1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, increase pingpong count. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 181 { 182 struct tcp_sock *tp = tcp_sk(sk); 183 184 if (unlikely(tp->compressed_ack)) { 185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 186 tp->compressed_ack); 187 tp->compressed_ack = 0; 188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 189 __sock_put(sk); 190 } 191 192 if (unlikely(rcv_nxt != tp->rcv_nxt)) 193 return; /* Special ACK sent by DCTCP to reflect ECN */ 194 tcp_dec_quickack_mode(sk); 195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *__window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 u32 window_clamp = READ_ONCE(*__window_clamp); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (window_clamp == 0) 215 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = min_t(u32, space, U16_MAX); 234 235 if (init_rcv_wnd) 236 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 237 238 *rcv_wscale = 0; 239 if (wscale_ok) { 240 /* Set window scaling on max possible window */ 241 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 242 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 243 space = min_t(u32, space, window_clamp); 244 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 245 0, TCP_MAX_WSCALE); 246 } 247 /* Set the clamp no higher than max representable value */ 248 WRITE_ONCE(*__window_clamp, 249 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 250 } 251 EXPORT_SYMBOL(tcp_select_initial_window); 252 253 /* Chose a new window to advertise, update state in tcp_sock for the 254 * socket, and return result with RFC1323 scaling applied. The return 255 * value can be stuffed directly into th->window for an outgoing 256 * frame. 257 */ 258 static u16 tcp_select_window(struct sock *sk) 259 { 260 struct tcp_sock *tp = tcp_sk(sk); 261 struct net *net = sock_net(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win, new_win; 264 265 /* Make the window 0 if we failed to queue the data because we 266 * are out of memory. The window is temporary, so we don't store 267 * it on the socket. 268 */ 269 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 270 return 0; 271 272 cur_win = tcp_receive_window(tp); 273 new_win = __tcp_select_window(sk); 274 if (new_win < cur_win) { 275 /* Danger Will Robinson! 276 * Don't update rcv_wup/rcv_wnd here or else 277 * we will not be able to advertise a zero 278 * window in time. --DaveM 279 * 280 * Relax Will Robinson. 281 */ 282 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 283 /* Never shrink the offered window */ 284 if (new_win == 0) 285 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 286 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 287 } 288 } 289 290 tp->rcv_wnd = new_win; 291 tp->rcv_wup = tp->rcv_nxt; 292 293 /* Make sure we do not exceed the maximum possible 294 * scaled window. 295 */ 296 if (!tp->rx_opt.rcv_wscale && 297 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 298 new_win = min(new_win, MAX_TCP_WINDOW); 299 else 300 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 301 302 /* RFC1323 scaling applied */ 303 new_win >>= tp->rx_opt.rcv_wscale; 304 305 /* If we advertise zero window, disable fast path. */ 306 if (new_win == 0) { 307 tp->pred_flags = 0; 308 if (old_win) 309 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 310 } else if (old_win == 0) { 311 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 312 } 313 314 return new_win; 315 } 316 317 /* Packet ECN state for a SYN-ACK */ 318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 319 { 320 const struct tcp_sock *tp = tcp_sk(sk); 321 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 323 if (!(tp->ecn_flags & TCP_ECN_OK)) 324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 325 else if (tcp_ca_needs_ecn(sk) || 326 tcp_bpf_ca_needs_ecn(sk)) 327 INET_ECN_xmit(sk); 328 } 329 330 /* Packet ECN state for a SYN. */ 331 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 332 { 333 struct tcp_sock *tp = tcp_sk(sk); 334 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 335 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 336 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 337 338 if (!use_ecn) { 339 const struct dst_entry *dst = __sk_dst_get(sk); 340 341 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 342 use_ecn = true; 343 } 344 345 tp->ecn_flags = 0; 346 347 if (use_ecn) { 348 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 349 tp->ecn_flags = TCP_ECN_OK; 350 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 351 INET_ECN_xmit(sk); 352 } 353 } 354 355 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 356 { 357 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 358 /* tp->ecn_flags are cleared at a later point in time when 359 * SYN ACK is ultimatively being received. 360 */ 361 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 362 } 363 364 static void 365 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 366 { 367 if (inet_rsk(req)->ecn_ok) 368 th->ece = 1; 369 } 370 371 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 372 * be sent. 373 */ 374 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 375 struct tcphdr *th, int tcp_header_len) 376 { 377 struct tcp_sock *tp = tcp_sk(sk); 378 379 if (tp->ecn_flags & TCP_ECN_OK) { 380 /* Not-retransmitted data segment: set ECT and inject CWR. */ 381 if (skb->len != tcp_header_len && 382 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 383 INET_ECN_xmit(sk); 384 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 385 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 386 th->cwr = 1; 387 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 388 } 389 } else if (!tcp_ca_needs_ecn(sk)) { 390 /* ACK or retransmitted segment: clear ECT|CE */ 391 INET_ECN_dontxmit(sk); 392 } 393 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 394 th->ece = 1; 395 } 396 } 397 398 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 399 * auto increment end seqno. 400 */ 401 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 402 { 403 skb->ip_summed = CHECKSUM_PARTIAL; 404 405 TCP_SKB_CB(skb)->tcp_flags = flags; 406 407 tcp_skb_pcount_set(skb, 1); 408 409 TCP_SKB_CB(skb)->seq = seq; 410 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 411 seq++; 412 TCP_SKB_CB(skb)->end_seq = seq; 413 } 414 415 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 416 { 417 return tp->snd_una != tp->snd_up; 418 } 419 420 #define OPTION_SACK_ADVERTISE BIT(0) 421 #define OPTION_TS BIT(1) 422 #define OPTION_MD5 BIT(2) 423 #define OPTION_WSCALE BIT(3) 424 #define OPTION_FAST_OPEN_COOKIE BIT(8) 425 #define OPTION_SMC BIT(9) 426 #define OPTION_MPTCP BIT(10) 427 #define OPTION_AO BIT(11) 428 429 static void smc_options_write(__be32 *ptr, u16 *options) 430 { 431 #if IS_ENABLED(CONFIG_SMC) 432 if (static_branch_unlikely(&tcp_have_smc)) { 433 if (unlikely(OPTION_SMC & *options)) { 434 *ptr++ = htonl((TCPOPT_NOP << 24) | 435 (TCPOPT_NOP << 16) | 436 (TCPOPT_EXP << 8) | 437 (TCPOLEN_EXP_SMC_BASE)); 438 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 439 } 440 } 441 #endif 442 } 443 444 struct tcp_out_options { 445 u16 options; /* bit field of OPTION_* */ 446 u16 mss; /* 0 to disable */ 447 u8 ws; /* window scale, 0 to disable */ 448 u8 num_sack_blocks; /* number of SACK blocks to include */ 449 u8 hash_size; /* bytes in hash_location */ 450 u8 bpf_opt_len; /* length of BPF hdr option */ 451 __u8 *hash_location; /* temporary pointer, overloaded */ 452 __u32 tsval, tsecr; /* need to include OPTION_TS */ 453 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 454 struct mptcp_out_options mptcp; 455 }; 456 457 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 458 struct tcp_sock *tp, 459 struct tcp_out_options *opts) 460 { 461 #if IS_ENABLED(CONFIG_MPTCP) 462 if (unlikely(OPTION_MPTCP & opts->options)) 463 mptcp_write_options(th, ptr, tp, &opts->mptcp); 464 #endif 465 } 466 467 #ifdef CONFIG_CGROUP_BPF 468 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 469 enum tcp_synack_type synack_type) 470 { 471 if (unlikely(!skb)) 472 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 473 474 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 475 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 476 477 return 0; 478 } 479 480 /* req, syn_skb and synack_type are used when writing synack */ 481 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 482 struct request_sock *req, 483 struct sk_buff *syn_skb, 484 enum tcp_synack_type synack_type, 485 struct tcp_out_options *opts, 486 unsigned int *remaining) 487 { 488 struct bpf_sock_ops_kern sock_ops; 489 int err; 490 491 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 492 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 493 !*remaining) 494 return; 495 496 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 497 498 /* init sock_ops */ 499 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 500 501 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 502 503 if (req) { 504 /* The listen "sk" cannot be passed here because 505 * it is not locked. It would not make too much 506 * sense to do bpf_setsockopt(listen_sk) based 507 * on individual connection request also. 508 * 509 * Thus, "req" is passed here and the cgroup-bpf-progs 510 * of the listen "sk" will be run. 511 * 512 * "req" is also used here for fastopen even the "sk" here is 513 * a fullsock "child" sk. It is to keep the behavior 514 * consistent between fastopen and non-fastopen on 515 * the bpf programming side. 516 */ 517 sock_ops.sk = (struct sock *)req; 518 sock_ops.syn_skb = syn_skb; 519 } else { 520 sock_owned_by_me(sk); 521 522 sock_ops.is_fullsock = 1; 523 sock_ops.sk = sk; 524 } 525 526 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 527 sock_ops.remaining_opt_len = *remaining; 528 /* tcp_current_mss() does not pass a skb */ 529 if (skb) 530 bpf_skops_init_skb(&sock_ops, skb, 0); 531 532 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 533 534 if (err || sock_ops.remaining_opt_len == *remaining) 535 return; 536 537 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 538 /* round up to 4 bytes */ 539 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 540 541 *remaining -= opts->bpf_opt_len; 542 } 543 544 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 545 struct request_sock *req, 546 struct sk_buff *syn_skb, 547 enum tcp_synack_type synack_type, 548 struct tcp_out_options *opts) 549 { 550 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 551 struct bpf_sock_ops_kern sock_ops; 552 int err; 553 554 if (likely(!max_opt_len)) 555 return; 556 557 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 558 559 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 560 561 if (req) { 562 sock_ops.sk = (struct sock *)req; 563 sock_ops.syn_skb = syn_skb; 564 } else { 565 sock_owned_by_me(sk); 566 567 sock_ops.is_fullsock = 1; 568 sock_ops.sk = sk; 569 } 570 571 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 572 sock_ops.remaining_opt_len = max_opt_len; 573 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 574 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 575 576 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 577 578 if (err) 579 nr_written = 0; 580 else 581 nr_written = max_opt_len - sock_ops.remaining_opt_len; 582 583 if (nr_written < max_opt_len) 584 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 585 max_opt_len - nr_written); 586 } 587 #else 588 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 589 struct request_sock *req, 590 struct sk_buff *syn_skb, 591 enum tcp_synack_type synack_type, 592 struct tcp_out_options *opts, 593 unsigned int *remaining) 594 { 595 } 596 597 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 598 struct request_sock *req, 599 struct sk_buff *syn_skb, 600 enum tcp_synack_type synack_type, 601 struct tcp_out_options *opts) 602 { 603 } 604 #endif 605 606 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 607 const struct tcp_request_sock *tcprsk, 608 struct tcp_out_options *opts, 609 struct tcp_key *key, __be32 *ptr) 610 { 611 #ifdef CONFIG_TCP_AO 612 u8 maclen = tcp_ao_maclen(key->ao_key); 613 614 if (tcprsk) { 615 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 616 617 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 618 (tcprsk->ao_keyid << 8) | 619 (tcprsk->ao_rcv_next)); 620 } else { 621 struct tcp_ao_key *rnext_key; 622 struct tcp_ao_info *ao_info; 623 624 ao_info = rcu_dereference_check(tp->ao_info, 625 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 626 rnext_key = READ_ONCE(ao_info->rnext_key); 627 if (WARN_ON_ONCE(!rnext_key)) 628 return ptr; 629 *ptr++ = htonl((TCPOPT_AO << 24) | 630 (tcp_ao_len(key->ao_key) << 16) | 631 (key->ao_key->sndid << 8) | 632 (rnext_key->rcvid)); 633 } 634 opts->hash_location = (__u8 *)ptr; 635 ptr += maclen / sizeof(*ptr); 636 if (unlikely(maclen % sizeof(*ptr))) { 637 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 638 ptr++; 639 } 640 #endif 641 return ptr; 642 } 643 644 /* Write previously computed TCP options to the packet. 645 * 646 * Beware: Something in the Internet is very sensitive to the ordering of 647 * TCP options, we learned this through the hard way, so be careful here. 648 * Luckily we can at least blame others for their non-compliance but from 649 * inter-operability perspective it seems that we're somewhat stuck with 650 * the ordering which we have been using if we want to keep working with 651 * those broken things (not that it currently hurts anybody as there isn't 652 * particular reason why the ordering would need to be changed). 653 * 654 * At least SACK_PERM as the first option is known to lead to a disaster 655 * (but it may well be that other scenarios fail similarly). 656 */ 657 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 658 const struct tcp_request_sock *tcprsk, 659 struct tcp_out_options *opts, 660 struct tcp_key *key) 661 { 662 __be32 *ptr = (__be32 *)(th + 1); 663 u16 options = opts->options; /* mungable copy */ 664 665 if (tcp_key_is_md5(key)) { 666 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 667 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 668 /* overload cookie hash location */ 669 opts->hash_location = (__u8 *)ptr; 670 ptr += 4; 671 } else if (tcp_key_is_ao(key)) { 672 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 673 } 674 if (unlikely(opts->mss)) { 675 *ptr++ = htonl((TCPOPT_MSS << 24) | 676 (TCPOLEN_MSS << 16) | 677 opts->mss); 678 } 679 680 if (likely(OPTION_TS & options)) { 681 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 682 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 683 (TCPOLEN_SACK_PERM << 16) | 684 (TCPOPT_TIMESTAMP << 8) | 685 TCPOLEN_TIMESTAMP); 686 options &= ~OPTION_SACK_ADVERTISE; 687 } else { 688 *ptr++ = htonl((TCPOPT_NOP << 24) | 689 (TCPOPT_NOP << 16) | 690 (TCPOPT_TIMESTAMP << 8) | 691 TCPOLEN_TIMESTAMP); 692 } 693 *ptr++ = htonl(opts->tsval); 694 *ptr++ = htonl(opts->tsecr); 695 } 696 697 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 698 *ptr++ = htonl((TCPOPT_NOP << 24) | 699 (TCPOPT_NOP << 16) | 700 (TCPOPT_SACK_PERM << 8) | 701 TCPOLEN_SACK_PERM); 702 } 703 704 if (unlikely(OPTION_WSCALE & options)) { 705 *ptr++ = htonl((TCPOPT_NOP << 24) | 706 (TCPOPT_WINDOW << 16) | 707 (TCPOLEN_WINDOW << 8) | 708 opts->ws); 709 } 710 711 if (unlikely(opts->num_sack_blocks)) { 712 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 713 tp->duplicate_sack : tp->selective_acks; 714 int this_sack; 715 716 *ptr++ = htonl((TCPOPT_NOP << 24) | 717 (TCPOPT_NOP << 16) | 718 (TCPOPT_SACK << 8) | 719 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 720 TCPOLEN_SACK_PERBLOCK))); 721 722 for (this_sack = 0; this_sack < opts->num_sack_blocks; 723 ++this_sack) { 724 *ptr++ = htonl(sp[this_sack].start_seq); 725 *ptr++ = htonl(sp[this_sack].end_seq); 726 } 727 728 tp->rx_opt.dsack = 0; 729 } 730 731 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 732 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 733 u8 *p = (u8 *)ptr; 734 u32 len; /* Fast Open option length */ 735 736 if (foc->exp) { 737 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 738 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 739 TCPOPT_FASTOPEN_MAGIC); 740 p += TCPOLEN_EXP_FASTOPEN_BASE; 741 } else { 742 len = TCPOLEN_FASTOPEN_BASE + foc->len; 743 *p++ = TCPOPT_FASTOPEN; 744 *p++ = len; 745 } 746 747 memcpy(p, foc->val, foc->len); 748 if ((len & 3) == 2) { 749 p[foc->len] = TCPOPT_NOP; 750 p[foc->len + 1] = TCPOPT_NOP; 751 } 752 ptr += (len + 3) >> 2; 753 } 754 755 smc_options_write(ptr, &options); 756 757 mptcp_options_write(th, ptr, tp, opts); 758 } 759 760 static void smc_set_option(const struct tcp_sock *tp, 761 struct tcp_out_options *opts, 762 unsigned int *remaining) 763 { 764 #if IS_ENABLED(CONFIG_SMC) 765 if (static_branch_unlikely(&tcp_have_smc)) { 766 if (tp->syn_smc) { 767 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 768 opts->options |= OPTION_SMC; 769 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 770 } 771 } 772 } 773 #endif 774 } 775 776 static void smc_set_option_cond(const struct tcp_sock *tp, 777 const struct inet_request_sock *ireq, 778 struct tcp_out_options *opts, 779 unsigned int *remaining) 780 { 781 #if IS_ENABLED(CONFIG_SMC) 782 if (static_branch_unlikely(&tcp_have_smc)) { 783 if (tp->syn_smc && ireq->smc_ok) { 784 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 785 opts->options |= OPTION_SMC; 786 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 787 } 788 } 789 } 790 #endif 791 } 792 793 static void mptcp_set_option_cond(const struct request_sock *req, 794 struct tcp_out_options *opts, 795 unsigned int *remaining) 796 { 797 if (rsk_is_mptcp(req)) { 798 unsigned int size; 799 800 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 801 if (*remaining >= size) { 802 opts->options |= OPTION_MPTCP; 803 *remaining -= size; 804 } 805 } 806 } 807 } 808 809 /* Compute TCP options for SYN packets. This is not the final 810 * network wire format yet. 811 */ 812 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 813 struct tcp_out_options *opts, 814 struct tcp_key *key) 815 { 816 struct tcp_sock *tp = tcp_sk(sk); 817 unsigned int remaining = MAX_TCP_OPTION_SPACE; 818 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 819 bool timestamps; 820 821 /* Better than switch (key.type) as it has static branches */ 822 if (tcp_key_is_md5(key)) { 823 timestamps = false; 824 opts->options |= OPTION_MD5; 825 remaining -= TCPOLEN_MD5SIG_ALIGNED; 826 } else { 827 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 828 if (tcp_key_is_ao(key)) { 829 opts->options |= OPTION_AO; 830 remaining -= tcp_ao_len_aligned(key->ao_key); 831 } 832 } 833 834 /* We always get an MSS option. The option bytes which will be seen in 835 * normal data packets should timestamps be used, must be in the MSS 836 * advertised. But we subtract them from tp->mss_cache so that 837 * calculations in tcp_sendmsg are simpler etc. So account for this 838 * fact here if necessary. If we don't do this correctly, as a 839 * receiver we won't recognize data packets as being full sized when we 840 * should, and thus we won't abide by the delayed ACK rules correctly. 