xref: /linux/net/ipv4/tcp_output.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
25  *				:	Fragmentation on mtu decrease
26  *				:	Segment collapse on retransmit
27  *				:	AF independence
28  *
29  *		Linus Torvalds	:	send_delayed_ack
30  *		David S. Miller	:	Charge memory using the right skb
31  *					during syn/ack processing.
32  *		David S. Miller :	Output engine completely rewritten.
33  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
34  *		Cacophonix Gaul :	draft-minshall-nagle-01
35  *		J Hadi Salim	:	ECN support
36  *
37  */
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse = 1;
47 
48 /* This limits the percentage of the congestion window which we
49  * will allow a single TSO frame to consume.  Building TSO frames
50  * which are too large can cause TCP streams to be bursty.
51  */
52 int sysctl_tcp_tso_win_divisor = 3;
53 
54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 				    struct sk_buff *skb)
56 {
57 	sk->sk_send_head = skb->next;
58 	if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 		sk->sk_send_head = NULL;
60 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 	tcp_packets_out_inc(sk, tp, skb);
62 }
63 
64 /* SND.NXT, if window was not shrunk.
65  * If window has been shrunk, what should we make? It is not clear at all.
66  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68  * invalid. OK, let's make this for now:
69  */
70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71 {
72 	if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 		return tp->snd_nxt;
74 	else
75 		return tp->snd_una+tp->snd_wnd;
76 }
77 
78 /* Calculate mss to advertise in SYN segment.
79  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80  *
81  * 1. It is independent of path mtu.
82  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84  *    attached devices, because some buggy hosts are confused by
85  *    large MSS.
86  * 4. We do not make 3, we advertise MSS, calculated from first
87  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
88  *    This may be overridden via information stored in routing table.
89  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90  *    probably even Jumbo".
91  */
92 static __u16 tcp_advertise_mss(struct sock *sk)
93 {
94 	struct tcp_sock *tp = tcp_sk(sk);
95 	struct dst_entry *dst = __sk_dst_get(sk);
96 	int mss = tp->advmss;
97 
98 	if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 		mss = dst_metric(dst, RTAX_ADVMSS);
100 		tp->advmss = mss;
101 	}
102 
103 	return (__u16)mss;
104 }
105 
106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107  * This is the first part of cwnd validation mechanism. */
108 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
109 {
110 	struct tcp_sock *tp = tcp_sk(sk);
111 	s32 delta = tcp_time_stamp - tp->lsndtime;
112 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
113 	u32 cwnd = tp->snd_cwnd;
114 
115 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
116 
117 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
118 	restart_cwnd = min(restart_cwnd, cwnd);
119 
120 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
121 		cwnd >>= 1;
122 	tp->snd_cwnd = max(cwnd, restart_cwnd);
123 	tp->snd_cwnd_stamp = tcp_time_stamp;
124 	tp->snd_cwnd_used = 0;
125 }
126 
127 static inline void tcp_event_data_sent(struct tcp_sock *tp,
128 				       struct sk_buff *skb, struct sock *sk)
129 {
130 	struct inet_connection_sock *icsk = inet_csk(sk);
131 	const u32 now = tcp_time_stamp;
132 
133 	if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)
134 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
135 
136 	tp->lsndtime = now;
137 
138 	/* If it is a reply for ato after last received
139 	 * packet, enter pingpong mode.
140 	 */
141 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
142 		icsk->icsk_ack.pingpong = 1;
143 }
144 
145 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
146 {
147 	tcp_dec_quickack_mode(sk, pkts);
148 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
149 }
150 
151 /* Determine a window scaling and initial window to offer.
152  * Based on the assumption that the given amount of space
153  * will be offered. Store the results in the tp structure.
154  * NOTE: for smooth operation initial space offering should
155  * be a multiple of mss if possible. We assume here that mss >= 1.
156  * This MUST be enforced by all callers.
157  */
158 void tcp_select_initial_window(int __space, __u32 mss,
159 			       __u32 *rcv_wnd, __u32 *window_clamp,
160 			       int wscale_ok, __u8 *rcv_wscale)
161 {
162 	unsigned int space = (__space < 0 ? 0 : __space);
163 
164 	/* If no clamp set the clamp to the max possible scaled window */
165 	if (*window_clamp == 0)
166 		(*window_clamp) = (65535 << 14);
167 	space = min(*window_clamp, space);
168 
169 	/* Quantize space offering to a multiple of mss if possible. */
170 	if (space > mss)
171 		space = (space / mss) * mss;
172 
173 	/* NOTE: offering an initial window larger than 32767
174 	 * will break some buggy TCP stacks. We try to be nice.
