xref: /linux/net/ipv4/tcp_output.c (revision b04df400c30235fa347313c9e2a0695549bd2c8e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 			   int push_one, gfp_t gfp);
50 
51 /* Account for new data that has been sent to the network. */
52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53 {
54 	struct inet_connection_sock *icsk = inet_csk(sk);
55 	struct tcp_sock *tp = tcp_sk(sk);
56 	unsigned int prior_packets = tp->packets_out;
57 
58 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59 
60 	__skb_unlink(skb, &sk->sk_write_queue);
61 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62 
63 	tp->packets_out += tcp_skb_pcount(skb);
64 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
65 		tcp_rearm_rto(sk);
66 
67 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
68 		      tcp_skb_pcount(skb));
69 }
70 
71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
72  * window scaling factor due to loss of precision.
73  * If window has been shrunk, what should we make? It is not clear at all.
74  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
75  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
76  * invalid. OK, let's make this for now:
77  */
78 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
79 {
80 	const struct tcp_sock *tp = tcp_sk(sk);
81 
82 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
83 	    (tp->rx_opt.wscale_ok &&
84 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
85 		return tp->snd_nxt;
86 	else
87 		return tcp_wnd_end(tp);
88 }
89 
90 /* Calculate mss to advertise in SYN segment.
91  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
92  *
93  * 1. It is independent of path mtu.
94  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
95  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
96  *    attached devices, because some buggy hosts are confused by
97  *    large MSS.
98  * 4. We do not make 3, we advertise MSS, calculated from first
99  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
100  *    This may be overridden via information stored in routing table.
101  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
102  *    probably even Jumbo".
103  */
104 static __u16 tcp_advertise_mss(struct sock *sk)
105 {
106 	struct tcp_sock *tp = tcp_sk(sk);
107 	const struct dst_entry *dst = __sk_dst_get(sk);
108 	int mss = tp->advmss;
109 
110 	if (dst) {
111 		unsigned int metric = dst_metric_advmss(dst);
112 
113 		if (metric < mss) {
114 			mss = metric;
115 			tp->advmss = mss;
116 		}
117 	}
118 
119 	return (__u16)mss;
120 }
121 
122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
123  * This is the first part of cwnd validation mechanism.
124  */
125 void tcp_cwnd_restart(struct sock *sk, s32 delta)
126 {
127 	struct tcp_sock *tp = tcp_sk(sk);
128 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
129 	u32 cwnd = tp->snd_cwnd;
130 
131 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
132 
133 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
134 	restart_cwnd = min(restart_cwnd, cwnd);
135 
136 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
137 		cwnd >>= 1;
138 	tp->snd_cwnd = max(cwnd, restart_cwnd);
139 	tp->snd_cwnd_stamp = tcp_jiffies32;
140 	tp->snd_cwnd_used = 0;
141 }
142 
143 /* Congestion state accounting after a packet has been sent. */
144 static void tcp_event_data_sent(struct tcp_sock *tp,
145 				struct sock *sk)
146 {
147 	struct inet_connection_sock *icsk = inet_csk(sk);
148 	const u32 now = tcp_jiffies32;
149 
150 	if (tcp_packets_in_flight(tp) == 0)
151 		tcp_ca_event(sk, CA_EVENT_TX_START);
152 
153 	tp->lsndtime = now;
154 
155 	/* If it is a reply for ato after last received
156 	 * packet, enter pingpong mode.
157 	 */
158 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
159 		icsk->icsk_ack.pingpong = 1;
160 }
161 
162 /* Account for an ACK we sent. */
163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
164 {
165 	tcp_dec_quickack_mode(sk, pkts);
166 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
167 }
168 
169 
170 u32 tcp_default_init_rwnd(u32 mss)
171 {
172 	/* Initial receive window should be twice of TCP_INIT_CWND to
173 	 * enable proper sending of new unsent data during fast recovery
174 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
175 	 * limit when mss is larger than 1460.
176 	 */
177 	u32 init_rwnd = TCP_INIT_CWND * 2;
178 
179 	if (mss > 1460)
180 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
181 	return init_rwnd;
182 }
183 
184 /* Determine a window scaling and initial window to offer.
185  * Based on the assumption that the given amount of space
186  * will be offered. Store the results in the tp structure.
187  * NOTE: for smooth operation initial space offering should
188  * be a multiple of mss if possible. We assume here that mss >= 1.
189  * This MUST be enforced by all callers.
190  */
191 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
192 			       __u32 *rcv_wnd, __u32 *window_clamp,
193 			       int wscale_ok, __u8 *rcv_wscale,
194 			       __u32 init_rcv_wnd)
195 {
196 	unsigned int space = (__space < 0 ? 0 : __space);
197 
198 	/* If no clamp set the clamp to the max possible scaled window */
199 	if (*window_clamp == 0)
200 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
201 	space = min(*window_clamp, space);
202 
203 	/* Quantize space offering to a multiple of mss if possible. */
204 	if (space > mss)
205 		space = rounddown(space, mss);
206 
207 	/* NOTE: offering an initial window larger than 32767
208 	 * will break some buggy TCP stacks. If the admin tells us
209 	 * it is likely we could be speaking with such a buggy stack
210 	 * we will truncate our initial window offering to 32K-1
211 	 * unless the remote has sent us a window scaling option,
212 	 * which we interpret as a sign the remote TCP is not
213 	 * misinterpreting the window field as a signed quantity.
214 	 */
215 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
216 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
217 	else
218 		(*rcv_wnd) = space;
219 
220 	(*rcv_wscale) = 0;
221 	if (wscale_ok) {
222 		/* Set window scaling on max possible window */
223 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
224 		space = max_t(u32, space, sysctl_rmem_max);
225 		space = min_t(u32, space, *window_clamp);
226 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
227 			space >>= 1;
228 			(*rcv_wscale)++;
229 		}
230 	}
231 
232 	if (!init_rcv_wnd) /* Use default unless specified otherwise */
233 		init_rcv_wnd = tcp_default_init_rwnd(mss);
234 	*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
235 
236 	/* Set the clamp no higher than max representable value */
237 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
238 }
239 EXPORT_SYMBOL(tcp_select_initial_window);
240 
241 /* Chose a new window to advertise, update state in tcp_sock for the
242  * socket, and return result with RFC1323 scaling applied.  The return
243  * value can be stuffed directly into th->window for an outgoing
244  * frame.
245  */
246 static u16 tcp_select_window(struct sock *sk)
247 {
248 	struct tcp_sock *tp = tcp_sk(sk);
249 	u32 old_win = tp->rcv_wnd;
250 	u32 cur_win = tcp_receive_window(tp);
251 	u32 new_win = __tcp_select_window(sk);
252 
253 	/* Never shrink the offered window */
254 	if (new_win < cur_win) {
255 		/* Danger Will Robinson!
256 		 * Don't update rcv_wup/rcv_wnd here or else
257 		 * we will not be able to advertise a zero
258 		 * window in time.  --DaveM
259 		 *
260 		 * Relax Will Robinson.
261 		 */
262 		if (new_win == 0)
263 			NET_INC_STATS(sock_net(sk),
264 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
265 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
266 	}
267 	tp->rcv_wnd = new_win;
268 	tp->rcv_wup = tp->rcv_nxt;
269 
270 	/* Make sure we do not exceed the maximum possible
271 	 * scaled window.
272 	 */
273 	if (!tp->rx_opt.rcv_wscale &&
274 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
275 		new_win = min(new_win, MAX_TCP_WINDOW);
276 	else
277 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
278 
279 	/* RFC1323 scaling applied */
280 	new_win >>= tp->rx_opt.rcv_wscale;
281 
282 	/* If we advertise zero window, disable fast path. */
283 	if (new_win == 0) {
284 		tp->pred_flags = 0;
285 		if (old_win)
286 			NET_INC_STATS(sock_net(sk),
287 				      LINUX_MIB_TCPTOZEROWINDOWADV);
288 	} else if (old_win == 0) {
289 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
290 	}
291 
292 	return new_win;
293 }
294 
295 /* Packet ECN state for a SYN-ACK */
296 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
297 {
298 	const struct tcp_sock *tp = tcp_sk(sk);
299 
300 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
301 	if (!(tp->ecn_flags & TCP_ECN_OK))
302 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
303 	else if (tcp_ca_needs_ecn(sk) ||
304 		 tcp_bpf_ca_needs_ecn(sk))
305 		INET_ECN_xmit(sk);
306 }
307 
308 /* Packet ECN state for a SYN.  */
309 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
310 {
311 	struct tcp_sock *tp = tcp_sk(sk);
312 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
313 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
314 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
315 
316 	if (!use_ecn) {
317 		const struct dst_entry *dst = __sk_dst_get(sk);
318 
319 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
320 			use_ecn = true;
321 	}
322 
323 	tp->ecn_flags = 0;
324 
325 	if (use_ecn) {
326 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
327 		tp->ecn_flags = TCP_ECN_OK;
328 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
329 			INET_ECN_xmit(sk);
330 	}
331 }
332 
333 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
334 {
335 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
336 		/* tp->ecn_flags are cleared at a later point in time when
337 		 * SYN ACK is ultimatively being received.
338 		 */
339 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
340 }
341 
342 static void
343 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
344 {
345 	if (inet_rsk(req)->ecn_ok)
346 		th->ece = 1;
347 }
348 
349 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
350  * be sent.
351  */
352 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
353 			 struct tcphdr *th, int tcp_header_len)
354 {
355 	struct tcp_sock *tp = tcp_sk(sk);
356 
357 	if (tp->ecn_flags & TCP_ECN_OK) {
358 		/* Not-retransmitted data segment: set ECT and inject CWR. */
359 		if (skb->len != tcp_header_len &&
360 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
361 			INET_ECN_xmit(sk);
362 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
363 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
364 				th->cwr = 1;
365 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
366 			}
367 		} else if (!tcp_ca_needs_ecn(sk)) {
368 			/* ACK or retransmitted segment: clear ECT|CE */
369 			INET_ECN_dontxmit(sk);
370 		}
371 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
372 			th->ece = 1;
373 	}
374 }
375 
376 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
377  * auto increment end seqno.
378  */
379 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
380 {
381 	skb->ip_summed = CHECKSUM_PARTIAL;
382 
383 	TCP_SKB_CB(skb)->tcp_flags = flags;
384 	TCP_SKB_CB(skb)->sacked = 0;
385 
386 	tcp_skb_pcount_set(skb, 1);
387 
388 	TCP_SKB_CB(skb)->seq = seq;
389 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
390 		seq++;
391 	TCP_SKB_CB(skb)->end_seq = seq;
392 }
393 
394 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
395 {
396 	return tp->snd_una != tp->snd_up;
397 }
398 
399 #define OPTION_SACK_ADVERTISE	(1 << 0)
400 #define OPTION_TS		(1 << 1)
401 #define OPTION_MD5		(1 << 2)
402 #define OPTION_WSCALE		(1 << 3)
403 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
404 #define OPTION_SMC		(1 << 9)
405 
406 static void smc_options_write(__be32 *ptr, u16 *options)
407 {
408 #if IS_ENABLED(CONFIG_SMC)
409 	if (static_branch_unlikely(&tcp_have_smc)) {
410 		if (unlikely(OPTION_SMC & *options)) {
411 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
412 				       (TCPOPT_NOP  << 16) |
413 				       (TCPOPT_EXP <<  8) |
414 				       (TCPOLEN_EXP_SMC_BASE));
415 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
416 		}
417 	}
418 #endif
419 }
420 
421 struct tcp_out_options {
422 	u16 options;		/* bit field of OPTION_* */
423 	u16 mss;		/* 0 to disable */
424 	u8 ws;			/* window scale, 0 to disable */
425 	u8 num_sack_blocks;	/* number of SACK blocks to include */
426 	u8 hash_size;		/* bytes in hash_location */
427 	__u8 *hash_location;	/* temporary pointer, overloaded */
428 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
429 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
430 };
431 
432 /* Write previously computed TCP options to the packet.
433  *
434  * Beware: Something in the Internet is very sensitive to the ordering of
435  * TCP options, we learned this through the hard way, so be careful here.
436  * Luckily we can at least blame others for their non-compliance but from
437  * inter-operability perspective it seems that we're somewhat stuck with
438  * the ordering which we have been using if we want to keep working with
439  * those broken things (not that it currently hurts anybody as there isn't
440  * particular reason why the ordering would need to be changed).
441  *
442  * At least SACK_PERM as the first option is known to lead to a disaster
443  * (but it may well be that other scenarios fail similarly).
444  */
445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
446 			      struct tcp_out_options *opts)
447 {
448 	u16 options = opts->options;	/* mungable copy */
449 
450 	if (unlikely(OPTION_MD5 & options)) {
451 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
452 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
453 		/* overload cookie hash location */
454 		opts->hash_location = (__u8 *)ptr;
455 		ptr += 4;
456 	}
457 
458 	if (unlikely(opts->mss)) {
459 		*ptr++ = htonl((TCPOPT_MSS << 24) |
460 			       (TCPOLEN_MSS << 16) |
461 			       opts->mss);
462 	}
463 
464 	if (likely(OPTION_TS & options)) {
465 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
466 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
467 				       (TCPOLEN_SACK_PERM << 16) |
468 				       (TCPOPT_TIMESTAMP << 8) |
469 				       TCPOLEN_TIMESTAMP);
470 			options &= ~OPTION_SACK_ADVERTISE;
471 		} else {
472 			*ptr++ = htonl((TCPOPT_NOP << 24) |
473 				       (TCPOPT_NOP << 16) |
474 				       (TCPOPT_TIMESTAMP << 8) |
475 				       TCPOLEN_TIMESTAMP);
476 		}
477 		*ptr++ = htonl(opts->tsval);
478 		*ptr++ = htonl(opts->tsecr);
479 	}
480 
481 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
482 		*ptr++ = htonl((TCPOPT_NOP << 24) |
483 			       (TCPOPT_NOP << 16) |
484 			       (TCPOPT_SACK_PERM << 8) |
485 			       TCPOLEN_SACK_PERM);
486 	}
487 
488 	if (unlikely(OPTION_WSCALE & options)) {
489 		*ptr++ = htonl((TCPOPT_NOP << 24) |
490 			       (TCPOPT_WINDOW << 16) |
491 			       (TCPOLEN_WINDOW << 8) |
492 			       opts->ws);
493 	}
494 
495 	if (unlikely(opts->num_sack_blocks)) {
496 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
497 			tp->duplicate_sack : tp->selective_acks;
498 		int this_sack;
499 
500 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
501 			       (TCPOPT_NOP  << 16) |
502 			       (TCPOPT_SACK <<  8) |
503 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
504 						     TCPOLEN_SACK_PERBLOCK)));
505 
506 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
507 		     ++this_sack) {
508 			*ptr++ = htonl(sp[this_sack].start_seq);
509 			*ptr++ = htonl(sp[this_sack].end_seq);
510 		}
511 
512 		tp->rx_opt.dsack = 0;
513 	}
514 
515 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
516 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
517 		u8 *p = (u8 *)ptr;
518 		u32 len; /* Fast Open option length */
519 
520 		if (foc->exp) {
521 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
522 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
523 				     TCPOPT_FASTOPEN_MAGIC);
524 			p += TCPOLEN_EXP_FASTOPEN_BASE;
525 		} else {
526 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
527 			*p++ = TCPOPT_FASTOPEN;
528 			*p++ = len;
529 		}
530 
531 		memcpy(p, foc->val, foc->len);
532 		if ((len & 3) == 2) {
533 			p[foc->len] = TCPOPT_NOP;
534 			p[foc->len + 1] = TCPOPT_NOP;
535 		}
536 		ptr += (len + 3) >> 2;
537 	}
538 
539 	smc_options_write(ptr, &options);
540 }
541 
542 static void smc_set_option(const struct tcp_sock *tp,
543 			   struct tcp_out_options *opts,
544 			   unsigned int *remaining)
545 {
546 #if IS_ENABLED(CONFIG_SMC)
547 	if (static_branch_unlikely(&tcp_have_smc)) {
548 		if (tp->syn_smc) {
549 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
550 				opts->options |= OPTION_SMC;
551 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
552 			}
553 		}
554 	}
555 #endif
556 }
557 
558 static void smc_set_option_cond(const struct tcp_sock *tp,
559 				const struct inet_request_sock *ireq,
560 				struct tcp_out_options *opts,
561 				unsigned int *remaining)
562 {
563 #if IS_ENABLED(CONFIG_SMC)
564 	if (static_branch_unlikely(&tcp_have_smc)) {
565 		if (tp->syn_smc && ireq->smc_ok) {
566 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
567 				opts->options |= OPTION_SMC;
568 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
569 			}
570 		}
571 	}
572 #endif
573 }
574 
575 /* Compute TCP options for SYN packets. This is not the final
576  * network wire format yet.