841 * SACKs don't matter, we never delay an ACK when we have any of those 842 * going out. */ 843 opts->mss = tcp_advertise_mss(sk); 844 remaining -= TCPOLEN_MSS_ALIGNED; 845 846 if (likely(timestamps)) { 847 opts->options |= OPTION_TS; 848 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 849 opts->tsecr = tp->rx_opt.ts_recent; 850 remaining -= TCPOLEN_TSTAMP_ALIGNED; 851 } 852 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 853 opts->ws = tp->rx_opt.rcv_wscale; 854 opts->options |= OPTION_WSCALE; 855 remaining -= TCPOLEN_WSCALE_ALIGNED; 856 } 857 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 858 opts->options |= OPTION_SACK_ADVERTISE; 859 if (unlikely(!(OPTION_TS & opts->options))) 860 remaining -= TCPOLEN_SACKPERM_ALIGNED; 861 } 862 863 if (fastopen && fastopen->cookie.len >= 0) { 864 u32 need = fastopen->cookie.len; 865 866 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 867 TCPOLEN_FASTOPEN_BASE; 868 need = (need + 3) & ~3U; /* Align to 32 bits */ 869 if (remaining >= need) { 870 opts->options |= OPTION_FAST_OPEN_COOKIE; 871 opts->fastopen_cookie = &fastopen->cookie; 872 remaining -= need; 873 tp->syn_fastopen = 1; 874 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 875 } 876 } 877 878 smc_set_option(tp, opts, &remaining); 879 880 if (sk_is_mptcp(sk)) { 881 unsigned int size; 882 883 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 884 opts->options |= OPTION_MPTCP; 885 remaining -= size; 886 } 887 } 888 889 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 890 891 return MAX_TCP_OPTION_SPACE - remaining; 892 } 893 894 /* Set up TCP options for SYN-ACKs. */ 895 static unsigned int tcp_synack_options(const struct sock *sk, 896 struct request_sock *req, 897 unsigned int mss, struct sk_buff *skb, 898 struct tcp_out_options *opts, 899 const struct tcp_key *key, 900 struct tcp_fastopen_cookie *foc, 901 enum tcp_synack_type synack_type, 902 struct sk_buff *syn_skb) 903 { 904 struct inet_request_sock *ireq = inet_rsk(req); 905 unsigned int remaining = MAX_TCP_OPTION_SPACE; 906 907 if (tcp_key_is_md5(key)) { 908 opts->options |= OPTION_MD5; 909 remaining -= TCPOLEN_MD5SIG_ALIGNED; 910 911 /* We can't fit any SACK blocks in a packet with MD5 + TS 912 * options. There was discussion about disabling SACK 913 * rather than TS in order to fit in better with old, 914 * buggy kernels, but that was deemed to be unnecessary. 915 */ 916 if (synack_type != TCP_SYNACK_COOKIE) 917 ireq->tstamp_ok &= !ireq->sack_ok; 918 } else if (tcp_key_is_ao(key)) { 919 opts->options |= OPTION_AO; 920 remaining -= tcp_ao_len_aligned(key->ao_key); 921 ireq->tstamp_ok &= !ireq->sack_ok; 922 } 923 924 /* We always send an MSS option. */ 925 opts->mss = mss; 926 remaining -= TCPOLEN_MSS_ALIGNED; 927 928 if (likely(ireq->wscale_ok)) { 929 opts->ws = ireq->rcv_wscale; 930 opts->options |= OPTION_WSCALE; 931 remaining -= TCPOLEN_WSCALE_ALIGNED; 932 } 933 if (likely(ireq->tstamp_ok)) { 934 opts->options |= OPTION_TS; 935 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 936 tcp_rsk(req)->ts_off; 937 opts->tsecr = READ_ONCE(req->ts_recent); 938 remaining -= TCPOLEN_TSTAMP_ALIGNED; 939 } 940 if (likely(ireq->sack_ok)) { 941 opts->options |= OPTION_SACK_ADVERTISE; 942 if (unlikely(!ireq->tstamp_ok)) 943 remaining -= TCPOLEN_SACKPERM_ALIGNED; 944 } 945 if (foc != NULL && foc->len >= 0) { 946 u32 need = foc->len; 947 948 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 949 TCPOLEN_FASTOPEN_BASE; 950 need = (need + 3) & ~3U; /* Align to 32 bits */ 951 if (remaining >= need) { 952 opts->options |= OPTION_FAST_OPEN_COOKIE; 953 opts->fastopen_cookie = foc; 954 remaining -= need; 955 } 956 } 957 958 mptcp_set_option_cond(req, opts, &remaining); 959 960 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 961 962 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 963 synack_type, opts, &remaining); 964 965 return MAX_TCP_OPTION_SPACE - remaining; 966 } 967 968 /* Compute TCP options for ESTABLISHED sockets. This is not the 969 * final wire format yet. 970 */ 971 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 972 struct tcp_out_options *opts, 973 struct tcp_key *key) 974 { 975 struct tcp_sock *tp = tcp_sk(sk); 976 unsigned int size = 0; 977 unsigned int eff_sacks; 978 979 opts->options = 0; 980 981 /* Better than switch (key.type) as it has static branches */ 982 if (tcp_key_is_md5(key)) { 983 opts->options |= OPTION_MD5; 984 size += TCPOLEN_MD5SIG_ALIGNED; 985 } else if (tcp_key_is_ao(key)) { 986 opts->options |= OPTION_AO; 987 size += tcp_ao_len_aligned(key->ao_key); 988 } 989 990 if (likely(tp->rx_opt.tstamp_ok)) { 991 opts->options |= OPTION_TS; 992 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 993 tp->tsoffset : 0; 994 opts->tsecr = tp->rx_opt.ts_recent; 995 size += TCPOLEN_TSTAMP_ALIGNED; 996 } 997 998 /* MPTCP options have precedence over SACK for the limited TCP 999 * option space because a MPTCP connection would be forced to 1000 * fall back to regular TCP if a required multipath option is 1001 * missing. SACK still gets a chance to use whatever space is 1002 * left. 1003 */ 1004 if (sk_is_mptcp(sk)) { 1005 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1006 unsigned int opt_size = 0; 1007 1008 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1009 &opts->mptcp)) { 1010 opts->options |= OPTION_MPTCP; 1011 size += opt_size; 1012 } 1013 } 1014 1015 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1016 if (unlikely(eff_sacks)) { 1017 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1018 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 1019 TCPOLEN_SACK_PERBLOCK)) 1020 return size; 1021 1022 opts->num_sack_blocks = 1023 min_t(unsigned int, eff_sacks, 1024 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1025 TCPOLEN_SACK_PERBLOCK); 1026 1027 size += TCPOLEN_SACK_BASE_ALIGNED + 1028 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1029 } 1030 1031 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1032 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1033 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1034 1035 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1036 1037 size = MAX_TCP_OPTION_SPACE - remaining; 1038 } 1039 1040 return size; 1041 } 1042 1043 1044 /* TCP SMALL QUEUES (TSQ) 1045 * 1046 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1047 * to reduce RTT and bufferbloat. 1048 * We do this using a special skb destructor (tcp_wfree). 1049 * 1050 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1051 * needs to be reallocated in a driver. 1052 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1053 * 1054 * Since transmit from skb destructor is forbidden, we use a tasklet 1055 * to process all sockets that eventually need to send more skbs. 1056 * We use one tasklet per cpu, with its own queue of sockets. 1057 */ 1058 struct tsq_tasklet { 1059 struct tasklet_struct tasklet; 1060 struct list_head head; /* queue of tcp sockets */ 1061 }; 1062 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1063 1064 static void tcp_tsq_write(struct sock *sk) 1065 { 1066 if ((1 << sk->sk_state) & 1067 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1068 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1069 struct tcp_sock *tp = tcp_sk(sk); 1070 1071 if (tp->lost_out > tp->retrans_out && 1072 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1073 tcp_mstamp_refresh(tp); 1074 tcp_xmit_retransmit_queue(sk); 1075 } 1076 1077 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1078 0, GFP_ATOMIC); 1079 } 1080 } 1081 1082 static void tcp_tsq_handler(struct sock *sk) 1083 { 1084 bh_lock_sock(sk); 1085 if (!sock_owned_by_user(sk)) 1086 tcp_tsq_write(sk); 1087 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1088 sock_hold(sk); 1089 bh_unlock_sock(sk); 1090 } 1091 /* 1092 * One tasklet per cpu tries to send more skbs. 1093 * We run in tasklet context but need to disable irqs when 1094 * transferring tsq->head because tcp_wfree() might 1095 * interrupt us (non NAPI drivers) 1096 */ 1097 static void tcp_tasklet_func(struct tasklet_struct *t) 1098 { 1099 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1100 LIST_HEAD(list); 1101 unsigned long flags; 1102 struct list_head *q, *n; 1103 struct tcp_sock *tp; 1104 struct sock *sk; 1105 1106 local_irq_save(flags); 1107 list_splice_init(&tsq->head, &list); 1108 local_irq_restore(flags); 1109 1110 list_for_each_safe(q, n, &list) { 1111 tp = list_entry(q, struct tcp_sock, tsq_node); 1112 list_del(&tp->tsq_node); 1113 1114 sk = (struct sock *)tp; 1115 smp_mb__before_atomic(); 1116 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1117 1118 tcp_tsq_handler(sk); 1119 sk_free(sk); 1120 } 1121 } 1122 1123 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1124 TCPF_WRITE_TIMER_DEFERRED | \ 1125 TCPF_DELACK_TIMER_DEFERRED | \ 1126 TCPF_MTU_REDUCED_DEFERRED | \ 1127 TCPF_ACK_DEFERRED) 1128 /** 1129 * tcp_release_cb - tcp release_sock() callback 1130 * @sk: socket 1131 * 1132 * called from release_sock() to perform protocol dependent 1133 * actions before socket release. 1134 */ 1135 void tcp_release_cb(struct sock *sk) 1136 { 1137 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1138 unsigned long nflags; 1139 1140 /* perform an atomic operation only if at least one flag is set */ 1141 do { 1142 if (!(flags & TCP_DEFERRED_ALL)) 1143 return; 1144 nflags = flags & ~TCP_DEFERRED_ALL; 1145 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1146 1147 if (flags & TCPF_TSQ_DEFERRED) { 1148 tcp_tsq_write(sk); 1149 __sock_put(sk); 1150 } 1151 1152 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1153 tcp_write_timer_handler(sk); 1154 __sock_put(sk); 1155 } 1156 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1157 tcp_delack_timer_handler(sk); 1158 __sock_put(sk); 1159 } 1160 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1161 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1162 __sock_put(sk); 1163 } 1164 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1165 tcp_send_ack(sk); 1166 } 1167 EXPORT_SYMBOL(tcp_release_cb); 1168 1169 void __init tcp_tasklet_init(void) 1170 { 1171 int i; 1172 1173 for_each_possible_cpu(i) { 1174 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1175 1176 INIT_LIST_HEAD(&tsq->head); 1177 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1178 } 1179 } 1180 1181 /* 1182 * Write buffer destructor automatically called from kfree_skb. 1183 * We can't xmit new skbs from this context, as we might already 1184 * hold qdisc lock. 1185 */ 1186 void tcp_wfree(struct sk_buff *skb) 1187 { 1188 struct sock *sk = skb->sk; 1189 struct tcp_sock *tp = tcp_sk(sk); 1190 unsigned long flags, nval, oval; 1191 struct tsq_tasklet *tsq; 1192 bool empty; 1193 1194 /* Keep one reference on sk_wmem_alloc. 1195 * Will be released by sk_free() from here or tcp_tasklet_func() 1196 */ 1197 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1198 1199 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1200 * Wait until our queues (qdisc + devices) are drained. 1201 * This gives : 1202 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1203 * - chance for incoming ACK (processed by another cpu maybe) 1204 * to migrate this flow (skb->ooo_okay will be eventually set) 1205 */ 1206 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1207 goto out; 1208 1209 oval = smp_load_acquire(&sk->sk_tsq_flags); 1210 do { 1211 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1212 goto out; 1213 1214 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1215 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1216 1217 /* queue this socket to tasklet queue */ 1218 local_irq_save(flags); 1219 tsq = this_cpu_ptr(&tsq_tasklet); 1220 empty = list_empty(&tsq->head); 1221 list_add(&tp->tsq_node, &tsq->head); 1222 if (empty) 1223 tasklet_schedule(&tsq->tasklet); 1224 local_irq_restore(flags); 1225 return; 1226 out: 1227 sk_free(sk); 1228 } 1229 1230 /* Note: Called under soft irq. 1231 * We can call TCP stack right away, unless socket is owned by user. 1232 */ 1233 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1234 { 1235 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1236 struct sock *sk = (struct sock *)tp; 1237 1238 tcp_tsq_handler(sk); 1239 sock_put(sk); 1240 1241 return HRTIMER_NORESTART; 1242 } 1243 1244 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1245 u64 prior_wstamp) 1246 { 1247 struct tcp_sock *tp = tcp_sk(sk); 1248 1249 if (sk->sk_pacing_status != SK_PACING_NONE) { 1250 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1251 1252 /* Original sch_fq does not pace first 10 MSS 1253 * Note that tp->data_segs_out overflows after 2^32 packets, 1254 * this is a minor annoyance. 1255 */ 1256 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1257 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1258 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1259 1260 /* take into account OS jitter */ 1261 len_ns -= min_t(u64, len_ns / 2, credit); 1262 tp->tcp_wstamp_ns += len_ns; 1263 } 1264 } 1265 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1266 } 1267 1268 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1269 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1270 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1271 1272 /* This routine actually transmits TCP packets queued in by 1273 * tcp_do_sendmsg(). This is used by both the initial 1274 * transmission and possible later retransmissions. 1275 * All SKB's seen here are completely headerless. It is our 1276 * job to build the TCP header, and pass the packet down to 1277 * IP so it can do the same plus pass the packet off to the 1278 * device. 1279 * 1280 * We are working here with either a clone of the original 1281 * SKB, or a fresh unique copy made by the retransmit engine. 