175 	 * If we are not window scaling, then this truncates
176 	 * our initial window offering to 32k. There should also
177 	 * be a sysctl option to stop being nice.
178 	 */
179 	(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 	(*rcv_wscale) = 0;
181 	if (wscale_ok) {
182 		/* Set window scaling on max possible window
183 		 * See RFC1323 for an explanation of the limit to 14
184 		 */
185 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 		while (space > 65535 && (*rcv_wscale) < 14) {
187 			space >>= 1;
188 			(*rcv_wscale)++;
189 		}
190 	}
191 
192 	/* Set initial window to value enough for senders,
193 	 * following RFC2414. Senders, not following this RFC,
194 	 * will be satisfied with 2.
195 	 */
196 	if (mss > (1<<*rcv_wscale)) {
197 		int init_cwnd = 4;
198 		if (mss > 1460*3)
199 			init_cwnd = 2;
200 		else if (mss > 1460)
201 			init_cwnd = 3;
202 		if (*rcv_wnd > init_cwnd*mss)
203 			*rcv_wnd = init_cwnd*mss;
204 	}
205 
206 	/* Set the clamp no higher than max representable value */
207 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
208 }
209 
210 /* Chose a new window to advertise, update state in tcp_sock for the
211  * socket, and return result with RFC1323 scaling applied.  The return
212  * value can be stuffed directly into th->window for an outgoing
213  * frame.
214  */
215 static __inline__ u16 tcp_select_window(struct sock *sk)
216 {
217 	struct tcp_sock *tp = tcp_sk(sk);
218 	u32 cur_win = tcp_receive_window(tp);
219 	u32 new_win = __tcp_select_window(sk);
220 
221 	/* Never shrink the offered window */
222 	if(new_win < cur_win) {
223 		/* Danger Will Robinson!
224 		 * Don't update rcv_wup/rcv_wnd here or else
225 		 * we will not be able to advertise a zero
226 		 * window in time.  --DaveM
227 		 *
228 		 * Relax Will Robinson.
229 		 */
230 		new_win = cur_win;
231 	}
232 	tp->rcv_wnd = new_win;
233 	tp->rcv_wup = tp->rcv_nxt;
234 
235 	/* Make sure we do not exceed the maximum possible
236 	 * scaled window.
237 	 */
238 	if (!tp->rx_opt.rcv_wscale)
239 		new_win = min(new_win, MAX_TCP_WINDOW);
240 	else
241 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
242 
243 	/* RFC1323 scaling applied */
244 	new_win >>= tp->rx_opt.rcv_wscale;
245 
246 	/* If we advertise zero window, disable fast path. */
247 	if (new_win == 0)
248 		tp->pred_flags = 0;
249 
250 	return new_win;
251 }
252 
253 
254 /* This routine actually transmits TCP packets queued in by
255  * tcp_do_sendmsg().  This is used by both the initial
256  * transmission and possible later retransmissions.
257  * All SKB's seen here are completely headerless.  It is our
258  * job to build the TCP header, and pass the packet down to
259  * IP so it can do the same plus pass the packet off to the
260  * device.
261  *
262  * We are working here with either a clone of the original
263  * SKB, or a fresh unique copy made by the retransmit engine.
264  */
265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask)
266 {
267 	const struct inet_connection_sock *icsk = inet_csk(sk);
268 	struct inet_sock *inet;
269 	struct tcp_sock *tp;
270 	struct tcp_skb_cb *tcb;
271 	int tcp_header_size;
272 	struct tcphdr *th;
273 	int sysctl_flags;
274 	int err;
275 
276 	BUG_ON(!skb || !tcp_skb_pcount(skb));
277 
278 	/* If congestion control is doing timestamping, we must
279 	 * take such a timestamp before we potentially clone/copy.
