations in tcp_sendmsg are simpler etc. So account for this 564 * fact here if necessary. If we don't do this correctly, as a 565 * receiver we won't recognize data packets as being full sized when we 566 * should, and thus we won't abide by the delayed ACK rules correctly. 567 * SACKs don't matter, we never delay an ACK when we have any of those 568 * going out. */ 569 opts->mss = tcp_advertise_mss(sk); 570 remaining -= TCPOLEN_MSS_ALIGNED; 571 572 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 573 opts->options |= OPTION_TS; 574 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 575 opts->tsecr = tp->rx_opt.ts_recent; 576 remaining -= TCPOLEN_TSTAMP_ALIGNED; 577 } 578 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 579 opts->ws = tp->rx_opt.rcv_wscale; 580 opts->options |= OPTION_WSCALE; 581 remaining -= TCPOLEN_WSCALE_ALIGNED; 582 } 583 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 584 opts->options |= OPTION_SACK_ADVERTISE; 585 if (unlikely(!(OPTION_TS & opts->options))) 586 remaining -= TCPOLEN_SACKPERM_ALIGNED; 587 } 588 589 if (fastopen && fastopen->cookie.len >= 0) { 590 u32 need = fastopen->cookie.len; 591 592 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 593 TCPOLEN_FASTOPEN_BASE; 594 need = (need + 3) & ~3U; /* Align to 32 bits */ 595 if (remaining >= need) { 596 opts->options |= OPTION_FAST_OPEN_COOKIE; 597 opts->fastopen_cookie = &fastopen->cookie; 598 remaining -= need; 599 tp->syn_fastopen = 1; 600 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 601 } 602 } 603 604 return MAX_TCP_OPTION_SPACE - remaining; 605 } 606 607 /* Set up TCP options for SYN-ACKs. */ 608 static unsigned int tcp_synack_options(struct request_sock *req, 609 unsigned int mss, struct sk_buff *skb, 610 struct tcp_out_options *opts, 611 const struct tcp_md5sig_key *md5, 612 struct tcp_fastopen_cookie *foc) 613 { 614 struct inet_request_sock *ireq = inet_rsk(req); 615 unsigned int remaining = MAX_TCP_OPTION_SPACE; 616 617 #ifdef CONFIG_TCP_MD5SIG 618 if (md5) { 619 opts->options |= OPTION_MD5; 620 remaining -= TCPOLEN_MD5SIG_ALIGNED; 621 622 /* We can't fit any SACK blocks in a packet with MD5 + TS 623 * options. There was discussion about disabling SACK 624 * rather than TS in order to fit in better with old, 625 * buggy kernels, but that was deemed to be unnecessary. 626 */ 627 ireq->tstamp_ok &= !ireq->sack_ok; 628 } 629 #endif 630 631 /* We always send an MSS option. */ 632 opts->mss = mss; 633 remaining -= TCPOLEN_MSS_ALIGNED; 634 635 if (likely(ireq->wscale_ok)) { 636 opts->ws = ireq->rcv_wscale; 637 opts->options |= OPTION_WSCALE; 638 remaining -= TCPOLEN_WSCALE_ALIGNED; 639 } 640 if (likely(ireq->tstamp_ok)) { 641 opts->options |= OPTION_TS; 642 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 643 opts->tsecr = req->ts_recent; 644 remaining -= TCPOLEN_TSTAMP_ALIGNED; 645 } 646 if (likely(ireq->sack_ok)) { 647 opts->options |= OPTION_SACK_ADVERTISE; 648 if (unlikely(!ireq->tstamp_ok)) 649 remaining -= TCPOLEN_SACKPERM_ALIGNED; 650 } 651 if (foc != NULL && foc->len >= 0) { 652 u32 need = foc->len; 653 654 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 655 TCPOLEN_FASTOPEN_BASE; 656 need = (need + 3) & ~3U; /* Align to 32 bits */ 657 if (remaining >= need) { 658 opts->options |= OPTION_FAST_OPEN_COOKIE; 659 opts->fastopen_cookie = foc; 660 remaining -= need; 661 } 662 } 663 664 return MAX_TCP_OPTION_SPACE - remaining; 665 } 666 667 /* Compute TCP options for ESTABLISHED sockets. This is not the 668 * final wire format yet. 669 */ 670 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 671 struct tcp_out_options *opts, 672 struct tcp_md5sig_key **md5) 673 { 674 struct tcp_sock *tp = tcp_sk(sk); 675 unsigned int size = 0; 676 unsigned int eff_sacks; 677 678 opts->options = 0; 679 680 #ifdef CONFIG_TCP_MD5SIG 681 *md5 = tp->af_specific->md5_lookup(sk, sk); 682 if (unlikely(*md5)) { 683 opts->options |= OPTION_MD5; 684 size += TCPOLEN_MD5SIG_ALIGNED; 685 } 686 #else 687 *md5 = NULL; 688 #endif 689 690 if (likely(tp->rx_opt.tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 693 opts->tsecr = tp->rx_opt.ts_recent; 694 size += TCPOLEN_TSTAMP_ALIGNED; 695 } 696 697 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 698 if (unlikely(eff_sacks)) { 699 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 700 opts->num_sack_blocks = 701 min_t(unsigned int, eff_sacks, 702 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 703 TCPOLEN_SACK_PERBLOCK); 704 size += TCPOLEN_SACK_BASE_ALIGNED + 705 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 706 } 707 708 return size; 709 } 710 711 712 /* TCP SMALL QUEUES (TSQ) 713 * 714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 715 * to reduce RTT and bufferbloat. 716 * We do this using a special skb destructor (tcp_wfree). 717 * 718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 719 * needs to be reallocated in a driver. 720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 721 * 722 * Since transmit from skb destructor is forbidden, we use a tasklet 723 * to process all sockets that eventually need to send more skbs. 724 * We use one tasklet per cpu, with its own queue of sockets. 725 */ 726 struct tsq_tasklet { 727 struct tasklet_struct tasklet; 728 struct list_head head; /* queue of tcp sockets */ 729 }; 730 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 731 732 static void tcp_tsq_handler(struct sock *sk) 733 { 734 if ((1 << sk->sk_state) & 735 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 736 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 737 struct tcp_sock *tp = tcp_sk(sk); 738 739 if (tp->lost_out > tp->retrans_out && 740 tp->snd_cwnd > tcp_packets_in_flight(tp)) 741 tcp_xmit_retransmit_queue(sk); 742 743 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 744 0, GFP_ATOMIC); 745 } 746 } 747 /* 748 * One tasklet per cpu tries to send more skbs. 749 * We run in tasklet context but need to disable irqs when 750 * transferring tsq->head because tcp_wfree() might 751 * interrupt us (non NAPI drivers) 752 */ 753 static void tcp_tasklet_func(unsigned long data) 754 { 755 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 756 LIST_HEAD(list); 757 unsigned long flags; 758 struct list_head *q, *n; 759 struct tcp_sock *tp; 760 struct sock *sk; 761 762 local_irq_save(flags); 763 list_splice_init(&tsq->head, &list); 764 local_irq_restore(flags); 765 766 list_for_each_safe(q, n, &list) { 767 tp = list_entry(q, struct tcp_sock, tsq_node); 768 list_del(&tp->tsq_node); 769 770 sk = (struct sock *)tp; 771 smp_mb__before_atomic(); 772 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 773 774 if (!sk->sk_lock.owned && 775 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 776 bh_lock_sock(sk); 777 if (!sock_owned_by_user(sk)) { 778 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 779 tcp_tsq_handler(sk); 780 } 781 bh_unlock_sock(sk); 782 } 783 784 sk_free(sk); 785 } 786 } 787 788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 789 TCPF_WRITE_TIMER_DEFERRED | \ 790 TCPF_DELACK_TIMER_DEFERRED | \ 791 TCPF_MTU_REDUCED_DEFERRED) 792 /** 793 * tcp_release_cb - tcp release_sock() callback 794 * @sk: socket 795 * 796 * called from release_sock() to perform protocol dependent 797 * actions before socket release. 798 */ 799 void tcp_release_cb(struct sock *sk) 800 { 801 unsigned long flags, nflags; 802 803 /* perform an atomic operation only if at least one flag is set */ 804 do { 805 flags = sk->sk_tsq_flags; 806 if (!(flags & TCP_DEFERRED_ALL)) 807 return; 808 nflags = flags & ~TCP_DEFERRED_ALL; 809 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 810 811 if (flags & TCPF_TSQ_DEFERRED) 812 tcp_tsq_handler(sk); 813 814 /* Here begins the tricky part : 815 * We are called from release_sock() with : 816 * 1) BH disabled 817 * 2) sk_lock.slock spinlock held 818 * 3) socket owned by us (sk->sk_lock.owned == 1) 819 * 820 * But following code is meant to be called from BH handlers, 821 * so we should keep BH disabled, but early release socket ownership 822 */ 823 sock_release_ownership(sk); 824 825 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 826 tcp_write_timer_handler(sk); 827 __sock_put(sk); 828 } 829 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 830 tcp_delack_timer_handler(sk); 831 __sock_put(sk); 832 } 833 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 835 __sock_put(sk); 836 } 837 } 838 EXPORT_SYMBOL(tcp_release_cb); 839 840 void __init tcp_tasklet_init(void) 841 { 842 int i; 843 844 for_each_possible_cpu(i) { 845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 846 847 INIT_LIST_HEAD(&tsq->head); 848 tasklet_init(&tsq->tasklet, 849 tcp_tasklet_func, 850 (unsigned long)tsq); 851 } 852 } 853 854 /* 855 * Write buffer destructor automatically called from kfree_skb. 856 * We can't xmit new skbs from this context, as we might already 857 * hold qdisc lock. 858 */ 859 void tcp_wfree(struct sk_buff *skb) 860 { 861 struct sock *sk = skb->sk; 862 struct tcp_sock *tp = tcp_sk(sk); 863 unsigned long flags, nval, oval; 864 865 /* Keep one reference on sk_wmem_alloc. 866 * Will be released by sk_free() from here or tcp_tasklet_func() 867 */ 868 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 869 870 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 871 * Wait until our queues (qdisc + devices) are drained. 872 * This gives : 873 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 874 * - chance for incoming ACK (processed by another cpu maybe) 875 * to migrate this flow (skb->ooo_okay will be eventually set) 876 */ 877 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 878 goto out; 879 880 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 881 struct tsq_tasklet *tsq; 882 bool empty; 883 884 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 885 goto out; 886 887 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 888 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 889 if (nval != oval) 890 continue; 891 892 /* queue this socket to tasklet queue */ 893 local_irq_save(flags); 894 tsq = this_cpu_ptr(&tsq_tasklet); 895 empty = list_empty(&tsq->head); 896 list_add(&tp->tsq_node, &tsq->head); 897 if (empty) 898 tasklet_schedule(&tsq->tasklet); 899 local_irq_restore(flags); 900 return; 901 } 902 out: 903 sk_free(sk); 904 } 905 906 /* Note: Called under hard irq. 907 * We can not call TCP stack right away. 908 */ 909 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 910 { 911 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 912 struct sock *sk = (struct sock *)tp; 913 unsigned long nval, oval; 914 915 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 916 struct tsq_tasklet *tsq; 917 bool empty; 918 919 if (oval & TSQF_QUEUED) 920 break; 921 922 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 923 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 924 if (nval != oval) 925 continue; 926 927 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc)) 928 break; 929 /* queue this socket to tasklet queue */ 930 tsq = this_cpu_ptr(&tsq_tasklet); 931 empty = list_empty(&tsq->head); 932 list_add(&tp->tsq_node, &tsq->head); 933 if (empty) 934 tasklet_schedule(&tsq->tasklet); 935 break; 936 } 937 return HRTIMER_NORESTART; 938 } 939 940 /* BBR congestion control needs pacing. 941 * Same remark for SO_MAX_PACING_RATE. 942 * sch_fq packet scheduler is efficiently handling pacing, 943 * but is not always installed/used. 944 * Return true if TCP stack should pace packets itself. 945 */ 946 static bool tcp_needs_internal_pacing(const struct sock *sk) 947 { 948 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 949 } 950 951 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 952 { 953 u64 len_ns; 954 u32 rate; 955 956 if (!tcp_needs_internal_pacing(sk)) 957 return; 958 rate = sk->sk_pacing_rate; 959 if (!rate || rate == ~0U) 960 return; 961 962 /* Should account for header sizes as sch_fq does, 963 * but lets make things simple. 964 */ 965 len_ns = (u64)skb->len * NSEC_PER_SEC; 966 do_div(len_ns, rate); 967 hrtimer_start(&tcp_sk(sk)->pacing_timer, 968 ktime_add_ns(ktime_get(), len_ns), 969 HRTIMER_MODE_ABS_PINNED); 970 } 971 972 /* This routine actually transmits TCP packets queued in by 973 * tcp_do_sendmsg(). This is used by both the initial 974 * transmission and possible later retransmissions. 975 * All SKB's seen here are completely headerless. It is our 976 * job to build the TCP header, and pass the packet down to 977 * IP so it can do the same plus pass the packet off to the 978 * device. 979 * 980 * We are working here with either a clone of the original 981 * SKB, or a fresh unique copy made by the retransmit engine. 