1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 49 int push_one, gfp_t gfp); 50 51 /* Account for new data that has been sent to the network. */ 52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 53 { 54 struct inet_connection_sock *icsk = inet_csk(sk); 55 struct tcp_sock *tp = tcp_sk(sk); 56 unsigned int prior_packets = tp->packets_out; 57 58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 59 60 __skb_unlink(skb, &sk->sk_write_queue); 61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 62 63 tp->packets_out += tcp_skb_pcount(skb); 64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 65 tcp_rearm_rto(sk); 66 67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 68 tcp_skb_pcount(skb)); 69 } 70 71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 72 * window scaling factor due to loss of precision. 73 * If window has been shrunk, what should we make? It is not clear at all. 74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 76 * invalid. OK, let's make this for now: 77 */ 78 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 79 { 80 const struct tcp_sock *tp = tcp_sk(sk); 81 82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 83 (tp->rx_opt.wscale_ok && 84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 85 return tp->snd_nxt; 86 else 87 return tcp_wnd_end(tp); 88 } 89 90 /* Calculate mss to advertise in SYN segment. 91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 92 * 93 * 1. It is independent of path mtu. 94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 96 * attached devices, because some buggy hosts are confused by 97 * large MSS. 98 * 4. We do not make 3, we advertise MSS, calculated from first 99 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 100 * This may be overridden via information stored in routing table. 101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 102 * probably even Jumbo". 103 */ 104 static __u16 tcp_advertise_mss(struct sock *sk) 105 { 106 struct tcp_sock *tp = tcp_sk(sk); 107 const struct dst_entry *dst = __sk_dst_get(sk); 108 int mss = tp->advmss; 109 110 if (dst) { 111 unsigned int metric = dst_metric_advmss(dst); 112 113 if (metric < mss) { 114 mss = metric; 115 tp->advmss = mss; 116 } 117 } 118 119 return (__u16)mss; 120 } 121 122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 123 * This is the first part of cwnd validation mechanism. 124 */ 125 void tcp_cwnd_restart(struct sock *sk, s32 delta) 126 { 127 struct tcp_sock *tp = tcp_sk(sk); 128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 129 u32 cwnd = tp->snd_cwnd; 130 131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 132 133 tp->snd_ssthresh = tcp_current_ssthresh(sk); 134 restart_cwnd = min(restart_cwnd, cwnd); 135 136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 137 cwnd >>= 1; 138 tp->snd_cwnd = max(cwnd, restart_cwnd); 139 tp->snd_cwnd_stamp = tcp_jiffies32; 140 tp->snd_cwnd_used = 0; 141 } 142 143 /* Congestion state accounting after a packet has been sent. */ 144 static void tcp_event_data_sent(struct tcp_sock *tp, 145 struct sock *sk) 146 { 147 struct inet_connection_sock *icsk = inet_csk(sk); 148 const u32 now = tcp_jiffies32; 149 150 if (tcp_packets_in_flight(tp) == 0) 151 tcp_ca_event(sk, CA_EVENT_TX_START); 152 153 tp->lsndtime = now; 154 155 /* If it is a reply for ato after last received 156 * packet, enter pingpong mode. 157 */ 158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 159 icsk->icsk_ack.pingpong = 1; 160 } 161 162 /* Account for an ACK we sent. */ 163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 164 { 165 tcp_dec_quickack_mode(sk, pkts); 166 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 167 } 168 169 170 u32 tcp_default_init_rwnd(u32 mss) 171 { 172 /* Initial receive window should be twice of TCP_INIT_CWND to 173 * enable proper sending of new unsent data during fast recovery 174 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 175 * limit when mss is larger than 1460. 176 */ 177 u32 init_rwnd = TCP_INIT_CWND * 2; 178 179 if (mss > 1460) 180 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 181 return init_rwnd; 182 } 183 184 /* Determine a window scaling and initial window to offer. 185 * Based on the assumption that the given amount of space 186 * will be offered. Store the results in the tp structure. 187 * NOTE: for smooth operation initial space offering should 188 * be a multiple of mss if possible. We assume here that mss >= 1. 189 * This MUST be enforced by all callers. 190 */ 191 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 192 __u32 *rcv_wnd, __u32 *window_clamp, 193 int wscale_ok, __u8 *rcv_wscale, 194 __u32 init_rcv_wnd) 195 { 196 unsigned int space = (__space < 0 ? 0 : __space); 197 198 /* If no clamp set the clamp to the max possible scaled window */ 199 if (*window_clamp == 0) 200 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 201 space = min(*window_clamp, space); 202 203 /* Quantize space offering to a multiple of mss if possible. */ 204 if (space > mss) 205 space = rounddown(space, mss); 206 207 /* NOTE: offering an initial window larger than 32767 208 * will break some buggy TCP stacks. If the admin tells us 209 * it is likely we could be speaking with such a buggy stack 210 * we will truncate our initial window offering to 32K-1 211 * unless the remote has sent us a window scaling option, 212 * which we interpret as a sign the remote TCP is not 213 * misinterpreting the window field as a signed quantity. 214 */ 215 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 216 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 217 else 218 (*rcv_wnd) = space; 219 220 (*rcv_wscale) = 0; 221 if (wscale_ok) { 222 /* Set window scaling on max possible window */ 223 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 224 space = max_t(u32, space, sysctl_rmem_max); 225 space = min_t(u32, space, *window_clamp); 226 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 227 space >>= 1; 228 (*rcv_wscale)++; 229 } 230 } 231 232 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 233 init_rcv_wnd = tcp_default_init_rwnd(mss); 234 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 235 236 /* Set the clamp no higher than max representable value */ 237 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 238 } 239 EXPORT_SYMBOL(tcp_select_initial_window); 240 241 /* Chose a new window to advertise, update state in tcp_sock for the 242 * socket, and return result with RFC1323 scaling applied. The return 243 * value can be stuffed directly into th->window for an outgoing 244 * frame. 245 */ 246 static u16 tcp_select_window(struct sock *sk) 247 { 248 struct tcp_sock *tp = tcp_sk(sk); 249 u32 old_win = tp->rcv_wnd; 250 u32 cur_win = tcp_receive_window(tp); 251 u32 new_win = __tcp_select_window(sk); 252 253 /* Never shrink the offered window */ 254 if (new_win < cur_win) { 255 /* Danger Will Robinson! 256 * Don't update rcv_wup/rcv_wnd here or else 257 * we will not be able to advertise a zero 258 * window in time. --DaveM 259 * 260 * Relax Will Robinson. 261 */ 262 if (new_win == 0) 263 NET_INC_STATS(sock_net(sk), 264 LINUX_MIB_TCPWANTZEROWINDOWADV); 265 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 266 } 267 tp->rcv_wnd = new_win; 268 tp->rcv_wup = tp->rcv_nxt; 269 270 /* Make sure we do not exceed the maximum possible 271 * scaled window. 272 */ 273 if (!tp->rx_opt.rcv_wscale && 274 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 275 new_win = min(new_win, MAX_TCP_WINDOW); 276 else 277 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 278 279 /* RFC1323 scaling applied */ 280 new_win >>= tp->rx_opt.rcv_wscale; 281 282 /* If we advertise zero window, disable fast path. */ 283 if (new_win == 0) { 284 tp->pred_flags = 0; 285 if (old_win) 286 NET_INC_STATS(sock_net(sk), 287 LINUX_MIB_TCPTOZEROWINDOWADV); 288 } else if (old_win == 0) { 289 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 290 } 291 292 return new_win; 293 } 294 295 /* Packet ECN state for a SYN-ACK */ 296 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 297 { 298 const struct tcp_sock *tp = tcp_sk(sk); 299 300 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 301 if (!(tp->ecn_flags & TCP_ECN_OK)) 302 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 303 else if (tcp_ca_needs_ecn(sk) || 304 tcp_bpf_ca_needs_ecn(sk)) 305 INET_ECN_xmit(sk); 306 } 307 308 /* Packet ECN state for a SYN. */ 309 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 310 { 311 struct tcp_sock *tp = tcp_sk(sk); 312 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 313 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 314 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 315 316 if (!use_ecn) { 317 const struct dst_entry *dst = __sk_dst_get(sk); 318 319 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 320 use_ecn = true; 321 } 322 323 tp->ecn_flags = 0; 324 325 if (use_ecn) { 326 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 327 tp->ecn_flags = TCP_ECN_OK; 328 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 329 INET_ECN_xmit(sk); 330 } 331 } 332 333 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 334 { 335 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 336 /* tp->ecn_flags are cleared at a later point in time when 337 * SYN ACK is ultimatively being received. 338 */ 339 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 340 } 341 342 static void 343 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 344 { 345 if (inet_rsk(req)->ecn_ok) 346 th->ece = 1; 347 } 348 349 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 350 * be sent. 351 */ 352 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 353 struct tcphdr *th, int tcp_header_len) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 357 if (tp->ecn_flags & TCP_ECN_OK) { 358 /* Not-retransmitted data segment: set ECT and inject CWR. */ 359 if (skb->len != tcp_header_len && 360 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 361 INET_ECN_xmit(sk); 362 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 363 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 364 th->cwr = 1; 365 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 366 } 367 } else if (!tcp_ca_needs_ecn(sk)) { 368 /* ACK or retransmitted segment: clear ECT|CE */ 369 INET_ECN_dontxmit(sk); 370 } 371 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 372 th->ece = 1; 373 } 374 } 375 376 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 377 * auto increment end seqno. 378 */ 379 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 380 { 381 skb->ip_summed = CHECKSUM_PARTIAL; 382 383 TCP_SKB_CB(skb)->tcp_flags = flags; 384 TCP_SKB_CB(skb)->sacked = 0; 385 386 tcp_skb_pcount_set(skb, 1); 387 388 TCP_SKB_CB(skb)->seq = seq; 389 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 390 seq++; 391 TCP_SKB_CB(skb)->end_seq = seq; 392 } 393 394 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 395 { 396 return tp->snd_una != tp->snd_up; 397 } 398 399 #define OPTION_SACK_ADVERTISE (1 << 0) 400 #define OPTION_TS (1 << 1) 401 #define OPTION_MD5 (1 << 2) 402 #define OPTION_WSCALE (1 << 3) 403 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 404 #define OPTION_SMC (1 << 9) 405 406 static void smc_options_write(__be32 *ptr, u16 *options) 407 { 408 #if IS_ENABLED(CONFIG_SMC) 409 if (static_branch_unlikely(&tcp_have_smc)) { 410 if (unlikely(OPTION_SMC & *options)) { 411 *ptr++ = htonl((TCPOPT_NOP << 24) | 412 (TCPOPT_NOP << 16) | 413 (TCPOPT_EXP << 8) | 414 (TCPOLEN_EXP_SMC_BASE)); 415 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 416 } 417 } 418 #endif 419 } 420 421 struct tcp_out_options { 422 u16 options; /* bit field of OPTION_* */ 423 u16 mss; /* 0 to disable */ 424 u8 ws; /* window scale, 0 to disable */ 425 u8 num_sack_blocks; /* number of SACK blocks to include */ 426 u8 hash_size; /* bytes in hash_location */ 427 __u8 *hash_location; /* temporary pointer, overloaded */ 428 __u32 tsval, tsecr; /* need to include OPTION_TS */ 429 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 430 }; 431 432 /* Write previously computed TCP options to the packet. 433 * 434 * Beware: Something in the Internet is very sensitive to the ordering of 435 * TCP options, we learned this through the hard way, so be careful here. 436 * Luckily we can at least blame others for their non-compliance but from 437 * inter-operability perspective it seems that we're somewhat stuck with 438 * the ordering which we have been using if we want to keep working with 439 * those broken things (not that it currently hurts anybody as there isn't 440 * particular reason why the ordering would need to be changed). 441 * 442 * At least SACK_PERM as the first option is known to lead to a disaster 443 * (but it may well be that other scenarios fail similarly). 