280 	 */
281 	if (icsk->icsk_ca_ops->rtt_sample)
282 		__net_timestamp(skb);
283 
284 	if (likely(clone_it)) {
285 		if (unlikely(skb_cloned(skb)))
286 			skb = pskb_copy(skb, gfp_mask);
287 		else
288 			skb = skb_clone(skb, gfp_mask);
289 		if (unlikely(!skb))
290 			return -ENOBUFS;
291 	}
292 
293 	inet = inet_sk(sk);
294 	tp = tcp_sk(sk);
295 	tcb = TCP_SKB_CB(skb);
296 	tcp_header_size = tp->tcp_header_len;
297 
298 #define SYSCTL_FLAG_TSTAMPS	0x1
299 #define SYSCTL_FLAG_WSCALE	0x2
300 #define SYSCTL_FLAG_SACK	0x4
301 
302 	sysctl_flags = 0;
303 	if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
304 		tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
305 		if(sysctl_tcp_timestamps) {
306 			tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
307 			sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
308 		}
309 		if (sysctl_tcp_window_scaling) {
310 			tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
311 			sysctl_flags |= SYSCTL_FLAG_WSCALE;
312 		}
313 		if (sysctl_tcp_sack) {
314 			sysctl_flags |= SYSCTL_FLAG_SACK;
315 			if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
316 				tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
317 		}
318 	} else if (unlikely(tp->rx_opt.eff_sacks)) {
319 		/* A SACK is 2 pad bytes, a 2 byte header, plus
320 		 * 2 32-bit sequence numbers for each SACK block.
321 		 */
322 		tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
323 				    (tp->rx_opt.eff_sacks *
324 				     TCPOLEN_SACK_PERBLOCK));
325 	}
326 
327 	if (tcp_packets_in_flight(tp) == 0)
328 		tcp_ca_event(sk, CA_EVENT_TX_START);
329 
330 	th = (struct tcphdr *) skb_push(skb, tcp_header_size);
331 	skb->h.th = th;
332 	skb_set_owner_w(skb, sk);
333 
334 	/* Build TCP header and checksum it. */
335 	th->source		= inet->sport;
336 	th->dest		= inet->dport;
337 	th->seq			= htonl(tcb->seq);
338 	th->ack_seq		= htonl(tp->rcv_nxt);
339 	*(((__u16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
340 					tcb->flags);
341 
342 	if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
343 		/* RFC1323: The window in SYN & SYN/ACK segments
344 		 * is never scaled.
345 		 */
346 		th->window	= htons(tp->rcv_wnd);
347 	} else {
348 		th->window	= htons(tcp_select_window(sk));
349 	}
350 	th->check		= 0;
351 	th->urg_ptr		= 0;
352 
353 	if (unlikely(tp->urg_mode &&
354 		     between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF))) {
355 		th->urg_ptr		= htons(tp->snd_up-tcb->seq);
356 		th->urg			= 1;
357 	}
358 
359 	if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
360 		tcp_syn_build_options((__u32 *)(th + 1),
361 				      tcp_advertise_mss(sk),
362 				      (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
363 				      (sysctl_flags & SYSCTL_FLAG_SACK),
364 				      (sysctl_flags & SYSCTL_FLAG_WSCALE),
365 				      tp->rx_opt.rcv_wscale,
366 				      tcb->when,
367 				      tp->rx_opt.ts_recent);
368 	} else {
369 		tcp_build_and_update_options((__u32 *)(th + 1),
370 					     tp, tcb->when);
371 		TCP_ECN_send(sk, tp, skb, tcp_header_size);
372 	}
373 
374 	tp->af_specific->send_check(sk, th, skb->len, skb);
375 
376 	if (likely(tcb->flags & TCPCB_FLAG_ACK))
377 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
378 
379 	if (skb->len != tcp_header_size)
380 		tcp_event_data_sent(tp, skb, sk);
381 
382 	TCP_INC_STATS(TCP_MIB_OUTSEGS);
383 
384 	err = tp->af_specific->queue_xmit(skb, 0);
385 	if (unlikely(err <= 0))
386 		return err;
387 
388 	tcp_enter_cwr(sk);
389 
390 	/* NET_XMIT_CN is special. It does not guarantee,
391 	 * that this packet is lost. It tells that device
392 	 * is about to start to drop packets or already
393 	 * drops some packets of the same priority and
394 	 * invokes us to send less aggressively.
395 	 */
396 	return err == NET_XMIT_CN ? 0 : err;
397 
398 #undef SYSCTL_FLAG_TSTAMPS
399 #undef SYSCTL_FLAG_WSCALE
400 #undef SYSCTL_FLAG_SACK
401 }
402 
403 
404 /* This routine just queue's the buffer
405  *
406  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
407  * otherwise socket can stall.
408  */
409 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
410 {
411 	struct tcp_sock *tp = tcp_sk(sk);
412 
413 	/* Advance write_seq and place onto the write_queue. */
414 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
415 	skb_header_release(skb);
416 	__skb_queue_tail(&sk->sk_write_queue, skb);
417 	sk_charge_skb(sk, skb);
418 
419 	/* Queue it, remembering where we must start sending. */
420 	if (sk->sk_send_head == NULL)
421 		sk->sk_send_head = skb;
422 }
423 
424 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
425 {
426 	if (skb->len <= mss_now ||
427 	    !(sk->sk_route_caps & NETIF_F_TSO)) {
428 		/* Avoid the costly divide in the normal
429 		 * non-TSO case.