982 */ 983 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 984 gfp_t gfp_mask) 985 { 986 const struct inet_connection_sock *icsk = inet_csk(sk); 987 struct inet_sock *inet; 988 struct tcp_sock *tp; 989 struct tcp_skb_cb *tcb; 990 struct tcp_out_options opts; 991 unsigned int tcp_options_size, tcp_header_size; 992 struct tcp_md5sig_key *md5; 993 struct tcphdr *th; 994 int err; 995 996 BUG_ON(!skb || !tcp_skb_pcount(skb)); 997 tp = tcp_sk(sk); 998 999 skb->skb_mstamp = tp->tcp_mstamp; 1000 if (clone_it) { 1001 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1002 - tp->snd_una; 1003 tcp_rate_skb_sent(sk, skb); 1004 1005 if (unlikely(skb_cloned(skb))) 1006 skb = pskb_copy(skb, gfp_mask); 1007 else 1008 skb = skb_clone(skb, gfp_mask); 1009 if (unlikely(!skb)) 1010 return -ENOBUFS; 1011 } 1012 1013 inet = inet_sk(sk); 1014 tcb = TCP_SKB_CB(skb); 1015 memset(&opts, 0, sizeof(opts)); 1016 1017 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1018 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1019 else 1020 tcp_options_size = tcp_established_options(sk, skb, &opts, 1021 &md5); 1022 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1023 1024 /* if no packet is in qdisc/device queue, then allow XPS to select 1025 * another queue. We can be called from tcp_tsq_handler() 1026 * which holds one reference to sk_wmem_alloc. 1027 * 1028 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1029 * One way to get this would be to set skb->truesize = 2 on them. 1030 */ 1031 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1032 1033 /* If we had to use memory reserve to allocate this skb, 1034 * this might cause drops if packet is looped back : 1035 * Other socket might not have SOCK_MEMALLOC. 1036 * Packets not looped back do not care about pfmemalloc. 1037 */ 1038 skb->pfmemalloc = 0; 1039 1040 skb_push(skb, tcp_header_size); 1041 skb_reset_transport_header(skb); 1042 1043 skb_orphan(skb); 1044 skb->sk = sk; 1045 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1046 skb_set_hash_from_sk(skb, sk); 1047 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1048 1049 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1050 1051 /* Build TCP header and checksum it. */ 1052 th = (struct tcphdr *)skb->data; 1053 th->source = inet->inet_sport; 1054 th->dest = inet->inet_dport; 1055 th->seq = htonl(tcb->seq); 1056 th->ack_seq = htonl(tp->rcv_nxt); 1057 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1058 tcb->tcp_flags); 1059 1060 th->check = 0; 1061 th->urg_ptr = 0; 1062 1063 /* The urg_mode check is necessary during a below snd_una win probe */ 1064 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1065 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1066 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1067 th->urg = 1; 1068 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1069 th->urg_ptr = htons(0xFFFF); 1070 th->urg = 1; 1071 } 1072 } 1073 1074 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1075 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1076 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1077 th->window = htons(tcp_select_window(sk)); 1078 tcp_ecn_send(sk, skb, th, tcp_header_size); 1079 } else { 1080 /* RFC1323: The window in SYN & SYN/ACK segments 1081 * is never scaled. 1082 */ 1083 th->window = htons(min(tp->rcv_wnd, 65535U)); 1084 } 1085 #ifdef CONFIG_TCP_MD5SIG 1086 /* Calculate the MD5 hash, as we have all we need now */ 1087 if (md5) { 1088 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1089 tp->af_specific->calc_md5_hash(opts.hash_location, 1090 md5, sk, skb); 1091 } 1092 #endif 1093 1094 icsk->icsk_af_ops->send_check(sk, skb); 1095 1096 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1097 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1098 1099 if (skb->len != tcp_header_size) { 1100 tcp_event_data_sent(tp, sk); 1101 tp->data_segs_out += tcp_skb_pcount(skb); 1102 tcp_internal_pacing(sk, skb); 1103 } 1104 1105 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1106 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1107 tcp_skb_pcount(skb)); 1108 1109 tp->segs_out += tcp_skb_pcount(skb); 1110 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1111 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1112 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1113 1114 /* Our usage of tstamp should remain private */ 1115 skb->tstamp = 0; 1116 1117 /* Cleanup our debris for IP stacks */ 1118 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1119 sizeof(struct inet6_skb_parm))); 1120 1121 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1122 1123 if (likely(err <= 0)) 1124 return err; 1125 1126 tcp_enter_cwr(sk); 1127 1128 return net_xmit_eval(err); 1129 } 1130 1131 /* This routine just queues the buffer for sending. 1132 * 1133 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1134 * otherwise socket can stall. 1135 */ 1136 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1137 { 1138 struct tcp_sock *tp = tcp_sk(sk); 1139 1140 /* Advance write_seq and place onto the write_queue. */ 1141 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1142 __skb_header_release(skb); 1143 tcp_add_write_queue_tail(sk, skb); 1144 sk->sk_wmem_queued += skb->truesize; 1145 sk_mem_charge(sk, skb->truesize); 1146 } 1147 1148 /* Initialize TSO segments for a packet. */ 1149 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1150 { 1151 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1152 /* Avoid the costly divide in the normal 1153 * non-TSO case. 1154 */ 1155 tcp_skb_pcount_set(skb, 1); 1156 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1157 } else { 1158 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1159 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1160 } 1161 } 1162 1163 /* When a modification to fackets out becomes necessary, we need to check 1164 * skb is counted to fackets_out or not. 1165 */ 1166 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1167 int decr) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 1171 if (!tp->sacked_out || tcp_is_reno(tp)) 1172 return; 1173 1174 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1175 tp->fackets_out -= decr; 1176 } 1177 1178 /* Pcount in the middle of the write queue got changed, we need to do various 1179 * tweaks to fix counters 1180 */ 1181 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1182 { 1183 struct tcp_sock *tp = tcp_sk(sk); 1184 1185 tp->packets_out -= decr; 1186 1187 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1188 tp->sacked_out -= decr; 1189 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1190 tp->retrans_out -= decr; 1191 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1192 tp->lost_out -= decr; 1193 1194 /* Reno case is special. Sigh... */ 1195 if (tcp_is_reno(tp) && decr > 0) 1196 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1197 1198 tcp_adjust_fackets_out(sk, skb, decr); 1199 1200 if (tp->lost_skb_hint && 1201 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1202 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1203 tp->lost_cnt_hint -= decr; 1204 1205 tcp_verify_left_out(tp); 1206 } 1207 1208 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1209 { 1210 return TCP_SKB_CB(skb)->txstamp_ack || 1211 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1212 } 1213 1214 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1215 { 1216 struct skb_shared_info *shinfo = skb_shinfo(skb); 1217 1218 if (unlikely(tcp_has_tx_tstamp(skb)) && 1219 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1220 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1221 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1222 1223 shinfo->tx_flags &= ~tsflags; 1224 shinfo2->tx_flags |= tsflags; 1225 swap(shinfo->tskey, shinfo2->tskey); 1226 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1227 TCP_SKB_CB(skb)->txstamp_ack = 0; 1228 } 1229 } 1230 1231 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1232 { 1233 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1234 TCP_SKB_CB(skb)->eor = 0; 1235 } 1236 1237 /* Function to create two new TCP segments. Shrinks the given segment 1238 * to the specified size and appends a new segment with the rest of the 1239 * packet to the list. This won't be called frequently, I hope. 1240 * Remember, these are still headerless SKBs at this point. 1241 */ 1242 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1243 unsigned int mss_now, gfp_t gfp) 1244 { 1245 struct tcp_sock *tp = tcp_sk(sk); 1246 struct sk_buff *buff; 1247 int nsize, old_factor; 1248 int nlen; 1249 u8 flags; 1250 1251 if (WARN_ON(len > skb->len)) 1252 return -EINVAL; 1253 1254 nsize = skb_headlen(skb) - len; 1255 if (nsize < 0) 1256 nsize = 0; 1257 1258 if (skb_unclone(skb, gfp)) 1259 return -ENOMEM; 1260 1261 /* Get a new skb... force flag on. */ 1262 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1263 if (!buff) 1264 return -ENOMEM; /* We'll just try again later. */ 1265 1266 sk->sk_wmem_queued += buff->truesize; 1267 sk_mem_charge(sk, buff->truesize); 1268 nlen = skb->len - len - nsize; 1269 buff->truesize += nlen; 1270 skb->truesize -= nlen; 1271 1272 /* Correct the sequence numbers. */ 1273 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1274 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1275 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1276 1277 /* PSH and FIN should only be set in the second packet. */ 1278 flags = TCP_SKB_CB(skb)->tcp_flags; 1279 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1280 TCP_SKB_CB(buff)->tcp_flags = flags; 1281 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1282 tcp_skb_fragment_eor(skb, buff); 1283 1284 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1285 /* Copy and checksum data tail into the new buffer. */ 1286 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1287 skb_put(buff, nsize), 1288 nsize, 0); 1289 1290 skb_trim(skb, len); 1291 1292 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1293 } else { 1294 skb->ip_summed = CHECKSUM_PARTIAL; 1295 skb_split(skb, buff, len); 1296 } 1297 1298 buff->ip_summed = skb->ip_summed; 1299 1300 buff->tstamp = skb->tstamp; 1301 tcp_fragment_tstamp(skb, buff); 1302 1303 old_factor = tcp_skb_pcount(skb); 1304 1305 /* Fix up tso_factor for both original and new SKB. */ 1306 tcp_set_skb_tso_segs(skb, mss_now); 1307 tcp_set_skb_tso_segs(buff, mss_now); 1308 1309 /* Update delivered info for the new segment */ 1310 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1311 1312 /* If this packet has been sent out already, we must 1313 * adjust the various packet counters. 1314 */ 1315 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1316 int diff = old_factor - tcp_skb_pcount(skb) - 1317 tcp_skb_pcount(buff); 1318 1319 if (diff) 1320 tcp_adjust_pcount(sk, skb, diff); 1321 } 1322 1323 /* Link BUFF into the send queue. */ 1324 __skb_header_release(buff); 1325 tcp_insert_write_queue_after(skb, buff, sk); 1326 1327 return 0; 1328 } 1329 1330 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1331 * data is not copied, but immediately discarded. 