xref: /linux/net/ipv4/tcp_output.c (revision 9d56c248e5030d17ea9cd132634e86fdf0622d0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, increase pingpong count.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *__window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 	u32 window_clamp = READ_ONCE(*__window_clamp);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (window_clamp == 0)
215 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
234 
235 	if (init_rcv_wnd)
236 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237 
238 	*rcv_wscale = 0;
239 	if (wscale_ok) {
240 		/* Set window scaling on max possible window */
241 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 		space = min_t(u32, space, window_clamp);
244 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 				      0, TCP_MAX_WSCALE);
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	WRITE_ONCE(*__window_clamp,
249 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252 
253 /* Chose a new window to advertise, update state in tcp_sock for the
254  * socket, and return result with RFC1323 scaling applied.  The return
255  * value can be stuffed directly into th->window for an outgoing
256  * frame.
257  */
258 static u16 tcp_select_window(struct sock *sk)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 	struct net *net = sock_net(sk);
262 	u32 old_win = tp->rcv_wnd;
263 	u32 cur_win, new_win;
264 
265 	/* Make the window 0 if we failed to queue the data because we
266 	 * are out of memory. The window is temporary, so we don't store
267 	 * it on the socket.
268 	 */
269 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
270 		return 0;
271 
272 	cur_win = tcp_receive_window(tp);
273 	new_win = __tcp_select_window(sk);
274 	if (new_win < cur_win) {
275 		/* Danger Will Robinson!
276 		 * Don't update rcv_wup/rcv_wnd here or else
277 		 * we will not be able to advertise a zero
278 		 * window in time.  --DaveM
279 		 *
280 		 * Relax Will Robinson.
281 		 */
282 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
283 			/* Never shrink the offered window */
284 			if (new_win == 0)
285 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
286 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
287 		}
288 	}
289 
290 	tp->rcv_wnd = new_win;
291 	tp->rcv_wup = tp->rcv_nxt;
292 
293 	/* Make sure we do not exceed the maximum possible
294 	 * scaled window.
295 	 */
296 	if (!tp->rx_opt.rcv_wscale &&
297 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
298 		new_win = min(new_win, MAX_TCP_WINDOW);
299 	else
300 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
301 
302 	/* RFC1323 scaling applied */
303 	new_win >>= tp->rx_opt.rcv_wscale;
304 
305 	/* If we advertise zero window, disable fast path. */
306 	if (new_win == 0) {
307 		tp->pred_flags = 0;
308 		if (old_win)
309 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
310 	} else if (old_win == 0) {
311 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
312 	}
313 
314 	return new_win;
315 }
316 
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 {
320 	const struct tcp_sock *tp = tcp_sk(sk);
321 
322 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 	if (!(tp->ecn_flags & TCP_ECN_OK))
324 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 	else if (tcp_ca_needs_ecn(sk) ||
326 		 tcp_bpf_ca_needs_ecn(sk))
327 		INET_ECN_xmit(sk);
328 }
329 
330 /* Packet ECN state for a SYN.  */
331 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
332 {
333 	struct tcp_sock *tp = tcp_sk(sk);
334 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
335 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
336 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
337 
338 	if (!use_ecn) {
339 		const struct dst_entry *dst = __sk_dst_get(sk);
340 
341 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
342 			use_ecn = true;
343 	}
344 
345 	tp->ecn_flags = 0;
346 
347 	if (use_ecn) {
348 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
349 		tp->ecn_flags = TCP_ECN_OK;
350 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
351 			INET_ECN_xmit(sk);
352 	}
353 }
354 
355 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
356 {
357 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
358 		/* tp->ecn_flags are cleared at a later point in time when
359 		 * SYN ACK is ultimatively being received.
360 		 */
361 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
362 }
363 
364 static void
365 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
366 {
367 	if (inet_rsk(req)->ecn_ok)
368 		th->ece = 1;
369 }
370 
371 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
372  * be sent.
373  */
374 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
375 			 struct tcphdr *th, int tcp_header_len)
376 {
377 	struct tcp_sock *tp = tcp_sk(sk);
378 
379 	if (tp->ecn_flags & TCP_ECN_OK) {
380 		/* Not-retransmitted data segment: set ECT and inject CWR. */
381 		if (skb->len != tcp_header_len &&
382 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
383 			INET_ECN_xmit(sk);
384 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
385 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
386 				th->cwr = 1;
387 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
388 			}
389 		} else if (!tcp_ca_needs_ecn(sk)) {
390 			/* ACK or retransmitted segment: clear ECT|CE */
391 			INET_ECN_dontxmit(sk);
392 		}
393 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
394 			th->ece = 1;
395 	}
396 }
397 
398 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
399  * auto increment end seqno.
400  */
401 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
402 {
403 	skb->ip_summed = CHECKSUM_PARTIAL;
404 
405 	TCP_SKB_CB(skb)->tcp_flags = flags;
406 
407 	tcp_skb_pcount_set(skb, 1);
408 
409 	TCP_SKB_CB(skb)->seq = seq;
410 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
411 		seq++;
412 	TCP_SKB_CB(skb)->end_seq = seq;
413 }
414 
415 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
416 {
417 	return tp->snd_una != tp->snd_up;
418 }
419 
420 #define OPTION_SACK_ADVERTISE	BIT(0)
421 #define OPTION_TS		BIT(1)
422 #define OPTION_MD5		BIT(2)
423 #define OPTION_WSCALE		BIT(3)
424 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
425 #define OPTION_SMC		BIT(9)
426 #define OPTION_MPTCP		BIT(10)
427 #define OPTION_AO		BIT(11)
428 
429 static void smc_options_write(__be32 *ptr, u16 *options)
430 {
431 #if IS_ENABLED(CONFIG_SMC)
432 	if (static_branch_unlikely(&tcp_have_smc)) {
433 		if (unlikely(OPTION_SMC & *options)) {
434 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
435 				       (TCPOPT_NOP  << 16) |
436 				       (TCPOPT_EXP <<  8) |
437 				       (TCPOLEN_EXP_SMC_BASE));
438 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
439 		}
440 	}
441 #endif
442 }
443 
444 struct tcp_out_options {
445 	u16 options;		/* bit field of OPTION_* */
446 	u16 mss;		/* 0 to disable */
447 	u8 ws;			/* window scale, 0 to disable */
448 	u8 num_sack_blocks;	/* number of SACK blocks to include */
449 	u8 hash_size;		/* bytes in hash_location */
450 	u8 bpf_opt_len;		/* length of BPF hdr option */
451 	__u8 *hash_location;	/* temporary pointer, overloaded */
452 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
453 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
454 	struct mptcp_out_options mptcp;
455 };
456 
457 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
458 				struct tcp_sock *tp,
459 				struct tcp_out_options *opts)
460 {
461 #if IS_ENABLED(CONFIG_MPTCP)
462 	if (unlikely(OPTION_MPTCP & opts->options))
463 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
464 #endif
465 }
466 
467 #ifdef CONFIG_CGROUP_BPF
468 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
469 					enum tcp_synack_type synack_type)
470 {
471 	if (unlikely(!skb))
472 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
473 
474 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
475 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
476 
477 	return 0;
478 }
479 
480 /* req, syn_skb and synack_type are used when writing synack */
481 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
482 				  struct request_sock *req,
483 				  struct sk_buff *syn_skb,
484 				  enum tcp_synack_type synack_type,
485 				  struct tcp_out_options *opts,
486 				  unsigned int *remaining)
487 {
488 	struct bpf_sock_ops_kern sock_ops;
489 	int err;
490 
491 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
492 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
493 	    !*remaining)
494 		return;
495 
496 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
497 
498 	/* init sock_ops */
499 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
500 
501 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
502 
503 	if (req) {
504 		/* The listen "sk" cannot be passed here because
505 		 * it is not locked.  It would not make too much
506 		 * sense to do bpf_setsockopt(listen_sk) based
507 		 * on individual connection request also.
508 		 *
509 		 * Thus, "req" is passed here and the cgroup-bpf-progs
510 		 * of the listen "sk" will be run.
511 		 *
512 		 * "req" is also used here for fastopen even the "sk" here is
513 		 * a fullsock "child" sk.  It is to keep the behavior
514 		 * consistent between fastopen and non-fastopen on
515 		 * the bpf programming side.
516 		 */
517 		sock_ops.sk = (struct sock *)req;
518 		sock_ops.syn_skb = syn_skb;
519 	} else {
520 		sock_owned_by_me(sk);
521 
522 		sock_ops.is_fullsock = 1;
523 		sock_ops.sk = sk;
524 	}
525 
526 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
527 	sock_ops.remaining_opt_len = *remaining;
528 	/* tcp_current_mss() does not pass a skb */
529 	if (skb)
530 		bpf_skops_init_skb(&sock_ops, skb, 0);
531 
532 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
533 
534 	if (err || sock_ops.remaining_opt_len == *remaining)
535 		return;
536 
537 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
538 	/* round up to 4 bytes */
539 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
540 
541 	*remaining -= opts->bpf_opt_len;
542 }
543 
544 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
545 				    struct request_sock *req,
546 				    struct sk_buff *syn_skb,
547 				    enum tcp_synack_type synack_type,
548 				    struct tcp_out_options *opts)
549 {
550 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
551 	struct bpf_sock_ops_kern sock_ops;
552 	int err;
553 
554 	if (likely(!max_opt_len))
555 		return;
556 
557 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
558 
559 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
560 
561 	if (req) {
562 		sock_ops.sk = (struct sock *)req;
563 		sock_ops.syn_skb = syn_skb;
564 	} else {
565 		sock_owned_by_me(sk);
566 
567 		sock_ops.is_fullsock = 1;
568 		sock_ops.sk = sk;
569 	}
570 
571 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
572 	sock_ops.remaining_opt_len = max_opt_len;
573 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
574 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
575 
576 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
577 
578 	if (err)
579 		nr_written = 0;
580 	else
581 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
582 
583 	if (nr_written < max_opt_len)
584 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
585 		       max_opt_len - nr_written);
586 }
587 #else
588 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
589 				  struct request_sock *req,
590 				  struct sk_buff *syn_skb,
591 				  enum tcp_synack_type synack_type,
592 				  struct tcp_out_options *opts,
593 				  unsigned int *remaining)
594 {
595 }
596 
597 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
598 				    struct request_sock *req,
599 				    struct sk_buff *syn_skb,
600 				    enum tcp_synack_type synack_type,
601 				    struct tcp_out_options *opts)
602 {
603 }
604 #endif
605 
606 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
607 				      const struct tcp_request_sock *tcprsk,
608 				      struct tcp_out_options *opts,
609 				      struct tcp_key *key, __be32 *ptr)
610 {
611 #ifdef CONFIG_TCP_AO
612 	u8 maclen = tcp_ao_maclen(key->ao_key);
613 
614 	if (tcprsk) {
615 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
616 
617 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
618 			       (tcprsk->ao_keyid << 8) |
619 			       (tcprsk->ao_rcv_next));
620 	} else {
621 		struct tcp_ao_key *rnext_key;
622 		struct tcp_ao_info *ao_info;
623 
624 		ao_info = rcu_dereference_check(tp->ao_info,
625 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
626 		rnext_key = READ_ONCE(ao_info->rnext_key);
627 		if (WARN_ON_ONCE(!rnext_key))
628 			return ptr;
629 		*ptr++ = htonl((TCPOPT_AO << 24) |
630 			       (tcp_ao_len(key->ao_key) << 16) |
631 			       (key->ao_key->sndid << 8) |
632 			       (rnext_key->rcvid));
633 	}
634 	opts->hash_location = (__u8 *)ptr;
635 	ptr += maclen / sizeof(*ptr);
636 	if (unlikely(maclen % sizeof(*ptr))) {
637 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
638 		ptr++;
639 	}
640 #endif
641 	return ptr;
642 }
643 
644 /* Write previously computed TCP options to the packet.
645  *
646  * Beware: Something in the Internet is very sensitive to the ordering of
647  * TCP options, we learned this through the hard way, so be careful here.
648  * Luckily we can at least blame others for their non-compliance but from
649  * inter-operability perspective it seems that we're somewhat stuck with
650  * the ordering which we have been using if we want to keep working with
651  * those broken things (not that it currently hurts anybody as there isn't
652  * particular reason why the ordering would need to be changed).
653  *
654  * At least SACK_PERM as the first option is known to lead to a disaster
655  * (but it may well be that other scenarios fail similarly).
656  */
657 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
658 			      const struct tcp_request_sock *tcprsk,
659 			      struct tcp_out_options *opts,
660 			      struct tcp_key *key)
661 {
662 	__be32 *ptr = (__be32 *)(th + 1);
663 	u16 options = opts->options;	/* mungable copy */
664 
665 	if (tcp_key_is_md5(key)) {
666 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
667 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
668 		/* overload cookie hash location */
669 		opts->hash_location = (__u8 *)ptr;
670 		ptr += 4;
671 	} else if (tcp_key_is_ao(key)) {
672 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
673 	}
674 	if (unlikely(opts->mss)) {
675 		*ptr++ = htonl((TCPOPT_MSS << 24) |
676 			       (TCPOLEN_MSS << 16) |
677 			       opts->mss);
678 	}
679 
680 	if (likely(OPTION_TS & options)) {
681 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
682 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
683 				       (TCPOLEN_SACK_PERM << 16) |
684 				       (TCPOPT_TIMESTAMP << 8) |
685 				       TCPOLEN_TIMESTAMP);
686 			options &= ~OPTION_SACK_ADVERTISE;
687 		} else {
688 			*ptr++ = htonl((TCPOPT_NOP << 24) |
689 				       (TCPOPT_NOP << 16) |
690 				       (TCPOPT_TIMESTAMP << 8) |
691 				       TCPOLEN_TIMESTAMP);
692 		}
693 		*ptr++ = htonl(opts->tsval);
694 		*ptr++ = htonl(opts->tsecr);
695 	}
696 
697 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
698 		*ptr++ = htonl((TCPOPT_NOP << 24) |
699 			       (TCPOPT_NOP << 16) |
700 			       (TCPOPT_SACK_PERM << 8) |
701 			       TCPOLEN_SACK_PERM);
702 	}
703 
704 	if (unlikely(OPTION_WSCALE & options)) {
705 		*ptr++ = htonl((TCPOPT_NOP << 24) |
706 			       (TCPOPT_WINDOW << 16) |
707 			       (TCPOLEN_WINDOW << 8) |
708 			       opts->ws);
709 	}
710 
711 	if (unlikely(opts->num_sack_blocks)) {
712 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
713 			tp->duplicate_sack : tp->selective_acks;
714 		int this_sack;
715 
716 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
717 			       (TCPOPT_NOP  << 16) |
718 			       (TCPOPT_SACK <<  8) |
719 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
720 						     TCPOLEN_SACK_PERBLOCK)));
721 
722 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
723 		     ++this_sack) {
724 			*ptr++ = htonl(sp[this_sack].start_seq);
725 			*ptr++ = htonl(sp[this_sack].end_seq);
726 		}
727 
728 		tp->rx_opt.dsack = 0;
729 	}
730 
731 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
732 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
733 		u8 *p = (u8 *)ptr;
734 		u32 len; /* Fast Open option length */
735 
736 		if (foc->exp) {
737 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
738 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
739 				     TCPOPT_FASTOPEN_MAGIC);
740 			p += TCPOLEN_EXP_FASTOPEN_BASE;
741 		} else {
742 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
743 			*p++ = TCPOPT_FASTOPEN;
744 			*p++ = len;
745 		}
746 
747 		memcpy(p, foc->val, foc->len);
748 		if ((len & 3) == 2) {
749 			p[foc->len] = TCPOPT_NOP;
750 			p[foc->len + 1] = TCPOPT_NOP;
751 		}
752 		ptr += (len + 3) >> 2;
753 	}
754 
755 	smc_options_write(ptr, &options);
756 
757 	mptcp_options_write(th, ptr, tp, opts);
758 }
759 
760 static void smc_set_option(const struct tcp_sock *tp,
761 			   struct tcp_out_options *opts,
762 			   unsigned int *remaining)
763 {
764 #if IS_ENABLED(CONFIG_SMC)
765 	if (static_branch_unlikely(&tcp_have_smc)) {
766 		if (tp->syn_smc) {
767 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
768 				opts->options |= OPTION_SMC;
769 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
770 			}
771 		}
772 	}
773 #endif
774 }
775 
776 static void smc_set_option_cond(const struct tcp_sock *tp,
777 				const struct inet_request_sock *ireq,
778 				struct tcp_out_options *opts,
779 				unsigned int *remaining)
780 {
781 #if IS_ENABLED(CONFIG_SMC)
782 	if (static_branch_unlikely(&tcp_have_smc)) {
783 		if (tp->syn_smc && ireq->smc_ok) {
784 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
785 				opts->options |= OPTION_SMC;
786 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
787 			}
788 		}
789 	}
790 #endif
791 }
792 
793 static void mptcp_set_option_cond(const struct request_sock *req,
794 				  struct tcp_out_options *opts,
795 				  unsigned int *remaining)
796 {
797 	if (rsk_is_mptcp(req)) {
798 		unsigned int size;
799 
800 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
801 			if (*remaining >= size) {
802 				opts->options |= OPTION_MPTCP;
803 				*remaining -= size;
804 			}
805 		}
806 	}
807 }
808 
809 /* Compute TCP options for SYN packets. This is not the final
810  * network wire format yet.
