1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, enter pingpong mode. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_enter_pingpong_mode(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 181 u32 rcv_nxt) 182 { 183 struct tcp_sock *tp = tcp_sk(sk); 184 185 if (unlikely(tp->compressed_ack)) { 186 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 187 tp->compressed_ack); 188 tp->compressed_ack = 0; 189 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 190 __sock_put(sk); 191 } 192 193 if (unlikely(rcv_nxt != tp->rcv_nxt)) 194 return; /* Special ACK sent by DCTCP to reflect ECN */ 195 tcp_dec_quickack_mode(sk, pkts); 196 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = min_t(u32, space, U16_MAX); 234 235 if (init_rcv_wnd) 236 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 237 238 *rcv_wscale = 0; 239 if (wscale_ok) { 240 /* Set window scaling on max possible window */ 241 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 242 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 243 space = min_t(u32, space, *window_clamp); 244 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 245 0, TCP_MAX_WSCALE); 246 } 247 /* Set the clamp no higher than max representable value */ 248 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 249 } 250 EXPORT_SYMBOL(tcp_select_initial_window); 251 252 /* Chose a new window to advertise, update state in tcp_sock for the 253 * socket, and return result with RFC1323 scaling applied. The return 254 * value can be stuffed directly into th->window for an outgoing 255 * frame. 256 */ 257 static u16 tcp_select_window(struct sock *sk) 258 { 259 struct tcp_sock *tp = tcp_sk(sk); 260 struct net *net = sock_net(sk); 261 u32 old_win = tp->rcv_wnd; 262 u32 cur_win, new_win; 263 264 /* Make the window 0 if we failed to queue the data because we 265 * are out of memory. The window is temporary, so we don't store 266 * it on the socket. 267 */ 268 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 269 return 0; 270 271 cur_win = tcp_receive_window(tp); 272 new_win = __tcp_select_window(sk); 273 if (new_win < cur_win) { 274 /* Danger Will Robinson! 275 * Don't update rcv_wup/rcv_wnd here or else 276 * we will not be able to advertise a zero 277 * window in time. --DaveM 278 * 279 * Relax Will Robinson. 280 */ 281 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 282 /* Never shrink the offered window */ 283 if (new_win == 0) 284 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 285 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 286 } 287 } 288 289 tp->rcv_wnd = new_win; 290 tp->rcv_wup = tp->rcv_nxt; 291 292 /* Make sure we do not exceed the maximum possible 293 * scaled window. 294 */ 295 if (!tp->rx_opt.rcv_wscale && 296 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 297 new_win = min(new_win, MAX_TCP_WINDOW); 298 else 299 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 300 301 /* RFC1323 scaling applied */ 302 new_win >>= tp->rx_opt.rcv_wscale; 303 304 /* If we advertise zero window, disable fast path. */ 305 if (new_win == 0) { 306 tp->pred_flags = 0; 307 if (old_win) 308 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 309 } else if (old_win == 0) { 310 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 311 } 312 313 return new_win; 314 } 315 316 /* Packet ECN state for a SYN-ACK */ 317 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 318 { 319 const struct tcp_sock *tp = tcp_sk(sk); 320 321 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 322 if (!(tp->ecn_flags & TCP_ECN_OK)) 323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 324 else if (tcp_ca_needs_ecn(sk) || 325 tcp_bpf_ca_needs_ecn(sk)) 326 INET_ECN_xmit(sk); 327 } 328 329 /* Packet ECN state for a SYN. */ 330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 331 { 332 struct tcp_sock *tp = tcp_sk(sk); 333 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 334 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 335 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 336 337 if (!use_ecn) { 338 const struct dst_entry *dst = __sk_dst_get(sk); 339 340 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 341 use_ecn = true; 342 } 343 344 tp->ecn_flags = 0; 345 346 if (use_ecn) { 347 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 348 tp->ecn_flags = TCP_ECN_OK; 349 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 350 INET_ECN_xmit(sk); 351 } 352 } 353 354 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 355 { 356 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 357 /* tp->ecn_flags are cleared at a later point in time when 358 * SYN ACK is ultimatively being received. 359 */ 360 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 361 } 362 363 static void 364 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 365 { 366 if (inet_rsk(req)->ecn_ok) 367 th->ece = 1; 368 } 369 370 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 371 * be sent. 372 */ 373 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 374 struct tcphdr *th, int tcp_header_len) 375 { 376 struct tcp_sock *tp = tcp_sk(sk); 377 378 if (tp->ecn_flags & TCP_ECN_OK) { 379 /* Not-retransmitted data segment: set ECT and inject CWR. */ 380 if (skb->len != tcp_header_len && 381 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 382 INET_ECN_xmit(sk); 383 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 384 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 385 th->cwr = 1; 386 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 387 } 388 } else if (!tcp_ca_needs_ecn(sk)) { 389 /* ACK or retransmitted segment: clear ECT|CE */ 390 INET_ECN_dontxmit(sk); 391 } 392 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 393 th->ece = 1; 394 } 395 } 396 397 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 398 * auto increment end seqno. 399 */ 400 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 401 { 402 skb->ip_summed = CHECKSUM_PARTIAL; 403 404 TCP_SKB_CB(skb)->tcp_flags = flags; 405 406 tcp_skb_pcount_set(skb, 1); 407 408 TCP_SKB_CB(skb)->seq = seq; 409 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 410 seq++; 411 TCP_SKB_CB(skb)->end_seq = seq; 412 } 413 414 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 415 { 416 return tp->snd_una != tp->snd_up; 417 } 418 419 #define OPTION_SACK_ADVERTISE BIT(0) 420 #define OPTION_TS BIT(1) 421 #define OPTION_MD5 BIT(2) 422 #define OPTION_WSCALE BIT(3) 423 #define OPTION_FAST_OPEN_COOKIE BIT(8) 424 #define OPTION_SMC BIT(9) 425 #define OPTION_MPTCP BIT(10) 426 427 static void smc_options_write(__be32 *ptr, u16 *options) 428 { 429 #if IS_ENABLED(CONFIG_SMC) 430 if (static_branch_unlikely(&tcp_have_smc)) { 431 if (unlikely(OPTION_SMC & *options)) { 432 *ptr++ = htonl((TCPOPT_NOP << 24) | 433 (TCPOPT_NOP << 16) | 434 (TCPOPT_EXP << 8) | 435 (TCPOLEN_EXP_SMC_BASE)); 436 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 437 } 438 } 439 #endif 440 } 441 442 struct tcp_out_options { 443 u16 options; /* bit field of OPTION_* */ 444 u16 mss; /* 0 to disable */ 445 u8 ws; /* window scale, 0 to disable */ 446 u8 num_sack_blocks; /* number of SACK blocks to include */ 447 u8 hash_size; /* bytes in hash_location */ 448 u8 bpf_opt_len; /* length of BPF hdr option */ 449 __u8 *hash_location; /* temporary pointer, overloaded */ 450 __u32 tsval, tsecr; /* need to include OPTION_TS */ 451 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 452 struct mptcp_out_options mptcp; 453 }; 454 455 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 456 struct tcp_sock *tp, 457 struct tcp_out_options *opts) 458 { 459 #if IS_ENABLED(CONFIG_MPTCP) 460 if (unlikely(OPTION_MPTCP & opts->options)) 461 mptcp_write_options(th, ptr, tp, &opts->mptcp); 462 #endif 463 } 464 465 #ifdef CONFIG_CGROUP_BPF 466 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 467 enum tcp_synack_type synack_type) 468 { 469 if (unlikely(!skb)) 470 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 471 472 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 473 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 474 475 return 0; 476 } 477 478 /* req, syn_skb and synack_type are used when writing synack */ 479 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 480 struct request_sock *req, 481 struct sk_buff *syn_skb, 482 enum tcp_synack_type synack_type, 483 struct tcp_out_options *opts, 484 unsigned int *remaining) 485 { 486 struct bpf_sock_ops_kern sock_ops; 487 int err; 488 489 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 490 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 491 !*remaining) 492 return; 493 494 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 495 496 /* init sock_ops */ 497 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 498 499 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 500 501 if (req) { 502 /* The listen "sk" cannot be passed here because 503 * it is not locked. It would not make too much 504 * sense to do bpf_setsockopt(listen_sk) based 505 * on individual connection request also. 506 * 507 * Thus, "req" is passed here and the cgroup-bpf-progs 508 * of the listen "sk" will be run. 509 * 510 * "req" is also used here for fastopen even the "sk" here is 511 * a fullsock "child" sk. It is to keep the behavior 512 * consistent between fastopen and non-fastopen on 513 * the bpf programming side. 514 */ 515 sock_ops.sk = (struct sock *)req; 516 sock_ops.syn_skb = syn_skb; 517 } else { 518 sock_owned_by_me(sk); 519 520 sock_ops.is_fullsock = 1; 521 sock_ops.sk = sk; 522 } 523 524 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 525 sock_ops.remaining_opt_len = *remaining; 526 /* tcp_current_mss() does not pass a skb */ 527 if (skb) 528 bpf_skops_init_skb(&sock_ops, skb, 0); 529 530 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 531 532 if (err || sock_ops.remaining_opt_len == *remaining) 533 return; 534 535 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 536 /* round up to 4 bytes */ 537 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 538 539 *remaining -= opts->bpf_opt_len; 540 } 541 542 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 543 struct request_sock *req, 544 struct sk_buff *syn_skb, 545 enum tcp_synack_type synack_type, 546 struct tcp_out_options *opts) 547 { 548 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 549 struct bpf_sock_ops_kern sock_ops; 550 int err; 551 552 if (likely(!max_opt_len)) 553 return; 554 555 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 556 557 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 558 559 if (req) { 560 sock_ops.sk = (struct sock *)req; 561 sock_ops.syn_skb = syn_skb; 562 } else { 563 sock_owned_by_me(sk); 564 565 sock_ops.is_fullsock = 1; 566 sock_ops.sk = sk; 567 } 568 569 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 570 sock_ops.remaining_opt_len = max_opt_len; 571 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 572 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 573 574 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 575 576 if (err) 577 nr_written = 0; 578 else 579 nr_written = max_opt_len - sock_ops.remaining_opt_len; 580 581 if (nr_written < max_opt_len) 582 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 583 max_opt_len - nr_written); 584 } 585 #else 586 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 587 struct request_sock *req, 588 struct sk_buff *syn_skb, 589 enum tcp_synack_type synack_type, 590 struct tcp_out_options *opts, 591 unsigned int *remaining) 592 { 593 } 594 595 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 596 struct request_sock *req, 597 struct sk_buff *syn_skb, 598 enum tcp_synack_type synack_type, 599 struct tcp_out_options *opts) 600 { 601 } 602 #endif 603 604 /* Write previously computed TCP options to the packet. 605 * 606 * Beware: Something in the Internet is very sensitive to the ordering of 607 * TCP options, we learned this through the hard way, so be careful here. 608 * Luckily we can at least blame others for their non-compliance but from 609 * inter-operability perspective it seems that we're somewhat stuck with 610 * the ordering which we have been using if we want to keep working with 611 * those broken things (not that it currently hurts anybody as there isn't 612 * particular reason why the ordering would need to be changed). 613 * 614 * At least SACK_PERM as the first option is known to lead to a disaster 615 * (but it may well be that other scenarios fail similarly). 616 */ 617 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 618 struct tcp_out_options *opts) 619 { 620 __be32 *ptr = (__be32 *)(th + 1); 621 u16 options = opts->options; /* mungable copy */ 622 623 if (unlikely(OPTION_MD5 & options)) { 624 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 625 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 626 /* overload cookie hash location */ 627 opts->hash_location = (__u8 *)ptr; 628 ptr += 4; 629 } 630 631 if (unlikely(opts->mss)) { 632 *ptr++ = htonl((TCPOPT_MSS << 24) | 633 (TCPOLEN_MSS << 16) | 634 opts->mss); 635 } 636 637 if (likely(OPTION_TS & options)) { 638 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 639 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 640 (TCPOLEN_SACK_PERM << 16) | 641 (TCPOPT_TIMESTAMP << 8) | 642 TCPOLEN_TIMESTAMP); 643 options &= ~OPTION_SACK_ADVERTISE; 644 } else { 645 *ptr++ = htonl((TCPOPT_NOP << 24) | 646 (TCPOPT_NOP << 16) | 647 (TCPOPT_TIMESTAMP << 8) | 648 TCPOLEN_TIMESTAMP); 649 } 650 *ptr++ = htonl(opts->tsval); 651 *ptr++ = htonl(opts->tsecr); 652 } 653 654 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 655 *ptr++ = htonl((TCPOPT_NOP << 24) | 656 (TCPOPT_NOP << 16) | 657 (TCPOPT_SACK_PERM << 8) | 658 TCPOLEN_SACK_PERM); 659 } 660 661 if (unlikely(OPTION_WSCALE & options)) { 662 *ptr++ = htonl((TCPOPT_NOP << 24) | 663 (TCPOPT_WINDOW << 16) | 664 (TCPOLEN_WINDOW << 8) | 665 opts->ws); 666 } 667 668 if (unlikely(opts->num_sack_blocks)) { 669 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 670 tp->duplicate_sack : tp->selective_acks; 671 int this_sack; 672 673 *ptr++ = htonl((TCPOPT_NOP << 24) | 674 (TCPOPT_NOP << 16) | 675 (TCPOPT_SACK << 8) | 676 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 677 TCPOLEN_SACK_PERBLOCK))); 678 679 for (this_sack = 0; this_sack < opts->num_sack_blocks; 680 ++this_sack) { 681 *ptr++ = htonl(sp[this_sack].start_seq); 682 *ptr++ = htonl(sp[this_sack].end_seq); 683 } 684 685 tp->rx_opt.dsack = 0; 686 } 687 688 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 689 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 690 u8 *p = (u8 *)ptr; 691 u32 len; /* Fast Open option length */ 692 693 if (foc->exp) { 694 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 695 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 696 TCPOPT_FASTOPEN_MAGIC); 697 p += TCPOLEN_EXP_FASTOPEN_BASE; 698 } else { 699 len = TCPOLEN_FASTOPEN_BASE + foc->len; 700 *p++ = TCPOPT_FASTOPEN; 701 *p++ = len; 702 } 703 704 memcpy(p, foc->val, foc->len); 705 if ((len & 3) == 2) { 706 p[foc->len] = TCPOPT_NOP; 707 p[foc->len + 1] = TCPOPT_NOP; 708 } 709 ptr += (len + 3) >> 2; 710 } 711 712 smc_options_write(ptr, &options); 713 714 mptcp_options_write(th, ptr, tp, opts); 715 } 716 717 static void smc_set_option(const struct tcp_sock *tp, 718 struct tcp_out_options *opts, 719 unsigned int *remaining) 720 { 721 #if IS_ENABLED(CONFIG_SMC) 722 if (static_branch_unlikely(&tcp_have_smc)) { 723 if (tp->syn_smc) { 724 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 725 opts->options |= OPTION_SMC; 726 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 727 } 728 } 729 } 730 #endif 731 } 732 733 static void smc_set_option_cond(const struct tcp_sock *tp, 734 const struct inet_request_sock *ireq, 735 struct tcp_out_options *opts, 736 unsigned int *remaining) 737 { 738 #if IS_ENABLED(CONFIG_SMC) 739 if (static_branch_unlikely(&tcp_have_smc)) { 740 if (tp->syn_smc && ireq->smc_ok) { 741 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 742 opts->options |= OPTION_SMC; 743 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 744 } 745 } 746 } 747 #endif 748 } 749 750 static void mptcp_set_option_cond(const struct request_sock *req, 751 struct tcp_out_options *opts, 752 unsigned int *remaining) 753 { 754 if (rsk_is_mptcp(req)) { 755 unsigned int size; 756 757 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 758 if (*remaining >= size) { 759 opts->options |= OPTION_MPTCP; 760 *remaining -= size; 761 } 762 } 763 } 764 } 765 766 /* Compute TCP options for SYN packets. This is not the final 767 * network wire format yet. 768 */ 769 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 770 struct tcp_out_options *opts, 771 struct tcp_md5sig_key **md5) 772 { 773 struct tcp_sock *tp = tcp_sk(sk); 774 unsigned int remaining = MAX_TCP_OPTION_SPACE; 775 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 776 777 *md5 = NULL; 778 #ifdef CONFIG_TCP_MD5SIG 779 if (static_branch_unlikely(&tcp_md5_needed.key) && 780 rcu_access_pointer(tp->md5sig_info)) { 781 *md5 = tp->af_specific->md5_lookup(sk, sk); 782 if (*md5) { 783 opts->options |= OPTION_MD5; 784 remaining -= TCPOLEN_MD5SIG_ALIGNED; 785 } 786 } 787 #endif 788 789 /* We always get an MSS option. The option bytes which will be seen in 790 * normal data packets should timestamps be used, must be in the MSS 791 * advertised. But we subtract them from tp->mss_cache so that 792 * calculations in tcp_sendmsg are simpler etc. So account for this 793 * fact here if necessary. If we don't do this correctly, as a 794 * receiver we won't recognize data packets as being full sized when we 795 * should, and thus we won't abide by the delayed ACK rules correctly. 