444 */ 445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 446 struct tcp_out_options *opts) 447 { 448 u16 options = opts->options; /* mungable copy */ 449 450 if (unlikely(OPTION_MD5 & options)) { 451 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 452 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 453 /* overload cookie hash location */ 454 opts->hash_location = (__u8 *)ptr; 455 ptr += 4; 456 } 457 458 if (unlikely(opts->mss)) { 459 *ptr++ = htonl((TCPOPT_MSS << 24) | 460 (TCPOLEN_MSS << 16) | 461 opts->mss); 462 } 463 464 if (likely(OPTION_TS & options)) { 465 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 466 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 467 (TCPOLEN_SACK_PERM << 16) | 468 (TCPOPT_TIMESTAMP << 8) | 469 TCPOLEN_TIMESTAMP); 470 options &= ~OPTION_SACK_ADVERTISE; 471 } else { 472 *ptr++ = htonl((TCPOPT_NOP << 24) | 473 (TCPOPT_NOP << 16) | 474 (TCPOPT_TIMESTAMP << 8) | 475 TCPOLEN_TIMESTAMP); 476 } 477 *ptr++ = htonl(opts->tsval); 478 *ptr++ = htonl(opts->tsecr); 479 } 480 481 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 482 *ptr++ = htonl((TCPOPT_NOP << 24) | 483 (TCPOPT_NOP << 16) | 484 (TCPOPT_SACK_PERM << 8) | 485 TCPOLEN_SACK_PERM); 486 } 487 488 if (unlikely(OPTION_WSCALE & options)) { 489 *ptr++ = htonl((TCPOPT_NOP << 24) | 490 (TCPOPT_WINDOW << 16) | 491 (TCPOLEN_WINDOW << 8) | 492 opts->ws); 493 } 494 495 if (unlikely(opts->num_sack_blocks)) { 496 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 497 tp->duplicate_sack : tp->selective_acks; 498 int this_sack; 499 500 *ptr++ = htonl((TCPOPT_NOP << 24) | 501 (TCPOPT_NOP << 16) | 502 (TCPOPT_SACK << 8) | 503 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 504 TCPOLEN_SACK_PERBLOCK))); 505 506 for (this_sack = 0; this_sack < opts->num_sack_blocks; 507 ++this_sack) { 508 *ptr++ = htonl(sp[this_sack].start_seq); 509 *ptr++ = htonl(sp[this_sack].end_seq); 510 } 511 512 tp->rx_opt.dsack = 0; 513 } 514 515 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 516 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 517 u8 *p = (u8 *)ptr; 518 u32 len; /* Fast Open option length */ 519 520 if (foc->exp) { 521 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 522 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 523 TCPOPT_FASTOPEN_MAGIC); 524 p += TCPOLEN_EXP_FASTOPEN_BASE; 525 } else { 526 len = TCPOLEN_FASTOPEN_BASE + foc->len; 527 *p++ = TCPOPT_FASTOPEN; 528 *p++ = len; 529 } 530 531 memcpy(p, foc->val, foc->len); 532 if ((len & 3) == 2) { 533 p[foc->len] = TCPOPT_NOP; 534 p[foc->len + 1] = TCPOPT_NOP; 535 } 536 ptr += (len + 3) >> 2; 537 } 538 539 smc_options_write(ptr, &options); 540 } 541 542 static void smc_set_option(const struct tcp_sock *tp, 543 struct tcp_out_options *opts, 544 unsigned int *remaining) 545 { 546 #if IS_ENABLED(CONFIG_SMC) 547 if (static_branch_unlikely(&tcp_have_smc)) { 548 if (tp->syn_smc) { 549 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 550 opts->options |= OPTION_SMC; 551 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 552 } 553 } 554 } 555 #endif 556 } 557 558 static void smc_set_option_cond(const struct tcp_sock *tp, 559 const struct inet_request_sock *ireq, 560 struct tcp_out_options *opts, 561 unsigned int *remaining) 562 { 563 #if IS_ENABLED(CONFIG_SMC) 564 if (static_branch_unlikely(&tcp_have_smc)) { 565 if (tp->syn_smc && ireq->smc_ok) { 566 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 567 opts->options |= OPTION_SMC; 568 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 569 } 570 } 571 } 572 #endif 573 } 574 575 /* Compute TCP options for SYN packets. This is not the final 576 * network wire format yet. 577 */ 578 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 579 struct tcp_out_options *opts, 580 struct tcp_md5sig_key **md5) 581 { 582 struct tcp_sock *tp = tcp_sk(sk); 583 unsigned int remaining = MAX_TCP_OPTION_SPACE; 584 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 585 586 *md5 = NULL; 587 #ifdef CONFIG_TCP_MD5SIG 588 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 589 *md5 = tp->af_specific->md5_lookup(sk, sk); 590 if (*md5) { 591 opts->options |= OPTION_MD5; 592 remaining -= TCPOLEN_MD5SIG_ALIGNED; 593 } 594 } 595 #endif 596 597 /* We always get an MSS option. The option bytes which will be seen in 598 * normal data packets should timestamps be used, must be in the MSS 599 * advertised. But we subtract them from tp->mss_cache so that 600 * calculations in tcp_sendmsg are simpler etc. So account for this 601 * fact here if necessary. If we don't do this correctly, as a 602 * receiver we won't recognize data packets as being full sized when we 603 * should, and thus we won't abide by the delayed ACK rules correctly. 604 * SACKs don't matter, we never delay an ACK when we have any of those 605 * going out. */ 606 opts->mss = tcp_advertise_mss(sk); 607 remaining -= TCPOLEN_MSS_ALIGNED; 608 609 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 610 opts->options |= OPTION_TS; 611 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 612 opts->tsecr = tp->rx_opt.ts_recent; 613 remaining -= TCPOLEN_TSTAMP_ALIGNED; 614 } 615 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 616 opts->ws = tp->rx_opt.rcv_wscale; 617 opts->options |= OPTION_WSCALE; 618 remaining -= TCPOLEN_WSCALE_ALIGNED; 619 } 620 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 621 opts->options |= OPTION_SACK_ADVERTISE; 622 if (unlikely(!(OPTION_TS & opts->options))) 623 remaining -= TCPOLEN_SACKPERM_ALIGNED; 624 } 625 626 if (fastopen && fastopen->cookie.len >= 0) { 627 u32 need = fastopen->cookie.len; 628 629 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 630 TCPOLEN_FASTOPEN_BASE; 631 need = (need + 3) & ~3U; /* Align to 32 bits */ 632 if (remaining >= need) { 633 opts->options |= OPTION_FAST_OPEN_COOKIE; 634 opts->fastopen_cookie = &fastopen->cookie; 635 remaining -= need; 636 tp->syn_fastopen = 1; 637 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 638 } 639 } 640 641 smc_set_option(tp, opts, &remaining); 642 643 return MAX_TCP_OPTION_SPACE - remaining; 644 } 645 646 /* Set up TCP options for SYN-ACKs. */ 647 static unsigned int tcp_synack_options(const struct sock *sk, 648 struct request_sock *req, 649 unsigned int mss, struct sk_buff *skb, 650 struct tcp_out_options *opts, 651 const struct tcp_md5sig_key *md5, 652 struct tcp_fastopen_cookie *foc) 653 { 654 struct inet_request_sock *ireq = inet_rsk(req); 655 unsigned int remaining = MAX_TCP_OPTION_SPACE; 656 657 #ifdef CONFIG_TCP_MD5SIG 658 if (md5) { 659 opts->options |= OPTION_MD5; 660 remaining -= TCPOLEN_MD5SIG_ALIGNED; 661 662 /* We can't fit any SACK blocks in a packet with MD5 + TS 663 * options. There was discussion about disabling SACK 664 * rather than TS in order to fit in better with old, 665 * buggy kernels, but that was deemed to be unnecessary. 666 */ 667 ireq->tstamp_ok &= !ireq->sack_ok; 668 } 669 #endif 670 671 /* We always send an MSS option. */ 672 opts->mss = mss; 673 remaining -= TCPOLEN_MSS_ALIGNED; 674 675 if (likely(ireq->wscale_ok)) { 676 opts->ws = ireq->rcv_wscale; 677 opts->options |= OPTION_WSCALE; 678 remaining -= TCPOLEN_WSCALE_ALIGNED; 679 } 680 if (likely(ireq->tstamp_ok)) { 681 opts->options |= OPTION_TS; 682 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 683 opts->tsecr = req->ts_recent; 684 remaining -= TCPOLEN_TSTAMP_ALIGNED; 685 } 686 if (likely(ireq->sack_ok)) { 687 opts->options |= OPTION_SACK_ADVERTISE; 688 if (unlikely(!ireq->tstamp_ok)) 689 remaining -= TCPOLEN_SACKPERM_ALIGNED; 690 } 691 if (foc != NULL && foc->len >= 0) { 692 u32 need = foc->len; 693 694 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 695 TCPOLEN_FASTOPEN_BASE; 696 need = (need + 3) & ~3U; /* Align to 32 bits */ 697 if (remaining >= need) { 698 opts->options |= OPTION_FAST_OPEN_COOKIE; 699 opts->fastopen_cookie = foc; 700 remaining -= need; 701 } 702 } 703 704 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 705 706 return MAX_TCP_OPTION_SPACE - remaining; 707 } 708 709 /* Compute TCP options for ESTABLISHED sockets. This is not the 710 * final wire format yet. 711 */ 712 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 713 struct tcp_out_options *opts, 714 struct tcp_md5sig_key **md5) 715 { 716 struct tcp_sock *tp = tcp_sk(sk); 717 unsigned int size = 0; 718 unsigned int eff_sacks; 719 720 opts->options = 0; 721 722 *md5 = NULL; 723 #ifdef CONFIG_TCP_MD5SIG 724 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 725 *md5 = tp->af_specific->md5_lookup(sk, sk); 726 if (*md5) { 727 opts->options |= OPTION_MD5; 728 size += TCPOLEN_MD5SIG_ALIGNED; 729 } 730 } 731 #endif 732 733 if (likely(tp->rx_opt.tstamp_ok)) { 734 opts->options |= OPTION_TS; 735 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 736 opts->tsecr = tp->rx_opt.ts_recent; 737 size += TCPOLEN_TSTAMP_ALIGNED; 738 } 739 740 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 741 if (unlikely(eff_sacks)) { 742 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 743 opts->num_sack_blocks = 744 min_t(unsigned int, eff_sacks, 745 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 746 TCPOLEN_SACK_PERBLOCK); 747 size += TCPOLEN_SACK_BASE_ALIGNED + 748 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 749 } 750 751 return size; 752 } 753 754 755 /* TCP SMALL QUEUES (TSQ) 756 * 757 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 758 * to reduce RTT and bufferbloat. 759 * We do this using a special skb destructor (tcp_wfree). 760 * 761 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 762 * needs to be reallocated in a driver. 763 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 764 * 765 * Since transmit from skb destructor is forbidden, we use a tasklet 766 * to process all sockets that eventually need to send more skbs. 767 * We use one tasklet per cpu, with its own queue of sockets. 768 */ 769 struct tsq_tasklet { 770 struct tasklet_struct tasklet; 771 struct list_head head; /* queue of tcp sockets */ 772 }; 773 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 774 775 static void tcp_tsq_write(struct sock *sk) 776 { 777 if ((1 << sk->sk_state) & 778 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 779 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 780 struct tcp_sock *tp = tcp_sk(sk); 781 782 if (tp->lost_out > tp->retrans_out && 783 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 784 tcp_mstamp_refresh(tp); 785 tcp_xmit_retransmit_queue(sk); 786 } 787 788 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 789 0, GFP_ATOMIC); 790 } 791 } 792 793 static void tcp_tsq_handler(struct sock *sk) 794 { 795 bh_lock_sock(sk); 796 if (!sock_owned_by_user(sk)) 797 tcp_tsq_write(sk); 798 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 799 sock_hold(sk); 800 bh_unlock_sock(sk); 801 } 802 /* 803 * One tasklet per cpu tries to send more skbs. 804 * We run in tasklet context but need to disable irqs when 805 * transferring tsq->head because tcp_wfree() might 806 * interrupt us (non NAPI drivers) 807 */ 808 static void tcp_tasklet_func(unsigned long data) 809 { 810 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 811 LIST_HEAD(list); 812 unsigned long flags; 813 struct list_head *q, *n; 814 struct tcp_sock *tp; 815 struct sock *sk; 816 817 local_irq_save(flags); 818 list_splice_init(&tsq->head, &list); 819 local_irq_restore(flags); 820 821 list_for_each_safe(q, n, &list) { 822 tp = list_entry(q, struct tcp_sock, tsq_node); 823 list_del(&tp->tsq_node); 824 825 sk = (struct sock *)tp; 826 smp_mb__before_atomic(); 827 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 828 829 tcp_tsq_handler(sk); 830 sk_free(sk); 831 } 832 } 833 834 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 835 TCPF_WRITE_TIMER_DEFERRED | \ 836 TCPF_DELACK_TIMER_DEFERRED | \ 837 TCPF_MTU_REDUCED_DEFERRED) 838 /** 839 * tcp_release_cb - tcp release_sock() callback 840 * @sk: socket 841 * 842 * called from release_sock() to perform protocol dependent 843 * actions before socket release. 844 */ 845 void tcp_release_cb(struct sock *sk) 846 { 847 unsigned long flags, nflags; 848 849 /* perform an atomic operation only if at least one flag is set */ 850 do { 851 flags = sk->sk_tsq_flags; 852 if (!(flags & TCP_DEFERRED_ALL)) 853 return; 854 nflags = flags & ~TCP_DEFERRED_ALL; 855 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 856 857 if (flags & TCPF_TSQ_DEFERRED) { 858 tcp_tsq_write(sk); 859 __sock_put(sk); 860 } 861 /* Here begins the tricky part : 862 * We are called from release_sock() with : 863 * 1) BH disabled 864 * 2) sk_lock.slock spinlock held 865 * 3) socket owned by us (sk->sk_lock.owned == 1) 866 * 867 * But following code is meant to be called from BH handlers, 868 * so we should keep BH disabled, but early release socket ownership 869 */ 870 sock_release_ownership(sk); 871 872 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 873 tcp_write_timer_handler(sk); 874 __sock_put(sk); 875 } 876 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 877 tcp_delack_timer_handler(sk); 878 __sock_put(sk); 879 } 880 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 881 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 882 __sock_put(sk); 883 } 884 } 885 EXPORT_SYMBOL(tcp_release_cb); 886 887 void __init tcp_tasklet_init(void) 888 { 889 int i; 890 891 for_each_possible_cpu(i) { 892 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 893 894 INIT_LIST_HEAD(&tsq->head); 895 tasklet_init(&tsq->tasklet, 896 tcp_tasklet_func, 897 (unsigned long)tsq); 898 } 899 } 900 901 /* 902 * Write buffer destructor automatically called from kfree_skb. 903 * We can't xmit new skbs from this context, as we might already 904 * hold qdisc lock. 905 */ 906 void tcp_wfree(struct sk_buff *skb) 907 { 908 struct sock *sk = skb->sk; 909 struct tcp_sock *tp = tcp_sk(sk); 910 unsigned long flags, nval, oval; 911 912 /* Keep one reference on sk_wmem_alloc. 913 * Will be released by sk_free() from here or tcp_tasklet_func() 914 */ 915 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 916 917 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 918 * Wait until our queues (qdisc + devices) are drained. 919 * This gives : 920 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 921 * - chance for incoming ACK (processed by another cpu maybe) 922 * to migrate this flow (skb->ooo_okay will be eventually set) 923 */ 924 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 925 goto out; 926 927 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 928 struct tsq_tasklet *tsq; 929 bool empty; 930 931 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 932 goto out; 933 934 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 935 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 936 if (nval != oval) 937 continue; 938 939 /* queue this socket to tasklet queue */ 940 local_irq_save(flags); 941 tsq = this_cpu_ptr(&tsq_tasklet); 942 empty = list_empty(&tsq->head); 943 list_add(&tp->tsq_node, &tsq->head); 944 if (empty) 945 tasklet_schedule(&tsq->tasklet); 946 local_irq_restore(flags); 947 return; 948 } 949 out: 950 sk_free(sk); 951 } 952 953 /* Note: Called under soft irq. 954 * We can call TCP stack right away, unless socket is owned by user. 955 */ 956 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 957 { 958 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 959 struct sock *sk = (struct sock *)tp; 960 961 tcp_tsq_handler(sk); 962 sock_put(sk); 963 964 return HRTIMER_NORESTART; 965 } 966 967 /* BBR congestion control needs pacing. 968 * Same remark for SO_MAX_PACING_RATE. 969 * sch_fq packet scheduler is efficiently handling pacing, 970 * but is not always installed/used. 971 * Return true if TCP stack should pace packets itself. 972 */ 973 static bool tcp_needs_internal_pacing(const struct sock *sk) 974 { 975 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 976 } 977 978 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 979 { 980 u64 len_ns; 981 u32 rate; 982 983 if (!tcp_needs_internal_pacing(sk)) 984 return; 985 rate = sk->sk_pacing_rate; 986 if (!rate || rate == ~0U) 987 return; 988 989 /* Should account for header sizes as sch_fq does, 990 * but lets make things simple. 991 */ 992 len_ns = (u64)skb->len * NSEC_PER_SEC; 993 do_div(len_ns, rate); 994 hrtimer_start(&tcp_sk(sk)->pacing_timer, 995 ktime_add_ns(ktime_get(), len_ns), 996 HRTIMER_MODE_ABS_PINNED_SOFT); 997 sock_hold(sk); 998 } 999 1000 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 1001 { 1002 skb->skb_mstamp = tp->tcp_mstamp; 1003 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1004 } 1005 1006 /* This routine actually transmits TCP packets queued in by 1007 * tcp_do_sendmsg(). This is used by both the initial 1008 * transmission and possible later retransmissions. 