577  */
578 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
579 				struct tcp_out_options *opts,
580 				struct tcp_md5sig_key **md5)
581 {
582 	struct tcp_sock *tp = tcp_sk(sk);
583 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
584 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
585 
586 	*md5 = NULL;
587 #ifdef CONFIG_TCP_MD5SIG
588 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
589 		*md5 = tp->af_specific->md5_lookup(sk, sk);
590 		if (*md5) {
591 			opts->options |= OPTION_MD5;
592 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
593 		}
594 	}
595 #endif
596 
597 	/* We always get an MSS option.  The option bytes which will be seen in
598 	 * normal data packets should timestamps be used, must be in the MSS
599 	 * advertised.  But we subtract them from tp->mss_cache so that
600 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
601 	 * fact here if necessary.  If we don't do this correctly, as a
602 	 * receiver we won't recognize data packets as being full sized when we
603 	 * should, and thus we won't abide by the delayed ACK rules correctly.
604 	 * SACKs don't matter, we never delay an ACK when we have any of those
605 	 * going out.  */
606 	opts->mss = tcp_advertise_mss(sk);
607 	remaining -= TCPOLEN_MSS_ALIGNED;
608 
609 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
610 		opts->options |= OPTION_TS;
611 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
612 		opts->tsecr = tp->rx_opt.ts_recent;
613 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
614 	}
615 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
616 		opts->ws = tp->rx_opt.rcv_wscale;
617 		opts->options |= OPTION_WSCALE;
618 		remaining -= TCPOLEN_WSCALE_ALIGNED;
619 	}
620 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
621 		opts->options |= OPTION_SACK_ADVERTISE;
622 		if (unlikely(!(OPTION_TS & opts->options)))
623 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
624 	}
625 
626 	if (fastopen && fastopen->cookie.len >= 0) {
627 		u32 need = fastopen->cookie.len;
628 
629 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
630 					       TCPOLEN_FASTOPEN_BASE;
631 		need = (need + 3) & ~3U;  /* Align to 32 bits */
632 		if (remaining >= need) {
633 			opts->options |= OPTION_FAST_OPEN_COOKIE;
634 			opts->fastopen_cookie = &fastopen->cookie;
635 			remaining -= need;
636 			tp->syn_fastopen = 1;
637 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
638 		}
639 	}
640 
641 	smc_set_option(tp, opts, &remaining);
642 
643 	return MAX_TCP_OPTION_SPACE - remaining;
644 }
645 
646 /* Set up TCP options for SYN-ACKs. */
647 static unsigned int tcp_synack_options(const struct sock *sk,
648 				       struct request_sock *req,
649 				       unsigned int mss, struct sk_buff *skb,
650 				       struct tcp_out_options *opts,
651 				       const struct tcp_md5sig_key *md5,
652 				       struct tcp_fastopen_cookie *foc)
653 {
654 	struct inet_request_sock *ireq = inet_rsk(req);
655 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
656 
657 #ifdef CONFIG_TCP_MD5SIG
658 	if (md5) {
659 		opts->options |= OPTION_MD5;
660 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
661 
662 		/* We can't fit any SACK blocks in a packet with MD5 + TS
663 		 * options. There was discussion about disabling SACK
664 		 * rather than TS in order to fit in better with old,
665 		 * buggy kernels, but that was deemed to be unnecessary.
666 		 */
667 		ireq->tstamp_ok &= !ireq->sack_ok;
668 	}
669 #endif
670 
671 	/* We always send an MSS option. */
672 	opts->mss = mss;
673 	remaining -= TCPOLEN_MSS_ALIGNED;
674 
675 	if (likely(ireq->wscale_ok)) {
676 		opts->ws = ireq->rcv_wscale;
677 		opts->options |= OPTION_WSCALE;
678 		remaining -= TCPOLEN_WSCALE_ALIGNED;
679 	}
680 	if (likely(ireq->tstamp_ok)) {
681 		opts->options |= OPTION_TS;
682 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
683 		opts->tsecr = req->ts_recent;
684 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
685 	}
686 	if (likely(ireq->sack_ok)) {
687 		opts->options |= OPTION_SACK_ADVERTISE;
688 		if (unlikely(!ireq->tstamp_ok))
689 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
690 	}
691 	if (foc != NULL && foc->len >= 0) {
692 		u32 need = foc->len;
693 
694 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
695 				   TCPOLEN_FASTOPEN_BASE;
696 		need = (need + 3) & ~3U;  /* Align to 32 bits */
697 		if (remaining >= need) {
698 			opts->options |= OPTION_FAST_OPEN_COOKIE;
699 			opts->fastopen_cookie = foc;
700 			remaining -= need;
701 		}
702 	}
703 
704 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
705 
706 	return MAX_TCP_OPTION_SPACE - remaining;
707 }
708 
709 /* Compute TCP options for ESTABLISHED sockets. This is not the
710  * final wire format yet.
711  */
712 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
713 					struct tcp_out_options *opts,
714 					struct tcp_md5sig_key **md5)
715 {
716 	struct tcp_sock *tp = tcp_sk(sk);
717 	unsigned int size = 0;
718 	unsigned int eff_sacks;
719 
720 	opts->options = 0;
721 
722 	*md5 = NULL;
723 #ifdef CONFIG_TCP_MD5SIG
724 	if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
725 		*md5 = tp->af_specific->md5_lookup(sk, sk);
726 		if (*md5) {
727 			opts->options |= OPTION_MD5;
728 			size += TCPOLEN_MD5SIG_ALIGNED;
729 		}
730 	}
731 #endif
732 
733 	if (likely(tp->rx_opt.tstamp_ok)) {
734 		opts->options |= OPTION_TS;
735 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
736 		opts->tsecr = tp->rx_opt.ts_recent;
737 		size += TCPOLEN_TSTAMP_ALIGNED;
738 	}
739 
740 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
741 	if (unlikely(eff_sacks)) {
742 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
743 		opts->num_sack_blocks =
744 			min_t(unsigned int, eff_sacks,
745 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
746 			      TCPOLEN_SACK_PERBLOCK);
747 		size += TCPOLEN_SACK_BASE_ALIGNED +
748 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
749 	}
750 
751 	return size;
752 }
753 
754 
755 /* TCP SMALL QUEUES (TSQ)
756  *
757  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
758  * to reduce RTT and bufferbloat.
759  * We do this using a special skb destructor (tcp_wfree).
760  *
761  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
762  * needs to be reallocated in a driver.
763  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
764  *
765  * Since transmit from skb destructor is forbidden, we use a tasklet
766  * to process all sockets that eventually need to send more skbs.
767  * We use one tasklet per cpu, with its own queue of sockets.
768  */
769 struct tsq_tasklet {
770 	struct tasklet_struct	tasklet;
771 	struct list_head	head; /* queue of tcp sockets */
772 };
773 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
774 
775 static void tcp_tsq_write(struct sock *sk)
776 {
777 	if ((1 << sk->sk_state) &
778 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
779 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
780 		struct tcp_sock *tp = tcp_sk(sk);
781 
782 		if (tp->lost_out > tp->retrans_out &&
783 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
784 			tcp_mstamp_refresh(tp);
785 			tcp_xmit_retransmit_queue(sk);
786 		}
787 
788 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
789 			       0, GFP_ATOMIC);
790 	}
791 }
792 
793 static void tcp_tsq_handler(struct sock *sk)
794 {
795 	bh_lock_sock(sk);
796 	if (!sock_owned_by_user(sk))
797 		tcp_tsq_write(sk);
798 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
799 		sock_hold(sk);
800 	bh_unlock_sock(sk);
801 }
802 /*
803  * One tasklet per cpu tries to send more skbs.
804  * We run in tasklet context but need to disable irqs when
805  * transferring tsq->head because tcp_wfree() might
806  * interrupt us (non NAPI drivers)
807  */
808 static void tcp_tasklet_func(unsigned long data)
809 {
810 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
811 	LIST_HEAD(list);
812 	unsigned long flags;
813 	struct list_head *q, *n;
814 	struct tcp_sock *tp;
815 	struct sock *sk;
816 
817 	local_irq_save(flags);
818 	list_splice_init(&tsq->head, &list);
819 	local_irq_restore(flags);
820 
821 	list_for_each_safe(q, n, &list) {
822 		tp = list_entry(q, struct tcp_sock, tsq_node);
823 		list_del(&tp->tsq_node);
824 
825 		sk = (struct sock *)tp;
826 		smp_mb__before_atomic();
827 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
828 
829 		tcp_tsq_handler(sk);
830 		sk_free(sk);
831 	}
832 }
833 
834 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
835 			  TCPF_WRITE_TIMER_DEFERRED |	\
836 			  TCPF_DELACK_TIMER_DEFERRED |	\
837 			  TCPF_MTU_REDUCED_DEFERRED)
838 /**
839  * tcp_release_cb - tcp release_sock() callback
840  * @sk: socket
841  *
842  * called from release_sock() to perform protocol dependent
843  * actions before socket release.
844  */
845 void tcp_release_cb(struct sock *sk)
846 {
847 	unsigned long flags, nflags;
848 
849 	/* perform an atomic operation only if at least one flag is set */
850 	do {
851 		flags = sk->sk_tsq_flags;
852 		if (!(flags & TCP_DEFERRED_ALL))
853 			return;
854 		nflags = flags & ~TCP_DEFERRED_ALL;
855 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
856 
857 	if (flags & TCPF_TSQ_DEFERRED) {
858 		tcp_tsq_write(sk);
859 		__sock_put(sk);
860 	}
861 	/* Here begins the tricky part :
862 	 * We are called from release_sock() with :
863 	 * 1) BH disabled
864 	 * 2) sk_lock.slock spinlock held
865 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
866 	 *
867 	 * But following code is meant to be called from BH handlers,
868 	 * so we should keep BH disabled, but early release socket ownership
869 	 */
870 	sock_release_ownership(sk);
871 
872 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
873 		tcp_write_timer_handler(sk);
874 		__sock_put(sk);
875 	}
876 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
877 		tcp_delack_timer_handler(sk);
878 		__sock_put(sk);
879 	}
880 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
881 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
882 		__sock_put(sk);
883 	}
884 }
885 EXPORT_SYMBOL(tcp_release_cb);
886 
887 void __init tcp_tasklet_init(void)
888 {
889 	int i;
890 
891 	for_each_possible_cpu(i) {
892 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
893 
894 		INIT_LIST_HEAD(&tsq->head);
895 		tasklet_init(&tsq->tasklet,
896 			     tcp_tasklet_func,
897 			     (unsigned long)tsq);
898 	}
899 }
900 
901 /*
902  * Write buffer destructor automatically called from kfree_skb.
903  * We can't xmit new skbs from this context, as we might already
904  * hold qdisc lock.
905  */
906 void tcp_wfree(struct sk_buff *skb)
907 {
908 	struct sock *sk = skb->sk;
909 	struct tcp_sock *tp = tcp_sk(sk);
910 	unsigned long flags, nval, oval;
911 
912 	/* Keep one reference on sk_wmem_alloc.
913 	 * Will be released by sk_free() from here or tcp_tasklet_func()
914 	 */
915 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
916 
917 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
918 	 * Wait until our queues (qdisc + devices) are drained.
919 	 * This gives :
920 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
921 	 * - chance for incoming ACK (processed by another cpu maybe)
922 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
923 	 */
924 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
925 		goto out;
926 
927 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
928 		struct tsq_tasklet *tsq;
929 		bool empty;
930 
931 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
932 			goto out;
933 
934 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
935 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
936 		if (nval != oval)
937 			continue;
938 
939 		/* queue this socket to tasklet queue */
940 		local_irq_save(flags);
941 		tsq = this_cpu_ptr(&tsq_tasklet);
942 		empty = list_empty(&tsq->head);
943 		list_add(&tp->tsq_node, &tsq->head);
944 		if (empty)
945 			tasklet_schedule(&tsq->tasklet);
946 		local_irq_restore(flags);
947 		return;
948 	}
949 out:
950 	sk_free(sk);
951 }
952 
953 /* Note: Called under soft irq.
954  * We can call TCP stack right away, unless socket is owned by user.
955  */
956 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
957 {
958 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
959 	struct sock *sk = (struct sock *)tp;
960 
961 	tcp_tsq_handler(sk);
962 	sock_put(sk);
963 
964 	return HRTIMER_NORESTART;
965 }
966 
967 /* BBR congestion control needs pacing.
968  * Same remark for SO_MAX_PACING_RATE.
969  * sch_fq packet scheduler is efficiently handling pacing,
970  * but is not always installed/used.
971  * Return true if TCP stack should pace packets itself.