430 		 */
431 		skb_shinfo(skb)->tso_segs = 1;
432 		skb_shinfo(skb)->tso_size = 0;
433 	} else {
434 		unsigned int factor;
435 
436 		factor = skb->len + (mss_now - 1);
437 		factor /= mss_now;
438 		skb_shinfo(skb)->tso_segs = factor;
439 		skb_shinfo(skb)->tso_size = mss_now;
440 	}
441 }
442 
443 /* Function to create two new TCP segments.  Shrinks the given segment
444  * to the specified size and appends a new segment with the rest of the
445  * packet to the list.  This won't be called frequently, I hope.
446  * Remember, these are still headerless SKBs at this point.
447  */
448 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now)
449 {
450 	struct tcp_sock *tp = tcp_sk(sk);
451 	struct sk_buff *buff;
452 	int nsize, old_factor;
453 	u16 flags;
454 
455 	BUG_ON(len > skb->len);
456 
457  	clear_all_retrans_hints(tp);
458 	nsize = skb_headlen(skb) - len;
459 	if (nsize < 0)
460 		nsize = 0;
461 
462 	if (skb_cloned(skb) &&
463 	    skb_is_nonlinear(skb) &&
464 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
465 		return -ENOMEM;
466 
467 	/* Get a new skb... force flag on. */
468 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
469 	if (buff == NULL)
470 		return -ENOMEM; /* We'll just try again later. */
471 	sk_charge_skb(sk, buff);
472 
473 	/* Correct the sequence numbers. */
474 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
475 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
476 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
477 
478 	/* PSH and FIN should only be set in the second packet. */
479 	flags = TCP_SKB_CB(skb)->flags;
480 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
481 	TCP_SKB_CB(buff)->flags = flags;
482 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
483 	TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
484 
485 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
486 		/* Copy and checksum data tail into the new buffer. */
487 		buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
488 						       nsize, 0);
489 
490 		skb_trim(skb, len);
491 
492 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
493 	} else {
494 		skb->ip_summed = CHECKSUM_HW;
495 		skb_split(skb, buff, len);
496 	}
497 
498 	buff->ip_summed = skb->ip_summed;
499 
500 	/* Looks stupid, but our code really uses when of
501 	 * skbs, which it never sent before. --ANK
502 	 */
503 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
504 	buff->tstamp = skb->tstamp;
505 
506 	old_factor = tcp_skb_pcount(skb);
507 
508 	/* Fix up tso_factor for both original and new SKB.  */
509 	tcp_set_skb_tso_segs(sk, skb, mss_now);
510 	tcp_set_skb_tso_segs(sk, buff, mss_now);
511 
512 	/* If this packet has been sent out already, we must
513 	 * adjust the various packet counters.
514 	 */
515 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
516 		int diff = old_factor - tcp_skb_pcount(skb) -
517 			tcp_skb_pcount(buff);
518 
519 		tp->packets_out -= diff;
520 
521 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
522 			tp->sacked_out -= diff;
523 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
524 			tp->retrans_out -= diff;
525 
526 		if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
527 			tp->lost_out -= diff;
528 			tp->left_out -= diff;
529 		}
530 
531 		if (diff > 0) {
532 			/* Adjust Reno SACK estimate. */
533 			if (!tp->rx_opt.sack_ok) {
534 				tp->sacked_out -= diff;
535 				if ((int)tp->sacked_out < 0)
536 					tp->sacked_out = 0;
537 				tcp_sync_left_out(tp);
538 			}
539 
540 			tp->fackets_out -= diff;
541 			if ((int)tp->fackets_out < 0)
542 				tp->fackets_out = 0;
543 		}
544 	}
545 
546 	/* Link BUFF into the send queue. */
547 	skb_header_release(buff);
548 	__skb_append(skb, buff, &sk->sk_write_queue);
549 
550 	return 0;
551 }
552 
553 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
554  * eventually). The difference is that pulled data not copied, but
555  * immediately discarded.