811  */
812 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
813 				struct tcp_out_options *opts,
814 				struct tcp_key *key)
815 {
816 	struct tcp_sock *tp = tcp_sk(sk);
817 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
818 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
819 	bool timestamps;
820 
821 	/* Better than switch (key.type) as it has static branches */
822 	if (tcp_key_is_md5(key)) {
823 		timestamps = false;
824 		opts->options |= OPTION_MD5;
825 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
826 	} else {
827 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
828 		if (tcp_key_is_ao(key)) {
829 			opts->options |= OPTION_AO;
830 			remaining -= tcp_ao_len_aligned(key->ao_key);
831 		}
832 	}
833 
834 	/* We always get an MSS option.  The option bytes which will be seen in
835 	 * normal data packets should timestamps be used, must be in the MSS
836 	 * advertised.  But we subtract them from tp->mss_cache so that
837 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
838 	 * fact here if necessary.  If we don't do this correctly, as a
839 	 * receiver we won't recognize data packets as being full sized when we
840 	 * should, and thus we won't abide by the delayed ACK rules correctly.
841 	 * SACKs don't matter, we never delay an ACK when we have any of those
842 	 * going out.  */
843 	opts->mss = tcp_advertise_mss(sk);
844 	remaining -= TCPOLEN_MSS_ALIGNED;
845 
846 	if (likely(timestamps)) {
847 		opts->options |= OPTION_TS;
848 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
849 		opts->tsecr = tp->rx_opt.ts_recent;
850 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
851 	}
852 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
853 		opts->ws = tp->rx_opt.rcv_wscale;
854 		opts->options |= OPTION_WSCALE;
855 		remaining -= TCPOLEN_WSCALE_ALIGNED;
856 	}
857 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
858 		opts->options |= OPTION_SACK_ADVERTISE;
859 		if (unlikely(!(OPTION_TS & opts->options)))
860 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
861 	}
862 
863 	if (fastopen && fastopen->cookie.len >= 0) {
864 		u32 need = fastopen->cookie.len;
865 
866 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
867 					       TCPOLEN_FASTOPEN_BASE;
868 		need = (need + 3) & ~3U;  /* Align to 32 bits */
869 		if (remaining >= need) {
870 			opts->options |= OPTION_FAST_OPEN_COOKIE;
871 			opts->fastopen_cookie = &fastopen->cookie;
872 			remaining -= need;
873 			tp->syn_fastopen = 1;
874 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
875 		}
876 	}
877 
878 	smc_set_option(tp, opts, &remaining);
879 
880 	if (sk_is_mptcp(sk)) {
881 		unsigned int size;
882 
883 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
884 			opts->options |= OPTION_MPTCP;
885 			remaining -= size;
886 		}
887 	}
888 
889 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
890 
891 	return MAX_TCP_OPTION_SPACE - remaining;
892 }
893 
894 /* Set up TCP options for SYN-ACKs. */
895 static unsigned int tcp_synack_options(const struct sock *sk,
896 				       struct request_sock *req,
897 				       unsigned int mss, struct sk_buff *skb,
898 				       struct tcp_out_options *opts,
899 				       const struct tcp_key *key,
900 				       struct tcp_fastopen_cookie *foc,
901 				       enum tcp_synack_type synack_type,
902 				       struct sk_buff *syn_skb)
903 {
904 	struct inet_request_sock *ireq = inet_rsk(req);
905 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
906 
907 	if (tcp_key_is_md5(key)) {
908 		opts->options |= OPTION_MD5;
909 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
910 
911 		/* We can't fit any SACK blocks in a packet with MD5 + TS
912 		 * options. There was discussion about disabling SACK
913 		 * rather than TS in order to fit in better with old,
914 		 * buggy kernels, but that was deemed to be unnecessary.
915 		 */
916 		if (synack_type != TCP_SYNACK_COOKIE)
917 			ireq->tstamp_ok &= !ireq->sack_ok;
918 	} else if (tcp_key_is_ao(key)) {
919 		opts->options |= OPTION_AO;
920 		remaining -= tcp_ao_len_aligned(key->ao_key);
921 		ireq->tstamp_ok &= !ireq->sack_ok;
922 	}
923 
924 	/* We always send an MSS option. */
925 	opts->mss = mss;
926 	remaining -= TCPOLEN_MSS_ALIGNED;
927 
928 	if (likely(ireq->wscale_ok)) {
929 		opts->ws = ireq->rcv_wscale;
930 		opts->options |= OPTION_WSCALE;
931 		remaining -= TCPOLEN_WSCALE_ALIGNED;
932 	}
933 	if (likely(ireq->tstamp_ok)) {
934 		opts->options |= OPTION_TS;
935 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
936 			      tcp_rsk(req)->ts_off;
937 		opts->tsecr = READ_ONCE(req->ts_recent);
938 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
939 	}
940 	if (likely(ireq->sack_ok)) {
941 		opts->options |= OPTION_SACK_ADVERTISE;
942 		if (unlikely(!ireq->tstamp_ok))
943 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
944 	}
945 	if (foc != NULL && foc->len >= 0) {
946 		u32 need = foc->len;
947 
948 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
949 				   TCPOLEN_FASTOPEN_BASE;
950 		need = (need + 3) & ~3U;  /* Align to 32 bits */
951 		if (remaining >= need) {
952 			opts->options |= OPTION_FAST_OPEN_COOKIE;
953 			opts->fastopen_cookie = foc;
954 			remaining -= need;
955 		}
956 	}
957 
958 	mptcp_set_option_cond(req, opts, &remaining);
959 
960 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
961 
962 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
963 			      synack_type, opts, &remaining);
964 
965 	return MAX_TCP_OPTION_SPACE - remaining;
966 }
967 
968 /* Compute TCP options for ESTABLISHED sockets. This is not the
969  * final wire format yet.
970  */
971 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
972 					struct tcp_out_options *opts,
973 					struct tcp_key *key)
974 {
975 	struct tcp_sock *tp = tcp_sk(sk);
976 	unsigned int size = 0;
977 	unsigned int eff_sacks;
978 
979 	opts->options = 0;
980 
981 	/* Better than switch (key.type) as it has static branches */
982 	if (tcp_key_is_md5(key)) {
983 		opts->options |= OPTION_MD5;
984 		size += TCPOLEN_MD5SIG_ALIGNED;
985 	} else if (tcp_key_is_ao(key)) {
986 		opts->options |= OPTION_AO;
987 		size += tcp_ao_len_aligned(key->ao_key);
988 	}
989 
990 	if (likely(tp->rx_opt.tstamp_ok)) {
991 		opts->options |= OPTION_TS;
992 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
993 				tp->tsoffset : 0;
994 		opts->tsecr = tp->rx_opt.ts_recent;
995 		size += TCPOLEN_TSTAMP_ALIGNED;
996 	}
997 
998 	/* MPTCP options have precedence over SACK for the limited TCP
999 	 * option space because a MPTCP connection would be forced to
1000 	 * fall back to regular TCP if a required multipath option is
1001 	 * missing. SACK still gets a chance to use whatever space is
1002 	 * left.
1003 	 */
1004 	if (sk_is_mptcp(sk)) {
1005 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1006 		unsigned int opt_size = 0;
1007 
1008 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1009 					      &opts->mptcp)) {
1010 			opts->options |= OPTION_MPTCP;
1011 			size += opt_size;
1012 		}
1013 	}
1014 
1015 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1016 	if (unlikely(eff_sacks)) {
1017 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1018 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1019 					 TCPOLEN_SACK_PERBLOCK))
1020 			return size;
1021 
1022 		opts->num_sack_blocks =
1023 			min_t(unsigned int, eff_sacks,
1024 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1025 			      TCPOLEN_SACK_PERBLOCK);
1026 
1027 		size += TCPOLEN_SACK_BASE_ALIGNED +
1028 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1029 	}
1030 
1031 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1032 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1033 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1034 
1035 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1036 
1037 		size = MAX_TCP_OPTION_SPACE - remaining;
1038 	}
1039 
1040 	return size;
1041 }
1042 
1043 
1044 /* TCP SMALL QUEUES (TSQ)
1045  *
1046  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1047  * to reduce RTT and bufferbloat.
1048  * We do this using a special skb destructor (tcp_wfree).
1049  *
1050  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1051  * needs to be reallocated in a driver.
1052  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1053  *
1054  * Since transmit from skb destructor is forbidden, we use a tasklet
1055  * to process all sockets that eventually need to send more skbs.
1056  * We use one tasklet per cpu, with its own queue of sockets.
1057  */
1058 struct tsq_tasklet {
1059 	struct tasklet_struct	tasklet;
1060 	struct list_head	head; /* queue of tcp sockets */
1061 };
1062 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1063 
1064 static void tcp_tsq_write(struct sock *sk)
1065 {
1066 	if ((1 << sk->sk_state) &
1067 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1068 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1069 		struct tcp_sock *tp = tcp_sk(sk);
1070 
1071 		if (tp->lost_out > tp->retrans_out &&
1072 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1073 			tcp_mstamp_refresh(tp);
1074 			tcp_xmit_retransmit_queue(sk);
1075 		}
1076 
1077 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1078 			       0, GFP_ATOMIC);
1079 	}
1080 }
1081 
1082 static void tcp_tsq_handler(struct sock *sk)
1083 {
1084 	bh_lock_sock(sk);
1085 	if (!sock_owned_by_user(sk))
1086 		tcp_tsq_write(sk);
1087 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1088 		sock_hold(sk);
1089 	bh_unlock_sock(sk);
1090 }
1091 /*
1092  * One tasklet per cpu tries to send more skbs.
1093  * We run in tasklet context but need to disable irqs when
1094  * transferring tsq->head because tcp_wfree() might
1095  * interrupt us (non NAPI drivers)
1096  */
1097 static void tcp_tasklet_func(struct tasklet_struct *t)
1098 {
1099 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1100 	LIST_HEAD(list);
1101 	unsigned long flags;
1102 	struct list_head *q, *n;
1103 	struct tcp_sock *tp;
1104 	struct sock *sk;
1105 
1106 	local_irq_save(flags);
1107 	list_splice_init(&tsq->head, &list);
1108 	local_irq_restore(flags);
1109 
1110 	list_for_each_safe(q, n, &list) {
1111 		tp = list_entry(q, struct tcp_sock, tsq_node);
1112 		list_del(&tp->tsq_node);
1113 
1114 		sk = (struct sock *)tp;
1115 		smp_mb__before_atomic();
1116 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1117 
1118 		tcp_tsq_handler(sk);
1119 		sk_free(sk);
1120 	}
1121 }
1122 
1123 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1124 			  TCPF_WRITE_TIMER_DEFERRED |	\
1125 			  TCPF_DELACK_TIMER_DEFERRED |	\
1126 			  TCPF_MTU_REDUCED_DEFERRED |	\
1127 			  TCPF_ACK_DEFERRED)
1128 /**
1129  * tcp_release_cb - tcp release_sock() callback
1130  * @sk: socket
1131  *
1132  * called from release_sock() to perform protocol dependent
1133  * actions before socket release.
1134  */
1135 void tcp_release_cb(struct sock *sk)
1136 {
1137 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1138 	unsigned long nflags;
1139 
1140 	/* perform an atomic operation only if at least one flag is set */
1141 	do {
1142 		if (!(flags & TCP_DEFERRED_ALL))
1143 			return;
1144 		nflags = flags & ~TCP_DEFERRED_ALL;
1145 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1146 
1147 	if (flags & TCPF_TSQ_DEFERRED) {
1148 		tcp_tsq_write(sk);
1149 		__sock_put(sk);
1150 	}
1151 
1152 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1153 		tcp_write_timer_handler(sk);
1154 		__sock_put(sk);
1155 	}
1156 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1157 		tcp_delack_timer_handler(sk);
1158 		__sock_put(sk);
1159 	}
1160 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1161 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1162 		__sock_put(sk);
1163 	}
1164 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1165 		tcp_send_ack(sk);
1166 }
1167 EXPORT_SYMBOL(tcp_release_cb);
1168 
1169 void __init tcp_tasklet_init(void)
1170 {
1171 	int i;
1172 
1173 	for_each_possible_cpu(i) {
1174 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1175 
1176 		INIT_LIST_HEAD(&tsq->head);
1177 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1178 	}
1179 }
1180 
1181 /*
1182  * Write buffer destructor automatically called from kfree_skb.
1183  * We can't xmit new skbs from this context, as we might already
1184  * hold qdisc lock.
1185  */
1186 void tcp_wfree(struct sk_buff *skb)
1187 {
1188 	struct sock *sk = skb->sk;
1189 	struct tcp_sock *tp = tcp_sk(sk);
1190 	unsigned long flags, nval, oval;
1191 	struct tsq_tasklet *tsq;
1192 	bool empty;
1193 
1194 	/* Keep one reference on sk_wmem_alloc.
1195 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1196 	 */
1197 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1198 
1199 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1200 	 * Wait until our queues (qdisc + devices) are drained.
1201 	 * This gives :
1202 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1203 	 * - chance for incoming ACK (processed by another cpu maybe)
1204 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1205 	 */
1206 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1207 		goto out;
1208 
1209 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1210 	do {
1211 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1212 			goto out;
1213 
1214 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1215 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1216 
1217 	/* queue this socket to tasklet queue */
1218 	local_irq_save(flags);
1219 	tsq = this_cpu_ptr(&tsq_tasklet);
1220 	empty = list_empty(&tsq->head);
1221 	list_add(&tp->tsq_node, &tsq->head);
1222 	if (empty)
1223 		tasklet_schedule(&tsq->tasklet);
1224 	local_irq_restore(flags);
1225 	return;
1226 out:
1227 	sk_free(sk);
1228 }
1229 
1230 /* Note: Called under soft irq.
1231  * We can call TCP stack right away, unless socket is owned by user.
1232  */
1233 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1234 {
1235 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1236 	struct sock *sk = (struct sock *)tp;
1237 
1238 	tcp_tsq_handler(sk);
1239 	sock_put(sk);
1240 
1241 	return HRTIMER_NORESTART;
1242 }
1243 
1244 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1245 				      u64 prior_wstamp)
1246 {
1247 	struct tcp_sock *tp = tcp_sk(sk);
1248 
1249 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1250 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1251 
1252 		/* Original sch_fq does not pace first 10 MSS
1253 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1254 		 * this is a minor annoyance.
1255 		 */
1256 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1257 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1258 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1259 
1260 			/* take into account OS jitter */
1261 			len_ns -= min_t(u64, len_ns / 2, credit);
1262 			tp->tcp_wstamp_ns += len_ns;
1263 		}
1264 	}
1265 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1266 }
1267 
1268 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1269 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1270 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1271 
1272 /* This routine actually transmits TCP packets queued in by
1273  * tcp_do_sendmsg().  This is used by both the initial
1274  * transmission and possible later retransmissions.
1275  * All SKB's seen here are completely headerless.  It is our
1276  * job to build the TCP header, and pass the packet down to
1277  * IP so it can do the same plus pass the packet off to the
1278  * device.
1279  *
1280  * We are working here with either a clone of the original
1281  * SKB, or a fresh unique copy made by the retransmit engine.
