1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 #include <net/proto_memory.h> 43 44 #include <linux/compiler.h> 45 #include <linux/gfp.h> 46 #include <linux/module.h> 47 #include <linux/static_key.h> 48 #include <linux/skbuff_ref.h> 49 50 #include <trace/events/tcp.h> 51 52 /* Refresh clocks of a TCP socket, 53 * ensuring monotically increasing values. 54 */ 55 void tcp_mstamp_refresh(struct tcp_sock *tp) 56 { 57 u64 val = tcp_clock_ns(); 58 59 tp->tcp_clock_cache = val; 60 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 61 } 62 63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 64 int push_one, gfp_t gfp); 65 66 /* Account for new data that has been sent to the network. */ 67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 68 { 69 struct inet_connection_sock *icsk = inet_csk(sk); 70 struct tcp_sock *tp = tcp_sk(sk); 71 unsigned int prior_packets = tp->packets_out; 72 73 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 74 75 __skb_unlink(skb, &sk->sk_write_queue); 76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 77 78 if (tp->highest_sack == NULL) 79 tp->highest_sack = skb; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 83 tcp_rearm_rto(sk); 84 85 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 86 tcp_skb_pcount(skb)); 87 tcp_check_space(sk); 88 } 89 90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 91 * window scaling factor due to loss of precision. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 102 (tp->rx_opt.wscale_ok && 103 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 104 return tp->snd_nxt; 105 else 106 return tcp_wnd_end(tp); 107 } 108 109 /* Calculate mss to advertise in SYN segment. 110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 111 * 112 * 1. It is independent of path mtu. 113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 115 * attached devices, because some buggy hosts are confused by 116 * large MSS. 117 * 4. We do not make 3, we advertise MSS, calculated from first 118 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 119 * This may be overridden via information stored in routing table. 120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 121 * probably even Jumbo". 122 */ 123 static __u16 tcp_advertise_mss(struct sock *sk) 124 { 125 struct tcp_sock *tp = tcp_sk(sk); 126 const struct dst_entry *dst = __sk_dst_get(sk); 127 int mss = tp->advmss; 128 129 if (dst) { 130 unsigned int metric = dst_metric_advmss(dst); 131 132 if (metric < mss) { 133 mss = metric; 134 tp->advmss = mss; 135 } 136 } 137 138 return (__u16)mss; 139 } 140 141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 142 * This is the first part of cwnd validation mechanism. 143 */ 144 void tcp_cwnd_restart(struct sock *sk, s32 delta) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 148 u32 cwnd = tcp_snd_cwnd(tp); 149 150 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 151 152 tp->snd_ssthresh = tcp_current_ssthresh(sk); 153 restart_cwnd = min(restart_cwnd, cwnd); 154 155 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 156 cwnd >>= 1; 157 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 158 tp->snd_cwnd_stamp = tcp_jiffies32; 159 tp->snd_cwnd_used = 0; 160 } 161 162 /* Congestion state accounting after a packet has been sent. */ 163 static void tcp_event_data_sent(struct tcp_sock *tp, 164 struct sock *sk) 165 { 166 struct inet_connection_sock *icsk = inet_csk(sk); 167 const u32 now = tcp_jiffies32; 168 169 if (tcp_packets_in_flight(tp) == 0) 170 tcp_ca_event(sk, CA_EVENT_TX_START); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, increase pingpong count. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 178 inet_csk_inc_pingpong_cnt(sk); 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 183 { 184 struct tcp_sock *tp = tcp_sk(sk); 185 186 if (unlikely(tp->compressed_ack)) { 187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 188 tp->compressed_ack); 189 tp->compressed_ack = 0; 190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 191 __sock_put(sk); 192 } 193 194 if (unlikely(rcv_nxt != tp->rcv_nxt)) 195 return; /* Special ACK sent by DCTCP to reflect ECN */ 196 tcp_dec_quickack_mode(sk); 197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 198 } 199 200 /* Determine a window scaling and initial window to offer. 201 * Based on the assumption that the given amount of space 202 * will be offered. Store the results in the tp structure. 203 * NOTE: for smooth operation initial space offering should 204 * be a multiple of mss if possible. We assume here that mss >= 1. 205 * This MUST be enforced by all callers. 206 */ 207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 208 __u32 *rcv_wnd, __u32 *__window_clamp, 209 int wscale_ok, __u8 *rcv_wscale, 210 __u32 init_rcv_wnd) 211 { 212 unsigned int space = (__space < 0 ? 0 : __space); 213 u32 window_clamp = READ_ONCE(*__window_clamp); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (window_clamp == 0) 217 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = space; 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 244 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 245 space = min_t(u32, space, window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 WRITE_ONCE(*__window_clamp, 251 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 252 } 253 EXPORT_IPV6_MOD(tcp_select_initial_window); 254 255 /* Chose a new window to advertise, update state in tcp_sock for the 256 * socket, and return result with RFC1323 scaling applied. The return 257 * value can be stuffed directly into th->window for an outgoing 258 * frame. 259 */ 260 static u16 tcp_select_window(struct sock *sk) 261 { 262 struct tcp_sock *tp = tcp_sk(sk); 263 struct net *net = sock_net(sk); 264 u32 old_win = tp->rcv_wnd; 265 u32 cur_win, new_win; 266 267 /* Make the window 0 if we failed to queue the data because we 268 * are out of memory. 269 */ 270 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) { 271 tp->pred_flags = 0; 272 tp->rcv_wnd = 0; 273 tp->rcv_wup = tp->rcv_nxt; 274 return 0; 275 } 276 277 cur_win = tcp_receive_window(tp); 278 new_win = __tcp_select_window(sk); 279 if (new_win < cur_win) { 280 /* Danger Will Robinson! 281 * Don't update rcv_wup/rcv_wnd here or else 282 * we will not be able to advertise a zero 283 * window in time. --DaveM 284 * 285 * Relax Will Robinson. 286 */ 287 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 288 /* Never shrink the offered window */ 289 if (new_win == 0) 290 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 292 } 293 } 294 295 tp->rcv_wnd = new_win; 296 tp->rcv_wup = tp->rcv_nxt; 297 298 /* Make sure we do not exceed the maximum possible 299 * scaled window. 300 */ 301 if (!tp->rx_opt.rcv_wscale && 302 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 303 new_win = min(new_win, MAX_TCP_WINDOW); 304 else 305 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 306 307 /* RFC1323 scaling applied */ 308 new_win >>= tp->rx_opt.rcv_wscale; 309 310 /* If we advertise zero window, disable fast path. */ 311 if (new_win == 0) { 312 tp->pred_flags = 0; 313 if (old_win) 314 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 315 } else if (old_win == 0) { 316 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 317 } 318 319 return new_win; 320 } 321 322 /* Packet ECN state for a SYN-ACK */ 323 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 324 { 325 const struct tcp_sock *tp = tcp_sk(sk); 326 327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 328 if (tcp_ecn_disabled(tp)) 329 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 330 else if (tcp_ca_needs_ecn(sk) || 331 tcp_bpf_ca_needs_ecn(sk)) 332 INET_ECN_xmit(sk); 333 } 334 335 /* Packet ECN state for a SYN. */ 336 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 337 { 338 struct tcp_sock *tp = tcp_sk(sk); 339 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 340 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 341 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 342 343 if (!use_ecn) { 344 const struct dst_entry *dst = __sk_dst_get(sk); 345 346 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 347 use_ecn = true; 348 } 349 350 tp->ecn_flags = 0; 351 352 if (use_ecn) { 353 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 354 tcp_ecn_mode_set(tp, TCP_ECN_MODE_RFC3168); 355 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 356 INET_ECN_xmit(sk); 357 } 358 } 359 360 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 361 { 362 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 363 /* tp->ecn_flags are cleared at a later point in time when 364 * SYN ACK is ultimatively being received. 365 */ 366 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 367 } 368 369 static void 370 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 371 { 372 if (inet_rsk(req)->ecn_ok) 373 th->ece = 1; 374 } 375 376 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 377 * be sent. 378 */ 379 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 380 struct tcphdr *th, int tcp_header_len) 381 { 382 struct tcp_sock *tp = tcp_sk(sk); 383 384 if (tcp_ecn_mode_rfc3168(tp)) { 385 /* Not-retransmitted data segment: set ECT and inject CWR. */ 386 if (skb->len != tcp_header_len && 387 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 388 INET_ECN_xmit(sk); 389 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 390 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 391 th->cwr = 1; 392 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 393 } 394 } else if (!tcp_ca_needs_ecn(sk)) { 395 /* ACK or retransmitted segment: clear ECT|CE */ 396 INET_ECN_dontxmit(sk); 397 } 398 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 399 th->ece = 1; 400 } 401 } 402 403 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 404 * auto increment end seqno. 405 */ 406 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u16 flags) 407 { 408 skb->ip_summed = CHECKSUM_PARTIAL; 409 410 TCP_SKB_CB(skb)->tcp_flags = flags; 411 412 tcp_skb_pcount_set(skb, 1); 413 414 TCP_SKB_CB(skb)->seq = seq; 415 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 416 seq++; 417 TCP_SKB_CB(skb)->end_seq = seq; 418 } 419 420 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 421 { 422 return tp->snd_una != tp->snd_up; 423 } 424 425 #define OPTION_SACK_ADVERTISE BIT(0) 426 #define OPTION_TS BIT(1) 427 #define OPTION_MD5 BIT(2) 428 #define OPTION_WSCALE BIT(3) 429 #define OPTION_FAST_OPEN_COOKIE BIT(8) 430 #define OPTION_SMC BIT(9) 431 #define OPTION_MPTCP BIT(10) 432 #define OPTION_AO BIT(11) 433 434 static void smc_options_write(__be32 *ptr, u16 *options) 435 { 436 #if IS_ENABLED(CONFIG_SMC) 437 if (static_branch_unlikely(&tcp_have_smc)) { 438 if (unlikely(OPTION_SMC & *options)) { 439 *ptr++ = htonl((TCPOPT_NOP << 24) | 440 (TCPOPT_NOP << 16) | 441 (TCPOPT_EXP << 8) | 442 (TCPOLEN_EXP_SMC_BASE)); 443 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 444 } 445 } 446 #endif 447 } 448 449 struct tcp_out_options { 450 u16 options; /* bit field of OPTION_* */ 451 u16 mss; /* 0 to disable */ 452 u8 ws; /* window scale, 0 to disable */ 453 u8 num_sack_blocks; /* number of SACK blocks to include */ 454 u8 hash_size; /* bytes in hash_location */ 455 u8 bpf_opt_len; /* length of BPF hdr option */ 456 __u8 *hash_location; /* temporary pointer, overloaded */ 457 __u32 tsval, tsecr; /* need to include OPTION_TS */ 458 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 459 struct mptcp_out_options mptcp; 460 }; 461 462 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 463 struct tcp_sock *tp, 464 struct tcp_out_options *opts) 465 { 466 #if IS_ENABLED(CONFIG_MPTCP) 467 if (unlikely(OPTION_MPTCP & opts->options)) 468 mptcp_write_options(th, ptr, tp, &opts->mptcp); 469 #endif 470 } 471 472 #ifdef CONFIG_CGROUP_BPF 473 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 474 enum tcp_synack_type synack_type) 475 { 476 if (unlikely(!skb)) 477 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 478 479 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 480 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 481 482 return 0; 483 } 484 485 /* req, syn_skb and synack_type are used when writing synack */ 486 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 487 struct request_sock *req, 488 struct sk_buff *syn_skb, 489 enum tcp_synack_type synack_type, 490 struct tcp_out_options *opts, 491 unsigned int *remaining) 492 { 493 struct bpf_sock_ops_kern sock_ops; 494 int err; 495 496 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 497 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 498 !*remaining) 499 return; 500 501 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 502 503 /* init sock_ops */ 504 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 505 506 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 507 508 if (req) { 509 /* The listen "sk" cannot be passed here because 510 * it is not locked. It would not make too much 511 * sense to do bpf_setsockopt(listen_sk) based 512 * on individual connection request also. 513 * 514 * Thus, "req" is passed here and the cgroup-bpf-progs 515 * of the listen "sk" will be run. 516 * 517 * "req" is also used here for fastopen even the "sk" here is 518 * a fullsock "child" sk. It is to keep the behavior 519 * consistent between fastopen and non-fastopen on 520 * the bpf programming side. 521 */ 522 sock_ops.sk = (struct sock *)req; 523 sock_ops.syn_skb = syn_skb; 524 } else { 525 sock_owned_by_me(sk); 526 527 sock_ops.is_fullsock = 1; 528 sock_ops.is_locked_tcp_sock = 1; 529 sock_ops.sk = sk; 530 } 531 532 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 533 sock_ops.remaining_opt_len = *remaining; 534 /* tcp_current_mss() does not pass a skb */ 535 if (skb) 536 bpf_skops_init_skb(&sock_ops, skb, 0); 537 538 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 539 540 if (err || sock_ops.remaining_opt_len == *remaining) 541 return; 542 543 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 544 /* round up to 4 bytes */ 545 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 546 547 *remaining -= opts->bpf_opt_len; 548 } 549 550 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 551 struct request_sock *req, 552 struct sk_buff *syn_skb, 553 enum tcp_synack_type synack_type, 554 struct tcp_out_options *opts) 555 { 556 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 557 struct bpf_sock_ops_kern sock_ops; 558 int err; 559 560 if (likely(!max_opt_len)) 561 return; 562 563 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 564 565 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 566 567 if (req) { 568 sock_ops.sk = (struct sock *)req; 569 sock_ops.syn_skb = syn_skb; 570 } else { 571 sock_owned_by_me(sk); 572 573 sock_ops.is_fullsock = 1; 574 sock_ops.is_locked_tcp_sock = 1; 575 sock_ops.sk = sk; 576 } 577 578 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 579 sock_ops.remaining_opt_len = max_opt_len; 580 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 581 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 582 583 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 584 585 if (err) 586 nr_written = 0; 587 else 588 nr_written = max_opt_len - sock_ops.remaining_opt_len; 589 590 if (nr_written < max_opt_len) 591 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 592 max_opt_len - nr_written); 593 } 594 #else 595 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 596 struct request_sock *req, 597 struct sk_buff *syn_skb, 598 enum tcp_synack_type synack_type, 599 struct tcp_out_options *opts, 600 unsigned int *remaining) 601 { 602 } 603 604 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 605 struct request_sock *req, 606 struct sk_buff *syn_skb, 607 enum tcp_synack_type synack_type, 608 struct tcp_out_options *opts) 609 { 610 } 611 #endif 612 613 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 614 const struct tcp_request_sock *tcprsk, 615 struct tcp_out_options *opts, 616 struct tcp_key *key, __be32 *ptr) 617 { 618 #ifdef CONFIG_TCP_AO 619 u8 maclen = tcp_ao_maclen(key->ao_key); 620 621 if (tcprsk) { 622 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 623 624 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 625 (tcprsk->ao_keyid << 8) | 626 (tcprsk->ao_rcv_next)); 627 } else { 628 struct tcp_ao_key *rnext_key; 629 struct tcp_ao_info *ao_info; 630 631 ao_info = rcu_dereference_check(tp->ao_info, 632 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 633 rnext_key = READ_ONCE(ao_info->rnext_key); 634 if (WARN_ON_ONCE(!rnext_key)) 635 return ptr; 636 *ptr++ = htonl((TCPOPT_AO << 24) | 637 (tcp_ao_len(key->ao_key) << 16) | 638 (key->ao_key->sndid << 8) | 639 (rnext_key->rcvid)); 640 } 641 opts->hash_location = (__u8 *)ptr; 642 ptr += maclen / sizeof(*ptr); 643 if (unlikely(maclen % sizeof(*ptr))) { 644 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 645 ptr++; 646 } 647 #endif 648 return ptr; 649 } 650 651 /* Write previously computed TCP options to the packet. 652 * 653 * Beware: Something in the Internet is very sensitive to the ordering of 654 * TCP options, we learned this through the hard way, so be careful here. 655 * Luckily we can at least blame others for their non-compliance but from 656 * inter-operability perspective it seems that we're somewhat stuck with 657 * the ordering which we have been using if we want to keep working with 658 * those broken things (not that it currently hurts anybody as there isn't 659 * particular reason why the ordering would need to be changed). 