556  */
557 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
558 {
559 	int i, k, eat;
560 
561 	eat = len;
562 	k = 0;
563 	for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
564 		if (skb_shinfo(skb)->frags[i].size <= eat) {
565 			put_page(skb_shinfo(skb)->frags[i].page);
566 			eat -= skb_shinfo(skb)->frags[i].size;
567 		} else {
568 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
569 			if (eat) {
570 				skb_shinfo(skb)->frags[k].page_offset += eat;
571 				skb_shinfo(skb)->frags[k].size -= eat;
572 				eat = 0;
573 			}
574 			k++;
575 		}
576 	}
577 	skb_shinfo(skb)->nr_frags = k;
578 
579 	skb->tail = skb->data;
580 	skb->data_len -= len;
581 	skb->len = skb->data_len;
582 	return skb->tail;
583 }
584 
585 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
586 {
587 	if (skb_cloned(skb) &&
588 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
589 		return -ENOMEM;
590 
591 	if (len <= skb_headlen(skb)) {
592 		__skb_pull(skb, len);
593 	} else {
594 		if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
595 			return -ENOMEM;
596 	}
597 
598 	TCP_SKB_CB(skb)->seq += len;
599 	skb->ip_summed = CHECKSUM_HW;
600 
601 	skb->truesize	     -= len;
602 	sk->sk_wmem_queued   -= len;
603 	sk->sk_forward_alloc += len;
604 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
605 
606 	/* Any change of skb->len requires recalculation of tso
607 	 * factor and mss.
608 	 */
609 	if (tcp_skb_pcount(skb) > 1)
610 		tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
611 
612 	return 0;
613 }
614 
615 /* This function synchronize snd mss to current pmtu/exthdr set.
616 
617    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
618    for TCP options, but includes only bare TCP header.
619 
620    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
621    It is minimum of user_mss and mss received with SYN.
622    It also does not include TCP options.
623 
624    tp->pmtu_cookie is last pmtu, seen by this function.
625 
626    tp->mss_cache is current effective sending mss, including
627    all tcp options except for SACKs. It is evaluated,
628    taking into account current pmtu, but never exceeds
629    tp->rx_opt.mss_clamp.
630 
631    NOTE1. rfc1122 clearly states that advertised MSS
632    DOES NOT include either tcp or ip options.
633 
634    NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
635    this function.			--ANK (980731)
636  */
637 
638 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
639 {
640 	struct tcp_sock *tp = tcp_sk(sk);
641 	int mss_now;
642 
643 	/* Calculate base mss without TCP options:
644 	   It is MMS_S - sizeof(tcphdr) of rfc1122
645 	 */
646 	mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
647 
648 	/* Clamp it (mss_clamp does not include tcp options) */
649 	if (mss_now > tp->rx_opt.mss_clamp)
650 		mss_now = tp->rx_opt.mss_clamp;
651 
652 	/* Now subtract optional transport overhead */
653 	mss_now -= tp->ext_header_len;
654 
655 	/* Then reserve room for full set of TCP options and 8 bytes of data */
656 	if (mss_now < 48)
657 		mss_now = 48;
658 
659 	/* Now subtract TCP options size, not including SACKs */
660 	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
661 
662 	/* Bound mss with half of window */
663 	if (tp->max_window && mss_now > (tp->max_window>>1))
664 		mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
665 
666 	/* And store cached results */
667 	tp->pmtu_cookie = pmtu;
668 	tp->mss_cache = mss_now;
669 
670 	return mss_now;
671 }
672 
673 /* Compute the current effective MSS, taking SACKs and IP options,
674  * and even PMTU discovery events into account.
675  *
676  * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
677  * cannot be large. However, taking into account rare use of URG, this
678  * is not a big flaw.