1332 */ 1333 static int __pskb_trim_head(struct sk_buff *skb, int len) 1334 { 1335 struct skb_shared_info *shinfo; 1336 int i, k, eat; 1337 1338 eat = min_t(int, len, skb_headlen(skb)); 1339 if (eat) { 1340 __skb_pull(skb, eat); 1341 len -= eat; 1342 if (!len) 1343 return 0; 1344 } 1345 eat = len; 1346 k = 0; 1347 shinfo = skb_shinfo(skb); 1348 for (i = 0; i < shinfo->nr_frags; i++) { 1349 int size = skb_frag_size(&shinfo->frags[i]); 1350 1351 if (size <= eat) { 1352 skb_frag_unref(skb, i); 1353 eat -= size; 1354 } else { 1355 shinfo->frags[k] = shinfo->frags[i]; 1356 if (eat) { 1357 shinfo->frags[k].page_offset += eat; 1358 skb_frag_size_sub(&shinfo->frags[k], eat); 1359 eat = 0; 1360 } 1361 k++; 1362 } 1363 } 1364 shinfo->nr_frags = k; 1365 1366 skb->data_len -= len; 1367 skb->len = skb->data_len; 1368 return len; 1369 } 1370 1371 /* Remove acked data from a packet in the transmit queue. */ 1372 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1373 { 1374 u32 delta_truesize; 1375 1376 if (skb_unclone(skb, GFP_ATOMIC)) 1377 return -ENOMEM; 1378 1379 delta_truesize = __pskb_trim_head(skb, len); 1380 1381 TCP_SKB_CB(skb)->seq += len; 1382 skb->ip_summed = CHECKSUM_PARTIAL; 1383 1384 if (delta_truesize) { 1385 skb->truesize -= delta_truesize; 1386 sk->sk_wmem_queued -= delta_truesize; 1387 sk_mem_uncharge(sk, delta_truesize); 1388 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1389 } 1390 1391 /* Any change of skb->len requires recalculation of tso factor. */ 1392 if (tcp_skb_pcount(skb) > 1) 1393 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1394 1395 return 0; 1396 } 1397 1398 /* Calculate MSS not accounting any TCP options. */ 1399 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1400 { 1401 const struct tcp_sock *tp = tcp_sk(sk); 1402 const struct inet_connection_sock *icsk = inet_csk(sk); 1403 int mss_now; 1404 1405 /* Calculate base mss without TCP options: 1406 It is MMS_S - sizeof(tcphdr) of rfc1122 1407 */ 1408 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1409 1410 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1411 if (icsk->icsk_af_ops->net_frag_header_len) { 1412 const struct dst_entry *dst = __sk_dst_get(sk); 1413 1414 if (dst && dst_allfrag(dst)) 1415 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1416 } 1417 1418 /* Clamp it (mss_clamp does not include tcp options) */ 1419 if (mss_now > tp->rx_opt.mss_clamp) 1420 mss_now = tp->rx_opt.mss_clamp; 1421 1422 /* Now subtract optional transport overhead */ 1423 mss_now -= icsk->icsk_ext_hdr_len; 1424 1425 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1426 if (mss_now < 48) 1427 mss_now = 48; 1428 return mss_now; 1429 } 1430 1431 /* Calculate MSS. Not accounting for SACKs here. */ 1432 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1433 { 1434 /* Subtract TCP options size, not including SACKs */ 1435 return __tcp_mtu_to_mss(sk, pmtu) - 1436 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1437 } 1438 1439 /* Inverse of above */ 1440 int tcp_mss_to_mtu(struct sock *sk, int mss) 1441 { 1442 const struct tcp_sock *tp = tcp_sk(sk); 1443 const struct inet_connection_sock *icsk = inet_csk(sk); 1444 int mtu; 1445 1446 mtu = mss + 1447 tp->tcp_header_len + 1448 icsk->icsk_ext_hdr_len + 1449 icsk->icsk_af_ops->net_header_len; 1450 1451 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1452 if (icsk->icsk_af_ops->net_frag_header_len) { 1453 const struct dst_entry *dst = __sk_dst_get(sk); 1454 1455 if (dst && dst_allfrag(dst)) 1456 mtu += icsk->icsk_af_ops->net_frag_header_len; 1457 } 1458 return mtu; 1459 } 1460 EXPORT_SYMBOL(tcp_mss_to_mtu); 1461 1462 /* MTU probing init per socket */ 1463 void tcp_mtup_init(struct sock *sk) 1464 { 1465 struct tcp_sock *tp = tcp_sk(sk); 1466 struct inet_connection_sock *icsk = inet_csk(sk); 1467 struct net *net = sock_net(sk); 1468 1469 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1470 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1471 icsk->icsk_af_ops->net_header_len; 1472 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1473 icsk->icsk_mtup.probe_size = 0; 1474 if (icsk->icsk_mtup.enabled) 1475 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1476 } 1477 EXPORT_SYMBOL(tcp_mtup_init); 1478 1479 /* This function synchronize snd mss to current pmtu/exthdr set. 1480 1481 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1482 for TCP options, but includes only bare TCP header. 1483 1484 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1485 It is minimum of user_mss and mss received with SYN. 1486 It also does not include TCP options. 1487 1488 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1489 1490 tp->mss_cache is current effective sending mss, including 1491 all tcp options except for SACKs. It is evaluated, 1492 taking into account current pmtu, but never exceeds 1493 tp->rx_opt.mss_clamp. 1494 1495 NOTE1. rfc1122 clearly states that advertised MSS 1496 DOES NOT include either tcp or ip options. 1497 1498 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1499 are READ ONLY outside this function. --ANK (980731) 1500 */ 1501 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1502 { 1503 struct tcp_sock *tp = tcp_sk(sk); 1504 struct inet_connection_sock *icsk = inet_csk(sk); 1505 int mss_now; 1506 1507 if (icsk->icsk_mtup.search_high > pmtu) 1508 icsk->icsk_mtup.search_high = pmtu; 1509 1510 mss_now = tcp_mtu_to_mss(sk, pmtu); 1511 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1512 1513 /* And store cached results */ 1514 icsk->icsk_pmtu_cookie = pmtu; 1515 if (icsk->icsk_mtup.enabled) 1516 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1517 tp->mss_cache = mss_now; 1518 1519 return mss_now; 1520 } 1521 EXPORT_SYMBOL(tcp_sync_mss); 1522 1523 /* Compute the current effective MSS, taking SACKs and IP options, 1524 * and even PMTU discovery events into account. 1525 */ 1526 unsigned int tcp_current_mss(struct sock *sk) 1527 { 1528 const struct tcp_sock *tp = tcp_sk(sk); 1529 const struct dst_entry *dst = __sk_dst_get(sk); 1530 u32 mss_now; 1531 unsigned int header_len; 1532 struct tcp_out_options opts; 1533 struct tcp_md5sig_key *md5; 1534 1535 mss_now = tp->mss_cache; 1536 1537 if (dst) { 1538 u32 mtu = dst_mtu(dst); 1539 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1540 mss_now = tcp_sync_mss(sk, mtu); 1541 } 1542 1543 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1544 sizeof(struct tcphdr); 1545 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1546 * some common options. If this is an odd packet (because we have SACK 1547 * blocks etc) then our calculated header_len will be different, and 1548 * we have to adjust mss_now correspondingly */ 1549 if (header_len != tp->tcp_header_len) { 1550 int delta = (int) header_len - tp->tcp_header_len; 1551 mss_now -= delta; 1552 } 1553 1554 return mss_now; 1555 } 1556 1557 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1558 * As additional protections, we do not touch cwnd in retransmission phases, 1559 * and if application hit its sndbuf limit recently. 1560 */ 1561 static void tcp_cwnd_application_limited(struct sock *sk) 1562 { 1563 struct tcp_sock *tp = tcp_sk(sk); 1564 1565 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1566 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1567 /* Limited by application or receiver window. */ 1568 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1569 u32 win_used = max(tp->snd_cwnd_used, init_win); 1570 if (win_used < tp->snd_cwnd) { 1571 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1572 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1573 } 1574 tp->snd_cwnd_used = 0; 1575 } 1576 tp->snd_cwnd_stamp = tcp_jiffies32; 1577 } 1578 1579 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1580 { 1581 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1582 struct tcp_sock *tp = tcp_sk(sk); 1583 1584 /* Track the maximum number of outstanding packets in each 1585 * window, and remember whether we were cwnd-limited then. 1586 */ 1587 if (!before(tp->snd_una, tp->max_packets_seq) || 1588 tp->packets_out > tp->max_packets_out) { 1589 tp->max_packets_out = tp->packets_out; 1590 tp->max_packets_seq = tp->snd_nxt; 1591 tp->is_cwnd_limited = is_cwnd_limited; 1592 } 1593 1594 if (tcp_is_cwnd_limited(sk)) { 1595 /* Network is feed fully. */ 1596 tp->snd_cwnd_used = 0; 1597 tp->snd_cwnd_stamp = tcp_jiffies32; 1598 } else { 1599 /* Network starves. */ 1600 if (tp->packets_out > tp->snd_cwnd_used) 1601 tp->snd_cwnd_used = tp->packets_out; 1602 1603 if (sysctl_tcp_slow_start_after_idle && 1604 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1605 !ca_ops->cong_control) 1606 tcp_cwnd_application_limited(sk); 1607 1608 /* The following conditions together indicate the starvation 1609 * is caused by insufficient sender buffer: 1610 * 1) just sent some data (see tcp_write_xmit) 1611 * 2) not cwnd limited (this else condition) 1612 * 3) no more data to send (null tcp_send_head ) 1613 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1614 */ 1615 if (!tcp_send_head(sk) && sk->sk_socket && 1616 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1617 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1618 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1619 } 1620 } 1621 1622 /* Minshall's variant of the Nagle send check. */ 1623 static bool tcp_minshall_check(const struct tcp_sock *tp) 1624 { 1625 return after(tp->snd_sml, tp->snd_una) && 1626 !after(tp->snd_sml, tp->snd_nxt); 1627 } 1628 1629 /* Update snd_sml if this skb is under mss 1630 * Note that a TSO packet might end with a sub-mss segment 1631 * The test is really : 1632 * if ((skb->len % mss) != 0) 1633 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1634 * But we can avoid doing the divide again given we already have 1635 * skb_pcount = skb->len / mss_now 1636 */ 1637 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1638 const struct sk_buff *skb) 1639 { 1640 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1641 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1642 } 1643 1644 /* Return false, if packet can be sent now without violation Nagle's rules: 1645 * 1. It is full sized. (provided by caller in %partial bool) 1646 * 2. Or it contains FIN. (already checked by caller) 1647 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1648 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1649 * With Minshall's modification: all sent small packets are ACKed. 1650 */ 1651 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1652 int nonagle) 1653 { 1654 return partial && 1655 ((nonagle & TCP_NAGLE_CORK) || 1656 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1657 } 1658 1659 /* Return how many segs we'd like on a TSO packet, 1660 * to send one TSO packet per ms 1661 */ 1662 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1663 int min_tso_segs) 1664 { 1665 u32 bytes, segs; 1666 1667 bytes = min(sk->sk_pacing_rate >> 10, 1668 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1669 1670 /* Goal is to send at least one packet per ms, 1671 * not one big TSO packet every 100 ms. 1672 * This preserves ACK clocking and is consistent 1673 * with tcp_tso_should_defer() heuristic. 1674 */ 1675 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1676 1677 return min_t(u32, segs, sk->sk_gso_max_segs); 1678 } 1679 EXPORT_SYMBOL(tcp_tso_autosize); 1680 1681 /* Return the number of segments we want in the skb we are transmitting. 1682 * See if congestion control module wants to decide; otherwise, autosize. 1683 */ 1684 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1685 { 1686 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1687 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1688 1689 return tso_segs ? : 1690 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1691 } 1692 1693 /* Returns the portion of skb which can be sent right away */ 1694 static unsigned int tcp_mss_split_point(const struct sock *sk, 1695 const struct sk_buff *skb, 1696 unsigned int mss_now, 1697 unsigned int max_segs, 1698 int nonagle) 1699 { 1700 const struct tcp_sock *tp = tcp_sk(sk); 1701 u32 partial, needed, window, max_len; 1702 1703 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1704 max_len = mss_now * max_segs; 1705 1706 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1707 return max_len; 1708 1709 needed = min(skb->len, window); 1710 1711 if (max_len <= needed) 1712 return max_len; 1713 1714 partial = needed % mss_now; 1715 /* If last segment is not a full MSS, check if Nagle rules allow us 1716 * to include this last segment in this skb. 1717 * Otherwise, we'll split the skb at last MSS boundary 1718 */ 1719 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1720 return needed - partial; 1721 1722 return needed; 1723 } 1724 1725 /* Can at least one segment of SKB be sent right now, according to the 1726 * congestion window rules? If so, return how many segments are allowed. 1727 */ 1728 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1729 const struct sk_buff *skb) 1730 { 1731 u32 in_flight, cwnd, halfcwnd; 1732 1733 /* Don't be strict about the congestion window for the final FIN. */ 1734 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1735 tcp_skb_pcount(skb) == 1) 1736 return 1; 1737 1738 in_flight = tcp_packets_in_flight(tp); 1739 cwnd = tp->snd_cwnd; 1740 if (in_flight >= cwnd) 1741 return 0; 1742 1743 /* For better scheduling, ensure we have at least 1744 * 2 GSO packets in flight. 1745 */ 1746 halfcwnd = max(cwnd >> 1, 1U); 1747 return min(halfcwnd, cwnd - in_flight); 1748 } 1749 1750 /* Initialize TSO state of a skb. 1751 * This must be invoked the first time we consider transmitting 1752 * SKB onto the wire. 1753 */ 1754 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1755 { 1756 int tso_segs = tcp_skb_pcount(skb); 1757 1758 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1759 tcp_set_skb_tso_segs(skb, mss_now); 1760 tso_segs = tcp_skb_pcount(skb); 1761 } 1762 return tso_segs; 1763 } 1764 1765 1766 /* Return true if the Nagle test allows this packet to be 1767 * sent now. 1768 */ 1769 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1770 unsigned int cur_mss, int nonagle) 1771 { 1772 /* Nagle rule does not apply to frames, which sit in the middle of the 1773 * write_queue (they have no chances to get new data). 