660 * 661 * At least SACK_PERM as the first option is known to lead to a disaster 662 * (but it may well be that other scenarios fail similarly). 663 */ 664 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 665 const struct tcp_request_sock *tcprsk, 666 struct tcp_out_options *opts, 667 struct tcp_key *key) 668 { 669 __be32 *ptr = (__be32 *)(th + 1); 670 u16 options = opts->options; /* mungable copy */ 671 672 if (tcp_key_is_md5(key)) { 673 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 674 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 675 /* overload cookie hash location */ 676 opts->hash_location = (__u8 *)ptr; 677 ptr += 4; 678 } else if (tcp_key_is_ao(key)) { 679 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 680 } 681 if (unlikely(opts->mss)) { 682 *ptr++ = htonl((TCPOPT_MSS << 24) | 683 (TCPOLEN_MSS << 16) | 684 opts->mss); 685 } 686 687 if (likely(OPTION_TS & options)) { 688 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 689 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 690 (TCPOLEN_SACK_PERM << 16) | 691 (TCPOPT_TIMESTAMP << 8) | 692 TCPOLEN_TIMESTAMP); 693 options &= ~OPTION_SACK_ADVERTISE; 694 } else { 695 *ptr++ = htonl((TCPOPT_NOP << 24) | 696 (TCPOPT_NOP << 16) | 697 (TCPOPT_TIMESTAMP << 8) | 698 TCPOLEN_TIMESTAMP); 699 } 700 *ptr++ = htonl(opts->tsval); 701 *ptr++ = htonl(opts->tsecr); 702 } 703 704 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 705 *ptr++ = htonl((TCPOPT_NOP << 24) | 706 (TCPOPT_NOP << 16) | 707 (TCPOPT_SACK_PERM << 8) | 708 TCPOLEN_SACK_PERM); 709 } 710 711 if (unlikely(OPTION_WSCALE & options)) { 712 *ptr++ = htonl((TCPOPT_NOP << 24) | 713 (TCPOPT_WINDOW << 16) | 714 (TCPOLEN_WINDOW << 8) | 715 opts->ws); 716 } 717 718 if (unlikely(opts->num_sack_blocks)) { 719 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 720 tp->duplicate_sack : tp->selective_acks; 721 int this_sack; 722 723 *ptr++ = htonl((TCPOPT_NOP << 24) | 724 (TCPOPT_NOP << 16) | 725 (TCPOPT_SACK << 8) | 726 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 727 TCPOLEN_SACK_PERBLOCK))); 728 729 for (this_sack = 0; this_sack < opts->num_sack_blocks; 730 ++this_sack) { 731 *ptr++ = htonl(sp[this_sack].start_seq); 732 *ptr++ = htonl(sp[this_sack].end_seq); 733 } 734 735 tp->rx_opt.dsack = 0; 736 } 737 738 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 739 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 740 u8 *p = (u8 *)ptr; 741 u32 len; /* Fast Open option length */ 742 743 if (foc->exp) { 744 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 745 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 746 TCPOPT_FASTOPEN_MAGIC); 747 p += TCPOLEN_EXP_FASTOPEN_BASE; 748 } else { 749 len = TCPOLEN_FASTOPEN_BASE + foc->len; 750 *p++ = TCPOPT_FASTOPEN; 751 *p++ = len; 752 } 753 754 memcpy(p, foc->val, foc->len); 755 if ((len & 3) == 2) { 756 p[foc->len] = TCPOPT_NOP; 757 p[foc->len + 1] = TCPOPT_NOP; 758 } 759 ptr += (len + 3) >> 2; 760 } 761 762 smc_options_write(ptr, &options); 763 764 mptcp_options_write(th, ptr, tp, opts); 765 } 766 767 static void smc_set_option(const struct tcp_sock *tp, 768 struct tcp_out_options *opts, 769 unsigned int *remaining) 770 { 771 #if IS_ENABLED(CONFIG_SMC) 772 if (static_branch_unlikely(&tcp_have_smc)) { 773 if (tp->syn_smc) { 774 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 775 opts->options |= OPTION_SMC; 776 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 777 } 778 } 779 } 780 #endif 781 } 782 783 static void smc_set_option_cond(const struct tcp_sock *tp, 784 const struct inet_request_sock *ireq, 785 struct tcp_out_options *opts, 786 unsigned int *remaining) 787 { 788 #if IS_ENABLED(CONFIG_SMC) 789 if (static_branch_unlikely(&tcp_have_smc)) { 790 if (tp->syn_smc && ireq->smc_ok) { 791 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 792 opts->options |= OPTION_SMC; 793 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 794 } 795 } 796 } 797 #endif 798 } 799 800 static void mptcp_set_option_cond(const struct request_sock *req, 801 struct tcp_out_options *opts, 802 unsigned int *remaining) 803 { 804 if (rsk_is_mptcp(req)) { 805 unsigned int size; 806 807 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 808 if (*remaining >= size) { 809 opts->options |= OPTION_MPTCP; 810 *remaining -= size; 811 } 812 } 813 } 814 } 815 816 /* Compute TCP options for SYN packets. This is not the final 817 * network wire format yet. 818 */ 819 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 820 struct tcp_out_options *opts, 821 struct tcp_key *key) 822 { 823 struct tcp_sock *tp = tcp_sk(sk); 824 unsigned int remaining = MAX_TCP_OPTION_SPACE; 825 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 826 bool timestamps; 827 828 /* Better than switch (key.type) as it has static branches */ 829 if (tcp_key_is_md5(key)) { 830 timestamps = false; 831 opts->options |= OPTION_MD5; 832 remaining -= TCPOLEN_MD5SIG_ALIGNED; 833 } else { 834 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 835 if (tcp_key_is_ao(key)) { 836 opts->options |= OPTION_AO; 837 remaining -= tcp_ao_len_aligned(key->ao_key); 838 } 839 } 840 841 /* We always get an MSS option. The option bytes which will be seen in 842 * normal data packets should timestamps be used, must be in the MSS 843 * advertised. But we subtract them from tp->mss_cache so that 844 * calculations in tcp_sendmsg are simpler etc. So account for this 845 * fact here if necessary. If we don't do this correctly, as a 846 * receiver we won't recognize data packets as being full sized when we 847 * should, and thus we won't abide by the delayed ACK rules correctly. 848 * SACKs don't matter, we never delay an ACK when we have any of those 849 * going out. */ 850 opts->mss = tcp_advertise_mss(sk); 851 remaining -= TCPOLEN_MSS_ALIGNED; 852 853 if (likely(timestamps)) { 854 opts->options |= OPTION_TS; 855 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 856 opts->tsecr = tp->rx_opt.ts_recent; 857 remaining -= TCPOLEN_TSTAMP_ALIGNED; 858 } 859 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 860 opts->ws = tp->rx_opt.rcv_wscale; 861 opts->options |= OPTION_WSCALE; 862 remaining -= TCPOLEN_WSCALE_ALIGNED; 863 } 864 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 865 opts->options |= OPTION_SACK_ADVERTISE; 866 if (unlikely(!(OPTION_TS & opts->options))) 867 remaining -= TCPOLEN_SACKPERM_ALIGNED; 868 } 869 870 if (fastopen && fastopen->cookie.len >= 0) { 871 u32 need = fastopen->cookie.len; 872 873 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 874 TCPOLEN_FASTOPEN_BASE; 875 need = (need + 3) & ~3U; /* Align to 32 bits */ 876 if (remaining >= need) { 877 opts->options |= OPTION_FAST_OPEN_COOKIE; 878 opts->fastopen_cookie = &fastopen->cookie; 879 remaining -= need; 880 tp->syn_fastopen = 1; 881 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 882 } 883 } 884 885 smc_set_option(tp, opts, &remaining); 886 887 if (sk_is_mptcp(sk)) { 888 unsigned int size; 889 890 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 891 if (remaining >= size) { 892 opts->options |= OPTION_MPTCP; 893 remaining -= size; 894 } 895 } 896 } 897 898 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 899 900 return MAX_TCP_OPTION_SPACE - remaining; 901 } 902 903 /* Set up TCP options for SYN-ACKs. */ 904 static unsigned int tcp_synack_options(const struct sock *sk, 905 struct request_sock *req, 906 unsigned int mss, struct sk_buff *skb, 907 struct tcp_out_options *opts, 908 const struct tcp_key *key, 909 struct tcp_fastopen_cookie *foc, 910 enum tcp_synack_type synack_type, 911 struct sk_buff *syn_skb) 912 { 913 struct inet_request_sock *ireq = inet_rsk(req); 914 unsigned int remaining = MAX_TCP_OPTION_SPACE; 915 916 if (tcp_key_is_md5(key)) { 917 opts->options |= OPTION_MD5; 918 remaining -= TCPOLEN_MD5SIG_ALIGNED; 919 920 /* We can't fit any SACK blocks in a packet with MD5 + TS 921 * options. There was discussion about disabling SACK 922 * rather than TS in order to fit in better with old, 923 * buggy kernels, but that was deemed to be unnecessary. 924 */ 925 if (synack_type != TCP_SYNACK_COOKIE) 926 ireq->tstamp_ok &= !ireq->sack_ok; 927 } else if (tcp_key_is_ao(key)) { 928 opts->options |= OPTION_AO; 929 remaining -= tcp_ao_len_aligned(key->ao_key); 930 ireq->tstamp_ok &= !ireq->sack_ok; 931 } 932 933 /* We always send an MSS option. */ 934 opts->mss = mss; 935 remaining -= TCPOLEN_MSS_ALIGNED; 936 937 if (likely(ireq->wscale_ok)) { 938 opts->ws = ireq->rcv_wscale; 939 opts->options |= OPTION_WSCALE; 940 remaining -= TCPOLEN_WSCALE_ALIGNED; 941 } 942 if (likely(ireq->tstamp_ok)) { 943 opts->options |= OPTION_TS; 944 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 945 tcp_rsk(req)->ts_off; 946 if (!tcp_rsk(req)->snt_tsval_first) { 947 if (!opts->tsval) 948 opts->tsval = ~0U; 949 tcp_rsk(req)->snt_tsval_first = opts->tsval; 950 } 951 WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval); 952 opts->tsecr = req->ts_recent; 953 remaining -= TCPOLEN_TSTAMP_ALIGNED; 954 } 955 if (likely(ireq->sack_ok)) { 956 opts->options |= OPTION_SACK_ADVERTISE; 957 if (unlikely(!ireq->tstamp_ok)) 958 remaining -= TCPOLEN_SACKPERM_ALIGNED; 959 } 960 if (foc != NULL && foc->len >= 0) { 961 u32 need = foc->len; 962 963 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 964 TCPOLEN_FASTOPEN_BASE; 965 need = (need + 3) & ~3U; /* Align to 32 bits */ 966 if (remaining >= need) { 967 opts->options |= OPTION_FAST_OPEN_COOKIE; 968 opts->fastopen_cookie = foc; 969 remaining -= need; 970 } 971 } 972 973 mptcp_set_option_cond(req, opts, &remaining); 974 975 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 976 977 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 978 synack_type, opts, &remaining); 979 980 return MAX_TCP_OPTION_SPACE - remaining; 981 } 982 983 /* Compute TCP options for ESTABLISHED sockets. This is not the 984 * final wire format yet. 985 */ 986 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 987 struct tcp_out_options *opts, 988 struct tcp_key *key) 989 { 990 struct tcp_sock *tp = tcp_sk(sk); 991 unsigned int size = 0; 992 unsigned int eff_sacks; 993 994 opts->options = 0; 995 996 /* Better than switch (key.type) as it has static branches */ 997 if (tcp_key_is_md5(key)) { 998 opts->options |= OPTION_MD5; 999 size += TCPOLEN_MD5SIG_ALIGNED; 1000 } else if (tcp_key_is_ao(key)) { 1001 opts->options |= OPTION_AO; 1002 size += tcp_ao_len_aligned(key->ao_key); 1003 } 1004 1005 if (likely(tp->rx_opt.tstamp_ok)) { 1006 opts->options |= OPTION_TS; 1007 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 1008 tp->tsoffset : 0; 1009 opts->tsecr = tp->rx_opt.ts_recent; 1010 size += TCPOLEN_TSTAMP_ALIGNED; 1011 } 1012 1013 /* MPTCP options have precedence over SACK for the limited TCP 1014 * option space because a MPTCP connection would be forced to 1015 * fall back to regular TCP if a required multipath option is 1016 * missing. SACK still gets a chance to use whatever space is 1017 * left. 1018 */ 1019 if (sk_is_mptcp(sk)) { 1020 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1021 unsigned int opt_size = 0; 1022 1023 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1024 &opts->mptcp)) { 1025 opts->options |= OPTION_MPTCP; 1026 size += opt_size; 1027 } 1028 } 1029 1030 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1031 if (unlikely(eff_sacks)) { 1032 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1033 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 1034 TCPOLEN_SACK_PERBLOCK)) 1035 return size; 1036 1037 opts->num_sack_blocks = 1038 min_t(unsigned int, eff_sacks, 1039 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1040 TCPOLEN_SACK_PERBLOCK); 1041 1042 size += TCPOLEN_SACK_BASE_ALIGNED + 1043 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1044 } 1045 1046 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1047 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1048 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1049 1050 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1051 1052 size = MAX_TCP_OPTION_SPACE - remaining; 1053 } 1054 1055 return size; 1056 } 1057 1058 1059 /* TCP SMALL QUEUES (TSQ) 1060 * 1061 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1062 * to reduce RTT and bufferbloat. 1063 * We do this using a special skb destructor (tcp_wfree). 1064 * 1065 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1066 * needs to be reallocated in a driver. 1067 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1068 * 1069 * Since transmit from skb destructor is forbidden, we use a BH work item 1070 * to process all sockets that eventually need to send more skbs. 1071 * We use one work item per cpu, with its own queue of sockets. 1072 */ 1073 struct tsq_work { 1074 struct work_struct work; 1075 struct list_head head; /* queue of tcp sockets */ 1076 }; 1077 static DEFINE_PER_CPU(struct tsq_work, tsq_work); 1078 1079 static void tcp_tsq_write(struct sock *sk) 1080 { 1081 if ((1 << sk->sk_state) & 1082 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1083 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1084 struct tcp_sock *tp = tcp_sk(sk); 1085 1086 if (tp->lost_out > tp->retrans_out && 1087 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1088 tcp_mstamp_refresh(tp); 1089 tcp_xmit_retransmit_queue(sk); 1090 } 1091 1092 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1093 0, GFP_ATOMIC); 1094 } 1095 } 1096 1097 static void tcp_tsq_handler(struct sock *sk) 1098 { 1099 bh_lock_sock(sk); 1100 if (!sock_owned_by_user(sk)) 1101 tcp_tsq_write(sk); 1102 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1103 sock_hold(sk); 1104 bh_unlock_sock(sk); 1105 } 1106 /* 1107 * One work item per cpu tries to send more skbs. 1108 * We run in BH context but need to disable irqs when 1109 * transferring tsq->head because tcp_wfree() might 1110 * interrupt us (non NAPI drivers) 1111 */ 1112 static void tcp_tsq_workfn(struct work_struct *work) 1113 { 1114 struct tsq_work *tsq = container_of(work, struct tsq_work, work); 1115 LIST_HEAD(list); 1116 unsigned long flags; 1117 struct list_head *q, *n; 1118 struct tcp_sock *tp; 1119 struct sock *sk; 1120 1121 local_irq_save(flags); 1122 list_splice_init(&tsq->head, &list); 1123 local_irq_restore(flags); 1124 1125 list_for_each_safe(q, n, &list) { 1126 tp = list_entry(q, struct tcp_sock, tsq_node); 1127 list_del(&tp->tsq_node); 1128 1129 sk = (struct sock *)tp; 1130 smp_mb__before_atomic(); 1131 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1132 1133 tcp_tsq_handler(sk); 1134 sk_free(sk); 1135 } 1136 } 1137 1138 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1139 TCPF_WRITE_TIMER_DEFERRED | \ 1140 TCPF_DELACK_TIMER_DEFERRED | \ 1141 TCPF_MTU_REDUCED_DEFERRED | \ 1142 TCPF_ACK_DEFERRED) 1143 /** 1144 * tcp_release_cb - tcp release_sock() callback 1145 * @sk: socket 1146 * 1147 * called from release_sock() to perform protocol dependent 1148 * actions before socket release. 1149 */ 1150 void tcp_release_cb(struct sock *sk) 1151 { 1152 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1153 unsigned long nflags; 1154 1155 /* perform an atomic operation only if at least one flag is set */ 1156 do { 1157 if (!(flags & TCP_DEFERRED_ALL)) 1158 return; 1159 nflags = flags & ~TCP_DEFERRED_ALL; 1160 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1161 1162 if (flags & TCPF_TSQ_DEFERRED) { 1163 tcp_tsq_write(sk); 1164 __sock_put(sk); 1165 } 1166 1167 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1168 tcp_write_timer_handler(sk); 1169 __sock_put(sk); 1170 } 1171 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1172 tcp_delack_timer_handler(sk); 1173 __sock_put(sk); 1174 } 1175 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1176 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1177 __sock_put(sk); 1178 } 1179 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1180 tcp_send_ack(sk); 1181 } 1182 EXPORT_IPV6_MOD(tcp_release_cb); 1183 1184 void __init tcp_tsq_work_init(void) 1185 { 1186 int i; 1187 1188 for_each_possible_cpu(i) { 1189 struct tsq_work *tsq = &per_cpu(tsq_work, i); 1190 1191 INIT_LIST_HEAD(&tsq->head); 1192 INIT_WORK(&tsq->work, tcp_tsq_workfn); 1193 } 1194 } 1195 1196 /* 1197 * Write buffer destructor automatically called from kfree_skb. 1198 * We can't xmit new skbs from this context, as we might already 1199 * hold qdisc lock. 1200 */ 1201 void tcp_wfree(struct sk_buff *skb) 1202 { 1203 struct sock *sk = skb->sk; 1204 struct tcp_sock *tp = tcp_sk(sk); 1205 unsigned long flags, nval, oval; 1206 struct tsq_work *tsq; 1207 bool empty; 1208 1209 /* Keep one reference on sk_wmem_alloc. 1210 * Will be released by sk_free() from here or tcp_tsq_workfn() 1211 */ 1212 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1213 1214 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1215 * Wait until our queues (qdisc + devices) are drained. 