679  */
680 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
681 {
682 	struct tcp_sock *tp = tcp_sk(sk);
683 	struct dst_entry *dst = __sk_dst_get(sk);
684 	u32 mss_now;
685 	u16 xmit_size_goal;
686 	int doing_tso = 0;
687 
688 	mss_now = tp->mss_cache;
689 
690 	if (large_allowed &&
691 	    (sk->sk_route_caps & NETIF_F_TSO) &&
692 	    !tp->urg_mode)
693 		doing_tso = 1;
694 
695 	if (dst) {
696 		u32 mtu = dst_mtu(dst);
697 		if (mtu != tp->pmtu_cookie)
698 			mss_now = tcp_sync_mss(sk, mtu);
699 	}
700 
701 	if (tp->rx_opt.eff_sacks)
702 		mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
703 			    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
704 
705 	xmit_size_goal = mss_now;
706 
707 	if (doing_tso) {
708 		xmit_size_goal = 65535 -
709 			tp->af_specific->net_header_len -
710 			tp->ext_header_len - tp->tcp_header_len;
711 
712 		if (tp->max_window &&
713 		    (xmit_size_goal > (tp->max_window >> 1)))
714 			xmit_size_goal = max((tp->max_window >> 1),
715 					     68U - tp->tcp_header_len);
716 
717 		xmit_size_goal -= (xmit_size_goal % mss_now);
718 	}
719 	tp->xmit_size_goal = xmit_size_goal;
720 
721 	return mss_now;
722 }
723 
724 /* Congestion window validation. (RFC2861) */
725 
726 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
727 {
728 	__u32 packets_out = tp->packets_out;
729 
730 	if (packets_out >= tp->snd_cwnd) {
731 		/* Network is feed fully. */
732 		tp->snd_cwnd_used = 0;
733 		tp->snd_cwnd_stamp = tcp_time_stamp;
734 	} else {
735 		/* Network starves. */
736 		if (tp->packets_out > tp->snd_cwnd_used)
737 			tp->snd_cwnd_used = tp->packets_out;
738 
739 		if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
740 			tcp_cwnd_application_limited(sk);
741 	}
742 }
743 
744 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
745 {
746 	u32 window, cwnd_len;
747 
748 	window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
749 	cwnd_len = mss_now * cwnd;
750 	return min(window, cwnd_len);
751 }
752 
753 /* Can at least one segment of SKB be sent right now, according to the
754  * congestion window rules?  If so, return how many segments are allowed.
755  */
756 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
757 {
758 	u32 in_flight, cwnd;
759 
760 	/* Don't be strict about the congestion window for the final FIN.  */
761 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
762 		return 1;
763 
764 	in_flight = tcp_packets_in_flight(tp);
765 	cwnd = tp->snd_cwnd;
766 	if (in_flight < cwnd)
767 		return (cwnd - in_flight);
768 
769 	return 0;
770 }
771 
772 /* This must be invoked the first time we consider transmitting
773  * SKB onto the wire.
774  */
775 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
776 {
777 	int tso_segs = tcp_skb_pcount(skb);
778 
779 	if (!tso_segs ||
780 	    (tso_segs > 1 &&
781 	     skb_shinfo(skb)->tso_size != mss_now)) {
782 		tcp_set_skb_tso_segs(sk, skb, mss_now);
783 		tso_segs = tcp_skb_pcount(skb);
784 	}
785 	return tso_segs;
786 }
787 
788 static inline int tcp_minshall_check(const struct tcp_sock *tp)
789 {
790 	return after(tp->snd_sml,tp->snd_una) &&
791 		!after(tp->snd_sml, tp->snd_nxt);
792 }
793 
794 /* Return 0, if packet can be sent now without violation Nagle's rules:
795  * 1. It is full sized.
796  * 2. Or it contains FIN. (already checked by caller)
797  * 3. Or TCP_NODELAY was set.
798  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
799  *    With Minshall's modification: all sent small packets are ACKed.
800  */
801 
802 static inline int tcp_nagle_check(const struct tcp_sock *tp,
803 				  const struct sk_buff *skb,
804 				  unsigned mss_now, int nonagle)
805 {
806 	return (skb->len < mss_now &&
807 		((nonagle&TCP_NAGLE_CORK) ||
808 		 (!nonagle &&
809 		  tp->packets_out &&
810 		  tcp_minshall_check(tp))));
811 }
812 
813 /* Return non-zero if the Nagle test allows this packet to be
814  * sent now.
815  */
816 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
817 				 unsigned int cur_mss, int nonagle)
818 {
819 	/* Nagle rule does not apply to frames, which sit in the middle of the
820 	 * write_queue (they have no chances to get new data).
821 	 *
822 	 * This is implemented in the callers, where they modify the 'nonagle'
823 	 * argument based upon the location of SKB in the send queue.
824 	 */
825 	if (nonagle & TCP_NAGLE_PUSH)
826 		return 1;
827 
828 	/* Don't use the nagle rule for urgent data (or for the final FIN).  */
829 	if (tp->urg_mode ||
830 	    (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
831 		return 1;
832 
833 	if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
834 		return 1;
835 
836 	return 0;
837 }
838 
839 /* Does at least the first segment of SKB fit into the send window? */
840 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
841 {
842 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
843 
844 	if (skb->len > cur_mss)
845 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
846 
847 	return !after(end_seq, tp->snd_una + tp->snd_wnd);
848 }
849 
850 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
851  * should be put on the wire right now.  If so, it returns the number of
852  * packets allowed by the congestion window.