1009 * All SKB's seen here are completely headerless. It is our 1010 * job to build the TCP header, and pass the packet down to 1011 * IP so it can do the same plus pass the packet off to the 1012 * device. 1013 * 1014 * We are working here with either a clone of the original 1015 * SKB, or a fresh unique copy made by the retransmit engine. 1016 */ 1017 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1018 gfp_t gfp_mask) 1019 { 1020 const struct inet_connection_sock *icsk = inet_csk(sk); 1021 struct inet_sock *inet; 1022 struct tcp_sock *tp; 1023 struct tcp_skb_cb *tcb; 1024 struct tcp_out_options opts; 1025 unsigned int tcp_options_size, tcp_header_size; 1026 struct sk_buff *oskb = NULL; 1027 struct tcp_md5sig_key *md5; 1028 struct tcphdr *th; 1029 int err; 1030 1031 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1032 tp = tcp_sk(sk); 1033 1034 if (clone_it) { 1035 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1036 - tp->snd_una; 1037 oskb = skb; 1038 1039 tcp_skb_tsorted_save(oskb) { 1040 if (unlikely(skb_cloned(oskb))) 1041 skb = pskb_copy(oskb, gfp_mask); 1042 else 1043 skb = skb_clone(oskb, gfp_mask); 1044 } tcp_skb_tsorted_restore(oskb); 1045 1046 if (unlikely(!skb)) 1047 return -ENOBUFS; 1048 } 1049 skb->skb_mstamp = tp->tcp_mstamp; 1050 1051 inet = inet_sk(sk); 1052 tcb = TCP_SKB_CB(skb); 1053 memset(&opts, 0, sizeof(opts)); 1054 1055 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1056 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1057 else 1058 tcp_options_size = tcp_established_options(sk, skb, &opts, 1059 &md5); 1060 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1061 1062 /* if no packet is in qdisc/device queue, then allow XPS to select 1063 * another queue. We can be called from tcp_tsq_handler() 1064 * which holds one reference to sk. 1065 * 1066 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1067 * One way to get this would be to set skb->truesize = 2 on them. 1068 */ 1069 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1070 1071 /* If we had to use memory reserve to allocate this skb, 1072 * this might cause drops if packet is looped back : 1073 * Other socket might not have SOCK_MEMALLOC. 1074 * Packets not looped back do not care about pfmemalloc. 1075 */ 1076 skb->pfmemalloc = 0; 1077 1078 skb_push(skb, tcp_header_size); 1079 skb_reset_transport_header(skb); 1080 1081 skb_orphan(skb); 1082 skb->sk = sk; 1083 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1084 skb_set_hash_from_sk(skb, sk); 1085 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1086 1087 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1088 1089 /* Build TCP header and checksum it. */ 1090 th = (struct tcphdr *)skb->data; 1091 th->source = inet->inet_sport; 1092 th->dest = inet->inet_dport; 1093 th->seq = htonl(tcb->seq); 1094 th->ack_seq = htonl(tp->rcv_nxt); 1095 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1096 tcb->tcp_flags); 1097 1098 th->check = 0; 1099 th->urg_ptr = 0; 1100 1101 /* The urg_mode check is necessary during a below snd_una win probe */ 1102 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1103 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1104 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1105 th->urg = 1; 1106 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1107 th->urg_ptr = htons(0xFFFF); 1108 th->urg = 1; 1109 } 1110 } 1111 1112 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1113 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1114 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1115 th->window = htons(tcp_select_window(sk)); 1116 tcp_ecn_send(sk, skb, th, tcp_header_size); 1117 } else { 1118 /* RFC1323: The window in SYN & SYN/ACK segments 1119 * is never scaled. 1120 */ 1121 th->window = htons(min(tp->rcv_wnd, 65535U)); 1122 } 1123 #ifdef CONFIG_TCP_MD5SIG 1124 /* Calculate the MD5 hash, as we have all we need now */ 1125 if (md5) { 1126 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1127 tp->af_specific->calc_md5_hash(opts.hash_location, 1128 md5, sk, skb); 1129 } 1130 #endif 1131 1132 icsk->icsk_af_ops->send_check(sk, skb); 1133 1134 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1135 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1136 1137 if (skb->len != tcp_header_size) { 1138 tcp_event_data_sent(tp, sk); 1139 tp->data_segs_out += tcp_skb_pcount(skb); 1140 tcp_internal_pacing(sk, skb); 1141 } 1142 1143 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1144 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1145 tcp_skb_pcount(skb)); 1146 1147 tp->segs_out += tcp_skb_pcount(skb); 1148 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1149 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1150 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1151 1152 /* Our usage of tstamp should remain private */ 1153 skb->tstamp = 0; 1154 1155 /* Cleanup our debris for IP stacks */ 1156 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1157 sizeof(struct inet6_skb_parm))); 1158 1159 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1160 1161 if (unlikely(err > 0)) { 1162 tcp_enter_cwr(sk); 1163 err = net_xmit_eval(err); 1164 } 1165 if (!err && oskb) { 1166 tcp_update_skb_after_send(tp, oskb); 1167 tcp_rate_skb_sent(sk, oskb); 1168 } 1169 return err; 1170 } 1171 1172 /* This routine just queues the buffer for sending. 1173 * 1174 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1175 * otherwise socket can stall. 1176 */ 1177 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1178 { 1179 struct tcp_sock *tp = tcp_sk(sk); 1180 1181 /* Advance write_seq and place onto the write_queue. */ 1182 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1183 __skb_header_release(skb); 1184 tcp_add_write_queue_tail(sk, skb); 1185 sk->sk_wmem_queued += skb->truesize; 1186 sk_mem_charge(sk, skb->truesize); 1187 } 1188 1189 /* Initialize TSO segments for a packet. */ 1190 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1191 { 1192 if (skb->len <= mss_now) { 1193 /* Avoid the costly divide in the normal 1194 * non-TSO case. 1195 */ 1196 tcp_skb_pcount_set(skb, 1); 1197 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1198 } else { 1199 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1200 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1201 } 1202 } 1203 1204 /* Pcount in the middle of the write queue got changed, we need to do various 1205 * tweaks to fix counters 1206 */ 1207 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1208 { 1209 struct tcp_sock *tp = tcp_sk(sk); 1210 1211 tp->packets_out -= decr; 1212 1213 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1214 tp->sacked_out -= decr; 1215 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1216 tp->retrans_out -= decr; 1217 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1218 tp->lost_out -= decr; 1219 1220 /* Reno case is special. Sigh... */ 1221 if (tcp_is_reno(tp) && decr > 0) 1222 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1223 1224 if (tp->lost_skb_hint && 1225 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1226 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1227 tp->lost_cnt_hint -= decr; 1228 1229 tcp_verify_left_out(tp); 1230 } 1231 1232 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1233 { 1234 return TCP_SKB_CB(skb)->txstamp_ack || 1235 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1236 } 1237 1238 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1239 { 1240 struct skb_shared_info *shinfo = skb_shinfo(skb); 1241 1242 if (unlikely(tcp_has_tx_tstamp(skb)) && 1243 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1244 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1245 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1246 1247 shinfo->tx_flags &= ~tsflags; 1248 shinfo2->tx_flags |= tsflags; 1249 swap(shinfo->tskey, shinfo2->tskey); 1250 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1251 TCP_SKB_CB(skb)->txstamp_ack = 0; 1252 } 1253 } 1254 1255 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1256 { 1257 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1258 TCP_SKB_CB(skb)->eor = 0; 1259 } 1260 1261 /* Insert buff after skb on the write or rtx queue of sk. */ 1262 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1263 struct sk_buff *buff, 1264 struct sock *sk, 1265 enum tcp_queue tcp_queue) 1266 { 1267 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1268 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1269 else 1270 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1271 } 1272 1273 /* Function to create two new TCP segments. Shrinks the given segment 1274 * to the specified size and appends a new segment with the rest of the 1275 * packet to the list. This won't be called frequently, I hope. 1276 * Remember, these are still headerless SKBs at this point. 1277 */ 1278 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1279 struct sk_buff *skb, u32 len, 1280 unsigned int mss_now, gfp_t gfp) 1281 { 1282 struct tcp_sock *tp = tcp_sk(sk); 1283 struct sk_buff *buff; 1284 int nsize, old_factor; 1285 int nlen; 1286 u8 flags; 1287 1288 if (WARN_ON(len > skb->len)) 1289 return -EINVAL; 1290 1291 nsize = skb_headlen(skb) - len; 1292 if (nsize < 0) 1293 nsize = 0; 1294 1295 if (skb_unclone(skb, gfp)) 1296 return -ENOMEM; 1297 1298 /* Get a new skb... force flag on. */ 1299 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1300 if (!buff) 1301 return -ENOMEM; /* We'll just try again later. */ 1302 1303 sk->sk_wmem_queued += buff->truesize; 1304 sk_mem_charge(sk, buff->truesize); 1305 nlen = skb->len - len - nsize; 1306 buff->truesize += nlen; 1307 skb->truesize -= nlen; 1308 1309 /* Correct the sequence numbers. */ 1310 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1311 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1312 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1313 1314 /* PSH and FIN should only be set in the second packet. */ 1315 flags = TCP_SKB_CB(skb)->tcp_flags; 1316 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1317 TCP_SKB_CB(buff)->tcp_flags = flags; 1318 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1319 tcp_skb_fragment_eor(skb, buff); 1320 1321 skb_split(skb, buff, len); 1322 1323 buff->ip_summed = CHECKSUM_PARTIAL; 1324 1325 buff->tstamp = skb->tstamp; 1326 tcp_fragment_tstamp(skb, buff); 1327 1328 old_factor = tcp_skb_pcount(skb); 1329 1330 /* Fix up tso_factor for both original and new SKB. */ 1331 tcp_set_skb_tso_segs(skb, mss_now); 1332 tcp_set_skb_tso_segs(buff, mss_now); 1333 1334 /* Update delivered info for the new segment */ 1335 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1336 1337 /* If this packet has been sent out already, we must 1338 * adjust the various packet counters. 1339 */ 1340 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1341 int diff = old_factor - tcp_skb_pcount(skb) - 1342 tcp_skb_pcount(buff); 1343 1344 if (diff) 1345 tcp_adjust_pcount(sk, skb, diff); 1346 } 1347 1348 /* Link BUFF into the send queue. */ 1349 __skb_header_release(buff); 1350 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1351 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1352 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1353 1354 return 0; 1355 } 1356 1357 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1358 * data is not copied, but immediately discarded. 1359 */ 1360 static int __pskb_trim_head(struct sk_buff *skb, int len) 1361 { 1362 struct skb_shared_info *shinfo; 1363 int i, k, eat; 1364 1365 eat = min_t(int, len, skb_headlen(skb)); 1366 if (eat) { 1367 __skb_pull(skb, eat); 1368 len -= eat; 1369 if (!len) 1370 return 0; 1371 } 1372 eat = len; 1373 k = 0; 1374 shinfo = skb_shinfo(skb); 1375 for (i = 0; i < shinfo->nr_frags; i++) { 1376 int size = skb_frag_size(&shinfo->frags[i]); 1377 1378 if (size <= eat) { 1379 skb_frag_unref(skb, i); 1380 eat -= size; 1381 } else { 1382 shinfo->frags[k] = shinfo->frags[i]; 1383 if (eat) { 1384 shinfo->frags[k].page_offset += eat; 1385 skb_frag_size_sub(&shinfo->frags[k], eat); 1386 eat = 0; 1387 } 1388 k++; 1389 } 1390 } 1391 shinfo->nr_frags = k; 1392 1393 skb->data_len -= len; 1394 skb->len = skb->data_len; 1395 return len; 1396 } 1397 1398 /* Remove acked data from a packet in the transmit queue. */ 1399 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1400 { 1401 u32 delta_truesize; 1402 1403 if (skb_unclone(skb, GFP_ATOMIC)) 1404 return -ENOMEM; 1405 1406 delta_truesize = __pskb_trim_head(skb, len); 1407 1408 TCP_SKB_CB(skb)->seq += len; 1409 skb->ip_summed = CHECKSUM_PARTIAL; 1410 1411 if (delta_truesize) { 1412 skb->truesize -= delta_truesize; 1413 sk->sk_wmem_queued -= delta_truesize; 1414 sk_mem_uncharge(sk, delta_truesize); 1415 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1416 } 1417 1418 /* Any change of skb->len requires recalculation of tso factor. */ 1419 if (tcp_skb_pcount(skb) > 1) 1420 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1421 1422 return 0; 1423 } 1424 1425 /* Calculate MSS not accounting any TCP options. */ 1426 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1427 { 1428 const struct tcp_sock *tp = tcp_sk(sk); 1429 const struct inet_connection_sock *icsk = inet_csk(sk); 1430 int mss_now; 1431 1432 /* Calculate base mss without TCP options: 1433 It is MMS_S - sizeof(tcphdr) of rfc1122 1434 */ 1435 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1436 1437 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1438 if (icsk->icsk_af_ops->net_frag_header_len) { 1439 const struct dst_entry *dst = __sk_dst_get(sk); 1440 1441 if (dst && dst_allfrag(dst)) 1442 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1443 } 1444 1445 /* Clamp it (mss_clamp does not include tcp options) */ 1446 if (mss_now > tp->rx_opt.mss_clamp) 1447 mss_now = tp->rx_opt.mss_clamp; 1448 1449 /* Now subtract optional transport overhead */ 1450 mss_now -= icsk->icsk_ext_hdr_len; 1451 1452 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1453 if (mss_now < 48) 1454 mss_now = 48; 1455 return mss_now; 1456 } 1457 1458 /* Calculate MSS. Not accounting for SACKs here. */ 1459 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1460 { 1461 /* Subtract TCP options size, not including SACKs */ 1462 return __tcp_mtu_to_mss(sk, pmtu) - 1463 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1464 } 1465 1466 /* Inverse of above */ 1467 int tcp_mss_to_mtu(struct sock *sk, int mss) 1468 { 1469 const struct tcp_sock *tp = tcp_sk(sk); 1470 const struct inet_connection_sock *icsk = inet_csk(sk); 1471 int mtu; 1472 1473 mtu = mss + 1474 tp->tcp_header_len + 1475 icsk->icsk_ext_hdr_len + 1476 icsk->icsk_af_ops->net_header_len; 1477 1478 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1479 if (icsk->icsk_af_ops->net_frag_header_len) { 1480 const struct dst_entry *dst = __sk_dst_get(sk); 1481 1482 if (dst && dst_allfrag(dst)) 1483 mtu += icsk->icsk_af_ops->net_frag_header_len; 1484 } 1485 return mtu; 1486 } 1487 EXPORT_SYMBOL(tcp_mss_to_mtu); 1488 1489 /* MTU probing init per socket */ 1490 void tcp_mtup_init(struct sock *sk) 1491 { 1492 struct tcp_sock *tp = tcp_sk(sk); 1493 struct inet_connection_sock *icsk = inet_csk(sk); 1494 struct net *net = sock_net(sk); 1495 1496 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1497 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1498 icsk->icsk_af_ops->net_header_len; 1499 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1500 icsk->icsk_mtup.probe_size = 0; 1501 if (icsk->icsk_mtup.enabled) 1502 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1503 } 1504 EXPORT_SYMBOL(tcp_mtup_init); 1505 1506 /* This function synchronize snd mss to current pmtu/exthdr set. 1507 1508 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1509 for TCP options, but includes only bare TCP header. 