1216 * This gives : 1217 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1218 * - chance for incoming ACK (processed by another cpu maybe) 1219 * to migrate this flow (skb->ooo_okay will be eventually set) 1220 */ 1221 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1222 goto out; 1223 1224 oval = smp_load_acquire(&sk->sk_tsq_flags); 1225 do { 1226 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1227 goto out; 1228 1229 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1230 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1231 1232 /* queue this socket to BH workqueue */ 1233 local_irq_save(flags); 1234 tsq = this_cpu_ptr(&tsq_work); 1235 empty = list_empty(&tsq->head); 1236 list_add(&tp->tsq_node, &tsq->head); 1237 if (empty) 1238 queue_work(system_bh_wq, &tsq->work); 1239 local_irq_restore(flags); 1240 return; 1241 out: 1242 sk_free(sk); 1243 } 1244 1245 /* Note: Called under soft irq. 1246 * We can call TCP stack right away, unless socket is owned by user. 1247 */ 1248 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1249 { 1250 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1251 struct sock *sk = (struct sock *)tp; 1252 1253 tcp_tsq_handler(sk); 1254 sock_put(sk); 1255 1256 return HRTIMER_NORESTART; 1257 } 1258 1259 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1260 u64 prior_wstamp) 1261 { 1262 struct tcp_sock *tp = tcp_sk(sk); 1263 1264 if (sk->sk_pacing_status != SK_PACING_NONE) { 1265 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1266 1267 /* Original sch_fq does not pace first 10 MSS 1268 * Note that tp->data_segs_out overflows after 2^32 packets, 1269 * this is a minor annoyance. 1270 */ 1271 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1272 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1273 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1274 1275 /* take into account OS jitter */ 1276 len_ns -= min_t(u64, len_ns / 2, credit); 1277 tp->tcp_wstamp_ns += len_ns; 1278 } 1279 } 1280 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1281 } 1282 1283 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1284 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1285 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1286 1287 /* This routine actually transmits TCP packets queued in by 1288 * tcp_do_sendmsg(). This is used by both the initial 1289 * transmission and possible later retransmissions. 1290 * All SKB's seen here are completely headerless. It is our 1291 * job to build the TCP header, and pass the packet down to 1292 * IP so it can do the same plus pass the packet off to the 1293 * device. 1294 * 1295 * We are working here with either a clone of the original 1296 * SKB, or a fresh unique copy made by the retransmit engine. 1297 */ 1298 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1299 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1300 { 1301 const struct inet_connection_sock *icsk = inet_csk(sk); 1302 struct inet_sock *inet; 1303 struct tcp_sock *tp; 1304 struct tcp_skb_cb *tcb; 1305 struct tcp_out_options opts; 1306 unsigned int tcp_options_size, tcp_header_size; 1307 struct sk_buff *oskb = NULL; 1308 struct tcp_key key; 1309 struct tcphdr *th; 1310 u64 prior_wstamp; 1311 int err; 1312 1313 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1314 tp = tcp_sk(sk); 1315 prior_wstamp = tp->tcp_wstamp_ns; 1316 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1317 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 1318 if (clone_it) { 1319 oskb = skb; 1320 1321 tcp_skb_tsorted_save(oskb) { 1322 if (unlikely(skb_cloned(oskb))) 1323 skb = pskb_copy(oskb, gfp_mask); 1324 else 1325 skb = skb_clone(oskb, gfp_mask); 1326 } tcp_skb_tsorted_restore(oskb); 1327 1328 if (unlikely(!skb)) 1329 return -ENOBUFS; 1330 /* retransmit skbs might have a non zero value in skb->dev 1331 * because skb->dev is aliased with skb->rbnode.rb_left 1332 */ 1333 skb->dev = NULL; 1334 } 1335 1336 inet = inet_sk(sk); 1337 tcb = TCP_SKB_CB(skb); 1338 memset(&opts, 0, sizeof(opts)); 1339 1340 tcp_get_current_key(sk, &key); 1341 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1342 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1343 } else { 1344 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1345 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1346 * at receiver : This slightly improve GRO performance. 1347 * Note that we do not force the PSH flag for non GSO packets, 1348 * because they might be sent under high congestion events, 1349 * and in this case it is better to delay the delivery of 1-MSS 1350 * packets and thus the corresponding ACK packet that would 1351 * release the following packet. 1352 */ 1353 if (tcp_skb_pcount(skb) > 1) 1354 tcb->tcp_flags |= TCPHDR_PSH; 1355 } 1356 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1357 1358 /* We set skb->ooo_okay to one if this packet can select 1359 * a different TX queue than prior packets of this flow, 1360 * to avoid self inflicted reorders. 1361 * The 'other' queue decision is based on current cpu number 1362 * if XPS is enabled, or sk->sk_txhash otherwise. 1363 * We can switch to another (and better) queue if: 1364 * 1) No packet with payload is in qdisc/device queues. 1365 * Delays in TX completion can defeat the test 1366 * even if packets were already sent. 1367 * 2) Or rtx queue is empty. 1368 * This mitigates above case if ACK packets for 1369 * all prior packets were already processed. 1370 */ 1371 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1372 tcp_rtx_queue_empty(sk); 1373 1374 /* If we had to use memory reserve to allocate this skb, 1375 * this might cause drops if packet is looped back : 1376 * Other socket might not have SOCK_MEMALLOC. 1377 * Packets not looped back do not care about pfmemalloc. 1378 */ 1379 skb->pfmemalloc = 0; 1380 1381 skb_push(skb, tcp_header_size); 1382 skb_reset_transport_header(skb); 1383 1384 skb_orphan(skb); 1385 skb->sk = sk; 1386 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1387 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1388 1389 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1390 1391 /* Build TCP header and checksum it. */ 1392 th = (struct tcphdr *)skb->data; 1393 th->source = inet->inet_sport; 1394 th->dest = inet->inet_dport; 1395 th->seq = htonl(tcb->seq); 1396 th->ack_seq = htonl(rcv_nxt); 1397 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1398 (tcb->tcp_flags & TCPHDR_FLAGS_MASK)); 1399 1400 th->check = 0; 1401 th->urg_ptr = 0; 1402 1403 /* The urg_mode check is necessary during a below snd_una win probe */ 1404 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1405 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1406 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1407 th->urg = 1; 1408 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1409 th->urg_ptr = htons(0xFFFF); 1410 th->urg = 1; 1411 } 1412 } 1413 1414 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1415 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1416 th->window = htons(tcp_select_window(sk)); 1417 tcp_ecn_send(sk, skb, th, tcp_header_size); 1418 } else { 1419 /* RFC1323: The window in SYN & SYN/ACK segments 1420 * is never scaled. 1421 */ 1422 th->window = htons(min(tp->rcv_wnd, 65535U)); 1423 } 1424 1425 tcp_options_write(th, tp, NULL, &opts, &key); 1426 1427 if (tcp_key_is_md5(&key)) { 1428 #ifdef CONFIG_TCP_MD5SIG 1429 /* Calculate the MD5 hash, as we have all we need now */ 1430 sk_gso_disable(sk); 1431 tp->af_specific->calc_md5_hash(opts.hash_location, 1432 key.md5_key, sk, skb); 1433 #endif 1434 } else if (tcp_key_is_ao(&key)) { 1435 int err; 1436 1437 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1438 opts.hash_location); 1439 if (err) { 1440 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1441 return -ENOMEM; 1442 } 1443 } 1444 1445 /* BPF prog is the last one writing header option */ 1446 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1447 1448 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1449 tcp_v6_send_check, tcp_v4_send_check, 1450 sk, skb); 1451 1452 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1453 tcp_event_ack_sent(sk, rcv_nxt); 1454 1455 if (skb->len != tcp_header_size) { 1456 tcp_event_data_sent(tp, sk); 1457 tp->data_segs_out += tcp_skb_pcount(skb); 1458 tp->bytes_sent += skb->len - tcp_header_size; 1459 } 1460 1461 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1462 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1463 tcp_skb_pcount(skb)); 1464 1465 tp->segs_out += tcp_skb_pcount(skb); 1466 skb_set_hash_from_sk(skb, sk); 1467 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1468 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1469 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1470 1471 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1472 1473 /* Cleanup our debris for IP stacks */ 1474 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1475 sizeof(struct inet6_skb_parm))); 1476 1477 tcp_add_tx_delay(skb, tp); 1478 1479 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1480 inet6_csk_xmit, ip_queue_xmit, 1481 sk, skb, &inet->cork.fl); 1482 1483 if (unlikely(err > 0)) { 1484 tcp_enter_cwr(sk); 1485 err = net_xmit_eval(err); 1486 } 1487 if (!err && oskb) { 1488 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1489 tcp_rate_skb_sent(sk, oskb); 1490 } 1491 return err; 1492 } 1493 1494 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1495 gfp_t gfp_mask) 1496 { 1497 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1498 tcp_sk(sk)->rcv_nxt); 1499 } 1500 1501 /* This routine just queues the buffer for sending. 1502 * 1503 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1504 * otherwise socket can stall. 1505 */ 1506 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1507 { 1508 struct tcp_sock *tp = tcp_sk(sk); 1509 1510 /* Advance write_seq and place onto the write_queue. */ 1511 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1512 __skb_header_release(skb); 1513 tcp_add_write_queue_tail(sk, skb); 1514 sk_wmem_queued_add(sk, skb->truesize); 1515 sk_mem_charge(sk, skb->truesize); 1516 } 1517 1518 /* Initialize TSO segments for a packet. */ 1519 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1520 { 1521 int tso_segs; 1522 1523 if (skb->len <= mss_now) { 1524 /* Avoid the costly divide in the normal 1525 * non-TSO case. 1526 */ 1527 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1528 tcp_skb_pcount_set(skb, 1); 1529 return 1; 1530 } 1531 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1532 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1533 tcp_skb_pcount_set(skb, tso_segs); 1534 return tso_segs; 1535 } 1536 1537 /* Pcount in the middle of the write queue got changed, we need to do various 1538 * tweaks to fix counters 1539 */ 1540 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1541 { 1542 struct tcp_sock *tp = tcp_sk(sk); 1543 1544 tp->packets_out -= decr; 1545 1546 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1547 tp->sacked_out -= decr; 1548 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1549 tp->retrans_out -= decr; 1550 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1551 tp->lost_out -= decr; 1552 1553 /* Reno case is special. Sigh... */ 1554 if (tcp_is_reno(tp) && decr > 0) 1555 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1556 1557 tcp_verify_left_out(tp); 1558 } 1559 1560 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1561 { 1562 return TCP_SKB_CB(skb)->txstamp_ack || 1563 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1564 } 1565 1566 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1567 { 1568 struct skb_shared_info *shinfo = skb_shinfo(skb); 1569 1570 if (unlikely(tcp_has_tx_tstamp(skb)) && 1571 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1572 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1573 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1574 1575 shinfo->tx_flags &= ~tsflags; 1576 shinfo2->tx_flags |= tsflags; 1577 swap(shinfo->tskey, shinfo2->tskey); 1578 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1579 TCP_SKB_CB(skb)->txstamp_ack = 0; 1580 } 1581 } 1582 1583 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1584 { 1585 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1586 TCP_SKB_CB(skb)->eor = 0; 1587 } 1588 1589 /* Insert buff after skb on the write or rtx queue of sk. */ 1590 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1591 struct sk_buff *buff, 1592 struct sock *sk, 1593 enum tcp_queue tcp_queue) 1594 { 1595 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1596 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1597 else 1598 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1599 } 1600 1601 /* Function to create two new TCP segments. Shrinks the given segment 1602 * to the specified size and appends a new segment with the rest of the 1603 * packet to the list. This won't be called frequently, I hope. 1604 * Remember, these are still headerless SKBs at this point. 1605 */ 1606 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1607 struct sk_buff *skb, u32 len, 1608 unsigned int mss_now, gfp_t gfp) 1609 { 1610 struct tcp_sock *tp = tcp_sk(sk); 1611 struct sk_buff *buff; 1612 int old_factor; 1613 long limit; 1614 u16 flags; 1615 int nlen; 1616 1617 if (WARN_ON(len > skb->len)) 1618 return -EINVAL; 1619 1620 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1621 1622 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1623 * We need some allowance to not penalize applications setting small 1624 * SO_SNDBUF values. 1625 * Also allow first and last skb in retransmit queue to be split. 1626 */ 1627 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1628 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1629 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1630 skb != tcp_rtx_queue_head(sk) && 1631 skb != tcp_rtx_queue_tail(sk))) { 1632 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1633 return -ENOMEM; 1634 } 1635 1636 if (skb_unclone_keeptruesize(skb, gfp)) 1637 return -ENOMEM; 1638 1639 /* Get a new skb... force flag on. */ 1640 buff = tcp_stream_alloc_skb(sk, gfp, true); 1641 if (!buff) 1642 return -ENOMEM; /* We'll just try again later. */ 1643 skb_copy_decrypted(buff, skb); 1644 mptcp_skb_ext_copy(buff, skb); 1645 1646 sk_wmem_queued_add(sk, buff->truesize); 1647 sk_mem_charge(sk, buff->truesize); 1648 nlen = skb->len - len; 1649 buff->truesize += nlen; 1650 skb->truesize -= nlen; 1651 1652 /* Correct the sequence numbers. */ 1653 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1654 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1655 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1656 1657 /* PSH and FIN should only be set in the second packet. */ 1658 flags = TCP_SKB_CB(skb)->tcp_flags; 1659 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1660 TCP_SKB_CB(buff)->tcp_flags = flags; 1661 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1662 tcp_skb_fragment_eor(skb, buff); 1663 1664 skb_split(skb, buff, len); 1665 1666 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC); 1667 tcp_fragment_tstamp(skb, buff); 1668 1669 old_factor = tcp_skb_pcount(skb); 1670 1671 /* Fix up tso_factor for both original and new SKB. */ 1672 tcp_set_skb_tso_segs(skb, mss_now); 1673 tcp_set_skb_tso_segs(buff, mss_now); 1674 1675 /* Update delivered info for the new segment */ 1676 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1677 1678 /* If this packet has been sent out already, we must 1679 * adjust the various packet counters. 1680 */ 1681 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1682 int diff = old_factor - tcp_skb_pcount(skb) - 1683 tcp_skb_pcount(buff); 1684 1685 if (diff) 1686 tcp_adjust_pcount(sk, skb, diff); 1687 } 1688 1689 /* Link BUFF into the send queue. */ 1690 __skb_header_release(buff); 1691 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1692 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1693 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1694 1695 return 0; 1696 } 1697 1698 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1699 * data is not copied, but immediately discarded. 