853  */
854 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
855 				 unsigned int cur_mss, int nonagle)
856 {
857 	struct tcp_sock *tp = tcp_sk(sk);
858 	unsigned int cwnd_quota;
859 
860 	tcp_init_tso_segs(sk, skb, cur_mss);
861 
862 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
863 		return 0;
864 
865 	cwnd_quota = tcp_cwnd_test(tp, skb);
866 	if (cwnd_quota &&
867 	    !tcp_snd_wnd_test(tp, skb, cur_mss))
868 		cwnd_quota = 0;
869 
870 	return cwnd_quota;
871 }
872 
873 static inline int tcp_skb_is_last(const struct sock *sk,
874 				  const struct sk_buff *skb)
875 {
876 	return skb->next == (struct sk_buff *)&sk->sk_write_queue;
877 }
878 
879 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
880 {
881 	struct sk_buff *skb = sk->sk_send_head;
882 
883 	return (skb &&
884 		tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
885 			     (tcp_skb_is_last(sk, skb) ?
886 			      TCP_NAGLE_PUSH :
887 			      tp->nonagle)));
888 }
889 
890 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
891  * which is put after SKB on the list.  It is very much like
892  * tcp_fragment() except that it may make several kinds of assumptions
893  * in order to speed up the splitting operation.  In particular, we
894  * know that all the data is in scatter-gather pages, and that the
895  * packet has never been sent out before (and thus is not cloned).
896  */
897 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now)
898 {
899 	struct sk_buff *buff;
900 	int nlen = skb->len - len;
901 	u16 flags;
902 
903 	/* All of a TSO frame must be composed of paged data.  */
904 	if (skb->len != skb->data_len)
905 		return tcp_fragment(sk, skb, len, mss_now);
906 
907 	buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
908 	if (unlikely(buff == NULL))
909 		return -ENOMEM;
910 
911 	buff->truesize = nlen;
912 	skb->truesize -= nlen;
913 
914 	/* Correct the sequence numbers. */
915 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
916 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
917 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
918 
919 	/* PSH and FIN should only be set in the second packet. */
920 	flags = TCP_SKB_CB(skb)->flags;
921 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
922 	TCP_SKB_CB(buff)->flags = flags;
923 
924 	/* This packet was never sent out yet, so no SACK bits. */
925 	TCP_SKB_CB(buff)->sacked = 0;
926 
927 	buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
928 	skb_split(skb, buff, len);
929 
930 	/* Fix up tso_factor for both original and new SKB.  */
931 	tcp_set_skb_tso_segs(sk, skb, mss_now);
932 	tcp_set_skb_tso_segs(sk, buff, mss_now);
933 
934 	/* Link BUFF into the send queue. */
935 	skb_header_release(buff);
936 	__skb_append(skb, buff, &sk->sk_write_queue);
937 
938 	return 0;
939 }
940 
941 /* Try to defer sending, if possible, in order to minimize the amount
942  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
943  *
944  * This algorithm is from John Heffner.
945  */
946 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
947 {
948 	const struct inet_connection_sock *icsk = inet_csk(sk);
949 	u32 send_win, cong_win, limit, in_flight;
950 
951 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
952 		return 0;
953 
954 	if (icsk->icsk_ca_state != TCP_CA_Open)
955 		return 0;
956 
957 	in_flight = tcp_packets_in_flight(tp);
958 
959 	BUG_ON(tcp_skb_pcount(skb) <= 1 ||
960 	       (tp->snd_cwnd <= in_flight));
961 
962 	send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
963 
964 	/* From in_flight test above, we know that cwnd > in_flight.  */
965 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
966 
967 	limit = min(send_win, cong_win);
968 
969 	if (sysctl_tcp_tso_win_divisor) {
970 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
971 
972 		/* If at least some fraction of a window is available,
973 		 * just use it.
974 		 */
975 		chunk /= sysctl_tcp_tso_win_divisor;
976 		if (limit >= chunk)
977 			return 0;
978 	} else {
979 		/* Different approach, try not to defer past a single
980 		 * ACK.  Receiver should ACK every other full sized
981 		 * frame, so if we have space for more than 3 frames
982 		 * then send now.
983 		 */
984 		if (limit > tcp_max_burst(tp) * tp->mss_cache)
985 			return 0;
986 	}
987 
988 	/* Ok, it looks like it is advisable to defer.  */
989 	return 1;
990 }
991 
992 /* This routine writes packets to the network.  It advances the
993  * send_head.  This happens as incoming acks open up the remote
994  * window for us.
995  *
996  * Returns 1, if no segments are in flight and we have queued segments, but
997  * cannot send anything now because of SWS or another problem.