972  */
973 static bool tcp_needs_internal_pacing(const struct sock *sk)
974 {
975 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
976 }
977 
978 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
979 {
980 	u64 len_ns;
981 	u32 rate;
982 
983 	if (!tcp_needs_internal_pacing(sk))
984 		return;
985 	rate = sk->sk_pacing_rate;
986 	if (!rate || rate == ~0U)
987 		return;
988 
989 	/* Should account for header sizes as sch_fq does,
990 	 * but lets make things simple.
991 	 */
992 	len_ns = (u64)skb->len * NSEC_PER_SEC;
993 	do_div(len_ns, rate);
994 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
995 		      ktime_add_ns(ktime_get(), len_ns),
996 		      HRTIMER_MODE_ABS_PINNED_SOFT);
997 	sock_hold(sk);
998 }
999 
1000 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002 	skb->skb_mstamp = tp->tcp_mstamp;
1003 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1004 }
1005 
1006 /* This routine actually transmits TCP packets queued in by
1007  * tcp_do_sendmsg().  This is used by both the initial
1008  * transmission and possible later retransmissions.
1009  * All SKB's seen here are completely headerless.  It is our
1010  * job to build the TCP header, and pass the packet down to
1011  * IP so it can do the same plus pass the packet off to the
1012  * device.
1013  *
1014  * We are working here with either a clone of the original
1015  * SKB, or a fresh unique copy made by the retransmit engine.
1016  */
1017 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1018 			    gfp_t gfp_mask)
1019 {
1020 	const struct inet_connection_sock *icsk = inet_csk(sk);
1021 	struct inet_sock *inet;
1022 	struct tcp_sock *tp;
1023 	struct tcp_skb_cb *tcb;
1024 	struct tcp_out_options opts;
1025 	unsigned int tcp_options_size, tcp_header_size;
1026 	struct sk_buff *oskb = NULL;
1027 	struct tcp_md5sig_key *md5;
1028 	struct tcphdr *th;
1029 	int err;
1030 
1031 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1032 	tp = tcp_sk(sk);
1033 
1034 	if (clone_it) {
1035 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1036 			- tp->snd_una;
1037 		oskb = skb;
1038 
1039 		tcp_skb_tsorted_save(oskb) {
1040 			if (unlikely(skb_cloned(oskb)))
1041 				skb = pskb_copy(oskb, gfp_mask);
1042 			else
1043 				skb = skb_clone(oskb, gfp_mask);
1044 		} tcp_skb_tsorted_restore(oskb);
1045 
1046 		if (unlikely(!skb))
1047 			return -ENOBUFS;
1048 	}
1049 	skb->skb_mstamp = tp->tcp_mstamp;
1050 
1051 	inet = inet_sk(sk);
1052 	tcb = TCP_SKB_CB(skb);
1053 	memset(&opts, 0, sizeof(opts));
1054 
1055 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1056 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1057 	else
1058 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1059 							   &md5);
1060 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1061 
1062 	/* if no packet is in qdisc/device queue, then allow XPS to select
1063 	 * another queue. We can be called from tcp_tsq_handler()
1064 	 * which holds one reference to sk.
1065 	 *
1066 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1067 	 * One way to get this would be to set skb->truesize = 2 on them.
1068 	 */
1069 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1070 
1071 	/* If we had to use memory reserve to allocate this skb,
1072 	 * this might cause drops if packet is looped back :
1073 	 * Other socket might not have SOCK_MEMALLOC.
1074 	 * Packets not looped back do not care about pfmemalloc.
1075 	 */
1076 	skb->pfmemalloc = 0;
1077 
1078 	skb_push(skb, tcp_header_size);
1079 	skb_reset_transport_header(skb);
1080 
1081 	skb_orphan(skb);
1082 	skb->sk = sk;
1083 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1084 	skb_set_hash_from_sk(skb, sk);
1085 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1086 
1087 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1088 
1089 	/* Build TCP header and checksum it. */
1090 	th = (struct tcphdr *)skb->data;
1091 	th->source		= inet->inet_sport;
1092 	th->dest		= inet->inet_dport;
1093 	th->seq			= htonl(tcb->seq);
1094 	th->ack_seq		= htonl(tp->rcv_nxt);
1095 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1096 					tcb->tcp_flags);
1097 
1098 	th->check		= 0;
1099 	th->urg_ptr		= 0;
1100 
1101 	/* The urg_mode check is necessary during a below snd_una win probe */
1102 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1103 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1104 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1105 			th->urg = 1;
1106 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1107 			th->urg_ptr = htons(0xFFFF);
1108 			th->urg = 1;
1109 		}
1110 	}
1111 
1112 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1113 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1114 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1115 		th->window      = htons(tcp_select_window(sk));
1116 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1117 	} else {
1118 		/* RFC1323: The window in SYN & SYN/ACK segments
1119 		 * is never scaled.
1120 		 */
1121 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1122 	}
1123 #ifdef CONFIG_TCP_MD5SIG
1124 	/* Calculate the MD5 hash, as we have all we need now */
1125 	if (md5) {
1126 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1127 		tp->af_specific->calc_md5_hash(opts.hash_location,
1128 					       md5, sk, skb);
1129 	}
1130 #endif
1131 
1132 	icsk->icsk_af_ops->send_check(sk, skb);
1133 
1134 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1135 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1136 
1137 	if (skb->len != tcp_header_size) {
1138 		tcp_event_data_sent(tp, sk);
1139 		tp->data_segs_out += tcp_skb_pcount(skb);
1140 		tcp_internal_pacing(sk, skb);
1141 	}
1142 
1143 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1144 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1145 			      tcp_skb_pcount(skb));
1146 
1147 	tp->segs_out += tcp_skb_pcount(skb);
1148 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1149 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1150 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1151 
1152 	/* Our usage of tstamp should remain private */
1153 	skb->tstamp = 0;
1154 
1155 	/* Cleanup our debris for IP stacks */
1156 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1157 			       sizeof(struct inet6_skb_parm)));
1158 
1159 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1160 
1161 	if (unlikely(err > 0)) {
1162 		tcp_enter_cwr(sk);
1163 		err = net_xmit_eval(err);
1164 	}
1165 	if (!err && oskb) {
1166 		tcp_update_skb_after_send(tp, oskb);
1167 		tcp_rate_skb_sent(sk, oskb);
1168 	}
1169 	return err;
1170 }
1171 
1172 /* This routine just queues the buffer for sending.
1173  *
1174  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1175  * otherwise socket can stall.
1176  */
1177 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1178 {
1179 	struct tcp_sock *tp = tcp_sk(sk);
1180 
1181 	/* Advance write_seq and place onto the write_queue. */
1182 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1183 	__skb_header_release(skb);
1184 	tcp_add_write_queue_tail(sk, skb);
1185 	sk->sk_wmem_queued += skb->truesize;
1186 	sk_mem_charge(sk, skb->truesize);
1187 }
1188 
1189 /* Initialize TSO segments for a packet. */
1190 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1191 {
1192 	if (skb->len <= mss_now) {
1193 		/* Avoid the costly divide in the normal
1194 		 * non-TSO case.
1195 		 */
1196 		tcp_skb_pcount_set(skb, 1);
1197 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1198 	} else {
1199 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1200 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1201 	}
1202 }
1203 
1204 /* Pcount in the middle of the write queue got changed, we need to do various
1205  * tweaks to fix counters
1206  */
1207 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1208 {
1209 	struct tcp_sock *tp = tcp_sk(sk);
1210 
1211 	tp->packets_out -= decr;
1212 
1213 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1214 		tp->sacked_out -= decr;
1215 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1216 		tp->retrans_out -= decr;
1217 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1218 		tp->lost_out -= decr;
1219 
1220 	/* Reno case is special. Sigh... */
1221 	if (tcp_is_reno(tp) && decr > 0)
1222 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1223 
1224 	if (tp->lost_skb_hint &&
1225 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1226 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1227 		tp->lost_cnt_hint -= decr;
1228 
1229 	tcp_verify_left_out(tp);
1230 }
1231 
1232 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1233 {
1234 	return TCP_SKB_CB(skb)->txstamp_ack ||
1235 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1236 }
1237 
1238 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1239 {
1240 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1241 
1242 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1243 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1244 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1245 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1246 
1247 		shinfo->tx_flags &= ~tsflags;
1248 		shinfo2->tx_flags |= tsflags;
1249 		swap(shinfo->tskey, shinfo2->tskey);
1250 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1251 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1252 	}
1253 }
1254 
1255 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1256 {
1257 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1258 	TCP_SKB_CB(skb)->eor = 0;
1259 }
1260 
1261 /* Insert buff after skb on the write or rtx queue of sk.  */
1262 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1263 					 struct sk_buff *buff,
1264 					 struct sock *sk,
1265 					 enum tcp_queue tcp_queue)
1266 {
1267 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1268 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1269 	else
1270 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1271 }
1272 
1273 /* Function to create two new TCP segments.  Shrinks the given segment
1274  * to the specified size and appends a new segment with the rest of the
1275  * packet to the list.  This won't be called frequently, I hope.
1276  * Remember, these are still headerless SKBs at this point.
1277  */
1278 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1279 		 struct sk_buff *skb, u32 len,
1280 		 unsigned int mss_now, gfp_t gfp)
1281 {
1282 	struct tcp_sock *tp = tcp_sk(sk);
1283 	struct sk_buff *buff;
1284 	int nsize, old_factor;
1285 	int nlen;
1286 	u8 flags;
1287 
1288 	if (WARN_ON(len > skb->len))
1289 		return -EINVAL;
1290 
1291 	nsize = skb_headlen(skb) - len;
1292 	if (nsize < 0)
1293 		nsize = 0;
1294 
1295 	if (skb_unclone(skb, gfp))
1296 		return -ENOMEM;
1297 
1298 	/* Get a new skb... force flag on. */
1299 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1300 	if (!buff)
1301 		return -ENOMEM; /* We'll just try again later. */
1302 
1303 	sk->sk_wmem_queued += buff->truesize;
1304 	sk_mem_charge(sk, buff->truesize);
1305 	nlen = skb->len - len - nsize;
1306 	buff->truesize += nlen;
1307 	skb->truesize -= nlen;
1308 
1309 	/* Correct the sequence numbers. */
1310 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1311 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1312 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1313 
1314 	/* PSH and FIN should only be set in the second packet. */
1315 	flags = TCP_SKB_CB(skb)->tcp_flags;
1316 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1317 	TCP_SKB_CB(buff)->tcp_flags = flags;
1318 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1319 	tcp_skb_fragment_eor(skb, buff);
1320 
1321 	skb_split(skb, buff, len);
1322 
1323 	buff->ip_summed = CHECKSUM_PARTIAL;
1324 
1325 	buff->tstamp = skb->tstamp;
1326 	tcp_fragment_tstamp(skb, buff);
1327 
1328 	old_factor = tcp_skb_pcount(skb);
1329 
1330 	/* Fix up tso_factor for both original and new SKB.  */
1331 	tcp_set_skb_tso_segs(skb, mss_now);
1332 	tcp_set_skb_tso_segs(buff, mss_now);
1333 
1334 	/* Update delivered info for the new segment */
1335 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1336 
1337 	/* If this packet has been sent out already, we must
1338 	 * adjust the various packet counters.
1339 	 */
1340 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1341 		int diff = old_factor - tcp_skb_pcount(skb) -
1342 			tcp_skb_pcount(buff);
1343 
1344 		if (diff)
1345 			tcp_adjust_pcount(sk, skb, diff);
1346 	}
1347 
1348 	/* Link BUFF into the send queue. */
1349 	__skb_header_release(buff);
1350 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1351 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1352 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1353 
1354 	return 0;
1355 }
1356 
1357 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1358  * data is not copied, but immediately discarded.
1359  */
1360 static int __pskb_trim_head(struct sk_buff *skb, int len)
1361 {
1362 	struct skb_shared_info *shinfo;
1363 	int i, k, eat;
1364 
1365 	eat = min_t(int, len, skb_headlen(skb));
1366 	if (eat) {
1367 		__skb_pull(skb, eat);
1368 		len -= eat;
1369 		if (!len)
1370 			return 0;
1371 	}
1372 	eat = len;
1373 	k = 0;
1374 	shinfo = skb_shinfo(skb);
1375 	for (i = 0; i < shinfo->nr_frags; i++) {
1376 		int size = skb_frag_size(&shinfo->frags[i]);
1377 
1378 		if (size <= eat) {
1379 			skb_frag_unref(skb, i);
1380 			eat -= size;
1381 		} else {
1382 			shinfo->frags[k] = shinfo->frags[i];
1383 			if (eat) {
1384 				shinfo->frags[k].page_offset += eat;
1385 				skb_frag_size_sub(&shinfo->frags[k], eat);
1386 				eat = 0;
1387 			}
1388 			k++;
1389 		}
1390 	}
1391 	shinfo->nr_frags = k;
1392 
1393 	skb->data_len -= len;
1394 	skb->len = skb->data_len;
1395 	return len;
1396 }
1397 
1398 /* Remove acked data from a packet in the transmit queue. */
1399 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1400 {
1401 	u32 delta_truesize;
1402 
1403 	if (skb_unclone(skb, GFP_ATOMIC))
1404 		return -ENOMEM;
1405 
1406 	delta_truesize = __pskb_trim_head(skb, len);
1407 
1408 	TCP_SKB_CB(skb)->seq += len;
1409 	skb->ip_summed = CHECKSUM_PARTIAL;
1410 
1411 	if (delta_truesize) {
1412 		skb->truesize	   -= delta_truesize;
1413 		sk->sk_wmem_queued -= delta_truesize;
1414 		sk_mem_uncharge(sk, delta_truesize);
1415 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1416 	}
1417 
1418 	/* Any change of skb->len requires recalculation of tso factor. */
1419 	if (tcp_skb_pcount(skb) > 1)
1420 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1421 
1422 	return 0;
1423 }
1424 
1425 /* Calculate MSS not accounting any TCP options.  */
1426 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1427 {
1428 	const struct tcp_sock *tp = tcp_sk(sk);
1429 	const struct inet_connection_sock *icsk = inet_csk(sk);
1430 	int mss_now;
1431 
1432 	/* Calculate base mss without TCP options:
1433 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1434 	 */
1435 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1436 
1437 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1438 	if (icsk->icsk_af_ops->net_frag_header_len) {
1439 		const struct dst_entry *dst = __sk_dst_get(sk);
1440 
1441 		if (dst && dst_allfrag(dst))
1442 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1443 	}
1444 
1445 	/* Clamp it (mss_clamp does not include tcp options) */
1446 	if (mss_now > tp->rx_opt.mss_clamp)
1447 		mss_now = tp->rx_opt.mss_clamp;
1448 
1449 	/* Now subtract optional transport overhead */
1450 	mss_now -= icsk->icsk_ext_hdr_len;
1451 
1452 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1453 	if (mss_now < 48)
1454 		mss_now = 48;
1455 	return mss_now;
1456 }
1457 
1458 /* Calculate MSS. Not accounting for SACKs here.  */
1459 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1460 {
1461 	/* Subtract TCP options size, not including SACKs */
1462 	return __tcp_mtu_to_mss(sk, pmtu) -
1463 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1464 }
1465 
1466 /* Inverse of above */
1467 int tcp_mss_to_mtu(struct sock *sk, int mss)
1468 {
1469 	const struct tcp_sock *tp = tcp_sk(sk);
1470 	const struct inet_connection_sock *icsk = inet_csk(sk);
1471 	int mtu;
1472 
1473 	mtu = mss +
1474 	      tp->tcp_header_len +
1475 	      icsk->icsk_ext_hdr_len +
1476 	      icsk->icsk_af_ops->net_header_len;
1477 
1478 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1479 	if (icsk->icsk_af_ops->net_frag_header_len) {
1480 		const struct dst_entry *dst = __sk_dst_get(sk);
1481 
1482 		if (dst && dst_allfrag(dst))
1483 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1484 	}
1485 	return mtu;
1486 }
1487 EXPORT_SYMBOL(tcp_mss_to_mtu);
1488 
1489 /* MTU probing init per socket */
1490 void tcp_mtup_init(struct sock *sk)
1491 {
1492 	struct tcp_sock *tp = tcp_sk(sk);
1493 	struct inet_connection_sock *icsk = inet_csk(sk);
1494 	struct net *net = sock_net(sk);
1495 
1496 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1497 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1498 			       icsk->icsk_af_ops->net_header_len;
1499 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1500 	icsk->icsk_mtup.probe_size = 0;
1501 	if (icsk->icsk_mtup.enabled)
1502 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1503 }
1504 EXPORT_SYMBOL(tcp_mtup_init);
1505 
1506 /* This function synchronize snd mss to current pmtu/exthdr set.