796 * SACKs don't matter, we never delay an ACK when we have any of those 797 * going out. */ 798 opts->mss = tcp_advertise_mss(sk); 799 remaining -= TCPOLEN_MSS_ALIGNED; 800 801 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) { 802 opts->options |= OPTION_TS; 803 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 804 opts->tsecr = tp->rx_opt.ts_recent; 805 remaining -= TCPOLEN_TSTAMP_ALIGNED; 806 } 807 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 808 opts->ws = tp->rx_opt.rcv_wscale; 809 opts->options |= OPTION_WSCALE; 810 remaining -= TCPOLEN_WSCALE_ALIGNED; 811 } 812 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 813 opts->options |= OPTION_SACK_ADVERTISE; 814 if (unlikely(!(OPTION_TS & opts->options))) 815 remaining -= TCPOLEN_SACKPERM_ALIGNED; 816 } 817 818 if (fastopen && fastopen->cookie.len >= 0) { 819 u32 need = fastopen->cookie.len; 820 821 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 822 TCPOLEN_FASTOPEN_BASE; 823 need = (need + 3) & ~3U; /* Align to 32 bits */ 824 if (remaining >= need) { 825 opts->options |= OPTION_FAST_OPEN_COOKIE; 826 opts->fastopen_cookie = &fastopen->cookie; 827 remaining -= need; 828 tp->syn_fastopen = 1; 829 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 830 } 831 } 832 833 smc_set_option(tp, opts, &remaining); 834 835 if (sk_is_mptcp(sk)) { 836 unsigned int size; 837 838 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 839 opts->options |= OPTION_MPTCP; 840 remaining -= size; 841 } 842 } 843 844 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 845 846 return MAX_TCP_OPTION_SPACE - remaining; 847 } 848 849 /* Set up TCP options for SYN-ACKs. */ 850 static unsigned int tcp_synack_options(const struct sock *sk, 851 struct request_sock *req, 852 unsigned int mss, struct sk_buff *skb, 853 struct tcp_out_options *opts, 854 const struct tcp_md5sig_key *md5, 855 struct tcp_fastopen_cookie *foc, 856 enum tcp_synack_type synack_type, 857 struct sk_buff *syn_skb) 858 { 859 struct inet_request_sock *ireq = inet_rsk(req); 860 unsigned int remaining = MAX_TCP_OPTION_SPACE; 861 862 #ifdef CONFIG_TCP_MD5SIG 863 if (md5) { 864 opts->options |= OPTION_MD5; 865 remaining -= TCPOLEN_MD5SIG_ALIGNED; 866 867 /* We can't fit any SACK blocks in a packet with MD5 + TS 868 * options. There was discussion about disabling SACK 869 * rather than TS in order to fit in better with old, 870 * buggy kernels, but that was deemed to be unnecessary. 871 */ 872 if (synack_type != TCP_SYNACK_COOKIE) 873 ireq->tstamp_ok &= !ireq->sack_ok; 874 } 875 #endif 876 877 /* We always send an MSS option. */ 878 opts->mss = mss; 879 remaining -= TCPOLEN_MSS_ALIGNED; 880 881 if (likely(ireq->wscale_ok)) { 882 opts->ws = ireq->rcv_wscale; 883 opts->options |= OPTION_WSCALE; 884 remaining -= TCPOLEN_WSCALE_ALIGNED; 885 } 886 if (likely(ireq->tstamp_ok)) { 887 opts->options |= OPTION_TS; 888 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 889 opts->tsecr = READ_ONCE(req->ts_recent); 890 remaining -= TCPOLEN_TSTAMP_ALIGNED; 891 } 892 if (likely(ireq->sack_ok)) { 893 opts->options |= OPTION_SACK_ADVERTISE; 894 if (unlikely(!ireq->tstamp_ok)) 895 remaining -= TCPOLEN_SACKPERM_ALIGNED; 896 } 897 if (foc != NULL && foc->len >= 0) { 898 u32 need = foc->len; 899 900 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 901 TCPOLEN_FASTOPEN_BASE; 902 need = (need + 3) & ~3U; /* Align to 32 bits */ 903 if (remaining >= need) { 904 opts->options |= OPTION_FAST_OPEN_COOKIE; 905 opts->fastopen_cookie = foc; 906 remaining -= need; 907 } 908 } 909 910 mptcp_set_option_cond(req, opts, &remaining); 911 912 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 913 914 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 915 synack_type, opts, &remaining); 916 917 return MAX_TCP_OPTION_SPACE - remaining; 918 } 919 920 /* Compute TCP options for ESTABLISHED sockets. This is not the 921 * final wire format yet. 922 */ 923 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 924 struct tcp_out_options *opts, 925 struct tcp_md5sig_key **md5) 926 { 927 struct tcp_sock *tp = tcp_sk(sk); 928 unsigned int size = 0; 929 unsigned int eff_sacks; 930 931 opts->options = 0; 932 933 *md5 = NULL; 934 #ifdef CONFIG_TCP_MD5SIG 935 if (static_branch_unlikely(&tcp_md5_needed.key) && 936 rcu_access_pointer(tp->md5sig_info)) { 937 *md5 = tp->af_specific->md5_lookup(sk, sk); 938 if (*md5) { 939 opts->options |= OPTION_MD5; 940 size += TCPOLEN_MD5SIG_ALIGNED; 941 } 942 } 943 #endif 944 945 if (likely(tp->rx_opt.tstamp_ok)) { 946 opts->options |= OPTION_TS; 947 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 948 opts->tsecr = tp->rx_opt.ts_recent; 949 size += TCPOLEN_TSTAMP_ALIGNED; 950 } 951 952 /* MPTCP options have precedence over SACK for the limited TCP 953 * option space because a MPTCP connection would be forced to 954 * fall back to regular TCP if a required multipath option is 955 * missing. SACK still gets a chance to use whatever space is 956 * left. 957 */ 958 if (sk_is_mptcp(sk)) { 959 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 960 unsigned int opt_size = 0; 961 962 if (mptcp_established_options(sk, skb, &opt_size, remaining, 963 &opts->mptcp)) { 964 opts->options |= OPTION_MPTCP; 965 size += opt_size; 966 } 967 } 968 969 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 970 if (unlikely(eff_sacks)) { 971 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 972 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 973 TCPOLEN_SACK_PERBLOCK)) 974 return size; 975 976 opts->num_sack_blocks = 977 min_t(unsigned int, eff_sacks, 978 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 979 TCPOLEN_SACK_PERBLOCK); 980 981 size += TCPOLEN_SACK_BASE_ALIGNED + 982 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 983 } 984 985 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 986 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 987 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 988 989 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 990 991 size = MAX_TCP_OPTION_SPACE - remaining; 992 } 993 994 return size; 995 } 996 997 998 /* TCP SMALL QUEUES (TSQ) 999 * 1000 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1001 * to reduce RTT and bufferbloat. 1002 * We do this using a special skb destructor (tcp_wfree). 1003 * 1004 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1005 * needs to be reallocated in a driver. 1006 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1007 * 1008 * Since transmit from skb destructor is forbidden, we use a tasklet 1009 * to process all sockets that eventually need to send more skbs. 1010 * We use one tasklet per cpu, with its own queue of sockets. 1011 */ 1012 struct tsq_tasklet { 1013 struct tasklet_struct tasklet; 1014 struct list_head head; /* queue of tcp sockets */ 1015 }; 1016 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1017 1018 static void tcp_tsq_write(struct sock *sk) 1019 { 1020 if ((1 << sk->sk_state) & 1021 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1022 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1023 struct tcp_sock *tp = tcp_sk(sk); 1024 1025 if (tp->lost_out > tp->retrans_out && 1026 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1027 tcp_mstamp_refresh(tp); 1028 tcp_xmit_retransmit_queue(sk); 1029 } 1030 1031 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1032 0, GFP_ATOMIC); 1033 } 1034 } 1035 1036 static void tcp_tsq_handler(struct sock *sk) 1037 { 1038 bh_lock_sock(sk); 1039 if (!sock_owned_by_user(sk)) 1040 tcp_tsq_write(sk); 1041 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1042 sock_hold(sk); 1043 bh_unlock_sock(sk); 1044 } 1045 /* 1046 * One tasklet per cpu tries to send more skbs. 1047 * We run in tasklet context but need to disable irqs when 1048 * transferring tsq->head because tcp_wfree() might 1049 * interrupt us (non NAPI drivers) 1050 */ 1051 static void tcp_tasklet_func(struct tasklet_struct *t) 1052 { 1053 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1054 LIST_HEAD(list); 1055 unsigned long flags; 1056 struct list_head *q, *n; 1057 struct tcp_sock *tp; 1058 struct sock *sk; 1059 1060 local_irq_save(flags); 1061 list_splice_init(&tsq->head, &list); 1062 local_irq_restore(flags); 1063 1064 list_for_each_safe(q, n, &list) { 1065 tp = list_entry(q, struct tcp_sock, tsq_node); 1066 list_del(&tp->tsq_node); 1067 1068 sk = (struct sock *)tp; 1069 smp_mb__before_atomic(); 1070 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1071 1072 tcp_tsq_handler(sk); 1073 sk_free(sk); 1074 } 1075 } 1076 1077 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1078 TCPF_WRITE_TIMER_DEFERRED | \ 1079 TCPF_DELACK_TIMER_DEFERRED | \ 1080 TCPF_MTU_REDUCED_DEFERRED) 1081 /** 1082 * tcp_release_cb - tcp release_sock() callback 1083 * @sk: socket 1084 * 1085 * called from release_sock() to perform protocol dependent 1086 * actions before socket release. 1087 */ 1088 void tcp_release_cb(struct sock *sk) 1089 { 1090 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1091 unsigned long nflags; 1092 1093 /* perform an atomic operation only if at least one flag is set */ 1094 do { 1095 if (!(flags & TCP_DEFERRED_ALL)) 1096 return; 1097 nflags = flags & ~TCP_DEFERRED_ALL; 1098 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1099 1100 if (flags & TCPF_TSQ_DEFERRED) { 1101 tcp_tsq_write(sk); 1102 __sock_put(sk); 1103 } 1104 /* Here begins the tricky part : 1105 * We are called from release_sock() with : 1106 * 1) BH disabled 1107 * 2) sk_lock.slock spinlock held 1108 * 3) socket owned by us (sk->sk_lock.owned == 1) 1109 * 1110 * But following code is meant to be called from BH handlers, 1111 * so we should keep BH disabled, but early release socket ownership 1112 */ 1113 sock_release_ownership(sk); 1114 1115 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1116 tcp_write_timer_handler(sk); 1117 __sock_put(sk); 1118 } 1119 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1120 tcp_delack_timer_handler(sk); 1121 __sock_put(sk); 1122 } 1123 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1124 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1125 __sock_put(sk); 1126 } 1127 } 1128 EXPORT_SYMBOL(tcp_release_cb); 1129 1130 void __init tcp_tasklet_init(void) 1131 { 1132 int i; 1133 1134 for_each_possible_cpu(i) { 1135 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1136 1137 INIT_LIST_HEAD(&tsq->head); 1138 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1139 } 1140 } 1141 1142 /* 1143 * Write buffer destructor automatically called from kfree_skb. 1144 * We can't xmit new skbs from this context, as we might already 1145 * hold qdisc lock. 1146 */ 1147 void tcp_wfree(struct sk_buff *skb) 1148 { 1149 struct sock *sk = skb->sk; 1150 struct tcp_sock *tp = tcp_sk(sk); 1151 unsigned long flags, nval, oval; 1152 struct tsq_tasklet *tsq; 1153 bool empty; 1154 1155 /* Keep one reference on sk_wmem_alloc. 1156 * Will be released by sk_free() from here or tcp_tasklet_func() 1157 */ 1158 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1159 1160 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1161 * Wait until our queues (qdisc + devices) are drained. 1162 * This gives : 1163 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1164 * - chance for incoming ACK (processed by another cpu maybe) 1165 * to migrate this flow (skb->ooo_okay will be eventually set) 1166 */ 1167 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1168 goto out; 1169 1170 oval = smp_load_acquire(&sk->sk_tsq_flags); 1171 do { 1172 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1173 goto out; 1174 1175 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1176 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1177 1178 /* queue this socket to tasklet queue */ 1179 local_irq_save(flags); 1180 tsq = this_cpu_ptr(&tsq_tasklet); 1181 empty = list_empty(&tsq->head); 1182 list_add(&tp->tsq_node, &tsq->head); 1183 if (empty) 1184 tasklet_schedule(&tsq->tasklet); 1185 local_irq_restore(flags); 1186 return; 1187 out: 1188 sk_free(sk); 1189 } 1190 1191 /* Note: Called under soft irq. 1192 * We can call TCP stack right away, unless socket is owned by user. 1193 */ 1194 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1195 { 1196 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1197 struct sock *sk = (struct sock *)tp; 1198 1199 tcp_tsq_handler(sk); 1200 sock_put(sk); 1201 1202 return HRTIMER_NORESTART; 1203 } 1204 1205 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1206 u64 prior_wstamp) 1207 { 1208 struct tcp_sock *tp = tcp_sk(sk); 1209 1210 if (sk->sk_pacing_status != SK_PACING_NONE) { 1211 unsigned long rate = sk->sk_pacing_rate; 1212 1213 /* Original sch_fq does not pace first 10 MSS 1214 * Note that tp->data_segs_out overflows after 2^32 packets, 1215 * this is a minor annoyance. 1216 */ 1217 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1218 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1219 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1220 1221 /* take into account OS jitter */ 1222 len_ns -= min_t(u64, len_ns / 2, credit); 1223 tp->tcp_wstamp_ns += len_ns; 1224 } 1225 } 1226 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1227 } 1228 1229 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1230 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1231 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1232 1233 /* This routine actually transmits TCP packets queued in by 1234 * tcp_do_sendmsg(). This is used by both the initial 1235 * transmission and possible later retransmissions. 1236 * All SKB's seen here are completely headerless. It is our 1237 * job to build the TCP header, and pass the packet down to 1238 * IP so it can do the same plus pass the packet off to the 1239 * device. 1240 * 1241 * We are working here with either a clone of the original 1242 * SKB, or a fresh unique copy made by the retransmit engine. 1243 */ 1244 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1245 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1246 { 1247 const struct inet_connection_sock *icsk = inet_csk(sk); 1248 struct inet_sock *inet; 1249 struct tcp_sock *tp; 1250 struct tcp_skb_cb *tcb; 1251 struct tcp_out_options opts; 1252 unsigned int tcp_options_size, tcp_header_size; 1253 struct sk_buff *oskb = NULL; 1254 struct tcp_md5sig_key *md5; 1255 struct tcphdr *th; 1256 u64 prior_wstamp; 1257 int err; 1258 1259 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1260 tp = tcp_sk(sk); 1261 prior_wstamp = tp->tcp_wstamp_ns; 1262 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1263 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1264 if (clone_it) { 1265 oskb = skb; 1266 1267 tcp_skb_tsorted_save(oskb) { 1268 if (unlikely(skb_cloned(oskb))) 1269 skb = pskb_copy(oskb, gfp_mask); 1270 else 1271 skb = skb_clone(oskb, gfp_mask); 1272 } tcp_skb_tsorted_restore(oskb); 1273 1274 if (unlikely(!skb)) 1275 return -ENOBUFS; 1276 /* retransmit skbs might have a non zero value in skb->dev 1277 * because skb->dev is aliased with skb->rbnode.rb_left 1278 */ 1279 skb->dev = NULL; 1280 } 1281 1282 inet = inet_sk(sk); 1283 tcb = TCP_SKB_CB(skb); 1284 memset(&opts, 0, sizeof(opts)); 1285 1286 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1287 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1288 } else { 1289 tcp_options_size = tcp_established_options(sk, skb, &opts, 1290 &md5); 1291 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1292 * at receiver : This slightly improve GRO performance. 