1282  */
1283 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1284 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1285 {
1286 	const struct inet_connection_sock *icsk = inet_csk(sk);
1287 	struct inet_sock *inet;
1288 	struct tcp_sock *tp;
1289 	struct tcp_skb_cb *tcb;
1290 	struct tcp_out_options opts;
1291 	unsigned int tcp_options_size, tcp_header_size;
1292 	struct sk_buff *oskb = NULL;
1293 	struct tcp_key key;
1294 	struct tcphdr *th;
1295 	u64 prior_wstamp;
1296 	int err;
1297 
1298 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1299 	tp = tcp_sk(sk);
1300 	prior_wstamp = tp->tcp_wstamp_ns;
1301 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1302 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1303 	if (clone_it) {
1304 		oskb = skb;
1305 
1306 		tcp_skb_tsorted_save(oskb) {
1307 			if (unlikely(skb_cloned(oskb)))
1308 				skb = pskb_copy(oskb, gfp_mask);
1309 			else
1310 				skb = skb_clone(oskb, gfp_mask);
1311 		} tcp_skb_tsorted_restore(oskb);
1312 
1313 		if (unlikely(!skb))
1314 			return -ENOBUFS;
1315 		/* retransmit skbs might have a non zero value in skb->dev
1316 		 * because skb->dev is aliased with skb->rbnode.rb_left
1317 		 */
1318 		skb->dev = NULL;
1319 	}
1320 
1321 	inet = inet_sk(sk);
1322 	tcb = TCP_SKB_CB(skb);
1323 	memset(&opts, 0, sizeof(opts));
1324 
1325 	tcp_get_current_key(sk, &key);
1326 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1327 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1328 	} else {
1329 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1330 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1331 		 * at receiver : This slightly improve GRO performance.
1332 		 * Note that we do not force the PSH flag for non GSO packets,
1333 		 * because they might be sent under high congestion events,
1334 		 * and in this case it is better to delay the delivery of 1-MSS
1335 		 * packets and thus the corresponding ACK packet that would
1336 		 * release the following packet.
1337 		 */
1338 		if (tcp_skb_pcount(skb) > 1)
1339 			tcb->tcp_flags |= TCPHDR_PSH;
1340 	}
1341 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1342 
1343 	/* We set skb->ooo_okay to one if this packet can select
1344 	 * a different TX queue than prior packets of this flow,
1345 	 * to avoid self inflicted reorders.
1346 	 * The 'other' queue decision is based on current cpu number
1347 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1348 	 * We can switch to another (and better) queue if:
1349 	 * 1) No packet with payload is in qdisc/device queues.
1350 	 *    Delays in TX completion can defeat the test
1351 	 *    even if packets were already sent.
1352 	 * 2) Or rtx queue is empty.
1353 	 *    This mitigates above case if ACK packets for
1354 	 *    all prior packets were already processed.
1355 	 */
1356 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1357 			tcp_rtx_queue_empty(sk);
1358 
1359 	/* If we had to use memory reserve to allocate this skb,
1360 	 * this might cause drops if packet is looped back :
1361 	 * Other socket might not have SOCK_MEMALLOC.
1362 	 * Packets not looped back do not care about pfmemalloc.
1363 	 */
1364 	skb->pfmemalloc = 0;
1365 
1366 	skb_push(skb, tcp_header_size);
1367 	skb_reset_transport_header(skb);
1368 
1369 	skb_orphan(skb);
1370 	skb->sk = sk;
1371 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1372 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1373 
1374 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1375 
1376 	/* Build TCP header and checksum it. */
1377 	th = (struct tcphdr *)skb->data;
1378 	th->source		= inet->inet_sport;
1379 	th->dest		= inet->inet_dport;
1380 	th->seq			= htonl(tcb->seq);
1381 	th->ack_seq		= htonl(rcv_nxt);
1382 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1383 					tcb->tcp_flags);
1384 
1385 	th->check		= 0;
1386 	th->urg_ptr		= 0;
1387 
1388 	/* The urg_mode check is necessary during a below snd_una win probe */
1389 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1390 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1391 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1392 			th->urg = 1;
1393 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1394 			th->urg_ptr = htons(0xFFFF);
1395 			th->urg = 1;
1396 		}
1397 	}
1398 
1399 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1400 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1401 		th->window      = htons(tcp_select_window(sk));
1402 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1403 	} else {
1404 		/* RFC1323: The window in SYN & SYN/ACK segments
1405 		 * is never scaled.
1406 		 */
1407 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1408 	}
1409 
1410 	tcp_options_write(th, tp, NULL, &opts, &key);
1411 
1412 	if (tcp_key_is_md5(&key)) {
1413 #ifdef CONFIG_TCP_MD5SIG
1414 		/* Calculate the MD5 hash, as we have all we need now */
1415 		sk_gso_disable(sk);
1416 		tp->af_specific->calc_md5_hash(opts.hash_location,
1417 					       key.md5_key, sk, skb);
1418 #endif
1419 	} else if (tcp_key_is_ao(&key)) {
1420 		int err;
1421 
1422 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1423 					  opts.hash_location);
1424 		if (err) {
1425 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1426 			return -ENOMEM;
1427 		}
1428 	}
1429 
1430 	/* BPF prog is the last one writing header option */
1431 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1432 
1433 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1434 			   tcp_v6_send_check, tcp_v4_send_check,
1435 			   sk, skb);
1436 
1437 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1438 		tcp_event_ack_sent(sk, rcv_nxt);
1439 
1440 	if (skb->len != tcp_header_size) {
1441 		tcp_event_data_sent(tp, sk);
1442 		tp->data_segs_out += tcp_skb_pcount(skb);
1443 		tp->bytes_sent += skb->len - tcp_header_size;
1444 	}
1445 
1446 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1447 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1448 			      tcp_skb_pcount(skb));
1449 
1450 	tp->segs_out += tcp_skb_pcount(skb);
1451 	skb_set_hash_from_sk(skb, sk);
1452 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1453 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1454 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1455 
1456 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1457 
1458 	/* Cleanup our debris for IP stacks */
1459 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1460 			       sizeof(struct inet6_skb_parm)));
1461 
1462 	tcp_add_tx_delay(skb, tp);
1463 
1464 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1465 				 inet6_csk_xmit, ip_queue_xmit,
1466 				 sk, skb, &inet->cork.fl);
1467 
1468 	if (unlikely(err > 0)) {
1469 		tcp_enter_cwr(sk);
1470 		err = net_xmit_eval(err);
1471 	}
1472 	if (!err && oskb) {
1473 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1474 		tcp_rate_skb_sent(sk, oskb);
1475 	}
1476 	return err;
1477 }
1478 
1479 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1480 			    gfp_t gfp_mask)
1481 {
1482 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1483 				  tcp_sk(sk)->rcv_nxt);
1484 }
1485 
1486 /* This routine just queues the buffer for sending.
1487  *
1488  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1489  * otherwise socket can stall.
1490  */
1491 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1492 {
1493 	struct tcp_sock *tp = tcp_sk(sk);
1494 
1495 	/* Advance write_seq and place onto the write_queue. */
1496 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1497 	__skb_header_release(skb);
1498 	tcp_add_write_queue_tail(sk, skb);
1499 	sk_wmem_queued_add(sk, skb->truesize);
1500 	sk_mem_charge(sk, skb->truesize);
1501 }
1502 
1503 /* Initialize TSO segments for a packet. */
1504 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1505 {
1506 	if (skb->len <= mss_now) {
1507 		/* Avoid the costly divide in the normal
1508 		 * non-TSO case.
1509 		 */
1510 		tcp_skb_pcount_set(skb, 1);
1511 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1512 	} else {
1513 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1514 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1515 	}
1516 }
1517 
1518 /* Pcount in the middle of the write queue got changed, we need to do various
1519  * tweaks to fix counters
1520  */
1521 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1522 {
1523 	struct tcp_sock *tp = tcp_sk(sk);
1524 
1525 	tp->packets_out -= decr;
1526 
1527 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1528 		tp->sacked_out -= decr;
1529 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1530 		tp->retrans_out -= decr;
1531 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1532 		tp->lost_out -= decr;
1533 
1534 	/* Reno case is special. Sigh... */
1535 	if (tcp_is_reno(tp) && decr > 0)
1536 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1537 
1538 	if (tp->lost_skb_hint &&
1539 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1540 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1541 		tp->lost_cnt_hint -= decr;
1542 
1543 	tcp_verify_left_out(tp);
1544 }
1545 
1546 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1547 {
1548 	return TCP_SKB_CB(skb)->txstamp_ack ||
1549 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1550 }
1551 
1552 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1553 {
1554 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1555 
1556 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1557 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1558 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1559 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1560 
1561 		shinfo->tx_flags &= ~tsflags;
1562 		shinfo2->tx_flags |= tsflags;
1563 		swap(shinfo->tskey, shinfo2->tskey);
1564 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1565 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1566 	}
1567 }
1568 
1569 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1570 {
1571 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1572 	TCP_SKB_CB(skb)->eor = 0;
1573 }
1574 
1575 /* Insert buff after skb on the write or rtx queue of sk.  */
1576 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1577 					 struct sk_buff *buff,
1578 					 struct sock *sk,
1579 					 enum tcp_queue tcp_queue)
1580 {
1581 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1582 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1583 	else
1584 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1585 }
1586 
1587 /* Function to create two new TCP segments.  Shrinks the given segment
1588  * to the specified size and appends a new segment with the rest of the
1589  * packet to the list.  This won't be called frequently, I hope.
1590  * Remember, these are still headerless SKBs at this point.
1591  */
1592 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1593 		 struct sk_buff *skb, u32 len,
1594 		 unsigned int mss_now, gfp_t gfp)
1595 {
1596 	struct tcp_sock *tp = tcp_sk(sk);
1597 	struct sk_buff *buff;
1598 	int old_factor;
1599 	long limit;
1600 	int nlen;
1601 	u8 flags;
1602 
1603 	if (WARN_ON(len > skb->len))
1604 		return -EINVAL;
1605 
1606 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1607 
1608 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1609 	 * We need some allowance to not penalize applications setting small
1610 	 * SO_SNDBUF values.
1611 	 * Also allow first and last skb in retransmit queue to be split.
1612 	 */
1613 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1614 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1615 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1616 		     skb != tcp_rtx_queue_head(sk) &&
1617 		     skb != tcp_rtx_queue_tail(sk))) {
1618 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1619 		return -ENOMEM;
1620 	}
1621 
1622 	if (skb_unclone_keeptruesize(skb, gfp))
1623 		return -ENOMEM;
1624 
1625 	/* Get a new skb... force flag on. */
1626 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1627 	if (!buff)
1628 		return -ENOMEM; /* We'll just try again later. */
1629 	skb_copy_decrypted(buff, skb);
1630 	mptcp_skb_ext_copy(buff, skb);
1631 
1632 	sk_wmem_queued_add(sk, buff->truesize);
1633 	sk_mem_charge(sk, buff->truesize);
1634 	nlen = skb->len - len;
1635 	buff->truesize += nlen;
1636 	skb->truesize -= nlen;
1637 
1638 	/* Correct the sequence numbers. */
1639 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1640 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1641 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1642 
1643 	/* PSH and FIN should only be set in the second packet. */
1644 	flags = TCP_SKB_CB(skb)->tcp_flags;
1645 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1646 	TCP_SKB_CB(buff)->tcp_flags = flags;
1647 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1648 	tcp_skb_fragment_eor(skb, buff);
1649 
1650 	skb_split(skb, buff, len);
1651 
1652 	skb_set_delivery_time(buff, skb->tstamp, true);
1653 	tcp_fragment_tstamp(skb, buff);
1654 
1655 	old_factor = tcp_skb_pcount(skb);
1656 
1657 	/* Fix up tso_factor for both original and new SKB.  */
1658 	tcp_set_skb_tso_segs(skb, mss_now);
1659 	tcp_set_skb_tso_segs(buff, mss_now);
1660 
1661 	/* Update delivered info for the new segment */
1662 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1663 
1664 	/* If this packet has been sent out already, we must
1665 	 * adjust the various packet counters.
1666 	 */
1667 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1668 		int diff = old_factor - tcp_skb_pcount(skb) -
1669 			tcp_skb_pcount(buff);
1670 
1671 		if (diff)
1672 			tcp_adjust_pcount(sk, skb, diff);
1673 	}
1674 
1675 	/* Link BUFF into the send queue. */
1676 	__skb_header_release(buff);
1677 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1678 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1679 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1680 
1681 	return 0;
1682 }
1683 
1684 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1685  * data is not copied, but immediately discarded.
1686  */
1687 static int __pskb_trim_head(struct sk_buff *skb, int len)
1688 {
1689 	struct skb_shared_info *shinfo;
1690 	int i, k, eat;
1691 
1692 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1693 	eat = len;
1694 	k = 0;
1695 	shinfo = skb_shinfo(skb);
1696 	for (i = 0; i < shinfo->nr_frags; i++) {
1697 		int size = skb_frag_size(&shinfo->frags[i]);
1698 
1699 		if (size <= eat) {
1700 			skb_frag_unref(skb, i);
1701 			eat -= size;
1702 		} else {
1703 			shinfo->frags[k] = shinfo->frags[i];
1704 			if (eat) {
1705 				skb_frag_off_add(&shinfo->frags[k], eat);
1706 				skb_frag_size_sub(&shinfo->frags[k], eat);
1707 				eat = 0;
1708 			}
1709 			k++;
1710 		}
1711 	}
1712 	shinfo->nr_frags = k;
1713 
1714 	skb->data_len -= len;
1715 	skb->len = skb->data_len;
1716 	return len;
1717 }
1718 
1719 /* Remove acked data from a packet in the transmit queue. */
1720 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1721 {
1722 	u32 delta_truesize;
1723 
1724 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1725 		return -ENOMEM;
1726 
1727 	delta_truesize = __pskb_trim_head(skb, len);
1728 
1729 	TCP_SKB_CB(skb)->seq += len;
1730 
1731 	skb->truesize	   -= delta_truesize;
1732 	sk_wmem_queued_add(sk, -delta_truesize);
1733 	if (!skb_zcopy_pure(skb))
1734 		sk_mem_uncharge(sk, delta_truesize);
1735 
1736 	/* Any change of skb->len requires recalculation of tso factor. */
1737 	if (tcp_skb_pcount(skb) > 1)
1738 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1739 
1740 	return 0;
1741 }
1742 
1743 /* Calculate MSS not accounting any TCP options.  */
1744 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1745 {
1746 	const struct tcp_sock *tp = tcp_sk(sk);
1747 	const struct inet_connection_sock *icsk = inet_csk(sk);
1748 	int mss_now;
1749 
1750 	/* Calculate base mss without TCP options:
1751 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1752 	 */
1753 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1754 
1755 	/* Clamp it (mss_clamp does not include tcp options) */
1756 	if (mss_now > tp->rx_opt.mss_clamp)
1757 		mss_now = tp->rx_opt.mss_clamp;
1758 
1759 	/* Now subtract optional transport overhead */
1760 	mss_now -= icsk->icsk_ext_hdr_len;
1761 
1762 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1763 	mss_now = max(mss_now,
1764 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1765 	return mss_now;
1766 }
1767 
1768 /* Calculate MSS. Not accounting for SACKs here.  */
1769 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1770 {
1771 	/* Subtract TCP options size, not including SACKs */
1772 	return __tcp_mtu_to_mss(sk, pmtu) -
1773 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1774 }
1775 EXPORT_SYMBOL(tcp_mtu_to_mss);
1776 
1777 /* Inverse of above */
1778 int tcp_mss_to_mtu(struct sock *sk, int mss)
1779 {
1780 	const struct tcp_sock *tp = tcp_sk(sk);
1781 	const struct inet_connection_sock *icsk = inet_csk(sk);
1782 
1783 	return mss +
1784 	      tp->tcp_header_len +
1785 	      icsk->icsk_ext_hdr_len +
1786 	      icsk->icsk_af_ops->net_header_len;
1787 }
1788 EXPORT_SYMBOL(tcp_mss_to_mtu);
1789 
1790 /* MTU probing init per socket */
1791 void tcp_mtup_init(struct sock *sk)
1792 {
1793 	struct tcp_sock *tp = tcp_sk(sk);
1794 	struct inet_connection_sock *icsk = inet_csk(sk);
1795 	struct net *net = sock_net(sk);
1796 
1797 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1798 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1799 			       icsk->icsk_af_ops->net_header_len;
1800 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1801 	icsk->icsk_mtup.probe_size = 0;
1802 	if (icsk->icsk_mtup.enabled)
1803 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1804 }
1805 EXPORT_SYMBOL(tcp_mtup_init);
1806 
1807 /* This function synchronize snd mss to current pmtu/exthdr set.