1700 */ 1701 static int __pskb_trim_head(struct sk_buff *skb, int len) 1702 { 1703 struct skb_shared_info *shinfo; 1704 int i, k, eat; 1705 1706 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1707 eat = len; 1708 k = 0; 1709 shinfo = skb_shinfo(skb); 1710 for (i = 0; i < shinfo->nr_frags; i++) { 1711 int size = skb_frag_size(&shinfo->frags[i]); 1712 1713 if (size <= eat) { 1714 skb_frag_unref(skb, i); 1715 eat -= size; 1716 } else { 1717 shinfo->frags[k] = shinfo->frags[i]; 1718 if (eat) { 1719 skb_frag_off_add(&shinfo->frags[k], eat); 1720 skb_frag_size_sub(&shinfo->frags[k], eat); 1721 eat = 0; 1722 } 1723 k++; 1724 } 1725 } 1726 shinfo->nr_frags = k; 1727 1728 skb->data_len -= len; 1729 skb->len = skb->data_len; 1730 return len; 1731 } 1732 1733 /* Remove acked data from a packet in the transmit queue. */ 1734 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1735 { 1736 u32 delta_truesize; 1737 1738 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1739 return -ENOMEM; 1740 1741 delta_truesize = __pskb_trim_head(skb, len); 1742 1743 TCP_SKB_CB(skb)->seq += len; 1744 1745 skb->truesize -= delta_truesize; 1746 sk_wmem_queued_add(sk, -delta_truesize); 1747 if (!skb_zcopy_pure(skb)) 1748 sk_mem_uncharge(sk, delta_truesize); 1749 1750 /* Any change of skb->len requires recalculation of tso factor. */ 1751 if (tcp_skb_pcount(skb) > 1) 1752 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1753 1754 return 0; 1755 } 1756 1757 /* Calculate MSS not accounting any TCP options. */ 1758 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1759 { 1760 const struct tcp_sock *tp = tcp_sk(sk); 1761 const struct inet_connection_sock *icsk = inet_csk(sk); 1762 int mss_now; 1763 1764 /* Calculate base mss without TCP options: 1765 It is MMS_S - sizeof(tcphdr) of rfc1122 1766 */ 1767 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1768 1769 /* Clamp it (mss_clamp does not include tcp options) */ 1770 if (mss_now > tp->rx_opt.mss_clamp) 1771 mss_now = tp->rx_opt.mss_clamp; 1772 1773 /* Now subtract optional transport overhead */ 1774 mss_now -= icsk->icsk_ext_hdr_len; 1775 1776 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1777 mss_now = max(mss_now, 1778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1779 return mss_now; 1780 } 1781 1782 /* Calculate MSS. Not accounting for SACKs here. */ 1783 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1784 { 1785 /* Subtract TCP options size, not including SACKs */ 1786 return __tcp_mtu_to_mss(sk, pmtu) - 1787 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1788 } 1789 EXPORT_IPV6_MOD(tcp_mtu_to_mss); 1790 1791 /* Inverse of above */ 1792 int tcp_mss_to_mtu(struct sock *sk, int mss) 1793 { 1794 const struct tcp_sock *tp = tcp_sk(sk); 1795 const struct inet_connection_sock *icsk = inet_csk(sk); 1796 1797 return mss + 1798 tp->tcp_header_len + 1799 icsk->icsk_ext_hdr_len + 1800 icsk->icsk_af_ops->net_header_len; 1801 } 1802 EXPORT_SYMBOL(tcp_mss_to_mtu); 1803 1804 /* MTU probing init per socket */ 1805 void tcp_mtup_init(struct sock *sk) 1806 { 1807 struct tcp_sock *tp = tcp_sk(sk); 1808 struct inet_connection_sock *icsk = inet_csk(sk); 1809 struct net *net = sock_net(sk); 1810 1811 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1812 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1813 icsk->icsk_af_ops->net_header_len; 1814 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1815 icsk->icsk_mtup.probe_size = 0; 1816 if (icsk->icsk_mtup.enabled) 1817 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1818 } 1819 1820 /* This function synchronize snd mss to current pmtu/exthdr set. 1821 1822 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1823 for TCP options, but includes only bare TCP header. 1824 1825 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1826 It is minimum of user_mss and mss received with SYN. 1827 It also does not include TCP options. 1828 1829 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1830 1831 tp->mss_cache is current effective sending mss, including 1832 all tcp options except for SACKs. It is evaluated, 1833 taking into account current pmtu, but never exceeds 1834 tp->rx_opt.mss_clamp. 1835 1836 NOTE1. rfc1122 clearly states that advertised MSS 1837 DOES NOT include either tcp or ip options. 1838 1839 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1840 are READ ONLY outside this function. --ANK (980731) 1841 */ 1842 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1843 { 1844 struct tcp_sock *tp = tcp_sk(sk); 1845 struct inet_connection_sock *icsk = inet_csk(sk); 1846 int mss_now; 1847 1848 if (icsk->icsk_mtup.search_high > pmtu) 1849 icsk->icsk_mtup.search_high = pmtu; 1850 1851 mss_now = tcp_mtu_to_mss(sk, pmtu); 1852 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1853 1854 /* And store cached results */ 1855 icsk->icsk_pmtu_cookie = pmtu; 1856 if (icsk->icsk_mtup.enabled) 1857 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1858 tp->mss_cache = mss_now; 1859 1860 return mss_now; 1861 } 1862 EXPORT_IPV6_MOD(tcp_sync_mss); 1863 1864 /* Compute the current effective MSS, taking SACKs and IP options, 1865 * and even PMTU discovery events into account. 1866 */ 1867 unsigned int tcp_current_mss(struct sock *sk) 1868 { 1869 const struct tcp_sock *tp = tcp_sk(sk); 1870 const struct dst_entry *dst = __sk_dst_get(sk); 1871 u32 mss_now; 1872 unsigned int header_len; 1873 struct tcp_out_options opts; 1874 struct tcp_key key; 1875 1876 mss_now = tp->mss_cache; 1877 1878 if (dst) { 1879 u32 mtu = dst_mtu(dst); 1880 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1881 mss_now = tcp_sync_mss(sk, mtu); 1882 } 1883 tcp_get_current_key(sk, &key); 1884 header_len = tcp_established_options(sk, NULL, &opts, &key) + 1885 sizeof(struct tcphdr); 1886 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1887 * some common options. If this is an odd packet (because we have SACK 1888 * blocks etc) then our calculated header_len will be different, and 1889 * we have to adjust mss_now correspondingly */ 1890 if (header_len != tp->tcp_header_len) { 1891 int delta = (int) header_len - tp->tcp_header_len; 1892 mss_now -= delta; 1893 } 1894 1895 return mss_now; 1896 } 1897 1898 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1899 * As additional protections, we do not touch cwnd in retransmission phases, 1900 * and if application hit its sndbuf limit recently. 1901 */ 1902 static void tcp_cwnd_application_limited(struct sock *sk) 1903 { 1904 struct tcp_sock *tp = tcp_sk(sk); 1905 1906 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1907 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1908 /* Limited by application or receiver window. */ 1909 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1910 u32 win_used = max(tp->snd_cwnd_used, init_win); 1911 if (win_used < tcp_snd_cwnd(tp)) { 1912 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1913 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1914 } 1915 tp->snd_cwnd_used = 0; 1916 } 1917 tp->snd_cwnd_stamp = tcp_jiffies32; 1918 } 1919 1920 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1921 { 1922 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1923 struct tcp_sock *tp = tcp_sk(sk); 1924 1925 /* Track the strongest available signal of the degree to which the cwnd 1926 * is fully utilized. If cwnd-limited then remember that fact for the 1927 * current window. If not cwnd-limited then track the maximum number of 1928 * outstanding packets in the current window. (If cwnd-limited then we 1929 * chose to not update tp->max_packets_out to avoid an extra else 1930 * clause with no functional impact.) 1931 */ 1932 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1933 is_cwnd_limited || 1934 (!tp->is_cwnd_limited && 1935 tp->packets_out > tp->max_packets_out)) { 1936 tp->is_cwnd_limited = is_cwnd_limited; 1937 tp->max_packets_out = tp->packets_out; 1938 tp->cwnd_usage_seq = tp->snd_nxt; 1939 } 1940 1941 if (tcp_is_cwnd_limited(sk)) { 1942 /* Network is feed fully. */ 1943 tp->snd_cwnd_used = 0; 1944 tp->snd_cwnd_stamp = tcp_jiffies32; 1945 } else { 1946 /* Network starves. */ 1947 if (tp->packets_out > tp->snd_cwnd_used) 1948 tp->snd_cwnd_used = tp->packets_out; 1949 1950 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1951 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1952 !ca_ops->cong_control) 1953 tcp_cwnd_application_limited(sk); 1954 1955 /* The following conditions together indicate the starvation 1956 * is caused by insufficient sender buffer: 1957 * 1) just sent some data (see tcp_write_xmit) 1958 * 2) not cwnd limited (this else condition) 1959 * 3) no more data to send (tcp_write_queue_empty()) 1960 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1961 */ 1962 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1963 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1964 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1965 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1966 } 1967 } 1968 1969 /* Minshall's variant of the Nagle send check. */ 1970 static bool tcp_minshall_check(const struct tcp_sock *tp) 1971 { 1972 return after(tp->snd_sml, tp->snd_una) && 1973 !after(tp->snd_sml, tp->snd_nxt); 1974 } 1975 1976 /* Update snd_sml if this skb is under mss 1977 * Note that a TSO packet might end with a sub-mss segment 1978 * The test is really : 1979 * if ((skb->len % mss) != 0) 1980 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1981 * But we can avoid doing the divide again given we already have 1982 * skb_pcount = skb->len / mss_now 1983 */ 1984 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1985 const struct sk_buff *skb) 1986 { 1987 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1988 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1989 } 1990 1991 /* Return false, if packet can be sent now without violation Nagle's rules: 1992 * 1. It is full sized. (provided by caller in %partial bool) 1993 * 2. Or it contains FIN. (already checked by caller) 1994 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1995 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1996 * With Minshall's modification: all sent small packets are ACKed. 1997 */ 1998 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1999 int nonagle) 2000 { 2001 return partial && 2002 ((nonagle & TCP_NAGLE_CORK) || 2003 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 2004 } 2005 2006 /* Return how many segs we'd like on a TSO packet, 2007 * depending on current pacing rate, and how close the peer is. 2008 * 2009 * Rationale is: 2010 * - For close peers, we rather send bigger packets to reduce 2011 * cpu costs, because occasional losses will be repaired fast. 2012 * - For long distance/rtt flows, we would like to get ACK clocking 2013 * with 1 ACK per ms. 2014 * 2015 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2016 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2017 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2018 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2019 */ 2020 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2021 int min_tso_segs) 2022 { 2023 unsigned long bytes; 2024 u32 r; 2025 2026 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2027 2028 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2029 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2030 bytes += sk->sk_gso_max_size >> r; 2031 2032 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2033 2034 return max_t(u32, bytes / mss_now, min_tso_segs); 2035 } 2036 2037 /* Return the number of segments we want in the skb we are transmitting. 2038 * See if congestion control module wants to decide; otherwise, autosize. 2039 */ 2040 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2041 { 2042 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2043 u32 min_tso, tso_segs; 2044 2045 min_tso = ca_ops->min_tso_segs ? 2046 ca_ops->min_tso_segs(sk) : 2047 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2048 2049 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2050 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2051 } 2052 2053 /* Returns the portion of skb which can be sent right away */ 2054 static unsigned int tcp_mss_split_point(const struct sock *sk, 2055 const struct sk_buff *skb, 2056 unsigned int mss_now, 2057 unsigned int max_segs, 2058 int nonagle) 2059 { 2060 const struct tcp_sock *tp = tcp_sk(sk); 2061 u32 partial, needed, window, max_len; 2062 2063 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2064 max_len = mss_now * max_segs; 2065 2066 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2067 return max_len; 2068 2069 needed = min(skb->len, window); 2070 2071 if (max_len <= needed) 2072 return max_len; 2073 2074 partial = needed % mss_now; 2075 /* If last segment is not a full MSS, check if Nagle rules allow us 2076 * to include this last segment in this skb. 2077 * Otherwise, we'll split the skb at last MSS boundary 2078 */ 2079 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2080 return needed - partial; 2081 2082 return needed; 2083 } 2084 2085 /* Can at least one segment of SKB be sent right now, according to the 2086 * congestion window rules? If so, return how many segments are allowed. 2087 */ 2088 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2089 { 2090 u32 in_flight, cwnd, halfcwnd; 2091 2092 in_flight = tcp_packets_in_flight(tp); 2093 cwnd = tcp_snd_cwnd(tp); 2094 if (in_flight >= cwnd) 2095 return 0; 2096 2097 /* For better scheduling, ensure we have at least 2098 * 2 GSO packets in flight. 2099 */ 2100 halfcwnd = max(cwnd >> 1, 1U); 2101 return min(halfcwnd, cwnd - in_flight); 2102 } 2103 2104 /* Initialize TSO state of a skb. 2105 * This must be invoked the first time we consider transmitting 2106 * SKB onto the wire. 2107 */ 2108 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2109 { 2110 int tso_segs = tcp_skb_pcount(skb); 2111 2112 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2113 return tcp_set_skb_tso_segs(skb, mss_now); 2114 2115 return tso_segs; 2116 } 2117 2118 2119 /* Return true if the Nagle test allows this packet to be 2120 * sent now. 2121 */ 2122 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2123 unsigned int cur_mss, int nonagle) 2124 { 2125 /* Nagle rule does not apply to frames, which sit in the middle of the 2126 * write_queue (they have no chances to get new data). 2127 * 2128 * This is implemented in the callers, where they modify the 'nonagle' 2129 * argument based upon the location of SKB in the send queue. 2130 */ 2131 if (nonagle & TCP_NAGLE_PUSH) 2132 return true; 2133 2134 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2135 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2136 return true; 2137 2138 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2139 return true; 2140 2141 return false; 2142 } 2143 2144 /* Does at least the first segment of SKB fit into the send window? */ 2145 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2146 const struct sk_buff *skb, 2147 unsigned int cur_mss) 2148 { 2149 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2150 2151 if (skb->len > cur_mss) 2152 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2153 2154 return !after(end_seq, tcp_wnd_end(tp)); 2155 } 2156 2157 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2158 * which is put after SKB on the list. It is very much like 2159 * tcp_fragment() except that it may make several kinds of assumptions 2160 * in order to speed up the splitting operation. In particular, we 2161 * know that all the data is in scatter-gather pages, and that the 2162 * packet has never been sent out before (and thus is not cloned). 2163 */ 2164 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2165 unsigned int mss_now, gfp_t gfp) 2166 { 2167 int nlen = skb->len - len; 2168 struct sk_buff *buff; 2169 u16 flags; 2170 2171 /* All of a TSO frame must be composed of paged data. */ 2172 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2173 2174 buff = tcp_stream_alloc_skb(sk, gfp, true); 2175 if (unlikely(!buff)) 2176 return -ENOMEM; 2177 skb_copy_decrypted(buff, skb); 2178 mptcp_skb_ext_copy(buff, skb); 2179 2180 sk_wmem_queued_add(sk, buff->truesize); 2181 sk_mem_charge(sk, buff->truesize); 2182 buff->truesize += nlen; 2183 skb->truesize -= nlen; 2184 2185 /* Correct the sequence numbers. */ 2186 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2187 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2188 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2189 2190 /* PSH and FIN should only be set in the second packet. */ 2191 flags = TCP_SKB_CB(skb)->tcp_flags; 2192 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2193 TCP_SKB_CB(buff)->tcp_flags = flags; 2194 2195 tcp_skb_fragment_eor(skb, buff); 2196 2197 skb_split(skb, buff, len); 2198 tcp_fragment_tstamp(skb, buff); 2199 2200 /* Fix up tso_factor for both original and new SKB. */ 2201 tcp_set_skb_tso_segs(skb, mss_now); 2202 tcp_set_skb_tso_segs(buff, mss_now); 2203 2204 /* Link BUFF into the send queue. */ 2205 __skb_header_release(buff); 2206 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2207 2208 return 0; 2209 } 2210 2211 /* Try to defer sending, if possible, in order to minimize the amount 2212 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2213 * 2214 * This algorithm is from John Heffner. 2215 */ 2216 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2217 bool *is_cwnd_limited, 2218 bool *is_rwnd_limited, 2219 u32 max_segs) 2220 { 2221 const struct inet_connection_sock *icsk = inet_csk(sk); 2222 u32 send_win, cong_win, limit, in_flight; 2223 struct tcp_sock *tp = tcp_sk(sk); 2224 struct sk_buff *head; 2225 int win_divisor; 2226 s64 delta; 2227 2228 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2229 goto send_now; 2230 2231 /* Avoid bursty behavior by allowing defer 2232 * only if the last write was recent (1 ms). 2233 * Note that tp->tcp_wstamp_ns can be in the future if we have 2234 * packets waiting in a qdisc or device for EDT delivery. 2235 */ 2236 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2237 if (delta > 0) 2238 goto send_now; 2239 2240 in_flight = tcp_packets_in_flight(tp); 2241 2242 BUG_ON(tcp_skb_pcount(skb) <= 1); 2243 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2244 2245 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2246 2247 /* From in_flight test above, we know that cwnd > in_flight. */ 2248 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2249 2250 limit = min(send_win, cong_win); 2251 2252 /* If a full-sized TSO skb can be sent, do it. */ 2253 if (limit >= max_segs * tp->mss_cache) 2254 goto send_now; 2255 2256 /* Middle in queue won't get any more data, full sendable already? */ 2257 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2258 goto send_now; 2259 2260 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2261 if (win_divisor) { 2262 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2263 2264 /* If at least some fraction of a window is available, 2265 * just use it. 2266 */ 2267 chunk /= win_divisor; 2268 if (limit >= chunk) 2269 goto send_now; 2270 } else { 2271 /* Different approach, try not to defer past a single 2272 * ACK. Receiver should ACK every other full sized 2273 * frame, so if we have space for more than 3 frames 2274 * then send now. 2275 */ 2276 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2277 goto send_now; 2278 } 2279 2280 /* TODO : use tsorted_sent_queue ? */ 2281 head = tcp_rtx_queue_head(sk); 2282 if (!head) 2283 goto send_now; 2284 delta = tp->tcp_clock_cache - head->tstamp; 2285 /* If next ACK is likely to come too late (half srtt), do not defer */ 2286 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2287 goto send_now; 2288 2289 /* Ok, it looks like it is advisable to defer. 