1510 1511 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1512 It is minimum of user_mss and mss received with SYN. 1513 It also does not include TCP options. 1514 1515 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1516 1517 tp->mss_cache is current effective sending mss, including 1518 all tcp options except for SACKs. It is evaluated, 1519 taking into account current pmtu, but never exceeds 1520 tp->rx_opt.mss_clamp. 1521 1522 NOTE1. rfc1122 clearly states that advertised MSS 1523 DOES NOT include either tcp or ip options. 1524 1525 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1526 are READ ONLY outside this function. --ANK (980731) 1527 */ 1528 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1529 { 1530 struct tcp_sock *tp = tcp_sk(sk); 1531 struct inet_connection_sock *icsk = inet_csk(sk); 1532 int mss_now; 1533 1534 if (icsk->icsk_mtup.search_high > pmtu) 1535 icsk->icsk_mtup.search_high = pmtu; 1536 1537 mss_now = tcp_mtu_to_mss(sk, pmtu); 1538 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1539 1540 /* And store cached results */ 1541 icsk->icsk_pmtu_cookie = pmtu; 1542 if (icsk->icsk_mtup.enabled) 1543 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1544 tp->mss_cache = mss_now; 1545 1546 return mss_now; 1547 } 1548 EXPORT_SYMBOL(tcp_sync_mss); 1549 1550 /* Compute the current effective MSS, taking SACKs and IP options, 1551 * and even PMTU discovery events into account. 1552 */ 1553 unsigned int tcp_current_mss(struct sock *sk) 1554 { 1555 const struct tcp_sock *tp = tcp_sk(sk); 1556 const struct dst_entry *dst = __sk_dst_get(sk); 1557 u32 mss_now; 1558 unsigned int header_len; 1559 struct tcp_out_options opts; 1560 struct tcp_md5sig_key *md5; 1561 1562 mss_now = tp->mss_cache; 1563 1564 if (dst) { 1565 u32 mtu = dst_mtu(dst); 1566 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1567 mss_now = tcp_sync_mss(sk, mtu); 1568 } 1569 1570 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1571 sizeof(struct tcphdr); 1572 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1573 * some common options. If this is an odd packet (because we have SACK 1574 * blocks etc) then our calculated header_len will be different, and 1575 * we have to adjust mss_now correspondingly */ 1576 if (header_len != tp->tcp_header_len) { 1577 int delta = (int) header_len - tp->tcp_header_len; 1578 mss_now -= delta; 1579 } 1580 1581 return mss_now; 1582 } 1583 1584 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1585 * As additional protections, we do not touch cwnd in retransmission phases, 1586 * and if application hit its sndbuf limit recently. 1587 */ 1588 static void tcp_cwnd_application_limited(struct sock *sk) 1589 { 1590 struct tcp_sock *tp = tcp_sk(sk); 1591 1592 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1593 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1594 /* Limited by application or receiver window. */ 1595 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1596 u32 win_used = max(tp->snd_cwnd_used, init_win); 1597 if (win_used < tp->snd_cwnd) { 1598 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1599 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1600 } 1601 tp->snd_cwnd_used = 0; 1602 } 1603 tp->snd_cwnd_stamp = tcp_jiffies32; 1604 } 1605 1606 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1607 { 1608 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1609 struct tcp_sock *tp = tcp_sk(sk); 1610 1611 /* Track the maximum number of outstanding packets in each 1612 * window, and remember whether we were cwnd-limited then. 1613 */ 1614 if (!before(tp->snd_una, tp->max_packets_seq) || 1615 tp->packets_out > tp->max_packets_out) { 1616 tp->max_packets_out = tp->packets_out; 1617 tp->max_packets_seq = tp->snd_nxt; 1618 tp->is_cwnd_limited = is_cwnd_limited; 1619 } 1620 1621 if (tcp_is_cwnd_limited(sk)) { 1622 /* Network is feed fully. */ 1623 tp->snd_cwnd_used = 0; 1624 tp->snd_cwnd_stamp = tcp_jiffies32; 1625 } else { 1626 /* Network starves. */ 1627 if (tp->packets_out > tp->snd_cwnd_used) 1628 tp->snd_cwnd_used = tp->packets_out; 1629 1630 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1631 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1632 !ca_ops->cong_control) 1633 tcp_cwnd_application_limited(sk); 1634 1635 /* The following conditions together indicate the starvation 1636 * is caused by insufficient sender buffer: 1637 * 1) just sent some data (see tcp_write_xmit) 1638 * 2) not cwnd limited (this else condition) 1639 * 3) no more data to send (tcp_write_queue_empty()) 1640 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1641 */ 1642 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1643 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1644 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1645 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1646 } 1647 } 1648 1649 /* Minshall's variant of the Nagle send check. */ 1650 static bool tcp_minshall_check(const struct tcp_sock *tp) 1651 { 1652 return after(tp->snd_sml, tp->snd_una) && 1653 !after(tp->snd_sml, tp->snd_nxt); 1654 } 1655 1656 /* Update snd_sml if this skb is under mss 1657 * Note that a TSO packet might end with a sub-mss segment 1658 * The test is really : 1659 * if ((skb->len % mss) != 0) 1660 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1661 * But we can avoid doing the divide again given we already have 1662 * skb_pcount = skb->len / mss_now 1663 */ 1664 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1665 const struct sk_buff *skb) 1666 { 1667 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1668 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1669 } 1670 1671 /* Return false, if packet can be sent now without violation Nagle's rules: 1672 * 1. It is full sized. (provided by caller in %partial bool) 1673 * 2. Or it contains FIN. (already checked by caller) 1674 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1675 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1676 * With Minshall's modification: all sent small packets are ACKed. 1677 */ 1678 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1679 int nonagle) 1680 { 1681 return partial && 1682 ((nonagle & TCP_NAGLE_CORK) || 1683 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1684 } 1685 1686 /* Return how many segs we'd like on a TSO packet, 1687 * to send one TSO packet per ms 1688 */ 1689 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1690 int min_tso_segs) 1691 { 1692 u32 bytes, segs; 1693 1694 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, 1695 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1696 1697 /* Goal is to send at least one packet per ms, 1698 * not one big TSO packet every 100 ms. 1699 * This preserves ACK clocking and is consistent 1700 * with tcp_tso_should_defer() heuristic. 1701 */ 1702 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1703 1704 return segs; 1705 } 1706 1707 /* Return the number of segments we want in the skb we are transmitting. 1708 * See if congestion control module wants to decide; otherwise, autosize. 1709 */ 1710 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1711 { 1712 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1713 u32 min_tso, tso_segs; 1714 1715 min_tso = ca_ops->min_tso_segs ? 1716 ca_ops->min_tso_segs(sk) : 1717 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1718 1719 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1720 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1721 } 1722 1723 /* Returns the portion of skb which can be sent right away */ 1724 static unsigned int tcp_mss_split_point(const struct sock *sk, 1725 const struct sk_buff *skb, 1726 unsigned int mss_now, 1727 unsigned int max_segs, 1728 int nonagle) 1729 { 1730 const struct tcp_sock *tp = tcp_sk(sk); 1731 u32 partial, needed, window, max_len; 1732 1733 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1734 max_len = mss_now * max_segs; 1735 1736 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1737 return max_len; 1738 1739 needed = min(skb->len, window); 1740 1741 if (max_len <= needed) 1742 return max_len; 1743 1744 partial = needed % mss_now; 1745 /* If last segment is not a full MSS, check if Nagle rules allow us 1746 * to include this last segment in this skb. 1747 * Otherwise, we'll split the skb at last MSS boundary 1748 */ 1749 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1750 return needed - partial; 1751 1752 return needed; 1753 } 1754 1755 /* Can at least one segment of SKB be sent right now, according to the 1756 * congestion window rules? If so, return how many segments are allowed. 1757 */ 1758 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1759 const struct sk_buff *skb) 1760 { 1761 u32 in_flight, cwnd, halfcwnd; 1762 1763 /* Don't be strict about the congestion window for the final FIN. */ 1764 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1765 tcp_skb_pcount(skb) == 1) 1766 return 1; 1767 1768 in_flight = tcp_packets_in_flight(tp); 1769 cwnd = tp->snd_cwnd; 1770 if (in_flight >= cwnd) 1771 return 0; 1772 1773 /* For better scheduling, ensure we have at least 1774 * 2 GSO packets in flight. 1775 */ 1776 halfcwnd = max(cwnd >> 1, 1U); 1777 return min(halfcwnd, cwnd - in_flight); 1778 } 1779 1780 /* Initialize TSO state of a skb. 1781 * This must be invoked the first time we consider transmitting 1782 * SKB onto the wire. 1783 */ 1784 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1785 { 1786 int tso_segs = tcp_skb_pcount(skb); 1787 1788 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1789 tcp_set_skb_tso_segs(skb, mss_now); 1790 tso_segs = tcp_skb_pcount(skb); 1791 } 1792 return tso_segs; 1793 } 1794 1795 1796 /* Return true if the Nagle test allows this packet to be 1797 * sent now. 1798 */ 1799 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1800 unsigned int cur_mss, int nonagle) 1801 { 1802 /* Nagle rule does not apply to frames, which sit in the middle of the 1803 * write_queue (they have no chances to get new data). 1804 * 1805 * This is implemented in the callers, where they modify the 'nonagle' 1806 * argument based upon the location of SKB in the send queue. 1807 */ 1808 if (nonagle & TCP_NAGLE_PUSH) 1809 return true; 1810 1811 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1812 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1813 return true; 1814 1815 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1816 return true; 1817 1818 return false; 1819 } 1820 1821 /* Does at least the first segment of SKB fit into the send window? */ 1822 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1823 const struct sk_buff *skb, 1824 unsigned int cur_mss) 1825 { 1826 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1827 1828 if (skb->len > cur_mss) 1829 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1830 1831 return !after(end_seq, tcp_wnd_end(tp)); 1832 } 1833 1834 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1835 * which is put after SKB on the list. It is very much like 1836 * tcp_fragment() except that it may make several kinds of assumptions 1837 * in order to speed up the splitting operation. In particular, we 1838 * know that all the data is in scatter-gather pages, and that the 1839 * packet has never been sent out before (and thus is not cloned). 1840 */ 1841 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1842 struct sk_buff *skb, unsigned int len, 1843 unsigned int mss_now, gfp_t gfp) 1844 { 1845 struct sk_buff *buff; 1846 int nlen = skb->len - len; 1847 u8 flags; 1848 1849 /* All of a TSO frame must be composed of paged data. */ 1850 if (skb->len != skb->data_len) 1851 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1852 1853 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1854 if (unlikely(!buff)) 1855 return -ENOMEM; 1856 1857 sk->sk_wmem_queued += buff->truesize; 1858 sk_mem_charge(sk, buff->truesize); 1859 buff->truesize += nlen; 1860 skb->truesize -= nlen; 1861 1862 /* Correct the sequence numbers. */ 1863 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1864 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1865 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1866 1867 /* PSH and FIN should only be set in the second packet. */ 1868 flags = TCP_SKB_CB(skb)->tcp_flags; 1869 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1870 TCP_SKB_CB(buff)->tcp_flags = flags; 1871 1872 /* This packet was never sent out yet, so no SACK bits. */ 1873 TCP_SKB_CB(buff)->sacked = 0; 1874 1875 tcp_skb_fragment_eor(skb, buff); 1876 1877 buff->ip_summed = CHECKSUM_PARTIAL; 1878 skb_split(skb, buff, len); 1879 tcp_fragment_tstamp(skb, buff); 1880 1881 /* Fix up tso_factor for both original and new SKB. */ 1882 tcp_set_skb_tso_segs(skb, mss_now); 1883 tcp_set_skb_tso_segs(buff, mss_now); 1884 1885 /* Link BUFF into the send queue. */ 1886 __skb_header_release(buff); 1887 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1888 1889 return 0; 1890 } 1891 1892 /* Try to defer sending, if possible, in order to minimize the amount 1893 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1894 * 1895 * This algorithm is from John Heffner. 1896 */ 1897 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1898 bool *is_cwnd_limited, u32 max_segs) 1899 { 1900 const struct inet_connection_sock *icsk = inet_csk(sk); 1901 u32 age, send_win, cong_win, limit, in_flight; 1902 struct tcp_sock *tp = tcp_sk(sk); 1903 struct sk_buff *head; 1904 int win_divisor; 1905 1906 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1907 goto send_now; 1908 1909 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1910 goto send_now; 1911 1912 /* Avoid bursty behavior by allowing defer 1913 * only if the last write was recent. 