1774 * 1775 * This is implemented in the callers, where they modify the 'nonagle' 1776 * argument based upon the location of SKB in the send queue. 1777 */ 1778 if (nonagle & TCP_NAGLE_PUSH) 1779 return true; 1780 1781 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1782 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1783 return true; 1784 1785 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1786 return true; 1787 1788 return false; 1789 } 1790 1791 /* Does at least the first segment of SKB fit into the send window? */ 1792 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1793 const struct sk_buff *skb, 1794 unsigned int cur_mss) 1795 { 1796 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1797 1798 if (skb->len > cur_mss) 1799 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1800 1801 return !after(end_seq, tcp_wnd_end(tp)); 1802 } 1803 1804 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1805 * should be put on the wire right now. If so, it returns the number of 1806 * packets allowed by the congestion window. 1807 */ 1808 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1809 unsigned int cur_mss, int nonagle) 1810 { 1811 const struct tcp_sock *tp = tcp_sk(sk); 1812 unsigned int cwnd_quota; 1813 1814 tcp_init_tso_segs(skb, cur_mss); 1815 1816 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1817 return 0; 1818 1819 cwnd_quota = tcp_cwnd_test(tp, skb); 1820 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1821 cwnd_quota = 0; 1822 1823 return cwnd_quota; 1824 } 1825 1826 /* Test if sending is allowed right now. */ 1827 bool tcp_may_send_now(struct sock *sk) 1828 { 1829 const struct tcp_sock *tp = tcp_sk(sk); 1830 struct sk_buff *skb = tcp_send_head(sk); 1831 1832 return skb && 1833 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1834 (tcp_skb_is_last(sk, skb) ? 1835 tp->nonagle : TCP_NAGLE_PUSH)); 1836 } 1837 1838 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1839 * which is put after SKB on the list. It is very much like 1840 * tcp_fragment() except that it may make several kinds of assumptions 1841 * in order to speed up the splitting operation. In particular, we 1842 * know that all the data is in scatter-gather pages, and that the 1843 * packet has never been sent out before (and thus is not cloned). 1844 */ 1845 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1846 unsigned int mss_now, gfp_t gfp) 1847 { 1848 struct sk_buff *buff; 1849 int nlen = skb->len - len; 1850 u8 flags; 1851 1852 /* All of a TSO frame must be composed of paged data. */ 1853 if (skb->len != skb->data_len) 1854 return tcp_fragment(sk, skb, len, mss_now, gfp); 1855 1856 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1857 if (unlikely(!buff)) 1858 return -ENOMEM; 1859 1860 sk->sk_wmem_queued += buff->truesize; 1861 sk_mem_charge(sk, buff->truesize); 1862 buff->truesize += nlen; 1863 skb->truesize -= nlen; 1864 1865 /* Correct the sequence numbers. */ 1866 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1867 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1868 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1869 1870 /* PSH and FIN should only be set in the second packet. */ 1871 flags = TCP_SKB_CB(skb)->tcp_flags; 1872 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1873 TCP_SKB_CB(buff)->tcp_flags = flags; 1874 1875 /* This packet was never sent out yet, so no SACK bits. */ 1876 TCP_SKB_CB(buff)->sacked = 0; 1877 1878 tcp_skb_fragment_eor(skb, buff); 1879 1880 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1881 skb_split(skb, buff, len); 1882 tcp_fragment_tstamp(skb, buff); 1883 1884 /* Fix up tso_factor for both original and new SKB. */ 1885 tcp_set_skb_tso_segs(skb, mss_now); 1886 tcp_set_skb_tso_segs(buff, mss_now); 1887 1888 /* Link BUFF into the send queue. */ 1889 __skb_header_release(buff); 1890 tcp_insert_write_queue_after(skb, buff, sk); 1891 1892 return 0; 1893 } 1894 1895 /* Try to defer sending, if possible, in order to minimize the amount 1896 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1897 * 1898 * This algorithm is from John Heffner. 1899 */ 1900 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1901 bool *is_cwnd_limited, u32 max_segs) 1902 { 1903 const struct inet_connection_sock *icsk = inet_csk(sk); 1904 u32 age, send_win, cong_win, limit, in_flight; 1905 struct tcp_sock *tp = tcp_sk(sk); 1906 struct sk_buff *head; 1907 int win_divisor; 1908 1909 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1910 goto send_now; 1911 1912 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1913 goto send_now; 1914 1915 /* Avoid bursty behavior by allowing defer 1916 * only if the last write was recent. 1917 */ 1918 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1919 goto send_now; 1920 1921 in_flight = tcp_packets_in_flight(tp); 1922 1923 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1924 1925 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1926 1927 /* From in_flight test above, we know that cwnd > in_flight. */ 1928 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1929 1930 limit = min(send_win, cong_win); 1931 1932 /* If a full-sized TSO skb can be sent, do it. */ 1933 if (limit >= max_segs * tp->mss_cache) 1934 goto send_now; 1935 1936 /* Middle in queue won't get any more data, full sendable already? */ 1937 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1938 goto send_now; 1939 1940 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1941 if (win_divisor) { 1942 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1943 1944 /* If at least some fraction of a window is available, 1945 * just use it. 1946 */ 1947 chunk /= win_divisor; 1948 if (limit >= chunk) 1949 goto send_now; 1950 } else { 1951 /* Different approach, try not to defer past a single 1952 * ACK. Receiver should ACK every other full sized 1953 * frame, so if we have space for more than 3 frames 1954 * then send now. 1955 */ 1956 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1957 goto send_now; 1958 } 1959 1960 head = tcp_write_queue_head(sk); 1961 1962 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1963 /* If next ACK is likely to come too late (half srtt), do not defer */ 1964 if (age < (tp->srtt_us >> 4)) 1965 goto send_now; 1966 1967 /* Ok, it looks like it is advisable to defer. */ 1968 1969 if (cong_win < send_win && cong_win <= skb->len) 1970 *is_cwnd_limited = true; 1971 1972 return true; 1973 1974 send_now: 1975 return false; 1976 } 1977 1978 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1979 { 1980 struct inet_connection_sock *icsk = inet_csk(sk); 1981 struct tcp_sock *tp = tcp_sk(sk); 1982 struct net *net = sock_net(sk); 1983 u32 interval; 1984 s32 delta; 1985 1986 interval = net->ipv4.sysctl_tcp_probe_interval; 1987 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1988 if (unlikely(delta >= interval * HZ)) { 1989 int mss = tcp_current_mss(sk); 1990 1991 /* Update current search range */ 1992 icsk->icsk_mtup.probe_size = 0; 1993 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1994 sizeof(struct tcphdr) + 1995 icsk->icsk_af_ops->net_header_len; 1996 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1997 1998 /* Update probe time stamp */ 1999 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2000 } 2001 } 2002 2003 /* Create a new MTU probe if we are ready. 2004 * MTU probe is regularly attempting to increase the path MTU by 2005 * deliberately sending larger packets. This discovers routing 2006 * changes resulting in larger path MTUs. 2007 * 2008 * Returns 0 if we should wait to probe (no cwnd available), 2009 * 1 if a probe was sent, 2010 * -1 otherwise 2011 */ 2012 static int tcp_mtu_probe(struct sock *sk) 2013 { 2014 struct inet_connection_sock *icsk = inet_csk(sk); 2015 struct tcp_sock *tp = tcp_sk(sk); 2016 struct sk_buff *skb, *nskb, *next; 2017 struct net *net = sock_net(sk); 2018 int probe_size; 2019 int size_needed; 2020 int copy, len; 2021 int mss_now; 2022 int interval; 2023 2024 /* Not currently probing/verifying, 2025 * not in recovery, 2026 * have enough cwnd, and 2027 * not SACKing (the variable headers throw things off) 2028 */ 2029 if (likely(!icsk->icsk_mtup.enabled || 2030 icsk->icsk_mtup.probe_size || 2031 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2032 tp->snd_cwnd < 11 || 2033 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2034 return -1; 2035 2036 /* Use binary search for probe_size between tcp_mss_base, 2037 * and current mss_clamp. if (search_high - search_low) 2038 * smaller than a threshold, backoff from probing. 2039 */ 2040 mss_now = tcp_current_mss(sk); 2041 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2042 icsk->icsk_mtup.search_low) >> 1); 2043 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2044 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2045 /* When misfortune happens, we are reprobing actively, 2046 * and then reprobe timer has expired. We stick with current 2047 * probing process by not resetting search range to its orignal. 2048 */ 2049 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2050 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2051 /* Check whether enough time has elaplased for 2052 * another round of probing. 2053 */ 2054 tcp_mtu_check_reprobe(sk); 2055 return -1; 2056 } 2057 2058 /* Have enough data in the send queue to probe? */ 2059 if (tp->write_seq - tp->snd_nxt < size_needed) 2060 return -1; 2061 2062 if (tp->snd_wnd < size_needed) 2063 return -1; 2064 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2065 return 0; 2066 2067 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2068 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2069 if (!tcp_packets_in_flight(tp)) 2070 return -1; 2071 else 2072 return 0; 2073 } 2074 2075 /* We're allowed to probe. Build it now. */ 2076 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2077 if (!nskb) 2078 return -1; 2079 sk->sk_wmem_queued += nskb->truesize; 2080 sk_mem_charge(sk, nskb->truesize); 2081 2082 skb = tcp_send_head(sk); 2083 2084 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2085 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2086 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2087 TCP_SKB_CB(nskb)->sacked = 0; 2088 nskb->csum = 0; 2089 nskb->ip_summed = skb->ip_summed; 2090 2091 tcp_insert_write_queue_before(nskb, skb, sk); 2092 2093 len = 0; 2094 tcp_for_write_queue_from_safe(skb, next, sk) { 2095 copy = min_t(int, skb->len, probe_size - len); 2096 if (nskb->ip_summed) { 2097 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2098 } else { 2099 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2100 skb_put(nskb, copy), 2101 copy, 0); 2102 nskb->csum = csum_block_add(nskb->csum, csum, len); 2103 } 2104 2105 if (skb->len <= copy) { 2106 /* We've eaten all the data from this skb. 2107 * Throw it away. */ 2108 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2109 tcp_unlink_write_queue(skb, sk); 2110 sk_wmem_free_skb(sk, skb); 2111 } else { 2112 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2113 ~(TCPHDR_FIN|TCPHDR_PSH); 2114 if (!skb_shinfo(skb)->nr_frags) { 2115 skb_pull(skb, copy); 2116 if (skb->ip_summed != CHECKSUM_PARTIAL) 2117 skb->csum = csum_partial(skb->data, 2118 skb->len, 0); 2119 } else { 2120 __pskb_trim_head(skb, copy); 2121 tcp_set_skb_tso_segs(skb, mss_now); 2122 } 2123 TCP_SKB_CB(skb)->seq += copy; 2124 } 2125 2126 len += copy; 2127 2128 if (len >= probe_size) 2129 break; 2130 } 2131 tcp_init_tso_segs(nskb, nskb->len); 2132 2133 /* We're ready to send. If this fails, the probe will 2134 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2135 */ 2136 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2137 /* Decrement cwnd here because we are sending 2138 * effectively two packets. */ 2139 tp->snd_cwnd--; 2140 tcp_event_new_data_sent(sk, nskb); 2141 2142 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2143 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2144 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2145 2146 return 1; 2147 } 2148 2149 return -1; 2150 } 2151 2152 static bool tcp_pacing_check(const struct sock *sk) 2153 { 2154 return tcp_needs_internal_pacing(sk) && 2155 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2156 } 2157 2158 /* TCP Small Queues : 2159 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2160 * (These limits are doubled for retransmits) 2161 * This allows for : 2162 * - better RTT estimation and ACK scheduling 2163 * - faster recovery 2164 * - high rates 2165 * Alas, some drivers / subsystems require a fair amount 2166 * of queued bytes to ensure line rate. 2167 * One example is wifi aggregation (802.11 AMPDU) 2168 */ 2169 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2170 unsigned int factor) 2171 { 2172 unsigned int limit; 2173 2174 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2175 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2176 limit <<= factor; 2177 2178 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2179 /* Always send the 1st or 2nd skb in write queue. 