2290 * Three cases are tracked : 2291 * 1) We are cwnd-limited 2292 * 2) We are rwnd-limited 2293 * 3) We are application limited. 2294 */ 2295 if (cong_win < send_win) { 2296 if (cong_win <= skb->len) { 2297 *is_cwnd_limited = true; 2298 return true; 2299 } 2300 } else { 2301 if (send_win <= skb->len) { 2302 *is_rwnd_limited = true; 2303 return true; 2304 } 2305 } 2306 2307 /* If this packet won't get more data, do not wait. */ 2308 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2309 TCP_SKB_CB(skb)->eor) 2310 goto send_now; 2311 2312 return true; 2313 2314 send_now: 2315 return false; 2316 } 2317 2318 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2319 { 2320 struct inet_connection_sock *icsk = inet_csk(sk); 2321 struct tcp_sock *tp = tcp_sk(sk); 2322 struct net *net = sock_net(sk); 2323 u32 interval; 2324 s32 delta; 2325 2326 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2327 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2328 if (unlikely(delta >= interval * HZ)) { 2329 int mss = tcp_current_mss(sk); 2330 2331 /* Update current search range */ 2332 icsk->icsk_mtup.probe_size = 0; 2333 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2334 sizeof(struct tcphdr) + 2335 icsk->icsk_af_ops->net_header_len; 2336 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2337 2338 /* Update probe time stamp */ 2339 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2340 } 2341 } 2342 2343 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2344 { 2345 struct sk_buff *skb, *next; 2346 2347 skb = tcp_send_head(sk); 2348 tcp_for_write_queue_from_safe(skb, next, sk) { 2349 if (len <= skb->len) 2350 break; 2351 2352 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next)) 2353 return false; 2354 2355 len -= skb->len; 2356 } 2357 2358 return true; 2359 } 2360 2361 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2362 int probe_size) 2363 { 2364 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2365 int i, todo, len = 0, nr_frags = 0; 2366 const struct sk_buff *skb; 2367 2368 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2369 return -ENOMEM; 2370 2371 skb_queue_walk(&sk->sk_write_queue, skb) { 2372 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2373 2374 if (skb_headlen(skb)) 2375 return -EINVAL; 2376 2377 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2378 if (len >= probe_size) 2379 goto commit; 2380 todo = min_t(int, skb_frag_size(fragfrom), 2381 probe_size - len); 2382 len += todo; 2383 if (lastfrag && 2384 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2385 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2386 skb_frag_size(lastfrag)) { 2387 skb_frag_size_add(lastfrag, todo); 2388 continue; 2389 } 2390 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2391 return -E2BIG; 2392 skb_frag_page_copy(fragto, fragfrom); 2393 skb_frag_off_copy(fragto, fragfrom); 2394 skb_frag_size_set(fragto, todo); 2395 nr_frags++; 2396 lastfrag = fragto++; 2397 } 2398 } 2399 commit: 2400 WARN_ON_ONCE(len != probe_size); 2401 for (i = 0; i < nr_frags; i++) 2402 skb_frag_ref(to, i); 2403 2404 skb_shinfo(to)->nr_frags = nr_frags; 2405 to->truesize += probe_size; 2406 to->len += probe_size; 2407 to->data_len += probe_size; 2408 __skb_header_release(to); 2409 return 0; 2410 } 2411 2412 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if 2413 * all its payload was moved to another one (dst). 2414 * Make sure to transfer tcp_flags, eor, and tstamp. 2415 */ 2416 static void tcp_eat_one_skb(struct sock *sk, 2417 struct sk_buff *dst, 2418 struct sk_buff *src) 2419 { 2420 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags; 2421 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor; 2422 tcp_skb_collapse_tstamp(dst, src); 2423 tcp_unlink_write_queue(src, sk); 2424 tcp_wmem_free_skb(sk, src); 2425 } 2426 2427 /* Create a new MTU probe if we are ready. 2428 * MTU probe is regularly attempting to increase the path MTU by 2429 * deliberately sending larger packets. This discovers routing 2430 * changes resulting in larger path MTUs. 2431 * 2432 * Returns 0 if we should wait to probe (no cwnd available), 2433 * 1 if a probe was sent, 2434 * -1 otherwise 2435 */ 2436 static int tcp_mtu_probe(struct sock *sk) 2437 { 2438 struct inet_connection_sock *icsk = inet_csk(sk); 2439 struct tcp_sock *tp = tcp_sk(sk); 2440 struct sk_buff *skb, *nskb, *next; 2441 struct net *net = sock_net(sk); 2442 int probe_size; 2443 int size_needed; 2444 int copy, len; 2445 int mss_now; 2446 int interval; 2447 2448 /* Not currently probing/verifying, 2449 * not in recovery, 2450 * have enough cwnd, and 2451 * not SACKing (the variable headers throw things off) 2452 */ 2453 if (likely(!icsk->icsk_mtup.enabled || 2454 icsk->icsk_mtup.probe_size || 2455 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2456 tcp_snd_cwnd(tp) < 11 || 2457 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2458 return -1; 2459 2460 /* Use binary search for probe_size between tcp_mss_base, 2461 * and current mss_clamp. if (search_high - search_low) 2462 * smaller than a threshold, backoff from probing. 2463 */ 2464 mss_now = tcp_current_mss(sk); 2465 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2466 icsk->icsk_mtup.search_low) >> 1); 2467 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2468 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2469 /* When misfortune happens, we are reprobing actively, 2470 * and then reprobe timer has expired. We stick with current 2471 * probing process by not resetting search range to its orignal. 2472 */ 2473 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2474 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2475 /* Check whether enough time has elaplased for 2476 * another round of probing. 2477 */ 2478 tcp_mtu_check_reprobe(sk); 2479 return -1; 2480 } 2481 2482 /* Have enough data in the send queue to probe? */ 2483 if (tp->write_seq - tp->snd_nxt < size_needed) 2484 return -1; 2485 2486 if (tp->snd_wnd < size_needed) 2487 return -1; 2488 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2489 return 0; 2490 2491 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2492 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2493 if (!tcp_packets_in_flight(tp)) 2494 return -1; 2495 else 2496 return 0; 2497 } 2498 2499 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2500 return -1; 2501 2502 /* We're allowed to probe. Build it now. */ 2503 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2504 if (!nskb) 2505 return -1; 2506 2507 /* build the payload, and be prepared to abort if this fails. */ 2508 if (tcp_clone_payload(sk, nskb, probe_size)) { 2509 tcp_skb_tsorted_anchor_cleanup(nskb); 2510 consume_skb(nskb); 2511 return -1; 2512 } 2513 sk_wmem_queued_add(sk, nskb->truesize); 2514 sk_mem_charge(sk, nskb->truesize); 2515 2516 skb = tcp_send_head(sk); 2517 skb_copy_decrypted(nskb, skb); 2518 mptcp_skb_ext_copy(nskb, skb); 2519 2520 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2521 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2522 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2523 2524 tcp_insert_write_queue_before(nskb, skb, sk); 2525 tcp_highest_sack_replace(sk, skb, nskb); 2526 2527 len = 0; 2528 tcp_for_write_queue_from_safe(skb, next, sk) { 2529 copy = min_t(int, skb->len, probe_size - len); 2530 2531 if (skb->len <= copy) { 2532 tcp_eat_one_skb(sk, nskb, skb); 2533 } else { 2534 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2535 ~(TCPHDR_FIN|TCPHDR_PSH); 2536 __pskb_trim_head(skb, copy); 2537 tcp_set_skb_tso_segs(skb, mss_now); 2538 TCP_SKB_CB(skb)->seq += copy; 2539 } 2540 2541 len += copy; 2542 2543 if (len >= probe_size) 2544 break; 2545 } 2546 tcp_init_tso_segs(nskb, nskb->len); 2547 2548 /* We're ready to send. If this fails, the probe will 2549 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2550 */ 2551 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2552 /* Decrement cwnd here because we are sending 2553 * effectively two packets. */ 2554 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2555 tcp_event_new_data_sent(sk, nskb); 2556 2557 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2558 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2559 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2560 2561 return 1; 2562 } 2563 2564 return -1; 2565 } 2566 2567 static bool tcp_pacing_check(struct sock *sk) 2568 { 2569 struct tcp_sock *tp = tcp_sk(sk); 2570 2571 if (!tcp_needs_internal_pacing(sk)) 2572 return false; 2573 2574 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2575 return false; 2576 2577 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2578 hrtimer_start(&tp->pacing_timer, 2579 ns_to_ktime(tp->tcp_wstamp_ns), 2580 HRTIMER_MODE_ABS_PINNED_SOFT); 2581 sock_hold(sk); 2582 } 2583 return true; 2584 } 2585 2586 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2587 { 2588 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2589 2590 /* No skb in the rtx queue. */ 2591 if (!node) 2592 return true; 2593 2594 /* Only one skb in rtx queue. */ 2595 return !node->rb_left && !node->rb_right; 2596 } 2597 2598 /* TCP Small Queues : 2599 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2600 * (These limits are doubled for retransmits) 2601 * This allows for : 2602 * - better RTT estimation and ACK scheduling 2603 * - faster recovery 2604 * - high rates 2605 * Alas, some drivers / subsystems require a fair amount 2606 * of queued bytes to ensure line rate. 2607 * One example is wifi aggregation (802.11 AMPDU) 2608 */ 2609 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2610 unsigned int factor) 2611 { 2612 unsigned long limit; 2613 2614 limit = max_t(unsigned long, 2615 2 * skb->truesize, 2616 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2617 limit = min_t(unsigned long, limit, 2618 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2619 limit <<= factor; 2620 2621 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2622 tcp_sk(sk)->tcp_tx_delay) { 2623 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2624 tcp_sk(sk)->tcp_tx_delay; 2625 2626 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2627 * approximate our needs assuming an ~100% skb->truesize overhead. 2628 * USEC_PER_SEC is approximated by 2^20. 2629 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2630 */ 2631 extra_bytes >>= (20 - 1); 2632 limit += extra_bytes; 2633 } 2634 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2635 /* Always send skb if rtx queue is empty or has one skb. 2636 * No need to wait for TX completion to call us back, 2637 * after softirq schedule. 2638 * This helps when TX completions are delayed too much. 2639 */ 2640 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2641 return false; 2642 2643 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2644 /* It is possible TX completion already happened 2645 * before we set TSQ_THROTTLED, so we must 2646 * test again the condition. 2647 */ 2648 smp_mb__after_atomic(); 2649 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2650 return true; 2651 } 2652 return false; 2653 } 2654 2655 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2656 { 2657 const u32 now = tcp_jiffies32; 2658 enum tcp_chrono old = tp->chrono_type; 2659 2660 if (old > TCP_CHRONO_UNSPEC) 2661 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2662 tp->chrono_start = now; 2663 tp->chrono_type = new; 2664 } 2665 2666 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2667 { 2668 struct tcp_sock *tp = tcp_sk(sk); 2669 2670 /* If there are multiple conditions worthy of tracking in a 2671 * chronograph then the highest priority enum takes precedence 2672 * over the other conditions. So that if something "more interesting" 2673 * starts happening, stop the previous chrono and start a new one. 2674 */ 2675 if (type > tp->chrono_type) 2676 tcp_chrono_set(tp, type); 2677 } 2678 2679 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2680 { 2681 struct tcp_sock *tp = tcp_sk(sk); 2682 2683 2684 /* There are multiple conditions worthy of tracking in a 2685 * chronograph, so that the highest priority enum takes 2686 * precedence over the other conditions (see tcp_chrono_start). 2687 * If a condition stops, we only stop chrono tracking if 2688 * it's the "most interesting" or current chrono we are 2689 * tracking and starts busy chrono if we have pending data. 2690 */ 2691 if (tcp_rtx_and_write_queues_empty(sk)) 2692 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2693 else if (type == tp->chrono_type) 2694 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2695 } 2696 2697 /* First skb in the write queue is smaller than ideal packet size. 2698 * Check if we can move payload from the second skb in the queue. 2699 */ 2700 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2701 { 2702 struct sk_buff *next_skb = skb->next; 2703 unsigned int nlen; 2704 2705 if (tcp_skb_is_last(sk, skb)) 2706 return; 2707 2708 if (!tcp_skb_can_collapse(skb, next_skb)) 2709 return; 2710 2711 nlen = min_t(u32, amount, next_skb->len); 2712 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2713 return; 2714 2715 TCP_SKB_CB(skb)->end_seq += nlen; 2716 TCP_SKB_CB(next_skb)->seq += nlen; 2717 2718 if (!next_skb->len) { 2719 /* In case FIN is set, we need to update end_seq */ 2720 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2721 2722 tcp_eat_one_skb(sk, skb, next_skb); 2723 } 2724 } 2725 2726 /* This routine writes packets to the network. It advances the 2727 * send_head. This happens as incoming acks open up the remote 2728 * window for us. 2729 * 2730 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2731 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2732 * account rare use of URG, this is not a big flaw. 2733 * 2734 * Send at most one packet when push_one > 0. Temporarily ignore 2735 * cwnd limit to force at most one packet out when push_one == 2. 2736 2737 * Returns true, if no segments are in flight and we have queued segments, 2738 * but cannot send anything now because of SWS or another problem. 2739 */ 2740 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2741 int push_one, gfp_t gfp) 2742 { 2743 struct tcp_sock *tp = tcp_sk(sk); 2744 struct sk_buff *skb; 2745 unsigned int tso_segs, sent_pkts; 2746 u32 cwnd_quota, max_segs; 2747 int result; 2748 bool is_cwnd_limited = false, is_rwnd_limited = false; 2749 2750 sent_pkts = 0; 2751 2752 tcp_mstamp_refresh(tp); 2753 if (!push_one) { 2754 /* Do MTU probing. */ 2755 result = tcp_mtu_probe(sk); 2756 if (!result) { 2757 return false; 2758 } else if (result > 0) { 2759 sent_pkts = 1; 2760 } 2761 } 2762 2763 max_segs = tcp_tso_segs(sk, mss_now); 2764 while ((skb = tcp_send_head(sk))) { 2765 unsigned int limit; 2766 int missing_bytes; 2767 2768 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2769 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2770 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2771 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 2772 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2773 tcp_init_tso_segs(skb, mss_now); 2774 goto repair; /* Skip network transmission */ 2775 } 2776 2777 if (tcp_pacing_check(sk)) 2778 break; 2779 2780 cwnd_quota = tcp_cwnd_test(tp); 2781 if (!cwnd_quota) { 2782 if (push_one == 2) 2783 /* Force out a loss probe pkt. */ 2784 cwnd_quota = 1; 2785 else 2786 break; 2787 } 2788 cwnd_quota = min(cwnd_quota, max_segs); 2789 missing_bytes = cwnd_quota * mss_now - skb->len; 2790 if (missing_bytes > 0) 2791 tcp_grow_skb(sk, skb, missing_bytes); 2792 2793 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 2794 2795 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2796 is_rwnd_limited = true; 2797 break; 2798 } 2799 2800 if (tso_segs == 1) { 2801 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2802 (tcp_skb_is_last(sk, skb) ? 2803 nonagle : TCP_NAGLE_PUSH)))) 2804 break; 2805 } else { 2806 if (!push_one && 2807 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2808 &is_rwnd_limited, max_segs)) 2809 break; 2810 } 2811 2812 limit = mss_now; 2813 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2814 limit = tcp_mss_split_point(sk, skb, mss_now, 2815 cwnd_quota, 2816 nonagle); 2817 2818 if (skb->len > limit && 2819 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2820 break; 2821 2822 if (tcp_small_queue_check(sk, skb, 0)) 2823 break; 2824 2825 /* Argh, we hit an empty skb(), presumably a thread 2826 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2827 * We do not want to send a pure-ack packet and have 2828 * a strange looking rtx queue with empty packet(s). 