1914 */ 1915 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1916 goto send_now; 1917 1918 in_flight = tcp_packets_in_flight(tp); 1919 1920 BUG_ON(tcp_skb_pcount(skb) <= 1); 1921 BUG_ON(tp->snd_cwnd <= in_flight); 1922 1923 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1924 1925 /* From in_flight test above, we know that cwnd > in_flight. */ 1926 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1927 1928 limit = min(send_win, cong_win); 1929 1930 /* If a full-sized TSO skb can be sent, do it. */ 1931 if (limit >= max_segs * tp->mss_cache) 1932 goto send_now; 1933 1934 /* Middle in queue won't get any more data, full sendable already? */ 1935 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1936 goto send_now; 1937 1938 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1939 if (win_divisor) { 1940 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1941 1942 /* If at least some fraction of a window is available, 1943 * just use it. 1944 */ 1945 chunk /= win_divisor; 1946 if (limit >= chunk) 1947 goto send_now; 1948 } else { 1949 /* Different approach, try not to defer past a single 1950 * ACK. Receiver should ACK every other full sized 1951 * frame, so if we have space for more than 3 frames 1952 * then send now. 1953 */ 1954 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1955 goto send_now; 1956 } 1957 1958 /* TODO : use tsorted_sent_queue ? */ 1959 head = tcp_rtx_queue_head(sk); 1960 if (!head) 1961 goto send_now; 1962 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1963 /* If next ACK is likely to come too late (half srtt), do not defer */ 1964 if (age < (tp->srtt_us >> 4)) 1965 goto send_now; 1966 1967 /* Ok, it looks like it is advisable to defer. */ 1968 1969 if (cong_win < send_win && cong_win <= skb->len) 1970 *is_cwnd_limited = true; 1971 1972 return true; 1973 1974 send_now: 1975 return false; 1976 } 1977 1978 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1979 { 1980 struct inet_connection_sock *icsk = inet_csk(sk); 1981 struct tcp_sock *tp = tcp_sk(sk); 1982 struct net *net = sock_net(sk); 1983 u32 interval; 1984 s32 delta; 1985 1986 interval = net->ipv4.sysctl_tcp_probe_interval; 1987 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1988 if (unlikely(delta >= interval * HZ)) { 1989 int mss = tcp_current_mss(sk); 1990 1991 /* Update current search range */ 1992 icsk->icsk_mtup.probe_size = 0; 1993 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1994 sizeof(struct tcphdr) + 1995 icsk->icsk_af_ops->net_header_len; 1996 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1997 1998 /* Update probe time stamp */ 1999 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2000 } 2001 } 2002 2003 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2004 { 2005 struct sk_buff *skb, *next; 2006 2007 skb = tcp_send_head(sk); 2008 tcp_for_write_queue_from_safe(skb, next, sk) { 2009 if (len <= skb->len) 2010 break; 2011 2012 if (unlikely(TCP_SKB_CB(skb)->eor)) 2013 return false; 2014 2015 len -= skb->len; 2016 } 2017 2018 return true; 2019 } 2020 2021 /* Create a new MTU probe if we are ready. 2022 * MTU probe is regularly attempting to increase the path MTU by 2023 * deliberately sending larger packets. This discovers routing 2024 * changes resulting in larger path MTUs. 2025 * 2026 * Returns 0 if we should wait to probe (no cwnd available), 2027 * 1 if a probe was sent, 2028 * -1 otherwise 2029 */ 2030 static int tcp_mtu_probe(struct sock *sk) 2031 { 2032 struct inet_connection_sock *icsk = inet_csk(sk); 2033 struct tcp_sock *tp = tcp_sk(sk); 2034 struct sk_buff *skb, *nskb, *next; 2035 struct net *net = sock_net(sk); 2036 int probe_size; 2037 int size_needed; 2038 int copy, len; 2039 int mss_now; 2040 int interval; 2041 2042 /* Not currently probing/verifying, 2043 * not in recovery, 2044 * have enough cwnd, and 2045 * not SACKing (the variable headers throw things off) 2046 */ 2047 if (likely(!icsk->icsk_mtup.enabled || 2048 icsk->icsk_mtup.probe_size || 2049 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2050 tp->snd_cwnd < 11 || 2051 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2052 return -1; 2053 2054 /* Use binary search for probe_size between tcp_mss_base, 2055 * and current mss_clamp. if (search_high - search_low) 2056 * smaller than a threshold, backoff from probing. 2057 */ 2058 mss_now = tcp_current_mss(sk); 2059 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2060 icsk->icsk_mtup.search_low) >> 1); 2061 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2062 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2063 /* When misfortune happens, we are reprobing actively, 2064 * and then reprobe timer has expired. We stick with current 2065 * probing process by not resetting search range to its orignal. 2066 */ 2067 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2068 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2069 /* Check whether enough time has elaplased for 2070 * another round of probing. 2071 */ 2072 tcp_mtu_check_reprobe(sk); 2073 return -1; 2074 } 2075 2076 /* Have enough data in the send queue to probe? */ 2077 if (tp->write_seq - tp->snd_nxt < size_needed) 2078 return -1; 2079 2080 if (tp->snd_wnd < size_needed) 2081 return -1; 2082 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2083 return 0; 2084 2085 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2086 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2087 if (!tcp_packets_in_flight(tp)) 2088 return -1; 2089 else 2090 return 0; 2091 } 2092 2093 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2094 return -1; 2095 2096 /* We're allowed to probe. Build it now. */ 2097 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2098 if (!nskb) 2099 return -1; 2100 sk->sk_wmem_queued += nskb->truesize; 2101 sk_mem_charge(sk, nskb->truesize); 2102 2103 skb = tcp_send_head(sk); 2104 2105 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2106 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2107 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2108 TCP_SKB_CB(nskb)->sacked = 0; 2109 nskb->csum = 0; 2110 nskb->ip_summed = CHECKSUM_PARTIAL; 2111 2112 tcp_insert_write_queue_before(nskb, skb, sk); 2113 tcp_highest_sack_replace(sk, skb, nskb); 2114 2115 len = 0; 2116 tcp_for_write_queue_from_safe(skb, next, sk) { 2117 copy = min_t(int, skb->len, probe_size - len); 2118 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2119 2120 if (skb->len <= copy) { 2121 /* We've eaten all the data from this skb. 2122 * Throw it away. */ 2123 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2124 /* If this is the last SKB we copy and eor is set 2125 * we need to propagate it to the new skb. 2126 */ 2127 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2128 tcp_unlink_write_queue(skb, sk); 2129 sk_wmem_free_skb(sk, skb); 2130 } else { 2131 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2132 ~(TCPHDR_FIN|TCPHDR_PSH); 2133 if (!skb_shinfo(skb)->nr_frags) { 2134 skb_pull(skb, copy); 2135 } else { 2136 __pskb_trim_head(skb, copy); 2137 tcp_set_skb_tso_segs(skb, mss_now); 2138 } 2139 TCP_SKB_CB(skb)->seq += copy; 2140 } 2141 2142 len += copy; 2143 2144 if (len >= probe_size) 2145 break; 2146 } 2147 tcp_init_tso_segs(nskb, nskb->len); 2148 2149 /* We're ready to send. If this fails, the probe will 2150 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2151 */ 2152 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2153 /* Decrement cwnd here because we are sending 2154 * effectively two packets. */ 2155 tp->snd_cwnd--; 2156 tcp_event_new_data_sent(sk, nskb); 2157 2158 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2159 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2160 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2161 2162 return 1; 2163 } 2164 2165 return -1; 2166 } 2167 2168 static bool tcp_pacing_check(const struct sock *sk) 2169 { 2170 return tcp_needs_internal_pacing(sk) && 2171 hrtimer_is_queued(&tcp_sk(sk)->pacing_timer); 2172 } 2173 2174 /* TCP Small Queues : 2175 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2176 * (These limits are doubled for retransmits) 2177 * This allows for : 2178 * - better RTT estimation and ACK scheduling 2179 * - faster recovery 2180 * - high rates 2181 * Alas, some drivers / subsystems require a fair amount 2182 * of queued bytes to ensure line rate. 2183 * One example is wifi aggregation (802.11 AMPDU) 2184 */ 2185 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2186 unsigned int factor) 2187 { 2188 unsigned int limit; 2189 2190 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); 2191 limit = min_t(u32, limit, 2192 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2193 limit <<= factor; 2194 2195 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2196 /* Always send skb if rtx queue is empty. 2197 * No need to wait for TX completion to call us back, 2198 * after softirq/tasklet schedule. 2199 * This helps when TX completions are delayed too much. 2200 */ 2201 if (tcp_rtx_queue_empty(sk)) 2202 return false; 2203 2204 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2205 /* It is possible TX completion already happened 2206 * before we set TSQ_THROTTLED, so we must 2207 * test again the condition. 2208 */ 2209 smp_mb__after_atomic(); 2210 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2211 return true; 2212 } 2213 return false; 2214 } 2215 2216 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2217 { 2218 const u32 now = tcp_jiffies32; 2219 enum tcp_chrono old = tp->chrono_type; 2220 2221 if (old > TCP_CHRONO_UNSPEC) 2222 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2223 tp->chrono_start = now; 2224 tp->chrono_type = new; 2225 } 2226 2227 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2228 { 2229 struct tcp_sock *tp = tcp_sk(sk); 2230 2231 /* If there are multiple conditions worthy of tracking in a 2232 * chronograph then the highest priority enum takes precedence 2233 * over the other conditions. So that if something "more interesting" 2234 * starts happening, stop the previous chrono and start a new one. 2235 */ 2236 if (type > tp->chrono_type) 2237 tcp_chrono_set(tp, type); 2238 } 2239 2240 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2241 { 2242 struct tcp_sock *tp = tcp_sk(sk); 2243 2244 2245 /* There are multiple conditions worthy of tracking in a 2246 * chronograph, so that the highest priority enum takes 2247 * precedence over the other conditions (see tcp_chrono_start). 2248 * If a condition stops, we only stop chrono tracking if 2249 * it's the "most interesting" or current chrono we are 2250 * tracking and starts busy chrono if we have pending data. 2251 */ 2252 if (tcp_rtx_and_write_queues_empty(sk)) 2253 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2254 else if (type == tp->chrono_type) 2255 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2256 } 2257 2258 /* This routine writes packets to the network. It advances the 2259 * send_head. This happens as incoming acks open up the remote 2260 * window for us. 2261 * 2262 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2263 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2264 * account rare use of URG, this is not a big flaw. 2265 * 2266 * Send at most one packet when push_one > 0. Temporarily ignore 2267 * cwnd limit to force at most one packet out when push_one == 2. 2268 2269 * Returns true, if no segments are in flight and we have queued segments, 2270 * but cannot send anything now because of SWS or another problem. 2271 */ 2272 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2273 int push_one, gfp_t gfp) 2274 { 2275 struct tcp_sock *tp = tcp_sk(sk); 2276 struct sk_buff *skb; 2277 unsigned int tso_segs, sent_pkts; 2278 int cwnd_quota; 2279 int result; 2280 bool is_cwnd_limited = false, is_rwnd_limited = false; 2281 u32 max_segs; 2282 2283 sent_pkts = 0; 2284 2285 tcp_mstamp_refresh(tp); 2286 if (!push_one) { 2287 /* Do MTU probing. */ 2288 result = tcp_mtu_probe(sk); 2289 if (!result) { 2290 return false; 2291 } else if (result > 0) { 2292 sent_pkts = 1; 2293 } 2294 } 2295 2296 max_segs = tcp_tso_segs(sk, mss_now); 2297 while ((skb = tcp_send_head(sk))) { 2298 unsigned int limit; 2299 2300 if (tcp_pacing_check(sk)) 2301 break; 2302 2303 tso_segs = tcp_init_tso_segs(skb, mss_now); 2304 BUG_ON(!tso_segs); 2305 2306 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2307 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2308 tcp_update_skb_after_send(tp, skb); 2309 goto repair; /* Skip network transmission */ 2310 } 2311 2312 cwnd_quota = tcp_cwnd_test(tp, skb); 2313 if (!cwnd_quota) { 2314 if (push_one == 2) 2315 /* Force out a loss probe pkt. */ 2316 cwnd_quota = 1; 2317 else 2318 break; 2319 } 2320 2321 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2322 is_rwnd_limited = true; 2323 break; 2324 } 2325 2326 if (tso_segs == 1) { 2327 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2328 (tcp_skb_is_last(sk, skb) ? 2329 nonagle : TCP_NAGLE_PUSH)))) 2330 break; 2331 } else { 2332 if (!push_one && 2333 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2334 max_segs)) 2335 break; 2336 } 2337 2338 limit = mss_now; 2339 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2340 limit = tcp_mss_split_point(sk, skb, mss_now, 2341 min_t(unsigned int, 2342 cwnd_quota, 2343 max_segs), 2344 nonagle); 2345 2346 if (skb->len > limit && 2347 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2348 skb, limit, mss_now, gfp))) 2349 break; 2350 2351 if (tcp_small_queue_check(sk, skb, 0)) 2352 break; 2353 2354 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2355 break; 2356 2357 repair: 2358 /* Advance the send_head. This one is sent out. 2359 * This call will increment packets_out. 2360 */ 2361 tcp_event_new_data_sent(sk, skb); 2362 2363 tcp_minshall_update(tp, mss_now, skb); 2364 sent_pkts += tcp_skb_pcount(skb); 2365 2366 if (push_one) 2367 break; 2368 } 2369 2370 if (is_rwnd_limited) 2371 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2372 else 2373 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2374 2375 if (likely(sent_pkts)) { 2376 if (tcp_in_cwnd_reduction(sk)) 2377 tp->prr_out += sent_pkts; 2378 2379 /* Send one loss probe per tail loss episode. */ 2380 if (push_one != 2) 2381 tcp_schedule_loss_probe(sk, false); 2382 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2383 tcp_cwnd_validate(sk, is_cwnd_limited); 2384 return false; 2385 } 2386 return !tp->packets_out && !tcp_write_queue_empty(sk); 2387 } 2388 2389 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2390 { 2391 struct inet_connection_sock *icsk = inet_csk(sk); 2392 struct tcp_sock *tp = tcp_sk(sk); 2393 u32 timeout, rto_delta_us; 2394 int early_retrans; 2395 2396 /* Don't do any loss probe on a Fast Open connection before 3WHS 2397 * finishes. 