2180 * No need to wait for TX completion to call us back, 2181 * after softirq/tasklet schedule. 2182 * This helps when TX completions are delayed too much. 2183 */ 2184 if (skb == sk->sk_write_queue.next || 2185 skb->prev == sk->sk_write_queue.next) 2186 return false; 2187 2188 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2189 /* It is possible TX completion already happened 2190 * before we set TSQ_THROTTLED, so we must 2191 * test again the condition. 2192 */ 2193 smp_mb__after_atomic(); 2194 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2195 return true; 2196 } 2197 return false; 2198 } 2199 2200 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2201 { 2202 const u32 now = tcp_jiffies32; 2203 enum tcp_chrono old = tp->chrono_type; 2204 2205 if (old > TCP_CHRONO_UNSPEC) 2206 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2207 tp->chrono_start = now; 2208 tp->chrono_type = new; 2209 } 2210 2211 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2212 { 2213 struct tcp_sock *tp = tcp_sk(sk); 2214 2215 /* If there are multiple conditions worthy of tracking in a 2216 * chronograph then the highest priority enum takes precedence 2217 * over the other conditions. So that if something "more interesting" 2218 * starts happening, stop the previous chrono and start a new one. 2219 */ 2220 if (type > tp->chrono_type) 2221 tcp_chrono_set(tp, type); 2222 } 2223 2224 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2225 { 2226 struct tcp_sock *tp = tcp_sk(sk); 2227 2228 2229 /* There are multiple conditions worthy of tracking in a 2230 * chronograph, so that the highest priority enum takes 2231 * precedence over the other conditions (see tcp_chrono_start). 2232 * If a condition stops, we only stop chrono tracking if 2233 * it's the "most interesting" or current chrono we are 2234 * tracking and starts busy chrono if we have pending data. 2235 */ 2236 if (tcp_write_queue_empty(sk)) 2237 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2238 else if (type == tp->chrono_type) 2239 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2240 } 2241 2242 /* This routine writes packets to the network. It advances the 2243 * send_head. This happens as incoming acks open up the remote 2244 * window for us. 2245 * 2246 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2247 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2248 * account rare use of URG, this is not a big flaw. 2249 * 2250 * Send at most one packet when push_one > 0. Temporarily ignore 2251 * cwnd limit to force at most one packet out when push_one == 2. 2252 2253 * Returns true, if no segments are in flight and we have queued segments, 2254 * but cannot send anything now because of SWS or another problem. 2255 */ 2256 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2257 int push_one, gfp_t gfp) 2258 { 2259 struct tcp_sock *tp = tcp_sk(sk); 2260 struct sk_buff *skb; 2261 unsigned int tso_segs, sent_pkts; 2262 int cwnd_quota; 2263 int result; 2264 bool is_cwnd_limited = false, is_rwnd_limited = false; 2265 u32 max_segs; 2266 2267 sent_pkts = 0; 2268 2269 if (!push_one) { 2270 /* Do MTU probing. */ 2271 result = tcp_mtu_probe(sk); 2272 if (!result) { 2273 return false; 2274 } else if (result > 0) { 2275 sent_pkts = 1; 2276 } 2277 } 2278 2279 max_segs = tcp_tso_segs(sk, mss_now); 2280 tcp_mstamp_refresh(tp); 2281 while ((skb = tcp_send_head(sk))) { 2282 unsigned int limit; 2283 2284 if (tcp_pacing_check(sk)) 2285 break; 2286 2287 tso_segs = tcp_init_tso_segs(skb, mss_now); 2288 BUG_ON(!tso_segs); 2289 2290 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2291 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2292 skb->skb_mstamp = tp->tcp_mstamp; 2293 goto repair; /* Skip network transmission */ 2294 } 2295 2296 cwnd_quota = tcp_cwnd_test(tp, skb); 2297 if (!cwnd_quota) { 2298 if (push_one == 2) 2299 /* Force out a loss probe pkt. */ 2300 cwnd_quota = 1; 2301 else 2302 break; 2303 } 2304 2305 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2306 is_rwnd_limited = true; 2307 break; 2308 } 2309 2310 if (tso_segs == 1) { 2311 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2312 (tcp_skb_is_last(sk, skb) ? 2313 nonagle : TCP_NAGLE_PUSH)))) 2314 break; 2315 } else { 2316 if (!push_one && 2317 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2318 max_segs)) 2319 break; 2320 } 2321 2322 limit = mss_now; 2323 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2324 limit = tcp_mss_split_point(sk, skb, mss_now, 2325 min_t(unsigned int, 2326 cwnd_quota, 2327 max_segs), 2328 nonagle); 2329 2330 if (skb->len > limit && 2331 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2332 break; 2333 2334 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2335 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2336 if (tcp_small_queue_check(sk, skb, 0)) 2337 break; 2338 2339 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2340 break; 2341 2342 repair: 2343 /* Advance the send_head. This one is sent out. 2344 * This call will increment packets_out. 2345 */ 2346 tcp_event_new_data_sent(sk, skb); 2347 2348 tcp_minshall_update(tp, mss_now, skb); 2349 sent_pkts += tcp_skb_pcount(skb); 2350 2351 if (push_one) 2352 break; 2353 } 2354 2355 if (is_rwnd_limited) 2356 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2357 else 2358 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2359 2360 if (likely(sent_pkts)) { 2361 if (tcp_in_cwnd_reduction(sk)) 2362 tp->prr_out += sent_pkts; 2363 2364 /* Send one loss probe per tail loss episode. */ 2365 if (push_one != 2) 2366 tcp_schedule_loss_probe(sk); 2367 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2368 tcp_cwnd_validate(sk, is_cwnd_limited); 2369 return false; 2370 } 2371 return !tp->packets_out && tcp_send_head(sk); 2372 } 2373 2374 bool tcp_schedule_loss_probe(struct sock *sk) 2375 { 2376 struct inet_connection_sock *icsk = inet_csk(sk); 2377 struct tcp_sock *tp = tcp_sk(sk); 2378 u32 timeout, rto_delta_us; 2379 2380 /* Don't do any loss probe on a Fast Open connection before 3WHS 2381 * finishes. 2382 */ 2383 if (tp->fastopen_rsk) 2384 return false; 2385 2386 /* Schedule a loss probe in 2*RTT for SACK capable connections 2387 * in Open state, that are either limited by cwnd or application. 2388 */ 2389 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) || 2390 !tp->packets_out || !tcp_is_sack(tp) || 2391 icsk->icsk_ca_state != TCP_CA_Open) 2392 return false; 2393 2394 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2395 tcp_send_head(sk)) 2396 return false; 2397 2398 /* Probe timeout is 2*rtt. Add minimum RTO to account 2399 * for delayed ack when there's one outstanding packet. If no RTT 2400 * sample is available then probe after TCP_TIMEOUT_INIT. 2401 */ 2402 if (tp->srtt_us) { 2403 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2404 if (tp->packets_out == 1) 2405 timeout += TCP_RTO_MIN; 2406 else 2407 timeout += TCP_TIMEOUT_MIN; 2408 } else { 2409 timeout = TCP_TIMEOUT_INIT; 2410 } 2411 2412 /* If the RTO formula yields an earlier time, then use that time. */ 2413 rto_delta_us = tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2414 if (rto_delta_us > 0) 2415 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2416 2417 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2418 TCP_RTO_MAX); 2419 return true; 2420 } 2421 2422 /* Thanks to skb fast clones, we can detect if a prior transmit of 2423 * a packet is still in a qdisc or driver queue. 2424 * In this case, there is very little point doing a retransmit ! 2425 */ 2426 static bool skb_still_in_host_queue(const struct sock *sk, 2427 const struct sk_buff *skb) 2428 { 2429 if (unlikely(skb_fclone_busy(sk, skb))) { 2430 NET_INC_STATS(sock_net(sk), 2431 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2432 return true; 2433 } 2434 return false; 2435 } 2436 2437 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2438 * retransmit the last segment. 2439 */ 2440 void tcp_send_loss_probe(struct sock *sk) 2441 { 2442 struct tcp_sock *tp = tcp_sk(sk); 2443 struct sk_buff *skb; 2444 int pcount; 2445 int mss = tcp_current_mss(sk); 2446 2447 skb = tcp_send_head(sk); 2448 if (skb) { 2449 if (tcp_snd_wnd_test(tp, skb, mss)) { 2450 pcount = tp->packets_out; 2451 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2452 if (tp->packets_out > pcount) 2453 goto probe_sent; 2454 goto rearm_timer; 2455 } 2456 skb = tcp_write_queue_prev(sk, skb); 2457 } else { 2458 skb = tcp_write_queue_tail(sk); 2459 } 2460 2461 /* At most one outstanding TLP retransmission. */ 2462 if (tp->tlp_high_seq) 2463 goto rearm_timer; 2464 2465 /* Retransmit last segment. */ 2466 if (WARN_ON(!skb)) 2467 goto rearm_timer; 2468 2469 if (skb_still_in_host_queue(sk, skb)) 2470 goto rearm_timer; 2471 2472 pcount = tcp_skb_pcount(skb); 2473 if (WARN_ON(!pcount)) 2474 goto rearm_timer; 2475 2476 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2477 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2478 GFP_ATOMIC))) 2479 goto rearm_timer; 2480 skb = tcp_write_queue_next(sk, skb); 2481 } 2482 2483 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2484 goto rearm_timer; 2485 2486 if (__tcp_retransmit_skb(sk, skb, 1)) 2487 goto rearm_timer; 2488 2489 /* Record snd_nxt for loss detection. */ 2490 tp->tlp_high_seq = tp->snd_nxt; 2491 2492 probe_sent: 2493 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2494 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2495 inet_csk(sk)->icsk_pending = 0; 2496 rearm_timer: 2497 tcp_rearm_rto(sk); 2498 } 2499 2500 /* Push out any pending frames which were held back due to 2501 * TCP_CORK or attempt at coalescing tiny packets. 2502 * The socket must be locked by the caller. 2503 */ 2504 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2505 int nonagle) 2506 { 2507 /* If we are closed, the bytes will have to remain here. 2508 * In time closedown will finish, we empty the write queue and 2509 * all will be happy. 2510 */ 2511 if (unlikely(sk->sk_state == TCP_CLOSE)) 2512 return; 2513 2514 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2515 sk_gfp_mask(sk, GFP_ATOMIC))) 2516 tcp_check_probe_timer(sk); 2517 } 2518 2519 /* Send _single_ skb sitting at the send head. This function requires 2520 * true push pending frames to setup probe timer etc. 2521 */ 2522 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2523 { 2524 struct sk_buff *skb = tcp_send_head(sk); 2525 2526 BUG_ON(!skb || skb->len < mss_now); 2527 2528 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2529 } 2530 2531 /* This function returns the amount that we can raise the 2532 * usable window based on the following constraints 2533 * 2534 * 1. The window can never be shrunk once it is offered (RFC 793) 2535 * 2. We limit memory per socket 2536 * 2537 * RFC 1122: 2538 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2539 * RECV.NEXT + RCV.WIN fixed until: 2540 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2541 * 2542 * i.e. don't raise the right edge of the window until you can raise 2543 * it at least MSS bytes. 2544 * 2545 * Unfortunately, the recommended algorithm breaks header prediction, 2546 * since header prediction assumes th->window stays fixed. 2547 * 2548 * Strictly speaking, keeping th->window fixed violates the receiver 2549 * side SWS prevention criteria. The problem is that under this rule 2550 * a stream of single byte packets will cause the right side of the 2551 * window to always advance by a single byte. 2552 * 2553 * Of course, if the sender implements sender side SWS prevention 2554 * then this will not be a problem. 2555 * 2556 * BSD seems to make the following compromise: 2557 * 2558 * If the free space is less than the 1/4 of the maximum 2559 * space available and the free space is less than 1/2 mss, 2560 * then set the window to 0. 2561 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2562 * Otherwise, just prevent the window from shrinking 2563 * and from being larger than the largest representable value. 