2829 */ 2830 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2831 break; 2832 2833 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2834 break; 2835 2836 repair: 2837 /* Advance the send_head. This one is sent out. 2838 * This call will increment packets_out. 2839 */ 2840 tcp_event_new_data_sent(sk, skb); 2841 2842 tcp_minshall_update(tp, mss_now, skb); 2843 sent_pkts += tcp_skb_pcount(skb); 2844 2845 if (push_one) 2846 break; 2847 } 2848 2849 if (is_rwnd_limited) 2850 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2851 else 2852 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2853 2854 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2855 if (likely(sent_pkts || is_cwnd_limited)) 2856 tcp_cwnd_validate(sk, is_cwnd_limited); 2857 2858 if (likely(sent_pkts)) { 2859 if (tcp_in_cwnd_reduction(sk)) 2860 tp->prr_out += sent_pkts; 2861 2862 /* Send one loss probe per tail loss episode. */ 2863 if (push_one != 2) 2864 tcp_schedule_loss_probe(sk, false); 2865 return false; 2866 } 2867 return !tp->packets_out && !tcp_write_queue_empty(sk); 2868 } 2869 2870 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2871 { 2872 struct inet_connection_sock *icsk = inet_csk(sk); 2873 struct tcp_sock *tp = tcp_sk(sk); 2874 u32 timeout, timeout_us, rto_delta_us; 2875 int early_retrans; 2876 2877 /* Don't do any loss probe on a Fast Open connection before 3WHS 2878 * finishes. 2879 */ 2880 if (rcu_access_pointer(tp->fastopen_rsk)) 2881 return false; 2882 2883 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2884 /* Schedule a loss probe in 2*RTT for SACK capable connections 2885 * not in loss recovery, that are either limited by cwnd or application. 2886 */ 2887 if ((early_retrans != 3 && early_retrans != 4) || 2888 !tp->packets_out || !tcp_is_sack(tp) || 2889 (icsk->icsk_ca_state != TCP_CA_Open && 2890 icsk->icsk_ca_state != TCP_CA_CWR)) 2891 return false; 2892 2893 /* Probe timeout is 2*rtt. Add minimum RTO to account 2894 * for delayed ack when there's one outstanding packet. If no RTT 2895 * sample is available then probe after TCP_TIMEOUT_INIT. 2896 */ 2897 if (tp->srtt_us) { 2898 timeout_us = tp->srtt_us >> 2; 2899 if (tp->packets_out == 1) 2900 timeout_us += tcp_rto_min_us(sk); 2901 else 2902 timeout_us += TCP_TIMEOUT_MIN_US; 2903 timeout = usecs_to_jiffies(timeout_us); 2904 } else { 2905 timeout = TCP_TIMEOUT_INIT; 2906 } 2907 2908 /* If the RTO formula yields an earlier time, then use that time. */ 2909 rto_delta_us = advancing_rto ? 2910 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2911 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2912 if (rto_delta_us > 0) 2913 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2914 2915 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true); 2916 return true; 2917 } 2918 2919 /* Thanks to skb fast clones, we can detect if a prior transmit of 2920 * a packet is still in a qdisc or driver queue. 2921 * In this case, there is very little point doing a retransmit ! 2922 */ 2923 static bool skb_still_in_host_queue(struct sock *sk, 2924 const struct sk_buff *skb) 2925 { 2926 if (unlikely(skb_fclone_busy(sk, skb))) { 2927 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2928 smp_mb__after_atomic(); 2929 if (skb_fclone_busy(sk, skb)) { 2930 NET_INC_STATS(sock_net(sk), 2931 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2932 return true; 2933 } 2934 } 2935 return false; 2936 } 2937 2938 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2939 * retransmit the last segment. 2940 */ 2941 void tcp_send_loss_probe(struct sock *sk) 2942 { 2943 struct tcp_sock *tp = tcp_sk(sk); 2944 struct sk_buff *skb; 2945 int pcount; 2946 int mss = tcp_current_mss(sk); 2947 2948 /* At most one outstanding TLP */ 2949 if (tp->tlp_high_seq) 2950 goto rearm_timer; 2951 2952 tp->tlp_retrans = 0; 2953 skb = tcp_send_head(sk); 2954 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2955 pcount = tp->packets_out; 2956 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2957 if (tp->packets_out > pcount) 2958 goto probe_sent; 2959 goto rearm_timer; 2960 } 2961 skb = skb_rb_last(&sk->tcp_rtx_queue); 2962 if (unlikely(!skb)) { 2963 tcp_warn_once(sk, tp->packets_out, "invalid inflight: "); 2964 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 2965 return; 2966 } 2967 2968 if (skb_still_in_host_queue(sk, skb)) 2969 goto rearm_timer; 2970 2971 pcount = tcp_skb_pcount(skb); 2972 if (WARN_ON(!pcount)) 2973 goto rearm_timer; 2974 2975 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2976 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2977 (pcount - 1) * mss, mss, 2978 GFP_ATOMIC))) 2979 goto rearm_timer; 2980 skb = skb_rb_next(skb); 2981 } 2982 2983 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2984 goto rearm_timer; 2985 2986 if (__tcp_retransmit_skb(sk, skb, 1)) 2987 goto rearm_timer; 2988 2989 tp->tlp_retrans = 1; 2990 2991 probe_sent: 2992 /* Record snd_nxt for loss detection. */ 2993 tp->tlp_high_seq = tp->snd_nxt; 2994 2995 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2996 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2997 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 2998 rearm_timer: 2999 tcp_rearm_rto(sk); 3000 } 3001 3002 /* Push out any pending frames which were held back due to 3003 * TCP_CORK or attempt at coalescing tiny packets. 3004 * The socket must be locked by the caller. 3005 */ 3006 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 3007 int nonagle) 3008 { 3009 /* If we are closed, the bytes will have to remain here. 3010 * In time closedown will finish, we empty the write queue and 3011 * all will be happy. 3012 */ 3013 if (unlikely(sk->sk_state == TCP_CLOSE)) 3014 return; 3015 3016 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3017 sk_gfp_mask(sk, GFP_ATOMIC))) 3018 tcp_check_probe_timer(sk); 3019 } 3020 3021 /* Send _single_ skb sitting at the send head. This function requires 3022 * true push pending frames to setup probe timer etc. 3023 */ 3024 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3025 { 3026 struct sk_buff *skb = tcp_send_head(sk); 3027 3028 BUG_ON(!skb || skb->len < mss_now); 3029 3030 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3031 } 3032 3033 /* This function returns the amount that we can raise the 3034 * usable window based on the following constraints 3035 * 3036 * 1. The window can never be shrunk once it is offered (RFC 793) 3037 * 2. We limit memory per socket 3038 * 3039 * RFC 1122: 3040 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3041 * RECV.NEXT + RCV.WIN fixed until: 3042 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3043 * 3044 * i.e. don't raise the right edge of the window until you can raise 3045 * it at least MSS bytes. 3046 * 3047 * Unfortunately, the recommended algorithm breaks header prediction, 3048 * since header prediction assumes th->window stays fixed. 3049 * 3050 * Strictly speaking, keeping th->window fixed violates the receiver 3051 * side SWS prevention criteria. The problem is that under this rule 3052 * a stream of single byte packets will cause the right side of the 3053 * window to always advance by a single byte. 3054 * 3055 * Of course, if the sender implements sender side SWS prevention 3056 * then this will not be a problem. 3057 * 3058 * BSD seems to make the following compromise: 3059 * 3060 * If the free space is less than the 1/4 of the maximum 3061 * space available and the free space is less than 1/2 mss, 3062 * then set the window to 0. 3063 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3064 * Otherwise, just prevent the window from shrinking 3065 * and from being larger than the largest representable value. 3066 * 3067 * This prevents incremental opening of the window in the regime 3068 * where TCP is limited by the speed of the reader side taking 3069 * data out of the TCP receive queue. It does nothing about 3070 * those cases where the window is constrained on the sender side 3071 * because the pipeline is full. 3072 * 3073 * BSD also seems to "accidentally" limit itself to windows that are a 3074 * multiple of MSS, at least until the free space gets quite small. 3075 * This would appear to be a side effect of the mbuf implementation. 3076 * Combining these two algorithms results in the observed behavior 3077 * of having a fixed window size at almost all times. 3078 * 3079 * Below we obtain similar behavior by forcing the offered window to 3080 * a multiple of the mss when it is feasible to do so. 3081 * 3082 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3083 * Regular options like TIMESTAMP are taken into account. 3084 */ 3085 u32 __tcp_select_window(struct sock *sk) 3086 { 3087 struct inet_connection_sock *icsk = inet_csk(sk); 3088 struct tcp_sock *tp = tcp_sk(sk); 3089 struct net *net = sock_net(sk); 3090 /* MSS for the peer's data. Previous versions used mss_clamp 3091 * here. I don't know if the value based on our guesses 3092 * of peer's MSS is better for the performance. It's more correct 3093 * but may be worse for the performance because of rcv_mss 3094 * fluctuations. --SAW 1998/11/1 3095 */ 3096 int mss = icsk->icsk_ack.rcv_mss; 3097 int free_space = tcp_space(sk); 3098 int allowed_space = tcp_full_space(sk); 3099 int full_space, window; 3100 3101 if (sk_is_mptcp(sk)) 3102 mptcp_space(sk, &free_space, &allowed_space); 3103 3104 full_space = min_t(int, tp->window_clamp, allowed_space); 3105 3106 if (unlikely(mss > full_space)) { 3107 mss = full_space; 3108 if (mss <= 0) 3109 return 0; 3110 } 3111 3112 /* Only allow window shrink if the sysctl is enabled and we have 3113 * a non-zero scaling factor in effect. 3114 */ 3115 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3116 goto shrink_window_allowed; 3117 3118 /* do not allow window to shrink */ 3119 3120 if (free_space < (full_space >> 1)) { 3121 icsk->icsk_ack.quick = 0; 3122 3123 if (tcp_under_memory_pressure(sk)) 3124 tcp_adjust_rcv_ssthresh(sk); 3125 3126 /* free_space might become our new window, make sure we don't 3127 * increase it due to wscale. 3128 */ 3129 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3130 3131 /* if free space is less than mss estimate, or is below 1/16th 3132 * of the maximum allowed, try to move to zero-window, else 3133 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3134 * new incoming data is dropped due to memory limits. 3135 * With large window, mss test triggers way too late in order 3136 * to announce zero window in time before rmem limit kicks in. 3137 */ 3138 if (free_space < (allowed_space >> 4) || free_space < mss) 3139 return 0; 3140 } 3141 3142 if (free_space > tp->rcv_ssthresh) 3143 free_space = tp->rcv_ssthresh; 3144 3145 /* Don't do rounding if we are using window scaling, since the 3146 * scaled window will not line up with the MSS boundary anyway. 3147 */ 3148 if (tp->rx_opt.rcv_wscale) { 3149 window = free_space; 3150 3151 /* Advertise enough space so that it won't get scaled away. 3152 * Import case: prevent zero window announcement if 3153 * 1<<rcv_wscale > mss. 3154 */ 3155 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3156 } else { 3157 window = tp->rcv_wnd; 3158 /* Get the largest window that is a nice multiple of mss. 3159 * Window clamp already applied above. 3160 * If our current window offering is within 1 mss of the 3161 * free space we just keep it. This prevents the divide 3162 * and multiply from happening most of the time. 3163 * We also don't do any window rounding when the free space 3164 * is too small. 3165 */ 3166 if (window <= free_space - mss || window > free_space) 3167 window = rounddown(free_space, mss); 3168 else if (mss == full_space && 3169 free_space > window + (full_space >> 1)) 3170 window = free_space; 3171 } 3172 3173 return window; 3174 3175 shrink_window_allowed: 3176 /* new window should always be an exact multiple of scaling factor */ 3177 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3178 3179 if (free_space < (full_space >> 1)) { 3180 icsk->icsk_ack.quick = 0; 3181 3182 if (tcp_under_memory_pressure(sk)) 3183 tcp_adjust_rcv_ssthresh(sk); 3184 3185 /* if free space is too low, return a zero window */ 3186 if (free_space < (allowed_space >> 4) || free_space < mss || 3187 free_space < (1 << tp->rx_opt.rcv_wscale)) 3188 return 0; 3189 } 3190 3191 if (free_space > tp->rcv_ssthresh) { 3192 free_space = tp->rcv_ssthresh; 3193 /* new window should always be an exact multiple of scaling factor 3194 * 3195 * For this case, we ALIGN "up" (increase free_space) because 3196 * we know free_space is not zero here, it has been reduced from 3197 * the memory-based limit, and rcv_ssthresh is not a hard limit 3198 * (unlike sk_rcvbuf). 3199 */ 3200 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3201 } 3202 3203 return free_space; 3204 } 3205 3206 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3207 const struct sk_buff *next_skb) 3208 { 3209 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3210 const struct skb_shared_info *next_shinfo = 3211 skb_shinfo(next_skb); 3212 struct skb_shared_info *shinfo = skb_shinfo(skb); 3213 3214 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3215 shinfo->tskey = next_shinfo->tskey; 3216 TCP_SKB_CB(skb)->txstamp_ack |= 3217 TCP_SKB_CB(next_skb)->txstamp_ack; 3218 } 3219 } 3220 3221 /* Collapses two adjacent SKB's during retransmission. */ 3222 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3223 { 3224 struct tcp_sock *tp = tcp_sk(sk); 3225 struct sk_buff *next_skb = skb_rb_next(skb); 3226 int next_skb_size; 3227 3228 next_skb_size = next_skb->len; 3229 3230 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3231 3232 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3233 return false; 3234 3235 tcp_highest_sack_replace(sk, next_skb, skb); 3236 3237 /* Update sequence range on original skb. */ 3238 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3239 3240 /* Merge over control information. This moves PSH/FIN etc. over */ 3241 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3242 3243 /* All done, get rid of second SKB and account for it so 3244 * packet counting does not break. 3245 */ 3246 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3247 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3248 3249 /* changed transmit queue under us so clear hints */ 3250 if (next_skb == tp->retransmit_skb_hint) 3251 tp->retransmit_skb_hint = skb; 3252 3253 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3254 3255 tcp_skb_collapse_tstamp(skb, next_skb); 3256 3257 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3258 return true; 3259 } 3260 3261 /* Check if coalescing SKBs is legal. */ 3262 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3263 { 3264 if (tcp_skb_pcount(skb) > 1) 3265 return false; 3266 if (skb_cloned(skb)) 3267 return false; 3268 if (!skb_frags_readable(skb)) 3269 return false; 3270 /* Some heuristics for collapsing over SACK'd could be invented */ 3271 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3272 return false; 3273 3274 return true; 3275 } 3276 3277 /* Collapse packets in the retransmit queue to make to create 3278 * less packets on the wire. This is only done on retransmission. 3279 */ 3280 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3281 int space) 3282 { 3283 struct tcp_sock *tp = tcp_sk(sk); 3284 struct sk_buff *skb = to, *tmp; 3285 bool first = true; 3286 3287 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3288 return; 3289 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3290 return; 3291 3292 skb_rbtree_walk_from_safe(skb, tmp) { 3293 if (!tcp_can_collapse(sk, skb)) 3294 break; 3295 3296 if (!tcp_skb_can_collapse(to, skb)) 3297 break; 3298 3299 space -= skb->len; 3300 3301 if (first) { 3302 first = false; 3303 continue; 3304 } 3305 3306 if (space < 0) 3307 break; 3308 3309 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3310 break; 3311 3312 if (!tcp_collapse_retrans(sk, to)) 3313 break; 3314 } 3315 } 3316 3317 /* This retransmits one SKB. Policy decisions and retransmit queue 3318 * state updates are done by the caller. Returns non-zero if an 3319 * error occurred which prevented the send. 3320 */ 3321 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3322 { 3323 struct inet_connection_sock *icsk = inet_csk(sk); 3324 struct tcp_sock *tp = tcp_sk(sk); 3325 unsigned int cur_mss; 3326 int diff, len, err; 3327 int avail_wnd; 3328 3329 /* Inconclusive MTU probe */ 3330 if (icsk->icsk_mtup.probe_size) 3331 icsk->icsk_mtup.probe_size = 0; 3332 3333 if (skb_still_in_host_queue(sk, skb)) 3334 return -EBUSY; 3335 3336 start: 3337 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3338 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3339 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3340 TCP_SKB_CB(skb)->seq++; 3341 goto start; 3342 } 3343 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3344 WARN_ON_ONCE(1); 3345 return -EINVAL; 3346 } 3347 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3348 return -ENOMEM; 3349 } 3350 3351 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3352 return -EHOSTUNREACH; /* Routing failure or similar. */ 3353 3354 cur_mss = tcp_current_mss(sk); 3355 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3356 3357 /* If receiver has shrunk his window, and skb is out of 3358 * new window, do not retransmit it. The exception is the 3359 * case, when window is shrunk to zero. In this case 3360 * our retransmit of one segment serves as a zero window probe. 