1293 * Note that we do not force the PSH flag for non GSO packets, 1294 * because they might be sent under high congestion events, 1295 * and in this case it is better to delay the delivery of 1-MSS 1296 * packets and thus the corresponding ACK packet that would 1297 * release the following packet. 1298 */ 1299 if (tcp_skb_pcount(skb) > 1) 1300 tcb->tcp_flags |= TCPHDR_PSH; 1301 } 1302 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1303 1304 /* We set skb->ooo_okay to one if this packet can select 1305 * a different TX queue than prior packets of this flow, 1306 * to avoid self inflicted reorders. 1307 * The 'other' queue decision is based on current cpu number 1308 * if XPS is enabled, or sk->sk_txhash otherwise. 1309 * We can switch to another (and better) queue if: 1310 * 1) No packet with payload is in qdisc/device queues. 1311 * Delays in TX completion can defeat the test 1312 * even if packets were already sent. 1313 * 2) Or rtx queue is empty. 1314 * This mitigates above case if ACK packets for 1315 * all prior packets were already processed. 1316 */ 1317 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1318 tcp_rtx_queue_empty(sk); 1319 1320 /* If we had to use memory reserve to allocate this skb, 1321 * this might cause drops if packet is looped back : 1322 * Other socket might not have SOCK_MEMALLOC. 1323 * Packets not looped back do not care about pfmemalloc. 1324 */ 1325 skb->pfmemalloc = 0; 1326 1327 skb_push(skb, tcp_header_size); 1328 skb_reset_transport_header(skb); 1329 1330 skb_orphan(skb); 1331 skb->sk = sk; 1332 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1333 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1334 1335 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1336 1337 /* Build TCP header and checksum it. */ 1338 th = (struct tcphdr *)skb->data; 1339 th->source = inet->inet_sport; 1340 th->dest = inet->inet_dport; 1341 th->seq = htonl(tcb->seq); 1342 th->ack_seq = htonl(rcv_nxt); 1343 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1344 tcb->tcp_flags); 1345 1346 th->check = 0; 1347 th->urg_ptr = 0; 1348 1349 /* The urg_mode check is necessary during a below snd_una win probe */ 1350 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1351 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1352 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1353 th->urg = 1; 1354 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1355 th->urg_ptr = htons(0xFFFF); 1356 th->urg = 1; 1357 } 1358 } 1359 1360 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1361 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1362 th->window = htons(tcp_select_window(sk)); 1363 tcp_ecn_send(sk, skb, th, tcp_header_size); 1364 } else { 1365 /* RFC1323: The window in SYN & SYN/ACK segments 1366 * is never scaled. 1367 */ 1368 th->window = htons(min(tp->rcv_wnd, 65535U)); 1369 } 1370 1371 tcp_options_write(th, tp, &opts); 1372 1373 #ifdef CONFIG_TCP_MD5SIG 1374 /* Calculate the MD5 hash, as we have all we need now */ 1375 if (md5) { 1376 sk_gso_disable(sk); 1377 tp->af_specific->calc_md5_hash(opts.hash_location, 1378 md5, sk, skb); 1379 } 1380 #endif 1381 1382 /* BPF prog is the last one writing header option */ 1383 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1384 1385 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1386 tcp_v6_send_check, tcp_v4_send_check, 1387 sk, skb); 1388 1389 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1390 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1391 1392 if (skb->len != tcp_header_size) { 1393 tcp_event_data_sent(tp, sk); 1394 tp->data_segs_out += tcp_skb_pcount(skb); 1395 tp->bytes_sent += skb->len - tcp_header_size; 1396 } 1397 1398 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1399 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1400 tcp_skb_pcount(skb)); 1401 1402 tp->segs_out += tcp_skb_pcount(skb); 1403 skb_set_hash_from_sk(skb, sk); 1404 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1405 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1406 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1407 1408 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1409 1410 /* Cleanup our debris for IP stacks */ 1411 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1412 sizeof(struct inet6_skb_parm))); 1413 1414 tcp_add_tx_delay(skb, tp); 1415 1416 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1417 inet6_csk_xmit, ip_queue_xmit, 1418 sk, skb, &inet->cork.fl); 1419 1420 if (unlikely(err > 0)) { 1421 tcp_enter_cwr(sk); 1422 err = net_xmit_eval(err); 1423 } 1424 if (!err && oskb) { 1425 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1426 tcp_rate_skb_sent(sk, oskb); 1427 } 1428 return err; 1429 } 1430 1431 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1432 gfp_t gfp_mask) 1433 { 1434 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1435 tcp_sk(sk)->rcv_nxt); 1436 } 1437 1438 /* This routine just queues the buffer for sending. 1439 * 1440 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1441 * otherwise socket can stall. 1442 */ 1443 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1444 { 1445 struct tcp_sock *tp = tcp_sk(sk); 1446 1447 /* Advance write_seq and place onto the write_queue. */ 1448 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1449 __skb_header_release(skb); 1450 tcp_add_write_queue_tail(sk, skb); 1451 sk_wmem_queued_add(sk, skb->truesize); 1452 sk_mem_charge(sk, skb->truesize); 1453 } 1454 1455 /* Initialize TSO segments for a packet. */ 1456 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1457 { 1458 if (skb->len <= mss_now) { 1459 /* Avoid the costly divide in the normal 1460 * non-TSO case. 1461 */ 1462 tcp_skb_pcount_set(skb, 1); 1463 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1464 } else { 1465 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1466 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1467 } 1468 } 1469 1470 /* Pcount in the middle of the write queue got changed, we need to do various 1471 * tweaks to fix counters 1472 */ 1473 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1474 { 1475 struct tcp_sock *tp = tcp_sk(sk); 1476 1477 tp->packets_out -= decr; 1478 1479 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1480 tp->sacked_out -= decr; 1481 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1482 tp->retrans_out -= decr; 1483 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1484 tp->lost_out -= decr; 1485 1486 /* Reno case is special. Sigh... */ 1487 if (tcp_is_reno(tp) && decr > 0) 1488 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1489 1490 if (tp->lost_skb_hint && 1491 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1492 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1493 tp->lost_cnt_hint -= decr; 1494 1495 tcp_verify_left_out(tp); 1496 } 1497 1498 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1499 { 1500 return TCP_SKB_CB(skb)->txstamp_ack || 1501 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1502 } 1503 1504 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1505 { 1506 struct skb_shared_info *shinfo = skb_shinfo(skb); 1507 1508 if (unlikely(tcp_has_tx_tstamp(skb)) && 1509 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1510 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1511 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1512 1513 shinfo->tx_flags &= ~tsflags; 1514 shinfo2->tx_flags |= tsflags; 1515 swap(shinfo->tskey, shinfo2->tskey); 1516 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1517 TCP_SKB_CB(skb)->txstamp_ack = 0; 1518 } 1519 } 1520 1521 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1522 { 1523 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1524 TCP_SKB_CB(skb)->eor = 0; 1525 } 1526 1527 /* Insert buff after skb on the write or rtx queue of sk. */ 1528 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1529 struct sk_buff *buff, 1530 struct sock *sk, 1531 enum tcp_queue tcp_queue) 1532 { 1533 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1534 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1535 else 1536 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1537 } 1538 1539 /* Function to create two new TCP segments. Shrinks the given segment 1540 * to the specified size and appends a new segment with the rest of the 1541 * packet to the list. This won't be called frequently, I hope. 1542 * Remember, these are still headerless SKBs at this point. 1543 */ 1544 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1545 struct sk_buff *skb, u32 len, 1546 unsigned int mss_now, gfp_t gfp) 1547 { 1548 struct tcp_sock *tp = tcp_sk(sk); 1549 struct sk_buff *buff; 1550 int old_factor; 1551 long limit; 1552 int nlen; 1553 u8 flags; 1554 1555 if (WARN_ON(len > skb->len)) 1556 return -EINVAL; 1557 1558 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1559 1560 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1561 * We need some allowance to not penalize applications setting small 1562 * SO_SNDBUF values. 1563 * Also allow first and last skb in retransmit queue to be split. 1564 */ 1565 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1566 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1567 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1568 skb != tcp_rtx_queue_head(sk) && 1569 skb != tcp_rtx_queue_tail(sk))) { 1570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1571 return -ENOMEM; 1572 } 1573 1574 if (skb_unclone_keeptruesize(skb, gfp)) 1575 return -ENOMEM; 1576 1577 /* Get a new skb... force flag on. */ 1578 buff = tcp_stream_alloc_skb(sk, gfp, true); 1579 if (!buff) 1580 return -ENOMEM; /* We'll just try again later. */ 1581 skb_copy_decrypted(buff, skb); 1582 mptcp_skb_ext_copy(buff, skb); 1583 1584 sk_wmem_queued_add(sk, buff->truesize); 1585 sk_mem_charge(sk, buff->truesize); 1586 nlen = skb->len - len; 1587 buff->truesize += nlen; 1588 skb->truesize -= nlen; 1589 1590 /* Correct the sequence numbers. */ 1591 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1592 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1593 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1594 1595 /* PSH and FIN should only be set in the second packet. */ 1596 flags = TCP_SKB_CB(skb)->tcp_flags; 1597 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1598 TCP_SKB_CB(buff)->tcp_flags = flags; 1599 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1600 tcp_skb_fragment_eor(skb, buff); 1601 1602 skb_split(skb, buff, len); 1603 1604 skb_set_delivery_time(buff, skb->tstamp, true); 1605 tcp_fragment_tstamp(skb, buff); 1606 1607 old_factor = tcp_skb_pcount(skb); 1608 1609 /* Fix up tso_factor for both original and new SKB. */ 1610 tcp_set_skb_tso_segs(skb, mss_now); 1611 tcp_set_skb_tso_segs(buff, mss_now); 1612 1613 /* Update delivered info for the new segment */ 1614 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1615 1616 /* If this packet has been sent out already, we must 1617 * adjust the various packet counters. 1618 */ 1619 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1620 int diff = old_factor - tcp_skb_pcount(skb) - 1621 tcp_skb_pcount(buff); 1622 1623 if (diff) 1624 tcp_adjust_pcount(sk, skb, diff); 1625 } 1626 1627 /* Link BUFF into the send queue. */ 1628 __skb_header_release(buff); 1629 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1630 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1631 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1632 1633 return 0; 1634 } 1635 1636 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1637 * data is not copied, but immediately discarded. 1638 */ 1639 static int __pskb_trim_head(struct sk_buff *skb, int len) 1640 { 1641 struct skb_shared_info *shinfo; 1642 int i, k, eat; 1643 1644 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1645 eat = len; 1646 k = 0; 1647 shinfo = skb_shinfo(skb); 1648 for (i = 0; i < shinfo->nr_frags; i++) { 1649 int size = skb_frag_size(&shinfo->frags[i]); 1650 1651 if (size <= eat) { 1652 skb_frag_unref(skb, i); 1653 eat -= size; 1654 } else { 1655 shinfo->frags[k] = shinfo->frags[i]; 1656 if (eat) { 1657 skb_frag_off_add(&shinfo->frags[k], eat); 1658 skb_frag_size_sub(&shinfo->frags[k], eat); 1659 eat = 0; 1660 } 1661 k++; 1662 } 1663 } 1664 shinfo->nr_frags = k; 1665 1666 skb->data_len -= len; 1667 skb->len = skb->data_len; 1668 return len; 1669 } 1670 1671 /* Remove acked data from a packet in the transmit queue. */ 1672 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1673 { 1674 u32 delta_truesize; 1675 1676 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1677 return -ENOMEM; 1678 1679 delta_truesize = __pskb_trim_head(skb, len); 1680 1681 TCP_SKB_CB(skb)->seq += len; 1682 1683 skb->truesize -= delta_truesize; 1684 sk_wmem_queued_add(sk, -delta_truesize); 1685 if (!skb_zcopy_pure(skb)) 1686 sk_mem_uncharge(sk, delta_truesize); 1687 1688 /* Any change of skb->len requires recalculation of tso factor. */ 1689 if (tcp_skb_pcount(skb) > 1) 1690 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1691 1692 return 0; 1693 } 1694 1695 /* Calculate MSS not accounting any TCP options. */ 1696 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1697 { 1698 const struct tcp_sock *tp = tcp_sk(sk); 1699 const struct inet_connection_sock *icsk = inet_csk(sk); 1700 int mss_now; 1701 1702 /* Calculate base mss without TCP options: 1703 It is MMS_S - sizeof(tcphdr) of rfc1122 1704 */ 1705 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1706 1707 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1708 if (icsk->icsk_af_ops->net_frag_header_len) { 1709 const struct dst_entry *dst = __sk_dst_get(sk); 1710 1711 if (dst && dst_allfrag(dst)) 1712 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1713 } 1714 1715 /* Clamp it (mss_clamp does not include tcp options) */ 1716 if (mss_now > tp->rx_opt.mss_clamp) 1717 mss_now = tp->rx_opt.mss_clamp; 1718 1719 /* Now subtract optional transport overhead */ 1720 mss_now -= icsk->icsk_ext_hdr_len; 1721 1722 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1723 mss_now = max(mss_now, 1724 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1725 return mss_now; 1726 } 1727 1728 /* Calculate MSS. Not accounting for SACKs here. */ 1729 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1730 { 1731 /* Subtract TCP options size, not including SACKs */ 1732 return __tcp_mtu_to_mss(sk, pmtu) - 1733 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1734 } 1735 EXPORT_SYMBOL(tcp_mtu_to_mss); 1736 1737 /* Inverse of above */ 1738 int tcp_mss_to_mtu(struct sock *sk, int mss) 1739 { 1740 const struct tcp_sock *tp = tcp_sk(sk); 1741 const struct inet_connection_sock *icsk = inet_csk(sk); 1742 int mtu; 1743 1744 mtu = mss + 1745 tp->tcp_header_len + 1746 icsk->icsk_ext_hdr_len + 1747 icsk->icsk_af_ops->net_header_len; 1748 1749 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1750 if (icsk->icsk_af_ops->net_frag_header_len) { 1751 const struct dst_entry *dst = __sk_dst_get(sk); 1752 1753 if (dst && dst_allfrag(dst)) 1754 mtu += icsk->icsk_af_ops->net_frag_header_len; 1755 } 1756 return mtu; 1757 } 1758 EXPORT_SYMBOL(tcp_mss_to_mtu); 1759 1760 /* MTU probing init per socket */ 1761 void tcp_mtup_init(struct sock *sk) 1762 { 1763 struct tcp_sock *tp = tcp_sk(sk); 1764 struct inet_connection_sock *icsk = inet_csk(sk); 1765 struct net *net = sock_net(sk); 1766 1767 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1768 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1769 icsk->icsk_af_ops->net_header_len; 1770 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1771 icsk->icsk_mtup.probe_size = 0; 1772 if (icsk->icsk_mtup.enabled) 1773 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1774 } 1775 EXPORT_SYMBOL(tcp_mtup_init); 1776 1777 /* This function synchronize snd mss to current pmtu/exthdr set. 1778 1779 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1780 for TCP options, but includes only bare TCP header. 