1282 */ 1283 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1284 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1285 { 1286 const struct inet_connection_sock *icsk = inet_csk(sk); 1287 struct inet_sock *inet; 1288 struct tcp_sock *tp; 1289 struct tcp_skb_cb *tcb; 1290 struct tcp_out_options opts; 1291 unsigned int tcp_options_size, tcp_header_size; 1292 struct sk_buff *oskb = NULL; 1293 struct tcp_key key; 1294 struct tcphdr *th; 1295 u64 prior_wstamp; 1296 int err; 1297 1298 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1299 tp = tcp_sk(sk); 1300 prior_wstamp = tp->tcp_wstamp_ns; 1301 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1302 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1303 if (clone_it) { 1304 oskb = skb; 1305 1306 tcp_skb_tsorted_save(oskb) { 1307 if (unlikely(skb_cloned(oskb))) 1308 skb = pskb_copy(oskb, gfp_mask); 1309 else 1310 skb = skb_clone(oskb, gfp_mask); 1311 } tcp_skb_tsorted_restore(oskb); 1312 1313 if (unlikely(!skb)) 1314 return -ENOBUFS; 1315 /* retransmit skbs might have a non zero value in skb->dev 1316 * because skb->dev is aliased with skb->rbnode.rb_left 1317 */ 1318 skb->dev = NULL; 1319 } 1320 1321 inet = inet_sk(sk); 1322 tcb = TCP_SKB_CB(skb); 1323 memset(&opts, 0, sizeof(opts)); 1324 1325 tcp_get_current_key(sk, &key); 1326 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1327 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1328 } else { 1329 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1330 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1331 * at receiver : This slightly improve GRO performance. 1332 * Note that we do not force the PSH flag for non GSO packets, 1333 * because they might be sent under high congestion events, 1334 * and in this case it is better to delay the delivery of 1-MSS 1335 * packets and thus the corresponding ACK packet that would 1336 * release the following packet. 1337 */ 1338 if (tcp_skb_pcount(skb) > 1) 1339 tcb->tcp_flags |= TCPHDR_PSH; 1340 } 1341 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1342 1343 /* We set skb->ooo_okay to one if this packet can select 1344 * a different TX queue than prior packets of this flow, 1345 * to avoid self inflicted reorders. 1346 * The 'other' queue decision is based on current cpu number 1347 * if XPS is enabled, or sk->sk_txhash otherwise. 1348 * We can switch to another (and better) queue if: 1349 * 1) No packet with payload is in qdisc/device queues. 1350 * Delays in TX completion can defeat the test 1351 * even if packets were already sent. 1352 * 2) Or rtx queue is empty. 1353 * This mitigates above case if ACK packets for 1354 * all prior packets were already processed. 1355 */ 1356 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1357 tcp_rtx_queue_empty(sk); 1358 1359 /* If we had to use memory reserve to allocate this skb, 1360 * this might cause drops if packet is looped back : 1361 * Other socket might not have SOCK_MEMALLOC. 1362 * Packets not looped back do not care about pfmemalloc. 1363 */ 1364 skb->pfmemalloc = 0; 1365 1366 skb_push(skb, tcp_header_size); 1367 skb_reset_transport_header(skb); 1368 1369 skb_orphan(skb); 1370 skb->sk = sk; 1371 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1372 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1373 1374 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1375 1376 /* Build TCP header and checksum it. */ 1377 th = (struct tcphdr *)skb->data; 1378 th->source = inet->inet_sport; 1379 th->dest = inet->inet_dport; 1380 th->seq = htonl(tcb->seq); 1381 th->ack_seq = htonl(rcv_nxt); 1382 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1383 tcb->tcp_flags); 1384 1385 th->check = 0; 1386 th->urg_ptr = 0; 1387 1388 /* The urg_mode check is necessary during a below snd_una win probe */ 1389 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1390 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1391 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1392 th->urg = 1; 1393 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1394 th->urg_ptr = htons(0xFFFF); 1395 th->urg = 1; 1396 } 1397 } 1398 1399 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1400 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1401 th->window = htons(tcp_select_window(sk)); 1402 tcp_ecn_send(sk, skb, th, tcp_header_size); 1403 } else { 1404 /* RFC1323: The window in SYN & SYN/ACK segments 1405 * is never scaled. 1406 */ 1407 th->window = htons(min(tp->rcv_wnd, 65535U)); 1408 } 1409 1410 tcp_options_write(th, tp, NULL, &opts, &key); 1411 1412 if (tcp_key_is_md5(&key)) { 1413 #ifdef CONFIG_TCP_MD5SIG 1414 /* Calculate the MD5 hash, as we have all we need now */ 1415 sk_gso_disable(sk); 1416 tp->af_specific->calc_md5_hash(opts.hash_location, 1417 key.md5_key, sk, skb); 1418 #endif 1419 } else if (tcp_key_is_ao(&key)) { 1420 int err; 1421 1422 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1423 opts.hash_location); 1424 if (err) { 1425 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1426 return -ENOMEM; 1427 } 1428 } 1429 1430 /* BPF prog is the last one writing header option */ 1431 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1432 1433 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1434 tcp_v6_send_check, tcp_v4_send_check, 1435 sk, skb); 1436 1437 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1438 tcp_event_ack_sent(sk, rcv_nxt); 1439 1440 if (skb->len != tcp_header_size) { 1441 tcp_event_data_sent(tp, sk); 1442 tp->data_segs_out += tcp_skb_pcount(skb); 1443 tp->bytes_sent += skb->len - tcp_header_size; 1444 } 1445 1446 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1447 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1448 tcp_skb_pcount(skb)); 1449 1450 tp->segs_out += tcp_skb_pcount(skb); 1451 skb_set_hash_from_sk(skb, sk); 1452 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1453 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1454 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1455 1456 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1457 1458 /* Cleanup our debris for IP stacks */ 1459 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1460 sizeof(struct inet6_skb_parm))); 1461 1462 tcp_add_tx_delay(skb, tp); 1463 1464 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1465 inet6_csk_xmit, ip_queue_xmit, 1466 sk, skb, &inet->cork.fl); 1467 1468 if (unlikely(err > 0)) { 1469 tcp_enter_cwr(sk); 1470 err = net_xmit_eval(err); 1471 } 1472 if (!err && oskb) { 1473 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1474 tcp_rate_skb_sent(sk, oskb); 1475 } 1476 return err; 1477 } 1478 1479 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1480 gfp_t gfp_mask) 1481 { 1482 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1483 tcp_sk(sk)->rcv_nxt); 1484 } 1485 1486 /* This routine just queues the buffer for sending. 1487 * 1488 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1489 * otherwise socket can stall. 1490 */ 1491 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1492 { 1493 struct tcp_sock *tp = tcp_sk(sk); 1494 1495 /* Advance write_seq and place onto the write_queue. */ 1496 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1497 __skb_header_release(skb); 1498 tcp_add_write_queue_tail(sk, skb); 1499 sk_wmem_queued_add(sk, skb->truesize); 1500 sk_mem_charge(sk, skb->truesize); 1501 } 1502 1503 /* Initialize TSO segments for a packet. */ 1504 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1505 { 1506 if (skb->len <= mss_now) { 1507 /* Avoid the costly divide in the normal 1508 * non-TSO case. 1509 */ 1510 tcp_skb_pcount_set(skb, 1); 1511 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1512 } else { 1513 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1514 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1515 } 1516 } 1517 1518 /* Pcount in the middle of the write queue got changed, we need to do various 1519 * tweaks to fix counters 1520 */ 1521 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1522 { 1523 struct tcp_sock *tp = tcp_sk(sk); 1524 1525 tp->packets_out -= decr; 1526 1527 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1528 tp->sacked_out -= decr; 1529 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1530 tp->retrans_out -= decr; 1531 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1532 tp->lost_out -= decr; 1533 1534 /* Reno case is special. Sigh... */ 1535 if (tcp_is_reno(tp) && decr > 0) 1536 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1537 1538 if (tp->lost_skb_hint && 1539 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1540 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1541 tp->lost_cnt_hint -= decr; 1542 1543 tcp_verify_left_out(tp); 1544 } 1545 1546 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1547 { 1548 return TCP_SKB_CB(skb)->txstamp_ack || 1549 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1550 } 1551 1552 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1553 { 1554 struct skb_shared_info *shinfo = skb_shinfo(skb); 1555 1556 if (unlikely(tcp_has_tx_tstamp(skb)) && 1557 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1558 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1559 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1560 1561 shinfo->tx_flags &= ~tsflags; 1562 shinfo2->tx_flags |= tsflags; 1563 swap(shinfo->tskey, shinfo2->tskey); 1564 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1565 TCP_SKB_CB(skb)->txstamp_ack = 0; 1566 } 1567 } 1568 1569 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1570 { 1571 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1572 TCP_SKB_CB(skb)->eor = 0; 1573 } 1574 1575 /* Insert buff after skb on the write or rtx queue of sk. */ 1576 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1577 struct sk_buff *buff, 1578 struct sock *sk, 1579 enum tcp_queue tcp_queue) 1580 { 1581 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1582 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1583 else 1584 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1585 } 1586 1587 /* Function to create two new TCP segments. Shrinks the given segment 1588 * to the specified size and appends a new segment with the rest of the 1589 * packet to the list. This won't be called frequently, I hope. 1590 * Remember, these are still headerless SKBs at this point. 1591 */ 1592 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1593 struct sk_buff *skb, u32 len, 1594 unsigned int mss_now, gfp_t gfp) 1595 { 1596 struct tcp_sock *tp = tcp_sk(sk); 1597 struct sk_buff *buff; 1598 int old_factor; 1599 long limit; 1600 int nlen; 1601 u8 flags; 1602 1603 if (WARN_ON(len > skb->len)) 1604 return -EINVAL; 1605 1606 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1607 1608 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1609 * We need some allowance to not penalize applications setting small 1610 * SO_SNDBUF values. 1611 * Also allow first and last skb in retransmit queue to be split. 1612 */ 1613 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1614 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1615 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1616 skb != tcp_rtx_queue_head(sk) && 1617 skb != tcp_rtx_queue_tail(sk))) { 1618 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1619 return -ENOMEM; 1620 } 1621 1622 if (skb_unclone_keeptruesize(skb, gfp)) 1623 return -ENOMEM; 1624 1625 /* Get a new skb... force flag on. */ 1626 buff = tcp_stream_alloc_skb(sk, gfp, true); 1627 if (!buff) 1628 return -ENOMEM; /* We'll just try again later. */ 1629 skb_copy_decrypted(buff, skb); 1630 mptcp_skb_ext_copy(buff, skb); 1631 1632 sk_wmem_queued_add(sk, buff->truesize); 1633 sk_mem_charge(sk, buff->truesize); 1634 nlen = skb->len - len; 1635 buff->truesize += nlen; 1636 skb->truesize -= nlen; 1637 1638 /* Correct the sequence numbers. */ 1639 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1640 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1641 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1642 1643 /* PSH and FIN should only be set in the second packet. */ 1644 flags = TCP_SKB_CB(skb)->tcp_flags; 1645 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1646 TCP_SKB_CB(buff)->tcp_flags = flags; 1647 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1648 tcp_skb_fragment_eor(skb, buff); 1649 1650 skb_split(skb, buff, len); 1651 1652 skb_set_delivery_time(buff, skb->tstamp, true); 1653 tcp_fragment_tstamp(skb, buff); 1654 1655 old_factor = tcp_skb_pcount(skb); 1656 1657 /* Fix up tso_factor for both original and new SKB. */ 1658 tcp_set_skb_tso_segs(skb, mss_now); 1659 tcp_set_skb_tso_segs(buff, mss_now); 1660 1661 /* Update delivered info for the new segment */ 1662 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1663 1664 /* If this packet has been sent out already, we must 1665 * adjust the various packet counters. 1666 */ 1667 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1668 int diff = old_factor - tcp_skb_pcount(skb) - 1669 tcp_skb_pcount(buff); 1670 1671 if (diff) 1672 tcp_adjust_pcount(sk, skb, diff); 1673 } 1674 1675 /* Link BUFF into the send queue. */ 1676 __skb_header_release(buff); 1677 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1678 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1679 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1680 1681 return 0; 1682 } 1683 1684 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1685 * data is not copied, but immediately discarded. 1686 */ 1687 static int __pskb_trim_head(struct sk_buff *skb, int len) 1688 { 1689 struct skb_shared_info *shinfo; 1690 int i, k, eat; 1691 1692 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1693 eat = len; 1694 k = 0; 1695 shinfo = skb_shinfo(skb); 1696 for (i = 0; i < shinfo->nr_frags; i++) { 1697 int size = skb_frag_size(&shinfo->frags[i]); 1698 1699 if (size <= eat) { 1700 skb_frag_unref(skb, i); 1701 eat -= size; 1702 } else { 1703 shinfo->frags[k] = shinfo->frags[i]; 1704 if (eat) { 1705 skb_frag_off_add(&shinfo->frags[k], eat); 1706 skb_frag_size_sub(&shinfo->frags[k], eat); 1707 eat = 0; 1708 } 1709 k++; 1710 } 1711 } 1712 shinfo->nr_frags = k; 1713 1714 skb->data_len -= len; 1715 skb->len = skb->data_len; 1716 return len; 1717 } 1718 1719 /* Remove acked data from a packet in the transmit queue. */ 1720 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1721 { 1722 u32 delta_truesize; 1723 1724 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1725 return -ENOMEM; 1726 1727 delta_truesize = __pskb_trim_head(skb, len); 1728 1729 TCP_SKB_CB(skb)->seq += len; 1730 1731 skb->truesize -= delta_truesize; 1732 sk_wmem_queued_add(sk, -delta_truesize); 1733 if (!skb_zcopy_pure(skb)) 1734 sk_mem_uncharge(sk, delta_truesize); 1735 1736 /* Any change of skb->len requires recalculation of tso factor. */ 1737 if (tcp_skb_pcount(skb) > 1) 1738 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1739 1740 return 0; 1741 } 1742 1743 /* Calculate MSS not accounting any TCP options. */ 1744 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1745 { 1746 const struct tcp_sock *tp = tcp_sk(sk); 1747 const struct inet_connection_sock *icsk = inet_csk(sk); 1748 int mss_now; 1749 1750 /* Calculate base mss without TCP options: 1751 It is MMS_S - sizeof(tcphdr) of rfc1122 1752 */ 1753 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1754 1755 /* Clamp it (mss_clamp does not include tcp options) */ 1756 if (mss_now > tp->rx_opt.mss_clamp) 1757 mss_now = tp->rx_opt.mss_clamp; 1758 1759 /* Now subtract optional transport overhead */ 1760 mss_now -= icsk->icsk_ext_hdr_len; 1761 1762 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1763 mss_now = max(mss_now, 1764 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1765 return mss_now; 1766 } 1767 1768 /* Calculate MSS. Not accounting for SACKs here. */ 1769 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1770 { 1771 /* Subtract TCP options size, not including SACKs */ 1772 return __tcp_mtu_to_mss(sk, pmtu) - 1773 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1774 } 1775 EXPORT_SYMBOL(tcp_mtu_to_mss); 1776 1777 /* Inverse of above */ 1778 int tcp_mss_to_mtu(struct sock *sk, int mss) 1779 { 1780 const struct tcp_sock *tp = tcp_sk(sk); 1781 const struct inet_connection_sock *icsk = inet_csk(sk); 1782 1783 return mss + 1784 tp->tcp_header_len + 1785 icsk->icsk_ext_hdr_len + 1786 icsk->icsk_af_ops->net_header_len; 1787 } 1788 EXPORT_SYMBOL(tcp_mss_to_mtu); 1789 1790 /* MTU probing init per socket */ 1791 void tcp_mtup_init(struct sock *sk) 1792 { 1793 struct tcp_sock *tp = tcp_sk(sk); 1794 struct inet_connection_sock *icsk = inet_csk(sk); 1795 struct net *net = sock_net(sk); 1796 1797 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1798 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1799 icsk->icsk_af_ops->net_header_len; 1800 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1801 icsk->icsk_mtup.probe_size = 0; 1802 if (icsk->icsk_mtup.enabled) 1803 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1804 } 1805 EXPORT_SYMBOL(tcp_mtup_init); 1806 1807 /* This function synchronize snd mss to current pmtu/exthdr set. 1808 1809 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1810 for TCP options, but includes only bare TCP header. 1811 1812 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1813 It is minimum of user_mss and mss received with SYN. 1814 It also does not include TCP options. 