3361 */ 3362 if (avail_wnd <= 0) { 3363 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3364 return -EAGAIN; 3365 avail_wnd = cur_mss; 3366 } 3367 3368 len = cur_mss * segs; 3369 if (len > avail_wnd) { 3370 len = rounddown(avail_wnd, cur_mss); 3371 if (!len) 3372 len = avail_wnd; 3373 } 3374 if (skb->len > len) { 3375 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3376 cur_mss, GFP_ATOMIC)) 3377 return -ENOMEM; /* We'll try again later. */ 3378 } else { 3379 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3380 return -ENOMEM; 3381 3382 diff = tcp_skb_pcount(skb); 3383 tcp_set_skb_tso_segs(skb, cur_mss); 3384 diff -= tcp_skb_pcount(skb); 3385 if (diff) 3386 tcp_adjust_pcount(sk, skb, diff); 3387 avail_wnd = min_t(int, avail_wnd, cur_mss); 3388 if (skb->len < avail_wnd) 3389 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3390 } 3391 3392 /* RFC3168, section 6.1.1.1. ECN fallback */ 3393 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3394 tcp_ecn_clear_syn(sk, skb); 3395 3396 /* Update global and local TCP statistics. */ 3397 segs = tcp_skb_pcount(skb); 3398 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3399 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3400 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3401 tp->total_retrans += segs; 3402 tp->bytes_retrans += skb->len; 3403 3404 /* make sure skb->data is aligned on arches that require it 3405 * and check if ack-trimming & collapsing extended the headroom 3406 * beyond what csum_start can cover. 3407 */ 3408 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3409 skb_headroom(skb) >= 0xFFFF)) { 3410 struct sk_buff *nskb; 3411 3412 tcp_skb_tsorted_save(skb) { 3413 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3414 if (nskb) { 3415 nskb->dev = NULL; 3416 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3417 } else { 3418 err = -ENOBUFS; 3419 } 3420 } tcp_skb_tsorted_restore(skb); 3421 3422 if (!err) { 3423 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3424 tcp_rate_skb_sent(sk, skb); 3425 } 3426 } else { 3427 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3428 } 3429 3430 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3431 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3432 TCP_SKB_CB(skb)->seq, segs, err); 3433 3434 if (likely(!err)) { 3435 trace_tcp_retransmit_skb(sk, skb); 3436 } else if (err != -EBUSY) { 3437 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3438 } 3439 3440 /* To avoid taking spuriously low RTT samples based on a timestamp 3441 * for a transmit that never happened, always mark EVER_RETRANS 3442 */ 3443 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3444 3445 return err; 3446 } 3447 3448 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3449 { 3450 struct tcp_sock *tp = tcp_sk(sk); 3451 int err = __tcp_retransmit_skb(sk, skb, segs); 3452 3453 if (err == 0) { 3454 #if FASTRETRANS_DEBUG > 0 3455 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3456 net_dbg_ratelimited("retrans_out leaked\n"); 3457 } 3458 #endif 3459 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3460 tp->retrans_out += tcp_skb_pcount(skb); 3461 } 3462 3463 /* Save stamp of the first (attempted) retransmit. */ 3464 if (!tp->retrans_stamp) 3465 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3466 3467 if (tp->undo_retrans < 0) 3468 tp->undo_retrans = 0; 3469 tp->undo_retrans += tcp_skb_pcount(skb); 3470 return err; 3471 } 3472 3473 /* This gets called after a retransmit timeout, and the initially 3474 * retransmitted data is acknowledged. It tries to continue 3475 * resending the rest of the retransmit queue, until either 3476 * we've sent it all or the congestion window limit is reached. 3477 */ 3478 void tcp_xmit_retransmit_queue(struct sock *sk) 3479 { 3480 const struct inet_connection_sock *icsk = inet_csk(sk); 3481 struct sk_buff *skb, *rtx_head, *hole = NULL; 3482 struct tcp_sock *tp = tcp_sk(sk); 3483 bool rearm_timer = false; 3484 u32 max_segs; 3485 int mib_idx; 3486 3487 if (!tp->packets_out) 3488 return; 3489 3490 rtx_head = tcp_rtx_queue_head(sk); 3491 skb = tp->retransmit_skb_hint ?: rtx_head; 3492 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3493 skb_rbtree_walk_from(skb) { 3494 __u8 sacked; 3495 int segs; 3496 3497 if (tcp_pacing_check(sk)) 3498 break; 3499 3500 /* we could do better than to assign each time */ 3501 if (!hole) 3502 tp->retransmit_skb_hint = skb; 3503 3504 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3505 if (segs <= 0) 3506 break; 3507 sacked = TCP_SKB_CB(skb)->sacked; 3508 /* In case tcp_shift_skb_data() have aggregated large skbs, 3509 * we need to make sure not sending too bigs TSO packets 3510 */ 3511 segs = min_t(int, segs, max_segs); 3512 3513 if (tp->retrans_out >= tp->lost_out) { 3514 break; 3515 } else if (!(sacked & TCPCB_LOST)) { 3516 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3517 hole = skb; 3518 continue; 3519 3520 } else { 3521 if (icsk->icsk_ca_state != TCP_CA_Loss) 3522 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3523 else 3524 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3525 } 3526 3527 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3528 continue; 3529 3530 if (tcp_small_queue_check(sk, skb, 1)) 3531 break; 3532 3533 if (tcp_retransmit_skb(sk, skb, segs)) 3534 break; 3535 3536 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3537 3538 if (tcp_in_cwnd_reduction(sk)) 3539 tp->prr_out += tcp_skb_pcount(skb); 3540 3541 if (skb == rtx_head && 3542 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3543 rearm_timer = true; 3544 3545 } 3546 if (rearm_timer) 3547 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3548 inet_csk(sk)->icsk_rto, true); 3549 } 3550 3551 /* We allow to exceed memory limits for FIN packets to expedite 3552 * connection tear down and (memory) recovery. 3553 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3554 * or even be forced to close flow without any FIN. 3555 * In general, we want to allow one skb per socket to avoid hangs 3556 * with edge trigger epoll() 3557 */ 3558 void sk_forced_mem_schedule(struct sock *sk, int size) 3559 { 3560 int delta, amt; 3561 3562 delta = size - sk->sk_forward_alloc; 3563 if (delta <= 0) 3564 return; 3565 amt = sk_mem_pages(delta); 3566 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3567 sk_memory_allocated_add(sk, amt); 3568 3569 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3570 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3571 gfp_memcg_charge() | __GFP_NOFAIL); 3572 } 3573 3574 /* Send a FIN. The caller locks the socket for us. 3575 * We should try to send a FIN packet really hard, but eventually give up. 3576 */ 3577 void tcp_send_fin(struct sock *sk) 3578 { 3579 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3580 struct tcp_sock *tp = tcp_sk(sk); 3581 3582 /* Optimization, tack on the FIN if we have one skb in write queue and 3583 * this skb was not yet sent, or we are under memory pressure. 3584 * Note: in the latter case, FIN packet will be sent after a timeout, 3585 * as TCP stack thinks it has already been transmitted. 3586 */ 3587 tskb = tail; 3588 if (!tskb && tcp_under_memory_pressure(sk)) 3589 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3590 3591 if (tskb) { 3592 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3593 TCP_SKB_CB(tskb)->end_seq++; 3594 tp->write_seq++; 3595 if (!tail) { 3596 /* This means tskb was already sent. 3597 * Pretend we included the FIN on previous transmit. 3598 * We need to set tp->snd_nxt to the value it would have 3599 * if FIN had been sent. This is because retransmit path 3600 * does not change tp->snd_nxt. 3601 */ 3602 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3603 return; 3604 } 3605 } else { 3606 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3607 sk_gfp_mask(sk, GFP_ATOMIC | 3608 __GFP_NOWARN)); 3609 if (unlikely(!skb)) 3610 return; 3611 3612 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3613 skb_reserve(skb, MAX_TCP_HEADER); 3614 sk_forced_mem_schedule(sk, skb->truesize); 3615 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3616 tcp_init_nondata_skb(skb, tp->write_seq, 3617 TCPHDR_ACK | TCPHDR_FIN); 3618 tcp_queue_skb(sk, skb); 3619 } 3620 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3621 } 3622 3623 /* We get here when a process closes a file descriptor (either due to 3624 * an explicit close() or as a byproduct of exit()'ing) and there 3625 * was unread data in the receive queue. This behavior is recommended 3626 * by RFC 2525, section 2.17. -DaveM 3627 */ 3628 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 3629 enum sk_rst_reason reason) 3630 { 3631 struct sk_buff *skb; 3632 3633 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3634 3635 /* NOTE: No TCP options attached and we never retransmit this. */ 3636 skb = alloc_skb(MAX_TCP_HEADER, priority); 3637 if (!skb) { 3638 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3639 return; 3640 } 3641 3642 /* Reserve space for headers and prepare control bits. */ 3643 skb_reserve(skb, MAX_TCP_HEADER); 3644 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3645 TCPHDR_ACK | TCPHDR_RST); 3646 tcp_mstamp_refresh(tcp_sk(sk)); 3647 /* Send it off. */ 3648 if (tcp_transmit_skb(sk, skb, 0, priority)) 3649 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3650 3651 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3652 * skb here is different to the troublesome skb, so use NULL 3653 */ 3654 trace_tcp_send_reset(sk, NULL, reason); 3655 } 3656 3657 /* Send a crossed SYN-ACK during socket establishment. 3658 * WARNING: This routine must only be called when we have already sent 3659 * a SYN packet that crossed the incoming SYN that caused this routine 3660 * to get called. If this assumption fails then the initial rcv_wnd 3661 * and rcv_wscale values will not be correct. 3662 */ 3663 int tcp_send_synack(struct sock *sk) 3664 { 3665 struct sk_buff *skb; 3666 3667 skb = tcp_rtx_queue_head(sk); 3668 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3669 pr_err("%s: wrong queue state\n", __func__); 3670 return -EFAULT; 3671 } 3672 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3673 if (skb_cloned(skb)) { 3674 struct sk_buff *nskb; 3675 3676 tcp_skb_tsorted_save(skb) { 3677 nskb = skb_copy(skb, GFP_ATOMIC); 3678 } tcp_skb_tsorted_restore(skb); 3679 if (!nskb) 3680 return -ENOMEM; 3681 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3682 tcp_highest_sack_replace(sk, skb, nskb); 3683 tcp_rtx_queue_unlink_and_free(skb, sk); 3684 __skb_header_release(nskb); 3685 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3686 sk_wmem_queued_add(sk, nskb->truesize); 3687 sk_mem_charge(sk, nskb->truesize); 3688 skb = nskb; 3689 } 3690 3691 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3692 tcp_ecn_send_synack(sk, skb); 3693 } 3694 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3695 } 3696 3697 /** 3698 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3699 * @sk: listener socket 3700 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3701 * should not use it again. 3702 * @req: request_sock pointer 3703 * @foc: cookie for tcp fast open 3704 * @synack_type: Type of synack to prepare 3705 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3706 */ 3707 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3708 struct request_sock *req, 3709 struct tcp_fastopen_cookie *foc, 3710 enum tcp_synack_type synack_type, 3711 struct sk_buff *syn_skb) 3712 { 3713 struct inet_request_sock *ireq = inet_rsk(req); 3714 const struct tcp_sock *tp = tcp_sk(sk); 3715 struct tcp_out_options opts; 3716 struct tcp_key key = {}; 3717 struct sk_buff *skb; 3718 int tcp_header_size; 3719 struct tcphdr *th; 3720 int mss; 3721 u64 now; 3722 3723 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3724 if (unlikely(!skb)) { 3725 dst_release(dst); 3726 return NULL; 3727 } 3728 /* Reserve space for headers. */ 3729 skb_reserve(skb, MAX_TCP_HEADER); 3730 3731 switch (synack_type) { 3732 case TCP_SYNACK_NORMAL: 3733 skb_set_owner_edemux(skb, req_to_sk(req)); 3734 break; 3735 case TCP_SYNACK_COOKIE: 3736 /* Under synflood, we do not attach skb to a socket, 3737 * to avoid false sharing. 3738 */ 3739 break; 3740 case TCP_SYNACK_FASTOPEN: 3741 /* sk is a const pointer, because we want to express multiple 3742 * cpu might call us concurrently. 3743 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3744 */ 3745 skb_set_owner_w(skb, (struct sock *)sk); 3746 break; 3747 } 3748 skb_dst_set(skb, dst); 3749 3750 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3751 3752 memset(&opts, 0, sizeof(opts)); 3753 now = tcp_clock_ns(); 3754 #ifdef CONFIG_SYN_COOKIES 3755 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3756 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3757 SKB_CLOCK_MONOTONIC); 3758 else 3759 #endif 3760 { 3761 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3762 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3763 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3764 } 3765 3766 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3767 rcu_read_lock(); 3768 #endif 3769 if (tcp_rsk_used_ao(req)) { 3770 #ifdef CONFIG_TCP_AO 3771 struct tcp_ao_key *ao_key = NULL; 3772 u8 keyid = tcp_rsk(req)->ao_keyid; 3773 u8 rnext = tcp_rsk(req)->ao_rcv_next; 3774 3775 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3776 keyid, -1); 3777 /* If there is no matching key - avoid sending anything, 3778 * especially usigned segments. It could try harder and lookup 3779 * for another peer-matching key, but the peer has requested 3780 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3781 */ 3782 if (unlikely(!ao_key)) { 3783 trace_tcp_ao_synack_no_key(sk, keyid, rnext); 3784 rcu_read_unlock(); 3785 kfree_skb(skb); 3786 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 3787 keyid); 3788 return NULL; 3789 } 3790 key.ao_key = ao_key; 3791 key.type = TCP_KEY_AO; 3792 #endif 3793 } else { 3794 #ifdef CONFIG_TCP_MD5SIG 3795 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3796 req_to_sk(req)); 3797 if (key.md5_key) 3798 key.type = TCP_KEY_MD5; 3799 #endif 3800 } 3801 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3802 /* bpf program will be interested in the tcp_flags */ 3803 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3804 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3805 &key, foc, synack_type, syn_skb) 3806 + sizeof(*th); 3807 3808 skb_push(skb, tcp_header_size); 3809 skb_reset_transport_header(skb); 3810 3811 th = (struct tcphdr *)skb->data; 3812 memset(th, 0, sizeof(struct tcphdr)); 3813 th->syn = 1; 3814 th->ack = 1; 3815 tcp_ecn_make_synack(req, th); 3816 th->source = htons(ireq->ir_num); 3817 th->dest = ireq->ir_rmt_port; 3818 skb->mark = ireq->ir_mark; 3819 skb->ip_summed = CHECKSUM_PARTIAL; 3820 th->seq = htonl(tcp_rsk(req)->snt_isn); 3821 /* XXX data is queued and acked as is. No buffer/window check */ 3822 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3823 3824 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3825 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3826 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 3827 th->doff = (tcp_header_size >> 2); 3828 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3829 3830 /* Okay, we have all we need - do the md5 hash if needed */ 3831 if (tcp_key_is_md5(&key)) { 3832 #ifdef CONFIG_TCP_MD5SIG 3833 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3834 key.md5_key, req_to_sk(req), skb); 3835 #endif 3836 } else if (tcp_key_is_ao(&key)) { 3837 #ifdef CONFIG_TCP_AO 3838 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 3839 key.ao_key, req, skb, 3840 opts.hash_location - (u8 *)th, 0); 3841 #endif 3842 } 3843 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3844 rcu_read_unlock(); 3845 #endif 3846 3847 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3848 synack_type, &opts); 3849 3850 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3851 tcp_add_tx_delay(skb, tp); 3852 3853 return skb; 3854 } 3855 EXPORT_IPV6_MOD(tcp_make_synack); 3856 3857 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3858 { 3859 struct inet_connection_sock *icsk = inet_csk(sk); 3860 const struct tcp_congestion_ops *ca; 3861 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3862 3863 if (ca_key == TCP_CA_UNSPEC) 3864 return; 3865 3866 rcu_read_lock(); 3867 ca = tcp_ca_find_key(ca_key); 3868 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3869 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3870 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3871 icsk->icsk_ca_ops = ca; 3872 } 3873 rcu_read_unlock(); 3874 } 3875 3876 /* Do all connect socket setups that can be done AF independent. */ 3877 static void tcp_connect_init(struct sock *sk) 3878 { 3879 const struct dst_entry *dst = __sk_dst_get(sk); 3880 struct tcp_sock *tp = tcp_sk(sk); 3881 __u8 rcv_wscale; 3882 u32 rcv_wnd; 3883 3884 /* We'll fix this up when we get a response from the other end. 3885 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3886 */ 3887 tp->tcp_header_len = sizeof(struct tcphdr); 3888 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3889 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3890 3891 tcp_ao_connect_init(sk); 3892 3893 /* If user gave his TCP_MAXSEG, record it to clamp */ 3894 if (tp->rx_opt.user_mss) 3895 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3896 tp->max_window = 0; 3897 tcp_mtup_init(sk); 3898 tcp_sync_mss(sk, dst_mtu(dst)); 3899 3900 tcp_ca_dst_init(sk, dst); 3901 3902 if (!tp->window_clamp) 3903 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 3904 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3905 3906 tcp_initialize_rcv_mss(sk); 3907 3908 /* limit the window selection if the user enforce a smaller rx buffer */ 3909 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3910 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3911 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 3912 3913 rcv_wnd = tcp_rwnd_init_bpf(sk); 3914 if (rcv_wnd == 0) 3915 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3916 3917 tcp_select_initial_window(sk, tcp_full_space(sk), 3918 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3919 &tp->rcv_wnd, 3920 &tp->window_clamp, 3921 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3922 &rcv_wscale, 3923 rcv_wnd); 3924 3925 tp->rx_opt.rcv_wscale = rcv_wscale; 3926 tp->rcv_ssthresh = tp->rcv_wnd; 3927 3928 WRITE_ONCE(sk->sk_err, 0); 3929 sock_reset_flag(sk, SOCK_DONE); 3930 tp->snd_wnd = 0; 3931 tcp_init_wl(tp, 0); 3932 tcp_write_queue_purge(sk); 3933 tp->snd_una = tp->write_seq; 3934 tp->snd_sml = tp->write_seq; 3935 tp->snd_up = tp->write_seq; 3936 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3937 3938 if (likely(!tp->repair)) 3939 tp->rcv_nxt = 0; 3940 else 3941 tp->rcv_tstamp = tcp_jiffies32; 3942 tp->rcv_wup = tp->rcv_nxt; 3943 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3944 3945 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3946 inet_csk(sk)->icsk_retransmits = 0; 3947 tcp_clear_retrans(tp); 3948 } 3949 3950 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3951 { 3952 struct tcp_sock *tp = tcp_sk(sk); 3953 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3954 3955 tcb->end_seq += skb->len; 3956 __skb_header_release(skb); 3957 sk_wmem_queued_add(sk, skb->truesize); 3958 sk_mem_charge(sk, skb->truesize); 3959 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3960 tp->packets_out += tcp_skb_pcount(skb); 3961 } 3962 3963 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3964 * queue a data-only packet after the regular SYN, such that regular SYNs 3965 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3966 * only the SYN sequence, the data are retransmitted in the first ACK. 3967 * If cookie is not cached or other error occurs, falls back to send a 3968 * regular SYN with Fast Open cookie request option. 