1808 
1809    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1810    for TCP options, but includes only bare TCP header.
1811 
1812    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1813    It is minimum of user_mss and mss received with SYN.
1814    It also does not include TCP options.
1815 
1816    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1817 
1818    tp->mss_cache is current effective sending mss, including
1819    all tcp options except for SACKs. It is evaluated,
1820    taking into account current pmtu, but never exceeds
1821    tp->rx_opt.mss_clamp.
1822 
1823    NOTE1. rfc1122 clearly states that advertised MSS
1824    DOES NOT include either tcp or ip options.
1825 
1826    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1827    are READ ONLY outside this function.		--ANK (980731)
1828  */
1829 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1830 {
1831 	struct tcp_sock *tp = tcp_sk(sk);
1832 	struct inet_connection_sock *icsk = inet_csk(sk);
1833 	int mss_now;
1834 
1835 	if (icsk->icsk_mtup.search_high > pmtu)
1836 		icsk->icsk_mtup.search_high = pmtu;
1837 
1838 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1839 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1840 
1841 	/* And store cached results */
1842 	icsk->icsk_pmtu_cookie = pmtu;
1843 	if (icsk->icsk_mtup.enabled)
1844 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1845 	tp->mss_cache = mss_now;
1846 
1847 	return mss_now;
1848 }
1849 EXPORT_SYMBOL(tcp_sync_mss);
1850 
1851 /* Compute the current effective MSS, taking SACKs and IP options,
1852  * and even PMTU discovery events into account.
1853  */
1854 unsigned int tcp_current_mss(struct sock *sk)
1855 {
1856 	const struct tcp_sock *tp = tcp_sk(sk);
1857 	const struct dst_entry *dst = __sk_dst_get(sk);
1858 	u32 mss_now;
1859 	unsigned int header_len;
1860 	struct tcp_out_options opts;
1861 	struct tcp_key key;
1862 
1863 	mss_now = tp->mss_cache;
1864 
1865 	if (dst) {
1866 		u32 mtu = dst_mtu(dst);
1867 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1868 			mss_now = tcp_sync_mss(sk, mtu);
1869 	}
1870 	tcp_get_current_key(sk, &key);
1871 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1872 		     sizeof(struct tcphdr);
1873 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1874 	 * some common options. If this is an odd packet (because we have SACK
1875 	 * blocks etc) then our calculated header_len will be different, and
1876 	 * we have to adjust mss_now correspondingly */
1877 	if (header_len != tp->tcp_header_len) {
1878 		int delta = (int) header_len - tp->tcp_header_len;
1879 		mss_now -= delta;
1880 	}
1881 
1882 	return mss_now;
1883 }
1884 
1885 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1886  * As additional protections, we do not touch cwnd in retransmission phases,
1887  * and if application hit its sndbuf limit recently.
1888  */
1889 static void tcp_cwnd_application_limited(struct sock *sk)
1890 {
1891 	struct tcp_sock *tp = tcp_sk(sk);
1892 
1893 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1894 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1895 		/* Limited by application or receiver window. */
1896 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1897 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1898 		if (win_used < tcp_snd_cwnd(tp)) {
1899 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1900 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1901 		}
1902 		tp->snd_cwnd_used = 0;
1903 	}
1904 	tp->snd_cwnd_stamp = tcp_jiffies32;
1905 }
1906 
1907 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1908 {
1909 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1910 	struct tcp_sock *tp = tcp_sk(sk);
1911 
1912 	/* Track the strongest available signal of the degree to which the cwnd
1913 	 * is fully utilized. If cwnd-limited then remember that fact for the
1914 	 * current window. If not cwnd-limited then track the maximum number of
1915 	 * outstanding packets in the current window. (If cwnd-limited then we
1916 	 * chose to not update tp->max_packets_out to avoid an extra else
1917 	 * clause with no functional impact.)
1918 	 */
1919 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1920 	    is_cwnd_limited ||
1921 	    (!tp->is_cwnd_limited &&
1922 	     tp->packets_out > tp->max_packets_out)) {
1923 		tp->is_cwnd_limited = is_cwnd_limited;
1924 		tp->max_packets_out = tp->packets_out;
1925 		tp->cwnd_usage_seq = tp->snd_nxt;
1926 	}
1927 
1928 	if (tcp_is_cwnd_limited(sk)) {
1929 		/* Network is feed fully. */
1930 		tp->snd_cwnd_used = 0;
1931 		tp->snd_cwnd_stamp = tcp_jiffies32;
1932 	} else {
1933 		/* Network starves. */
1934 		if (tp->packets_out > tp->snd_cwnd_used)
1935 			tp->snd_cwnd_used = tp->packets_out;
1936 
1937 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1938 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1939 		    !ca_ops->cong_control)
1940 			tcp_cwnd_application_limited(sk);
1941 
1942 		/* The following conditions together indicate the starvation
1943 		 * is caused by insufficient sender buffer:
1944 		 * 1) just sent some data (see tcp_write_xmit)
1945 		 * 2) not cwnd limited (this else condition)
1946 		 * 3) no more data to send (tcp_write_queue_empty())
1947 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1948 		 */
1949 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1950 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1951 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1952 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1953 	}
1954 }
1955 
1956 /* Minshall's variant of the Nagle send check. */
1957 static bool tcp_minshall_check(const struct tcp_sock *tp)
1958 {
1959 	return after(tp->snd_sml, tp->snd_una) &&
1960 		!after(tp->snd_sml, tp->snd_nxt);
1961 }
1962 
1963 /* Update snd_sml if this skb is under mss
1964  * Note that a TSO packet might end with a sub-mss segment
1965  * The test is really :
1966  * if ((skb->len % mss) != 0)
1967  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1968  * But we can avoid doing the divide again given we already have
1969  *  skb_pcount = skb->len / mss_now
1970  */
1971 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1972 				const struct sk_buff *skb)
1973 {
1974 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1975 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1976 }
1977 
1978 /* Return false, if packet can be sent now without violation Nagle's rules:
1979  * 1. It is full sized. (provided by caller in %partial bool)
1980  * 2. Or it contains FIN. (already checked by caller)
1981  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1982  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1983  *    With Minshall's modification: all sent small packets are ACKed.
1984  */
1985 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1986 			    int nonagle)
1987 {
1988 	return partial &&
1989 		((nonagle & TCP_NAGLE_CORK) ||
1990 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1991 }
1992 
1993 /* Return how many segs we'd like on a TSO packet,
1994  * depending on current pacing rate, and how close the peer is.
1995  *
1996  * Rationale is:
1997  * - For close peers, we rather send bigger packets to reduce
1998  *   cpu costs, because occasional losses will be repaired fast.
1999  * - For long distance/rtt flows, we would like to get ACK clocking
2000  *   with 1 ACK per ms.
2001  *
2002  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2003  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2004  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2005  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2006  */
2007 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2008 			    int min_tso_segs)
2009 {
2010 	unsigned long bytes;
2011 	u32 r;
2012 
2013 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2014 
2015 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2016 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2017 		bytes += sk->sk_gso_max_size >> r;
2018 
2019 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2020 
2021 	return max_t(u32, bytes / mss_now, min_tso_segs);
2022 }
2023 
2024 /* Return the number of segments we want in the skb we are transmitting.
2025  * See if congestion control module wants to decide; otherwise, autosize.
2026  */
2027 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2028 {
2029 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2030 	u32 min_tso, tso_segs;
2031 
2032 	min_tso = ca_ops->min_tso_segs ?
2033 			ca_ops->min_tso_segs(sk) :
2034 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2035 
2036 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2037 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2038 }
2039 
2040 /* Returns the portion of skb which can be sent right away */
2041 static unsigned int tcp_mss_split_point(const struct sock *sk,
2042 					const struct sk_buff *skb,
2043 					unsigned int mss_now,
2044 					unsigned int max_segs,
2045 					int nonagle)
2046 {
2047 	const struct tcp_sock *tp = tcp_sk(sk);
2048 	u32 partial, needed, window, max_len;
2049 
2050 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2051 	max_len = mss_now * max_segs;
2052 
2053 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2054 		return max_len;
2055 
2056 	needed = min(skb->len, window);
2057 
2058 	if (max_len <= needed)
2059 		return max_len;
2060 
2061 	partial = needed % mss_now;
2062 	/* If last segment is not a full MSS, check if Nagle rules allow us
2063 	 * to include this last segment in this skb.
2064 	 * Otherwise, we'll split the skb at last MSS boundary
2065 	 */
2066 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2067 		return needed - partial;
2068 
2069 	return needed;
2070 }
2071 
2072 /* Can at least one segment of SKB be sent right now, according to the
2073  * congestion window rules?  If so, return how many segments are allowed.
2074  */
2075 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2076 					 const struct sk_buff *skb)
2077 {
2078 	u32 in_flight, cwnd, halfcwnd;
2079 
2080 	/* Don't be strict about the congestion window for the final FIN.  */
2081 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2082 	    tcp_skb_pcount(skb) == 1)
2083 		return 1;
2084 
2085 	in_flight = tcp_packets_in_flight(tp);
2086 	cwnd = tcp_snd_cwnd(tp);
2087 	if (in_flight >= cwnd)
2088 		return 0;
2089 
2090 	/* For better scheduling, ensure we have at least
2091 	 * 2 GSO packets in flight.
2092 	 */
2093 	halfcwnd = max(cwnd >> 1, 1U);
2094 	return min(halfcwnd, cwnd - in_flight);
2095 }
2096 
2097 /* Initialize TSO state of a skb.
2098  * This must be invoked the first time we consider transmitting
2099  * SKB onto the wire.
2100  */
2101 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2102 {
2103 	int tso_segs = tcp_skb_pcount(skb);
2104 
2105 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2106 		tcp_set_skb_tso_segs(skb, mss_now);
2107 		tso_segs = tcp_skb_pcount(skb);
2108 	}
2109 	return tso_segs;
2110 }
2111 
2112 
2113 /* Return true if the Nagle test allows this packet to be
2114  * sent now.
2115  */
2116 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2117 				  unsigned int cur_mss, int nonagle)
2118 {
2119 	/* Nagle rule does not apply to frames, which sit in the middle of the
2120 	 * write_queue (they have no chances to get new data).
2121 	 *
2122 	 * This is implemented in the callers, where they modify the 'nonagle'
2123 	 * argument based upon the location of SKB in the send queue.
2124 	 */
2125 	if (nonagle & TCP_NAGLE_PUSH)
2126 		return true;
2127 
2128 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2129 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2130 		return true;
2131 
2132 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2133 		return true;
2134 
2135 	return false;
2136 }
2137 
2138 /* Does at least the first segment of SKB fit into the send window? */
2139 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2140 			     const struct sk_buff *skb,
2141 			     unsigned int cur_mss)
2142 {
2143 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2144 
2145 	if (skb->len > cur_mss)
2146 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2147 
2148 	return !after(end_seq, tcp_wnd_end(tp));
2149 }
2150 
2151 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2152  * which is put after SKB on the list.  It is very much like
2153  * tcp_fragment() except that it may make several kinds of assumptions
2154  * in order to speed up the splitting operation.  In particular, we
2155  * know that all the data is in scatter-gather pages, and that the
2156  * packet has never been sent out before (and thus is not cloned).
2157  */
2158 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2159 			unsigned int mss_now, gfp_t gfp)
2160 {
2161 	int nlen = skb->len - len;
2162 	struct sk_buff *buff;
2163 	u8 flags;
2164 
2165 	/* All of a TSO frame must be composed of paged data.  */
2166 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2167 
2168 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2169 	if (unlikely(!buff))
2170 		return -ENOMEM;
2171 	skb_copy_decrypted(buff, skb);
2172 	mptcp_skb_ext_copy(buff, skb);
2173 
2174 	sk_wmem_queued_add(sk, buff->truesize);
2175 	sk_mem_charge(sk, buff->truesize);
2176 	buff->truesize += nlen;
2177 	skb->truesize -= nlen;
2178 
2179 	/* Correct the sequence numbers. */
2180 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2181 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2182 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2183 
2184 	/* PSH and FIN should only be set in the second packet. */
2185 	flags = TCP_SKB_CB(skb)->tcp_flags;
2186 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2187 	TCP_SKB_CB(buff)->tcp_flags = flags;
2188 
2189 	tcp_skb_fragment_eor(skb, buff);
2190 
2191 	skb_split(skb, buff, len);
2192 	tcp_fragment_tstamp(skb, buff);
2193 
2194 	/* Fix up tso_factor for both original and new SKB.  */
2195 	tcp_set_skb_tso_segs(skb, mss_now);
2196 	tcp_set_skb_tso_segs(buff, mss_now);
2197 
2198 	/* Link BUFF into the send queue. */
2199 	__skb_header_release(buff);
2200 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2201 
2202 	return 0;
2203 }
2204 
2205 /* Try to defer sending, if possible, in order to minimize the amount
2206  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2207  *
2208  * This algorithm is from John Heffner.
2209  */
2210 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2211 				 bool *is_cwnd_limited,
2212 				 bool *is_rwnd_limited,
2213 				 u32 max_segs)
2214 {
2215 	const struct inet_connection_sock *icsk = inet_csk(sk);
2216 	u32 send_win, cong_win, limit, in_flight;
2217 	struct tcp_sock *tp = tcp_sk(sk);
2218 	struct sk_buff *head;
2219 	int win_divisor;
2220 	s64 delta;
2221 
2222 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2223 		goto send_now;
2224 
2225 	/* Avoid bursty behavior by allowing defer
2226 	 * only if the last write was recent (1 ms).
2227 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2228 	 * packets waiting in a qdisc or device for EDT delivery.
2229 	 */
2230 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2231 	if (delta > 0)
2232 		goto send_now;
2233 
2234 	in_flight = tcp_packets_in_flight(tp);
2235 
2236 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2237 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2238 
2239 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2240 
2241 	/* From in_flight test above, we know that cwnd > in_flight.  */
2242 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2243 
2244 	limit = min(send_win, cong_win);
2245 
2246 	/* If a full-sized TSO skb can be sent, do it. */
2247 	if (limit >= max_segs * tp->mss_cache)
2248 		goto send_now;
2249 
2250 	/* Middle in queue won't get any more data, full sendable already? */
2251 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2252 		goto send_now;
2253 
2254 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2255 	if (win_divisor) {
2256 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2257 
2258 		/* If at least some fraction of a window is available,
2259 		 * just use it.
2260 		 */
2261 		chunk /= win_divisor;
2262 		if (limit >= chunk)
2263 			goto send_now;
2264 	} else {
2265 		/* Different approach, try not to defer past a single
2266 		 * ACK.  Receiver should ACK every other full sized
2267 		 * frame, so if we have space for more than 3 frames
2268 		 * then send now.
2269 		 */
2270 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2271 			goto send_now;
2272 	}
2273 
2274 	/* TODO : use tsorted_sent_queue ? */
2275 	head = tcp_rtx_queue_head(sk);
2276 	if (!head)
2277 		goto send_now;
2278 	delta = tp->tcp_clock_cache - head->tstamp;
2279 	/* If next ACK is likely to come too late (half srtt), do not defer */
2280 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2281 		goto send_now;
2282 
2283 	/* Ok, it looks like it is advisable to defer.
2284 	 * Three cases are tracked :
2285 	 * 1) We are cwnd-limited
2286 	 * 2) We are rwnd-limited
2287 	 * 3) We are application limited.