2398 */ 2399 if (tp->fastopen_rsk) 2400 return false; 2401 2402 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2403 /* Schedule a loss probe in 2*RTT for SACK capable connections 2404 * not in loss recovery, that are either limited by cwnd or application. 2405 */ 2406 if ((early_retrans != 3 && early_retrans != 4) || 2407 !tp->packets_out || !tcp_is_sack(tp) || 2408 (icsk->icsk_ca_state != TCP_CA_Open && 2409 icsk->icsk_ca_state != TCP_CA_CWR)) 2410 return false; 2411 2412 /* Probe timeout is 2*rtt. Add minimum RTO to account 2413 * for delayed ack when there's one outstanding packet. If no RTT 2414 * sample is available then probe after TCP_TIMEOUT_INIT. 2415 */ 2416 if (tp->srtt_us) { 2417 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2418 if (tp->packets_out == 1) 2419 timeout += TCP_RTO_MIN; 2420 else 2421 timeout += TCP_TIMEOUT_MIN; 2422 } else { 2423 timeout = TCP_TIMEOUT_INIT; 2424 } 2425 2426 /* If the RTO formula yields an earlier time, then use that time. */ 2427 rto_delta_us = advancing_rto ? 2428 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2429 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2430 if (rto_delta_us > 0) 2431 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2432 2433 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2434 TCP_RTO_MAX); 2435 return true; 2436 } 2437 2438 /* Thanks to skb fast clones, we can detect if a prior transmit of 2439 * a packet is still in a qdisc or driver queue. 2440 * In this case, there is very little point doing a retransmit ! 2441 */ 2442 static bool skb_still_in_host_queue(const struct sock *sk, 2443 const struct sk_buff *skb) 2444 { 2445 if (unlikely(skb_fclone_busy(sk, skb))) { 2446 NET_INC_STATS(sock_net(sk), 2447 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2448 return true; 2449 } 2450 return false; 2451 } 2452 2453 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2454 * retransmit the last segment. 2455 */ 2456 void tcp_send_loss_probe(struct sock *sk) 2457 { 2458 struct tcp_sock *tp = tcp_sk(sk); 2459 struct sk_buff *skb; 2460 int pcount; 2461 int mss = tcp_current_mss(sk); 2462 2463 skb = tcp_send_head(sk); 2464 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2465 pcount = tp->packets_out; 2466 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2467 if (tp->packets_out > pcount) 2468 goto probe_sent; 2469 goto rearm_timer; 2470 } 2471 skb = skb_rb_last(&sk->tcp_rtx_queue); 2472 2473 /* At most one outstanding TLP retransmission. */ 2474 if (tp->tlp_high_seq) 2475 goto rearm_timer; 2476 2477 /* Retransmit last segment. */ 2478 if (WARN_ON(!skb)) 2479 goto rearm_timer; 2480 2481 if (skb_still_in_host_queue(sk, skb)) 2482 goto rearm_timer; 2483 2484 pcount = tcp_skb_pcount(skb); 2485 if (WARN_ON(!pcount)) 2486 goto rearm_timer; 2487 2488 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2489 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2490 (pcount - 1) * mss, mss, 2491 GFP_ATOMIC))) 2492 goto rearm_timer; 2493 skb = skb_rb_next(skb); 2494 } 2495 2496 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2497 goto rearm_timer; 2498 2499 if (__tcp_retransmit_skb(sk, skb, 1)) 2500 goto rearm_timer; 2501 2502 /* Record snd_nxt for loss detection. */ 2503 tp->tlp_high_seq = tp->snd_nxt; 2504 2505 probe_sent: 2506 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2507 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2508 inet_csk(sk)->icsk_pending = 0; 2509 rearm_timer: 2510 tcp_rearm_rto(sk); 2511 } 2512 2513 /* Push out any pending frames which were held back due to 2514 * TCP_CORK or attempt at coalescing tiny packets. 2515 * The socket must be locked by the caller. 2516 */ 2517 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2518 int nonagle) 2519 { 2520 /* If we are closed, the bytes will have to remain here. 2521 * In time closedown will finish, we empty the write queue and 2522 * all will be happy. 2523 */ 2524 if (unlikely(sk->sk_state == TCP_CLOSE)) 2525 return; 2526 2527 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2528 sk_gfp_mask(sk, GFP_ATOMIC))) 2529 tcp_check_probe_timer(sk); 2530 } 2531 2532 /* Send _single_ skb sitting at the send head. This function requires 2533 * true push pending frames to setup probe timer etc. 2534 */ 2535 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2536 { 2537 struct sk_buff *skb = tcp_send_head(sk); 2538 2539 BUG_ON(!skb || skb->len < mss_now); 2540 2541 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2542 } 2543 2544 /* This function returns the amount that we can raise the 2545 * usable window based on the following constraints 2546 * 2547 * 1. The window can never be shrunk once it is offered (RFC 793) 2548 * 2. We limit memory per socket 2549 * 2550 * RFC 1122: 2551 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2552 * RECV.NEXT + RCV.WIN fixed until: 2553 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2554 * 2555 * i.e. don't raise the right edge of the window until you can raise 2556 * it at least MSS bytes. 2557 * 2558 * Unfortunately, the recommended algorithm breaks header prediction, 2559 * since header prediction assumes th->window stays fixed. 2560 * 2561 * Strictly speaking, keeping th->window fixed violates the receiver 2562 * side SWS prevention criteria. The problem is that under this rule 2563 * a stream of single byte packets will cause the right side of the 2564 * window to always advance by a single byte. 2565 * 2566 * Of course, if the sender implements sender side SWS prevention 2567 * then this will not be a problem. 2568 * 2569 * BSD seems to make the following compromise: 2570 * 2571 * If the free space is less than the 1/4 of the maximum 2572 * space available and the free space is less than 1/2 mss, 2573 * then set the window to 0. 2574 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2575 * Otherwise, just prevent the window from shrinking 2576 * and from being larger than the largest representable value. 2577 * 2578 * This prevents incremental opening of the window in the regime 2579 * where TCP is limited by the speed of the reader side taking 2580 * data out of the TCP receive queue. It does nothing about 2581 * those cases where the window is constrained on the sender side 2582 * because the pipeline is full. 2583 * 2584 * BSD also seems to "accidentally" limit itself to windows that are a 2585 * multiple of MSS, at least until the free space gets quite small. 2586 * This would appear to be a side effect of the mbuf implementation. 2587 * Combining these two algorithms results in the observed behavior 2588 * of having a fixed window size at almost all times. 2589 * 2590 * Below we obtain similar behavior by forcing the offered window to 2591 * a multiple of the mss when it is feasible to do so. 2592 * 2593 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2594 * Regular options like TIMESTAMP are taken into account. 2595 */ 2596 u32 __tcp_select_window(struct sock *sk) 2597 { 2598 struct inet_connection_sock *icsk = inet_csk(sk); 2599 struct tcp_sock *tp = tcp_sk(sk); 2600 /* MSS for the peer's data. Previous versions used mss_clamp 2601 * here. I don't know if the value based on our guesses 2602 * of peer's MSS is better for the performance. It's more correct 2603 * but may be worse for the performance because of rcv_mss 2604 * fluctuations. --SAW 1998/11/1 2605 */ 2606 int mss = icsk->icsk_ack.rcv_mss; 2607 int free_space = tcp_space(sk); 2608 int allowed_space = tcp_full_space(sk); 2609 int full_space = min_t(int, tp->window_clamp, allowed_space); 2610 int window; 2611 2612 if (unlikely(mss > full_space)) { 2613 mss = full_space; 2614 if (mss <= 0) 2615 return 0; 2616 } 2617 if (free_space < (full_space >> 1)) { 2618 icsk->icsk_ack.quick = 0; 2619 2620 if (tcp_under_memory_pressure(sk)) 2621 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2622 4U * tp->advmss); 2623 2624 /* free_space might become our new window, make sure we don't 2625 * increase it due to wscale. 2626 */ 2627 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2628 2629 /* if free space is less than mss estimate, or is below 1/16th 2630 * of the maximum allowed, try to move to zero-window, else 2631 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2632 * new incoming data is dropped due to memory limits. 2633 * With large window, mss test triggers way too late in order 2634 * to announce zero window in time before rmem limit kicks in. 2635 */ 2636 if (free_space < (allowed_space >> 4) || free_space < mss) 2637 return 0; 2638 } 2639 2640 if (free_space > tp->rcv_ssthresh) 2641 free_space = tp->rcv_ssthresh; 2642 2643 /* Don't do rounding if we are using window scaling, since the 2644 * scaled window will not line up with the MSS boundary anyway. 2645 */ 2646 if (tp->rx_opt.rcv_wscale) { 2647 window = free_space; 2648 2649 /* Advertise enough space so that it won't get scaled away. 2650 * Import case: prevent zero window announcement if 2651 * 1<<rcv_wscale > mss. 2652 */ 2653 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2654 } else { 2655 window = tp->rcv_wnd; 2656 /* Get the largest window that is a nice multiple of mss. 2657 * Window clamp already applied above. 2658 * If our current window offering is within 1 mss of the 2659 * free space we just keep it. This prevents the divide 2660 * and multiply from happening most of the time. 2661 * We also don't do any window rounding when the free space 2662 * is too small. 2663 */ 2664 if (window <= free_space - mss || window > free_space) 2665 window = rounddown(free_space, mss); 2666 else if (mss == full_space && 2667 free_space > window + (full_space >> 1)) 2668 window = free_space; 2669 } 2670 2671 return window; 2672 } 2673 2674 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2675 const struct sk_buff *next_skb) 2676 { 2677 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2678 const struct skb_shared_info *next_shinfo = 2679 skb_shinfo(next_skb); 2680 struct skb_shared_info *shinfo = skb_shinfo(skb); 2681 2682 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2683 shinfo->tskey = next_shinfo->tskey; 2684 TCP_SKB_CB(skb)->txstamp_ack |= 2685 TCP_SKB_CB(next_skb)->txstamp_ack; 2686 } 2687 } 2688 2689 /* Collapses two adjacent SKB's during retransmission. */ 2690 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2691 { 2692 struct tcp_sock *tp = tcp_sk(sk); 2693 struct sk_buff *next_skb = skb_rb_next(skb); 2694 int skb_size, next_skb_size; 2695 2696 skb_size = skb->len; 2697 next_skb_size = next_skb->len; 2698 2699 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2700 2701 if (next_skb_size) { 2702 if (next_skb_size <= skb_availroom(skb)) 2703 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2704 next_skb_size); 2705 else if (!skb_shift(skb, next_skb, next_skb_size)) 2706 return false; 2707 } 2708 tcp_highest_sack_replace(sk, next_skb, skb); 2709 2710 /* Update sequence range on original skb. */ 2711 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2712 2713 /* Merge over control information. This moves PSH/FIN etc. over */ 2714 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2715 2716 /* All done, get rid of second SKB and account for it so 2717 * packet counting does not break. 2718 */ 2719 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2720 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2721 2722 /* changed transmit queue under us so clear hints */ 2723 tcp_clear_retrans_hints_partial(tp); 2724 if (next_skb == tp->retransmit_skb_hint) 2725 tp->retransmit_skb_hint = skb; 2726 2727 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2728 2729 tcp_skb_collapse_tstamp(skb, next_skb); 2730 2731 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2732 return true; 2733 } 2734 2735 /* Check if coalescing SKBs is legal. */ 2736 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2737 { 2738 if (tcp_skb_pcount(skb) > 1) 2739 return false; 2740 if (skb_cloned(skb)) 2741 return false; 2742 /* Some heuristics for collapsing over SACK'd could be invented */ 2743 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2744 return false; 2745 2746 return true; 2747 } 2748 2749 /* Collapse packets in the retransmit queue to make to create 2750 * less packets on the wire. This is only done on retransmission. 2751 */ 2752 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2753 int space) 2754 { 2755 struct tcp_sock *tp = tcp_sk(sk); 2756 struct sk_buff *skb = to, *tmp; 2757 bool first = true; 2758 2759 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2760 return; 2761 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2762 return; 2763 2764 skb_rbtree_walk_from_safe(skb, tmp) { 2765 if (!tcp_can_collapse(sk, skb)) 2766 break; 2767 2768 if (!tcp_skb_can_collapse_to(to)) 2769 break; 2770 2771 space -= skb->len; 2772 2773 if (first) { 2774 first = false; 2775 continue; 2776 } 2777 2778 if (space < 0) 2779 break; 2780 2781 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2782 break; 2783 2784 if (!tcp_collapse_retrans(sk, to)) 2785 break; 2786 } 2787 } 2788 2789 /* This retransmits one SKB. Policy decisions and retransmit queue 2790 * state updates are done by the caller. Returns non-zero if an 2791 * error occurred which prevented the send. 2792 */ 2793 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2794 { 2795 struct inet_connection_sock *icsk = inet_csk(sk); 2796 struct tcp_sock *tp = tcp_sk(sk); 2797 unsigned int cur_mss; 2798 int diff, len, err; 2799 2800 2801 /* Inconclusive MTU probe */ 2802 if (icsk->icsk_mtup.probe_size) 2803 icsk->icsk_mtup.probe_size = 0; 2804 2805 /* Do not sent more than we queued. 1/4 is reserved for possible 2806 * copying overhead: fragmentation, tunneling, mangling etc. 2807 */ 2808 if (refcount_read(&sk->sk_wmem_alloc) > 2809 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2810 sk->sk_sndbuf)) 2811 return -EAGAIN; 2812 2813 if (skb_still_in_host_queue(sk, skb)) 2814 return -EBUSY; 2815 2816 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2817 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2818 BUG(); 2819 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2820 return -ENOMEM; 2821 } 2822 2823 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2824 return -EHOSTUNREACH; /* Routing failure or similar. */ 2825 2826 cur_mss = tcp_current_mss(sk); 2827 2828 /* If receiver has shrunk his window, and skb is out of 2829 * new window, do not retransmit it. The exception is the 2830 * case, when window is shrunk to zero. In this case 2831 * our retransmit serves as a zero window probe. 