2564 * 2565 * This prevents incremental opening of the window in the regime 2566 * where TCP is limited by the speed of the reader side taking 2567 * data out of the TCP receive queue. It does nothing about 2568 * those cases where the window is constrained on the sender side 2569 * because the pipeline is full. 2570 * 2571 * BSD also seems to "accidentally" limit itself to windows that are a 2572 * multiple of MSS, at least until the free space gets quite small. 2573 * This would appear to be a side effect of the mbuf implementation. 2574 * Combining these two algorithms results in the observed behavior 2575 * of having a fixed window size at almost all times. 2576 * 2577 * Below we obtain similar behavior by forcing the offered window to 2578 * a multiple of the mss when it is feasible to do so. 2579 * 2580 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2581 * Regular options like TIMESTAMP are taken into account. 2582 */ 2583 u32 __tcp_select_window(struct sock *sk) 2584 { 2585 struct inet_connection_sock *icsk = inet_csk(sk); 2586 struct tcp_sock *tp = tcp_sk(sk); 2587 /* MSS for the peer's data. Previous versions used mss_clamp 2588 * here. I don't know if the value based on our guesses 2589 * of peer's MSS is better for the performance. It's more correct 2590 * but may be worse for the performance because of rcv_mss 2591 * fluctuations. --SAW 1998/11/1 2592 */ 2593 int mss = icsk->icsk_ack.rcv_mss; 2594 int free_space = tcp_space(sk); 2595 int allowed_space = tcp_full_space(sk); 2596 int full_space = min_t(int, tp->window_clamp, allowed_space); 2597 int window; 2598 2599 if (unlikely(mss > full_space)) { 2600 mss = full_space; 2601 if (mss <= 0) 2602 return 0; 2603 } 2604 if (free_space < (full_space >> 1)) { 2605 icsk->icsk_ack.quick = 0; 2606 2607 if (tcp_under_memory_pressure(sk)) 2608 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2609 4U * tp->advmss); 2610 2611 /* free_space might become our new window, make sure we don't 2612 * increase it due to wscale. 2613 */ 2614 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2615 2616 /* if free space is less than mss estimate, or is below 1/16th 2617 * of the maximum allowed, try to move to zero-window, else 2618 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2619 * new incoming data is dropped due to memory limits. 2620 * With large window, mss test triggers way too late in order 2621 * to announce zero window in time before rmem limit kicks in. 2622 */ 2623 if (free_space < (allowed_space >> 4) || free_space < mss) 2624 return 0; 2625 } 2626 2627 if (free_space > tp->rcv_ssthresh) 2628 free_space = tp->rcv_ssthresh; 2629 2630 /* Don't do rounding if we are using window scaling, since the 2631 * scaled window will not line up with the MSS boundary anyway. 2632 */ 2633 if (tp->rx_opt.rcv_wscale) { 2634 window = free_space; 2635 2636 /* Advertise enough space so that it won't get scaled away. 2637 * Import case: prevent zero window announcement if 2638 * 1<<rcv_wscale > mss. 2639 */ 2640 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2641 } else { 2642 window = tp->rcv_wnd; 2643 /* Get the largest window that is a nice multiple of mss. 2644 * Window clamp already applied above. 2645 * If our current window offering is within 1 mss of the 2646 * free space we just keep it. This prevents the divide 2647 * and multiply from happening most of the time. 2648 * We also don't do any window rounding when the free space 2649 * is too small. 2650 */ 2651 if (window <= free_space - mss || window > free_space) 2652 window = rounddown(free_space, mss); 2653 else if (mss == full_space && 2654 free_space > window + (full_space >> 1)) 2655 window = free_space; 2656 } 2657 2658 return window; 2659 } 2660 2661 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2662 const struct sk_buff *next_skb) 2663 { 2664 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2665 const struct skb_shared_info *next_shinfo = 2666 skb_shinfo(next_skb); 2667 struct skb_shared_info *shinfo = skb_shinfo(skb); 2668 2669 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2670 shinfo->tskey = next_shinfo->tskey; 2671 TCP_SKB_CB(skb)->txstamp_ack |= 2672 TCP_SKB_CB(next_skb)->txstamp_ack; 2673 } 2674 } 2675 2676 /* Collapses two adjacent SKB's during retransmission. */ 2677 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2678 { 2679 struct tcp_sock *tp = tcp_sk(sk); 2680 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2681 int skb_size, next_skb_size; 2682 2683 skb_size = skb->len; 2684 next_skb_size = next_skb->len; 2685 2686 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2687 2688 if (next_skb_size) { 2689 if (next_skb_size <= skb_availroom(skb)) 2690 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2691 next_skb_size); 2692 else if (!skb_shift(skb, next_skb, next_skb_size)) 2693 return false; 2694 } 2695 tcp_highest_sack_combine(sk, next_skb, skb); 2696 2697 tcp_unlink_write_queue(next_skb, sk); 2698 2699 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2700 skb->ip_summed = CHECKSUM_PARTIAL; 2701 2702 if (skb->ip_summed != CHECKSUM_PARTIAL) 2703 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2704 2705 /* Update sequence range on original skb. */ 2706 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2707 2708 /* Merge over control information. This moves PSH/FIN etc. over */ 2709 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2710 2711 /* All done, get rid of second SKB and account for it so 2712 * packet counting does not break. 2713 */ 2714 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2715 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2716 2717 /* changed transmit queue under us so clear hints */ 2718 tcp_clear_retrans_hints_partial(tp); 2719 if (next_skb == tp->retransmit_skb_hint) 2720 tp->retransmit_skb_hint = skb; 2721 2722 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2723 2724 tcp_skb_collapse_tstamp(skb, next_skb); 2725 2726 sk_wmem_free_skb(sk, next_skb); 2727 return true; 2728 } 2729 2730 /* Check if coalescing SKBs is legal. */ 2731 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2732 { 2733 if (tcp_skb_pcount(skb) > 1) 2734 return false; 2735 if (skb_cloned(skb)) 2736 return false; 2737 if (skb == tcp_send_head(sk)) 2738 return false; 2739 /* Some heuristics for collapsing over SACK'd could be invented */ 2740 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2741 return false; 2742 2743 return true; 2744 } 2745 2746 /* Collapse packets in the retransmit queue to make to create 2747 * less packets on the wire. This is only done on retransmission. 2748 */ 2749 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2750 int space) 2751 { 2752 struct tcp_sock *tp = tcp_sk(sk); 2753 struct sk_buff *skb = to, *tmp; 2754 bool first = true; 2755 2756 if (!sysctl_tcp_retrans_collapse) 2757 return; 2758 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2759 return; 2760 2761 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2762 if (!tcp_can_collapse(sk, skb)) 2763 break; 2764 2765 if (!tcp_skb_can_collapse_to(to)) 2766 break; 2767 2768 space -= skb->len; 2769 2770 if (first) { 2771 first = false; 2772 continue; 2773 } 2774 2775 if (space < 0) 2776 break; 2777 2778 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2779 break; 2780 2781 if (!tcp_collapse_retrans(sk, to)) 2782 break; 2783 } 2784 } 2785 2786 /* This retransmits one SKB. Policy decisions and retransmit queue 2787 * state updates are done by the caller. Returns non-zero if an 2788 * error occurred which prevented the send. 2789 */ 2790 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2791 { 2792 struct inet_connection_sock *icsk = inet_csk(sk); 2793 struct tcp_sock *tp = tcp_sk(sk); 2794 unsigned int cur_mss; 2795 int diff, len, err; 2796 2797 2798 /* Inconclusive MTU probe */ 2799 if (icsk->icsk_mtup.probe_size) 2800 icsk->icsk_mtup.probe_size = 0; 2801 2802 /* Do not sent more than we queued. 1/4 is reserved for possible 2803 * copying overhead: fragmentation, tunneling, mangling etc. 2804 */ 2805 if (refcount_read(&sk->sk_wmem_alloc) > 2806 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2807 sk->sk_sndbuf)) 2808 return -EAGAIN; 2809 2810 if (skb_still_in_host_queue(sk, skb)) 2811 return -EBUSY; 2812 2813 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2814 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2815 BUG(); 2816 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2817 return -ENOMEM; 2818 } 2819 2820 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2821 return -EHOSTUNREACH; /* Routing failure or similar. */ 2822 2823 cur_mss = tcp_current_mss(sk); 2824 2825 /* If receiver has shrunk his window, and skb is out of 2826 * new window, do not retransmit it. The exception is the 2827 * case, when window is shrunk to zero. In this case 2828 * our retransmit serves as a zero window probe. 2829 */ 2830 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2831 TCP_SKB_CB(skb)->seq != tp->snd_una) 2832 return -EAGAIN; 2833 2834 len = cur_mss * segs; 2835 if (skb->len > len) { 2836 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2837 return -ENOMEM; /* We'll try again later. */ 2838 } else { 2839 if (skb_unclone(skb, GFP_ATOMIC)) 2840 return -ENOMEM; 2841 2842 diff = tcp_skb_pcount(skb); 2843 tcp_set_skb_tso_segs(skb, cur_mss); 2844 diff -= tcp_skb_pcount(skb); 2845 if (diff) 2846 tcp_adjust_pcount(sk, skb, diff); 2847 if (skb->len < cur_mss) 2848 tcp_retrans_try_collapse(sk, skb, cur_mss); 2849 } 2850 2851 /* RFC3168, section 6.1.1.1. ECN fallback */ 2852 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2853 tcp_ecn_clear_syn(sk, skb); 2854 2855 /* Update global and local TCP statistics. */ 2856 segs = tcp_skb_pcount(skb); 2857 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2858 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2859 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2860 tp->total_retrans += segs; 2861 2862 /* make sure skb->data is aligned on arches that require it 2863 * and check if ack-trimming & collapsing extended the headroom 2864 * beyond what csum_start can cover. 2865 */ 2866 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2867 skb_headroom(skb) >= 0xFFFF)) { 2868 struct sk_buff *nskb; 2869 2870 skb->skb_mstamp = tp->tcp_mstamp; 2871 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2872 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2873 -ENOBUFS; 2874 } else { 2875 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2876 } 2877 2878 if (likely(!err)) { 2879 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2880 } else if (err != -EBUSY) { 2881 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2882 } 2883 return err; 2884 } 2885 2886 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2887 { 2888 struct tcp_sock *tp = tcp_sk(sk); 2889 int err = __tcp_retransmit_skb(sk, skb, segs); 2890 2891 if (err == 0) { 2892 #if FASTRETRANS_DEBUG > 0 2893 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2894 net_dbg_ratelimited("retrans_out leaked\n"); 2895 } 2896 #endif 2897 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2898 tp->retrans_out += tcp_skb_pcount(skb); 2899 2900 /* Save stamp of the first retransmit. */ 2901 if (!tp->retrans_stamp) 2902 tp->retrans_stamp = tcp_skb_timestamp(skb); 2903 2904 } 2905 2906 if (tp->undo_retrans < 0) 2907 tp->undo_retrans = 0; 2908 tp->undo_retrans += tcp_skb_pcount(skb); 2909 return err; 2910 } 2911 2912 /* This gets called after a retransmit timeout, and the initially 2913 * retransmitted data is acknowledged. It tries to continue 2914 * resending the rest of the retransmit queue, until either 2915 * we've sent it all or the congestion window limit is reached. 2916 * If doing SACK, the first ACK which comes back for a timeout 2917 * based retransmit packet might feed us FACK information again. 2918 * If so, we use it to avoid unnecessarily retransmissions. 2919 */ 2920 void tcp_xmit_retransmit_queue(struct sock *sk) 2921 { 2922 const struct inet_connection_sock *icsk = inet_csk(sk); 2923 struct tcp_sock *tp = tcp_sk(sk); 2924 struct sk_buff *skb; 2925 struct sk_buff *hole = NULL; 2926 u32 max_segs; 2927 int mib_idx; 2928 2929 if (!tp->packets_out) 2930 return; 2931 2932 if (tp->retransmit_skb_hint) { 2933 skb = tp->retransmit_skb_hint; 2934 } else { 2935 skb = tcp_write_queue_head(sk); 2936 } 2937 2938 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2939 tcp_for_write_queue_from(skb, sk) { 2940 __u8 sacked; 2941 int segs; 2942 2943 if (skb == tcp_send_head(sk)) 2944 break; 2945 2946 if (tcp_pacing_check(sk)) 2947 break; 2948 2949 /* we could do better than to assign each time */ 2950 if (!hole) 2951 tp->retransmit_skb_hint = skb; 2952 2953 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2954 if (segs <= 0) 2955 return; 2956 sacked = TCP_SKB_CB(skb)->sacked; 2957 /* In case tcp_shift_skb_data() have aggregated large skbs, 2958 * we need to make sure not sending too bigs TSO packets 2959 */ 2960 segs = min_t(int, segs, max_segs); 2961 2962 if (tp->retrans_out >= tp->lost_out) { 2963 break; 2964 } else if (!