2288 	 */
2289 	if (cong_win < send_win) {
2290 		if (cong_win <= skb->len) {
2291 			*is_cwnd_limited = true;
2292 			return true;
2293 		}
2294 	} else {
2295 		if (send_win <= skb->len) {
2296 			*is_rwnd_limited = true;
2297 			return true;
2298 		}
2299 	}
2300 
2301 	/* If this packet won't get more data, do not wait. */
2302 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2303 	    TCP_SKB_CB(skb)->eor)
2304 		goto send_now;
2305 
2306 	return true;
2307 
2308 send_now:
2309 	return false;
2310 }
2311 
2312 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2313 {
2314 	struct inet_connection_sock *icsk = inet_csk(sk);
2315 	struct tcp_sock *tp = tcp_sk(sk);
2316 	struct net *net = sock_net(sk);
2317 	u32 interval;
2318 	s32 delta;
2319 
2320 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2321 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2322 	if (unlikely(delta >= interval * HZ)) {
2323 		int mss = tcp_current_mss(sk);
2324 
2325 		/* Update current search range */
2326 		icsk->icsk_mtup.probe_size = 0;
2327 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2328 			sizeof(struct tcphdr) +
2329 			icsk->icsk_af_ops->net_header_len;
2330 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2331 
2332 		/* Update probe time stamp */
2333 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2334 	}
2335 }
2336 
2337 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2338 {
2339 	struct sk_buff *skb, *next;
2340 
2341 	skb = tcp_send_head(sk);
2342 	tcp_for_write_queue_from_safe(skb, next, sk) {
2343 		if (len <= skb->len)
2344 			break;
2345 
2346 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2347 		    tcp_has_tx_tstamp(skb) ||
2348 		    !skb_pure_zcopy_same(skb, next))
2349 			return false;
2350 
2351 		len -= skb->len;
2352 	}
2353 
2354 	return true;
2355 }
2356 
2357 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2358 			     int probe_size)
2359 {
2360 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2361 	int i, todo, len = 0, nr_frags = 0;
2362 	const struct sk_buff *skb;
2363 
2364 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2365 		return -ENOMEM;
2366 
2367 	skb_queue_walk(&sk->sk_write_queue, skb) {
2368 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2369 
2370 		if (skb_headlen(skb))
2371 			return -EINVAL;
2372 
2373 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2374 			if (len >= probe_size)
2375 				goto commit;
2376 			todo = min_t(int, skb_frag_size(fragfrom),
2377 				     probe_size - len);
2378 			len += todo;
2379 			if (lastfrag &&
2380 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2381 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2382 						      skb_frag_size(lastfrag)) {
2383 				skb_frag_size_add(lastfrag, todo);
2384 				continue;
2385 			}
2386 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2387 				return -E2BIG;
2388 			skb_frag_page_copy(fragto, fragfrom);
2389 			skb_frag_off_copy(fragto, fragfrom);
2390 			skb_frag_size_set(fragto, todo);
2391 			nr_frags++;
2392 			lastfrag = fragto++;
2393 		}
2394 	}
2395 commit:
2396 	WARN_ON_ONCE(len != probe_size);
2397 	for (i = 0; i < nr_frags; i++)
2398 		skb_frag_ref(to, i);
2399 
2400 	skb_shinfo(to)->nr_frags = nr_frags;
2401 	to->truesize += probe_size;
2402 	to->len += probe_size;
2403 	to->data_len += probe_size;
2404 	__skb_header_release(to);
2405 	return 0;
2406 }
2407 
2408 /* Create a new MTU probe if we are ready.
2409  * MTU probe is regularly attempting to increase the path MTU by
2410  * deliberately sending larger packets.  This discovers routing
2411  * changes resulting in larger path MTUs.
2412  *
2413  * Returns 0 if we should wait to probe (no cwnd available),
2414  *         1 if a probe was sent,
2415  *         -1 otherwise
2416  */
2417 static int tcp_mtu_probe(struct sock *sk)
2418 {
2419 	struct inet_connection_sock *icsk = inet_csk(sk);
2420 	struct tcp_sock *tp = tcp_sk(sk);
2421 	struct sk_buff *skb, *nskb, *next;
2422 	struct net *net = sock_net(sk);
2423 	int probe_size;
2424 	int size_needed;
2425 	int copy, len;
2426 	int mss_now;
2427 	int interval;
2428 
2429 	/* Not currently probing/verifying,
2430 	 * not in recovery,
2431 	 * have enough cwnd, and
2432 	 * not SACKing (the variable headers throw things off)
2433 	 */
2434 	if (likely(!icsk->icsk_mtup.enabled ||
2435 		   icsk->icsk_mtup.probe_size ||
2436 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2437 		   tcp_snd_cwnd(tp) < 11 ||
2438 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2439 		return -1;
2440 
2441 	/* Use binary search for probe_size between tcp_mss_base,
2442 	 * and current mss_clamp. if (search_high - search_low)
2443 	 * smaller than a threshold, backoff from probing.
2444 	 */
2445 	mss_now = tcp_current_mss(sk);
2446 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2447 				    icsk->icsk_mtup.search_low) >> 1);
2448 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2449 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2450 	/* When misfortune happens, we are reprobing actively,
2451 	 * and then reprobe timer has expired. We stick with current
2452 	 * probing process by not resetting search range to its orignal.
2453 	 */
2454 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2455 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2456 		/* Check whether enough time has elaplased for
2457 		 * another round of probing.
2458 		 */
2459 		tcp_mtu_check_reprobe(sk);
2460 		return -1;
2461 	}
2462 
2463 	/* Have enough data in the send queue to probe? */
2464 	if (tp->write_seq - tp->snd_nxt < size_needed)
2465 		return -1;
2466 
2467 	if (tp->snd_wnd < size_needed)
2468 		return -1;
2469 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2470 		return 0;
2471 
2472 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2473 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2474 		if (!tcp_packets_in_flight(tp))
2475 			return -1;
2476 		else
2477 			return 0;
2478 	}
2479 
2480 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2481 		return -1;
2482 
2483 	/* We're allowed to probe.  Build it now. */
2484 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2485 	if (!nskb)
2486 		return -1;
2487 
2488 	/* build the payload, and be prepared to abort if this fails. */
2489 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2490 		tcp_skb_tsorted_anchor_cleanup(nskb);
2491 		consume_skb(nskb);
2492 		return -1;
2493 	}
2494 	sk_wmem_queued_add(sk, nskb->truesize);
2495 	sk_mem_charge(sk, nskb->truesize);
2496 
2497 	skb = tcp_send_head(sk);
2498 	skb_copy_decrypted(nskb, skb);
2499 	mptcp_skb_ext_copy(nskb, skb);
2500 
2501 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2502 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2503 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2504 
2505 	tcp_insert_write_queue_before(nskb, skb, sk);
2506 	tcp_highest_sack_replace(sk, skb, nskb);
2507 
2508 	len = 0;
2509 	tcp_for_write_queue_from_safe(skb, next, sk) {
2510 		copy = min_t(int, skb->len, probe_size - len);
2511 
2512 		if (skb->len <= copy) {
2513 			/* We've eaten all the data from this skb.
2514 			 * Throw it away. */
2515 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2516 			/* If this is the last SKB we copy and eor is set
2517 			 * we need to propagate it to the new skb.
2518 			 */
2519 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2520 			tcp_skb_collapse_tstamp(nskb, skb);
2521 			tcp_unlink_write_queue(skb, sk);
2522 			tcp_wmem_free_skb(sk, skb);
2523 		} else {
2524 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2525 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2526 			__pskb_trim_head(skb, copy);
2527 			tcp_set_skb_tso_segs(skb, mss_now);
2528 			TCP_SKB_CB(skb)->seq += copy;
2529 		}
2530 
2531 		len += copy;
2532 
2533 		if (len >= probe_size)
2534 			break;
2535 	}
2536 	tcp_init_tso_segs(nskb, nskb->len);
2537 
2538 	/* We're ready to send.  If this fails, the probe will
2539 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2540 	 */
2541 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2542 		/* Decrement cwnd here because we are sending
2543 		 * effectively two packets. */
2544 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2545 		tcp_event_new_data_sent(sk, nskb);
2546 
2547 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2548 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2549 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2550 
2551 		return 1;
2552 	}
2553 
2554 	return -1;
2555 }
2556 
2557 static bool tcp_pacing_check(struct sock *sk)
2558 {
2559 	struct tcp_sock *tp = tcp_sk(sk);
2560 
2561 	if (!tcp_needs_internal_pacing(sk))
2562 		return false;
2563 
2564 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2565 		return false;
2566 
2567 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2568 		hrtimer_start(&tp->pacing_timer,
2569 			      ns_to_ktime(tp->tcp_wstamp_ns),
2570 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2571 		sock_hold(sk);
2572 	}
2573 	return true;
2574 }
2575 
2576 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2577 {
2578 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2579 
2580 	/* No skb in the rtx queue. */
2581 	if (!node)
2582 		return true;
2583 
2584 	/* Only one skb in rtx queue. */
2585 	return !node->rb_left && !node->rb_right;
2586 }
2587 
2588 /* TCP Small Queues :
2589  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2590  * (These limits are doubled for retransmits)
2591  * This allows for :
2592  *  - better RTT estimation and ACK scheduling
2593  *  - faster recovery
2594  *  - high rates
2595  * Alas, some drivers / subsystems require a fair amount
2596  * of queued bytes to ensure line rate.
2597  * One example is wifi aggregation (802.11 AMPDU)
2598  */
2599 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2600 				  unsigned int factor)
2601 {
2602 	unsigned long limit;
2603 
2604 	limit = max_t(unsigned long,
2605 		      2 * skb->truesize,
2606 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2607 	if (sk->sk_pacing_status == SK_PACING_NONE)
2608 		limit = min_t(unsigned long, limit,
2609 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2610 	limit <<= factor;
2611 
2612 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2613 	    tcp_sk(sk)->tcp_tx_delay) {
2614 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2615 				  tcp_sk(sk)->tcp_tx_delay;
2616 
2617 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2618 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2619 		 * USEC_PER_SEC is approximated by 2^20.
2620 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2621 		 */
2622 		extra_bytes >>= (20 - 1);
2623 		limit += extra_bytes;
2624 	}
2625 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2626 		/* Always send skb if rtx queue is empty or has one skb.
2627 		 * No need to wait for TX completion to call us back,
2628 		 * after softirq/tasklet schedule.
2629 		 * This helps when TX completions are delayed too much.
2630 		 */
2631 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2632 			return false;
2633 
2634 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2635 		/* It is possible TX completion already happened
2636 		 * before we set TSQ_THROTTLED, so we must
2637 		 * test again the condition.
2638 		 */
2639 		smp_mb__after_atomic();
2640 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2641 			return true;
2642 	}
2643 	return false;
2644 }
2645 
2646 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2647 {
2648 	const u32 now = tcp_jiffies32;
2649 	enum tcp_chrono old = tp->chrono_type;
2650 
2651 	if (old > TCP_CHRONO_UNSPEC)
2652 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2653 	tp->chrono_start = now;
2654 	tp->chrono_type = new;
2655 }
2656 
2657 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2658 {
2659 	struct tcp_sock *tp = tcp_sk(sk);
2660 
2661 	/* If there are multiple conditions worthy of tracking in a
2662 	 * chronograph then the highest priority enum takes precedence
2663 	 * over the other conditions. So that if something "more interesting"
2664 	 * starts happening, stop the previous chrono and start a new one.
2665 	 */
2666 	if (type > tp->chrono_type)
2667 		tcp_chrono_set(tp, type);
2668 }
2669 
2670 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 
2674 
2675 	/* There are multiple conditions worthy of tracking in a
2676 	 * chronograph, so that the highest priority enum takes
2677 	 * precedence over the other conditions (see tcp_chrono_start).
2678 	 * If a condition stops, we only stop chrono tracking if
2679 	 * it's the "most interesting" or current chrono we are
2680 	 * tracking and starts busy chrono if we have pending data.
2681 	 */
2682 	if (tcp_rtx_and_write_queues_empty(sk))
2683 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2684 	else if (type == tp->chrono_type)
2685 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2686 }
2687 
2688 /* This routine writes packets to the network.  It advances the
2689  * send_head.  This happens as incoming acks open up the remote
2690  * window for us.
2691  *
2692  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2693  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2694  * account rare use of URG, this is not a big flaw.
2695  *
2696  * Send at most one packet when push_one > 0. Temporarily ignore
2697  * cwnd limit to force at most one packet out when push_one == 2.
2698 
2699  * Returns true, if no segments are in flight and we have queued segments,
2700  * but cannot send anything now because of SWS or another problem.
2701  */
2702 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2703 			   int push_one, gfp_t gfp)
2704 {
2705 	struct tcp_sock *tp = tcp_sk(sk);
2706 	struct sk_buff *skb;
2707 	unsigned int tso_segs, sent_pkts;
2708 	int cwnd_quota;
2709 	int result;
2710 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2711 	u32 max_segs;
2712 
2713 	sent_pkts = 0;
2714 
2715 	tcp_mstamp_refresh(tp);
2716 	if (!push_one) {
2717 		/* Do MTU probing. */
2718 		result = tcp_mtu_probe(sk);
2719 		if (!result) {
2720 			return false;
2721 		} else if (result > 0) {
2722 			sent_pkts = 1;
2723 		}
2724 	}
2725 
2726 	max_segs = tcp_tso_segs(sk, mss_now);
2727 	while ((skb = tcp_send_head(sk))) {
2728 		unsigned int limit;
2729 
2730 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2731 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2732 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2733 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2734 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2735 			tcp_init_tso_segs(skb, mss_now);
2736 			goto repair; /* Skip network transmission */
2737 		}
2738 
2739 		if (tcp_pacing_check(sk))
2740 			break;
2741 
2742 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2743 		BUG_ON(!tso_segs);
2744 
2745 		cwnd_quota = tcp_cwnd_test(tp, skb);
2746 		if (!cwnd_quota) {
2747 			if (push_one == 2)
2748 				/* Force out a loss probe pkt. */
2749 				cwnd_quota = 1;
2750 			else
2751 				break;
2752 		}
2753 
2754 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2755 			is_rwnd_limited = true;
2756 			break;
2757 		}
2758 
2759 		if (tso_segs == 1) {
2760 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2761 						     (tcp_skb_is_last(sk, skb) ?
2762 						      nonagle : TCP_NAGLE_PUSH))))
2763 				break;
2764 		} else {
2765 			if (!push_one &&
2766 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2767 						 &is_rwnd_limited, max_segs))
2768 				break;
2769 		}
2770 
2771 		limit = mss_now;
2772 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2773 			limit = tcp_mss_split_point(sk, skb, mss_now,
2774 						    min_t(unsigned int,
2775 							  cwnd_quota,
2776 							  max_segs),
2777 						    nonagle);
2778 
2779 		if (skb->len > limit &&
2780 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2781 			break;
2782 
2783 		if (tcp_small_queue_check(sk, skb, 0))
2784 			break;
2785 
2786 		/* Argh, we hit an empty skb(), presumably a thread
2787 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2788 		 * We do not want to send a pure-ack packet and have
2789 		 * a strange looking rtx queue with empty packet(s).
2790 		 */
2791 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2792 			break;
2793 
2794 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2795 			break;
2796 
2797 repair:
2798 		/* Advance the send_head.  This one is sent out.
2799 		 * This call will increment packets_out.
2800 		 */
2801 		tcp_event_new_data_sent(sk, skb);
2802 
2803 		tcp_minshall_update(tp, mss_now, skb);
2804 		sent_pkts += tcp_skb_pcount(skb);
2805 
2806 		if (push_one)
2807 			break;
2808 	}
2809 
2810 	if (is_rwnd_limited)
2811 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2812 	else
2813 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2814 
2815 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2816 	if (likely(sent_pkts || is_cwnd_limited))
2817 		tcp_cwnd_validate(sk, is_cwnd_limited);
2818 
2819 	if (likely(sent_pkts)) {
2820 		if (tcp_in_cwnd_reduction(sk))
2821 			tp->prr_out += sent_pkts;
2822 
2823 		/* Send one loss probe per tail loss episode. */
2824 		if (push_one != 2)
2825 			tcp_schedule_loss_probe(sk, false);
2826 		return false;
2827 	}
2828 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2829 }
2830 
2831 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2832 {
2833 	struct inet_connection_sock *icsk = inet_csk(sk);
2834 	struct tcp_sock *tp = tcp_sk(sk);
2835 	u32 timeout, timeout_us, rto_delta_us;
2836 	int early_retrans;
2837 
2838 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2839 	 * finishes.
2840 	 */
2841 	if (rcu_access_pointer(tp->fastopen_rsk))
2842 		return false;
2843 
2844 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2845 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2846 	 * not in loss recovery, that are either limited by cwnd or application.