1507 
1508    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1509    for TCP options, but includes only bare TCP header.
1510 
1511    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1512    It is minimum of user_mss and mss received with SYN.
1513    It also does not include TCP options.
1514 
1515    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1516 
1517    tp->mss_cache is current effective sending mss, including
1518    all tcp options except for SACKs. It is evaluated,
1519    taking into account current pmtu, but never exceeds
1520    tp->rx_opt.mss_clamp.
1521 
1522    NOTE1. rfc1122 clearly states that advertised MSS
1523    DOES NOT include either tcp or ip options.
1524 
1525    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1526    are READ ONLY outside this function.		--ANK (980731)
1527  */
1528 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1529 {
1530 	struct tcp_sock *tp = tcp_sk(sk);
1531 	struct inet_connection_sock *icsk = inet_csk(sk);
1532 	int mss_now;
1533 
1534 	if (icsk->icsk_mtup.search_high > pmtu)
1535 		icsk->icsk_mtup.search_high = pmtu;
1536 
1537 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1538 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1539 
1540 	/* And store cached results */
1541 	icsk->icsk_pmtu_cookie = pmtu;
1542 	if (icsk->icsk_mtup.enabled)
1543 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1544 	tp->mss_cache = mss_now;
1545 
1546 	return mss_now;
1547 }
1548 EXPORT_SYMBOL(tcp_sync_mss);
1549 
1550 /* Compute the current effective MSS, taking SACKs and IP options,
1551  * and even PMTU discovery events into account.
1552  */
1553 unsigned int tcp_current_mss(struct sock *sk)
1554 {
1555 	const struct tcp_sock *tp = tcp_sk(sk);
1556 	const struct dst_entry *dst = __sk_dst_get(sk);
1557 	u32 mss_now;
1558 	unsigned int header_len;
1559 	struct tcp_out_options opts;
1560 	struct tcp_md5sig_key *md5;
1561 
1562 	mss_now = tp->mss_cache;
1563 
1564 	if (dst) {
1565 		u32 mtu = dst_mtu(dst);
1566 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1567 			mss_now = tcp_sync_mss(sk, mtu);
1568 	}
1569 
1570 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1571 		     sizeof(struct tcphdr);
1572 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1573 	 * some common options. If this is an odd packet (because we have SACK
1574 	 * blocks etc) then our calculated header_len will be different, and
1575 	 * we have to adjust mss_now correspondingly */
1576 	if (header_len != tp->tcp_header_len) {
1577 		int delta = (int) header_len - tp->tcp_header_len;
1578 		mss_now -= delta;
1579 	}
1580 
1581 	return mss_now;
1582 }
1583 
1584 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1585  * As additional protections, we do not touch cwnd in retransmission phases,
1586  * and if application hit its sndbuf limit recently.
1587  */
1588 static void tcp_cwnd_application_limited(struct sock *sk)
1589 {
1590 	struct tcp_sock *tp = tcp_sk(sk);
1591 
1592 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1593 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1594 		/* Limited by application or receiver window. */
1595 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1596 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1597 		if (win_used < tp->snd_cwnd) {
1598 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1599 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1600 		}
1601 		tp->snd_cwnd_used = 0;
1602 	}
1603 	tp->snd_cwnd_stamp = tcp_jiffies32;
1604 }
1605 
1606 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1607 {
1608 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1609 	struct tcp_sock *tp = tcp_sk(sk);
1610 
1611 	/* Track the maximum number of outstanding packets in each
1612 	 * window, and remember whether we were cwnd-limited then.
1613 	 */
1614 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1615 	    tp->packets_out > tp->max_packets_out) {
1616 		tp->max_packets_out = tp->packets_out;
1617 		tp->max_packets_seq = tp->snd_nxt;
1618 		tp->is_cwnd_limited = is_cwnd_limited;
1619 	}
1620 
1621 	if (tcp_is_cwnd_limited(sk)) {
1622 		/* Network is feed fully. */
1623 		tp->snd_cwnd_used = 0;
1624 		tp->snd_cwnd_stamp = tcp_jiffies32;
1625 	} else {
1626 		/* Network starves. */
1627 		if (tp->packets_out > tp->snd_cwnd_used)
1628 			tp->snd_cwnd_used = tp->packets_out;
1629 
1630 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1631 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1632 		    !ca_ops->cong_control)
1633 			tcp_cwnd_application_limited(sk);
1634 
1635 		/* The following conditions together indicate the starvation
1636 		 * is caused by insufficient sender buffer:
1637 		 * 1) just sent some data (see tcp_write_xmit)
1638 		 * 2) not cwnd limited (this else condition)
1639 		 * 3) no more data to send (tcp_write_queue_empty())
1640 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1641 		 */
1642 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1643 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1644 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1645 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1646 	}
1647 }
1648 
1649 /* Minshall's variant of the Nagle send check. */
1650 static bool tcp_minshall_check(const struct tcp_sock *tp)
1651 {
1652 	return after(tp->snd_sml, tp->snd_una) &&
1653 		!after(tp->snd_sml, tp->snd_nxt);
1654 }
1655 
1656 /* Update snd_sml if this skb is under mss
1657  * Note that a TSO packet might end with a sub-mss segment
1658  * The test is really :
1659  * if ((skb->len % mss) != 0)
1660  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1661  * But we can avoid doing the divide again given we already have
1662  *  skb_pcount = skb->len / mss_now
1663  */
1664 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1665 				const struct sk_buff *skb)
1666 {
1667 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1668 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1669 }
1670 
1671 /* Return false, if packet can be sent now without violation Nagle's rules:
1672  * 1. It is full sized. (provided by caller in %partial bool)
1673  * 2. Or it contains FIN. (already checked by caller)
1674  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1675  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1676  *    With Minshall's modification: all sent small packets are ACKed.
1677  */
1678 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1679 			    int nonagle)
1680 {
1681 	return partial &&
1682 		((nonagle & TCP_NAGLE_CORK) ||
1683 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1684 }
1685 
1686 /* Return how many segs we'd like on a TSO packet,
1687  * to send one TSO packet per ms
1688  */
1689 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1690 			    int min_tso_segs)
1691 {
1692 	u32 bytes, segs;
1693 
1694 	bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1695 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1696 
1697 	/* Goal is to send at least one packet per ms,
1698 	 * not one big TSO packet every 100 ms.
1699 	 * This preserves ACK clocking and is consistent
1700 	 * with tcp_tso_should_defer() heuristic.
1701 	 */
1702 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1703 
1704 	return segs;
1705 }
1706 
1707 /* Return the number of segments we want in the skb we are transmitting.
1708  * See if congestion control module wants to decide; otherwise, autosize.
1709  */
1710 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1711 {
1712 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1713 	u32 min_tso, tso_segs;
1714 
1715 	min_tso = ca_ops->min_tso_segs ?
1716 			ca_ops->min_tso_segs(sk) :
1717 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1718 
1719 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1720 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1721 }
1722 
1723 /* Returns the portion of skb which can be sent right away */
1724 static unsigned int tcp_mss_split_point(const struct sock *sk,
1725 					const struct sk_buff *skb,
1726 					unsigned int mss_now,
1727 					unsigned int max_segs,
1728 					int nonagle)
1729 {
1730 	const struct tcp_sock *tp = tcp_sk(sk);
1731 	u32 partial, needed, window, max_len;
1732 
1733 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1734 	max_len = mss_now * max_segs;
1735 
1736 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1737 		return max_len;
1738 
1739 	needed = min(skb->len, window);
1740 
1741 	if (max_len <= needed)
1742 		return max_len;
1743 
1744 	partial = needed % mss_now;
1745 	/* If last segment is not a full MSS, check if Nagle rules allow us
1746 	 * to include this last segment in this skb.
1747 	 * Otherwise, we'll split the skb at last MSS boundary
1748 	 */
1749 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1750 		return needed - partial;
1751 
1752 	return needed;
1753 }
1754 
1755 /* Can at least one segment of SKB be sent right now, according to the
1756  * congestion window rules?  If so, return how many segments are allowed.
1757  */
1758 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1759 					 const struct sk_buff *skb)
1760 {
1761 	u32 in_flight, cwnd, halfcwnd;
1762 
1763 	/* Don't be strict about the congestion window for the final FIN.  */
1764 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1765 	    tcp_skb_pcount(skb) == 1)
1766 		return 1;
1767 
1768 	in_flight = tcp_packets_in_flight(tp);
1769 	cwnd = tp->snd_cwnd;
1770 	if (in_flight >= cwnd)
1771 		return 0;
1772 
1773 	/* For better scheduling, ensure we have at least
1774 	 * 2 GSO packets in flight.
1775 	 */
1776 	halfcwnd = max(cwnd >> 1, 1U);
1777 	return min(halfcwnd, cwnd - in_flight);
1778 }
1779 
1780 /* Initialize TSO state of a skb.
1781  * This must be invoked the first time we consider transmitting
1782  * SKB onto the wire.
1783  */
1784 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1785 {
1786 	int tso_segs = tcp_skb_pcount(skb);
1787 
1788 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1789 		tcp_set_skb_tso_segs(skb, mss_now);
1790 		tso_segs = tcp_skb_pcount(skb);
1791 	}
1792 	return tso_segs;
1793 }
1794 
1795 
1796 /* Return true if the Nagle test allows this packet to be
1797  * sent now.
1798  */
1799 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1800 				  unsigned int cur_mss, int nonagle)
1801 {
1802 	/* Nagle rule does not apply to frames, which sit in the middle of the
1803 	 * write_queue (they have no chances to get new data).
1804 	 *
1805 	 * This is implemented in the callers, where they modify the 'nonagle'
1806 	 * argument based upon the location of SKB in the send queue.
1807 	 */
1808 	if (nonagle & TCP_NAGLE_PUSH)
1809 		return true;
1810 
1811 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1812 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1813 		return true;
1814 
1815 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1816 		return true;
1817 
1818 	return false;
1819 }
1820 
1821 /* Does at least the first segment of SKB fit into the send window? */
1822 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1823 			     const struct sk_buff *skb,
1824 			     unsigned int cur_mss)
1825 {
1826 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1827 
1828 	if (skb->len > cur_mss)
1829 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1830 
1831 	return !after(end_seq, tcp_wnd_end(tp));
1832 }
1833 
1834 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1835  * which is put after SKB on the list.  It is very much like
1836  * tcp_fragment() except that it may make several kinds of assumptions
1837  * in order to speed up the splitting operation.  In particular, we
1838  * know that all the data is in scatter-gather pages, and that the
1839  * packet has never been sent out before (and thus is not cloned).
1840  */
1841 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1842 			struct sk_buff *skb, unsigned int len,
1843 			unsigned int mss_now, gfp_t gfp)
1844 {
1845 	struct sk_buff *buff;
1846 	int nlen = skb->len - len;
1847 	u8 flags;
1848 
1849 	/* All of a TSO frame must be composed of paged data.  */
1850 	if (skb->len != skb->data_len)
1851 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1852 
1853 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1854 	if (unlikely(!buff))
1855 		return -ENOMEM;
1856 
1857 	sk->sk_wmem_queued += buff->truesize;
1858 	sk_mem_charge(sk, buff->truesize);
1859 	buff->truesize += nlen;
1860 	skb->truesize -= nlen;
1861 
1862 	/* Correct the sequence numbers. */
1863 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1864 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1865 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1866 
1867 	/* PSH and FIN should only be set in the second packet. */
1868 	flags = TCP_SKB_CB(skb)->tcp_flags;
1869 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1870 	TCP_SKB_CB(buff)->tcp_flags = flags;
1871 
1872 	/* This packet was never sent out yet, so no SACK bits. */
1873 	TCP_SKB_CB(buff)->sacked = 0;
1874 
1875 	tcp_skb_fragment_eor(skb, buff);
1876 
1877 	buff->ip_summed = CHECKSUM_PARTIAL;
1878 	skb_split(skb, buff, len);
1879 	tcp_fragment_tstamp(skb, buff);
1880 
1881 	/* Fix up tso_factor for both original and new SKB.  */
1882 	tcp_set_skb_tso_segs(skb, mss_now);
1883 	tcp_set_skb_tso_segs(buff, mss_now);
1884 
1885 	/* Link BUFF into the send queue. */
1886 	__skb_header_release(buff);
1887 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1888 
1889 	return 0;
1890 }
1891 
1892 /* Try to defer sending, if possible, in order to minimize the amount
1893  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1894  *
1895  * This algorithm is from John Heffner.