1781 1782 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1783 It is minimum of user_mss and mss received with SYN. 1784 It also does not include TCP options. 1785 1786 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1787 1788 tp->mss_cache is current effective sending mss, including 1789 all tcp options except for SACKs. It is evaluated, 1790 taking into account current pmtu, but never exceeds 1791 tp->rx_opt.mss_clamp. 1792 1793 NOTE1. rfc1122 clearly states that advertised MSS 1794 DOES NOT include either tcp or ip options. 1795 1796 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1797 are READ ONLY outside this function. --ANK (980731) 1798 */ 1799 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1800 { 1801 struct tcp_sock *tp = tcp_sk(sk); 1802 struct inet_connection_sock *icsk = inet_csk(sk); 1803 int mss_now; 1804 1805 if (icsk->icsk_mtup.search_high > pmtu) 1806 icsk->icsk_mtup.search_high = pmtu; 1807 1808 mss_now = tcp_mtu_to_mss(sk, pmtu); 1809 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1810 1811 /* And store cached results */ 1812 icsk->icsk_pmtu_cookie = pmtu; 1813 if (icsk->icsk_mtup.enabled) 1814 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1815 tp->mss_cache = mss_now; 1816 1817 return mss_now; 1818 } 1819 EXPORT_SYMBOL(tcp_sync_mss); 1820 1821 /* Compute the current effective MSS, taking SACKs and IP options, 1822 * and even PMTU discovery events into account. 1823 */ 1824 unsigned int tcp_current_mss(struct sock *sk) 1825 { 1826 const struct tcp_sock *tp = tcp_sk(sk); 1827 const struct dst_entry *dst = __sk_dst_get(sk); 1828 u32 mss_now; 1829 unsigned int header_len; 1830 struct tcp_out_options opts; 1831 struct tcp_md5sig_key *md5; 1832 1833 mss_now = tp->mss_cache; 1834 1835 if (dst) { 1836 u32 mtu = dst_mtu(dst); 1837 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1838 mss_now = tcp_sync_mss(sk, mtu); 1839 } 1840 1841 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1842 sizeof(struct tcphdr); 1843 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1844 * some common options. If this is an odd packet (because we have SACK 1845 * blocks etc) then our calculated header_len will be different, and 1846 * we have to adjust mss_now correspondingly */ 1847 if (header_len != tp->tcp_header_len) { 1848 int delta = (int) header_len - tp->tcp_header_len; 1849 mss_now -= delta; 1850 } 1851 1852 return mss_now; 1853 } 1854 1855 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1856 * As additional protections, we do not touch cwnd in retransmission phases, 1857 * and if application hit its sndbuf limit recently. 1858 */ 1859 static void tcp_cwnd_application_limited(struct sock *sk) 1860 { 1861 struct tcp_sock *tp = tcp_sk(sk); 1862 1863 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1864 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1865 /* Limited by application or receiver window. */ 1866 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1867 u32 win_used = max(tp->snd_cwnd_used, init_win); 1868 if (win_used < tcp_snd_cwnd(tp)) { 1869 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1870 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1871 } 1872 tp->snd_cwnd_used = 0; 1873 } 1874 tp->snd_cwnd_stamp = tcp_jiffies32; 1875 } 1876 1877 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1878 { 1879 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1880 struct tcp_sock *tp = tcp_sk(sk); 1881 1882 /* Track the strongest available signal of the degree to which the cwnd 1883 * is fully utilized. If cwnd-limited then remember that fact for the 1884 * current window. If not cwnd-limited then track the maximum number of 1885 * outstanding packets in the current window. (If cwnd-limited then we 1886 * chose to not update tp->max_packets_out to avoid an extra else 1887 * clause with no functional impact.) 1888 */ 1889 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1890 is_cwnd_limited || 1891 (!tp->is_cwnd_limited && 1892 tp->packets_out > tp->max_packets_out)) { 1893 tp->is_cwnd_limited = is_cwnd_limited; 1894 tp->max_packets_out = tp->packets_out; 1895 tp->cwnd_usage_seq = tp->snd_nxt; 1896 } 1897 1898 if (tcp_is_cwnd_limited(sk)) { 1899 /* Network is feed fully. */ 1900 tp->snd_cwnd_used = 0; 1901 tp->snd_cwnd_stamp = tcp_jiffies32; 1902 } else { 1903 /* Network starves. */ 1904 if (tp->packets_out > tp->snd_cwnd_used) 1905 tp->snd_cwnd_used = tp->packets_out; 1906 1907 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1908 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1909 !ca_ops->cong_control) 1910 tcp_cwnd_application_limited(sk); 1911 1912 /* The following conditions together indicate the starvation 1913 * is caused by insufficient sender buffer: 1914 * 1) just sent some data (see tcp_write_xmit) 1915 * 2) not cwnd limited (this else condition) 1916 * 3) no more data to send (tcp_write_queue_empty()) 1917 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1918 */ 1919 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1920 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1921 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1922 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1923 } 1924 } 1925 1926 /* Minshall's variant of the Nagle send check. */ 1927 static bool tcp_minshall_check(const struct tcp_sock *tp) 1928 { 1929 return after(tp->snd_sml, tp->snd_una) && 1930 !after(tp->snd_sml, tp->snd_nxt); 1931 } 1932 1933 /* Update snd_sml if this skb is under mss 1934 * Note that a TSO packet might end with a sub-mss segment 1935 * The test is really : 1936 * if ((skb->len % mss) != 0) 1937 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1938 * But we can avoid doing the divide again given we already have 1939 * skb_pcount = skb->len / mss_now 1940 */ 1941 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1942 const struct sk_buff *skb) 1943 { 1944 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1945 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1946 } 1947 1948 /* Return false, if packet can be sent now without violation Nagle's rules: 1949 * 1. It is full sized. (provided by caller in %partial bool) 1950 * 2. Or it contains FIN. (already checked by caller) 1951 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1952 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1953 * With Minshall's modification: all sent small packets are ACKed. 1954 */ 1955 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1956 int nonagle) 1957 { 1958 return partial && 1959 ((nonagle & TCP_NAGLE_CORK) || 1960 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1961 } 1962 1963 /* Return how many segs we'd like on a TSO packet, 1964 * depending on current pacing rate, and how close the peer is. 1965 * 1966 * Rationale is: 1967 * - For close peers, we rather send bigger packets to reduce 1968 * cpu costs, because occasional losses will be repaired fast. 1969 * - For long distance/rtt flows, we would like to get ACK clocking 1970 * with 1 ACK per ms. 1971 * 1972 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 1973 * in bigger TSO bursts. We we cut the RTT-based allowance in half 1974 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 1975 * is below 1500 bytes after 6 * ~500 usec = 3ms. 1976 */ 1977 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1978 int min_tso_segs) 1979 { 1980 unsigned long bytes; 1981 u32 r; 1982 1983 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift); 1984 1985 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 1986 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 1987 bytes += sk->sk_gso_max_size >> r; 1988 1989 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 1990 1991 return max_t(u32, bytes / mss_now, min_tso_segs); 1992 } 1993 1994 /* Return the number of segments we want in the skb we are transmitting. 1995 * See if congestion control module wants to decide; otherwise, autosize. 1996 */ 1997 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1998 { 1999 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2000 u32 min_tso, tso_segs; 2001 2002 min_tso = ca_ops->min_tso_segs ? 2003 ca_ops->min_tso_segs(sk) : 2004 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2005 2006 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2007 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2008 } 2009 2010 /* Returns the portion of skb which can be sent right away */ 2011 static unsigned int tcp_mss_split_point(const struct sock *sk, 2012 const struct sk_buff *skb, 2013 unsigned int mss_now, 2014 unsigned int max_segs, 2015 int nonagle) 2016 { 2017 const struct tcp_sock *tp = tcp_sk(sk); 2018 u32 partial, needed, window, max_len; 2019 2020 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2021 max_len = mss_now * max_segs; 2022 2023 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2024 return max_len; 2025 2026 needed = min(skb->len, window); 2027 2028 if (max_len <= needed) 2029 return max_len; 2030 2031 partial = needed % mss_now; 2032 /* If last segment is not a full MSS, check if Nagle rules allow us 2033 * to include this last segment in this skb. 2034 * Otherwise, we'll split the skb at last MSS boundary 2035 */ 2036 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2037 return needed - partial; 2038 2039 return needed; 2040 } 2041 2042 /* Can at least one segment of SKB be sent right now, according to the 2043 * congestion window rules? If so, return how many segments are allowed. 2044 */ 2045 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2046 const struct sk_buff *skb) 2047 { 2048 u32 in_flight, cwnd, halfcwnd; 2049 2050 /* Don't be strict about the congestion window for the final FIN. */ 2051 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2052 tcp_skb_pcount(skb) == 1) 2053 return 1; 2054 2055 in_flight = tcp_packets_in_flight(tp); 2056 cwnd = tcp_snd_cwnd(tp); 2057 if (in_flight >= cwnd) 2058 return 0; 2059 2060 /* For better scheduling, ensure we have at least 2061 * 2 GSO packets in flight. 2062 */ 2063 halfcwnd = max(cwnd >> 1, 1U); 2064 return min(halfcwnd, cwnd - in_flight); 2065 } 2066 2067 /* Initialize TSO state of a skb. 2068 * This must be invoked the first time we consider transmitting 2069 * SKB onto the wire. 2070 */ 2071 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2072 { 2073 int tso_segs = tcp_skb_pcount(skb); 2074 2075 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2076 tcp_set_skb_tso_segs(skb, mss_now); 2077 tso_segs = tcp_skb_pcount(skb); 2078 } 2079 return tso_segs; 2080 } 2081 2082 2083 /* Return true if the Nagle test allows this packet to be 2084 * sent now. 2085 */ 2086 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2087 unsigned int cur_mss, int nonagle) 2088 { 2089 /* Nagle rule does not apply to frames, which sit in the middle of the 2090 * write_queue (they have no chances to get new data). 2091 * 2092 * This is implemented in the callers, where they modify the 'nonagle' 2093 * argument based upon the location of SKB in the send queue. 2094 */ 2095 if (nonagle & TCP_NAGLE_PUSH) 2096 return true; 2097 2098 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2099 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2100 return true; 2101 2102 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2103 return true; 2104 2105 return false; 2106 } 2107 2108 /* Does at least the first segment of SKB fit into the send window? */ 2109 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2110 const struct sk_buff *skb, 2111 unsigned int cur_mss) 2112 { 2113 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2114 2115 if (skb->len > cur_mss) 2116 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2117 2118 return !after(end_seq, tcp_wnd_end(tp)); 2119 } 2120 2121 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2122 * which is put after SKB on the list. It is very much like 2123 * tcp_fragment() except that it may make several kinds of assumptions 2124 * in order to speed up the splitting operation. In particular, we 2125 * know that all the data is in scatter-gather pages, and that the 2126 * packet has never been sent out before (and thus is not cloned). 2127 */ 2128 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2129 unsigned int mss_now, gfp_t gfp) 2130 { 2131 int nlen = skb->len - len; 2132 struct sk_buff *buff; 2133 u8 flags; 2134 2135 /* All of a TSO frame must be composed of paged data. */ 2136 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2137 2138 buff = tcp_stream_alloc_skb(sk, gfp, true); 2139 if (unlikely(!buff)) 2140 return -ENOMEM; 2141 skb_copy_decrypted(buff, skb); 2142 mptcp_skb_ext_copy(buff, skb); 2143 2144 sk_wmem_queued_add(sk, buff->truesize); 2145 sk_mem_charge(sk, buff->truesize); 2146 buff->truesize += nlen; 2147 skb->truesize -= nlen; 2148 2149 /* Correct the sequence numbers. */ 2150 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2151 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2152 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2153 2154 /* PSH and FIN should only be set in the second packet. */ 2155 flags = TCP_SKB_CB(skb)->tcp_flags; 2156 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2157 TCP_SKB_CB(buff)->tcp_flags = flags; 2158 2159 tcp_skb_fragment_eor(skb, buff); 2160 2161 skb_split(skb, buff, len); 2162 tcp_fragment_tstamp(skb, buff); 2163 2164 /* Fix up tso_factor for both original and new SKB. */ 2165 tcp_set_skb_tso_segs(skb, mss_now); 2166 tcp_set_skb_tso_segs(buff, mss_now); 2167 2168 /* Link BUFF into the send queue. */ 2169 __skb_header_release(buff); 2170 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2171 2172 return 0; 2173 } 2174 2175 /* Try to defer sending, if possible, in order to minimize the amount 2176 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2177 * 2178 * This algorithm is from John Heffner. 2179 */ 2180 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2181 bool *is_cwnd_limited, 2182 bool *is_rwnd_limited, 2183 u32 max_segs) 2184 { 2185 const struct inet_connection_sock *icsk = inet_csk(sk); 2186 u32 send_win, cong_win, limit, in_flight; 2187 struct tcp_sock *tp = tcp_sk(sk); 2188 struct sk_buff *head; 2189 int win_divisor; 2190 s64 delta; 2191 2192 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2193 goto send_now; 2194 2195 /* Avoid bursty behavior by allowing defer 2196 * only if the last write was recent (1 ms). 2197 * Note that tp->tcp_wstamp_ns can be in the future if we have 2198 * packets waiting in a qdisc or device for EDT delivery. 2199 */ 2200 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2201 if (delta > 0) 2202 goto send_now; 2203 2204 in_flight = tcp_packets_in_flight(tp); 2205 2206 BUG_ON(tcp_skb_pcount(skb) <= 1); 2207 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2208 2209 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2210 2211 /* From in_flight test above, we know that cwnd > in_flight. */ 2212 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2213 2214 limit = min(send_win, cong_win); 2215 2216 /* If a full-sized TSO skb can be sent, do it. */ 2217 if (limit >= max_segs * tp->mss_cache) 2218 goto send_now; 2219 2220 /* Middle in queue won't get any more data, full sendable already? */ 2221 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2222 goto send_now; 2223 2224 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2225 if (win_divisor) { 2226 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2227 2228 /* If at least some fraction of a window is available, 2229 * just use it. 2230 */ 2231 chunk /= win_divisor; 2232 if (limit >= chunk) 2233 goto send_now; 2234 } else { 2235 /* Different approach, try not to defer past a single 2236 * ACK. Receiver should ACK every other full sized 2237 * frame, so if we have space for more than 3 frames 2238 * then send now. 2239 */ 2240 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2241 goto send_now; 2242 } 2243 2244 /* TODO : use tsorted_sent_queue ? */ 2245 head = tcp_rtx_queue_head(sk); 2246 if (!head) 2247 goto send_now; 2248 delta = tp->tcp_clock_cache - head->tstamp; 2249 /* If next ACK is likely to come too late (half srtt), do not defer */ 2250 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2251 goto send_now; 2252 2253 /* Ok, it looks like it is advisable to defer. 