2847 	 */
2848 	if ((early_retrans != 3 && early_retrans != 4) ||
2849 	    !tp->packets_out || !tcp_is_sack(tp) ||
2850 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2851 	     icsk->icsk_ca_state != TCP_CA_CWR))
2852 		return false;
2853 
2854 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2855 	 * for delayed ack when there's one outstanding packet. If no RTT
2856 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2857 	 */
2858 	if (tp->srtt_us) {
2859 		timeout_us = tp->srtt_us >> 2;
2860 		if (tp->packets_out == 1)
2861 			timeout_us += tcp_rto_min_us(sk);
2862 		else
2863 			timeout_us += TCP_TIMEOUT_MIN_US;
2864 		timeout = usecs_to_jiffies(timeout_us);
2865 	} else {
2866 		timeout = TCP_TIMEOUT_INIT;
2867 	}
2868 
2869 	/* If the RTO formula yields an earlier time, then use that time. */
2870 	rto_delta_us = advancing_rto ?
2871 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2872 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2873 	if (rto_delta_us > 0)
2874 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2875 
2876 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2877 	return true;
2878 }
2879 
2880 /* Thanks to skb fast clones, we can detect if a prior transmit of
2881  * a packet is still in a qdisc or driver queue.
2882  * In this case, there is very little point doing a retransmit !
2883  */
2884 static bool skb_still_in_host_queue(struct sock *sk,
2885 				    const struct sk_buff *skb)
2886 {
2887 	if (unlikely(skb_fclone_busy(sk, skb))) {
2888 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2889 		smp_mb__after_atomic();
2890 		if (skb_fclone_busy(sk, skb)) {
2891 			NET_INC_STATS(sock_net(sk),
2892 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2893 			return true;
2894 		}
2895 	}
2896 	return false;
2897 }
2898 
2899 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2900  * retransmit the last segment.
2901  */
2902 void tcp_send_loss_probe(struct sock *sk)
2903 {
2904 	struct tcp_sock *tp = tcp_sk(sk);
2905 	struct sk_buff *skb;
2906 	int pcount;
2907 	int mss = tcp_current_mss(sk);
2908 
2909 	/* At most one outstanding TLP */
2910 	if (tp->tlp_high_seq)
2911 		goto rearm_timer;
2912 
2913 	tp->tlp_retrans = 0;
2914 	skb = tcp_send_head(sk);
2915 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2916 		pcount = tp->packets_out;
2917 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2918 		if (tp->packets_out > pcount)
2919 			goto probe_sent;
2920 		goto rearm_timer;
2921 	}
2922 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2923 	if (unlikely(!skb)) {
2924 		WARN_ONCE(tp->packets_out,
2925 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2926 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2927 		inet_csk(sk)->icsk_pending = 0;
2928 		return;
2929 	}
2930 
2931 	if (skb_still_in_host_queue(sk, skb))
2932 		goto rearm_timer;
2933 
2934 	pcount = tcp_skb_pcount(skb);
2935 	if (WARN_ON(!pcount))
2936 		goto rearm_timer;
2937 
2938 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2939 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2940 					  (pcount - 1) * mss, mss,
2941 					  GFP_ATOMIC)))
2942 			goto rearm_timer;
2943 		skb = skb_rb_next(skb);
2944 	}
2945 
2946 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2947 		goto rearm_timer;
2948 
2949 	if (__tcp_retransmit_skb(sk, skb, 1))
2950 		goto rearm_timer;
2951 
2952 	tp->tlp_retrans = 1;
2953 
2954 probe_sent:
2955 	/* Record snd_nxt for loss detection. */
2956 	tp->tlp_high_seq = tp->snd_nxt;
2957 
2958 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2959 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2960 	inet_csk(sk)->icsk_pending = 0;
2961 rearm_timer:
2962 	tcp_rearm_rto(sk);
2963 }
2964 
2965 /* Push out any pending frames which were held back due to
2966  * TCP_CORK or attempt at coalescing tiny packets.
2967  * The socket must be locked by the caller.
2968  */
2969 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2970 			       int nonagle)
2971 {
2972 	/* If we are closed, the bytes will have to remain here.
2973 	 * In time closedown will finish, we empty the write queue and
2974 	 * all will be happy.
2975 	 */
2976 	if (unlikely(sk->sk_state == TCP_CLOSE))
2977 		return;
2978 
2979 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2980 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2981 		tcp_check_probe_timer(sk);
2982 }
2983 
2984 /* Send _single_ skb sitting at the send head. This function requires
2985  * true push pending frames to setup probe timer etc.
2986  */
2987 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2988 {
2989 	struct sk_buff *skb = tcp_send_head(sk);
2990 
2991 	BUG_ON(!skb || skb->len < mss_now);
2992 
2993 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2994 }
2995 
2996 /* This function returns the amount that we can raise the
2997  * usable window based on the following constraints
2998  *
2999  * 1. The window can never be shrunk once it is offered (RFC 793)
3000  * 2. We limit memory per socket
3001  *
3002  * RFC 1122:
3003  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3004  *  RECV.NEXT + RCV.WIN fixed until:
3005  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3006  *
3007  * i.e. don't raise the right edge of the window until you can raise
3008  * it at least MSS bytes.
3009  *
3010  * Unfortunately, the recommended algorithm breaks header prediction,
3011  * since header prediction assumes th->window stays fixed.
3012  *
3013  * Strictly speaking, keeping th->window fixed violates the receiver
3014  * side SWS prevention criteria. The problem is that under this rule
3015  * a stream of single byte packets will cause the right side of the
3016  * window to always advance by a single byte.
3017  *
3018  * Of course, if the sender implements sender side SWS prevention
3019  * then this will not be a problem.
3020  *
3021  * BSD seems to make the following compromise:
3022  *
3023  *	If the free space is less than the 1/4 of the maximum
3024  *	space available and the free space is less than 1/2 mss,
3025  *	then set the window to 0.
3026  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3027  *	Otherwise, just prevent the window from shrinking
3028  *	and from being larger than the largest representable value.
3029  *
3030  * This prevents incremental opening of the window in the regime
3031  * where TCP is limited by the speed of the reader side taking
3032  * data out of the TCP receive queue. It does nothing about
3033  * those cases where the window is constrained on the sender side
3034  * because the pipeline is full.
3035  *
3036  * BSD also seems to "accidentally" limit itself to windows that are a
3037  * multiple of MSS, at least until the free space gets quite small.
3038  * This would appear to be a side effect of the mbuf implementation.
3039  * Combining these two algorithms results in the observed behavior
3040  * of having a fixed window size at almost all times.
3041  *
3042  * Below we obtain similar behavior by forcing the offered window to
3043  * a multiple of the mss when it is feasible to do so.
3044  *
3045  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3046  * Regular options like TIMESTAMP are taken into account.
3047  */
3048 u32 __tcp_select_window(struct sock *sk)
3049 {
3050 	struct inet_connection_sock *icsk = inet_csk(sk);
3051 	struct tcp_sock *tp = tcp_sk(sk);
3052 	struct net *net = sock_net(sk);
3053 	/* MSS for the peer's data.  Previous versions used mss_clamp
3054 	 * here.  I don't know if the value based on our guesses
3055 	 * of peer's MSS is better for the performance.  It's more correct
3056 	 * but may be worse for the performance because of rcv_mss
3057 	 * fluctuations.  --SAW  1998/11/1
3058 	 */
3059 	int mss = icsk->icsk_ack.rcv_mss;
3060 	int free_space = tcp_space(sk);
3061 	int allowed_space = tcp_full_space(sk);
3062 	int full_space, window;
3063 
3064 	if (sk_is_mptcp(sk))
3065 		mptcp_space(sk, &free_space, &allowed_space);
3066 
3067 	full_space = min_t(int, tp->window_clamp, allowed_space);
3068 
3069 	if (unlikely(mss > full_space)) {
3070 		mss = full_space;
3071 		if (mss <= 0)
3072 			return 0;
3073 	}
3074 
3075 	/* Only allow window shrink if the sysctl is enabled and we have
3076 	 * a non-zero scaling factor in effect.
3077 	 */
3078 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3079 		goto shrink_window_allowed;
3080 
3081 	/* do not allow window to shrink */
3082 
3083 	if (free_space < (full_space >> 1)) {
3084 		icsk->icsk_ack.quick = 0;
3085 
3086 		if (tcp_under_memory_pressure(sk))
3087 			tcp_adjust_rcv_ssthresh(sk);
3088 
3089 		/* free_space might become our new window, make sure we don't
3090 		 * increase it due to wscale.
3091 		 */
3092 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3093 
3094 		/* if free space is less than mss estimate, or is below 1/16th
3095 		 * of the maximum allowed, try to move to zero-window, else
3096 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3097 		 * new incoming data is dropped due to memory limits.
3098 		 * With large window, mss test triggers way too late in order
3099 		 * to announce zero window in time before rmem limit kicks in.
3100 		 */
3101 		if (free_space < (allowed_space >> 4) || free_space < mss)
3102 			return 0;
3103 	}
3104 
3105 	if (free_space > tp->rcv_ssthresh)
3106 		free_space = tp->rcv_ssthresh;
3107 
3108 	/* Don't do rounding if we are using window scaling, since the
3109 	 * scaled window will not line up with the MSS boundary anyway.
3110 	 */
3111 	if (tp->rx_opt.rcv_wscale) {
3112 		window = free_space;
3113 
3114 		/* Advertise enough space so that it won't get scaled away.
3115 		 * Import case: prevent zero window announcement if
3116 		 * 1<<rcv_wscale > mss.
3117 		 */
3118 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3119 	} else {
3120 		window = tp->rcv_wnd;
3121 		/* Get the largest window that is a nice multiple of mss.
3122 		 * Window clamp already applied above.
3123 		 * If our current window offering is within 1 mss of the
3124 		 * free space we just keep it. This prevents the divide
3125 		 * and multiply from happening most of the time.
3126 		 * We also don't do any window rounding when the free space
3127 		 * is too small.
3128 		 */
3129 		if (window <= free_space - mss || window > free_space)
3130 			window = rounddown(free_space, mss);
3131 		else if (mss == full_space &&
3132 			 free_space > window + (full_space >> 1))
3133 			window = free_space;
3134 	}
3135 
3136 	return window;
3137 
3138 shrink_window_allowed:
3139 	/* new window should always be an exact multiple of scaling factor */
3140 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3141 
3142 	if (free_space < (full_space >> 1)) {
3143 		icsk->icsk_ack.quick = 0;
3144 
3145 		if (tcp_under_memory_pressure(sk))
3146 			tcp_adjust_rcv_ssthresh(sk);
3147 
3148 		/* if free space is too low, return a zero window */
3149 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3150 			free_space < (1 << tp->rx_opt.rcv_wscale))
3151 			return 0;
3152 	}
3153 
3154 	if (free_space > tp->rcv_ssthresh) {
3155 		free_space = tp->rcv_ssthresh;
3156 		/* new window should always be an exact multiple of scaling factor
3157 		 *
3158 		 * For this case, we ALIGN "up" (increase free_space) because
3159 		 * we know free_space is not zero here, it has been reduced from
3160 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3161 		 * (unlike sk_rcvbuf).
3162 		 */
3163 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3164 	}
3165 
3166 	return free_space;
3167 }
3168 
3169 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3170 			     const struct sk_buff *next_skb)
3171 {
3172 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3173 		const struct skb_shared_info *next_shinfo =
3174 			skb_shinfo(next_skb);
3175 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3176 
3177 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3178 		shinfo->tskey = next_shinfo->tskey;
3179 		TCP_SKB_CB(skb)->txstamp_ack |=
3180 			TCP_SKB_CB(next_skb)->txstamp_ack;
3181 	}
3182 }
3183 
3184 /* Collapses two adjacent SKB's during retransmission. */
3185 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3186 {
3187 	struct tcp_sock *tp = tcp_sk(sk);
3188 	struct sk_buff *next_skb = skb_rb_next(skb);
3189 	int next_skb_size;
3190 
3191 	next_skb_size = next_skb->len;
3192 
3193 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3194 
3195 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3196 		return false;
3197 
3198 	tcp_highest_sack_replace(sk, next_skb, skb);
3199 
3200 	/* Update sequence range on original skb. */
3201 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3202 
3203 	/* Merge over control information. This moves PSH/FIN etc. over */
3204 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3205 
3206 	/* All done, get rid of second SKB and account for it so
3207 	 * packet counting does not break.
3208 	 */
3209 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3210 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3211 
3212 	/* changed transmit queue under us so clear hints */
3213 	tcp_clear_retrans_hints_partial(tp);
3214 	if (next_skb == tp->retransmit_skb_hint)
3215 		tp->retransmit_skb_hint = skb;
3216 
3217 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3218 
3219 	tcp_skb_collapse_tstamp(skb, next_skb);
3220 
3221 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3222 	return true;
3223 }
3224 
3225 /* Check if coalescing SKBs is legal. */
3226 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3227 {
3228 	if (tcp_skb_pcount(skb) > 1)
3229 		return false;
3230 	if (skb_cloned(skb))
3231 		return false;
3232 	/* Some heuristics for collapsing over SACK'd could be invented */
3233 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3234 		return false;
3235 
3236 	return true;
3237 }
3238 
3239 /* Collapse packets in the retransmit queue to make to create
3240  * less packets on the wire. This is only done on retransmission.
3241  */
3242 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3243 				     int space)
3244 {
3245 	struct tcp_sock *tp = tcp_sk(sk);
3246 	struct sk_buff *skb = to, *tmp;
3247 	bool first = true;
3248 
3249 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3250 		return;
3251 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3252 		return;
3253 
3254 	skb_rbtree_walk_from_safe(skb, tmp) {
3255 		if (!tcp_can_collapse(sk, skb))
3256 			break;
3257 
3258 		if (!tcp_skb_can_collapse(to, skb))
3259 			break;
3260 
3261 		space -= skb->len;
3262 
3263 		if (first) {
3264 			first = false;
3265 			continue;
3266 		}
3267 
3268 		if (space < 0)
3269 			break;
3270 
3271 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3272 			break;
3273 
3274 		if (!tcp_collapse_retrans(sk, to))
3275 			break;
3276 	}
3277 }
3278 
3279 /* This retransmits one SKB.  Policy decisions and retransmit queue
3280  * state updates are done by the caller.  Returns non-zero if an
3281  * error occurred which prevented the send.
3282  */
3283 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3284 {
3285 	struct inet_connection_sock *icsk = inet_csk(sk);
3286 	struct tcp_sock *tp = tcp_sk(sk);
3287 	unsigned int cur_mss;
3288 	int diff, len, err;
3289 	int avail_wnd;
3290 
3291 	/* Inconclusive MTU probe */
3292 	if (icsk->icsk_mtup.probe_size)
3293 		icsk->icsk_mtup.probe_size = 0;
3294 
3295 	if (skb_still_in_host_queue(sk, skb))
3296 		return -EBUSY;
3297 
3298 start:
3299 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3300 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3301 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3302 			TCP_SKB_CB(skb)->seq++;
3303 			goto start;
3304 		}
3305 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3306 			WARN_ON_ONCE(1);
3307 			return -EINVAL;
3308 		}
3309 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3310 			return -ENOMEM;
3311 	}
3312 
3313 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3314 		return -EHOSTUNREACH; /* Routing failure or similar. */
3315 
3316 	cur_mss = tcp_current_mss(sk);
3317 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3318 
3319 	/* If receiver has shrunk his window, and skb is out of
3320 	 * new window, do not retransmit it. The exception is the
3321 	 * case, when window is shrunk to zero. In this case
3322 	 * our retransmit of one segment serves as a zero window probe.
3323 	 */
3324 	if (avail_wnd <= 0) {
3325 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3326 			return -EAGAIN;
3327 		avail_wnd = cur_mss;
3328 	}
3329 
3330 	len = cur_mss * segs;
3331 	if (len > avail_wnd) {
3332 		len = rounddown(avail_wnd, cur_mss);
3333 		if (!len)
3334 			len = avail_wnd;
3335 	}
3336 	if (skb->len > len) {
3337 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3338 				 cur_mss, GFP_ATOMIC))
3339 			return -ENOMEM; /* We'll try again later. */
3340 	} else {
3341 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3342 			return -ENOMEM;
3343 
3344 		diff = tcp_skb_pcount(skb);
3345 		tcp_set_skb_tso_segs(skb, cur_mss);
3346 		diff -= tcp_skb_pcount(skb);
3347 		if (diff)
3348 			tcp_adjust_pcount(sk, skb, diff);
3349 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3350 		if (skb->len < avail_wnd)
3351 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3352 	}
3353 
3354 	/* RFC3168, section 6.1.1.1. ECN fallback */
3355 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3356 		tcp_ecn_clear_syn(sk, skb);
3357 
3358 	/* Update global and local TCP statistics. */
3359 	segs = tcp_skb_pcount(skb);
3360 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3361 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3362 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3363 	tp->total_retrans += segs;
3364 	tp->bytes_retrans += skb->len;
3365 
3366 	/* make sure skb->data is aligned on arches that require it
3367 	 * and check if ack-trimming & collapsing extended the headroom
3368 	 * beyond what csum_start can cover.