1815 1816 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1817 1818 tp->mss_cache is current effective sending mss, including 1819 all tcp options except for SACKs. It is evaluated, 1820 taking into account current pmtu, but never exceeds 1821 tp->rx_opt.mss_clamp. 1822 1823 NOTE1. rfc1122 clearly states that advertised MSS 1824 DOES NOT include either tcp or ip options. 1825 1826 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1827 are READ ONLY outside this function. --ANK (980731) 1828 */ 1829 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1830 { 1831 struct tcp_sock *tp = tcp_sk(sk); 1832 struct inet_connection_sock *icsk = inet_csk(sk); 1833 int mss_now; 1834 1835 if (icsk->icsk_mtup.search_high > pmtu) 1836 icsk->icsk_mtup.search_high = pmtu; 1837 1838 mss_now = tcp_mtu_to_mss(sk, pmtu); 1839 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1840 1841 /* And store cached results */ 1842 icsk->icsk_pmtu_cookie = pmtu; 1843 if (icsk->icsk_mtup.enabled) 1844 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1845 tp->mss_cache = mss_now; 1846 1847 return mss_now; 1848 } 1849 EXPORT_SYMBOL(tcp_sync_mss); 1850 1851 /* Compute the current effective MSS, taking SACKs and IP options, 1852 * and even PMTU discovery events into account. 1853 */ 1854 unsigned int tcp_current_mss(struct sock *sk) 1855 { 1856 const struct tcp_sock *tp = tcp_sk(sk); 1857 const struct dst_entry *dst = __sk_dst_get(sk); 1858 u32 mss_now; 1859 unsigned int header_len; 1860 struct tcp_out_options opts; 1861 struct tcp_key key; 1862 1863 mss_now = tp->mss_cache; 1864 1865 if (dst) { 1866 u32 mtu = dst_mtu(dst); 1867 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1868 mss_now = tcp_sync_mss(sk, mtu); 1869 } 1870 tcp_get_current_key(sk, &key); 1871 header_len = tcp_established_options(sk, NULL, &opts, &key) + 1872 sizeof(struct tcphdr); 1873 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1874 * some common options. If this is an odd packet (because we have SACK 1875 * blocks etc) then our calculated header_len will be different, and 1876 * we have to adjust mss_now correspondingly */ 1877 if (header_len != tp->tcp_header_len) { 1878 int delta = (int) header_len - tp->tcp_header_len; 1879 mss_now -= delta; 1880 } 1881 1882 return mss_now; 1883 } 1884 1885 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1886 * As additional protections, we do not touch cwnd in retransmission phases, 1887 * and if application hit its sndbuf limit recently. 1888 */ 1889 static void tcp_cwnd_application_limited(struct sock *sk) 1890 { 1891 struct tcp_sock *tp = tcp_sk(sk); 1892 1893 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1894 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1895 /* Limited by application or receiver window. */ 1896 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1897 u32 win_used = max(tp->snd_cwnd_used, init_win); 1898 if (win_used < tcp_snd_cwnd(tp)) { 1899 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1900 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1901 } 1902 tp->snd_cwnd_used = 0; 1903 } 1904 tp->snd_cwnd_stamp = tcp_jiffies32; 1905 } 1906 1907 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1908 { 1909 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1910 struct tcp_sock *tp = tcp_sk(sk); 1911 1912 /* Track the strongest available signal of the degree to which the cwnd 1913 * is fully utilized. If cwnd-limited then remember that fact for the 1914 * current window. If not cwnd-limited then track the maximum number of 1915 * outstanding packets in the current window. (If cwnd-limited then we 1916 * chose to not update tp->max_packets_out to avoid an extra else 1917 * clause with no functional impact.) 1918 */ 1919 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1920 is_cwnd_limited || 1921 (!tp->is_cwnd_limited && 1922 tp->packets_out > tp->max_packets_out)) { 1923 tp->is_cwnd_limited = is_cwnd_limited; 1924 tp->max_packets_out = tp->packets_out; 1925 tp->cwnd_usage_seq = tp->snd_nxt; 1926 } 1927 1928 if (tcp_is_cwnd_limited(sk)) { 1929 /* Network is feed fully. */ 1930 tp->snd_cwnd_used = 0; 1931 tp->snd_cwnd_stamp = tcp_jiffies32; 1932 } else { 1933 /* Network starves. */ 1934 if (tp->packets_out > tp->snd_cwnd_used) 1935 tp->snd_cwnd_used = tp->packets_out; 1936 1937 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1938 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1939 !ca_ops->cong_control) 1940 tcp_cwnd_application_limited(sk); 1941 1942 /* The following conditions together indicate the starvation 1943 * is caused by insufficient sender buffer: 1944 * 1) just sent some data (see tcp_write_xmit) 1945 * 2) not cwnd limited (this else condition) 1946 * 3) no more data to send (tcp_write_queue_empty()) 1947 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1948 */ 1949 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1950 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1951 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1952 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1953 } 1954 } 1955 1956 /* Minshall's variant of the Nagle send check. */ 1957 static bool tcp_minshall_check(const struct tcp_sock *tp) 1958 { 1959 return after(tp->snd_sml, tp->snd_una) && 1960 !after(tp->snd_sml, tp->snd_nxt); 1961 } 1962 1963 /* Update snd_sml if this skb is under mss 1964 * Note that a TSO packet might end with a sub-mss segment 1965 * The test is really : 1966 * if ((skb->len % mss) != 0) 1967 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1968 * But we can avoid doing the divide again given we already have 1969 * skb_pcount = skb->len / mss_now 1970 */ 1971 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1972 const struct sk_buff *skb) 1973 { 1974 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1975 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1976 } 1977 1978 /* Return false, if packet can be sent now without violation Nagle's rules: 1979 * 1. It is full sized. (provided by caller in %partial bool) 1980 * 2. Or it contains FIN. (already checked by caller) 1981 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1982 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1983 * With Minshall's modification: all sent small packets are ACKed. 1984 */ 1985 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1986 int nonagle) 1987 { 1988 return partial && 1989 ((nonagle & TCP_NAGLE_CORK) || 1990 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1991 } 1992 1993 /* Return how many segs we'd like on a TSO packet, 1994 * depending on current pacing rate, and how close the peer is. 1995 * 1996 * Rationale is: 1997 * - For close peers, we rather send bigger packets to reduce 1998 * cpu costs, because occasional losses will be repaired fast. 1999 * - For long distance/rtt flows, we would like to get ACK clocking 2000 * with 1 ACK per ms. 2001 * 2002 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2003 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2004 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2005 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2006 */ 2007 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2008 int min_tso_segs) 2009 { 2010 unsigned long bytes; 2011 u32 r; 2012 2013 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2014 2015 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2016 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2017 bytes += sk->sk_gso_max_size >> r; 2018 2019 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2020 2021 return max_t(u32, bytes / mss_now, min_tso_segs); 2022 } 2023 2024 /* Return the number of segments we want in the skb we are transmitting. 2025 * See if congestion control module wants to decide; otherwise, autosize. 2026 */ 2027 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2028 { 2029 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2030 u32 min_tso, tso_segs; 2031 2032 min_tso = ca_ops->min_tso_segs ? 2033 ca_ops->min_tso_segs(sk) : 2034 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2035 2036 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2037 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2038 } 2039 2040 /* Returns the portion of skb which can be sent right away */ 2041 static unsigned int tcp_mss_split_point(const struct sock *sk, 2042 const struct sk_buff *skb, 2043 unsigned int mss_now, 2044 unsigned int max_segs, 2045 int nonagle) 2046 { 2047 const struct tcp_sock *tp = tcp_sk(sk); 2048 u32 partial, needed, window, max_len; 2049 2050 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2051 max_len = mss_now * max_segs; 2052 2053 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2054 return max_len; 2055 2056 needed = min(skb->len, window); 2057 2058 if (max_len <= needed) 2059 return max_len; 2060 2061 partial = needed % mss_now; 2062 /* If last segment is not a full MSS, check if Nagle rules allow us 2063 * to include this last segment in this skb. 2064 * Otherwise, we'll split the skb at last MSS boundary 2065 */ 2066 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2067 return needed - partial; 2068 2069 return needed; 2070 } 2071 2072 /* Can at least one segment of SKB be sent right now, according to the 2073 * congestion window rules? If so, return how many segments are allowed. 2074 */ 2075 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2076 const struct sk_buff *skb) 2077 { 2078 u32 in_flight, cwnd, halfcwnd; 2079 2080 /* Don't be strict about the congestion window for the final FIN. */ 2081 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2082 tcp_skb_pcount(skb) == 1) 2083 return 1; 2084 2085 in_flight = tcp_packets_in_flight(tp); 2086 cwnd = tcp_snd_cwnd(tp); 2087 if (in_flight >= cwnd) 2088 return 0; 2089 2090 /* For better scheduling, ensure we have at least 2091 * 2 GSO packets in flight. 2092 */ 2093 halfcwnd = max(cwnd >> 1, 1U); 2094 return min(halfcwnd, cwnd - in_flight); 2095 } 2096 2097 /* Initialize TSO state of a skb. 2098 * This must be invoked the first time we consider transmitting 2099 * SKB onto the wire. 2100 */ 2101 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2102 { 2103 int tso_segs = tcp_skb_pcount(skb); 2104 2105 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2106 tcp_set_skb_tso_segs(skb, mss_now); 2107 tso_segs = tcp_skb_pcount(skb); 2108 } 2109 return tso_segs; 2110 } 2111 2112 2113 /* Return true if the Nagle test allows this packet to be 2114 * sent now. 2115 */ 2116 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2117 unsigned int cur_mss, int nonagle) 2118 { 2119 /* Nagle rule does not apply to frames, which sit in the middle of the 2120 * write_queue (they have no chances to get new data). 2121 * 2122 * This is implemented in the callers, where they modify the 'nonagle' 2123 * argument based upon the location of SKB in the send queue. 2124 */ 2125 if (nonagle & TCP_NAGLE_PUSH) 2126 return true; 2127 2128 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2129 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2130 return true; 2131 2132 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2133 return true; 2134 2135 return false; 2136 } 2137 2138 /* Does at least the first segment of SKB fit into the send window? */ 2139 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2140 const struct sk_buff *skb, 2141 unsigned int cur_mss) 2142 { 2143 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2144 2145 if (skb->len > cur_mss) 2146 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2147 2148 return !after(end_seq, tcp_wnd_end(tp)); 2149 } 2150 2151 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2152 * which is put after SKB on the list. It is very much like 2153 * tcp_fragment() except that it may make several kinds of assumptions 2154 * in order to speed up the splitting operation. In particular, we 2155 * know that all the data is in scatter-gather pages, and that the 2156 * packet has never been sent out before (and thus is not cloned). 2157 */ 2158 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2159 unsigned int mss_now, gfp_t gfp) 2160 { 2161 int nlen = skb->len - len; 2162 struct sk_buff *buff; 2163 u8 flags; 2164 2165 /* All of a TSO frame must be composed of paged data. */ 2166 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2167 2168 buff = tcp_stream_alloc_skb(sk, gfp, true); 2169 if (unlikely(!buff)) 2170 return -ENOMEM; 2171 skb_copy_decrypted(buff, skb); 2172 mptcp_skb_ext_copy(buff, skb); 2173 2174 sk_wmem_queued_add(sk, buff->truesize); 2175 sk_mem_charge(sk, buff->truesize); 2176 buff->truesize += nlen; 2177 skb->truesize -= nlen; 2178 2179 /* Correct the sequence numbers. */ 2180 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2181 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2182 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2183 2184 /* PSH and FIN should only be set in the second packet. */ 2185 flags = TCP_SKB_CB(skb)->tcp_flags; 2186 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2187 TCP_SKB_CB(buff)->tcp_flags = flags; 2188 2189 tcp_skb_fragment_eor(skb, buff); 2190 2191 skb_split(skb, buff, len); 2192 tcp_fragment_tstamp(skb, buff); 2193 2194 /* Fix up tso_factor for both original and new SKB. */ 2195 tcp_set_skb_tso_segs(skb, mss_now); 2196 tcp_set_skb_tso_segs(buff, mss_now); 2197 2198 /* Link BUFF into the send queue. */ 2199 __skb_header_release(buff); 2200 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2201 2202 return 0; 2203 } 2204 2205 /* Try to defer sending, if possible, in order to minimize the amount 2206 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2207 * 2208 * This algorithm is from John Heffner. 2209 */ 2210 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2211 bool *is_cwnd_limited, 2212 bool *is_rwnd_limited, 2213 u32 max_segs) 2214 { 2215 const struct inet_connection_sock *icsk = inet_csk(sk); 2216 u32 send_win, cong_win, limit, in_flight; 2217 struct tcp_sock *tp = tcp_sk(sk); 2218 struct sk_buff *head; 2219 int win_divisor; 2220 s64 delta; 2221 2222 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2223 goto send_now; 2224 2225 /* Avoid bursty behavior by allowing defer 2226 * only if the last write was recent (1 ms). 2227 * Note that tp->tcp_wstamp_ns can be in the future if we have 2228 * packets waiting in a qdisc or device for EDT delivery. 2229 */ 2230 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2231 if (delta > 0) 2232 goto send_now; 2233 2234 in_flight = tcp_packets_in_flight(tp); 2235 2236 BUG_ON(tcp_skb_pcount(skb) <= 1); 2237 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2238 2239 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2240 2241 /* From in_flight test above, we know that cwnd > in_flight. */ 2242 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2243 2244 limit = min(send_win, cong_win); 2245 2246 /* If a full-sized TSO skb can be sent, do it. */ 2247 if (limit >= max_segs * tp->mss_cache) 2248 goto send_now; 2249 2250 /* Middle in queue won't get any more data, full sendable already? */ 2251 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2252 goto send_now; 2253 2254 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2255 if (win_divisor) { 2256 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2257 2258 /* If at least some fraction of a window is available, 2259 * just use it. 2260 */ 2261 chunk /= win_divisor; 2262 if (limit >= chunk) 2263 goto send_now; 2264 } else { 2265 /* Different approach, try not to defer past a single 2266 * ACK. Receiver should ACK every other full sized 2267 * frame, so if we have space for more than 3 frames 2268 * then send now. 2269 */ 2270 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2271 goto send_now; 2272 } 2273 2274 /* TODO : use tsorted_sent_queue ? */ 2275 head = tcp_rtx_queue_head(sk); 2276 if (!head) 2277 goto send_now; 2278 delta = tp->tcp_clock_cache - head->tstamp; 2279 /* If next ACK is likely to come too late (half srtt), do not defer */ 2280 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2281 goto send_now; 2282 2283 /* Ok, it looks like it is advisable to defer. 2284 * Three cases are tracked : 2285 * 1) We are cwnd-limited 2286 * 2) We are rwnd-limited 2287 * 3) We are application limited. 