2254 * Three cases are tracked : 2255 * 1) We are cwnd-limited 2256 * 2) We are rwnd-limited 2257 * 3) We are application limited. 2258 */ 2259 if (cong_win < send_win) { 2260 if (cong_win <= skb->len) { 2261 *is_cwnd_limited = true; 2262 return true; 2263 } 2264 } else { 2265 if (send_win <= skb->len) { 2266 *is_rwnd_limited = true; 2267 return true; 2268 } 2269 } 2270 2271 /* If this packet won't get more data, do not wait. */ 2272 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2273 TCP_SKB_CB(skb)->eor) 2274 goto send_now; 2275 2276 return true; 2277 2278 send_now: 2279 return false; 2280 } 2281 2282 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2283 { 2284 struct inet_connection_sock *icsk = inet_csk(sk); 2285 struct tcp_sock *tp = tcp_sk(sk); 2286 struct net *net = sock_net(sk); 2287 u32 interval; 2288 s32 delta; 2289 2290 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2291 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2292 if (unlikely(delta >= interval * HZ)) { 2293 int mss = tcp_current_mss(sk); 2294 2295 /* Update current search range */ 2296 icsk->icsk_mtup.probe_size = 0; 2297 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2298 sizeof(struct tcphdr) + 2299 icsk->icsk_af_ops->net_header_len; 2300 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2301 2302 /* Update probe time stamp */ 2303 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2304 } 2305 } 2306 2307 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2308 { 2309 struct sk_buff *skb, *next; 2310 2311 skb = tcp_send_head(sk); 2312 tcp_for_write_queue_from_safe(skb, next, sk) { 2313 if (len <= skb->len) 2314 break; 2315 2316 if (unlikely(TCP_SKB_CB(skb)->eor) || 2317 tcp_has_tx_tstamp(skb) || 2318 !skb_pure_zcopy_same(skb, next)) 2319 return false; 2320 2321 len -= skb->len; 2322 } 2323 2324 return true; 2325 } 2326 2327 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2328 int probe_size) 2329 { 2330 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2331 int i, todo, len = 0, nr_frags = 0; 2332 const struct sk_buff *skb; 2333 2334 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2335 return -ENOMEM; 2336 2337 skb_queue_walk(&sk->sk_write_queue, skb) { 2338 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2339 2340 if (skb_headlen(skb)) 2341 return -EINVAL; 2342 2343 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2344 if (len >= probe_size) 2345 goto commit; 2346 todo = min_t(int, skb_frag_size(fragfrom), 2347 probe_size - len); 2348 len += todo; 2349 if (lastfrag && 2350 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2351 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2352 skb_frag_size(lastfrag)) { 2353 skb_frag_size_add(lastfrag, todo); 2354 continue; 2355 } 2356 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2357 return -E2BIG; 2358 skb_frag_page_copy(fragto, fragfrom); 2359 skb_frag_off_copy(fragto, fragfrom); 2360 skb_frag_size_set(fragto, todo); 2361 nr_frags++; 2362 lastfrag = fragto++; 2363 } 2364 } 2365 commit: 2366 WARN_ON_ONCE(len != probe_size); 2367 for (i = 0; i < nr_frags; i++) 2368 skb_frag_ref(to, i); 2369 2370 skb_shinfo(to)->nr_frags = nr_frags; 2371 to->truesize += probe_size; 2372 to->len += probe_size; 2373 to->data_len += probe_size; 2374 __skb_header_release(to); 2375 return 0; 2376 } 2377 2378 /* Create a new MTU probe if we are ready. 2379 * MTU probe is regularly attempting to increase the path MTU by 2380 * deliberately sending larger packets. This discovers routing 2381 * changes resulting in larger path MTUs. 2382 * 2383 * Returns 0 if we should wait to probe (no cwnd available), 2384 * 1 if a probe was sent, 2385 * -1 otherwise 2386 */ 2387 static int tcp_mtu_probe(struct sock *sk) 2388 { 2389 struct inet_connection_sock *icsk = inet_csk(sk); 2390 struct tcp_sock *tp = tcp_sk(sk); 2391 struct sk_buff *skb, *nskb, *next; 2392 struct net *net = sock_net(sk); 2393 int probe_size; 2394 int size_needed; 2395 int copy, len; 2396 int mss_now; 2397 int interval; 2398 2399 /* Not currently probing/verifying, 2400 * not in recovery, 2401 * have enough cwnd, and 2402 * not SACKing (the variable headers throw things off) 2403 */ 2404 if (likely(!icsk->icsk_mtup.enabled || 2405 icsk->icsk_mtup.probe_size || 2406 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2407 tcp_snd_cwnd(tp) < 11 || 2408 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2409 return -1; 2410 2411 /* Use binary search for probe_size between tcp_mss_base, 2412 * and current mss_clamp. if (search_high - search_low) 2413 * smaller than a threshold, backoff from probing. 2414 */ 2415 mss_now = tcp_current_mss(sk); 2416 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2417 icsk->icsk_mtup.search_low) >> 1); 2418 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2419 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2420 /* When misfortune happens, we are reprobing actively, 2421 * and then reprobe timer has expired. We stick with current 2422 * probing process by not resetting search range to its orignal. 2423 */ 2424 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2425 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2426 /* Check whether enough time has elaplased for 2427 * another round of probing. 2428 */ 2429 tcp_mtu_check_reprobe(sk); 2430 return -1; 2431 } 2432 2433 /* Have enough data in the send queue to probe? */ 2434 if (tp->write_seq - tp->snd_nxt < size_needed) 2435 return -1; 2436 2437 if (tp->snd_wnd < size_needed) 2438 return -1; 2439 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2440 return 0; 2441 2442 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2443 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2444 if (!tcp_packets_in_flight(tp)) 2445 return -1; 2446 else 2447 return 0; 2448 } 2449 2450 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2451 return -1; 2452 2453 /* We're allowed to probe. Build it now. */ 2454 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2455 if (!nskb) 2456 return -1; 2457 2458 /* build the payload, and be prepared to abort if this fails. */ 2459 if (tcp_clone_payload(sk, nskb, probe_size)) { 2460 consume_skb(nskb); 2461 return -1; 2462 } 2463 sk_wmem_queued_add(sk, nskb->truesize); 2464 sk_mem_charge(sk, nskb->truesize); 2465 2466 skb = tcp_send_head(sk); 2467 skb_copy_decrypted(nskb, skb); 2468 mptcp_skb_ext_copy(nskb, skb); 2469 2470 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2471 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2472 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2473 2474 tcp_insert_write_queue_before(nskb, skb, sk); 2475 tcp_highest_sack_replace(sk, skb, nskb); 2476 2477 len = 0; 2478 tcp_for_write_queue_from_safe(skb, next, sk) { 2479 copy = min_t(int, skb->len, probe_size - len); 2480 2481 if (skb->len <= copy) { 2482 /* We've eaten all the data from this skb. 2483 * Throw it away. */ 2484 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2485 /* If this is the last SKB we copy and eor is set 2486 * we need to propagate it to the new skb. 2487 */ 2488 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2489 tcp_skb_collapse_tstamp(nskb, skb); 2490 tcp_unlink_write_queue(skb, sk); 2491 tcp_wmem_free_skb(sk, skb); 2492 } else { 2493 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2494 ~(TCPHDR_FIN|TCPHDR_PSH); 2495 __pskb_trim_head(skb, copy); 2496 tcp_set_skb_tso_segs(skb, mss_now); 2497 TCP_SKB_CB(skb)->seq += copy; 2498 } 2499 2500 len += copy; 2501 2502 if (len >= probe_size) 2503 break; 2504 } 2505 tcp_init_tso_segs(nskb, nskb->len); 2506 2507 /* We're ready to send. If this fails, the probe will 2508 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2509 */ 2510 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2511 /* Decrement cwnd here because we are sending 2512 * effectively two packets. */ 2513 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2514 tcp_event_new_data_sent(sk, nskb); 2515 2516 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2517 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2518 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2519 2520 return 1; 2521 } 2522 2523 return -1; 2524 } 2525 2526 static bool tcp_pacing_check(struct sock *sk) 2527 { 2528 struct tcp_sock *tp = tcp_sk(sk); 2529 2530 if (!tcp_needs_internal_pacing(sk)) 2531 return false; 2532 2533 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2534 return false; 2535 2536 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2537 hrtimer_start(&tp->pacing_timer, 2538 ns_to_ktime(tp->tcp_wstamp_ns), 2539 HRTIMER_MODE_ABS_PINNED_SOFT); 2540 sock_hold(sk); 2541 } 2542 return true; 2543 } 2544 2545 /* TCP Small Queues : 2546 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2547 * (These limits are doubled for retransmits) 2548 * This allows for : 2549 * - better RTT estimation and ACK scheduling 2550 * - faster recovery 2551 * - high rates 2552 * Alas, some drivers / subsystems require a fair amount 2553 * of queued bytes to ensure line rate. 2554 * One example is wifi aggregation (802.11 AMPDU) 2555 */ 2556 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2557 unsigned int factor) 2558 { 2559 unsigned long limit; 2560 2561 limit = max_t(unsigned long, 2562 2 * skb->truesize, 2563 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2564 if (sk->sk_pacing_status == SK_PACING_NONE) 2565 limit = min_t(unsigned long, limit, 2566 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2567 limit <<= factor; 2568 2569 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2570 tcp_sk(sk)->tcp_tx_delay) { 2571 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2572 2573 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2574 * approximate our needs assuming an ~100% skb->truesize overhead. 2575 * USEC_PER_SEC is approximated by 2^20. 2576 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2577 */ 2578 extra_bytes >>= (20 - 1); 2579 limit += extra_bytes; 2580 } 2581 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2582 /* Always send skb if rtx queue is empty. 2583 * No need to wait for TX completion to call us back, 2584 * after softirq/tasklet schedule. 2585 * This helps when TX completions are delayed too much. 2586 */ 2587 if (tcp_rtx_queue_empty(sk)) 2588 return false; 2589 2590 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2591 /* It is possible TX completion already happened 2592 * before we set TSQ_THROTTLED, so we must 2593 * test again the condition. 2594 */ 2595 smp_mb__after_atomic(); 2596 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2597 return true; 2598 } 2599 return false; 2600 } 2601 2602 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2603 { 2604 const u32 now = tcp_jiffies32; 2605 enum tcp_chrono old = tp->chrono_type; 2606 2607 if (old > TCP_CHRONO_UNSPEC) 2608 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2609 tp->chrono_start = now; 2610 tp->chrono_type = new; 2611 } 2612 2613 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2614 { 2615 struct tcp_sock *tp = tcp_sk(sk); 2616 2617 /* If there are multiple conditions worthy of tracking in a 2618 * chronograph then the highest priority enum takes precedence 2619 * over the other conditions. So that if something "more interesting" 2620 * starts happening, stop the previous chrono and start a new one. 2621 */ 2622 if (type > tp->chrono_type) 2623 tcp_chrono_set(tp, type); 2624 } 2625 2626 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2627 { 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 2630 2631 /* There are multiple conditions worthy of tracking in a 2632 * chronograph, so that the highest priority enum takes 2633 * precedence over the other conditions (see tcp_chrono_start). 2634 * If a condition stops, we only stop chrono tracking if 2635 * it's the "most interesting" or current chrono we are 2636 * tracking and starts busy chrono if we have pending data. 2637 */ 2638 if (tcp_rtx_and_write_queues_empty(sk)) 2639 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2640 else if (type == tp->chrono_type) 2641 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2642 } 2643 2644 /* This routine writes packets to the network. It advances the 2645 * send_head. This happens as incoming acks open up the remote 2646 * window for us. 2647 * 2648 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2649 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2650 * account rare use of URG, this is not a big flaw. 2651 * 2652 * Send at most one packet when push_one > 0. Temporarily ignore 2653 * cwnd limit to force at most one packet out when push_one == 2. 2654 2655 * Returns true, if no segments are in flight and we have queued segments, 2656 * but cannot send anything now because of SWS or another problem. 2657 */ 2658 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2659 int push_one, gfp_t gfp) 2660 { 2661 struct tcp_sock *tp = tcp_sk(sk); 2662 struct sk_buff *skb; 2663 unsigned int tso_segs, sent_pkts; 2664 int cwnd_quota; 2665 int result; 2666 bool is_cwnd_limited = false, is_rwnd_limited = false; 2667 u32 max_segs; 2668 2669 sent_pkts = 0; 2670 2671 tcp_mstamp_refresh(tp); 2672 if (!push_one) { 2673 /* Do MTU probing. */ 2674 result = tcp_mtu_probe(sk); 2675 if (!result) { 2676 return false; 2677 } else if (result > 0) { 2678 sent_pkts = 1; 2679 } 2680 } 2681 2682 max_segs = tcp_tso_segs(sk, mss_now); 2683 while ((skb = tcp_send_head(sk))) { 2684 unsigned int limit; 2685 2686 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2687 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2688 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2689 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2690 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2691 tcp_init_tso_segs(skb, mss_now); 2692 goto repair; /* Skip network transmission */ 2693 } 2694 2695 if (tcp_pacing_check(sk)) 2696 break; 2697 2698 tso_segs = tcp_init_tso_segs(skb, mss_now); 2699 BUG_ON(!tso_segs); 2700 2701 cwnd_quota = tcp_cwnd_test(tp, skb); 2702 if (!cwnd_quota) { 2703 if (push_one == 2) 2704 /* Force out a loss probe pkt. */ 2705 cwnd_quota = 1; 2706 else 2707 break; 2708 } 2709 2710 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2711 is_rwnd_limited = true; 2712 break; 2713 } 2714 2715 if (tso_segs == 1) { 2716 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2717 (tcp_skb_is_last(sk, skb) ? 2718 nonagle : TCP_NAGLE_PUSH)))) 2719 break; 2720 } else { 2721 if (!push_one && 2722 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2723 &is_rwnd_limited, max_segs)) 2724 break; 2725 } 2726 2727 limit = mss_now; 2728 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2729 limit = tcp_mss_split_point(sk, skb, mss_now, 2730 min_t(unsigned int, 2731 cwnd_quota, 2732 max_segs), 2733 nonagle); 2734 2735 if (skb->len > limit && 2736 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2737 break; 2738 2739 if (tcp_small_queue_check(sk, skb, 0)) 2740 break; 2741 2742 /* Argh, we hit an empty skb(), presumably a thread 2743 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2744 * We do not want to send a pure-ack packet and have 2745 * a strange looking rtx queue with empty packet(s). 