1896  */
1897 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1898 				 bool *is_cwnd_limited, u32 max_segs)
1899 {
1900 	const struct inet_connection_sock *icsk = inet_csk(sk);
1901 	u32 age, send_win, cong_win, limit, in_flight;
1902 	struct tcp_sock *tp = tcp_sk(sk);
1903 	struct sk_buff *head;
1904 	int win_divisor;
1905 
1906 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1907 		goto send_now;
1908 
1909 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1910 		goto send_now;
1911 
1912 	/* Avoid bursty behavior by allowing defer
1913 	 * only if the last write was recent.
1914 	 */
1915 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1916 		goto send_now;
1917 
1918 	in_flight = tcp_packets_in_flight(tp);
1919 
1920 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1921 	BUG_ON(tp->snd_cwnd <= in_flight);
1922 
1923 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1924 
1925 	/* From in_flight test above, we know that cwnd > in_flight.  */
1926 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1927 
1928 	limit = min(send_win, cong_win);
1929 
1930 	/* If a full-sized TSO skb can be sent, do it. */
1931 	if (limit >= max_segs * tp->mss_cache)
1932 		goto send_now;
1933 
1934 	/* Middle in queue won't get any more data, full sendable already? */
1935 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1936 		goto send_now;
1937 
1938 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1939 	if (win_divisor) {
1940 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1941 
1942 		/* If at least some fraction of a window is available,
1943 		 * just use it.
1944 		 */
1945 		chunk /= win_divisor;
1946 		if (limit >= chunk)
1947 			goto send_now;
1948 	} else {
1949 		/* Different approach, try not to defer past a single
1950 		 * ACK.  Receiver should ACK every other full sized
1951 		 * frame, so if we have space for more than 3 frames
1952 		 * then send now.
1953 		 */
1954 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1955 			goto send_now;
1956 	}
1957 
1958 	/* TODO : use tsorted_sent_queue ? */
1959 	head = tcp_rtx_queue_head(sk);
1960 	if (!head)
1961 		goto send_now;
1962 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1963 	/* If next ACK is likely to come too late (half srtt), do not defer */
1964 	if (age < (tp->srtt_us >> 4))
1965 		goto send_now;
1966 
1967 	/* Ok, it looks like it is advisable to defer. */
1968 
1969 	if (cong_win < send_win && cong_win <= skb->len)
1970 		*is_cwnd_limited = true;
1971 
1972 	return true;
1973 
1974 send_now:
1975 	return false;
1976 }
1977 
1978 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1979 {
1980 	struct inet_connection_sock *icsk = inet_csk(sk);
1981 	struct tcp_sock *tp = tcp_sk(sk);
1982 	struct net *net = sock_net(sk);
1983 	u32 interval;
1984 	s32 delta;
1985 
1986 	interval = net->ipv4.sysctl_tcp_probe_interval;
1987 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1988 	if (unlikely(delta >= interval * HZ)) {
1989 		int mss = tcp_current_mss(sk);
1990 
1991 		/* Update current search range */
1992 		icsk->icsk_mtup.probe_size = 0;
1993 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1994 			sizeof(struct tcphdr) +
1995 			icsk->icsk_af_ops->net_header_len;
1996 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1997 
1998 		/* Update probe time stamp */
1999 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2000 	}
2001 }
2002 
2003 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2004 {
2005 	struct sk_buff *skb, *next;
2006 
2007 	skb = tcp_send_head(sk);
2008 	tcp_for_write_queue_from_safe(skb, next, sk) {
2009 		if (len <= skb->len)
2010 			break;
2011 
2012 		if (unlikely(TCP_SKB_CB(skb)->eor))
2013 			return false;
2014 
2015 		len -= skb->len;
2016 	}
2017 
2018 	return true;
2019 }
2020 
2021 /* Create a new MTU probe if we are ready.
2022  * MTU probe is regularly attempting to increase the path MTU by
2023  * deliberately sending larger packets.  This discovers routing
2024  * changes resulting in larger path MTUs.
2025  *
2026  * Returns 0 if we should wait to probe (no cwnd available),
2027  *         1 if a probe was sent,
2028  *         -1 otherwise
2029  */
2030 static int tcp_mtu_probe(struct sock *sk)
2031 {
2032 	struct inet_connection_sock *icsk = inet_csk(sk);
2033 	struct tcp_sock *tp = tcp_sk(sk);
2034 	struct sk_buff *skb, *nskb, *next;
2035 	struct net *net = sock_net(sk);
2036 	int probe_size;
2037 	int size_needed;
2038 	int copy, len;
2039 	int mss_now;
2040 	int interval;
2041 
2042 	/* Not currently probing/verifying,
2043 	 * not in recovery,
2044 	 * have enough cwnd, and
2045 	 * not SACKing (the variable headers throw things off)
2046 	 */
2047 	if (likely(!icsk->icsk_mtup.enabled ||
2048 		   icsk->icsk_mtup.probe_size ||
2049 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2050 		   tp->snd_cwnd < 11 ||
2051 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2052 		return -1;
2053 
2054 	/* Use binary search for probe_size between tcp_mss_base,
2055 	 * and current mss_clamp. if (search_high - search_low)
2056 	 * smaller than a threshold, backoff from probing.
2057 	 */
2058 	mss_now = tcp_current_mss(sk);
2059 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2060 				    icsk->icsk_mtup.search_low) >> 1);
2061 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2062 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2063 	/* When misfortune happens, we are reprobing actively,
2064 	 * and then reprobe timer has expired. We stick with current
2065 	 * probing process by not resetting search range to its orignal.
2066 	 */
2067 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2068 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2069 		/* Check whether enough time has elaplased for
2070 		 * another round of probing.
2071 		 */
2072 		tcp_mtu_check_reprobe(sk);
2073 		return -1;
2074 	}
2075 
2076 	/* Have enough data in the send queue to probe? */
2077 	if (tp->write_seq - tp->snd_nxt < size_needed)
2078 		return -1;
2079 
2080 	if (tp->snd_wnd < size_needed)
2081 		return -1;
2082 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2083 		return 0;
2084 
2085 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2086 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2087 		if (!tcp_packets_in_flight(tp))
2088 			return -1;
2089 		else
2090 			return 0;
2091 	}
2092 
2093 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2094 		return -1;
2095 
2096 	/* We're allowed to probe.  Build it now. */
2097 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2098 	if (!nskb)
2099 		return -1;
2100 	sk->sk_wmem_queued += nskb->truesize;
2101 	sk_mem_charge(sk, nskb->truesize);
2102 
2103 	skb = tcp_send_head(sk);
2104 
2105 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2106 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2107 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2108 	TCP_SKB_CB(nskb)->sacked = 0;
2109 	nskb->csum = 0;
2110 	nskb->ip_summed = CHECKSUM_PARTIAL;
2111 
2112 	tcp_insert_write_queue_before(nskb, skb, sk);
2113 	tcp_highest_sack_replace(sk, skb, nskb);
2114 
2115 	len = 0;
2116 	tcp_for_write_queue_from_safe(skb, next, sk) {
2117 		copy = min_t(int, skb->len, probe_size - len);
2118 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2119 
2120 		if (skb->len <= copy) {
2121 			/* We've eaten all the data from this skb.
2122 			 * Throw it away. */
2123 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2124 			/* If this is the last SKB we copy and eor is set
2125 			 * we need to propagate it to the new skb.
2126 			 */
2127 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2128 			tcp_unlink_write_queue(skb, sk);
2129 			sk_wmem_free_skb(sk, skb);
2130 		} else {
2131 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2132 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2133 			if (!skb_shinfo(skb)->nr_frags) {
2134 				skb_pull(skb, copy);
2135 			} else {
2136 				__pskb_trim_head(skb, copy);
2137 				tcp_set_skb_tso_segs(skb, mss_now);
2138 			}
2139 			TCP_SKB_CB(skb)->seq += copy;
2140 		}
2141 
2142 		len += copy;
2143 
2144 		if (len >= probe_size)
2145 			break;
2146 	}
2147 	tcp_init_tso_segs(nskb, nskb->len);
2148 
2149 	/* We're ready to send.  If this fails, the probe will
2150 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2151 	 */
2152 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2153 		/* Decrement cwnd here because we are sending
2154 		 * effectively two packets. */
2155 		tp->snd_cwnd--;
2156 		tcp_event_new_data_sent(sk, nskb);
2157 
2158 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2159 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2160 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2161 
2162 		return 1;
2163 	}
2164 
2165 	return -1;
2166 }
2167 
2168 static bool tcp_pacing_check(const struct sock *sk)
2169 {
2170 	return tcp_needs_internal_pacing(sk) &&
2171 	       hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
2172 }
2173 
2174 /* TCP Small Queues :
2175  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2176  * (These limits are doubled for retransmits)
2177  * This allows for :
2178  *  - better RTT estimation and ACK scheduling
2179  *  - faster recovery
2180  *  - high rates
2181  * Alas, some drivers / subsystems require a fair amount
2182  * of queued bytes to ensure line rate.
2183  * One example is wifi aggregation (802.11 AMPDU)
2184  */
2185 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2186 				  unsigned int factor)
2187 {
2188 	unsigned int limit;
2189 
2190 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2191 	limit = min_t(u32, limit,
2192 		      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2193 	limit <<= factor;
2194 
2195 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2196 		/* Always send skb if rtx queue is empty.
2197 		 * No need to wait for TX completion to call us back,
2198 		 * after softirq/tasklet schedule.
2199 		 * This helps when TX completions are delayed too much.
2200 		 */
2201 		if (tcp_rtx_queue_empty(sk))
2202 			return false;
2203 
2204 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2205 		/* It is possible TX completion already happened
2206 		 * before we set TSQ_THROTTLED, so we must
2207 		 * test again the condition.
2208 		 */
2209 		smp_mb__after_atomic();
2210 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2211 			return true;
2212 	}
2213 	return false;
2214 }
2215 
2216 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2217 {
2218 	const u32 now = tcp_jiffies32;
2219 	enum tcp_chrono old = tp->chrono_type;
2220 
2221 	if (old > TCP_CHRONO_UNSPEC)
2222 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2223 	tp->chrono_start = now;
2224 	tp->chrono_type = new;
2225 }
2226 
2227 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2228 {
2229 	struct tcp_sock *tp = tcp_sk(sk);
2230 
2231 	/* If there are multiple conditions worthy of tracking in a
2232 	 * chronograph then the highest priority enum takes precedence
2233 	 * over the other conditions. So that if something "more interesting"
2234 	 * starts happening, stop the previous chrono and start a new one.
2235 	 */
2236 	if (type > tp->chrono_type)
2237 		tcp_chrono_set(tp, type);
2238 }
2239 
2240 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2241 {
2242 	struct tcp_sock *tp = tcp_sk(sk);
2243 
2244 
2245 	/* There are multiple conditions worthy of tracking in a
2246 	 * chronograph, so that the highest priority enum takes
2247 	 * precedence over the other conditions (see tcp_chrono_start).
2248 	 * If a condition stops, we only stop chrono tracking if
2249 	 * it's the "most interesting" or current chrono we are
2250 	 * tracking and starts busy chrono if we have pending data.
2251 	 */
2252 	if (tcp_rtx_and_write_queues_empty(sk))
2253 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2254 	else if (type == tp->chrono_type)
2255 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2256 }
2257 
2258 /* This routine writes packets to the network.  It advances the
2259  * send_head.  This happens as incoming acks open up the remote
2260  * window for us.
2261  *
2262  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2263  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2264  * account rare use of URG, this is not a big flaw.
2265  *
2266  * Send at most one packet when push_one > 0. Temporarily ignore
2267  * cwnd limit to force at most one packet out when push_one == 2.
2268 
2269  * Returns true, if no segments are in flight and we have queued segments,
2270  * but cannot send anything now because of SWS or another problem.
2271  */
2272 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2273 			   int push_one, gfp_t gfp)
2274 {
2275 	struct tcp_sock *tp = tcp_sk(sk);
2276 	struct sk_buff *skb;
2277 	unsigned int tso_segs, sent_pkts;
2278 	int cwnd_quota;
2279 	int result;
2280 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2281 	u32 max_segs;
2282 
2283 	sent_pkts = 0;
2284 
2285 	tcp_mstamp_refresh(tp);
2286 	if (!push_one) {
2287 		/* Do MTU probing. */
2288 		result = tcp_mtu_probe(sk);
2289 		if (!result) {
2290 			return false;
2291 		} else if (result > 0) {
2292 			sent_pkts = 1;
2293 		}
2294 	}
2295 
2296 	max_segs = tcp_tso_segs(sk, mss_now);
2297 	while ((skb = tcp_send_head(sk))) {
2298 		unsigned int limit;
2299 
2300 		if (tcp_pacing_check(sk))
2301 			break;
2302 
2303 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2304 		BUG_ON(!tso_segs);
2305 
2306 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2307 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2308 			tcp_update_skb_after_send(tp, skb);
2309 			goto repair; /* Skip network transmission */
2310 		}
2311 
2312 		cwnd_quota = tcp_cwnd_test(tp, skb);
2313 		if (!cwnd_quota) {
2314 			if (push_one == 2)
2315 				/* Force out a loss probe pkt. */
2316 				cwnd_quota = 1;
2317 			else
2318 				break;
2319 		}
2320 
2321 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2322 			is_rwnd_limited = true;
2323 			break;
2324 		}
2325 
2326 		if (tso_segs == 1) {
2327 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2328 						     (tcp_skb_is_last(sk, skb) ?
2329 						      nonagle : TCP_NAGLE_PUSH))))
2330 				break;
2331 		} else {
2332 			if (!push_one &&
2333 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2334 						 max_segs))
2335 				break;
2336 		}
2337 
2338 		limit = mss_now;
2339 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2340 			limit = tcp_mss_split_point(sk, skb, mss_now,
2341 						    min_t(unsigned int,
2342 							  cwnd_quota,
2343 							  max_segs),
2344 						    nonagle);
2345 
2346 		if (skb->len > limit &&
2347 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2348 					  skb, limit, mss_now, gfp)))
2349 			break;
2350 
2351 		if (tcp_small_queue_check(sk, skb, 0))
2352 			break;
2353 
2354 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2355 			break;
2356 
2357 repair:
2358 		/* Advance the send_head.  This one is sent out.
2359 		 * This call will increment packets_out.
2360 		 */
2361 		tcp_event_new_data_sent(sk, skb);
2362 
2363 		tcp_minshall_update(tp, mss_now, skb);
2364 		sent_pkts += tcp_skb_pcount(skb);
2365 
2366 		if (push_one)
2367 			break;
2368 	}
2369 
2370 	if (is_rwnd_limited)
2371 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2372 	else
2373 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2374 
2375 	if (likely(sent_pkts)) {
2376 		if (tcp_in_cwnd_reduction(sk))
2377 			tp->prr_out += sent_pkts;
2378 
2379 		/* Send one loss probe per tail loss episode. */
2380 		if (push_one != 2)
2381 			tcp_schedule_loss_probe(sk, false);
2382 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2383 		tcp_cwnd_validate(sk, is_cwnd_limited);
2384 		return false;
2385 	}
2386 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2387 }
2388 
2389 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2390 {
2391 	struct inet_connection_sock *icsk = inet_csk(sk);
2392 	struct tcp_sock *tp = tcp_sk(sk);
2393 	u32 timeout, rto_delta_us;
2394 	int early_retrans;
2395 
2396 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2397 	 * finishes.