2832 */ 2833 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2834 TCP_SKB_CB(skb)->seq != tp->snd_una) 2835 return -EAGAIN; 2836 2837 len = cur_mss * segs; 2838 if (skb->len > len) { 2839 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2840 cur_mss, GFP_ATOMIC)) 2841 return -ENOMEM; /* We'll try again later. */ 2842 } else { 2843 if (skb_unclone(skb, GFP_ATOMIC)) 2844 return -ENOMEM; 2845 2846 diff = tcp_skb_pcount(skb); 2847 tcp_set_skb_tso_segs(skb, cur_mss); 2848 diff -= tcp_skb_pcount(skb); 2849 if (diff) 2850 tcp_adjust_pcount(sk, skb, diff); 2851 if (skb->len < cur_mss) 2852 tcp_retrans_try_collapse(sk, skb, cur_mss); 2853 } 2854 2855 /* RFC3168, section 6.1.1.1. ECN fallback */ 2856 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2857 tcp_ecn_clear_syn(sk, skb); 2858 2859 /* Update global and local TCP statistics. */ 2860 segs = tcp_skb_pcount(skb); 2861 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2862 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2863 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2864 tp->total_retrans += segs; 2865 2866 /* make sure skb->data is aligned on arches that require it 2867 * and check if ack-trimming & collapsing extended the headroom 2868 * beyond what csum_start can cover. 2869 */ 2870 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2871 skb_headroom(skb) >= 0xFFFF)) { 2872 struct sk_buff *nskb; 2873 2874 tcp_skb_tsorted_save(skb) { 2875 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2876 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2877 -ENOBUFS; 2878 } tcp_skb_tsorted_restore(skb); 2879 2880 if (!err) { 2881 tcp_update_skb_after_send(tp, skb); 2882 tcp_rate_skb_sent(sk, skb); 2883 } 2884 } else { 2885 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2886 } 2887 2888 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2889 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2890 TCP_SKB_CB(skb)->seq, segs, err); 2891 2892 if (likely(!err)) { 2893 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2894 trace_tcp_retransmit_skb(sk, skb); 2895 } else if (err != -EBUSY) { 2896 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2897 } 2898 return err; 2899 } 2900 2901 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2902 { 2903 struct tcp_sock *tp = tcp_sk(sk); 2904 int err = __tcp_retransmit_skb(sk, skb, segs); 2905 2906 if (err == 0) { 2907 #if FASTRETRANS_DEBUG > 0 2908 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2909 net_dbg_ratelimited("retrans_out leaked\n"); 2910 } 2911 #endif 2912 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2913 tp->retrans_out += tcp_skb_pcount(skb); 2914 2915 /* Save stamp of the first retransmit. */ 2916 if (!tp->retrans_stamp) 2917 tp->retrans_stamp = tcp_skb_timestamp(skb); 2918 2919 } 2920 2921 if (tp->undo_retrans < 0) 2922 tp->undo_retrans = 0; 2923 tp->undo_retrans += tcp_skb_pcount(skb); 2924 return err; 2925 } 2926 2927 /* This gets called after a retransmit timeout, and the initially 2928 * retransmitted data is acknowledged. It tries to continue 2929 * resending the rest of the retransmit queue, until either 2930 * we've sent it all or the congestion window limit is reached. 2931 */ 2932 void tcp_xmit_retransmit_queue(struct sock *sk) 2933 { 2934 const struct inet_connection_sock *icsk = inet_csk(sk); 2935 struct sk_buff *skb, *rtx_head, *hole = NULL; 2936 struct tcp_sock *tp = tcp_sk(sk); 2937 u32 max_segs; 2938 int mib_idx; 2939 2940 if (!tp->packets_out) 2941 return; 2942 2943 rtx_head = tcp_rtx_queue_head(sk); 2944 skb = tp->retransmit_skb_hint ?: rtx_head; 2945 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2946 skb_rbtree_walk_from(skb) { 2947 __u8 sacked; 2948 int segs; 2949 2950 if (tcp_pacing_check(sk)) 2951 break; 2952 2953 /* we could do better than to assign each time */ 2954 if (!hole) 2955 tp->retransmit_skb_hint = skb; 2956 2957 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2958 if (segs <= 0) 2959 return; 2960 sacked = TCP_SKB_CB(skb)->sacked; 2961 /* In case tcp_shift_skb_data() have aggregated large skbs, 2962 * we need to make sure not sending too bigs TSO packets 2963 */ 2964 segs = min_t(int, segs, max_segs); 2965 2966 if (tp->retrans_out >= tp->lost_out) { 2967 break; 2968 } else if (!(sacked & TCPCB_LOST)) { 2969 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2970 hole = skb; 2971 continue; 2972 2973 } else { 2974 if (icsk->icsk_ca_state != TCP_CA_Loss) 2975 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2976 else 2977 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2978 } 2979 2980 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2981 continue; 2982 2983 if (tcp_small_queue_check(sk, skb, 1)) 2984 return; 2985 2986 if (tcp_retransmit_skb(sk, skb, segs)) 2987 return; 2988 2989 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2990 2991 if (tcp_in_cwnd_reduction(sk)) 2992 tp->prr_out += tcp_skb_pcount(skb); 2993 2994 if (skb == rtx_head && 2995 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 2996 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2997 inet_csk(sk)->icsk_rto, 2998 TCP_RTO_MAX); 2999 } 3000 } 3001 3002 /* We allow to exceed memory limits for FIN packets to expedite 3003 * connection tear down and (memory) recovery. 3004 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3005 * or even be forced to close flow without any FIN. 3006 * In general, we want to allow one skb per socket to avoid hangs 3007 * with edge trigger epoll() 3008 */ 3009 void sk_forced_mem_schedule(struct sock *sk, int size) 3010 { 3011 int amt; 3012 3013 if (size <= sk->sk_forward_alloc) 3014 return; 3015 amt = sk_mem_pages(size); 3016 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3017 sk_memory_allocated_add(sk, amt); 3018 3019 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3020 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3021 } 3022 3023 /* Send a FIN. The caller locks the socket for us. 3024 * We should try to send a FIN packet really hard, but eventually give up. 3025 */ 3026 void tcp_send_fin(struct sock *sk) 3027 { 3028 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3029 struct tcp_sock *tp = tcp_sk(sk); 3030 3031 /* Optimization, tack on the FIN if we have one skb in write queue and 3032 * this skb was not yet sent, or we are under memory pressure. 3033 * Note: in the latter case, FIN packet will be sent after a timeout, 3034 * as TCP stack thinks it has already been transmitted. 3035 */ 3036 if (!tskb && tcp_under_memory_pressure(sk)) 3037 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3038 3039 if (tskb) { 3040 coalesce: 3041 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3042 TCP_SKB_CB(tskb)->end_seq++; 3043 tp->write_seq++; 3044 if (tcp_write_queue_empty(sk)) { 3045 /* This means tskb was already sent. 3046 * Pretend we included the FIN on previous transmit. 3047 * We need to set tp->snd_nxt to the value it would have 3048 * if FIN had been sent. This is because retransmit path 3049 * does not change tp->snd_nxt. 3050 */ 3051 tp->snd_nxt++; 3052 return; 3053 } 3054 } else { 3055 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3056 if (unlikely(!skb)) { 3057 if (tskb) 3058 goto coalesce; 3059 return; 3060 } 3061 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3062 skb_reserve(skb, MAX_TCP_HEADER); 3063 sk_forced_mem_schedule(sk, skb->truesize); 3064 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3065 tcp_init_nondata_skb(skb, tp->write_seq, 3066 TCPHDR_ACK | TCPHDR_FIN); 3067 tcp_queue_skb(sk, skb); 3068 } 3069 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3070 } 3071 3072 /* We get here when a process closes a file descriptor (either due to 3073 * an explicit close() or as a byproduct of exit()'ing) and there 3074 * was unread data in the receive queue. This behavior is recommended 3075 * by RFC 2525, section 2.17. -DaveM 3076 */ 3077 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3078 { 3079 struct sk_buff *skb; 3080 3081 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3082 3083 /* NOTE: No TCP options attached and we never retransmit this. */ 3084 skb = alloc_skb(MAX_TCP_HEADER, priority); 3085 if (!skb) { 3086 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3087 return; 3088 } 3089 3090 /* Reserve space for headers and prepare control bits. */ 3091 skb_reserve(skb, MAX_TCP_HEADER); 3092 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3093 TCPHDR_ACK | TCPHDR_RST); 3094 tcp_mstamp_refresh(tcp_sk(sk)); 3095 /* Send it off. */ 3096 if (tcp_transmit_skb(sk, skb, 0, priority)) 3097 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3098 3099 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3100 * skb here is different to the troublesome skb, so use NULL 3101 */ 3102 trace_tcp_send_reset(sk, NULL); 3103 } 3104 3105 /* Send a crossed SYN-ACK during socket establishment. 3106 * WARNING: This routine must only be called when we have already sent 3107 * a SYN packet that crossed the incoming SYN that caused this routine 3108 * to get called. If this assumption fails then the initial rcv_wnd 3109 * and rcv_wscale values will not be correct. 3110 */ 3111 int tcp_send_synack(struct sock *sk) 3112 { 3113 struct sk_buff *skb; 3114 3115 skb = tcp_rtx_queue_head(sk); 3116 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3117 pr_err("%s: wrong queue state\n", __func__); 3118 return -EFAULT; 3119 } 3120 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3121 if (skb_cloned(skb)) { 3122 struct sk_buff *nskb; 3123 3124 tcp_skb_tsorted_save(skb) { 3125 nskb = skb_copy(skb, GFP_ATOMIC); 3126 } tcp_skb_tsorted_restore(skb); 3127 if (!nskb) 3128 return -ENOMEM; 3129 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3130 tcp_rtx_queue_unlink_and_free(skb, sk); 3131 __skb_header_release(nskb); 3132 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3133 sk->sk_wmem_queued += nskb->truesize; 3134 sk_mem_charge(sk, nskb->truesize); 3135 skb = nskb; 3136 } 3137 3138 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3139 tcp_ecn_send_synack(sk, skb); 3140 } 3141 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3142 } 3143 3144 /** 3145 * tcp_make_synack - Prepare a SYN-ACK. 3146 * sk: listener socket 3147 * dst: dst entry attached to the SYNACK 3148 * req: request_sock pointer 3149 * 3150 * Allocate one skb and build a SYNACK packet. 3151 * @dst is consumed : Caller should not use it again. 3152 */ 3153 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3154 struct request_sock *req, 3155 struct tcp_fastopen_cookie *foc, 3156 enum tcp_synack_type synack_type) 3157 { 3158 struct inet_request_sock *ireq = inet_rsk(req); 3159 const struct tcp_sock *tp = tcp_sk(sk); 3160 struct tcp_md5sig_key *md5 = NULL; 3161 struct tcp_out_options opts; 3162 struct sk_buff *skb; 3163 int tcp_header_size; 3164 struct tcphdr *th; 3165 int mss; 3166 3167 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3168 if (unlikely(!skb)) { 3169 dst_release(dst); 3170 return NULL; 3171 } 3172 /* Reserve space for headers. */ 3173 skb_reserve(skb, MAX_TCP_HEADER); 3174 3175 switch (synack_type) { 3176 case TCP_SYNACK_NORMAL: 3177 skb_set_owner_w(skb, req_to_sk(req)); 3178 break; 3179 case TCP_SYNACK_COOKIE: 3180 /* Under synflood, we do not attach skb to a socket, 3181 * to avoid false sharing. 3182 */ 3183 break; 3184 case TCP_SYNACK_FASTOPEN: 3185 /* sk is a const pointer, because we want to express multiple 3186 * cpu might call us concurrently. 3187 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3188 */ 3189 skb_set_owner_w(skb, (struct sock *)sk); 3190 break; 3191 } 3192 skb_dst_set(skb, dst); 3193 3194 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3195 3196 memset(&opts, 0, sizeof(opts)); 3197 #ifdef CONFIG_SYN_COOKIES 3198 if (unlikely(req->cookie_ts)) 3199 skb->skb_mstamp = cookie_init_timestamp(req); 3200 else 3201 #endif 3202 skb->skb_mstamp = tcp_clock_us(); 3203 3204 #ifdef CONFIG_TCP_MD5SIG 3205 rcu_read_lock(); 3206 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3207 #endif 3208 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3209 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3210 foc) + sizeof(*th); 3211 3212 skb_push(skb, tcp_header_size); 3213 skb_reset_transport_header(skb); 3214 3215 th = (struct tcphdr *)skb->data; 3216 memset(th, 0, sizeof(struct tcphdr)); 3217 th->syn = 1; 3218 th->ack = 1; 3219 tcp_ecn_make_synack(req, th); 3220 th->source = htons(ireq->ir_num); 3221 th->dest = ireq->ir_rmt_port; 3222 skb->mark = ireq->ir_mark; 3223 skb->ip_summed = CHECKSUM_PARTIAL; 3224 th->seq = htonl(tcp_rsk(req)->snt_isn); 3225 /* XXX data is queued and acked as is. No buffer/window check */ 3226 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3227 3228 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3229 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3230 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3231 th->doff = (tcp_header_size >> 2); 3232 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3233 3234 #ifdef CONFIG_TCP_MD5SIG 3235 /* Okay, we have all we need - do the md5 hash if needed */ 3236 if (md5) 3237 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3238 md5, req_to_sk(req), skb); 3239 rcu_read_unlock(); 3240 #endif 3241 3242 /* Do not fool tcpdump (if any), clean our debris */ 3243 skb->tstamp = 0; 3244 return skb; 3245 } 3246 EXPORT_SYMBOL(tcp_make_synack); 3247 3248 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3249 { 3250 struct inet_connection_sock *icsk = inet_csk(sk); 3251 const struct tcp_congestion_ops *ca; 3252 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3253 3254 if (ca_key == TCP_CA_UNSPEC) 3255 return; 3256 3257 rcu_read_lock(); 3258 ca = tcp_ca_find_key(ca_key); 3259 if (likely(ca && try_module_get(ca->owner))) { 3260 module_put(icsk->icsk_ca_ops->owner); 3261 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3262 icsk->icsk_ca_ops = ca; 3263 } 3264 rcu_read_unlock(); 3265 } 3266 3267 /* Do all connect socket setups that can be done AF independent. */ 3268 static void tcp_connect_init(struct sock *sk) 3269 { 3270 const struct dst_entry *dst = __sk_dst_get(sk); 3271 struct tcp_sock *tp = tcp_sk(sk); 3272 __u8 rcv_wscale; 3273 u32 rcv_wnd; 3274 3275 /* We'll fix this up when we get a response from the other end. 3276 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3277 */ 3278 tp->tcp_header_len = sizeof(struct tcphdr); 3279 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3280 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3281 3282 #ifdef CONFIG_TCP_MD5SIG 3283 if (tp->af_specific->md5_lookup(sk, sk)) 3284 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3285 #endif 3286 3287 /* If user gave his TCP_MAXSEG, record it to clamp */ 3288 if (tp->rx_opt.user_mss) 3289 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3290 tp->max_window = 0; 3291 tcp_mtup_init(sk); 3292 tcp_sync_mss(sk, dst_mtu(dst)); 3293 3294 tcp_ca_dst_init(sk, dst); 3295 3296 if (!tp->window_clamp) 