(sacked & TCPCB_LOST)) { 2965 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2966 hole = skb; 2967 continue; 2968 2969 } else { 2970 if (icsk->icsk_ca_state != TCP_CA_Loss) 2971 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2972 else 2973 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2974 } 2975 2976 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2977 continue; 2978 2979 if (tcp_small_queue_check(sk, skb, 1)) 2980 return; 2981 2982 if (tcp_retransmit_skb(sk, skb, segs)) 2983 return; 2984 2985 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2986 2987 if (tcp_in_cwnd_reduction(sk)) 2988 tp->prr_out += tcp_skb_pcount(skb); 2989 2990 if (skb == tcp_write_queue_head(sk) && 2991 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 2992 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2993 inet_csk(sk)->icsk_rto, 2994 TCP_RTO_MAX); 2995 } 2996 } 2997 2998 /* We allow to exceed memory limits for FIN packets to expedite 2999 * connection tear down and (memory) recovery. 3000 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3001 * or even be forced to close flow without any FIN. 3002 * In general, we want to allow one skb per socket to avoid hangs 3003 * with edge trigger epoll() 3004 */ 3005 void sk_forced_mem_schedule(struct sock *sk, int size) 3006 { 3007 int amt; 3008 3009 if (size <= sk->sk_forward_alloc) 3010 return; 3011 amt = sk_mem_pages(size); 3012 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3013 sk_memory_allocated_add(sk, amt); 3014 3015 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3016 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3017 } 3018 3019 /* Send a FIN. The caller locks the socket for us. 3020 * We should try to send a FIN packet really hard, but eventually give up. 3021 */ 3022 void tcp_send_fin(struct sock *sk) 3023 { 3024 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3025 struct tcp_sock *tp = tcp_sk(sk); 3026 3027 /* Optimization, tack on the FIN if we have one skb in write queue and 3028 * this skb was not yet sent, or we are under memory pressure. 3029 * Note: in the latter case, FIN packet will be sent after a timeout, 3030 * as TCP stack thinks it has already been transmitted. 3031 */ 3032 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 3033 coalesce: 3034 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3035 TCP_SKB_CB(tskb)->end_seq++; 3036 tp->write_seq++; 3037 if (!tcp_send_head(sk)) { 3038 /* This means tskb was already sent. 3039 * Pretend we included the FIN on previous transmit. 3040 * We need to set tp->snd_nxt to the value it would have 3041 * if FIN had been sent. This is because retransmit path 3042 * does not change tp->snd_nxt. 3043 */ 3044 tp->snd_nxt++; 3045 return; 3046 } 3047 } else { 3048 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3049 if (unlikely(!skb)) { 3050 if (tskb) 3051 goto coalesce; 3052 return; 3053 } 3054 skb_reserve(skb, MAX_TCP_HEADER); 3055 sk_forced_mem_schedule(sk, skb->truesize); 3056 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3057 tcp_init_nondata_skb(skb, tp->write_seq, 3058 TCPHDR_ACK | TCPHDR_FIN); 3059 tcp_queue_skb(sk, skb); 3060 } 3061 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3062 } 3063 3064 /* We get here when a process closes a file descriptor (either due to 3065 * an explicit close() or as a byproduct of exit()'ing) and there 3066 * was unread data in the receive queue. This behavior is recommended 3067 * by RFC 2525, section 2.17. -DaveM 3068 */ 3069 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3070 { 3071 struct sk_buff *skb; 3072 3073 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3074 3075 /* NOTE: No TCP options attached and we never retransmit this. */ 3076 skb = alloc_skb(MAX_TCP_HEADER, priority); 3077 if (!skb) { 3078 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3079 return; 3080 } 3081 3082 /* Reserve space for headers and prepare control bits. */ 3083 skb_reserve(skb, MAX_TCP_HEADER); 3084 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3085 TCPHDR_ACK | TCPHDR_RST); 3086 tcp_mstamp_refresh(tcp_sk(sk)); 3087 /* Send it off. */ 3088 if (tcp_transmit_skb(sk, skb, 0, priority)) 3089 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3090 } 3091 3092 /* Send a crossed SYN-ACK during socket establishment. 3093 * WARNING: This routine must only be called when we have already sent 3094 * a SYN packet that crossed the incoming SYN that caused this routine 3095 * to get called. If this assumption fails then the initial rcv_wnd 3096 * and rcv_wscale values will not be correct. 3097 */ 3098 int tcp_send_synack(struct sock *sk) 3099 { 3100 struct sk_buff *skb; 3101 3102 skb = tcp_write_queue_head(sk); 3103 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3104 pr_debug("%s: wrong queue state\n", __func__); 3105 return -EFAULT; 3106 } 3107 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3108 if (skb_cloned(skb)) { 3109 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3110 if (!nskb) 3111 return -ENOMEM; 3112 tcp_unlink_write_queue(skb, sk); 3113 __skb_header_release(nskb); 3114 __tcp_add_write_queue_head(sk, nskb); 3115 sk_wmem_free_skb(sk, skb); 3116 sk->sk_wmem_queued += nskb->truesize; 3117 sk_mem_charge(sk, nskb->truesize); 3118 skb = nskb; 3119 } 3120 3121 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3122 tcp_ecn_send_synack(sk, skb); 3123 } 3124 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3125 } 3126 3127 /** 3128 * tcp_make_synack - Prepare a SYN-ACK. 3129 * sk: listener socket 3130 * dst: dst entry attached to the SYNACK 3131 * req: request_sock pointer 3132 * 3133 * Allocate one skb and build a SYNACK packet. 3134 * @dst is consumed : Caller should not use it again. 3135 */ 3136 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3137 struct request_sock *req, 3138 struct tcp_fastopen_cookie *foc, 3139 enum tcp_synack_type synack_type) 3140 { 3141 struct inet_request_sock *ireq = inet_rsk(req); 3142 const struct tcp_sock *tp = tcp_sk(sk); 3143 struct tcp_md5sig_key *md5 = NULL; 3144 struct tcp_out_options opts; 3145 struct sk_buff *skb; 3146 int tcp_header_size; 3147 struct tcphdr *th; 3148 int mss; 3149 3150 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3151 if (unlikely(!skb)) { 3152 dst_release(dst); 3153 return NULL; 3154 } 3155 /* Reserve space for headers. */ 3156 skb_reserve(skb, MAX_TCP_HEADER); 3157 3158 switch (synack_type) { 3159 case TCP_SYNACK_NORMAL: 3160 skb_set_owner_w(skb, req_to_sk(req)); 3161 break; 3162 case TCP_SYNACK_COOKIE: 3163 /* Under synflood, we do not attach skb to a socket, 3164 * to avoid false sharing. 3165 */ 3166 break; 3167 case TCP_SYNACK_FASTOPEN: 3168 /* sk is a const pointer, because we want to express multiple 3169 * cpu might call us concurrently. 3170 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3171 */ 3172 skb_set_owner_w(skb, (struct sock *)sk); 3173 break; 3174 } 3175 skb_dst_set(skb, dst); 3176 3177 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3178 3179 memset(&opts, 0, sizeof(opts)); 3180 #ifdef CONFIG_SYN_COOKIES 3181 if (unlikely(req->cookie_ts)) 3182 skb->skb_mstamp = cookie_init_timestamp(req); 3183 else 3184 #endif 3185 skb->skb_mstamp = tcp_clock_us(); 3186 3187 #ifdef CONFIG_TCP_MD5SIG 3188 rcu_read_lock(); 3189 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3190 #endif 3191 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3192 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3193 sizeof(*th); 3194 3195 skb_push(skb, tcp_header_size); 3196 skb_reset_transport_header(skb); 3197 3198 th = (struct tcphdr *)skb->data; 3199 memset(th, 0, sizeof(struct tcphdr)); 3200 th->syn = 1; 3201 th->ack = 1; 3202 tcp_ecn_make_synack(req, th); 3203 th->source = htons(ireq->ir_num); 3204 th->dest = ireq->ir_rmt_port; 3205 skb->mark = ireq->ir_mark; 3206 /* Setting of flags are superfluous here for callers (and ECE is 3207 * not even correctly set) 3208 */ 3209 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3210 TCPHDR_SYN | TCPHDR_ACK); 3211 3212 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3213 /* XXX data is queued and acked as is. No buffer/window check */ 3214 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3215 3216 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3217 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3218 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3219 th->doff = (tcp_header_size >> 2); 3220 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3221 3222 #ifdef CONFIG_TCP_MD5SIG 3223 /* Okay, we have all we need - do the md5 hash if needed */ 3224 if (md5) 3225 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3226 md5, req_to_sk(req), skb); 3227 rcu_read_unlock(); 3228 #endif 3229 3230 /* Do not fool tcpdump (if any), clean our debris */ 3231 skb->tstamp = 0; 3232 return skb; 3233 } 3234 EXPORT_SYMBOL(tcp_make_synack); 3235 3236 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3237 { 3238 struct inet_connection_sock *icsk = inet_csk(sk); 3239 const struct tcp_congestion_ops *ca; 3240 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3241 3242 if (ca_key == TCP_CA_UNSPEC) 3243 return; 3244 3245 rcu_read_lock(); 3246 ca = tcp_ca_find_key(ca_key); 3247 if (likely(ca && try_module_get(ca->owner))) { 3248 module_put(icsk->icsk_ca_ops->owner); 3249 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3250 icsk->icsk_ca_ops = ca; 3251 } 3252 rcu_read_unlock(); 3253 } 3254 3255 /* Do all connect socket setups that can be done AF independent. */ 3256 static void tcp_connect_init(struct sock *sk) 3257 { 3258 const struct dst_entry *dst = __sk_dst_get(sk); 3259 struct tcp_sock *tp = tcp_sk(sk); 3260 __u8 rcv_wscale; 3261 u32 rcv_wnd; 3262 3263 /* We'll fix this up when we get a response from the other end. 3264 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3265 */ 3266 tp->tcp_header_len = sizeof(struct tcphdr); 3267 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3268 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3269 3270 #ifdef CONFIG_TCP_MD5SIG 3271 if (tp->af_specific->md5_lookup(sk, sk)) 3272 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3273 #endif 3274 3275 /* If user gave his TCP_MAXSEG, record it to clamp */ 3276 if (tp->rx_opt.user_mss) 3277 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3278 tp->max_window = 0; 3279 tcp_mtup_init(sk); 3280 tcp_sync_mss(sk, dst_mtu(dst)); 3281 3282 tcp_ca_dst_init(sk, dst); 3283 3284 if (!tp->window_clamp) 3285 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3286 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3287 3288 tcp_initialize_rcv_mss(sk); 3289 3290 /* limit the window selection if the user enforce a smaller rx buffer */ 3291 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3292 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3293 tp->window_clamp = tcp_full_space(sk); 3294 3295 rcv_wnd = tcp_rwnd_init_bpf(sk); 3296 if (rcv_wnd == 0) 3297 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3298 3299 tcp_select_initial_window(tcp_full_space(sk), 3300 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3301 &tp->rcv_wnd, 3302 &tp->window_clamp, 3303 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3304 &rcv_wscale, 3305 rcv_wnd); 3306 3307 tp->rx_opt.rcv_wscale = rcv_wscale; 3308 tp->rcv_ssthresh = tp->rcv_wnd; 3309 3310 sk->sk_err = 0; 3311 sock_reset_flag(sk, SOCK_DONE); 3312 tp->snd_wnd = 0; 3313 tcp_init_wl(tp, 0); 3314 tp->snd_una = tp->write_seq; 3315 tp->snd_sml = tp->write_seq; 3316 tp->snd_up = tp->write_seq; 3317 tp->snd_nxt = tp->write_seq; 3318 3319 if (likely(!tp->repair)) 3320 tp->rcv_nxt = 0; 3321 else 3322 tp->rcv_tstamp = tcp_jiffies32; 3323 tp->rcv_wup = tp->rcv_nxt; 3324 tp->copied_seq = tp->rcv_nxt; 3325 3326 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3327 inet_csk(sk)->icsk_retransmits = 0; 3328 tcp_clear_retrans(tp); 3329 } 3330 3331 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3332 { 3333 struct tcp_sock *tp = tcp_sk(sk); 3334 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3335 3336 tcb->end_seq += skb->len; 3337 __skb_header_release(skb); 3338 __tcp_add_write_queue_tail(sk, skb); 3339 sk->sk_wmem_queued += skb->truesize; 3340 sk_mem_charge(sk, skb->truesize); 3341 tp->write_seq = tcb->end_seq; 3342 tp->packets_out += tcp_skb_pcount(skb); 3343 } 3344 3345 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3346 * queue a data-only packet after the regular SYN, such that regular SYNs 3347 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3348 * only the SYN sequence, the data are retransmitted in the first ACK. 3349 * If cookie is not cached or other error occurs, falls back to send a 3350 * regular SYN with Fast Open cookie request option. 