2288 */ 2289 if (cong_win < send_win) { 2290 if (cong_win <= skb->len) { 2291 *is_cwnd_limited = true; 2292 return true; 2293 } 2294 } else { 2295 if (send_win <= skb->len) { 2296 *is_rwnd_limited = true; 2297 return true; 2298 } 2299 } 2300 2301 /* If this packet won't get more data, do not wait. */ 2302 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2303 TCP_SKB_CB(skb)->eor) 2304 goto send_now; 2305 2306 return true; 2307 2308 send_now: 2309 return false; 2310 } 2311 2312 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2313 { 2314 struct inet_connection_sock *icsk = inet_csk(sk); 2315 struct tcp_sock *tp = tcp_sk(sk); 2316 struct net *net = sock_net(sk); 2317 u32 interval; 2318 s32 delta; 2319 2320 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2321 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2322 if (unlikely(delta >= interval * HZ)) { 2323 int mss = tcp_current_mss(sk); 2324 2325 /* Update current search range */ 2326 icsk->icsk_mtup.probe_size = 0; 2327 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2328 sizeof(struct tcphdr) + 2329 icsk->icsk_af_ops->net_header_len; 2330 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2331 2332 /* Update probe time stamp */ 2333 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2334 } 2335 } 2336 2337 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2338 { 2339 struct sk_buff *skb, *next; 2340 2341 skb = tcp_send_head(sk); 2342 tcp_for_write_queue_from_safe(skb, next, sk) { 2343 if (len <= skb->len) 2344 break; 2345 2346 if (unlikely(TCP_SKB_CB(skb)->eor) || 2347 tcp_has_tx_tstamp(skb) || 2348 !skb_pure_zcopy_same(skb, next)) 2349 return false; 2350 2351 len -= skb->len; 2352 } 2353 2354 return true; 2355 } 2356 2357 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2358 int probe_size) 2359 { 2360 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2361 int i, todo, len = 0, nr_frags = 0; 2362 const struct sk_buff *skb; 2363 2364 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2365 return -ENOMEM; 2366 2367 skb_queue_walk(&sk->sk_write_queue, skb) { 2368 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2369 2370 if (skb_headlen(skb)) 2371 return -EINVAL; 2372 2373 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2374 if (len >= probe_size) 2375 goto commit; 2376 todo = min_t(int, skb_frag_size(fragfrom), 2377 probe_size - len); 2378 len += todo; 2379 if (lastfrag && 2380 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2381 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2382 skb_frag_size(lastfrag)) { 2383 skb_frag_size_add(lastfrag, todo); 2384 continue; 2385 } 2386 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2387 return -E2BIG; 2388 skb_frag_page_copy(fragto, fragfrom); 2389 skb_frag_off_copy(fragto, fragfrom); 2390 skb_frag_size_set(fragto, todo); 2391 nr_frags++; 2392 lastfrag = fragto++; 2393 } 2394 } 2395 commit: 2396 WARN_ON_ONCE(len != probe_size); 2397 for (i = 0; i < nr_frags; i++) 2398 skb_frag_ref(to, i); 2399 2400 skb_shinfo(to)->nr_frags = nr_frags; 2401 to->truesize += probe_size; 2402 to->len += probe_size; 2403 to->data_len += probe_size; 2404 __skb_header_release(to); 2405 return 0; 2406 } 2407 2408 /* Create a new MTU probe if we are ready. 2409 * MTU probe is regularly attempting to increase the path MTU by 2410 * deliberately sending larger packets. This discovers routing 2411 * changes resulting in larger path MTUs. 2412 * 2413 * Returns 0 if we should wait to probe (no cwnd available), 2414 * 1 if a probe was sent, 2415 * -1 otherwise 2416 */ 2417 static int tcp_mtu_probe(struct sock *sk) 2418 { 2419 struct inet_connection_sock *icsk = inet_csk(sk); 2420 struct tcp_sock *tp = tcp_sk(sk); 2421 struct sk_buff *skb, *nskb, *next; 2422 struct net *net = sock_net(sk); 2423 int probe_size; 2424 int size_needed; 2425 int copy, len; 2426 int mss_now; 2427 int interval; 2428 2429 /* Not currently probing/verifying, 2430 * not in recovery, 2431 * have enough cwnd, and 2432 * not SACKing (the variable headers throw things off) 2433 */ 2434 if (likely(!icsk->icsk_mtup.enabled || 2435 icsk->icsk_mtup.probe_size || 2436 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2437 tcp_snd_cwnd(tp) < 11 || 2438 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2439 return -1; 2440 2441 /* Use binary search for probe_size between tcp_mss_base, 2442 * and current mss_clamp. if (search_high - search_low) 2443 * smaller than a threshold, backoff from probing. 2444 */ 2445 mss_now = tcp_current_mss(sk); 2446 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2447 icsk->icsk_mtup.search_low) >> 1); 2448 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2449 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2450 /* When misfortune happens, we are reprobing actively, 2451 * and then reprobe timer has expired. We stick with current 2452 * probing process by not resetting search range to its orignal. 2453 */ 2454 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2455 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2456 /* Check whether enough time has elaplased for 2457 * another round of probing. 2458 */ 2459 tcp_mtu_check_reprobe(sk); 2460 return -1; 2461 } 2462 2463 /* Have enough data in the send queue to probe? */ 2464 if (tp->write_seq - tp->snd_nxt < size_needed) 2465 return -1; 2466 2467 if (tp->snd_wnd < size_needed) 2468 return -1; 2469 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2470 return 0; 2471 2472 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2473 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2474 if (!tcp_packets_in_flight(tp)) 2475 return -1; 2476 else 2477 return 0; 2478 } 2479 2480 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2481 return -1; 2482 2483 /* We're allowed to probe. Build it now. */ 2484 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2485 if (!nskb) 2486 return -1; 2487 2488 /* build the payload, and be prepared to abort if this fails. */ 2489 if (tcp_clone_payload(sk, nskb, probe_size)) { 2490 tcp_skb_tsorted_anchor_cleanup(nskb); 2491 consume_skb(nskb); 2492 return -1; 2493 } 2494 sk_wmem_queued_add(sk, nskb->truesize); 2495 sk_mem_charge(sk, nskb->truesize); 2496 2497 skb = tcp_send_head(sk); 2498 skb_copy_decrypted(nskb, skb); 2499 mptcp_skb_ext_copy(nskb, skb); 2500 2501 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2502 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2503 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2504 2505 tcp_insert_write_queue_before(nskb, skb, sk); 2506 tcp_highest_sack_replace(sk, skb, nskb); 2507 2508 len = 0; 2509 tcp_for_write_queue_from_safe(skb, next, sk) { 2510 copy = min_t(int, skb->len, probe_size - len); 2511 2512 if (skb->len <= copy) { 2513 /* We've eaten all the data from this skb. 2514 * Throw it away. */ 2515 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2516 /* If this is the last SKB we copy and eor is set 2517 * we need to propagate it to the new skb. 2518 */ 2519 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2520 tcp_skb_collapse_tstamp(nskb, skb); 2521 tcp_unlink_write_queue(skb, sk); 2522 tcp_wmem_free_skb(sk, skb); 2523 } else { 2524 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2525 ~(TCPHDR_FIN|TCPHDR_PSH); 2526 __pskb_trim_head(skb, copy); 2527 tcp_set_skb_tso_segs(skb, mss_now); 2528 TCP_SKB_CB(skb)->seq += copy; 2529 } 2530 2531 len += copy; 2532 2533 if (len >= probe_size) 2534 break; 2535 } 2536 tcp_init_tso_segs(nskb, nskb->len); 2537 2538 /* We're ready to send. If this fails, the probe will 2539 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2540 */ 2541 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2542 /* Decrement cwnd here because we are sending 2543 * effectively two packets. */ 2544 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2545 tcp_event_new_data_sent(sk, nskb); 2546 2547 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2548 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2549 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2550 2551 return 1; 2552 } 2553 2554 return -1; 2555 } 2556 2557 static bool tcp_pacing_check(struct sock *sk) 2558 { 2559 struct tcp_sock *tp = tcp_sk(sk); 2560 2561 if (!tcp_needs_internal_pacing(sk)) 2562 return false; 2563 2564 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2565 return false; 2566 2567 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2568 hrtimer_start(&tp->pacing_timer, 2569 ns_to_ktime(tp->tcp_wstamp_ns), 2570 HRTIMER_MODE_ABS_PINNED_SOFT); 2571 sock_hold(sk); 2572 } 2573 return true; 2574 } 2575 2576 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2577 { 2578 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2579 2580 /* No skb in the rtx queue. */ 2581 if (!node) 2582 return true; 2583 2584 /* Only one skb in rtx queue. */ 2585 return !node->rb_left && !node->rb_right; 2586 } 2587 2588 /* TCP Small Queues : 2589 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2590 * (These limits are doubled for retransmits) 2591 * This allows for : 2592 * - better RTT estimation and ACK scheduling 2593 * - faster recovery 2594 * - high rates 2595 * Alas, some drivers / subsystems require a fair amount 2596 * of queued bytes to ensure line rate. 2597 * One example is wifi aggregation (802.11 AMPDU) 2598 */ 2599 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2600 unsigned int factor) 2601 { 2602 unsigned long limit; 2603 2604 limit = max_t(unsigned long, 2605 2 * skb->truesize, 2606 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2607 if (sk->sk_pacing_status == SK_PACING_NONE) 2608 limit = min_t(unsigned long, limit, 2609 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2610 limit <<= factor; 2611 2612 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2613 tcp_sk(sk)->tcp_tx_delay) { 2614 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2615 tcp_sk(sk)->tcp_tx_delay; 2616 2617 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2618 * approximate our needs assuming an ~100% skb->truesize overhead. 2619 * USEC_PER_SEC is approximated by 2^20. 2620 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2621 */ 2622 extra_bytes >>= (20 - 1); 2623 limit += extra_bytes; 2624 } 2625 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2626 /* Always send skb if rtx queue is empty or has one skb. 2627 * No need to wait for TX completion to call us back, 2628 * after softirq/tasklet schedule. 2629 * This helps when TX completions are delayed too much. 2630 */ 2631 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2632 return false; 2633 2634 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2635 /* It is possible TX completion already happened 2636 * before we set TSQ_THROTTLED, so we must 2637 * test again the condition. 2638 */ 2639 smp_mb__after_atomic(); 2640 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2641 return true; 2642 } 2643 return false; 2644 } 2645 2646 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2647 { 2648 const u32 now = tcp_jiffies32; 2649 enum tcp_chrono old = tp->chrono_type; 2650 2651 if (old > TCP_CHRONO_UNSPEC) 2652 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2653 tp->chrono_start = now; 2654 tp->chrono_type = new; 2655 } 2656 2657 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2658 { 2659 struct tcp_sock *tp = tcp_sk(sk); 2660 2661 /* If there are multiple conditions worthy of tracking in a 2662 * chronograph then the highest priority enum takes precedence 2663 * over the other conditions. So that if something "more interesting" 2664 * starts happening, stop the previous chrono and start a new one. 2665 */ 2666 if (type > tp->chrono_type) 2667 tcp_chrono_set(tp, type); 2668 } 2669 2670 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2671 { 2672 struct tcp_sock *tp = tcp_sk(sk); 2673 2674 2675 /* There are multiple conditions worthy of tracking in a 2676 * chronograph, so that the highest priority enum takes 2677 * precedence over the other conditions (see tcp_chrono_start). 2678 * If a condition stops, we only stop chrono tracking if 2679 * it's the "most interesting" or current chrono we are 2680 * tracking and starts busy chrono if we have pending data. 2681 */ 2682 if (tcp_rtx_and_write_queues_empty(sk)) 2683 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2684 else if (type == tp->chrono_type) 2685 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2686 } 2687 2688 /* This routine writes packets to the network. It advances the 2689 * send_head. This happens as incoming acks open up the remote 2690 * window for us. 2691 * 2692 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2693 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2694 * account rare use of URG, this is not a big flaw. 2695 * 2696 * Send at most one packet when push_one > 0. Temporarily ignore 2697 * cwnd limit to force at most one packet out when push_one == 2. 2698 2699 * Returns true, if no segments are in flight and we have queued segments, 2700 * but cannot send anything now because of SWS or another problem. 2701 */ 2702 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2703 int push_one, gfp_t gfp) 2704 { 2705 struct tcp_sock *tp = tcp_sk(sk); 2706 struct sk_buff *skb; 2707 unsigned int tso_segs, sent_pkts; 2708 int cwnd_quota; 2709 int result; 2710 bool is_cwnd_limited = false, is_rwnd_limited = false; 2711 u32 max_segs; 2712 2713 sent_pkts = 0; 2714 2715 tcp_mstamp_refresh(tp); 2716 if (!push_one) { 2717 /* Do MTU probing. */ 2718 result = tcp_mtu_probe(sk); 2719 if (!result) { 2720 return false; 2721 } else if (result > 0) { 2722 sent_pkts = 1; 2723 } 2724 } 2725 2726 max_segs = tcp_tso_segs(sk, mss_now); 2727 while ((skb = tcp_send_head(sk))) { 2728 unsigned int limit; 2729 2730 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2731 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2732 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2733 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2734 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2735 tcp_init_tso_segs(skb, mss_now); 2736 goto repair; /* Skip network transmission */ 2737 } 2738 2739 if (tcp_pacing_check(sk)) 2740 break; 2741 2742 tso_segs = tcp_init_tso_segs(skb, mss_now); 2743 BUG_ON(!tso_segs); 2744 2745 cwnd_quota = tcp_cwnd_test(tp, skb); 2746 if (!cwnd_quota) { 2747 if (push_one == 2) 2748 /* Force out a loss probe pkt. */ 2749 cwnd_quota = 1; 2750 else 2751 break; 2752 } 2753 2754 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2755 is_rwnd_limited = true; 2756 break; 2757 } 2758 2759 if (tso_segs == 1) { 2760 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2761 (tcp_skb_is_last(sk, skb) ? 2762 nonagle : TCP_NAGLE_PUSH)))) 2763 break; 2764 } else { 2765 if (!push_one && 2766 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2767 &is_rwnd_limited, max_segs)) 2768 break; 2769 } 2770 2771 limit = mss_now; 2772 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2773 limit = tcp_mss_split_point(sk, skb, mss_now, 2774 min_t(unsigned int, 2775 cwnd_quota, 2776 max_segs), 2777 nonagle); 2778 2779 if (skb->len > limit && 2780 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2781 break; 2782 2783 if (tcp_small_queue_check(sk, skb, 0)) 2784 break; 2785 2786 /* Argh, we hit an empty skb(), presumably a thread 2787 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2788 * We do not want to send a pure-ack packet and have 2789 * a strange looking rtx queue with empty packet(s). 2790 */ 2791 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2792 break; 2793 2794 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2795 break; 2796 2797 repair: 2798 /* Advance the send_head. This one is sent out. 2799 * This call will increment packets_out. 2800 */ 2801 tcp_event_new_data_sent(sk, skb); 2802 2803 tcp_minshall_update(tp, mss_now, skb); 2804 sent_pkts += tcp_skb_pcount(skb); 2805 2806 if (push_one) 2807 break; 2808 } 2809 2810 if (is_rwnd_limited) 2811 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2812 else 2813 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2814 2815 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2816 if (likely(sent_pkts || is_cwnd_limited)) 2817 tcp_cwnd_validate(sk, is_cwnd_limited); 2818 2819 if (likely(sent_pkts)) { 2820 if (tcp_in_cwnd_reduction(sk)) 2821 tp->prr_out += sent_pkts; 2822 2823 /* Send one loss probe per tail loss episode. */ 2824 if (push_one != 2) 2825 tcp_schedule_loss_probe(sk, false); 2826 return false; 2827 } 2828 return !tp->packets_out && !tcp_write_queue_empty(sk); 2829 } 2830 2831 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2832 { 2833 struct inet_connection_sock *icsk = inet_csk(sk); 2834 struct tcp_sock *tp = tcp_sk(sk); 2835 u32 timeout, timeout_us, rto_delta_us; 2836 int early_retrans; 2837 2838 /* Don't do any loss probe on a Fast Open connection before 3WHS 2839 * finishes. 2840 */ 2841 if (rcu_access_pointer(tp->fastopen_rsk)) 2842 return false; 2843 2844 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2845 /* Schedule a loss probe in 2*RTT for SACK capable connections 2846 * not in loss recovery, that are either limited by cwnd or application. 2847 */ 2848 if ((early_retrans != 3 && early_retrans != 4) || 2849 !tp->packets_out || !tcp_is_sack(tp) || 2850 (icsk->icsk_ca_state != TCP_CA_Open && 2851 icsk->icsk_ca_state != TCP_CA_CWR)) 2852 return false; 2853 2854 /* Probe timeout is 2*rtt. Add minimum RTO to account 2855 * for delayed ack when there's one outstanding packet. If no RTT 2856 * sample is available then probe after TCP_TIMEOUT_INIT. 2857 */ 2858 if (tp->srtt_us) { 2859 timeout_us = tp->srtt_us >> 2; 2860 if (tp->packets_out == 1) 2861 timeout_us += tcp_rto_min_us(sk); 2862 else 2863 timeout_us += TCP_TIMEOUT_MIN_US; 2864 timeout = usecs_to_jiffies(timeout_us); 2865 } else { 2866 timeout = TCP_TIMEOUT_INIT; 2867 } 2868 2869 /* If the RTO formula yields an earlier time, then use that time. */ 2870 rto_delta_us = advancing_rto ? 