3297 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3298 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3299 3300 tcp_initialize_rcv_mss(sk); 3301 3302 /* limit the window selection if the user enforce a smaller rx buffer */ 3303 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3304 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3305 tp->window_clamp = tcp_full_space(sk); 3306 3307 rcv_wnd = tcp_rwnd_init_bpf(sk); 3308 if (rcv_wnd == 0) 3309 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3310 3311 tcp_select_initial_window(sk, tcp_full_space(sk), 3312 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3313 &tp->rcv_wnd, 3314 &tp->window_clamp, 3315 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3316 &rcv_wscale, 3317 rcv_wnd); 3318 3319 tp->rx_opt.rcv_wscale = rcv_wscale; 3320 tp->rcv_ssthresh = tp->rcv_wnd; 3321 3322 sk->sk_err = 0; 3323 sock_reset_flag(sk, SOCK_DONE); 3324 tp->snd_wnd = 0; 3325 tcp_init_wl(tp, 0); 3326 tp->snd_una = tp->write_seq; 3327 tp->snd_sml = tp->write_seq; 3328 tp->snd_up = tp->write_seq; 3329 tp->snd_nxt = tp->write_seq; 3330 3331 if (likely(!tp->repair)) 3332 tp->rcv_nxt = 0; 3333 else 3334 tp->rcv_tstamp = tcp_jiffies32; 3335 tp->rcv_wup = tp->rcv_nxt; 3336 tp->copied_seq = tp->rcv_nxt; 3337 3338 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3339 inet_csk(sk)->icsk_retransmits = 0; 3340 tcp_clear_retrans(tp); 3341 } 3342 3343 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3344 { 3345 struct tcp_sock *tp = tcp_sk(sk); 3346 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3347 3348 tcb->end_seq += skb->len; 3349 __skb_header_release(skb); 3350 sk->sk_wmem_queued += skb->truesize; 3351 sk_mem_charge(sk, skb->truesize); 3352 tp->write_seq = tcb->end_seq; 3353 tp->packets_out += tcp_skb_pcount(skb); 3354 } 3355 3356 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3357 * queue a data-only packet after the regular SYN, such that regular SYNs 3358 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3359 * only the SYN sequence, the data are retransmitted in the first ACK. 3360 * If cookie is not cached or other error occurs, falls back to send a 3361 * regular SYN with Fast Open cookie request option. 3362 */ 3363 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3364 { 3365 struct tcp_sock *tp = tcp_sk(sk); 3366 struct tcp_fastopen_request *fo = tp->fastopen_req; 3367 int space, err = 0; 3368 struct sk_buff *syn_data; 3369 3370 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3371 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3372 goto fallback; 3373 3374 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3375 * user-MSS. Reserve maximum option space for middleboxes that add 3376 * private TCP options. The cost is reduced data space in SYN :( 3377 */ 3378 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3379 3380 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3381 MAX_TCP_OPTION_SPACE; 3382 3383 space = min_t(size_t, space, fo->size); 3384 3385 /* limit to order-0 allocations */ 3386 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3387 3388 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3389 if (!syn_data) 3390 goto fallback; 3391 syn_data->ip_summed = CHECKSUM_PARTIAL; 3392 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3393 if (space) { 3394 int copied = copy_from_iter(skb_put(syn_data, space), space, 3395 &fo->data->msg_iter); 3396 if (unlikely(!copied)) { 3397 tcp_skb_tsorted_anchor_cleanup(syn_data); 3398 kfree_skb(syn_data); 3399 goto fallback; 3400 } 3401 if (copied != space) { 3402 skb_trim(syn_data, copied); 3403 space = copied; 3404 } 3405 } 3406 /* No more data pending in inet_wait_for_connect() */ 3407 if (space == fo->size) 3408 fo->data = NULL; 3409 fo->copied = space; 3410 3411 tcp_connect_queue_skb(sk, syn_data); 3412 if (syn_data->len) 3413 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3414 3415 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3416 3417 syn->skb_mstamp = syn_data->skb_mstamp; 3418 3419 /* Now full SYN+DATA was cloned and sent (or not), 3420 * remove the SYN from the original skb (syn_data) 3421 * we keep in write queue in case of a retransmit, as we 3422 * also have the SYN packet (with no data) in the same queue. 3423 */ 3424 TCP_SKB_CB(syn_data)->seq++; 3425 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3426 if (!err) { 3427 tp->syn_data = (fo->copied > 0); 3428 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3429 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3430 goto done; 3431 } 3432 3433 /* data was not sent, put it in write_queue */ 3434 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3435 tp->packets_out -= tcp_skb_pcount(syn_data); 3436 3437 fallback: 3438 /* Send a regular SYN with Fast Open cookie request option */ 3439 if (fo->cookie.len > 0) 3440 fo->cookie.len = 0; 3441 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3442 if (err) 3443 tp->syn_fastopen = 0; 3444 done: 3445 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3446 return err; 3447 } 3448 3449 /* Build a SYN and send it off. */ 3450 int tcp_connect(struct sock *sk) 3451 { 3452 struct tcp_sock *tp = tcp_sk(sk); 3453 struct sk_buff *buff; 3454 int err; 3455 3456 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3457 3458 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3459 return -EHOSTUNREACH; /* Routing failure or similar. */ 3460 3461 tcp_connect_init(sk); 3462 3463 if (unlikely(tp->repair)) { 3464 tcp_finish_connect(sk, NULL); 3465 return 0; 3466 } 3467 3468 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3469 if (unlikely(!buff)) 3470 return -ENOBUFS; 3471 3472 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3473 tcp_mstamp_refresh(tp); 3474 tp->retrans_stamp = tcp_time_stamp(tp); 3475 tcp_connect_queue_skb(sk, buff); 3476 tcp_ecn_send_syn(sk, buff); 3477 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3478 3479 /* Send off SYN; include data in Fast Open. */ 3480 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3481 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3482 if (err == -ECONNREFUSED) 3483 return err; 3484 3485 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3486 * in order to make this packet get counted in tcpOutSegs. 3487 */ 3488 tp->snd_nxt = tp->write_seq; 3489 tp->pushed_seq = tp->write_seq; 3490 buff = tcp_send_head(sk); 3491 if (unlikely(buff)) { 3492 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3493 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3494 } 3495 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3496 3497 /* Timer for repeating the SYN until an answer. */ 3498 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3499 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3500 return 0; 3501 } 3502 EXPORT_SYMBOL(tcp_connect); 3503 3504 /* Send out a delayed ack, the caller does the policy checking 3505 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3506 * for details. 3507 */ 3508 void tcp_send_delayed_ack(struct sock *sk) 3509 { 3510 struct inet_connection_sock *icsk = inet_csk(sk); 3511 int ato = icsk->icsk_ack.ato; 3512 unsigned long timeout; 3513 3514 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3515 3516 if (ato > TCP_DELACK_MIN) { 3517 const struct tcp_sock *tp = tcp_sk(sk); 3518 int max_ato = HZ / 2; 3519 3520 if (icsk->icsk_ack.pingpong || 3521 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3522 max_ato = TCP_DELACK_MAX; 3523 3524 /* Slow path, intersegment interval is "high". */ 3525 3526 /* If some rtt estimate is known, use it to bound delayed ack. 3527 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3528 * directly. 3529 */ 3530 if (tp->srtt_us) { 3531 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3532 TCP_DELACK_MIN); 3533 3534 if (rtt < max_ato) 3535 max_ato = rtt; 3536 } 3537 3538 ato = min(ato, max_ato); 3539 } 3540 3541 /* Stay within the limit we were given */ 3542 timeout = jiffies + ato; 3543 3544 /* Use new timeout only if there wasn't a older one earlier. */ 3545 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3546 /* If delack timer was blocked or is about to expire, 3547 * send ACK now. 3548 */ 3549 if (icsk->icsk_ack.blocked || 3550 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3551 tcp_send_ack(sk); 3552 return; 3553 } 3554 3555 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3556 timeout = icsk->icsk_ack.timeout; 3557 } 3558 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3559 icsk->icsk_ack.timeout = timeout; 3560 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3561 } 3562 3563 /* This routine sends an ack and also updates the window. */ 3564 void tcp_send_ack(struct sock *sk) 3565 { 3566 struct sk_buff *buff; 3567 3568 /* If we have been reset, we may not send again. */ 3569 if (sk->sk_state == TCP_CLOSE) 3570 return; 3571 3572 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3573 3574 /* We are not putting this on the write queue, so 3575 * tcp_transmit_skb() will set the ownership to this 3576 * sock. 3577 */ 3578 buff = alloc_skb(MAX_TCP_HEADER, 3579 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3580 if (unlikely(!buff)) { 3581 inet_csk_schedule_ack(sk); 3582 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3583 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3584 TCP_DELACK_MAX, TCP_RTO_MAX); 3585 return; 3586 } 3587 3588 /* Reserve space for headers and prepare control bits. */ 3589 skb_reserve(buff, MAX_TCP_HEADER); 3590 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3591 3592 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3593 * too much. 3594 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3595 */ 3596 skb_set_tcp_pure_ack(buff); 3597 3598 /* Send it off, this clears delayed acks for us. */ 3599 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3600 } 3601 EXPORT_SYMBOL_GPL(tcp_send_ack); 3602 3603 /* This routine sends a packet with an out of date sequence 3604 * number. It assumes the other end will try to ack it. 3605 * 3606 * Question: what should we make while urgent mode? 3607 * 4.4BSD forces sending single byte of data. We cannot send 3608 * out of window data, because we have SND.NXT==SND.MAX... 3609 * 3610 * Current solution: to send TWO zero-length segments in urgent mode: 3611 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3612 * out-of-date with SND.UNA-1 to probe window. 3613 */ 3614 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3615 { 3616 struct tcp_sock *tp = tcp_sk(sk); 3617 struct sk_buff *skb; 3618 3619 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3620 skb = alloc_skb(MAX_TCP_HEADER, 3621 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3622 if (!skb) 3623 return -1; 3624 3625 /* Reserve space for headers and set control bits. */ 3626 skb_reserve(skb, MAX_TCP_HEADER); 3627 /* Use a previous sequence. This should cause the other 3628 * end to send an ack. Don't queue or clone SKB, just 3629 * send it. 3630 */ 3631 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3632 NET_INC_STATS(sock_net(sk), mib); 3633 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3634 } 3635 3636 /* Called from setsockopt( ... TCP_REPAIR ) */ 3637 void tcp_send_window_probe(struct sock *sk) 3638 { 3639 if (sk->sk_state == TCP_ESTABLISHED) { 3640 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3641 tcp_mstamp_refresh(tcp_sk(sk)); 3642 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3643 } 3644 } 3645 3646 /* Initiate keepalive or window probe from timer. */ 3647 int tcp_write_wakeup(struct sock *sk, int mib) 3648 { 3649 struct tcp_sock *tp = tcp_sk(sk); 3650 struct sk_buff *skb; 3651 3652 if (sk->sk_state == TCP_CLOSE) 3653 return -1; 3654 3655 skb = tcp_send_head(sk); 3656 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3657 int err; 3658 unsigned int mss = tcp_current_mss(sk); 3659 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3660 3661 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3662 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3663 3664 /* We are probing the opening of a window 3665 * but the window size is != 0 3666 * must have been a result SWS avoidance ( sender ) 3667 */ 3668 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3669 skb->len > mss) { 3670 seg_size = min(seg_size, mss); 3671 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3672 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3673 skb, seg_size, mss, GFP_ATOMIC)) 3674 return -1; 3675 } else if (!tcp_skb_pcount(skb)) 3676 tcp_set_skb_tso_segs(skb, mss); 3677 3678 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3679 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3680 if (!err) 3681 tcp_event_new_data_sent(sk, skb); 3682 return err; 3683 } else { 3684 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3685 tcp_xmit_probe_skb(sk, 1, mib); 3686 return tcp_xmit_probe_skb(sk, 0, mib); 3687 } 3688 } 3689 3690 /* A window probe timeout has occurred. If window is not closed send 3691 * a partial packet else a zero probe. 3692 */ 3693 void tcp_send_probe0(struct sock *sk) 3694 { 3695 struct inet_connection_sock *icsk = inet_csk(sk); 3696 struct tcp_sock *tp = tcp_sk(sk); 3697 struct net *net = sock_net(sk); 3698 unsigned long probe_max; 3699 int err; 3700 3701 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3702 3703 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3704 /* Cancel probe timer, if it is not required. */ 3705 icsk->icsk_probes_out = 0; 3706 icsk->icsk_backoff = 0; 3707 return; 3708 } 3709 3710 if (err <= 0) { 3711 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3712 icsk->icsk_backoff++; 3713 icsk->icsk_probes_out++; 3714 probe_max = TCP_RTO_MAX; 3715 } else { 3716 /* If packet was not sent due to local congestion, 3717 * do not backoff and do not remember icsk_probes_out. 3718 * Let local senders to fight for local resources. 3719 * 3720 * Use accumulated backoff yet. 3721 */ 3722 if (!icsk->icsk_probes_out) 3723 icsk->icsk_probes_out = 1; 3724 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3725 } 3726 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3727 tcp_probe0_when(sk, probe_max), 3728 TCP_RTO_MAX); 3729 } 3730 3731 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3732 { 3733 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3734 struct flowi fl; 3735 int res; 3736 3737 tcp_rsk(req)->txhash = net_tx_rndhash(); 3738 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3739 if (!res) { 3740 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3741 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3742 if (unlikely(tcp_passive_fastopen(sk))) 3743 tcp_sk(sk)->total_retrans++; 3744 trace_tcp_retransmit_synack(sk, req); 3745 } 3746 return res; 3747 } 3748 EXPORT_SYMBOL(tcp_rtx_synack); 3749