2398 	 */
2399 	if (tp->fastopen_rsk)
2400 		return false;
2401 
2402 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2403 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2404 	 * not in loss recovery, that are either limited by cwnd or application.
2405 	 */
2406 	if ((early_retrans != 3 && early_retrans != 4) ||
2407 	    !tp->packets_out || !tcp_is_sack(tp) ||
2408 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2409 	     icsk->icsk_ca_state != TCP_CA_CWR))
2410 		return false;
2411 
2412 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2413 	 * for delayed ack when there's one outstanding packet. If no RTT
2414 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2415 	 */
2416 	if (tp->srtt_us) {
2417 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2418 		if (tp->packets_out == 1)
2419 			timeout += TCP_RTO_MIN;
2420 		else
2421 			timeout += TCP_TIMEOUT_MIN;
2422 	} else {
2423 		timeout = TCP_TIMEOUT_INIT;
2424 	}
2425 
2426 	/* If the RTO formula yields an earlier time, then use that time. */
2427 	rto_delta_us = advancing_rto ?
2428 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2429 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2430 	if (rto_delta_us > 0)
2431 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2432 
2433 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2434 				  TCP_RTO_MAX);
2435 	return true;
2436 }
2437 
2438 /* Thanks to skb fast clones, we can detect if a prior transmit of
2439  * a packet is still in a qdisc or driver queue.
2440  * In this case, there is very little point doing a retransmit !
2441  */
2442 static bool skb_still_in_host_queue(const struct sock *sk,
2443 				    const struct sk_buff *skb)
2444 {
2445 	if (unlikely(skb_fclone_busy(sk, skb))) {
2446 		NET_INC_STATS(sock_net(sk),
2447 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2448 		return true;
2449 	}
2450 	return false;
2451 }
2452 
2453 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2454  * retransmit the last segment.
2455  */
2456 void tcp_send_loss_probe(struct sock *sk)
2457 {
2458 	struct tcp_sock *tp = tcp_sk(sk);
2459 	struct sk_buff *skb;
2460 	int pcount;
2461 	int mss = tcp_current_mss(sk);
2462 
2463 	skb = tcp_send_head(sk);
2464 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2465 		pcount = tp->packets_out;
2466 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2467 		if (tp->packets_out > pcount)
2468 			goto probe_sent;
2469 		goto rearm_timer;
2470 	}
2471 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2472 
2473 	/* At most one outstanding TLP retransmission. */
2474 	if (tp->tlp_high_seq)
2475 		goto rearm_timer;
2476 
2477 	/* Retransmit last segment. */
2478 	if (WARN_ON(!skb))
2479 		goto rearm_timer;
2480 
2481 	if (skb_still_in_host_queue(sk, skb))
2482 		goto rearm_timer;
2483 
2484 	pcount = tcp_skb_pcount(skb);
2485 	if (WARN_ON(!pcount))
2486 		goto rearm_timer;
2487 
2488 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2489 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2490 					  (pcount - 1) * mss, mss,
2491 					  GFP_ATOMIC)))
2492 			goto rearm_timer;
2493 		skb = skb_rb_next(skb);
2494 	}
2495 
2496 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2497 		goto rearm_timer;
2498 
2499 	if (__tcp_retransmit_skb(sk, skb, 1))
2500 		goto rearm_timer;
2501 
2502 	/* Record snd_nxt for loss detection. */
2503 	tp->tlp_high_seq = tp->snd_nxt;
2504 
2505 probe_sent:
2506 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2507 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2508 	inet_csk(sk)->icsk_pending = 0;
2509 rearm_timer:
2510 	tcp_rearm_rto(sk);
2511 }
2512 
2513 /* Push out any pending frames which were held back due to
2514  * TCP_CORK or attempt at coalescing tiny packets.
2515  * The socket must be locked by the caller.
2516  */
2517 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2518 			       int nonagle)
2519 {
2520 	/* If we are closed, the bytes will have to remain here.
2521 	 * In time closedown will finish, we empty the write queue and
2522 	 * all will be happy.
2523 	 */
2524 	if (unlikely(sk->sk_state == TCP_CLOSE))
2525 		return;
2526 
2527 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2528 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2529 		tcp_check_probe_timer(sk);
2530 }
2531 
2532 /* Send _single_ skb sitting at the send head. This function requires
2533  * true push pending frames to setup probe timer etc.
2534  */
2535 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2536 {
2537 	struct sk_buff *skb = tcp_send_head(sk);
2538 
2539 	BUG_ON(!skb || skb->len < mss_now);
2540 
2541 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2542 }
2543 
2544 /* This function returns the amount that we can raise the
2545  * usable window based on the following constraints
2546  *
2547  * 1. The window can never be shrunk once it is offered (RFC 793)
2548  * 2. We limit memory per socket
2549  *
2550  * RFC 1122:
2551  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2552  *  RECV.NEXT + RCV.WIN fixed until:
2553  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2554  *
2555  * i.e. don't raise the right edge of the window until you can raise
2556  * it at least MSS bytes.
2557  *
2558  * Unfortunately, the recommended algorithm breaks header prediction,
2559  * since header prediction assumes th->window stays fixed.
2560  *
2561  * Strictly speaking, keeping th->window fixed violates the receiver
2562  * side SWS prevention criteria. The problem is that under this rule
2563  * a stream of single byte packets will cause the right side of the
2564  * window to always advance by a single byte.
2565  *
2566  * Of course, if the sender implements sender side SWS prevention
2567  * then this will not be a problem.
2568  *
2569  * BSD seems to make the following compromise:
2570  *
2571  *	If the free space is less than the 1/4 of the maximum
2572  *	space available and the free space is less than 1/2 mss,
2573  *	then set the window to 0.
2574  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2575  *	Otherwise, just prevent the window from shrinking
2576  *	and from being larger than the largest representable value.
2577  *
2578  * This prevents incremental opening of the window in the regime
2579  * where TCP is limited by the speed of the reader side taking
2580  * data out of the TCP receive queue. It does nothing about
2581  * those cases where the window is constrained on the sender side
2582  * because the pipeline is full.
2583  *
2584  * BSD also seems to "accidentally" limit itself to windows that are a
2585  * multiple of MSS, at least until the free space gets quite small.
2586  * This would appear to be a side effect of the mbuf implementation.
2587  * Combining these two algorithms results in the observed behavior
2588  * of having a fixed window size at almost all times.
2589  *
2590  * Below we obtain similar behavior by forcing the offered window to
2591  * a multiple of the mss when it is feasible to do so.
2592  *
2593  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2594  * Regular options like TIMESTAMP are taken into account.
2595  */
2596 u32 __tcp_select_window(struct sock *sk)
2597 {
2598 	struct inet_connection_sock *icsk = inet_csk(sk);
2599 	struct tcp_sock *tp = tcp_sk(sk);
2600 	/* MSS for the peer's data.  Previous versions used mss_clamp
2601 	 * here.  I don't know if the value based on our guesses
2602 	 * of peer's MSS is better for the performance.  It's more correct
2603 	 * but may be worse for the performance because of rcv_mss
2604 	 * fluctuations.  --SAW  1998/11/1
2605 	 */
2606 	int mss = icsk->icsk_ack.rcv_mss;
2607 	int free_space = tcp_space(sk);
2608 	int allowed_space = tcp_full_space(sk);
2609 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2610 	int window;
2611 
2612 	if (unlikely(mss > full_space)) {
2613 		mss = full_space;
2614 		if (mss <= 0)
2615 			return 0;
2616 	}
2617 	if (free_space < (full_space >> 1)) {
2618 		icsk->icsk_ack.quick = 0;
2619 
2620 		if (tcp_under_memory_pressure(sk))
2621 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2622 					       4U * tp->advmss);
2623 
2624 		/* free_space might become our new window, make sure we don't
2625 		 * increase it due to wscale.
2626 		 */
2627 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2628 
2629 		/* if free space is less than mss estimate, or is below 1/16th
2630 		 * of the maximum allowed, try to move to zero-window, else
2631 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2632 		 * new incoming data is dropped due to memory limits.
2633 		 * With large window, mss test triggers way too late in order
2634 		 * to announce zero window in time before rmem limit kicks in.
2635 		 */
2636 		if (free_space < (allowed_space >> 4) || free_space < mss)
2637 			return 0;
2638 	}
2639 
2640 	if (free_space > tp->rcv_ssthresh)
2641 		free_space = tp->rcv_ssthresh;
2642 
2643 	/* Don't do rounding if we are using window scaling, since the
2644 	 * scaled window will not line up with the MSS boundary anyway.
2645 	 */
2646 	if (tp->rx_opt.rcv_wscale) {
2647 		window = free_space;
2648 
2649 		/* Advertise enough space so that it won't get scaled away.
2650 		 * Import case: prevent zero window announcement if
2651 		 * 1<<rcv_wscale > mss.
2652 		 */
2653 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2654 	} else {
2655 		window = tp->rcv_wnd;
2656 		/* Get the largest window that is a nice multiple of mss.
2657 		 * Window clamp already applied above.
2658 		 * If our current window offering is within 1 mss of the
2659 		 * free space we just keep it. This prevents the divide
2660 		 * and multiply from happening most of the time.
2661 		 * We also don't do any window rounding when the free space
2662 		 * is too small.
2663 		 */
2664 		if (window <= free_space - mss || window > free_space)
2665 			window = rounddown(free_space, mss);
2666 		else if (mss == full_space &&
2667 			 free_space > window + (full_space >> 1))
2668 			window = free_space;
2669 	}
2670 
2671 	return window;
2672 }
2673 
2674 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2675 			     const struct sk_buff *next_skb)
2676 {
2677 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2678 		const struct skb_shared_info *next_shinfo =
2679 			skb_shinfo(next_skb);
2680 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2681 
2682 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2683 		shinfo->tskey = next_shinfo->tskey;
2684 		TCP_SKB_CB(skb)->txstamp_ack |=
2685 			TCP_SKB_CB(next_skb)->txstamp_ack;
2686 	}
2687 }
2688 
2689 /* Collapses two adjacent SKB's during retransmission. */
2690 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2691 {
2692 	struct tcp_sock *tp = tcp_sk(sk);
2693 	struct sk_buff *next_skb = skb_rb_next(skb);
2694 	int skb_size, next_skb_size;
2695 
2696 	skb_size = skb->len;
2697 	next_skb_size = next_skb->len;
2698 
2699 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2700 
2701 	if (next_skb_size) {
2702 		if (next_skb_size <= skb_availroom(skb))
2703 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2704 				      next_skb_size);
2705 		else if (!skb_shift(skb, next_skb, next_skb_size))
2706 			return false;
2707 	}
2708 	tcp_highest_sack_replace(sk, next_skb, skb);
2709 
2710 	/* Update sequence range on original skb. */
2711 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2712 
2713 	/* Merge over control information. This moves PSH/FIN etc. over */
2714 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2715 
2716 	/* All done, get rid of second SKB and account for it so
2717 	 * packet counting does not break.
2718 	 */
2719 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2720 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2721 
2722 	/* changed transmit queue under us so clear hints */
2723 	tcp_clear_retrans_hints_partial(tp);
2724 	if (next_skb == tp->retransmit_skb_hint)
2725 		tp->retransmit_skb_hint = skb;
2726 
2727 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2728 
2729 	tcp_skb_collapse_tstamp(skb, next_skb);
2730 
2731 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2732 	return true;
2733 }
2734 
2735 /* Check if coalescing SKBs is legal. */
2736 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2737 {
2738 	if (tcp_skb_pcount(skb) > 1)
2739 		return false;
2740 	if (skb_cloned(skb))
2741 		return false;
2742 	/* Some heuristics for collapsing over SACK'd could be invented */
2743 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2744 		return false;
2745 
2746 	return true;
2747 }
2748 
2749 /* Collapse packets in the retransmit queue to make to create
2750  * less packets on the wire. This is only done on retransmission.
2751  */
2752 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2753 				     int space)
2754 {
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 	struct sk_buff *skb = to, *tmp;
2757 	bool first = true;
2758 
2759 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2760 		return;
2761 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2762 		return;
2763 
2764 	skb_rbtree_walk_from_safe(skb, tmp) {
2765 		if (!tcp_can_collapse(sk, skb))
2766 			break;
2767 
2768 		if (!tcp_skb_can_collapse_to(to))
2769 			break;
2770 
2771 		space -= skb->len;
2772 
2773 		if (first) {
2774 			first = false;
2775 			continue;
2776 		}
2777 
2778 		if (space < 0)
2779 			break;
2780 
2781 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2782 			break;
2783 
2784 		if (!tcp_collapse_retrans(sk, to))
2785 			break;
2786 	}
2787 }
2788 
2789 /* This retransmits one SKB.  Policy decisions and retransmit queue
2790  * state updates are done by the caller.  Returns non-zero if an
2791  * error occurred which prevented the send.
2792  */
2793 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2794 {
2795 	struct inet_connection_sock *icsk = inet_csk(sk);
2796 	struct tcp_sock *tp = tcp_sk(sk);
2797 	unsigned int cur_mss;
2798 	int diff, len, err;
2799 
2800 
2801 	/* Inconclusive MTU probe */
2802 	if (icsk->icsk_mtup.probe_size)
2803 		icsk->icsk_mtup.probe_size = 0;
2804 
2805 	/* Do not sent more than we queued. 1/4 is reserved for possible
2806 	 * copying overhead: fragmentation, tunneling, mangling etc.
2807 	 */
2808 	if (refcount_read(&sk->sk_wmem_alloc) >
2809 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2810 		  sk->sk_sndbuf))
2811 		return -EAGAIN;
2812 
2813 	if (skb_still_in_host_queue(sk, skb))
2814 		return -EBUSY;
2815 
2816 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2817 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2818 			BUG();
2819 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2820 			return -ENOMEM;
2821 	}
2822 
2823 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2824 		return -EHOSTUNREACH; /* Routing failure or similar. */
2825 
2826 	cur_mss = tcp_current_mss(sk);
2827 
2828 	/* If receiver has shrunk his window, and skb is out of
2829 	 * new window, do not retransmit it. The exception is the
2830 	 * case, when window is shrunk to zero. In this case
2831 	 * our retransmit serves as a zero window probe.