2871 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2872 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2873 if (rto_delta_us > 0) 2874 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2875 2876 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2877 return true; 2878 } 2879 2880 /* Thanks to skb fast clones, we can detect if a prior transmit of 2881 * a packet is still in a qdisc or driver queue. 2882 * In this case, there is very little point doing a retransmit ! 2883 */ 2884 static bool skb_still_in_host_queue(struct sock *sk, 2885 const struct sk_buff *skb) 2886 { 2887 if (unlikely(skb_fclone_busy(sk, skb))) { 2888 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2889 smp_mb__after_atomic(); 2890 if (skb_fclone_busy(sk, skb)) { 2891 NET_INC_STATS(sock_net(sk), 2892 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2893 return true; 2894 } 2895 } 2896 return false; 2897 } 2898 2899 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2900 * retransmit the last segment. 2901 */ 2902 void tcp_send_loss_probe(struct sock *sk) 2903 { 2904 struct tcp_sock *tp = tcp_sk(sk); 2905 struct sk_buff *skb; 2906 int pcount; 2907 int mss = tcp_current_mss(sk); 2908 2909 /* At most one outstanding TLP */ 2910 if (tp->tlp_high_seq) 2911 goto rearm_timer; 2912 2913 tp->tlp_retrans = 0; 2914 skb = tcp_send_head(sk); 2915 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2916 pcount = tp->packets_out; 2917 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2918 if (tp->packets_out > pcount) 2919 goto probe_sent; 2920 goto rearm_timer; 2921 } 2922 skb = skb_rb_last(&sk->tcp_rtx_queue); 2923 if (unlikely(!skb)) { 2924 WARN_ONCE(tp->packets_out, 2925 "invalid inflight: %u state %u cwnd %u mss %d\n", 2926 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2927 inet_csk(sk)->icsk_pending = 0; 2928 return; 2929 } 2930 2931 if (skb_still_in_host_queue(sk, skb)) 2932 goto rearm_timer; 2933 2934 pcount = tcp_skb_pcount(skb); 2935 if (WARN_ON(!pcount)) 2936 goto rearm_timer; 2937 2938 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2939 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2940 (pcount - 1) * mss, mss, 2941 GFP_ATOMIC))) 2942 goto rearm_timer; 2943 skb = skb_rb_next(skb); 2944 } 2945 2946 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2947 goto rearm_timer; 2948 2949 if (__tcp_retransmit_skb(sk, skb, 1)) 2950 goto rearm_timer; 2951 2952 tp->tlp_retrans = 1; 2953 2954 probe_sent: 2955 /* Record snd_nxt for loss detection. */ 2956 tp->tlp_high_seq = tp->snd_nxt; 2957 2958 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2959 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2960 inet_csk(sk)->icsk_pending = 0; 2961 rearm_timer: 2962 tcp_rearm_rto(sk); 2963 } 2964 2965 /* Push out any pending frames which were held back due to 2966 * TCP_CORK or attempt at coalescing tiny packets. 2967 * The socket must be locked by the caller. 2968 */ 2969 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2970 int nonagle) 2971 { 2972 /* If we are closed, the bytes will have to remain here. 2973 * In time closedown will finish, we empty the write queue and 2974 * all will be happy. 2975 */ 2976 if (unlikely(sk->sk_state == TCP_CLOSE)) 2977 return; 2978 2979 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2980 sk_gfp_mask(sk, GFP_ATOMIC))) 2981 tcp_check_probe_timer(sk); 2982 } 2983 2984 /* Send _single_ skb sitting at the send head. This function requires 2985 * true push pending frames to setup probe timer etc. 2986 */ 2987 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2988 { 2989 struct sk_buff *skb = tcp_send_head(sk); 2990 2991 BUG_ON(!skb || skb->len < mss_now); 2992 2993 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2994 } 2995 2996 /* This function returns the amount that we can raise the 2997 * usable window based on the following constraints 2998 * 2999 * 1. The window can never be shrunk once it is offered (RFC 793) 3000 * 2. We limit memory per socket 3001 * 3002 * RFC 1122: 3003 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3004 * RECV.NEXT + RCV.WIN fixed until: 3005 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3006 * 3007 * i.e. don't raise the right edge of the window until you can raise 3008 * it at least MSS bytes. 3009 * 3010 * Unfortunately, the recommended algorithm breaks header prediction, 3011 * since header prediction assumes th->window stays fixed. 3012 * 3013 * Strictly speaking, keeping th->window fixed violates the receiver 3014 * side SWS prevention criteria. The problem is that under this rule 3015 * a stream of single byte packets will cause the right side of the 3016 * window to always advance by a single byte. 3017 * 3018 * Of course, if the sender implements sender side SWS prevention 3019 * then this will not be a problem. 3020 * 3021 * BSD seems to make the following compromise: 3022 * 3023 * If the free space is less than the 1/4 of the maximum 3024 * space available and the free space is less than 1/2 mss, 3025 * then set the window to 0. 3026 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3027 * Otherwise, just prevent the window from shrinking 3028 * and from being larger than the largest representable value. 3029 * 3030 * This prevents incremental opening of the window in the regime 3031 * where TCP is limited by the speed of the reader side taking 3032 * data out of the TCP receive queue. It does nothing about 3033 * those cases where the window is constrained on the sender side 3034 * because the pipeline is full. 3035 * 3036 * BSD also seems to "accidentally" limit itself to windows that are a 3037 * multiple of MSS, at least until the free space gets quite small. 3038 * This would appear to be a side effect of the mbuf implementation. 3039 * Combining these two algorithms results in the observed behavior 3040 * of having a fixed window size at almost all times. 3041 * 3042 * Below we obtain similar behavior by forcing the offered window to 3043 * a multiple of the mss when it is feasible to do so. 3044 * 3045 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3046 * Regular options like TIMESTAMP are taken into account. 3047 */ 3048 u32 __tcp_select_window(struct sock *sk) 3049 { 3050 struct inet_connection_sock *icsk = inet_csk(sk); 3051 struct tcp_sock *tp = tcp_sk(sk); 3052 struct net *net = sock_net(sk); 3053 /* MSS for the peer's data. Previous versions used mss_clamp 3054 * here. I don't know if the value based on our guesses 3055 * of peer's MSS is better for the performance. It's more correct 3056 * but may be worse for the performance because of rcv_mss 3057 * fluctuations. --SAW 1998/11/1 3058 */ 3059 int mss = icsk->icsk_ack.rcv_mss; 3060 int free_space = tcp_space(sk); 3061 int allowed_space = tcp_full_space(sk); 3062 int full_space, window; 3063 3064 if (sk_is_mptcp(sk)) 3065 mptcp_space(sk, &free_space, &allowed_space); 3066 3067 full_space = min_t(int, tp->window_clamp, allowed_space); 3068 3069 if (unlikely(mss > full_space)) { 3070 mss = full_space; 3071 if (mss <= 0) 3072 return 0; 3073 } 3074 3075 /* Only allow window shrink if the sysctl is enabled and we have 3076 * a non-zero scaling factor in effect. 3077 */ 3078 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3079 goto shrink_window_allowed; 3080 3081 /* do not allow window to shrink */ 3082 3083 if (free_space < (full_space >> 1)) { 3084 icsk->icsk_ack.quick = 0; 3085 3086 if (tcp_under_memory_pressure(sk)) 3087 tcp_adjust_rcv_ssthresh(sk); 3088 3089 /* free_space might become our new window, make sure we don't 3090 * increase it due to wscale. 3091 */ 3092 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3093 3094 /* if free space is less than mss estimate, or is below 1/16th 3095 * of the maximum allowed, try to move to zero-window, else 3096 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3097 * new incoming data is dropped due to memory limits. 3098 * With large window, mss test triggers way too late in order 3099 * to announce zero window in time before rmem limit kicks in. 3100 */ 3101 if (free_space < (allowed_space >> 4) || free_space < mss) 3102 return 0; 3103 } 3104 3105 if (free_space > tp->rcv_ssthresh) 3106 free_space = tp->rcv_ssthresh; 3107 3108 /* Don't do rounding if we are using window scaling, since the 3109 * scaled window will not line up with the MSS boundary anyway. 3110 */ 3111 if (tp->rx_opt.rcv_wscale) { 3112 window = free_space; 3113 3114 /* Advertise enough space so that it won't get scaled away. 3115 * Import case: prevent zero window announcement if 3116 * 1<<rcv_wscale > mss. 3117 */ 3118 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3119 } else { 3120 window = tp->rcv_wnd; 3121 /* Get the largest window that is a nice multiple of mss. 3122 * Window clamp already applied above. 3123 * If our current window offering is within 1 mss of the 3124 * free space we just keep it. This prevents the divide 3125 * and multiply from happening most of the time. 3126 * We also don't do any window rounding when the free space 3127 * is too small. 3128 */ 3129 if (window <= free_space - mss || window > free_space) 3130 window = rounddown(free_space, mss); 3131 else if (mss == full_space && 3132 free_space > window + (full_space >> 1)) 3133 window = free_space; 3134 } 3135 3136 return window; 3137 3138 shrink_window_allowed: 3139 /* new window should always be an exact multiple of scaling factor */ 3140 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3141 3142 if (free_space < (full_space >> 1)) { 3143 icsk->icsk_ack.quick = 0; 3144 3145 if (tcp_under_memory_pressure(sk)) 3146 tcp_adjust_rcv_ssthresh(sk); 3147 3148 /* if free space is too low, return a zero window */ 3149 if (free_space < (allowed_space >> 4) || free_space < mss || 3150 free_space < (1 << tp->rx_opt.rcv_wscale)) 3151 return 0; 3152 } 3153 3154 if (free_space > tp->rcv_ssthresh) { 3155 free_space = tp->rcv_ssthresh; 3156 /* new window should always be an exact multiple of scaling factor 3157 * 3158 * For this case, we ALIGN "up" (increase free_space) because 3159 * we know free_space is not zero here, it has been reduced from 3160 * the memory-based limit, and rcv_ssthresh is not a hard limit 3161 * (unlike sk_rcvbuf). 3162 */ 3163 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3164 } 3165 3166 return free_space; 3167 } 3168 3169 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3170 const struct sk_buff *next_skb) 3171 { 3172 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3173 const struct skb_shared_info *next_shinfo = 3174 skb_shinfo(next_skb); 3175 struct skb_shared_info *shinfo = skb_shinfo(skb); 3176 3177 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3178 shinfo->tskey = next_shinfo->tskey; 3179 TCP_SKB_CB(skb)->txstamp_ack |= 3180 TCP_SKB_CB(next_skb)->txstamp_ack; 3181 } 3182 } 3183 3184 /* Collapses two adjacent SKB's during retransmission. */ 3185 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3186 { 3187 struct tcp_sock *tp = tcp_sk(sk); 3188 struct sk_buff *next_skb = skb_rb_next(skb); 3189 int next_skb_size; 3190 3191 next_skb_size = next_skb->len; 3192 3193 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3194 3195 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3196 return false; 3197 3198 tcp_highest_sack_replace(sk, next_skb, skb); 3199 3200 /* Update sequence range on original skb. */ 3201 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3202 3203 /* Merge over control information. This moves PSH/FIN etc. over */ 3204 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3205 3206 /* All done, get rid of second SKB and account for it so 3207 * packet counting does not break. 3208 */ 3209 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3210 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3211 3212 /* changed transmit queue under us so clear hints */ 3213 tcp_clear_retrans_hints_partial(tp); 3214 if (next_skb == tp->retransmit_skb_hint) 3215 tp->retransmit_skb_hint = skb; 3216 3217 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3218 3219 tcp_skb_collapse_tstamp(skb, next_skb); 3220 3221 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3222 return true; 3223 } 3224 3225 /* Check if coalescing SKBs is legal. */ 3226 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3227 { 3228 if (tcp_skb_pcount(skb) > 1) 3229 return false; 3230 if (skb_cloned(skb)) 3231 return false; 3232 /* Some heuristics for collapsing over SACK'd could be invented */ 3233 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3234 return false; 3235 3236 return true; 3237 } 3238 3239 /* Collapse packets in the retransmit queue to make to create 3240 * less packets on the wire. This is only done on retransmission. 3241 */ 3242 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3243 int space) 3244 { 3245 struct tcp_sock *tp = tcp_sk(sk); 3246 struct sk_buff *skb = to, *tmp; 3247 bool first = true; 3248 3249 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3250 return; 3251 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3252 return; 3253 3254 skb_rbtree_walk_from_safe(skb, tmp) { 3255 if (!tcp_can_collapse(sk, skb)) 3256 break; 3257 3258 if (!tcp_skb_can_collapse(to, skb)) 3259 break; 3260 3261 space -= skb->len; 3262 3263 if (first) { 3264 first = false; 3265 continue; 3266 } 3267 3268 if (space < 0) 3269 break; 3270 3271 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3272 break; 3273 3274 if (!tcp_collapse_retrans(sk, to)) 3275 break; 3276 } 3277 } 3278 3279 /* This retransmits one SKB. Policy decisions and retransmit queue 3280 * state updates are done by the caller. Returns non-zero if an 3281 * error occurred which prevented the send. 3282 */ 3283 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3284 { 3285 struct inet_connection_sock *icsk = inet_csk(sk); 3286 struct tcp_sock *tp = tcp_sk(sk); 3287 unsigned int cur_mss; 3288 int diff, len, err; 3289 int avail_wnd; 3290 3291 /* Inconclusive MTU probe */ 3292 if (icsk->icsk_mtup.probe_size) 3293 icsk->icsk_mtup.probe_size = 0; 3294 3295 if (skb_still_in_host_queue(sk, skb)) 3296 return -EBUSY; 3297 3298 start: 3299 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3300 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3301 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3302 TCP_SKB_CB(skb)->seq++; 3303 goto start; 3304 } 3305 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3306 WARN_ON_ONCE(1); 3307 return -EINVAL; 3308 } 3309 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3310 return -ENOMEM; 3311 } 3312 3313 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3314 return -EHOSTUNREACH; /* Routing failure or similar. */ 3315 3316 cur_mss = tcp_current_mss(sk); 3317 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3318 3319 /* If receiver has shrunk his window, and skb is out of 3320 * new window, do not retransmit it. The exception is the 3321 * case, when window is shrunk to zero. In this case 3322 * our retransmit of one segment serves as a zero window probe. 3323 */ 3324 if (avail_wnd <= 0) { 3325 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3326 return -EAGAIN; 3327 avail_wnd = cur_mss; 3328 } 3329 3330 len = cur_mss * segs; 3331 if (len > avail_wnd) { 3332 len = rounddown(avail_wnd, cur_mss); 3333 if (!len) 3334 len = avail_wnd; 3335 } 3336 if (skb->len > len) { 3337 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3338 cur_mss, GFP_ATOMIC)) 3339 return -ENOMEM; /* We'll try again later. */ 3340 } else { 3341 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3342 return -ENOMEM; 3343 3344 diff = tcp_skb_pcount(skb); 3345 tcp_set_skb_tso_segs(skb, cur_mss); 3346 diff -= tcp_skb_pcount(skb); 3347 if (diff) 3348 tcp_adjust_pcount(sk, skb, diff); 3349 avail_wnd = min_t(int, avail_wnd, cur_mss); 3350 if (skb->len < avail_wnd) 3351 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3352 } 3353 3354 /* RFC3168, section 6.1.1.1. ECN fallback */ 3355 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3356 tcp_ecn_clear_syn(sk, skb); 3357 3358 /* Update global and local TCP statistics. */ 3359 segs = tcp_skb_pcount(skb); 3360 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3361 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3362 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3363 tp->total_retrans += segs; 3364 tp->bytes_retrans += skb->len; 3365 3366 /* make sure skb->data is aligned on arches that require it 3367 * and check if ack-trimming & collapsing extended the headroom 3368 * beyond what csum_start can cover. 