3369 	 */
3370 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3371 		     skb_headroom(skb) >= 0xFFFF)) {
3372 		struct sk_buff *nskb;
3373 
3374 		tcp_skb_tsorted_save(skb) {
3375 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3376 			if (nskb) {
3377 				nskb->dev = NULL;
3378 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3379 			} else {
3380 				err = -ENOBUFS;
3381 			}
3382 		} tcp_skb_tsorted_restore(skb);
3383 
3384 		if (!err) {
3385 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3386 			tcp_rate_skb_sent(sk, skb);
3387 		}
3388 	} else {
3389 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3390 	}
3391 
3392 	/* To avoid taking spuriously low RTT samples based on a timestamp
3393 	 * for a transmit that never happened, always mark EVER_RETRANS
3394 	 */
3395 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3396 
3397 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3398 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3399 				  TCP_SKB_CB(skb)->seq, segs, err);
3400 
3401 	if (likely(!err)) {
3402 		trace_tcp_retransmit_skb(sk, skb);
3403 	} else if (err != -EBUSY) {
3404 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3405 	}
3406 	return err;
3407 }
3408 
3409 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3410 {
3411 	struct tcp_sock *tp = tcp_sk(sk);
3412 	int err = __tcp_retransmit_skb(sk, skb, segs);
3413 
3414 	if (err == 0) {
3415 #if FASTRETRANS_DEBUG > 0
3416 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3417 			net_dbg_ratelimited("retrans_out leaked\n");
3418 		}
3419 #endif
3420 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3421 		tp->retrans_out += tcp_skb_pcount(skb);
3422 	}
3423 
3424 	/* Save stamp of the first (attempted) retransmit. */
3425 	if (!tp->retrans_stamp)
3426 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3427 
3428 	if (tp->undo_retrans < 0)
3429 		tp->undo_retrans = 0;
3430 	tp->undo_retrans += tcp_skb_pcount(skb);
3431 	return err;
3432 }
3433 
3434 /* This gets called after a retransmit timeout, and the initially
3435  * retransmitted data is acknowledged.  It tries to continue
3436  * resending the rest of the retransmit queue, until either
3437  * we've sent it all or the congestion window limit is reached.
3438  */
3439 void tcp_xmit_retransmit_queue(struct sock *sk)
3440 {
3441 	const struct inet_connection_sock *icsk = inet_csk(sk);
3442 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3443 	struct tcp_sock *tp = tcp_sk(sk);
3444 	bool rearm_timer = false;
3445 	u32 max_segs;
3446 	int mib_idx;
3447 
3448 	if (!tp->packets_out)
3449 		return;
3450 
3451 	rtx_head = tcp_rtx_queue_head(sk);
3452 	skb = tp->retransmit_skb_hint ?: rtx_head;
3453 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3454 	skb_rbtree_walk_from(skb) {
3455 		__u8 sacked;
3456 		int segs;
3457 
3458 		if (tcp_pacing_check(sk))
3459 			break;
3460 
3461 		/* we could do better than to assign each time */
3462 		if (!hole)
3463 			tp->retransmit_skb_hint = skb;
3464 
3465 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3466 		if (segs <= 0)
3467 			break;
3468 		sacked = TCP_SKB_CB(skb)->sacked;
3469 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3470 		 * we need to make sure not sending too bigs TSO packets
3471 		 */
3472 		segs = min_t(int, segs, max_segs);
3473 
3474 		if (tp->retrans_out >= tp->lost_out) {
3475 			break;
3476 		} else if (!(sacked & TCPCB_LOST)) {
3477 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3478 				hole = skb;
3479 			continue;
3480 
3481 		} else {
3482 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3483 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3484 			else
3485 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3486 		}
3487 
3488 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3489 			continue;
3490 
3491 		if (tcp_small_queue_check(sk, skb, 1))
3492 			break;
3493 
3494 		if (tcp_retransmit_skb(sk, skb, segs))
3495 			break;
3496 
3497 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3498 
3499 		if (tcp_in_cwnd_reduction(sk))
3500 			tp->prr_out += tcp_skb_pcount(skb);
3501 
3502 		if (skb == rtx_head &&
3503 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3504 			rearm_timer = true;
3505 
3506 	}
3507 	if (rearm_timer)
3508 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3509 				     inet_csk(sk)->icsk_rto,
3510 				     TCP_RTO_MAX);
3511 }
3512 
3513 /* We allow to exceed memory limits for FIN packets to expedite
3514  * connection tear down and (memory) recovery.
3515  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3516  * or even be forced to close flow without any FIN.
3517  * In general, we want to allow one skb per socket to avoid hangs
3518  * with edge trigger epoll()
3519  */
3520 void sk_forced_mem_schedule(struct sock *sk, int size)
3521 {
3522 	int delta, amt;
3523 
3524 	delta = size - sk->sk_forward_alloc;
3525 	if (delta <= 0)
3526 		return;
3527 	amt = sk_mem_pages(delta);
3528 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3529 	sk_memory_allocated_add(sk, amt);
3530 
3531 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3532 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3533 					gfp_memcg_charge() | __GFP_NOFAIL);
3534 }
3535 
3536 /* Send a FIN. The caller locks the socket for us.
3537  * We should try to send a FIN packet really hard, but eventually give up.
3538  */
3539 void tcp_send_fin(struct sock *sk)
3540 {
3541 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3542 	struct tcp_sock *tp = tcp_sk(sk);
3543 
3544 	/* Optimization, tack on the FIN if we have one skb in write queue and
3545 	 * this skb was not yet sent, or we are under memory pressure.
3546 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3547 	 * as TCP stack thinks it has already been transmitted.
3548 	 */
3549 	tskb = tail;
3550 	if (!tskb && tcp_under_memory_pressure(sk))
3551 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3552 
3553 	if (tskb) {
3554 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3555 		TCP_SKB_CB(tskb)->end_seq++;
3556 		tp->write_seq++;
3557 		if (!tail) {
3558 			/* This means tskb was already sent.
3559 			 * Pretend we included the FIN on previous transmit.
3560 			 * We need to set tp->snd_nxt to the value it would have
3561 			 * if FIN had been sent. This is because retransmit path
3562 			 * does not change tp->snd_nxt.
3563 			 */
3564 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3565 			return;
3566 		}
3567 	} else {
3568 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3569 		if (unlikely(!skb))
3570 			return;
3571 
3572 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3573 		skb_reserve(skb, MAX_TCP_HEADER);
3574 		sk_forced_mem_schedule(sk, skb->truesize);
3575 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3576 		tcp_init_nondata_skb(skb, tp->write_seq,
3577 				     TCPHDR_ACK | TCPHDR_FIN);
3578 		tcp_queue_skb(sk, skb);
3579 	}
3580 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3581 }
3582 
3583 /* We get here when a process closes a file descriptor (either due to
3584  * an explicit close() or as a byproduct of exit()'ing) and there
3585  * was unread data in the receive queue.  This behavior is recommended
3586  * by RFC 2525, section 2.17.  -DaveM
3587  */
3588 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3589 {
3590 	struct sk_buff *skb;
3591 
3592 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3593 
3594 	/* NOTE: No TCP options attached and we never retransmit this. */
3595 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3596 	if (!skb) {
3597 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3598 		return;
3599 	}
3600 
3601 	/* Reserve space for headers and prepare control bits. */
3602 	skb_reserve(skb, MAX_TCP_HEADER);
3603 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3604 			     TCPHDR_ACK | TCPHDR_RST);
3605 	tcp_mstamp_refresh(tcp_sk(sk));
3606 	/* Send it off. */
3607 	if (tcp_transmit_skb(sk, skb, 0, priority))
3608 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3609 
3610 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3611 	 * skb here is different to the troublesome skb, so use NULL
3612 	 */
3613 	trace_tcp_send_reset(sk, NULL);
3614 }
3615 
3616 /* Send a crossed SYN-ACK during socket establishment.
3617  * WARNING: This routine must only be called when we have already sent
3618  * a SYN packet that crossed the incoming SYN that caused this routine
3619  * to get called. If this assumption fails then the initial rcv_wnd
3620  * and rcv_wscale values will not be correct.
3621  */
3622 int tcp_send_synack(struct sock *sk)
3623 {
3624 	struct sk_buff *skb;
3625 
3626 	skb = tcp_rtx_queue_head(sk);
3627 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3628 		pr_err("%s: wrong queue state\n", __func__);
3629 		return -EFAULT;
3630 	}
3631 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3632 		if (skb_cloned(skb)) {
3633 			struct sk_buff *nskb;
3634 
3635 			tcp_skb_tsorted_save(skb) {
3636 				nskb = skb_copy(skb, GFP_ATOMIC);
3637 			} tcp_skb_tsorted_restore(skb);
3638 			if (!nskb)
3639 				return -ENOMEM;
3640 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3641 			tcp_highest_sack_replace(sk, skb, nskb);
3642 			tcp_rtx_queue_unlink_and_free(skb, sk);
3643 			__skb_header_release(nskb);
3644 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3645 			sk_wmem_queued_add(sk, nskb->truesize);
3646 			sk_mem_charge(sk, nskb->truesize);
3647 			skb = nskb;
3648 		}
3649 
3650 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3651 		tcp_ecn_send_synack(sk, skb);
3652 	}
3653 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3654 }
3655 
3656 /**
3657  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3658  * @sk: listener socket
3659  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3660  *       should not use it again.
3661  * @req: request_sock pointer
3662  * @foc: cookie for tcp fast open
3663  * @synack_type: Type of synack to prepare
3664  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3665  */
3666 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3667 				struct request_sock *req,
3668 				struct tcp_fastopen_cookie *foc,
3669 				enum tcp_synack_type synack_type,
3670 				struct sk_buff *syn_skb)
3671 {
3672 	struct inet_request_sock *ireq = inet_rsk(req);
3673 	const struct tcp_sock *tp = tcp_sk(sk);
3674 	struct tcp_out_options opts;
3675 	struct tcp_key key = {};
3676 	struct sk_buff *skb;
3677 	int tcp_header_size;
3678 	struct tcphdr *th;
3679 	int mss;
3680 	u64 now;
3681 
3682 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3683 	if (unlikely(!skb)) {
3684 		dst_release(dst);
3685 		return NULL;
3686 	}
3687 	/* Reserve space for headers. */
3688 	skb_reserve(skb, MAX_TCP_HEADER);
3689 
3690 	switch (synack_type) {
3691 	case TCP_SYNACK_NORMAL:
3692 		skb_set_owner_w(skb, req_to_sk(req));
3693 		break;
3694 	case TCP_SYNACK_COOKIE:
3695 		/* Under synflood, we do not attach skb to a socket,
3696 		 * to avoid false sharing.
3697 		 */
3698 		break;
3699 	case TCP_SYNACK_FASTOPEN:
3700 		/* sk is a const pointer, because we want to express multiple
3701 		 * cpu might call us concurrently.
3702 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3703 		 */
3704 		skb_set_owner_w(skb, (struct sock *)sk);
3705 		break;
3706 	}
3707 	skb_dst_set(skb, dst);
3708 
3709 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3710 
3711 	memset(&opts, 0, sizeof(opts));
3712 	now = tcp_clock_ns();
3713 #ifdef CONFIG_SYN_COOKIES
3714 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3715 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3716 				      true);
3717 	else
3718 #endif
3719 	{
3720 		skb_set_delivery_time(skb, now, true);
3721 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3722 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3723 	}
3724 
3725 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3726 	rcu_read_lock();
3727 #endif
3728 	if (tcp_rsk_used_ao(req)) {
3729 #ifdef CONFIG_TCP_AO
3730 		struct tcp_ao_key *ao_key = NULL;
3731 		u8 keyid = tcp_rsk(req)->ao_keyid;
3732 
3733 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3734 							    keyid, -1);
3735 		/* If there is no matching key - avoid sending anything,
3736 		 * especially usigned segments. It could try harder and lookup
3737 		 * for another peer-matching key, but the peer has requested
3738 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3739 		 */
3740 		if (unlikely(!ao_key)) {
3741 			rcu_read_unlock();
3742 			kfree_skb(skb);
3743 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3744 					     keyid);
3745 			return NULL;
3746 		}
3747 		key.ao_key = ao_key;
3748 		key.type = TCP_KEY_AO;
3749 #endif
3750 	} else {
3751 #ifdef CONFIG_TCP_MD5SIG
3752 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3753 					req_to_sk(req));
3754 		if (key.md5_key)
3755 			key.type = TCP_KEY_MD5;
3756 #endif
3757 	}
3758 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3759 	/* bpf program will be interested in the tcp_flags */
3760 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3761 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3762 					     &key, foc, synack_type, syn_skb)
3763 					+ sizeof(*th);
3764 
3765 	skb_push(skb, tcp_header_size);
3766 	skb_reset_transport_header(skb);
3767 
3768 	th = (struct tcphdr *)skb->data;
3769 	memset(th, 0, sizeof(struct tcphdr));
3770 	th->syn = 1;
3771 	th->ack = 1;
3772 	tcp_ecn_make_synack(req, th);
3773 	th->source = htons(ireq->ir_num);
3774 	th->dest = ireq->ir_rmt_port;
3775 	skb->mark = ireq->ir_mark;
3776 	skb->ip_summed = CHECKSUM_PARTIAL;
3777 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3778 	/* XXX data is queued and acked as is. No buffer/window check */
3779 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3780 
3781 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3782 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3783 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3784 	th->doff = (tcp_header_size >> 2);
3785 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3786 
3787 	/* Okay, we have all we need - do the md5 hash if needed */
3788 	if (tcp_key_is_md5(&key)) {
3789 #ifdef CONFIG_TCP_MD5SIG
3790 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3791 					key.md5_key, req_to_sk(req), skb);
3792 #endif
3793 	} else if (tcp_key_is_ao(&key)) {
3794 #ifdef CONFIG_TCP_AO
3795 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3796 					key.ao_key, req, skb,
3797 					opts.hash_location - (u8 *)th, 0);
3798 #endif
3799 	}
3800 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3801 	rcu_read_unlock();
3802 #endif
3803 
3804 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3805 				synack_type, &opts);
3806 
3807 	skb_set_delivery_time(skb, now, true);
3808 	tcp_add_tx_delay(skb, tp);
3809 
3810 	return skb;
3811 }
3812 EXPORT_SYMBOL(tcp_make_synack);
3813 
3814 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3815 {
3816 	struct inet_connection_sock *icsk = inet_csk(sk);
3817 	const struct tcp_congestion_ops *ca;
3818 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3819 
3820 	if (ca_key == TCP_CA_UNSPEC)
3821 		return;
3822 
3823 	rcu_read_lock();
3824 	ca = tcp_ca_find_key(ca_key);
3825 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3826 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3827 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3828 		icsk->icsk_ca_ops = ca;
3829 	}
3830 	rcu_read_unlock();
3831 }
3832 
3833 /* Do all connect socket setups that can be done AF independent. */
3834 static void tcp_connect_init(struct sock *sk)
3835 {
3836 	const struct dst_entry *dst = __sk_dst_get(sk);
3837 	struct tcp_sock *tp = tcp_sk(sk);
3838 	__u8 rcv_wscale;
3839 	u32 rcv_wnd;
3840 
3841 	/* We'll fix this up when we get a response from the other end.