3969 */ 3970 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3971 { 3972 struct inet_connection_sock *icsk = inet_csk(sk); 3973 struct tcp_sock *tp = tcp_sk(sk); 3974 struct tcp_fastopen_request *fo = tp->fastopen_req; 3975 struct page_frag *pfrag = sk_page_frag(sk); 3976 struct sk_buff *syn_data; 3977 int space, err = 0; 3978 3979 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3980 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3981 goto fallback; 3982 3983 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3984 * user-MSS. Reserve maximum option space for middleboxes that add 3985 * private TCP options. The cost is reduced data space in SYN :( 3986 */ 3987 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3988 /* Sync mss_cache after updating the mss_clamp */ 3989 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3990 3991 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3992 MAX_TCP_OPTION_SPACE; 3993 3994 space = min_t(size_t, space, fo->size); 3995 3996 if (space && 3997 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3998 pfrag, sk->sk_allocation)) 3999 goto fallback; 4000 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 4001 if (!syn_data) 4002 goto fallback; 4003 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 4004 if (space) { 4005 space = min_t(size_t, space, pfrag->size - pfrag->offset); 4006 space = tcp_wmem_schedule(sk, space); 4007 } 4008 if (space) { 4009 space = copy_page_from_iter(pfrag->page, pfrag->offset, 4010 space, &fo->data->msg_iter); 4011 if (unlikely(!space)) { 4012 tcp_skb_tsorted_anchor_cleanup(syn_data); 4013 kfree_skb(syn_data); 4014 goto fallback; 4015 } 4016 skb_fill_page_desc(syn_data, 0, pfrag->page, 4017 pfrag->offset, space); 4018 page_ref_inc(pfrag->page); 4019 pfrag->offset += space; 4020 skb_len_add(syn_data, space); 4021 skb_zcopy_set(syn_data, fo->uarg, NULL); 4022 } 4023 /* No more data pending in inet_wait_for_connect() */ 4024 if (space == fo->size) 4025 fo->data = NULL; 4026 fo->copied = space; 4027 4028 tcp_connect_queue_skb(sk, syn_data); 4029 if (syn_data->len) 4030 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4031 4032 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4033 4034 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC); 4035 4036 /* Now full SYN+DATA was cloned and sent (or not), 4037 * remove the SYN from the original skb (syn_data) 4038 * we keep in write queue in case of a retransmit, as we 4039 * also have the SYN packet (with no data) in the same queue. 4040 */ 4041 TCP_SKB_CB(syn_data)->seq++; 4042 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4043 if (!err) { 4044 tp->syn_data = (fo->copied > 0); 4045 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4046 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4047 goto done; 4048 } 4049 4050 /* data was not sent, put it in write_queue */ 4051 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4052 tp->packets_out -= tcp_skb_pcount(syn_data); 4053 4054 fallback: 4055 /* Send a regular SYN with Fast Open cookie request option */ 4056 if (fo->cookie.len > 0) 4057 fo->cookie.len = 0; 4058 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4059 if (err) 4060 tp->syn_fastopen = 0; 4061 done: 4062 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4063 return err; 4064 } 4065 4066 /* Build a SYN and send it off. */ 4067 int tcp_connect(struct sock *sk) 4068 { 4069 struct tcp_sock *tp = tcp_sk(sk); 4070 struct sk_buff *buff; 4071 int err; 4072 4073 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4074 4075 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4076 /* Has to be checked late, after setting daddr/saddr/ops. 4077 * Return error if the peer has both a md5 and a tcp-ao key 4078 * configured as this is ambiguous. 4079 */ 4080 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4081 lockdep_sock_is_held(sk)))) { 4082 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4083 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4084 struct tcp_ao_info *ao_info; 4085 4086 ao_info = rcu_dereference_check(tp->ao_info, 4087 lockdep_sock_is_held(sk)); 4088 if (ao_info) { 4089 /* This is an extra check: tcp_ao_required() in 4090 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4091 * md5 keys on ao_required socket. 4092 */ 4093 needs_ao |= ao_info->ao_required; 4094 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4095 } 4096 if (needs_md5 && needs_ao) 4097 return -EKEYREJECTED; 4098 4099 /* If we have a matching md5 key and no matching tcp-ao key 4100 * then free up ao_info if allocated. 4101 */ 4102 if (needs_md5) { 4103 tcp_ao_destroy_sock(sk, false); 4104 } else if (needs_ao) { 4105 tcp_clear_md5_list(sk); 4106 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4107 lockdep_sock_is_held(sk))); 4108 } 4109 } 4110 #endif 4111 #ifdef CONFIG_TCP_AO 4112 if (unlikely(rcu_dereference_protected(tp->ao_info, 4113 lockdep_sock_is_held(sk)))) { 4114 /* Don't allow connecting if ao is configured but no 4115 * matching key is found. 4116 */ 4117 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4118 return -EKEYREJECTED; 4119 } 4120 #endif 4121 4122 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4123 return -EHOSTUNREACH; /* Routing failure or similar. */ 4124 4125 tcp_connect_init(sk); 4126 4127 if (unlikely(tp->repair)) { 4128 tcp_finish_connect(sk, NULL); 4129 return 0; 4130 } 4131 4132 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4133 if (unlikely(!buff)) 4134 return -ENOBUFS; 4135 4136 /* SYN eats a sequence byte, write_seq updated by 4137 * tcp_connect_queue_skb(). 4138 */ 4139 tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN); 4140 tcp_mstamp_refresh(tp); 4141 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4142 tcp_connect_queue_skb(sk, buff); 4143 tcp_ecn_send_syn(sk, buff); 4144 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4145 4146 /* Send off SYN; include data in Fast Open. */ 4147 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4148 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4149 if (err == -ECONNREFUSED) 4150 return err; 4151 4152 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4153 * in order to make this packet get counted in tcpOutSegs. 4154 */ 4155 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4156 tp->pushed_seq = tp->write_seq; 4157 buff = tcp_send_head(sk); 4158 if (unlikely(buff)) { 4159 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4160 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4161 } 4162 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4163 4164 /* Timer for repeating the SYN until an answer. */ 4165 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4166 inet_csk(sk)->icsk_rto, false); 4167 return 0; 4168 } 4169 EXPORT_SYMBOL(tcp_connect); 4170 4171 u32 tcp_delack_max(const struct sock *sk) 4172 { 4173 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1; 4174 4175 return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min); 4176 } 4177 4178 /* Send out a delayed ack, the caller does the policy checking 4179 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4180 * for details. 4181 */ 4182 void tcp_send_delayed_ack(struct sock *sk) 4183 { 4184 struct inet_connection_sock *icsk = inet_csk(sk); 4185 int ato = icsk->icsk_ack.ato; 4186 unsigned long timeout; 4187 4188 if (ato > TCP_DELACK_MIN) { 4189 const struct tcp_sock *tp = tcp_sk(sk); 4190 int max_ato = HZ / 2; 4191 4192 if (inet_csk_in_pingpong_mode(sk) || 4193 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4194 max_ato = TCP_DELACK_MAX; 4195 4196 /* Slow path, intersegment interval is "high". */ 4197 4198 /* If some rtt estimate is known, use it to bound delayed ack. 4199 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4200 * directly. 4201 */ 4202 if (tp->srtt_us) { 4203 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4204 TCP_DELACK_MIN); 4205 4206 if (rtt < max_ato) 4207 max_ato = rtt; 4208 } 4209 4210 ato = min(ato, max_ato); 4211 } 4212 4213 ato = min_t(u32, ato, tcp_delack_max(sk)); 4214 4215 /* Stay within the limit we were given */ 4216 timeout = jiffies + ato; 4217 4218 /* Use new timeout only if there wasn't a older one earlier. */ 4219 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4220 /* If delack timer is about to expire, send ACK now. */ 4221 if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) { 4222 tcp_send_ack(sk); 4223 return; 4224 } 4225 4226 if (!time_before(timeout, icsk_delack_timeout(icsk))) 4227 timeout = icsk_delack_timeout(icsk); 4228 } 4229 smp_store_release(&icsk->icsk_ack.pending, 4230 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 4231 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4232 } 4233 4234 /* This routine sends an ack and also updates the window. */ 4235 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags) 4236 { 4237 struct sk_buff *buff; 4238 4239 /* If we have been reset, we may not send again. */ 4240 if (sk->sk_state == TCP_CLOSE) 4241 return; 4242 4243 /* We are not putting this on the write queue, so 4244 * tcp_transmit_skb() will set the ownership to this 4245 * sock. 4246 */ 4247 buff = alloc_skb(MAX_TCP_HEADER, 4248 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4249 if (unlikely(!buff)) { 4250 struct inet_connection_sock *icsk = inet_csk(sk); 4251 unsigned long delay; 4252 4253 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4254 if (delay < tcp_rto_max(sk)) 4255 icsk->icsk_ack.retry++; 4256 inet_csk_schedule_ack(sk); 4257 icsk->icsk_ack.ato = TCP_ATO_MIN; 4258 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false); 4259 return; 4260 } 4261 4262 /* Reserve space for headers and prepare control bits. */ 4263 skb_reserve(buff, MAX_TCP_HEADER); 4264 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK | flags); 4265 4266 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4267 * too much. 4268 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4269 */ 4270 skb_set_tcp_pure_ack(buff); 4271 4272 /* Send it off, this clears delayed acks for us. */ 4273 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4274 } 4275 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4276 4277 void tcp_send_ack(struct sock *sk) 4278 { 4279 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0); 4280 } 4281 4282 /* This routine sends a packet with an out of date sequence 4283 * number. It assumes the other end will try to ack it. 4284 * 4285 * Question: what should we make while urgent mode? 4286 * 4.4BSD forces sending single byte of data. We cannot send 4287 * out of window data, because we have SND.NXT==SND.MAX... 4288 * 4289 * Current solution: to send TWO zero-length segments in urgent mode: 4290 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4291 * out-of-date with SND.UNA-1 to probe window. 4292 */ 4293 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4294 { 4295 struct tcp_sock *tp = tcp_sk(sk); 4296 struct sk_buff *skb; 4297 4298 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4299 skb = alloc_skb(MAX_TCP_HEADER, 4300 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4301 if (!skb) 4302 return -1; 4303 4304 /* Reserve space for headers and set control bits. */ 4305 skb_reserve(skb, MAX_TCP_HEADER); 4306 /* Use a previous sequence. This should cause the other 4307 * end to send an ack. Don't queue or clone SKB, just 4308 * send it. 4309 */ 4310 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4311 NET_INC_STATS(sock_net(sk), mib); 4312 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4313 } 4314 4315 /* Called from setsockopt( ... TCP_REPAIR ) */ 4316 void tcp_send_window_probe(struct sock *sk) 4317 { 4318 if (sk->sk_state == TCP_ESTABLISHED) { 4319 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4320 tcp_mstamp_refresh(tcp_sk(sk)); 4321 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4322 } 4323 } 4324 4325 /* Initiate keepalive or window probe from timer. */ 4326 int tcp_write_wakeup(struct sock *sk, int mib) 4327 { 4328 struct tcp_sock *tp = tcp_sk(sk); 4329 struct sk_buff *skb; 4330 4331 if (sk->sk_state == TCP_CLOSE) 4332 return -1; 4333 4334 skb = tcp_send_head(sk); 4335 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4336 int err; 4337 unsigned int mss = tcp_current_mss(sk); 4338 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4339 4340 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4341 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4342 4343 /* We are probing the opening of a window 4344 * but the window size is != 0 4345 * must have been a result SWS avoidance ( sender ) 4346 */ 4347 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4348 skb->len > mss) { 4349 seg_size = min(seg_size, mss); 4350 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4351 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4352 skb, seg_size, mss, GFP_ATOMIC)) 4353 return -1; 4354 } else if (!tcp_skb_pcount(skb)) 4355 tcp_set_skb_tso_segs(skb, mss); 4356 4357 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4358 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4359 if (!err) 4360 tcp_event_new_data_sent(sk, skb); 4361 return err; 4362 } else { 4363 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4364 tcp_xmit_probe_skb(sk, 1, mib); 4365 return tcp_xmit_probe_skb(sk, 0, mib); 4366 } 4367 } 4368 4369 /* A window probe timeout has occurred. If window is not closed send 4370 * a partial packet else a zero probe. 4371 */ 4372 void tcp_send_probe0(struct sock *sk) 4373 { 4374 struct inet_connection_sock *icsk = inet_csk(sk); 4375 struct tcp_sock *tp = tcp_sk(sk); 4376 struct net *net = sock_net(sk); 4377 unsigned long timeout; 4378 int err; 4379 4380 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4381 4382 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4383 /* Cancel probe timer, if it is not required. */ 4384 icsk->icsk_probes_out = 0; 4385 icsk->icsk_backoff = 0; 4386 icsk->icsk_probes_tstamp = 0; 4387 return; 4388 } 4389 4390 icsk->icsk_probes_out++; 4391 if (err <= 0) { 4392 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4393 icsk->icsk_backoff++; 4394 timeout = tcp_probe0_when(sk, tcp_rto_max(sk)); 4395 } else { 4396 /* If packet was not sent due to local congestion, 4397 * Let senders fight for local resources conservatively. 4398 */ 4399 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4400 } 4401 4402 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4403 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true); 4404 } 4405 4406 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4407 { 4408 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4409 struct flowi fl; 4410 int res; 4411 4412 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4413 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4414 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4415 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4416 NULL); 4417 if (!res) { 4418 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4419 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4420 if (unlikely(tcp_passive_fastopen(sk))) { 4421 /* sk has const attribute because listeners are lockless. 4422 * However in this case, we are dealing with a passive fastopen 4423 * socket thus we can change total_retrans value. 4424 */ 4425 tcp_sk_rw(sk)->total_retrans++; 4426 } 4427 trace_tcp_retransmit_synack(sk, req); 4428 req->num_retrans++; 4429 } 4430 return res; 4431 } 4432 EXPORT_IPV6_MOD(tcp_rtx_synack); 4433