3369 */ 3370 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3371 skb_headroom(skb) >= 0xFFFF)) { 3372 struct sk_buff *nskb; 3373 3374 tcp_skb_tsorted_save(skb) { 3375 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3376 if (nskb) { 3377 nskb->dev = NULL; 3378 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3379 } else { 3380 err = -ENOBUFS; 3381 } 3382 } tcp_skb_tsorted_restore(skb); 3383 3384 if (!err) { 3385 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3386 tcp_rate_skb_sent(sk, skb); 3387 } 3388 } else { 3389 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3390 } 3391 3392 /* To avoid taking spuriously low RTT samples based on a timestamp 3393 * for a transmit that never happened, always mark EVER_RETRANS 3394 */ 3395 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3396 3397 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3398 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3399 TCP_SKB_CB(skb)->seq, segs, err); 3400 3401 if (likely(!err)) { 3402 trace_tcp_retransmit_skb(sk, skb); 3403 } else if (err != -EBUSY) { 3404 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3405 } 3406 return err; 3407 } 3408 3409 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3410 { 3411 struct tcp_sock *tp = tcp_sk(sk); 3412 int err = __tcp_retransmit_skb(sk, skb, segs); 3413 3414 if (err == 0) { 3415 #if FASTRETRANS_DEBUG > 0 3416 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3417 net_dbg_ratelimited("retrans_out leaked\n"); 3418 } 3419 #endif 3420 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3421 tp->retrans_out += tcp_skb_pcount(skb); 3422 } 3423 3424 /* Save stamp of the first (attempted) retransmit. */ 3425 if (!tp->retrans_stamp) 3426 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3427 3428 if (tp->undo_retrans < 0) 3429 tp->undo_retrans = 0; 3430 tp->undo_retrans += tcp_skb_pcount(skb); 3431 return err; 3432 } 3433 3434 /* This gets called after a retransmit timeout, and the initially 3435 * retransmitted data is acknowledged. It tries to continue 3436 * resending the rest of the retransmit queue, until either 3437 * we've sent it all or the congestion window limit is reached. 3438 */ 3439 void tcp_xmit_retransmit_queue(struct sock *sk) 3440 { 3441 const struct inet_connection_sock *icsk = inet_csk(sk); 3442 struct sk_buff *skb, *rtx_head, *hole = NULL; 3443 struct tcp_sock *tp = tcp_sk(sk); 3444 bool rearm_timer = false; 3445 u32 max_segs; 3446 int mib_idx; 3447 3448 if (!tp->packets_out) 3449 return; 3450 3451 rtx_head = tcp_rtx_queue_head(sk); 3452 skb = tp->retransmit_skb_hint ?: rtx_head; 3453 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3454 skb_rbtree_walk_from(skb) { 3455 __u8 sacked; 3456 int segs; 3457 3458 if (tcp_pacing_check(sk)) 3459 break; 3460 3461 /* we could do better than to assign each time */ 3462 if (!hole) 3463 tp->retransmit_skb_hint = skb; 3464 3465 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3466 if (segs <= 0) 3467 break; 3468 sacked = TCP_SKB_CB(skb)->sacked; 3469 /* In case tcp_shift_skb_data() have aggregated large skbs, 3470 * we need to make sure not sending too bigs TSO packets 3471 */ 3472 segs = min_t(int, segs, max_segs); 3473 3474 if (tp->retrans_out >= tp->lost_out) { 3475 break; 3476 } else if (!(sacked & TCPCB_LOST)) { 3477 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3478 hole = skb; 3479 continue; 3480 3481 } else { 3482 if (icsk->icsk_ca_state != TCP_CA_Loss) 3483 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3484 else 3485 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3486 } 3487 3488 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3489 continue; 3490 3491 if (tcp_small_queue_check(sk, skb, 1)) 3492 break; 3493 3494 if (tcp_retransmit_skb(sk, skb, segs)) 3495 break; 3496 3497 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3498 3499 if (tcp_in_cwnd_reduction(sk)) 3500 tp->prr_out += tcp_skb_pcount(skb); 3501 3502 if (skb == rtx_head && 3503 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3504 rearm_timer = true; 3505 3506 } 3507 if (rearm_timer) 3508 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3509 inet_csk(sk)->icsk_rto, 3510 TCP_RTO_MAX); 3511 } 3512 3513 /* We allow to exceed memory limits for FIN packets to expedite 3514 * connection tear down and (memory) recovery. 3515 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3516 * or even be forced to close flow without any FIN. 3517 * In general, we want to allow one skb per socket to avoid hangs 3518 * with edge trigger epoll() 3519 */ 3520 void sk_forced_mem_schedule(struct sock *sk, int size) 3521 { 3522 int delta, amt; 3523 3524 delta = size - sk->sk_forward_alloc; 3525 if (delta <= 0) 3526 return; 3527 amt = sk_mem_pages(delta); 3528 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3529 sk_memory_allocated_add(sk, amt); 3530 3531 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3532 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3533 gfp_memcg_charge() | __GFP_NOFAIL); 3534 } 3535 3536 /* Send a FIN. The caller locks the socket for us. 3537 * We should try to send a FIN packet really hard, but eventually give up. 3538 */ 3539 void tcp_send_fin(struct sock *sk) 3540 { 3541 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3542 struct tcp_sock *tp = tcp_sk(sk); 3543 3544 /* Optimization, tack on the FIN if we have one skb in write queue and 3545 * this skb was not yet sent, or we are under memory pressure. 3546 * Note: in the latter case, FIN packet will be sent after a timeout, 3547 * as TCP stack thinks it has already been transmitted. 3548 */ 3549 tskb = tail; 3550 if (!tskb && tcp_under_memory_pressure(sk)) 3551 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3552 3553 if (tskb) { 3554 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3555 TCP_SKB_CB(tskb)->end_seq++; 3556 tp->write_seq++; 3557 if (!tail) { 3558 /* This means tskb was already sent. 3559 * Pretend we included the FIN on previous transmit. 3560 * We need to set tp->snd_nxt to the value it would have 3561 * if FIN had been sent. This is because retransmit path 3562 * does not change tp->snd_nxt. 3563 */ 3564 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3565 return; 3566 } 3567 } else { 3568 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3569 if (unlikely(!skb)) 3570 return; 3571 3572 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3573 skb_reserve(skb, MAX_TCP_HEADER); 3574 sk_forced_mem_schedule(sk, skb->truesize); 3575 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3576 tcp_init_nondata_skb(skb, tp->write_seq, 3577 TCPHDR_ACK | TCPHDR_FIN); 3578 tcp_queue_skb(sk, skb); 3579 } 3580 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3581 } 3582 3583 /* We get here when a process closes a file descriptor (either due to 3584 * an explicit close() or as a byproduct of exit()'ing) and there 3585 * was unread data in the receive queue. This behavior is recommended 3586 * by RFC 2525, section 2.17. -DaveM 3587 */ 3588 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3589 { 3590 struct sk_buff *skb; 3591 3592 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3593 3594 /* NOTE: No TCP options attached and we never retransmit this. */ 3595 skb = alloc_skb(MAX_TCP_HEADER, priority); 3596 if (!skb) { 3597 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3598 return; 3599 } 3600 3601 /* Reserve space for headers and prepare control bits. */ 3602 skb_reserve(skb, MAX_TCP_HEADER); 3603 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3604 TCPHDR_ACK | TCPHDR_RST); 3605 tcp_mstamp_refresh(tcp_sk(sk)); 3606 /* Send it off. */ 3607 if (tcp_transmit_skb(sk, skb, 0, priority)) 3608 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3609 3610 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3611 * skb here is different to the troublesome skb, so use NULL 3612 */ 3613 trace_tcp_send_reset(sk, NULL); 3614 } 3615 3616 /* Send a crossed SYN-ACK during socket establishment. 3617 * WARNING: This routine must only be called when we have already sent 3618 * a SYN packet that crossed the incoming SYN that caused this routine 3619 * to get called. If this assumption fails then the initial rcv_wnd 3620 * and rcv_wscale values will not be correct. 3621 */ 3622 int tcp_send_synack(struct sock *sk) 3623 { 3624 struct sk_buff *skb; 3625 3626 skb = tcp_rtx_queue_head(sk); 3627 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3628 pr_err("%s: wrong queue state\n", __func__); 3629 return -EFAULT; 3630 } 3631 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3632 if (skb_cloned(skb)) { 3633 struct sk_buff *nskb; 3634 3635 tcp_skb_tsorted_save(skb) { 3636 nskb = skb_copy(skb, GFP_ATOMIC); 3637 } tcp_skb_tsorted_restore(skb); 3638 if (!nskb) 3639 return -ENOMEM; 3640 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3641 tcp_highest_sack_replace(sk, skb, nskb); 3642 tcp_rtx_queue_unlink_and_free(skb, sk); 3643 __skb_header_release(nskb); 3644 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3645 sk_wmem_queued_add(sk, nskb->truesize); 3646 sk_mem_charge(sk, nskb->truesize); 3647 skb = nskb; 3648 } 3649 3650 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3651 tcp_ecn_send_synack(sk, skb); 3652 } 3653 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3654 } 3655 3656 /** 3657 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3658 * @sk: listener socket 3659 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3660 * should not use it again. 3661 * @req: request_sock pointer 3662 * @foc: cookie for tcp fast open 3663 * @synack_type: Type of synack to prepare 3664 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3665 */ 3666 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3667 struct request_sock *req, 3668 struct tcp_fastopen_cookie *foc, 3669 enum tcp_synack_type synack_type, 3670 struct sk_buff *syn_skb) 3671 { 3672 struct inet_request_sock *ireq = inet_rsk(req); 3673 const struct tcp_sock *tp = tcp_sk(sk); 3674 struct tcp_out_options opts; 3675 struct tcp_key key = {}; 3676 struct sk_buff *skb; 3677 int tcp_header_size; 3678 struct tcphdr *th; 3679 int mss; 3680 u64 now; 3681 3682 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3683 if (unlikely(!skb)) { 3684 dst_release(dst); 3685 return NULL; 3686 } 3687 /* Reserve space for headers. */ 3688 skb_reserve(skb, MAX_TCP_HEADER); 3689 3690 switch (synack_type) { 3691 case TCP_SYNACK_NORMAL: 3692 skb_set_owner_w(skb, req_to_sk(req)); 3693 break; 3694 case TCP_SYNACK_COOKIE: 3695 /* Under synflood, we do not attach skb to a socket, 3696 * to avoid false sharing. 3697 */ 3698 break; 3699 case TCP_SYNACK_FASTOPEN: 3700 /* sk is a const pointer, because we want to express multiple 3701 * cpu might call us concurrently. 3702 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3703 */ 3704 skb_set_owner_w(skb, (struct sock *)sk); 3705 break; 3706 } 3707 skb_dst_set(skb, dst); 3708 3709 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3710 3711 memset(&opts, 0, sizeof(opts)); 3712 now = tcp_clock_ns(); 3713 #ifdef CONFIG_SYN_COOKIES 3714 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3715 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3716 true); 3717 else 3718 #endif 3719 { 3720 skb_set_delivery_time(skb, now, true); 3721 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3722 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3723 } 3724 3725 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3726 rcu_read_lock(); 3727 #endif 3728 if (tcp_rsk_used_ao(req)) { 3729 #ifdef CONFIG_TCP_AO 3730 struct tcp_ao_key *ao_key = NULL; 3731 u8 keyid = tcp_rsk(req)->ao_keyid; 3732 3733 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3734 keyid, -1); 3735 /* If there is no matching key - avoid sending anything, 3736 * especially usigned segments. It could try harder and lookup 3737 * for another peer-matching key, but the peer has requested 3738 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3739 */ 3740 if (unlikely(!ao_key)) { 3741 rcu_read_unlock(); 3742 kfree_skb(skb); 3743 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 3744 keyid); 3745 return NULL; 3746 } 3747 key.ao_key = ao_key; 3748 key.type = TCP_KEY_AO; 3749 #endif 3750 } else { 3751 #ifdef CONFIG_TCP_MD5SIG 3752 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3753 req_to_sk(req)); 3754 if (key.md5_key) 3755 key.type = TCP_KEY_MD5; 3756 #endif 3757 } 3758 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3759 /* bpf program will be interested in the tcp_flags */ 3760 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3761 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3762 &key, foc, synack_type, syn_skb) 3763 + sizeof(*th); 3764 3765 skb_push(skb, tcp_header_size); 3766 skb_reset_transport_header(skb); 3767 3768 th = (struct tcphdr *)skb->data; 3769 memset(th, 0, sizeof(struct tcphdr)); 3770 th->syn = 1; 3771 th->ack = 1; 3772 tcp_ecn_make_synack(req, th); 3773 th->source = htons(ireq->ir_num); 3774 th->dest = ireq->ir_rmt_port; 3775 skb->mark = ireq->ir_mark; 3776 skb->ip_summed = CHECKSUM_PARTIAL; 3777 th->seq = htonl(tcp_rsk(req)->snt_isn); 3778 /* XXX data is queued and acked as is. No buffer/window check */ 3779 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3780 3781 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3782 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3783 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 3784 th->doff = (tcp_header_size >> 2); 3785 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3786 3787 /* Okay, we have all we need - do the md5 hash if needed */ 3788 if (tcp_key_is_md5(&key)) { 3789 #ifdef CONFIG_TCP_MD5SIG 3790 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3791 key.md5_key, req_to_sk(req), skb); 3792 #endif 3793 } else if (tcp_key_is_ao(&key)) { 3794 #ifdef CONFIG_TCP_AO 3795 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 3796 key.ao_key, req, skb, 3797 opts.hash_location - (u8 *)th, 0); 3798 #endif 3799 } 3800 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3801 rcu_read_unlock(); 3802 #endif 3803 3804 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3805 synack_type, &opts); 3806 3807 skb_set_delivery_time(skb, now, true); 3808 tcp_add_tx_delay(skb, tp); 3809 3810 return skb; 3811 } 3812 EXPORT_SYMBOL(tcp_make_synack); 3813 3814 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3815 { 3816 struct inet_connection_sock *icsk = inet_csk(sk); 3817 const struct tcp_congestion_ops *ca; 3818 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3819 3820 if (ca_key == TCP_CA_UNSPEC) 3821 return; 3822 3823 rcu_read_lock(); 3824 ca = tcp_ca_find_key(ca_key); 3825 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3826 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3827 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3828 icsk->icsk_ca_ops = ca; 3829 } 3830 rcu_read_unlock(); 3831 } 3832 3833 /* Do all connect socket setups that can be done AF independent. */ 3834 static void tcp_connect_init(struct sock *sk) 3835 { 3836 const struct dst_entry *dst = __sk_dst_get(sk); 3837 struct tcp_sock *tp = tcp_sk(sk); 3838 __u8 rcv_wscale; 3839 u32 rcv_wnd; 3840 3841 /* We'll fix this up when we get a response from the other end. 3842 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3843 */ 3844 tp->tcp_header_len = sizeof(struct tcphdr); 3845 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3846 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3847 3848 tcp_ao_connect_init(sk); 3849 3850 /* If user gave his TCP_MAXSEG, record it to clamp */ 3851 if (tp->rx_opt.user_mss) 3852 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3853 tp->max_window = 0; 3854 tcp_mtup_init(sk); 3855 tcp_sync_mss(sk, dst_mtu(dst)); 3856 3857 tcp_ca_dst_init(sk, dst); 3858 3859 if (!tp->window_clamp) 3860 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 3861 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3862 3863 tcp_initialize_rcv_mss(sk); 3864 3865 /* limit the window selection if the user enforce a smaller rx buffer */ 3866 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3867 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3868 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 3869 3870 rcv_wnd = tcp_rwnd_init_bpf(sk); 3871 if (rcv_wnd == 0) 3872 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3873 3874 tcp_select_initial_window(sk, tcp_full_space(sk), 3875 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3876 &tp->rcv_wnd, 3877 &tp->window_clamp, 3878 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3879 &rcv_wscale, 3880 rcv_wnd); 3881 3882 tp->rx_opt.rcv_wscale = rcv_wscale; 3883 tp->rcv_ssthresh = tp->rcv_wnd; 3884 3885 WRITE_ONCE(sk->sk_err, 0); 3886 sock_reset_flag(sk, SOCK_DONE); 3887 tp->snd_wnd = 0; 3888 tcp_init_wl(tp, 0); 3889 tcp_write_queue_purge(sk); 3890 tp->snd_una = tp->write_seq; 3891 tp->snd_sml = tp->write_seq; 3892 tp->snd_up = tp->write_seq; 3893 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3894 3895 if (likely(!tp->repair)) 3896 tp->rcv_nxt = 0; 3897 else 3898 tp->rcv_tstamp = tcp_jiffies32; 3899 tp->rcv_wup = tp->rcv_nxt; 3900 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3901 3902 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3903 inet_csk(sk)->icsk_retransmits = 0; 3904 tcp_clear_retrans(tp); 3905 } 3906 3907 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3908 { 3909 struct tcp_sock *tp = tcp_sk(sk); 3910 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3911 3912 tcb->end_seq += skb->len; 3913 __skb_header_release(skb); 3914 sk_wmem_queued_add(sk, skb->truesize); 3915 sk_mem_charge(sk, skb->truesize); 3916 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3917 tp->packets_out += tcp_skb_pcount(skb); 3918 } 3919 3920 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3921 * queue a data-only packet after the regular SYN, such that regular SYNs 3922 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3923 * only the SYN sequence, the data are retransmitted in the first ACK. 3924 * If cookie is not cached or other error occurs, falls back to send a 3925 * regular SYN with Fast Open cookie request option. 