2832 	 */
2833 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2834 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2835 		return -EAGAIN;
2836 
2837 	len = cur_mss * segs;
2838 	if (skb->len > len) {
2839 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2840 				 cur_mss, GFP_ATOMIC))
2841 			return -ENOMEM; /* We'll try again later. */
2842 	} else {
2843 		if (skb_unclone(skb, GFP_ATOMIC))
2844 			return -ENOMEM;
2845 
2846 		diff = tcp_skb_pcount(skb);
2847 		tcp_set_skb_tso_segs(skb, cur_mss);
2848 		diff -= tcp_skb_pcount(skb);
2849 		if (diff)
2850 			tcp_adjust_pcount(sk, skb, diff);
2851 		if (skb->len < cur_mss)
2852 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2853 	}
2854 
2855 	/* RFC3168, section 6.1.1.1. ECN fallback */
2856 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2857 		tcp_ecn_clear_syn(sk, skb);
2858 
2859 	/* Update global and local TCP statistics. */
2860 	segs = tcp_skb_pcount(skb);
2861 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2862 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2863 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2864 	tp->total_retrans += segs;
2865 
2866 	/* make sure skb->data is aligned on arches that require it
2867 	 * and check if ack-trimming & collapsing extended the headroom
2868 	 * beyond what csum_start can cover.
2869 	 */
2870 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2871 		     skb_headroom(skb) >= 0xFFFF)) {
2872 		struct sk_buff *nskb;
2873 
2874 		tcp_skb_tsorted_save(skb) {
2875 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2876 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2877 				     -ENOBUFS;
2878 		} tcp_skb_tsorted_restore(skb);
2879 
2880 		if (!err) {
2881 			tcp_update_skb_after_send(tp, skb);
2882 			tcp_rate_skb_sent(sk, skb);
2883 		}
2884 	} else {
2885 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2886 	}
2887 
2888 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2889 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2890 				  TCP_SKB_CB(skb)->seq, segs, err);
2891 
2892 	if (likely(!err)) {
2893 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2894 		trace_tcp_retransmit_skb(sk, skb);
2895 	} else if (err != -EBUSY) {
2896 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2897 	}
2898 	return err;
2899 }
2900 
2901 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2902 {
2903 	struct tcp_sock *tp = tcp_sk(sk);
2904 	int err = __tcp_retransmit_skb(sk, skb, segs);
2905 
2906 	if (err == 0) {
2907 #if FASTRETRANS_DEBUG > 0
2908 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2909 			net_dbg_ratelimited("retrans_out leaked\n");
2910 		}
2911 #endif
2912 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2913 		tp->retrans_out += tcp_skb_pcount(skb);
2914 
2915 		/* Save stamp of the first retransmit. */
2916 		if (!tp->retrans_stamp)
2917 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2918 
2919 	}
2920 
2921 	if (tp->undo_retrans < 0)
2922 		tp->undo_retrans = 0;
2923 	tp->undo_retrans += tcp_skb_pcount(skb);
2924 	return err;
2925 }
2926 
2927 /* This gets called after a retransmit timeout, and the initially
2928  * retransmitted data is acknowledged.  It tries to continue
2929  * resending the rest of the retransmit queue, until either
2930  * we've sent it all or the congestion window limit is reached.
2931  */
2932 void tcp_xmit_retransmit_queue(struct sock *sk)
2933 {
2934 	const struct inet_connection_sock *icsk = inet_csk(sk);
2935 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2936 	struct tcp_sock *tp = tcp_sk(sk);
2937 	u32 max_segs;
2938 	int mib_idx;
2939 
2940 	if (!tp->packets_out)
2941 		return;
2942 
2943 	rtx_head = tcp_rtx_queue_head(sk);
2944 	skb = tp->retransmit_skb_hint ?: rtx_head;
2945 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2946 	skb_rbtree_walk_from(skb) {
2947 		__u8 sacked;
2948 		int segs;
2949 
2950 		if (tcp_pacing_check(sk))
2951 			break;
2952 
2953 		/* we could do better than to assign each time */
2954 		if (!hole)
2955 			tp->retransmit_skb_hint = skb;
2956 
2957 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2958 		if (segs <= 0)
2959 			return;
2960 		sacked = TCP_SKB_CB(skb)->sacked;
2961 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2962 		 * we need to make sure not sending too bigs TSO packets
2963 		 */
2964 		segs = min_t(int, segs, max_segs);
2965 
2966 		if (tp->retrans_out >= tp->lost_out) {
2967 			break;
2968 		} else if (!(sacked & TCPCB_LOST)) {
2969 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2970 				hole = skb;
2971 			continue;
2972 
2973 		} else {
2974 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2975 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2976 			else
2977 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2978 		}
2979 
2980 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2981 			continue;
2982 
2983 		if (tcp_small_queue_check(sk, skb, 1))
2984 			return;
2985 
2986 		if (tcp_retransmit_skb(sk, skb, segs))
2987 			return;
2988 
2989 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2990 
2991 		if (tcp_in_cwnd_reduction(sk))
2992 			tp->prr_out += tcp_skb_pcount(skb);
2993 
2994 		if (skb == rtx_head &&
2995 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2996 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2997 						  inet_csk(sk)->icsk_rto,
2998 						  TCP_RTO_MAX);
2999 	}
3000 }
3001 
3002 /* We allow to exceed memory limits for FIN packets to expedite
3003  * connection tear down and (memory) recovery.
3004  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3005  * or even be forced to close flow without any FIN.
3006  * In general, we want to allow one skb per socket to avoid hangs
3007  * with edge trigger epoll()
3008  */
3009 void sk_forced_mem_schedule(struct sock *sk, int size)
3010 {
3011 	int amt;
3012 
3013 	if (size <= sk->sk_forward_alloc)
3014 		return;
3015 	amt = sk_mem_pages(size);
3016 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3017 	sk_memory_allocated_add(sk, amt);
3018 
3019 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3020 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3021 }
3022 
3023 /* Send a FIN. The caller locks the socket for us.
3024  * We should try to send a FIN packet really hard, but eventually give up.
3025  */
3026 void tcp_send_fin(struct sock *sk)
3027 {
3028 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3029 	struct tcp_sock *tp = tcp_sk(sk);
3030 
3031 	/* Optimization, tack on the FIN if we have one skb in write queue and
3032 	 * this skb was not yet sent, or we are under memory pressure.
3033 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3034 	 * as TCP stack thinks it has already been transmitted.
3035 	 */
3036 	if (!tskb && tcp_under_memory_pressure(sk))
3037 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3038 
3039 	if (tskb) {
3040 coalesce:
3041 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3042 		TCP_SKB_CB(tskb)->end_seq++;
3043 		tp->write_seq++;
3044 		if (tcp_write_queue_empty(sk)) {
3045 			/* This means tskb was already sent.
3046 			 * Pretend we included the FIN on previous transmit.
3047 			 * We need to set tp->snd_nxt to the value it would have
3048 			 * if FIN had been sent. This is because retransmit path
3049 			 * does not change tp->snd_nxt.
3050 			 */
3051 			tp->snd_nxt++;
3052 			return;
3053 		}
3054 	} else {
3055 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3056 		if (unlikely(!skb)) {
3057 			if (tskb)
3058 				goto coalesce;
3059 			return;
3060 		}
3061 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3062 		skb_reserve(skb, MAX_TCP_HEADER);
3063 		sk_forced_mem_schedule(sk, skb->truesize);
3064 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3065 		tcp_init_nondata_skb(skb, tp->write_seq,
3066 				     TCPHDR_ACK | TCPHDR_FIN);
3067 		tcp_queue_skb(sk, skb);
3068 	}
3069 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3070 }
3071 
3072 /* We get here when a process closes a file descriptor (either due to
3073  * an explicit close() or as a byproduct of exit()'ing) and there
3074  * was unread data in the receive queue.  This behavior is recommended
3075  * by RFC 2525, section 2.17.  -DaveM
3076  */
3077 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3078 {
3079 	struct sk_buff *skb;
3080 
3081 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3082 
3083 	/* NOTE: No TCP options attached and we never retransmit this. */
3084 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3085 	if (!skb) {
3086 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3087 		return;
3088 	}
3089 
3090 	/* Reserve space for headers and prepare control bits. */
3091 	skb_reserve(skb, MAX_TCP_HEADER);
3092 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3093 			     TCPHDR_ACK | TCPHDR_RST);
3094 	tcp_mstamp_refresh(tcp_sk(sk));
3095 	/* Send it off. */
3096 	if (tcp_transmit_skb(sk, skb, 0, priority))
3097 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3098 
3099 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3100 	 * skb here is different to the troublesome skb, so use NULL
3101 	 */
3102 	trace_tcp_send_reset(sk, NULL);
3103 }
3104 
3105 /* Send a crossed SYN-ACK during socket establishment.
3106  * WARNING: This routine must only be called when we have already sent
3107  * a SYN packet that crossed the incoming SYN that caused this routine
3108  * to get called. If this assumption fails then the initial rcv_wnd
3109  * and rcv_wscale values will not be correct.
3110  */
3111 int tcp_send_synack(struct sock *sk)
3112 {
3113 	struct sk_buff *skb;
3114 
3115 	skb = tcp_rtx_queue_head(sk);
3116 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3117 		pr_err("%s: wrong queue state\n", __func__);
3118 		return -EFAULT;
3119 	}
3120 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3121 		if (skb_cloned(skb)) {
3122 			struct sk_buff *nskb;
3123 
3124 			tcp_skb_tsorted_save(skb) {
3125 				nskb = skb_copy(skb, GFP_ATOMIC);
3126 			} tcp_skb_tsorted_restore(skb);
3127 			if (!nskb)
3128 				return -ENOMEM;
3129 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3130 			tcp_rtx_queue_unlink_and_free(skb, sk);
3131 			__skb_header_release(nskb);
3132 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3133 			sk->sk_wmem_queued += nskb->truesize;
3134 			sk_mem_charge(sk, nskb->truesize);
3135 			skb = nskb;
3136 		}
3137 
3138 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3139 		tcp_ecn_send_synack(sk, skb);
3140 	}
3141 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3142 }
3143 
3144 /**
3145  * tcp_make_synack - Prepare a SYN-ACK.
3146  * sk: listener socket
3147  * dst: dst entry attached to the SYNACK
3148  * req: request_sock pointer
3149  *
3150  * Allocate one skb and build a SYNACK packet.
3151  * @dst is consumed : Caller should not use it again.
3152  */
3153 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3154 				struct request_sock *req,
3155 				struct tcp_fastopen_cookie *foc,
3156 				enum tcp_synack_type synack_type)
3157 {
3158 	struct inet_request_sock *ireq = inet_rsk(req);
3159 	const struct tcp_sock *tp = tcp_sk(sk);
3160 	struct tcp_md5sig_key *md5 = NULL;
3161 	struct tcp_out_options opts;
3162 	struct sk_buff *skb;
3163 	int tcp_header_size;
3164 	struct tcphdr *th;
3165 	int mss;
3166 
3167 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3168 	if (unlikely(!skb)) {
3169 		dst_release(dst);
3170 		return NULL;
3171 	}
3172 	/* Reserve space for headers. */
3173 	skb_reserve(skb, MAX_TCP_HEADER);
3174 
3175 	switch (synack_type) {
3176 	case TCP_SYNACK_NORMAL:
3177 		skb_set_owner_w(skb, req_to_sk(req));
3178 		break;
3179 	case TCP_SYNACK_COOKIE:
3180 		/* Under synflood, we do not attach skb to a socket,
3181 		 * to avoid false sharing.
3182 		 */
3183 		break;
3184 	case TCP_SYNACK_FASTOPEN:
3185 		/* sk is a const pointer, because we want to express multiple
3186 		 * cpu might call us concurrently.
3187 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3188 		 */
3189 		skb_set_owner_w(skb, (struct sock *)sk);
3190 		break;
3191 	}
3192 	skb_dst_set(skb, dst);
3193 
3194 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3195 
3196 	memset(&opts, 0, sizeof(opts));
3197 #ifdef CONFIG_SYN_COOKIES
3198 	if (unlikely(req->cookie_ts))
3199 		skb->skb_mstamp = cookie_init_timestamp(req);
3200 	else
3201 #endif
3202 		skb->skb_mstamp = tcp_clock_us();
3203 
3204 #ifdef CONFIG_TCP_MD5SIG
3205 	rcu_read_lock();
3206 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3207 #endif
3208 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3209 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3210 					     foc) + sizeof(*th);
3211 
3212 	skb_push(skb, tcp_header_size);
3213 	skb_reset_transport_header(skb);
3214 
3215 	th = (struct tcphdr *)skb->data;
3216 	memset(th, 0, sizeof(struct tcphdr));
3217 	th->syn = 1;
3218 	th->ack = 1;
3219 	tcp_ecn_make_synack(req, th);
3220 	th->source = htons(ireq->ir_num);
3221 	th->dest = ireq->ir_rmt_port;
3222 	skb->mark = ireq->ir_mark;
3223 	skb->ip_summed = CHECKSUM_PARTIAL;
3224 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3225 	/* XXX data is queued and acked as is. No buffer/window check */
3226 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3227 
3228 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3229 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3230 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3231 	th->doff = (tcp_header_size >> 2);
3232 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3233 
3234 #ifdef CONFIG_TCP_MD5SIG
3235 	/* Okay, we have all we need - do the md5 hash if needed */
3236 	if (md5)
3237 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3238 					       md5, req_to_sk(req), skb);
3239 	rcu_read_unlock();
3240 #endif
3241 
3242 	/* Do not fool tcpdump (if any), clean our debris */
3243 	skb->tstamp = 0;
3244 	return skb;
3245 }
3246 EXPORT_SYMBOL(tcp_make_synack);
3247 
3248 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3249 {
3250 	struct inet_connection_sock *icsk = inet_csk(sk);
3251 	const struct tcp_congestion_ops *ca;
3252 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3253 
3254 	if (ca_key == TCP_CA_UNSPEC)
3255 		return;
3256 
3257 	rcu_read_lock();
3258 	ca = tcp_ca_find_key(ca_key);
3259 	if (likely(ca && try_module_get(ca->owner))) {
3260 		module_put(icsk->icsk_ca_ops->owner);
3261 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3262 		icsk->icsk_ca_ops = ca;
3263 	}
3264 	rcu_read_unlock();
3265 }
3266 
3267 /* Do all connect socket setups that can be done AF independent. */
3268 static void tcp_connect_init(struct sock *sk)
3269 {
3270 	const struct dst_entry *dst = __sk_dst_get(sk);
3271 	struct tcp_sock *tp = tcp_sk(sk);
3272 	__u8 rcv_wscale;
3273 	u32 rcv_wnd;
3274 
3275 	/* We'll fix this up when we get a response from the other end.