2746 */ 2747 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2748 break; 2749 2750 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2751 break; 2752 2753 repair: 2754 /* Advance the send_head. This one is sent out. 2755 * This call will increment packets_out. 2756 */ 2757 tcp_event_new_data_sent(sk, skb); 2758 2759 tcp_minshall_update(tp, mss_now, skb); 2760 sent_pkts += tcp_skb_pcount(skb); 2761 2762 if (push_one) 2763 break; 2764 } 2765 2766 if (is_rwnd_limited) 2767 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2768 else 2769 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2770 2771 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2772 if (likely(sent_pkts || is_cwnd_limited)) 2773 tcp_cwnd_validate(sk, is_cwnd_limited); 2774 2775 if (likely(sent_pkts)) { 2776 if (tcp_in_cwnd_reduction(sk)) 2777 tp->prr_out += sent_pkts; 2778 2779 /* Send one loss probe per tail loss episode. */ 2780 if (push_one != 2) 2781 tcp_schedule_loss_probe(sk, false); 2782 return false; 2783 } 2784 return !tp->packets_out && !tcp_write_queue_empty(sk); 2785 } 2786 2787 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2788 { 2789 struct inet_connection_sock *icsk = inet_csk(sk); 2790 struct tcp_sock *tp = tcp_sk(sk); 2791 u32 timeout, rto_delta_us; 2792 int early_retrans; 2793 2794 /* Don't do any loss probe on a Fast Open connection before 3WHS 2795 * finishes. 2796 */ 2797 if (rcu_access_pointer(tp->fastopen_rsk)) 2798 return false; 2799 2800 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2801 /* Schedule a loss probe in 2*RTT for SACK capable connections 2802 * not in loss recovery, that are either limited by cwnd or application. 2803 */ 2804 if ((early_retrans != 3 && early_retrans != 4) || 2805 !tp->packets_out || !tcp_is_sack(tp) || 2806 (icsk->icsk_ca_state != TCP_CA_Open && 2807 icsk->icsk_ca_state != TCP_CA_CWR)) 2808 return false; 2809 2810 /* Probe timeout is 2*rtt. Add minimum RTO to account 2811 * for delayed ack when there's one outstanding packet. If no RTT 2812 * sample is available then probe after TCP_TIMEOUT_INIT. 2813 */ 2814 if (tp->srtt_us) { 2815 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2816 if (tp->packets_out == 1) 2817 timeout += TCP_RTO_MIN; 2818 else 2819 timeout += TCP_TIMEOUT_MIN; 2820 } else { 2821 timeout = TCP_TIMEOUT_INIT; 2822 } 2823 2824 /* If the RTO formula yields an earlier time, then use that time. */ 2825 rto_delta_us = advancing_rto ? 2826 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2827 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2828 if (rto_delta_us > 0) 2829 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2830 2831 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2832 return true; 2833 } 2834 2835 /* Thanks to skb fast clones, we can detect if a prior transmit of 2836 * a packet is still in a qdisc or driver queue. 2837 * In this case, there is very little point doing a retransmit ! 2838 */ 2839 static bool skb_still_in_host_queue(struct sock *sk, 2840 const struct sk_buff *skb) 2841 { 2842 if (unlikely(skb_fclone_busy(sk, skb))) { 2843 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2844 smp_mb__after_atomic(); 2845 if (skb_fclone_busy(sk, skb)) { 2846 NET_INC_STATS(sock_net(sk), 2847 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2848 return true; 2849 } 2850 } 2851 return false; 2852 } 2853 2854 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2855 * retransmit the last segment. 2856 */ 2857 void tcp_send_loss_probe(struct sock *sk) 2858 { 2859 struct tcp_sock *tp = tcp_sk(sk); 2860 struct sk_buff *skb; 2861 int pcount; 2862 int mss = tcp_current_mss(sk); 2863 2864 /* At most one outstanding TLP */ 2865 if (tp->tlp_high_seq) 2866 goto rearm_timer; 2867 2868 tp->tlp_retrans = 0; 2869 skb = tcp_send_head(sk); 2870 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2871 pcount = tp->packets_out; 2872 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2873 if (tp->packets_out > pcount) 2874 goto probe_sent; 2875 goto rearm_timer; 2876 } 2877 skb = skb_rb_last(&sk->tcp_rtx_queue); 2878 if (unlikely(!skb)) { 2879 WARN_ONCE(tp->packets_out, 2880 "invalid inflight: %u state %u cwnd %u mss %d\n", 2881 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2882 inet_csk(sk)->icsk_pending = 0; 2883 return; 2884 } 2885 2886 if (skb_still_in_host_queue(sk, skb)) 2887 goto rearm_timer; 2888 2889 pcount = tcp_skb_pcount(skb); 2890 if (WARN_ON(!pcount)) 2891 goto rearm_timer; 2892 2893 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2894 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2895 (pcount - 1) * mss, mss, 2896 GFP_ATOMIC))) 2897 goto rearm_timer; 2898 skb = skb_rb_next(skb); 2899 } 2900 2901 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2902 goto rearm_timer; 2903 2904 if (__tcp_retransmit_skb(sk, skb, 1)) 2905 goto rearm_timer; 2906 2907 tp->tlp_retrans = 1; 2908 2909 probe_sent: 2910 /* Record snd_nxt for loss detection. */ 2911 tp->tlp_high_seq = tp->snd_nxt; 2912 2913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2914 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2915 inet_csk(sk)->icsk_pending = 0; 2916 rearm_timer: 2917 tcp_rearm_rto(sk); 2918 } 2919 2920 /* Push out any pending frames which were held back due to 2921 * TCP_CORK or attempt at coalescing tiny packets. 2922 * The socket must be locked by the caller. 2923 */ 2924 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2925 int nonagle) 2926 { 2927 /* If we are closed, the bytes will have to remain here. 2928 * In time closedown will finish, we empty the write queue and 2929 * all will be happy. 2930 */ 2931 if (unlikely(sk->sk_state == TCP_CLOSE)) 2932 return; 2933 2934 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2935 sk_gfp_mask(sk, GFP_ATOMIC))) 2936 tcp_check_probe_timer(sk); 2937 } 2938 2939 /* Send _single_ skb sitting at the send head. This function requires 2940 * true push pending frames to setup probe timer etc. 2941 */ 2942 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2943 { 2944 struct sk_buff *skb = tcp_send_head(sk); 2945 2946 BUG_ON(!skb || skb->len < mss_now); 2947 2948 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2949 } 2950 2951 /* This function returns the amount that we can raise the 2952 * usable window based on the following constraints 2953 * 2954 * 1. The window can never be shrunk once it is offered (RFC 793) 2955 * 2. We limit memory per socket 2956 * 2957 * RFC 1122: 2958 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2959 * RECV.NEXT + RCV.WIN fixed until: 2960 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2961 * 2962 * i.e. don't raise the right edge of the window until you can raise 2963 * it at least MSS bytes. 2964 * 2965 * Unfortunately, the recommended algorithm breaks header prediction, 2966 * since header prediction assumes th->window stays fixed. 2967 * 2968 * Strictly speaking, keeping th->window fixed violates the receiver 2969 * side SWS prevention criteria. The problem is that under this rule 2970 * a stream of single byte packets will cause the right side of the 2971 * window to always advance by a single byte. 2972 * 2973 * Of course, if the sender implements sender side SWS prevention 2974 * then this will not be a problem. 2975 * 2976 * BSD seems to make the following compromise: 2977 * 2978 * If the free space is less than the 1/4 of the maximum 2979 * space available and the free space is less than 1/2 mss, 2980 * then set the window to 0. 2981 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2982 * Otherwise, just prevent the window from shrinking 2983 * and from being larger than the largest representable value. 2984 * 2985 * This prevents incremental opening of the window in the regime 2986 * where TCP is limited by the speed of the reader side taking 2987 * data out of the TCP receive queue. It does nothing about 2988 * those cases where the window is constrained on the sender side 2989 * because the pipeline is full. 2990 * 2991 * BSD also seems to "accidentally" limit itself to windows that are a 2992 * multiple of MSS, at least until the free space gets quite small. 2993 * This would appear to be a side effect of the mbuf implementation. 2994 * Combining these two algorithms results in the observed behavior 2995 * of having a fixed window size at almost all times. 2996 * 2997 * Below we obtain similar behavior by forcing the offered window to 2998 * a multiple of the mss when it is feasible to do so. 2999 * 3000 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3001 * Regular options like TIMESTAMP are taken into account. 3002 */ 3003 u32 __tcp_select_window(struct sock *sk) 3004 { 3005 struct inet_connection_sock *icsk = inet_csk(sk); 3006 struct tcp_sock *tp = tcp_sk(sk); 3007 struct net *net = sock_net(sk); 3008 /* MSS for the peer's data. Previous versions used mss_clamp 3009 * here. I don't know if the value based on our guesses 3010 * of peer's MSS is better for the performance. It's more correct 3011 * but may be worse for the performance because of rcv_mss 3012 * fluctuations. --SAW 1998/11/1 3013 */ 3014 int mss = icsk->icsk_ack.rcv_mss; 3015 int free_space = tcp_space(sk); 3016 int allowed_space = tcp_full_space(sk); 3017 int full_space, window; 3018 3019 if (sk_is_mptcp(sk)) 3020 mptcp_space(sk, &free_space, &allowed_space); 3021 3022 full_space = min_t(int, tp->window_clamp, allowed_space); 3023 3024 if (unlikely(mss > full_space)) { 3025 mss = full_space; 3026 if (mss <= 0) 3027 return 0; 3028 } 3029 3030 /* Only allow window shrink if the sysctl is enabled and we have 3031 * a non-zero scaling factor in effect. 3032 */ 3033 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3034 goto shrink_window_allowed; 3035 3036 /* do not allow window to shrink */ 3037 3038 if (free_space < (full_space >> 1)) { 3039 icsk->icsk_ack.quick = 0; 3040 3041 if (tcp_under_memory_pressure(sk)) 3042 tcp_adjust_rcv_ssthresh(sk); 3043 3044 /* free_space might become our new window, make sure we don't 3045 * increase it due to wscale. 3046 */ 3047 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3048 3049 /* if free space is less than mss estimate, or is below 1/16th 3050 * of the maximum allowed, try to move to zero-window, else 3051 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3052 * new incoming data is dropped due to memory limits. 3053 * With large window, mss test triggers way too late in order 3054 * to announce zero window in time before rmem limit kicks in. 3055 */ 3056 if (free_space < (allowed_space >> 4) || free_space < mss) 3057 return 0; 3058 } 3059 3060 if (free_space > tp->rcv_ssthresh) 3061 free_space = tp->rcv_ssthresh; 3062 3063 /* Don't do rounding if we are using window scaling, since the 3064 * scaled window will not line up with the MSS boundary anyway. 3065 */ 3066 if (tp->rx_opt.rcv_wscale) { 3067 window = free_space; 3068 3069 /* Advertise enough space so that it won't get scaled away. 3070 * Import case: prevent zero window announcement if 3071 * 1<<rcv_wscale > mss. 3072 */ 3073 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3074 } else { 3075 window = tp->rcv_wnd; 3076 /* Get the largest window that is a nice multiple of mss. 3077 * Window clamp already applied above. 3078 * If our current window offering is within 1 mss of the 3079 * free space we just keep it. This prevents the divide 3080 * and multiply from happening most of the time. 3081 * We also don't do any window rounding when the free space 3082 * is too small. 3083 */ 3084 if (window <= free_space - mss || window > free_space) 3085 window = rounddown(free_space, mss); 3086 else if (mss == full_space && 3087 free_space > window + (full_space >> 1)) 3088 window = free_space; 3089 } 3090 3091 return window; 3092 3093 shrink_window_allowed: 3094 /* new window should always be an exact multiple of scaling factor */ 3095 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3096 3097 if (free_space < (full_space >> 1)) { 3098 icsk->icsk_ack.quick = 0; 3099 3100 if (tcp_under_memory_pressure(sk)) 3101 tcp_adjust_rcv_ssthresh(sk); 3102 3103 /* if free space is too low, return a zero window */ 3104 if (free_space < (allowed_space >> 4) || free_space < mss || 3105 free_space < (1 << tp->rx_opt.rcv_wscale)) 3106 return 0; 3107 } 3108 3109 if (free_space > tp->rcv_ssthresh) { 3110 free_space = tp->rcv_ssthresh; 3111 /* new window should always be an exact multiple of scaling factor 3112 * 3113 * For this case, we ALIGN "up" (increase free_space) because 3114 * we know free_space is not zero here, it has been reduced from 3115 * the memory-based limit, and rcv_ssthresh is not a hard limit 3116 * (unlike sk_rcvbuf). 3117 */ 3118 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3119 } 3120 3121 return free_space; 3122 } 3123 3124 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3125 const struct sk_buff *next_skb) 3126 { 3127 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3128 const struct skb_shared_info *next_shinfo = 3129 skb_shinfo(next_skb); 3130 struct skb_shared_info *shinfo = skb_shinfo(skb); 3131 3132 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3133 shinfo->tskey = next_shinfo->tskey; 3134 TCP_SKB_CB(skb)->txstamp_ack |= 3135 TCP_SKB_CB(next_skb)->txstamp_ack; 3136 } 3137 } 3138 3139 /* Collapses two adjacent SKB's during retransmission. */ 3140 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3141 { 3142 struct tcp_sock *tp = tcp_sk(sk); 3143 struct sk_buff *next_skb = skb_rb_next(skb); 3144 int next_skb_size; 3145 3146 next_skb_size = next_skb->len; 3147 3148 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3149 3150 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3151 return false; 3152 3153 tcp_highest_sack_replace(sk, next_skb, skb); 3154 3155 /* Update sequence range on original skb. */ 3156 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3157 3158 /* Merge over control information. This moves PSH/FIN etc. over */ 3159 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3160 3161 /* All done, get rid of second SKB and account for it so 3162 * packet counting does not break. 3163 */ 3164 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3165 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3166 3167 /* changed transmit queue under us so clear hints */ 3168 tcp_clear_retrans_hints_partial(tp); 3169 if (next_skb == tp->retransmit_skb_hint) 3170 tp->retransmit_skb_hint = skb; 3171 3172 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3173 3174 tcp_skb_collapse_tstamp(skb, next_skb); 3175 3176 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3177 return true; 3178 } 3179 3180 /* Check if coalescing SKBs is legal. */ 3181 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3182 { 3183 if (tcp_skb_pcount(skb) > 1) 3184 return false; 3185 if (skb_cloned(skb)) 3186 return false; 3187 /* Some heuristics for collapsing over SACK'd could be invented */ 3188 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3189 return false; 3190 3191 return true; 3192 } 3193 3194 /* Collapse packets in the retransmit queue to make to create 3195 * less packets on the wire. This is only done on retransmission. 3196 */ 3197 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3198 int space) 3199 { 3200 struct tcp_sock *tp = tcp_sk(sk); 3201 struct sk_buff *skb = to, *tmp; 3202 bool first = true; 3203 3204 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3205 return; 3206 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3207 return; 3208 3209 skb_rbtree_walk_from_safe(skb, tmp) { 3210 if (!tcp_can_collapse(sk, skb)) 3211 break; 3212 3213 if (!tcp_skb_can_collapse(to, skb)) 3214 break; 3215 3216 space -= skb->len; 3217 3218 if (first) { 3219 first = false; 3220 continue; 3221 } 3222 3223 if (space < 0) 3224 break; 3225 3226 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3227 break; 3228 3229 if (!tcp_collapse_retrans(sk, to)) 3230 break; 3231 } 3232 } 3233 3234 /* This retransmits one SKB. Policy decisions and retransmit queue 3235 * state updates are done by the caller. Returns non-zero if an 3236 * error occurred which prevented the send. 3237 */ 3238 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3239 { 3240 struct inet_connection_sock *icsk = inet_csk(sk); 3241 struct tcp_sock *tp = tcp_sk(sk); 3242 unsigned int cur_mss; 3243 int diff, len, err; 3244 int avail_wnd; 3245 3246 /* Inconclusive MTU probe */ 3247 if (icsk->icsk_mtup.probe_size) 3248 icsk->icsk_mtup.probe_size = 0; 3249 3250 if (skb_still_in_host_queue(sk, skb)) 3251 return -EBUSY; 3252 3253 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3254 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3255 WARN_ON_ONCE(1); 3256 return -EINVAL; 3257 } 3258 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3259 return -ENOMEM; 3260 } 3261 3262 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3263 return -EHOSTUNREACH; /* Routing failure or similar. */ 3264 3265 cur_mss = tcp_current_mss(sk); 3266 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3267 3268 /* If receiver has shrunk his window, and skb is out of 3269 * new window, do not retransmit it. The exception is the 3270 * case, when window is shrunk to zero. In this case 3271 * our retransmit of one segment serves as a zero window probe. 