3926 */ 3927 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3928 { 3929 struct inet_connection_sock *icsk = inet_csk(sk); 3930 struct tcp_sock *tp = tcp_sk(sk); 3931 struct tcp_fastopen_request *fo = tp->fastopen_req; 3932 struct page_frag *pfrag = sk_page_frag(sk); 3933 struct sk_buff *syn_data; 3934 int space, err = 0; 3935 3936 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3937 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3938 goto fallback; 3939 3940 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3941 * user-MSS. Reserve maximum option space for middleboxes that add 3942 * private TCP options. The cost is reduced data space in SYN :( 3943 */ 3944 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3945 /* Sync mss_cache after updating the mss_clamp */ 3946 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3947 3948 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3949 MAX_TCP_OPTION_SPACE; 3950 3951 space = min_t(size_t, space, fo->size); 3952 3953 if (space && 3954 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3955 pfrag, sk->sk_allocation)) 3956 goto fallback; 3957 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3958 if (!syn_data) 3959 goto fallback; 3960 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3961 if (space) { 3962 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3963 space = tcp_wmem_schedule(sk, space); 3964 } 3965 if (space) { 3966 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3967 space, &fo->data->msg_iter); 3968 if (unlikely(!space)) { 3969 tcp_skb_tsorted_anchor_cleanup(syn_data); 3970 kfree_skb(syn_data); 3971 goto fallback; 3972 } 3973 skb_fill_page_desc(syn_data, 0, pfrag->page, 3974 pfrag->offset, space); 3975 page_ref_inc(pfrag->page); 3976 pfrag->offset += space; 3977 skb_len_add(syn_data, space); 3978 skb_zcopy_set(syn_data, fo->uarg, NULL); 3979 } 3980 /* No more data pending in inet_wait_for_connect() */ 3981 if (space == fo->size) 3982 fo->data = NULL; 3983 fo->copied = space; 3984 3985 tcp_connect_queue_skb(sk, syn_data); 3986 if (syn_data->len) 3987 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3988 3989 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3990 3991 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3992 3993 /* Now full SYN+DATA was cloned and sent (or not), 3994 * remove the SYN from the original skb (syn_data) 3995 * we keep in write queue in case of a retransmit, as we 3996 * also have the SYN packet (with no data) in the same queue. 3997 */ 3998 TCP_SKB_CB(syn_data)->seq++; 3999 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4000 if (!err) { 4001 tp->syn_data = (fo->copied > 0); 4002 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4003 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4004 goto done; 4005 } 4006 4007 /* data was not sent, put it in write_queue */ 4008 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4009 tp->packets_out -= tcp_skb_pcount(syn_data); 4010 4011 fallback: 4012 /* Send a regular SYN with Fast Open cookie request option */ 4013 if (fo->cookie.len > 0) 4014 fo->cookie.len = 0; 4015 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4016 if (err) 4017 tp->syn_fastopen = 0; 4018 done: 4019 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4020 return err; 4021 } 4022 4023 /* Build a SYN and send it off. */ 4024 int tcp_connect(struct sock *sk) 4025 { 4026 struct tcp_sock *tp = tcp_sk(sk); 4027 struct sk_buff *buff; 4028 int err; 4029 4030 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4031 4032 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4033 /* Has to be checked late, after setting daddr/saddr/ops. 4034 * Return error if the peer has both a md5 and a tcp-ao key 4035 * configured as this is ambiguous. 4036 */ 4037 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4038 lockdep_sock_is_held(sk)))) { 4039 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4040 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4041 struct tcp_ao_info *ao_info; 4042 4043 ao_info = rcu_dereference_check(tp->ao_info, 4044 lockdep_sock_is_held(sk)); 4045 if (ao_info) { 4046 /* This is an extra check: tcp_ao_required() in 4047 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4048 * md5 keys on ao_required socket. 4049 */ 4050 needs_ao |= ao_info->ao_required; 4051 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4052 } 4053 if (needs_md5 && needs_ao) 4054 return -EKEYREJECTED; 4055 4056 /* If we have a matching md5 key and no matching tcp-ao key 4057 * then free up ao_info if allocated. 4058 */ 4059 if (needs_md5) { 4060 tcp_ao_destroy_sock(sk, false); 4061 } else if (needs_ao) { 4062 tcp_clear_md5_list(sk); 4063 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4064 lockdep_sock_is_held(sk))); 4065 } 4066 } 4067 #endif 4068 #ifdef CONFIG_TCP_AO 4069 if (unlikely(rcu_dereference_protected(tp->ao_info, 4070 lockdep_sock_is_held(sk)))) { 4071 /* Don't allow connecting if ao is configured but no 4072 * matching key is found. 4073 */ 4074 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4075 return -EKEYREJECTED; 4076 } 4077 #endif 4078 4079 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4080 return -EHOSTUNREACH; /* Routing failure or similar. */ 4081 4082 tcp_connect_init(sk); 4083 4084 if (unlikely(tp->repair)) { 4085 tcp_finish_connect(sk, NULL); 4086 return 0; 4087 } 4088 4089 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4090 if (unlikely(!buff)) 4091 return -ENOBUFS; 4092 4093 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 4094 tcp_mstamp_refresh(tp); 4095 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4096 tcp_connect_queue_skb(sk, buff); 4097 tcp_ecn_send_syn(sk, buff); 4098 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4099 4100 /* Send off SYN; include data in Fast Open. */ 4101 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4102 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4103 if (err == -ECONNREFUSED) 4104 return err; 4105 4106 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4107 * in order to make this packet get counted in tcpOutSegs. 4108 */ 4109 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4110 tp->pushed_seq = tp->write_seq; 4111 buff = tcp_send_head(sk); 4112 if (unlikely(buff)) { 4113 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4114 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4115 } 4116 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4117 4118 /* Timer for repeating the SYN until an answer. */ 4119 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4120 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 4121 return 0; 4122 } 4123 EXPORT_SYMBOL(tcp_connect); 4124 4125 u32 tcp_delack_max(const struct sock *sk) 4126 { 4127 const struct dst_entry *dst = __sk_dst_get(sk); 4128 u32 delack_max = inet_csk(sk)->icsk_delack_max; 4129 4130 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) { 4131 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 4132 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1); 4133 4134 delack_max = min_t(u32, delack_max, delack_from_rto_min); 4135 } 4136 return delack_max; 4137 } 4138 4139 /* Send out a delayed ack, the caller does the policy checking 4140 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4141 * for details. 4142 */ 4143 void tcp_send_delayed_ack(struct sock *sk) 4144 { 4145 struct inet_connection_sock *icsk = inet_csk(sk); 4146 int ato = icsk->icsk_ack.ato; 4147 unsigned long timeout; 4148 4149 if (ato > TCP_DELACK_MIN) { 4150 const struct tcp_sock *tp = tcp_sk(sk); 4151 int max_ato = HZ / 2; 4152 4153 if (inet_csk_in_pingpong_mode(sk) || 4154 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4155 max_ato = TCP_DELACK_MAX; 4156 4157 /* Slow path, intersegment interval is "high". */ 4158 4159 /* If some rtt estimate is known, use it to bound delayed ack. 4160 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4161 * directly. 4162 */ 4163 if (tp->srtt_us) { 4164 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4165 TCP_DELACK_MIN); 4166 4167 if (rtt < max_ato) 4168 max_ato = rtt; 4169 } 4170 4171 ato = min(ato, max_ato); 4172 } 4173 4174 ato = min_t(u32, ato, tcp_delack_max(sk)); 4175 4176 /* Stay within the limit we were given */ 4177 timeout = jiffies + ato; 4178 4179 /* Use new timeout only if there wasn't a older one earlier. */ 4180 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4181 /* If delack timer is about to expire, send ACK now. */ 4182 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4183 tcp_send_ack(sk); 4184 return; 4185 } 4186 4187 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4188 timeout = icsk->icsk_ack.timeout; 4189 } 4190 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4191 icsk->icsk_ack.timeout = timeout; 4192 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4193 } 4194 4195 /* This routine sends an ack and also updates the window. */ 4196 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4197 { 4198 struct sk_buff *buff; 4199 4200 /* If we have been reset, we may not send again. */ 4201 if (sk->sk_state == TCP_CLOSE) 4202 return; 4203 4204 /* We are not putting this on the write queue, so 4205 * tcp_transmit_skb() will set the ownership to this 4206 * sock. 4207 */ 4208 buff = alloc_skb(MAX_TCP_HEADER, 4209 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4210 if (unlikely(!buff)) { 4211 struct inet_connection_sock *icsk = inet_csk(sk); 4212 unsigned long delay; 4213 4214 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4215 if (delay < TCP_RTO_MAX) 4216 icsk->icsk_ack.retry++; 4217 inet_csk_schedule_ack(sk); 4218 icsk->icsk_ack.ato = TCP_ATO_MIN; 4219 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4220 return; 4221 } 4222 4223 /* Reserve space for headers and prepare control bits. */ 4224 skb_reserve(buff, MAX_TCP_HEADER); 4225 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4226 4227 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4228 * too much. 4229 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4230 */ 4231 skb_set_tcp_pure_ack(buff); 4232 4233 /* Send it off, this clears delayed acks for us. */ 4234 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4235 } 4236 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4237 4238 void tcp_send_ack(struct sock *sk) 4239 { 4240 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4241 } 4242 4243 /* This routine sends a packet with an out of date sequence 4244 * number. It assumes the other end will try to ack it. 4245 * 4246 * Question: what should we make while urgent mode? 4247 * 4.4BSD forces sending single byte of data. We cannot send 4248 * out of window data, because we have SND.NXT==SND.MAX... 4249 * 4250 * Current solution: to send TWO zero-length segments in urgent mode: 4251 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4252 * out-of-date with SND.UNA-1 to probe window. 4253 */ 4254 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4255 { 4256 struct tcp_sock *tp = tcp_sk(sk); 4257 struct sk_buff *skb; 4258 4259 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4260 skb = alloc_skb(MAX_TCP_HEADER, 4261 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4262 if (!skb) 4263 return -1; 4264 4265 /* Reserve space for headers and set control bits. */ 4266 skb_reserve(skb, MAX_TCP_HEADER); 4267 /* Use a previous sequence. This should cause the other 4268 * end to send an ack. Don't queue or clone SKB, just 4269 * send it. 4270 */ 4271 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4272 NET_INC_STATS(sock_net(sk), mib); 4273 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4274 } 4275 4276 /* Called from setsockopt( ... TCP_REPAIR ) */ 4277 void tcp_send_window_probe(struct sock *sk) 4278 { 4279 if (sk->sk_state == TCP_ESTABLISHED) { 4280 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4281 tcp_mstamp_refresh(tcp_sk(sk)); 4282 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4283 } 4284 } 4285 4286 /* Initiate keepalive or window probe from timer. */ 4287 int tcp_write_wakeup(struct sock *sk, int mib) 4288 { 4289 struct tcp_sock *tp = tcp_sk(sk); 4290 struct sk_buff *skb; 4291 4292 if (sk->sk_state == TCP_CLOSE) 4293 return -1; 4294 4295 skb = tcp_send_head(sk); 4296 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4297 int err; 4298 unsigned int mss = tcp_current_mss(sk); 4299 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4300 4301 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4302 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4303 4304 /* We are probing the opening of a window 4305 * but the window size is != 0 4306 * must have been a result SWS avoidance ( sender ) 4307 */ 4308 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4309 skb->len > mss) { 4310 seg_size = min(seg_size, mss); 4311 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4312 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4313 skb, seg_size, mss, GFP_ATOMIC)) 4314 return -1; 4315 } else if (!tcp_skb_pcount(skb)) 4316 tcp_set_skb_tso_segs(skb, mss); 4317 4318 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4319 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4320 if (!err) 4321 tcp_event_new_data_sent(sk, skb); 4322 return err; 4323 } else { 4324 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4325 tcp_xmit_probe_skb(sk, 1, mib); 4326 return tcp_xmit_probe_skb(sk, 0, mib); 4327 } 4328 } 4329 4330 /* A window probe timeout has occurred. If window is not closed send 4331 * a partial packet else a zero probe. 4332 */ 4333 void tcp_send_probe0(struct sock *sk) 4334 { 4335 struct inet_connection_sock *icsk = inet_csk(sk); 4336 struct tcp_sock *tp = tcp_sk(sk); 4337 struct net *net = sock_net(sk); 4338 unsigned long timeout; 4339 int err; 4340 4341 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4342 4343 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4344 /* Cancel probe timer, if it is not required. */ 4345 icsk->icsk_probes_out = 0; 4346 icsk->icsk_backoff = 0; 4347 icsk->icsk_probes_tstamp = 0; 4348 return; 4349 } 4350 4351 icsk->icsk_probes_out++; 4352 if (err <= 0) { 4353 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4354 icsk->icsk_backoff++; 4355 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4356 } else { 4357 /* If packet was not sent due to local congestion, 4358 * Let senders fight for local resources conservatively. 4359 */ 4360 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4361 } 4362 4363 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4364 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4365 } 4366 4367 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4368 { 4369 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4370 struct flowi fl; 4371 int res; 4372 4373 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4374 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4375 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4376 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4377 NULL); 4378 if (!res) { 4379 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4380 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4381 if (unlikely(tcp_passive_fastopen(sk))) { 4382 /* sk has const attribute because listeners are lockless. 4383 * However in this case, we are dealing with a passive fastopen 4384 * socket thus we can change total_retrans value. 4385 */ 4386 tcp_sk_rw(sk)->total_retrans++; 4387 } 4388 trace_tcp_retransmit_synack(sk, req); 4389 } 4390 return res; 4391 } 4392 EXPORT_SYMBOL(tcp_rtx_synack); 4393