3276 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3277 	 */
3278 	tp->tcp_header_len = sizeof(struct tcphdr);
3279 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3280 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3281 
3282 #ifdef CONFIG_TCP_MD5SIG
3283 	if (tp->af_specific->md5_lookup(sk, sk))
3284 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3285 #endif
3286 
3287 	/* If user gave his TCP_MAXSEG, record it to clamp */
3288 	if (tp->rx_opt.user_mss)
3289 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3290 	tp->max_window = 0;
3291 	tcp_mtup_init(sk);
3292 	tcp_sync_mss(sk, dst_mtu(dst));
3293 
3294 	tcp_ca_dst_init(sk, dst);
3295 
3296 	if (!tp->window_clamp)
3297 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3298 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3299 
3300 	tcp_initialize_rcv_mss(sk);
3301 
3302 	/* limit the window selection if the user enforce a smaller rx buffer */
3303 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3304 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3305 		tp->window_clamp = tcp_full_space(sk);
3306 
3307 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3308 	if (rcv_wnd == 0)
3309 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3310 
3311 	tcp_select_initial_window(sk, tcp_full_space(sk),
3312 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3313 				  &tp->rcv_wnd,
3314 				  &tp->window_clamp,
3315 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3316 				  &rcv_wscale,
3317 				  rcv_wnd);
3318 
3319 	tp->rx_opt.rcv_wscale = rcv_wscale;
3320 	tp->rcv_ssthresh = tp->rcv_wnd;
3321 
3322 	sk->sk_err = 0;
3323 	sock_reset_flag(sk, SOCK_DONE);
3324 	tp->snd_wnd = 0;
3325 	tcp_init_wl(tp, 0);
3326 	tp->snd_una = tp->write_seq;
3327 	tp->snd_sml = tp->write_seq;
3328 	tp->snd_up = tp->write_seq;
3329 	tp->snd_nxt = tp->write_seq;
3330 
3331 	if (likely(!tp->repair))
3332 		tp->rcv_nxt = 0;
3333 	else
3334 		tp->rcv_tstamp = tcp_jiffies32;
3335 	tp->rcv_wup = tp->rcv_nxt;
3336 	tp->copied_seq = tp->rcv_nxt;
3337 
3338 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3339 	inet_csk(sk)->icsk_retransmits = 0;
3340 	tcp_clear_retrans(tp);
3341 }
3342 
3343 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3344 {
3345 	struct tcp_sock *tp = tcp_sk(sk);
3346 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3347 
3348 	tcb->end_seq += skb->len;
3349 	__skb_header_release(skb);
3350 	sk->sk_wmem_queued += skb->truesize;
3351 	sk_mem_charge(sk, skb->truesize);
3352 	tp->write_seq = tcb->end_seq;
3353 	tp->packets_out += tcp_skb_pcount(skb);
3354 }
3355 
3356 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3357  * queue a data-only packet after the regular SYN, such that regular SYNs
3358  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3359  * only the SYN sequence, the data are retransmitted in the first ACK.
3360  * If cookie is not cached or other error occurs, falls back to send a
3361  * regular SYN with Fast Open cookie request option.
3362  */
3363 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3364 {
3365 	struct tcp_sock *tp = tcp_sk(sk);
3366 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3367 	int space, err = 0;
3368 	struct sk_buff *syn_data;
3369 
3370 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3371 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3372 		goto fallback;
3373 
3374 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3375 	 * user-MSS. Reserve maximum option space for middleboxes that add
3376 	 * private TCP options. The cost is reduced data space in SYN :(
3377 	 */
3378 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3379 
3380 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3381 		MAX_TCP_OPTION_SPACE;
3382 
3383 	space = min_t(size_t, space, fo->size);
3384 
3385 	/* limit to order-0 allocations */
3386 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3387 
3388 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3389 	if (!syn_data)
3390 		goto fallback;
3391 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3392 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3393 	if (space) {
3394 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3395 					    &fo->data->msg_iter);
3396 		if (unlikely(!copied)) {
3397 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3398 			kfree_skb(syn_data);
3399 			goto fallback;
3400 		}
3401 		if (copied != space) {
3402 			skb_trim(syn_data, copied);
3403 			space = copied;
3404 		}
3405 	}
3406 	/* No more data pending in inet_wait_for_connect() */
3407 	if (space == fo->size)
3408 		fo->data = NULL;
3409 	fo->copied = space;
3410 
3411 	tcp_connect_queue_skb(sk, syn_data);
3412 	if (syn_data->len)
3413 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3414 
3415 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3416 
3417 	syn->skb_mstamp = syn_data->skb_mstamp;
3418 
3419 	/* Now full SYN+DATA was cloned and sent (or not),
3420 	 * remove the SYN from the original skb (syn_data)
3421 	 * we keep in write queue in case of a retransmit, as we
3422 	 * also have the SYN packet (with no data) in the same queue.
3423 	 */
3424 	TCP_SKB_CB(syn_data)->seq++;
3425 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3426 	if (!err) {
3427 		tp->syn_data = (fo->copied > 0);
3428 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3429 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3430 		goto done;
3431 	}
3432 
3433 	/* data was not sent, put it in write_queue */
3434 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3435 	tp->packets_out -= tcp_skb_pcount(syn_data);
3436 
3437 fallback:
3438 	/* Send a regular SYN with Fast Open cookie request option */
3439 	if (fo->cookie.len > 0)
3440 		fo->cookie.len = 0;
3441 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3442 	if (err)
3443 		tp->syn_fastopen = 0;
3444 done:
3445 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3446 	return err;
3447 }
3448 
3449 /* Build a SYN and send it off. */
3450 int tcp_connect(struct sock *sk)
3451 {
3452 	struct tcp_sock *tp = tcp_sk(sk);
3453 	struct sk_buff *buff;
3454 	int err;
3455 
3456 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3457 
3458 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3459 		return -EHOSTUNREACH; /* Routing failure or similar. */
3460 
3461 	tcp_connect_init(sk);
3462 
3463 	if (unlikely(tp->repair)) {
3464 		tcp_finish_connect(sk, NULL);
3465 		return 0;
3466 	}
3467 
3468 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3469 	if (unlikely(!buff))
3470 		return -ENOBUFS;
3471 
3472 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3473 	tcp_mstamp_refresh(tp);
3474 	tp->retrans_stamp = tcp_time_stamp(tp);
3475 	tcp_connect_queue_skb(sk, buff);
3476 	tcp_ecn_send_syn(sk, buff);
3477 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3478 
3479 	/* Send off SYN; include data in Fast Open. */
3480 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3481 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3482 	if (err == -ECONNREFUSED)
3483 		return err;
3484 
3485 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3486 	 * in order to make this packet get counted in tcpOutSegs.
3487 	 */
3488 	tp->snd_nxt = tp->write_seq;
3489 	tp->pushed_seq = tp->write_seq;
3490 	buff = tcp_send_head(sk);
3491 	if (unlikely(buff)) {
3492 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3493 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3494 	}
3495 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3496 
3497 	/* Timer for repeating the SYN until an answer. */
3498 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3499 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3500 	return 0;
3501 }
3502 EXPORT_SYMBOL(tcp_connect);
3503 
3504 /* Send out a delayed ack, the caller does the policy checking
3505  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3506  * for details.
3507  */
3508 void tcp_send_delayed_ack(struct sock *sk)
3509 {
3510 	struct inet_connection_sock *icsk = inet_csk(sk);
3511 	int ato = icsk->icsk_ack.ato;
3512 	unsigned long timeout;
3513 
3514 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3515 
3516 	if (ato > TCP_DELACK_MIN) {
3517 		const struct tcp_sock *tp = tcp_sk(sk);
3518 		int max_ato = HZ / 2;
3519 
3520 		if (icsk->icsk_ack.pingpong ||
3521 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3522 			max_ato = TCP_DELACK_MAX;
3523 
3524 		/* Slow path, intersegment interval is "high". */
3525 
3526 		/* If some rtt estimate is known, use it to bound delayed ack.
3527 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3528 		 * directly.
3529 		 */
3530 		if (tp->srtt_us) {
3531 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3532 					TCP_DELACK_MIN);
3533 
3534 			if (rtt < max_ato)
3535 				max_ato = rtt;
3536 		}
3537 
3538 		ato = min(ato, max_ato);
3539 	}
3540 
3541 	/* Stay within the limit we were given */
3542 	timeout = jiffies + ato;
3543 
3544 	/* Use new timeout only if there wasn't a older one earlier. */
3545 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3546 		/* If delack timer was blocked or is about to expire,
3547 		 * send ACK now.
3548 		 */
3549 		if (icsk->icsk_ack.blocked ||
3550 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3551 			tcp_send_ack(sk);
3552 			return;
3553 		}
3554 
3555 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3556 			timeout = icsk->icsk_ack.timeout;
3557 	}
3558 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3559 	icsk->icsk_ack.timeout = timeout;
3560 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3561 }
3562 
3563 /* This routine sends an ack and also updates the window. */
3564 void tcp_send_ack(struct sock *sk)
3565 {
3566 	struct sk_buff *buff;
3567 
3568 	/* If we have been reset, we may not send again. */
3569 	if (sk->sk_state == TCP_CLOSE)
3570 		return;
3571 
3572 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3573 
3574 	/* We are not putting this on the write queue, so
3575 	 * tcp_transmit_skb() will set the ownership to this
3576 	 * sock.
3577 	 */
3578 	buff = alloc_skb(MAX_TCP_HEADER,
3579 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3580 	if (unlikely(!buff)) {
3581 		inet_csk_schedule_ack(sk);
3582 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3583 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3584 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3585 		return;
3586 	}
3587 
3588 	/* Reserve space for headers and prepare control bits. */
3589 	skb_reserve(buff, MAX_TCP_HEADER);
3590 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3591 
3592 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3593 	 * too much.
3594 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3595 	 */
3596 	skb_set_tcp_pure_ack(buff);
3597 
3598 	/* Send it off, this clears delayed acks for us. */
3599 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3600 }
3601 EXPORT_SYMBOL_GPL(tcp_send_ack);
3602 
3603 /* This routine sends a packet with an out of date sequence
3604  * number. It assumes the other end will try to ack it.
3605  *
3606  * Question: what should we make while urgent mode?
3607  * 4.4BSD forces sending single byte of data. We cannot send
3608  * out of window data, because we have SND.NXT==SND.MAX...
3609  *
3610  * Current solution: to send TWO zero-length segments in urgent mode:
3611  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3612  * out-of-date with SND.UNA-1 to probe window.
3613  */
3614 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3615 {
3616 	struct tcp_sock *tp = tcp_sk(sk);
3617 	struct sk_buff *skb;
3618 
3619 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3620 	skb = alloc_skb(MAX_TCP_HEADER,
3621 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3622 	if (!skb)
3623 		return -1;
3624 
3625 	/* Reserve space for headers and set control bits. */
3626 	skb_reserve(skb, MAX_TCP_HEADER);
3627 	/* Use a previous sequence.  This should cause the other
3628 	 * end to send an ack.  Don't queue or clone SKB, just
3629 	 * send it.
3630 	 */
3631 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3632 	NET_INC_STATS(sock_net(sk), mib);
3633 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3634 }
3635 
3636 /* Called from setsockopt( ... TCP_REPAIR ) */
3637 void tcp_send_window_probe(struct sock *sk)
3638 {
3639 	if (sk->sk_state == TCP_ESTABLISHED) {
3640 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3641 		tcp_mstamp_refresh(tcp_sk(sk));
3642 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3643 	}
3644 }
3645 
3646 /* Initiate keepalive or window probe from timer. */
3647 int tcp_write_wakeup(struct sock *sk, int mib)
3648 {
3649 	struct tcp_sock *tp = tcp_sk(sk);
3650 	struct sk_buff *skb;
3651 
3652 	if (sk->sk_state == TCP_CLOSE)
3653 		return -1;
3654 
3655 	skb = tcp_send_head(sk);
3656 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3657 		int err;
3658 		unsigned int mss = tcp_current_mss(sk);
3659 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3660 
3661 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3662 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3663 
3664 		/* We are probing the opening of a window
3665 		 * but the window size is != 0
3666 		 * must have been a result SWS avoidance ( sender )
3667 		 */
3668 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3669 		    skb->len > mss) {
3670 			seg_size = min(seg_size, mss);
3671 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3672 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3673 					 skb, seg_size, mss, GFP_ATOMIC))
3674 				return -1;
3675 		} else if (!tcp_skb_pcount(skb))
3676 			tcp_set_skb_tso_segs(skb, mss);
3677 
3678 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3679 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3680 		if (!err)
3681 			tcp_event_new_data_sent(sk, skb);
3682 		return err;
3683 	} else {
3684 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3685 			tcp_xmit_probe_skb(sk, 1, mib);
3686 		return tcp_xmit_probe_skb(sk, 0, mib);
3687 	}
3688 }
3689 
3690 /* A window probe timeout has occurred.  If window is not closed send
3691  * a partial packet else a zero probe.
3692  */
3693 void tcp_send_probe0(struct sock *sk)
3694 {
3695 	struct inet_connection_sock *icsk = inet_csk(sk);
3696 	struct tcp_sock *tp = tcp_sk(sk);
3697 	struct net *net = sock_net(sk);
3698 	unsigned long probe_max;
3699 	int err;
3700 
3701 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3702 
3703 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3704 		/* Cancel probe timer, if it is not required. */
3705 		icsk->icsk_probes_out = 0;
3706 		icsk->icsk_backoff = 0;
3707 		return;
3708 	}
3709 
3710 	if (err <= 0) {
3711 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3712 			icsk->icsk_backoff++;
3713 		icsk->icsk_probes_out++;
3714 		probe_max = TCP_RTO_MAX;
3715 	} else {
3716 		/* If packet was not sent due to local congestion,
3717 		 * do not backoff and do not remember icsk_probes_out.
3718 		 * Let local senders to fight for local resources.
3719 		 *
3720 		 * Use accumulated backoff yet.
3721 		 */
3722 		if (!icsk->icsk_probes_out)
3723 			icsk->icsk_probes_out = 1;
3724 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3725 	}
3726 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3727 				  tcp_probe0_when(sk, probe_max),
3728 				  TCP_RTO_MAX);
3729 }
3730 
3731 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3732 {
3733 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3734 	struct flowi fl;
3735 	int res;
3736 
3737 	tcp_rsk(req)->txhash = net_tx_rndhash();
3738 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3739 	if (!res) {
3740 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3741 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3742 		if (unlikely(tcp_passive_fastopen(sk)))
3743 			tcp_sk(sk)->total_retrans++;
3744 		trace_tcp_retransmit_synack(sk, req);
3745 	}
3746 	return res;
3747 }
3748 EXPORT_SYMBOL(tcp_rtx_synack);
3749