3842 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3843 	 */
3844 	tp->tcp_header_len = sizeof(struct tcphdr);
3845 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3846 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3847 
3848 	tcp_ao_connect_init(sk);
3849 
3850 	/* If user gave his TCP_MAXSEG, record it to clamp */
3851 	if (tp->rx_opt.user_mss)
3852 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3853 	tp->max_window = 0;
3854 	tcp_mtup_init(sk);
3855 	tcp_sync_mss(sk, dst_mtu(dst));
3856 
3857 	tcp_ca_dst_init(sk, dst);
3858 
3859 	if (!tp->window_clamp)
3860 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3861 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3862 
3863 	tcp_initialize_rcv_mss(sk);
3864 
3865 	/* limit the window selection if the user enforce a smaller rx buffer */
3866 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3867 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3868 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3869 
3870 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3871 	if (rcv_wnd == 0)
3872 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3873 
3874 	tcp_select_initial_window(sk, tcp_full_space(sk),
3875 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3876 				  &tp->rcv_wnd,
3877 				  &tp->window_clamp,
3878 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3879 				  &rcv_wscale,
3880 				  rcv_wnd);
3881 
3882 	tp->rx_opt.rcv_wscale = rcv_wscale;
3883 	tp->rcv_ssthresh = tp->rcv_wnd;
3884 
3885 	WRITE_ONCE(sk->sk_err, 0);
3886 	sock_reset_flag(sk, SOCK_DONE);
3887 	tp->snd_wnd = 0;
3888 	tcp_init_wl(tp, 0);
3889 	tcp_write_queue_purge(sk);
3890 	tp->snd_una = tp->write_seq;
3891 	tp->snd_sml = tp->write_seq;
3892 	tp->snd_up = tp->write_seq;
3893 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3894 
3895 	if (likely(!tp->repair))
3896 		tp->rcv_nxt = 0;
3897 	else
3898 		tp->rcv_tstamp = tcp_jiffies32;
3899 	tp->rcv_wup = tp->rcv_nxt;
3900 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3901 
3902 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3903 	inet_csk(sk)->icsk_retransmits = 0;
3904 	tcp_clear_retrans(tp);
3905 }
3906 
3907 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3908 {
3909 	struct tcp_sock *tp = tcp_sk(sk);
3910 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3911 
3912 	tcb->end_seq += skb->len;
3913 	__skb_header_release(skb);
3914 	sk_wmem_queued_add(sk, skb->truesize);
3915 	sk_mem_charge(sk, skb->truesize);
3916 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3917 	tp->packets_out += tcp_skb_pcount(skb);
3918 }
3919 
3920 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3921  * queue a data-only packet after the regular SYN, such that regular SYNs
3922  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3923  * only the SYN sequence, the data are retransmitted in the first ACK.
3924  * If cookie is not cached or other error occurs, falls back to send a
3925  * regular SYN with Fast Open cookie request option.
3926  */
3927 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3928 {
3929 	struct inet_connection_sock *icsk = inet_csk(sk);
3930 	struct tcp_sock *tp = tcp_sk(sk);
3931 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3932 	struct page_frag *pfrag = sk_page_frag(sk);
3933 	struct sk_buff *syn_data;
3934 	int space, err = 0;
3935 
3936 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3937 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3938 		goto fallback;
3939 
3940 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3941 	 * user-MSS. Reserve maximum option space for middleboxes that add
3942 	 * private TCP options. The cost is reduced data space in SYN :(
3943 	 */
3944 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3945 	/* Sync mss_cache after updating the mss_clamp */
3946 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3947 
3948 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3949 		MAX_TCP_OPTION_SPACE;
3950 
3951 	space = min_t(size_t, space, fo->size);
3952 
3953 	if (space &&
3954 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3955 				  pfrag, sk->sk_allocation))
3956 		goto fallback;
3957 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3958 	if (!syn_data)
3959 		goto fallback;
3960 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3961 	if (space) {
3962 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3963 		space = tcp_wmem_schedule(sk, space);
3964 	}
3965 	if (space) {
3966 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3967 					    space, &fo->data->msg_iter);
3968 		if (unlikely(!space)) {
3969 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3970 			kfree_skb(syn_data);
3971 			goto fallback;
3972 		}
3973 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3974 				   pfrag->offset, space);
3975 		page_ref_inc(pfrag->page);
3976 		pfrag->offset += space;
3977 		skb_len_add(syn_data, space);
3978 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3979 	}
3980 	/* No more data pending in inet_wait_for_connect() */
3981 	if (space == fo->size)
3982 		fo->data = NULL;
3983 	fo->copied = space;
3984 
3985 	tcp_connect_queue_skb(sk, syn_data);
3986 	if (syn_data->len)
3987 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3988 
3989 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3990 
3991 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3992 
3993 	/* Now full SYN+DATA was cloned and sent (or not),
3994 	 * remove the SYN from the original skb (syn_data)
3995 	 * we keep in write queue in case of a retransmit, as we
3996 	 * also have the SYN packet (with no data) in the same queue.
3997 	 */
3998 	TCP_SKB_CB(syn_data)->seq++;
3999 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4000 	if (!err) {
4001 		tp->syn_data = (fo->copied > 0);
4002 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4003 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4004 		goto done;
4005 	}
4006 
4007 	/* data was not sent, put it in write_queue */
4008 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4009 	tp->packets_out -= tcp_skb_pcount(syn_data);
4010 
4011 fallback:
4012 	/* Send a regular SYN with Fast Open cookie request option */
4013 	if (fo->cookie.len > 0)
4014 		fo->cookie.len = 0;
4015 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4016 	if (err)
4017 		tp->syn_fastopen = 0;
4018 done:
4019 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4020 	return err;
4021 }
4022 
4023 /* Build a SYN and send it off. */
4024 int tcp_connect(struct sock *sk)
4025 {
4026 	struct tcp_sock *tp = tcp_sk(sk);
4027 	struct sk_buff *buff;
4028 	int err;
4029 
4030 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4031 
4032 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4033 	/* Has to be checked late, after setting daddr/saddr/ops.
4034 	 * Return error if the peer has both a md5 and a tcp-ao key
4035 	 * configured as this is ambiguous.
4036 	 */
4037 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4038 					       lockdep_sock_is_held(sk)))) {
4039 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4040 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4041 		struct tcp_ao_info *ao_info;
4042 
4043 		ao_info = rcu_dereference_check(tp->ao_info,
4044 						lockdep_sock_is_held(sk));
4045 		if (ao_info) {
4046 			/* This is an extra check: tcp_ao_required() in
4047 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4048 			 * md5 keys on ao_required socket.
4049 			 */
4050 			needs_ao |= ao_info->ao_required;
4051 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4052 		}
4053 		if (needs_md5 && needs_ao)
4054 			return -EKEYREJECTED;
4055 
4056 		/* If we have a matching md5 key and no matching tcp-ao key
4057 		 * then free up ao_info if allocated.
4058 		 */
4059 		if (needs_md5) {
4060 			tcp_ao_destroy_sock(sk, false);
4061 		} else if (needs_ao) {
4062 			tcp_clear_md5_list(sk);
4063 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4064 						  lockdep_sock_is_held(sk)));
4065 		}
4066 	}
4067 #endif
4068 #ifdef CONFIG_TCP_AO
4069 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4070 					       lockdep_sock_is_held(sk)))) {
4071 		/* Don't allow connecting if ao is configured but no
4072 		 * matching key is found.
4073 		 */
4074 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4075 			return -EKEYREJECTED;
4076 	}
4077 #endif
4078 
4079 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4080 		return -EHOSTUNREACH; /* Routing failure or similar. */
4081 
4082 	tcp_connect_init(sk);
4083 
4084 	if (unlikely(tp->repair)) {
4085 		tcp_finish_connect(sk, NULL);
4086 		return 0;
4087 	}
4088 
4089 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4090 	if (unlikely(!buff))
4091 		return -ENOBUFS;
4092 
4093 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4094 	tcp_mstamp_refresh(tp);
4095 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4096 	tcp_connect_queue_skb(sk, buff);
4097 	tcp_ecn_send_syn(sk, buff);
4098 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4099 
4100 	/* Send off SYN; include data in Fast Open. */
4101 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4102 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4103 	if (err == -ECONNREFUSED)
4104 		return err;
4105 
4106 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4107 	 * in order to make this packet get counted in tcpOutSegs.
4108 	 */
4109 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4110 	tp->pushed_seq = tp->write_seq;
4111 	buff = tcp_send_head(sk);
4112 	if (unlikely(buff)) {
4113 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4114 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4115 	}
4116 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4117 
4118 	/* Timer for repeating the SYN until an answer. */
4119 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4120 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4121 	return 0;
4122 }
4123 EXPORT_SYMBOL(tcp_connect);
4124 
4125 u32 tcp_delack_max(const struct sock *sk)
4126 {
4127 	const struct dst_entry *dst = __sk_dst_get(sk);
4128 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4129 
4130 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4131 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4132 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4133 
4134 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4135 	}
4136 	return delack_max;
4137 }
4138 
4139 /* Send out a delayed ack, the caller does the policy checking
4140  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4141  * for details.
4142  */
4143 void tcp_send_delayed_ack(struct sock *sk)
4144 {
4145 	struct inet_connection_sock *icsk = inet_csk(sk);
4146 	int ato = icsk->icsk_ack.ato;
4147 	unsigned long timeout;
4148 
4149 	if (ato > TCP_DELACK_MIN) {
4150 		const struct tcp_sock *tp = tcp_sk(sk);
4151 		int max_ato = HZ / 2;
4152 
4153 		if (inet_csk_in_pingpong_mode(sk) ||
4154 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4155 			max_ato = TCP_DELACK_MAX;
4156 
4157 		/* Slow path, intersegment interval is "high". */
4158 
4159 		/* If some rtt estimate is known, use it to bound delayed ack.
4160 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4161 		 * directly.
4162 		 */
4163 		if (tp->srtt_us) {
4164 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4165 					TCP_DELACK_MIN);
4166 
4167 			if (rtt < max_ato)
4168 				max_ato = rtt;
4169 		}
4170 
4171 		ato = min(ato, max_ato);
4172 	}
4173 
4174 	ato = min_t(u32, ato, tcp_delack_max(sk));
4175 
4176 	/* Stay within the limit we were given */
4177 	timeout = jiffies + ato;
4178 
4179 	/* Use new timeout only if there wasn't a older one earlier. */
4180 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4181 		/* If delack timer is about to expire, send ACK now. */
4182 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4183 			tcp_send_ack(sk);
4184 			return;
4185 		}
4186 
4187 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4188 			timeout = icsk->icsk_ack.timeout;
4189 	}
4190 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4191 	icsk->icsk_ack.timeout = timeout;
4192 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4193 }
4194 
4195 /* This routine sends an ack and also updates the window. */
4196 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4197 {
4198 	struct sk_buff *buff;
4199 
4200 	/* If we have been reset, we may not send again. */
4201 	if (sk->sk_state == TCP_CLOSE)
4202 		return;
4203 
4204 	/* We are not putting this on the write queue, so
4205 	 * tcp_transmit_skb() will set the ownership to this
4206 	 * sock.
4207 	 */
4208 	buff = alloc_skb(MAX_TCP_HEADER,
4209 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4210 	if (unlikely(!buff)) {
4211 		struct inet_connection_sock *icsk = inet_csk(sk);
4212 		unsigned long delay;
4213 
4214 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4215 		if (delay < TCP_RTO_MAX)
4216 			icsk->icsk_ack.retry++;
4217 		inet_csk_schedule_ack(sk);
4218 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4219 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4220 		return;
4221 	}
4222 
4223 	/* Reserve space for headers and prepare control bits. */
4224 	skb_reserve(buff, MAX_TCP_HEADER);
4225 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4226 
4227 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4228 	 * too much.
4229 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4230 	 */
4231 	skb_set_tcp_pure_ack(buff);
4232 
4233 	/* Send it off, this clears delayed acks for us. */
4234 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4235 }
4236 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4237 
4238 void tcp_send_ack(struct sock *sk)
4239 {
4240 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4241 }
4242 
4243 /* This routine sends a packet with an out of date sequence
4244  * number. It assumes the other end will try to ack it.
4245  *
4246  * Question: what should we make while urgent mode?
4247  * 4.4BSD forces sending single byte of data. We cannot send
4248  * out of window data, because we have SND.NXT==SND.MAX...
4249  *
4250  * Current solution: to send TWO zero-length segments in urgent mode:
4251  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4252  * out-of-date with SND.UNA-1 to probe window.
4253  */
4254 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4255 {
4256 	struct tcp_sock *tp = tcp_sk(sk);
4257 	struct sk_buff *skb;
4258 
4259 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4260 	skb = alloc_skb(MAX_TCP_HEADER,
4261 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4262 	if (!skb)
4263 		return -1;
4264 
4265 	/* Reserve space for headers and set control bits. */
4266 	skb_reserve(skb, MAX_TCP_HEADER);
4267 	/* Use a previous sequence.  This should cause the other
4268 	 * end to send an ack.  Don't queue or clone SKB, just
4269 	 * send it.
4270 	 */
4271 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4272 	NET_INC_STATS(sock_net(sk), mib);
4273 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4274 }
4275 
4276 /* Called from setsockopt( ... TCP_REPAIR ) */
4277 void tcp_send_window_probe(struct sock *sk)
4278 {
4279 	if (sk->sk_state == TCP_ESTABLISHED) {
4280 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4281 		tcp_mstamp_refresh(tcp_sk(sk));
4282 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4283 	}
4284 }
4285 
4286 /* Initiate keepalive or window probe from timer. */
4287 int tcp_write_wakeup(struct sock *sk, int mib)
4288 {
4289 	struct tcp_sock *tp = tcp_sk(sk);
4290 	struct sk_buff *skb;
4291 
4292 	if (sk->sk_state == TCP_CLOSE)
4293 		return -1;
4294 
4295 	skb = tcp_send_head(sk);
4296 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4297 		int err;
4298 		unsigned int mss = tcp_current_mss(sk);
4299 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4300 
4301 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4302 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4303 
4304 		/* We are probing the opening of a window
4305 		 * but the window size is != 0
4306 		 * must have been a result SWS avoidance ( sender )
4307 		 */
4308 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4309 		    skb->len > mss) {
4310 			seg_size = min(seg_size, mss);
4311 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4312 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4313 					 skb, seg_size, mss, GFP_ATOMIC))
4314 				return -1;
4315 		} else if (!tcp_skb_pcount(skb))
4316 			tcp_set_skb_tso_segs(skb, mss);
4317 
4318 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4319 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4320 		if (!err)
4321 			tcp_event_new_data_sent(sk, skb);
4322 		return err;
4323 	} else {
4324 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4325 			tcp_xmit_probe_skb(sk, 1, mib);
4326 		return tcp_xmit_probe_skb(sk, 0, mib);
4327 	}
4328 }
4329 
4330 /* A window probe timeout has occurred.  If window is not closed send
4331  * a partial packet else a zero probe.
4332  */
4333 void tcp_send_probe0(struct sock *sk)
4334 {
4335 	struct inet_connection_sock *icsk = inet_csk(sk);
4336 	struct tcp_sock *tp = tcp_sk(sk);
4337 	struct net *net = sock_net(sk);
4338 	unsigned long timeout;
4339 	int err;
4340 
4341 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4342 
4343 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4344 		/* Cancel probe timer, if it is not required. */
4345 		icsk->icsk_probes_out = 0;
4346 		icsk->icsk_backoff = 0;
4347 		icsk->icsk_probes_tstamp = 0;
4348 		return;
4349 	}
4350 
4351 	icsk->icsk_probes_out++;
4352 	if (err <= 0) {
4353 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4354 			icsk->icsk_backoff++;
4355 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4356 	} else {
4357 		/* If packet was not sent due to local congestion,
4358 		 * Let senders fight for local resources conservatively.
4359 		 */
4360 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4361 	}
4362 
4363 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4364 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4365 }
4366 
4367 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4368 {
4369 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4370 	struct flowi fl;
4371 	int res;
4372 
4373 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4374 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4375 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4376 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4377 				  NULL);
4378 	if (!res) {
4379 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4380 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4381 		if (unlikely(tcp_passive_fastopen(sk))) {
4382 			/* sk has const attribute because listeners are lockless.
4383 			 * However in this case, we are dealing with a passive fastopen
4384 			 * socket thus we can change total_retrans value.
4385 			 */
4386 			tcp_sk_rw(sk)->total_retrans++;
4387 		}
4388 		trace_tcp_retransmit_synack(sk, req);
4389 	}
4390 	return res;
4391 }
4392 EXPORT_SYMBOL(tcp_rtx_synack);
4393