3272 */ 3273 if (avail_wnd <= 0) { 3274 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3275 return -EAGAIN; 3276 avail_wnd = cur_mss; 3277 } 3278 3279 len = cur_mss * segs; 3280 if (len > avail_wnd) { 3281 len = rounddown(avail_wnd, cur_mss); 3282 if (!len) 3283 len = avail_wnd; 3284 } 3285 if (skb->len > len) { 3286 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3287 cur_mss, GFP_ATOMIC)) 3288 return -ENOMEM; /* We'll try again later. */ 3289 } else { 3290 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3291 return -ENOMEM; 3292 3293 diff = tcp_skb_pcount(skb); 3294 tcp_set_skb_tso_segs(skb, cur_mss); 3295 diff -= tcp_skb_pcount(skb); 3296 if (diff) 3297 tcp_adjust_pcount(sk, skb, diff); 3298 avail_wnd = min_t(int, avail_wnd, cur_mss); 3299 if (skb->len < avail_wnd) 3300 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3301 } 3302 3303 /* RFC3168, section 6.1.1.1. ECN fallback */ 3304 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3305 tcp_ecn_clear_syn(sk, skb); 3306 3307 /* Update global and local TCP statistics. */ 3308 segs = tcp_skb_pcount(skb); 3309 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3310 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3311 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3312 tp->total_retrans += segs; 3313 tp->bytes_retrans += skb->len; 3314 3315 /* make sure skb->data is aligned on arches that require it 3316 * and check if ack-trimming & collapsing extended the headroom 3317 * beyond what csum_start can cover. 3318 */ 3319 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3320 skb_headroom(skb) >= 0xFFFF)) { 3321 struct sk_buff *nskb; 3322 3323 tcp_skb_tsorted_save(skb) { 3324 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3325 if (nskb) { 3326 nskb->dev = NULL; 3327 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3328 } else { 3329 err = -ENOBUFS; 3330 } 3331 } tcp_skb_tsorted_restore(skb); 3332 3333 if (!err) { 3334 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3335 tcp_rate_skb_sent(sk, skb); 3336 } 3337 } else { 3338 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3339 } 3340 3341 /* To avoid taking spuriously low RTT samples based on a timestamp 3342 * for a transmit that never happened, always mark EVER_RETRANS 3343 */ 3344 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3345 3346 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3347 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3348 TCP_SKB_CB(skb)->seq, segs, err); 3349 3350 if (likely(!err)) { 3351 trace_tcp_retransmit_skb(sk, skb); 3352 } else if (err != -EBUSY) { 3353 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3354 } 3355 return err; 3356 } 3357 3358 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3359 { 3360 struct tcp_sock *tp = tcp_sk(sk); 3361 int err = __tcp_retransmit_skb(sk, skb, segs); 3362 3363 if (err == 0) { 3364 #if FASTRETRANS_DEBUG > 0 3365 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3366 net_dbg_ratelimited("retrans_out leaked\n"); 3367 } 3368 #endif 3369 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3370 tp->retrans_out += tcp_skb_pcount(skb); 3371 } 3372 3373 /* Save stamp of the first (attempted) retransmit. */ 3374 if (!tp->retrans_stamp) 3375 tp->retrans_stamp = tcp_skb_timestamp(skb); 3376 3377 if (tp->undo_retrans < 0) 3378 tp->undo_retrans = 0; 3379 tp->undo_retrans += tcp_skb_pcount(skb); 3380 return err; 3381 } 3382 3383 /* This gets called after a retransmit timeout, and the initially 3384 * retransmitted data is acknowledged. It tries to continue 3385 * resending the rest of the retransmit queue, until either 3386 * we've sent it all or the congestion window limit is reached. 3387 */ 3388 void tcp_xmit_retransmit_queue(struct sock *sk) 3389 { 3390 const struct inet_connection_sock *icsk = inet_csk(sk); 3391 struct sk_buff *skb, *rtx_head, *hole = NULL; 3392 struct tcp_sock *tp = tcp_sk(sk); 3393 bool rearm_timer = false; 3394 u32 max_segs; 3395 int mib_idx; 3396 3397 if (!tp->packets_out) 3398 return; 3399 3400 rtx_head = tcp_rtx_queue_head(sk); 3401 skb = tp->retransmit_skb_hint ?: rtx_head; 3402 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3403 skb_rbtree_walk_from(skb) { 3404 __u8 sacked; 3405 int segs; 3406 3407 if (tcp_pacing_check(sk)) 3408 break; 3409 3410 /* we could do better than to assign each time */ 3411 if (!hole) 3412 tp->retransmit_skb_hint = skb; 3413 3414 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3415 if (segs <= 0) 3416 break; 3417 sacked = TCP_SKB_CB(skb)->sacked; 3418 /* In case tcp_shift_skb_data() have aggregated large skbs, 3419 * we need to make sure not sending too bigs TSO packets 3420 */ 3421 segs = min_t(int, segs, max_segs); 3422 3423 if (tp->retrans_out >= tp->lost_out) { 3424 break; 3425 } else if (!(sacked & TCPCB_LOST)) { 3426 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3427 hole = skb; 3428 continue; 3429 3430 } else { 3431 if (icsk->icsk_ca_state != TCP_CA_Loss) 3432 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3433 else 3434 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3435 } 3436 3437 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3438 continue; 3439 3440 if (tcp_small_queue_check(sk, skb, 1)) 3441 break; 3442 3443 if (tcp_retransmit_skb(sk, skb, segs)) 3444 break; 3445 3446 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3447 3448 if (tcp_in_cwnd_reduction(sk)) 3449 tp->prr_out += tcp_skb_pcount(skb); 3450 3451 if (skb == rtx_head && 3452 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3453 rearm_timer = true; 3454 3455 } 3456 if (rearm_timer) 3457 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3458 inet_csk(sk)->icsk_rto, 3459 TCP_RTO_MAX); 3460 } 3461 3462 /* We allow to exceed memory limits for FIN packets to expedite 3463 * connection tear down and (memory) recovery. 3464 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3465 * or even be forced to close flow without any FIN. 3466 * In general, we want to allow one skb per socket to avoid hangs 3467 * with edge trigger epoll() 3468 */ 3469 void sk_forced_mem_schedule(struct sock *sk, int size) 3470 { 3471 int delta, amt; 3472 3473 delta = size - sk->sk_forward_alloc; 3474 if (delta <= 0) 3475 return; 3476 amt = sk_mem_pages(delta); 3477 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3478 sk_memory_allocated_add(sk, amt); 3479 3480 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3481 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3482 gfp_memcg_charge() | __GFP_NOFAIL); 3483 } 3484 3485 /* Send a FIN. The caller locks the socket for us. 3486 * We should try to send a FIN packet really hard, but eventually give up. 3487 */ 3488 void tcp_send_fin(struct sock *sk) 3489 { 3490 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3491 struct tcp_sock *tp = tcp_sk(sk); 3492 3493 /* Optimization, tack on the FIN if we have one skb in write queue and 3494 * this skb was not yet sent, or we are under memory pressure. 3495 * Note: in the latter case, FIN packet will be sent after a timeout, 3496 * as TCP stack thinks it has already been transmitted. 3497 */ 3498 tskb = tail; 3499 if (!tskb && tcp_under_memory_pressure(sk)) 3500 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3501 3502 if (tskb) { 3503 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3504 TCP_SKB_CB(tskb)->end_seq++; 3505 tp->write_seq++; 3506 if (!tail) { 3507 /* This means tskb was already sent. 3508 * Pretend we included the FIN on previous transmit. 3509 * We need to set tp->snd_nxt to the value it would have 3510 * if FIN had been sent. This is because retransmit path 3511 * does not change tp->snd_nxt. 3512 */ 3513 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3514 return; 3515 } 3516 } else { 3517 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3518 if (unlikely(!skb)) 3519 return; 3520 3521 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3522 skb_reserve(skb, MAX_TCP_HEADER); 3523 sk_forced_mem_schedule(sk, skb->truesize); 3524 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3525 tcp_init_nondata_skb(skb, tp->write_seq, 3526 TCPHDR_ACK | TCPHDR_FIN); 3527 tcp_queue_skb(sk, skb); 3528 } 3529 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3530 } 3531 3532 /* We get here when a process closes a file descriptor (either due to 3533 * an explicit close() or as a byproduct of exit()'ing) and there 3534 * was unread data in the receive queue. This behavior is recommended 3535 * by RFC 2525, section 2.17. -DaveM 3536 */ 3537 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3538 { 3539 struct sk_buff *skb; 3540 3541 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3542 3543 /* NOTE: No TCP options attached and we never retransmit this. */ 3544 skb = alloc_skb(MAX_TCP_HEADER, priority); 3545 if (!skb) { 3546 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3547 return; 3548 } 3549 3550 /* Reserve space for headers and prepare control bits. */ 3551 skb_reserve(skb, MAX_TCP_HEADER); 3552 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3553 TCPHDR_ACK | TCPHDR_RST); 3554 tcp_mstamp_refresh(tcp_sk(sk)); 3555 /* Send it off. */ 3556 if (tcp_transmit_skb(sk, skb, 0, priority)) 3557 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3558 3559 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3560 * skb here is different to the troublesome skb, so use NULL 3561 */ 3562 trace_tcp_send_reset(sk, NULL); 3563 } 3564 3565 /* Send a crossed SYN-ACK during socket establishment. 3566 * WARNING: This routine must only be called when we have already sent 3567 * a SYN packet that crossed the incoming SYN that caused this routine 3568 * to get called. If this assumption fails then the initial rcv_wnd 3569 * and rcv_wscale values will not be correct. 3570 */ 3571 int tcp_send_synack(struct sock *sk) 3572 { 3573 struct sk_buff *skb; 3574 3575 skb = tcp_rtx_queue_head(sk); 3576 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3577 pr_err("%s: wrong queue state\n", __func__); 3578 return -EFAULT; 3579 } 3580 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3581 if (skb_cloned(skb)) { 3582 struct sk_buff *nskb; 3583 3584 tcp_skb_tsorted_save(skb) { 3585 nskb = skb_copy(skb, GFP_ATOMIC); 3586 } tcp_skb_tsorted_restore(skb); 3587 if (!nskb) 3588 return -ENOMEM; 3589 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3590 tcp_highest_sack_replace(sk, skb, nskb); 3591 tcp_rtx_queue_unlink_and_free(skb, sk); 3592 __skb_header_release(nskb); 3593 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3594 sk_wmem_queued_add(sk, nskb->truesize); 3595 sk_mem_charge(sk, nskb->truesize); 3596 skb = nskb; 3597 } 3598 3599 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3600 tcp_ecn_send_synack(sk, skb); 3601 } 3602 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3603 } 3604 3605 /** 3606 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3607 * @sk: listener socket 3608 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3609 * should not use it again. 3610 * @req: request_sock pointer 3611 * @foc: cookie for tcp fast open 3612 * @synack_type: Type of synack to prepare 3613 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3614 */ 3615 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3616 struct request_sock *req, 3617 struct tcp_fastopen_cookie *foc, 3618 enum tcp_synack_type synack_type, 3619 struct sk_buff *syn_skb) 3620 { 3621 struct inet_request_sock *ireq = inet_rsk(req); 3622 const struct tcp_sock *tp = tcp_sk(sk); 3623 struct tcp_md5sig_key *md5 = NULL; 3624 struct tcp_out_options opts; 3625 struct sk_buff *skb; 3626 int tcp_header_size; 3627 struct tcphdr *th; 3628 int mss; 3629 u64 now; 3630 3631 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3632 if (unlikely(!skb)) { 3633 dst_release(dst); 3634 return NULL; 3635 } 3636 /* Reserve space for headers. */ 3637 skb_reserve(skb, MAX_TCP_HEADER); 3638 3639 switch (synack_type) { 3640 case TCP_SYNACK_NORMAL: 3641 skb_set_owner_w(skb, req_to_sk(req)); 3642 break; 3643 case TCP_SYNACK_COOKIE: 3644 /* Under synflood, we do not attach skb to a socket, 3645 * to avoid false sharing. 3646 */ 3647 break; 3648 case TCP_SYNACK_FASTOPEN: 3649 /* sk is a const pointer, because we want to express multiple 3650 * cpu might call us concurrently. 3651 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3652 */ 3653 skb_set_owner_w(skb, (struct sock *)sk); 3654 break; 3655 } 3656 skb_dst_set(skb, dst); 3657 3658 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3659 3660 memset(&opts, 0, sizeof(opts)); 3661 now = tcp_clock_ns(); 3662 #ifdef CONFIG_SYN_COOKIES 3663 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3664 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3665 true); 3666 else 3667 #endif 3668 { 3669 skb_set_delivery_time(skb, now, true); 3670 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3671 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3672 } 3673 3674 #ifdef CONFIG_TCP_MD5SIG 3675 rcu_read_lock(); 3676 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3677 #endif 3678 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3679 /* bpf program will be interested in the tcp_flags */ 3680 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3681 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3682 foc, synack_type, 3683 syn_skb) + sizeof(*th); 3684 3685 skb_push(skb, tcp_header_size); 3686 skb_reset_transport_header(skb); 3687 3688 th = (struct tcphdr *)skb->data; 3689 memset(th, 0, sizeof(struct tcphdr)); 3690 th->syn = 1; 3691 th->ack = 1; 3692 tcp_ecn_make_synack(req, th); 3693 th->source = htons(ireq->ir_num); 3694 th->dest = ireq->ir_rmt_port; 3695 skb->mark = ireq->ir_mark; 3696 skb->ip_summed = CHECKSUM_PARTIAL; 3697 th->seq = htonl(tcp_rsk(req)->snt_isn); 3698 /* XXX data is queued and acked as is. No buffer/window check */ 3699 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3700 3701 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3702 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3703 tcp_options_write(th, NULL, &opts); 3704 th->doff = (tcp_header_size >> 2); 3705 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3706 3707 #ifdef CONFIG_TCP_MD5SIG 3708 /* Okay, we have all we need - do the md5 hash if needed */ 3709 if (md5) 3710 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3711 md5, req_to_sk(req), skb); 3712 rcu_read_unlock(); 3713 #endif 3714 3715 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3716 synack_type, &opts); 3717 3718 skb_set_delivery_time(skb, now, true); 3719 tcp_add_tx_delay(skb, tp); 3720 3721 return skb; 3722 } 3723 EXPORT_SYMBOL(tcp_make_synack); 3724 3725 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3726 { 3727 struct inet_connection_sock *icsk = inet_csk(sk); 3728 const struct tcp_congestion_ops *ca; 3729 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3730 3731 if (ca_key == TCP_CA_UNSPEC) 3732 return; 3733 3734 rcu_read_lock(); 3735 ca = tcp_ca_find_key(ca_key); 3736 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3737 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3738 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3739 icsk->icsk_ca_ops = ca; 3740 } 3741 rcu_read_unlock(); 3742 } 3743 3744 /* Do all connect socket setups that can be done AF independent. */ 3745 static void tcp_connect_init(struct sock *sk) 3746 { 3747 const struct dst_entry *dst = __sk_dst_get(sk); 3748 struct tcp_sock *tp = tcp_sk(sk); 3749 __u8 rcv_wscale; 3750 u32 rcv_wnd; 3751 3752 /* We'll fix this up when we get a response from the other end. 3753 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3754 */ 3755 tp->tcp_header_len = sizeof(struct tcphdr); 3756 