3351 */ 3352 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3353 { 3354 struct tcp_sock *tp = tcp_sk(sk); 3355 struct tcp_fastopen_request *fo = tp->fastopen_req; 3356 int space, err = 0; 3357 struct sk_buff *syn_data; 3358 3359 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3360 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3361 goto fallback; 3362 3363 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3364 * user-MSS. Reserve maximum option space for middleboxes that add 3365 * private TCP options. The cost is reduced data space in SYN :( 3366 */ 3367 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3368 3369 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3370 MAX_TCP_OPTION_SPACE; 3371 3372 space = min_t(size_t, space, fo->size); 3373 3374 /* limit to order-0 allocations */ 3375 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3376 3377 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3378 if (!syn_data) 3379 goto fallback; 3380 syn_data->ip_summed = CHECKSUM_PARTIAL; 3381 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3382 if (space) { 3383 int copied = copy_from_iter(skb_put(syn_data, space), space, 3384 &fo->data->msg_iter); 3385 if (unlikely(!copied)) { 3386 kfree_skb(syn_data); 3387 goto fallback; 3388 } 3389 if (copied != space) { 3390 skb_trim(syn_data, copied); 3391 space = copied; 3392 } 3393 } 3394 /* No more data pending in inet_wait_for_connect() */ 3395 if (space == fo->size) 3396 fo->data = NULL; 3397 fo->copied = space; 3398 3399 tcp_connect_queue_skb(sk, syn_data); 3400 if (syn_data->len) 3401 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3402 3403 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3404 3405 syn->skb_mstamp = syn_data->skb_mstamp; 3406 3407 /* Now full SYN+DATA was cloned and sent (or not), 3408 * remove the SYN from the original skb (syn_data) 3409 * we keep in write queue in case of a retransmit, as we 3410 * also have the SYN packet (with no data) in the same queue. 3411 */ 3412 TCP_SKB_CB(syn_data)->seq++; 3413 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3414 if (!err) { 3415 tp->syn_data = (fo->copied > 0); 3416 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3417 goto done; 3418 } 3419 3420 fallback: 3421 /* Send a regular SYN with Fast Open cookie request option */ 3422 if (fo->cookie.len > 0) 3423 fo->cookie.len = 0; 3424 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3425 if (err) 3426 tp->syn_fastopen = 0; 3427 done: 3428 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3429 return err; 3430 } 3431 3432 /* Build a SYN and send it off. */ 3433 int tcp_connect(struct sock *sk) 3434 { 3435 struct tcp_sock *tp = tcp_sk(sk); 3436 struct sk_buff *buff; 3437 int err; 3438 3439 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB); 3440 3441 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3442 return -EHOSTUNREACH; /* Routing failure or similar. */ 3443 3444 tcp_connect_init(sk); 3445 3446 if (unlikely(tp->repair)) { 3447 tcp_finish_connect(sk, NULL); 3448 return 0; 3449 } 3450 3451 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3452 if (unlikely(!buff)) 3453 return -ENOBUFS; 3454 3455 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3456 tcp_mstamp_refresh(tp); 3457 tp->retrans_stamp = tcp_time_stamp(tp); 3458 tcp_connect_queue_skb(sk, buff); 3459 tcp_ecn_send_syn(sk, buff); 3460 3461 /* Send off SYN; include data in Fast Open. */ 3462 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3463 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3464 if (err == -ECONNREFUSED) 3465 return err; 3466 3467 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3468 * in order to make this packet get counted in tcpOutSegs. 3469 */ 3470 tp->snd_nxt = tp->write_seq; 3471 tp->pushed_seq = tp->write_seq; 3472 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3473 3474 /* Timer for repeating the SYN until an answer. */ 3475 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3476 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3477 return 0; 3478 } 3479 EXPORT_SYMBOL(tcp_connect); 3480 3481 /* Send out a delayed ack, the caller does the policy checking 3482 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3483 * for details. 3484 */ 3485 void tcp_send_delayed_ack(struct sock *sk) 3486 { 3487 struct inet_connection_sock *icsk = inet_csk(sk); 3488 int ato = icsk->icsk_ack.ato; 3489 unsigned long timeout; 3490 3491 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3492 3493 if (ato > TCP_DELACK_MIN) { 3494 const struct tcp_sock *tp = tcp_sk(sk); 3495 int max_ato = HZ / 2; 3496 3497 if (icsk->icsk_ack.pingpong || 3498 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3499 max_ato = TCP_DELACK_MAX; 3500 3501 /* Slow path, intersegment interval is "high". */ 3502 3503 /* If some rtt estimate is known, use it to bound delayed ack. 3504 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3505 * directly. 3506 */ 3507 if (tp->srtt_us) { 3508 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3509 TCP_DELACK_MIN); 3510 3511 if (rtt < max_ato) 3512 max_ato = rtt; 3513 } 3514 3515 ato = min(ato, max_ato); 3516 } 3517 3518 /* Stay within the limit we were given */ 3519 timeout = jiffies + ato; 3520 3521 /* Use new timeout only if there wasn't a older one earlier. */ 3522 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3523 /* If delack timer was blocked or is about to expire, 3524 * send ACK now. 3525 */ 3526 if (icsk->icsk_ack.blocked || 3527 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3528 tcp_send_ack(sk); 3529 return; 3530 } 3531 3532 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3533 timeout = icsk->icsk_ack.timeout; 3534 } 3535 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3536 icsk->icsk_ack.timeout = timeout; 3537 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3538 } 3539 3540 /* This routine sends an ack and also updates the window. */ 3541 void tcp_send_ack(struct sock *sk) 3542 { 3543 struct sk_buff *buff; 3544 3545 /* If we have been reset, we may not send again. */ 3546 if (sk->sk_state == TCP_CLOSE) 3547 return; 3548 3549 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3550 3551 /* We are not putting this on the write queue, so 3552 * tcp_transmit_skb() will set the ownership to this 3553 * sock. 3554 */ 3555 buff = alloc_skb(MAX_TCP_HEADER, 3556 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3557 if (unlikely(!buff)) { 3558 inet_csk_schedule_ack(sk); 3559 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3560 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3561 TCP_DELACK_MAX, TCP_RTO_MAX); 3562 return; 3563 } 3564 3565 /* Reserve space for headers and prepare control bits. */ 3566 skb_reserve(buff, MAX_TCP_HEADER); 3567 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3568 3569 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3570 * too much. 3571 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3572 */ 3573 skb_set_tcp_pure_ack(buff); 3574 3575 /* Send it off, this clears delayed acks for us. */ 3576 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3577 } 3578 EXPORT_SYMBOL_GPL(tcp_send_ack); 3579 3580 /* This routine sends a packet with an out of date sequence 3581 * number. It assumes the other end will try to ack it. 3582 * 3583 * Question: what should we make while urgent mode? 3584 * 4.4BSD forces sending single byte of data. We cannot send 3585 * out of window data, because we have SND.NXT==SND.MAX... 3586 * 3587 * Current solution: to send TWO zero-length segments in urgent mode: 3588 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3589 * out-of-date with SND.UNA-1 to probe window. 3590 */ 3591 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3592 { 3593 struct tcp_sock *tp = tcp_sk(sk); 3594 struct sk_buff *skb; 3595 3596 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3597 skb = alloc_skb(MAX_TCP_HEADER, 3598 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3599 if (!skb) 3600 return -1; 3601 3602 /* Reserve space for headers and set control bits. */ 3603 skb_reserve(skb, MAX_TCP_HEADER); 3604 /* Use a previous sequence. This should cause the other 3605 * end to send an ack. Don't queue or clone SKB, just 3606 * send it. 3607 */ 3608 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3609 NET_INC_STATS(sock_net(sk), mib); 3610 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3611 } 3612 3613 /* Called from setsockopt( ... TCP_REPAIR ) */ 3614 void tcp_send_window_probe(struct sock *sk) 3615 { 3616 if (sk->sk_state == TCP_ESTABLISHED) { 3617 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3618 tcp_mstamp_refresh(tcp_sk(sk)); 3619 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3620 } 3621 } 3622 3623 /* Initiate keepalive or window probe from timer. */ 3624 int tcp_write_wakeup(struct sock *sk, int mib) 3625 { 3626 struct tcp_sock *tp = tcp_sk(sk); 3627 struct sk_buff *skb; 3628 3629 if (sk->sk_state == TCP_CLOSE) 3630 return -1; 3631 3632 skb = tcp_send_head(sk); 3633 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3634 int err; 3635 unsigned int mss = tcp_current_mss(sk); 3636 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3637 3638 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3639 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3640 3641 /* We are probing the opening of a window 3642 * but the window size is != 0 3643 * must have been a result SWS avoidance ( sender ) 3644 */ 3645 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3646 skb->len > mss) { 3647 seg_size = min(seg_size, mss); 3648 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3649 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3650 return -1; 3651 } else if (!tcp_skb_pcount(skb)) 3652 tcp_set_skb_tso_segs(skb, mss); 3653 3654 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3655 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3656 if (!err) 3657 tcp_event_new_data_sent(sk, skb); 3658 return err; 3659 } else { 3660 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3661 tcp_xmit_probe_skb(sk, 1, mib); 3662 return tcp_xmit_probe_skb(sk, 0, mib); 3663 } 3664 } 3665 3666 /* A window probe timeout has occurred. If window is not closed send 3667 * a partial packet else a zero probe. 3668 */ 3669 void tcp_send_probe0(struct sock *sk) 3670 { 3671 struct inet_connection_sock *icsk = inet_csk(sk); 3672 struct tcp_sock *tp = tcp_sk(sk); 3673 struct net *net = sock_net(sk); 3674 unsigned long probe_max; 3675 int err; 3676 3677 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3678 3679 if (tp->packets_out || !tcp_send_head(sk)) { 3680 /* Cancel probe timer, if it is not required. */ 3681 icsk->icsk_probes_out = 0; 3682 icsk->icsk_backoff = 0; 3683 return; 3684 } 3685 3686 if (err <= 0) { 3687 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3688 icsk->icsk_backoff++; 3689 icsk->icsk_probes_out++; 3690 probe_max = TCP_RTO_MAX; 3691 } else { 3692 /* If packet was not sent due to local congestion, 3693 * do not backoff and do not remember icsk_probes_out. 3694 * Let local senders to fight for local resources. 3695 * 3696 * Use accumulated backoff yet. 3697 */ 3698 if (!icsk->icsk_probes_out) 3699 icsk->icsk_probes_out = 1; 3700 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3701 } 3702 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3703 tcp_probe0_when(sk, probe_max), 3704 TCP_RTO_MAX); 3705 } 3706 3707 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3708 { 3709 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3710 struct flowi fl; 3711 int res; 3712 3713 tcp_rsk(req)->txhash = net_tx_rndhash(); 3714 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3715 if (!res) { 3716 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3717 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3718 if (unlikely(tcp_passive_fastopen(sk))) 3719 tcp_sk(sk)->total_retrans++; 3720 } 3721 return res; 3722 } 3723 EXPORT_SYMBOL(tcp_rtx_synack); 3724