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3757 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3758 3759 /* If user gave his TCP_MAXSEG, record it to clamp */ 3760 if (tp->rx_opt.user_mss) 3761 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3762 tp->max_window = 0; 3763 tcp_mtup_init(sk); 3764 tcp_sync_mss(sk, dst_mtu(dst)); 3765 3766 tcp_ca_dst_init(sk, dst); 3767 3768 if (!tp->window_clamp) 3769 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3770 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3771 3772 tcp_initialize_rcv_mss(sk); 3773 3774 /* limit the window selection if the user enforce a smaller rx buffer */ 3775 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3776 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3777 tp->window_clamp = tcp_full_space(sk); 3778 3779 rcv_wnd = tcp_rwnd_init_bpf(sk); 3780 if (rcv_wnd == 0) 3781 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3782 3783 tcp_select_initial_window(sk, tcp_full_space(sk), 3784 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3785 &tp->rcv_wnd, 3786 &tp->window_clamp, 3787 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3788 &rcv_wscale, 3789 rcv_wnd); 3790 3791 tp->rx_opt.rcv_wscale = rcv_wscale; 3792 tp->rcv_ssthresh = tp->rcv_wnd; 3793 3794 WRITE_ONCE(sk->sk_err, 0); 3795 sock_reset_flag(sk, SOCK_DONE); 3796 tp->snd_wnd = 0; 3797 tcp_init_wl(tp, 0); 3798 tcp_write_queue_purge(sk); 3799 tp->snd_una = tp->write_seq; 3800 tp->snd_sml = tp->write_seq; 3801 tp->snd_up = tp->write_seq; 3802 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3803 3804 if (likely(!tp->repair)) 3805 tp->rcv_nxt = 0; 3806 else 3807 tp->rcv_tstamp = tcp_jiffies32; 3808 tp->rcv_wup = tp->rcv_nxt; 3809 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3810 3811 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3812 inet_csk(sk)->icsk_retransmits = 0; 3813 tcp_clear_retrans(tp); 3814 } 3815 3816 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3817 { 3818 struct tcp_sock *tp = tcp_sk(sk); 3819 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3820 3821 tcb->end_seq += skb->len; 3822 __skb_header_release(skb); 3823 sk_wmem_queued_add(sk, skb->truesize); 3824 sk_mem_charge(sk, skb->truesize); 3825 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3826 tp->packets_out += tcp_skb_pcount(skb); 3827 } 3828 3829 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3830 * queue a data-only packet after the regular SYN, such that regular SYNs 3831 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3832 * only the SYN sequence, the data are retransmitted in the first ACK. 3833 * If cookie is not cached or other error occurs, falls back to send a 3834 * regular SYN with Fast Open cookie request option. 3835 */ 3836 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3837 { 3838 struct inet_connection_sock *icsk = inet_csk(sk); 3839 struct tcp_sock *tp = tcp_sk(sk); 3840 struct tcp_fastopen_request *fo = tp->fastopen_req; 3841 struct page_frag *pfrag = sk_page_frag(sk); 3842 struct sk_buff *syn_data; 3843 int space, err = 0; 3844 3845 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3846 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3847 goto fallback; 3848 3849 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3850 * user-MSS. Reserve maximum option space for middleboxes that add 3851 * private TCP options. The cost is reduced data space in SYN :( 3852 */ 3853 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3854 /* Sync mss_cache after updating the mss_clamp */ 3855 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3856 3857 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3858 MAX_TCP_OPTION_SPACE; 3859 3860 space = min_t(size_t, space, fo->size); 3861 3862 if (space && 3863 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3864 pfrag, sk->sk_allocation)) 3865 goto fallback; 3866 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3867 if (!syn_data) 3868 goto fallback; 3869 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3870 if (space) { 3871 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3872 space = tcp_wmem_schedule(sk, space); 3873 } 3874 if (space) { 3875 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3876 space, &fo->data->msg_iter); 3877 if (unlikely(!space)) { 3878 tcp_skb_tsorted_anchor_cleanup(syn_data); 3879 kfree_skb(syn_data); 3880 goto fallback; 3881 } 3882 skb_fill_page_desc(syn_data, 0, pfrag->page, 3883 pfrag->offset, space); 3884 page_ref_inc(pfrag->page); 3885 pfrag->offset += space; 3886 skb_len_add(syn_data, space); 3887 skb_zcopy_set(syn_data, fo->uarg, NULL); 3888 } 3889 /* No more data pending in inet_wait_for_connect() */ 3890 if (space == fo->size) 3891 fo->data = NULL; 3892 fo->copied = space; 3893 3894 tcp_connect_queue_skb(sk, syn_data); 3895 if (syn_data->len) 3896 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3897 3898 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3899 3900 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3901 3902 /* Now full SYN+DATA was cloned and sent (or not), 3903 * remove the SYN from the original skb (syn_data) 3904 * we keep in write queue in case of a retransmit, as we 3905 * also have the SYN packet (with no data) in the same queue. 3906 */ 3907 TCP_SKB_CB(syn_data)->seq++; 3908 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3909 if (!err) { 3910 tp->syn_data = (fo->copied > 0); 3911 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3912 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3913 goto done; 3914 } 3915 3916 /* data was not sent, put it in write_queue */ 3917 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3918 tp->packets_out -= tcp_skb_pcount(syn_data); 3919 3920 fallback: 3921 /* Send a regular SYN with Fast Open cookie request option */ 3922 if (fo->cookie.len > 0) 3923 fo->cookie.len = 0; 3924 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3925 if (err) 3926 tp->syn_fastopen = 0; 3927 done: 3928 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3929 return err; 3930 } 3931 3932 /* Build a SYN and send it off. */ 3933 int tcp_connect(struct sock *sk) 3934 { 3935 struct tcp_sock *tp = tcp_sk(sk); 3936 struct sk_buff *buff; 3937 int err; 3938 3939 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3940 3941 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3942 return -EHOSTUNREACH; /* Routing failure or similar. */ 3943 3944 tcp_connect_init(sk); 3945 3946 if (unlikely(tp->repair)) { 3947 tcp_finish_connect(sk, NULL); 3948 return 0; 3949 } 3950 3951 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 3952 if (unlikely(!buff)) 3953 return -ENOBUFS; 3954 3955 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3956 tcp_mstamp_refresh(tp); 3957 tp->retrans_stamp = tcp_time_stamp(tp); 3958 tcp_connect_queue_skb(sk, buff); 3959 tcp_ecn_send_syn(sk, buff); 3960 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3961 3962 /* Send off SYN; include data in Fast Open. */ 3963 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3964 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3965 if (err == -ECONNREFUSED) 3966 return err; 3967 3968 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3969 * in order to make this packet get counted in tcpOutSegs. 3970 */ 3971 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3972 tp->pushed_seq = tp->write_seq; 3973 buff = tcp_send_head(sk); 3974 if (unlikely(buff)) { 3975 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3976 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3977 } 3978 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3979 3980 /* Timer for repeating the SYN until an answer. */ 3981 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3982 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3983 return 0; 3984 } 3985 EXPORT_SYMBOL(tcp_connect); 3986 3987 /* Send out a delayed ack, the caller does the policy checking 3988 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3989 * for details. 3990 */ 3991 void tcp_send_delayed_ack(struct sock *sk) 3992 { 3993 struct inet_connection_sock *icsk = inet_csk(sk); 3994 int ato = icsk->icsk_ack.ato; 3995 unsigned long timeout; 3996 3997 if (ato > TCP_DELACK_MIN) { 3998 const struct tcp_sock *tp = tcp_sk(sk); 3999 int max_ato = HZ / 2; 4000 4001 if (inet_csk_in_pingpong_mode(sk) || 4002 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4003 max_ato = TCP_DELACK_MAX; 4004 4005 /* Slow path, intersegment interval is "high". */ 4006 4007 /* If some rtt estimate is known, use it to bound delayed ack. 4008 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4009 * directly. 4010 */ 4011 if (tp->srtt_us) { 4012 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4013 TCP_DELACK_MIN); 4014 4015 if (rtt < max_ato) 4016 max_ato = rtt; 4017 } 4018 4019 ato = min(ato, max_ato); 4020 } 4021 4022 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max); 4023 4024 /* Stay within the limit we were given */ 4025 timeout = jiffies + ato; 4026 4027 /* Use new timeout only if there wasn't a older one earlier. */ 4028 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4029 /* If delack timer is about to expire, send ACK now. */ 4030 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4031 tcp_send_ack(sk); 4032 return; 4033 } 4034 4035 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4036 timeout = icsk->icsk_ack.timeout; 4037 } 4038 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4039 icsk->icsk_ack.timeout = timeout; 4040 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4041 } 4042 4043 /* This routine sends an ack and also updates the window. */ 4044 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4045 { 4046 struct sk_buff *buff; 4047 4048 /* If we have been reset, we may not send again. */ 4049 if (sk->sk_state == TCP_CLOSE) 4050 return; 4051 4052 /* We are not putting this on the write queue, so 4053 * tcp_transmit_skb() will set the ownership to this 4054 * sock. 4055 */ 4056 buff = alloc_skb(MAX_TCP_HEADER, 4057 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4058 if (unlikely(!buff)) { 4059 struct inet_connection_sock *icsk = inet_csk(sk); 4060 unsigned long delay; 4061 4062 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4063 if (delay < TCP_RTO_MAX) 4064 icsk->icsk_ack.retry++; 4065 inet_csk_schedule_ack(sk); 4066 icsk->icsk_ack.ato = TCP_ATO_MIN; 4067 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4068 return; 4069 } 4070 4071 /* Reserve space for headers and prepare control bits. */ 4072 skb_reserve(buff, MAX_TCP_HEADER); 4073 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4074 4075 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4076 * too much. 4077 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4078 */ 4079 skb_set_tcp_pure_ack(buff); 4080 4081 /* Send it off, this clears delayed acks for us. */ 4082 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4083 } 4084 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4085 4086 void tcp_send_ack(struct sock *sk) 4087 { 4088 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4089 } 4090 4091 /* This routine sends a packet with an out of date sequence 4092 * number. It assumes the other end will try to ack it. 4093 * 4094 * Question: what should we make while urgent mode? 4095 * 4.4BSD forces sending single byte of data. We cannot send 4096 * out of window data, because we have SND.NXT==SND.MAX... 4097 * 4098 * Current solution: to send TWO zero-length segments in urgent mode: 4099 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4100 * out-of-date with SND.UNA-1 to probe window. 4101 */ 4102 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4103 { 4104 struct tcp_sock *tp = tcp_sk(sk); 4105 struct sk_buff *skb; 4106 4107 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4108 skb = alloc_skb(MAX_TCP_HEADER, 4109 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4110 if (!skb) 4111 return -1; 4112 4113 /* Reserve space for headers and set control bits. */ 4114 skb_reserve(skb, MAX_TCP_HEADER); 4115 /* Use a previous sequence. This should cause the other 4116 * end to send an ack. Don't queue or clone SKB, just 4117 * send it. 4118 */ 4119 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4120 NET_INC_STATS(sock_net(sk), mib); 4121 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4122 } 4123 4124 /* Called from setsockopt( ... TCP_REPAIR ) */ 4125 void tcp_send_window_probe(struct sock *sk) 4126 { 4127 if (sk->sk_state == TCP_ESTABLISHED) { 4128 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4129 tcp_mstamp_refresh(tcp_sk(sk)); 4130 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4131 } 4132 } 4133 4134 /* Initiate keepalive or window probe from timer. */ 4135 int tcp_write_wakeup(struct sock *sk, int mib) 4136 { 4137 struct tcp_sock *tp = tcp_sk(sk); 4138 struct sk_buff *skb; 4139 4140 if (sk->sk_state == TCP_CLOSE) 4141 return -1; 4142 4143 skb = tcp_send_head(sk); 4144 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4145 int err; 4146 unsigned int mss = tcp_current_mss(sk); 4147 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4148 4149 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4150 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4151 4152 /* We are probing the opening of a window 4153 * but the window size is != 0 4154 * must have been a result SWS avoidance ( sender ) 4155 */ 4156 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4157 skb->len > mss) { 4158 seg_size = min(seg_size, mss); 4159 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4160 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4161 skb, seg_size, mss, GFP_ATOMIC)) 4162 return -1; 4163 } else if (!tcp_skb_pcount(skb)) 4164 tcp_set_skb_tso_segs(skb, mss); 4165 4166 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4167 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4168 if (!err) 4169 tcp_event_new_data_sent(sk, skb); 4170 return err; 4171 } else { 4172 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4173 tcp_xmit_probe_skb(sk, 1, mib); 4174 return tcp_xmit_probe_skb(sk, 0, mib); 4175 } 4176 } 4177 4178 /* A window probe timeout has occurred. If window is not closed send 4179 * a partial packet else a zero probe. 4180 */ 4181 void tcp_send_probe0(struct sock *sk) 4182 { 4183 struct inet_connection_sock *icsk = inet_csk(sk); 4184 struct tcp_sock *tp = tcp_sk(sk); 4185 struct net *net = sock_net(sk); 4186 unsigned long timeout; 4187 int err; 4188 4189 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4190 4191 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4192 /* Cancel probe timer, if it is not required. */ 4193 icsk->icsk_probes_out = 0; 4194 icsk->icsk_backoff = 0; 4195 icsk->icsk_probes_tstamp = 0; 4196 return; 4197 } 4198 4199 icsk->icsk_probes_out++; 4200 if (err <= 0) { 4201 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4202 icsk->icsk_backoff++; 4203 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4204 } else { 4205 /* If packet was not sent due to local congestion, 4206 * Let senders fight for local resources conservatively. 4207 */ 4208 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4209 } 4210 4211 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4212 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4213 } 4214 4215 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4216 { 4217 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4218 struct flowi fl; 4219 int res; 4220 4221 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4222 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4223 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4224 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4225 NULL); 4226 if (!res) { 4227 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4228 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4229 if (unlikely(tcp_passive_fastopen(sk))) { 4230 /* sk has const attribute because listeners are lockless. 4231 * However in this case, we are dealing with a passive fastopen 4232 * socket thus we can change total_retrans value. 4233 */ 4234 tcp_sk_rw(sk)->total_retrans++; 4235 } 4236 trace_tcp_retransmit_synack(sk, req); 4237 } 4238 return res; 4239 } 4240 EXPORT_SYMBOL(tcp_rtx_synack); 4241