998  */
999 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
1000 {
1001 	struct tcp_sock *tp = tcp_sk(sk);
1002 	struct sk_buff *skb;
1003 	unsigned int tso_segs, sent_pkts;
1004 	int cwnd_quota;
1005 
1006 	/* If we are closed, the bytes will have to remain here.
1007 	 * In time closedown will finish, we empty the write queue and all
1008 	 * will be happy.
1009 	 */
1010 	if (unlikely(sk->sk_state == TCP_CLOSE))
1011 		return 0;
1012 
1013 	sent_pkts = 0;
1014 	while ((skb = sk->sk_send_head)) {
1015 		unsigned int limit;
1016 
1017 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1018 		BUG_ON(!tso_segs);
1019 
1020 		cwnd_quota = tcp_cwnd_test(tp, skb);
1021 		if (!cwnd_quota)
1022 			break;
1023 
1024 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1025 			break;
1026 
1027 		if (tso_segs == 1) {
1028 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1029 						     (tcp_skb_is_last(sk, skb) ?
1030 						      nonagle : TCP_NAGLE_PUSH))))
1031 				break;
1032 		} else {
1033 			if (tcp_tso_should_defer(sk, tp, skb))
1034 				break;
1035 		}
1036 
1037 		limit = mss_now;
1038 		if (tso_segs > 1) {
1039 			limit = tcp_window_allows(tp, skb,
1040 						  mss_now, cwnd_quota);
1041 
1042 			if (skb->len < limit) {
1043 				unsigned int trim = skb->len % mss_now;
1044 
1045 				if (trim)
1046 					limit = skb->len - trim;
1047 			}
1048 		}
1049 
1050 		if (skb->len > limit &&
1051 		    unlikely(tso_fragment(sk, skb, limit, mss_now)))
1052 			break;
1053 
1054 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1055 
1056 		if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC)))
1057 			break;
1058 
1059 		/* Advance the send_head.  This one is sent out.
1060 		 * This call will increment packets_out.
1061 		 */
1062 		update_send_head(sk, tp, skb);
1063 
1064 		tcp_minshall_update(tp, mss_now, skb);
1065 		sent_pkts++;
1066 	}
1067 
1068 	if (likely(sent_pkts)) {
1069 		tcp_cwnd_validate(sk, tp);
1070 		return 0;
1071 	}
1072 	return !tp->packets_out && sk->sk_send_head;
1073 }
1074 
1075 /* Push out any pending frames which were held back due to
1076  * TCP_CORK or attempt at coalescing tiny packets.
1077  * The socket must be locked by the caller.
1078  */
1079 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
1080 			       unsigned int cur_mss, int nonagle)
1081 {
1082 	struct sk_buff *skb = sk->sk_send_head;
1083 
1084 	if (skb) {
1085 		if (tcp_write_xmit(sk, cur_mss, nonagle))
1086 			tcp_check_probe_timer(sk, tp);
1087 	}
1088 }
1089 
1090 /* Send _single_ skb sitting at the send head. This function requires
1091  * true push pending frames to setup probe timer etc.
1092  */
1093 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1094 {
1095 	struct tcp_sock *tp = tcp_sk(sk);
1096 	struct sk_buff *skb = sk->sk_send_head;
1097 	unsigned int tso_segs, cwnd_quota;
1098 
1099 	BUG_ON(!skb || skb->len < mss_now);
1100 
1101 	tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1102 	cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1103 
1104 	if (likely(cwnd_quota)) {
1105 		unsigned int limit;
1106 
1107 		BUG_ON(!tso_segs);
1108 
1109 		limit = mss_now;
1110 		if (tso_segs > 1) {
1111 			limit = tcp_window_allows(tp, skb,
1112 						  mss_now, cwnd_quota);
1113 
1114 			if (skb->len < limit) {
1115 				unsigned int trim = skb->len % mss_now;
1116 
1117 				if (trim)
1118 					limit = skb->len - trim;
1119 			}
1120 		}
1121 
1122 		if (skb->len > limit &&
1123 		    unlikely(tso_fragment(sk, skb, limit, mss_now)))
1124 			return;
1125 
1126 		/* Send it out now. */
1127 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1128 
1129 		if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) {
1130 			update_send_head(sk, tp, skb);
1131 			tcp_cwnd_validate(sk, tp);
1132 			return;
1133 		}
1134 	}
1135 }
1136 
1137 /* This function returns the amount that we can raise the
1138  * usable window based on the following constraints
1139  *
1140  * 1. The window can never be shrunk once it is offered (RFC 793)
1141  * 2. We limit memory per socket
1142  *
1143  * RFC 1122:
1144  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1145  *  RECV.NEXT + RCV.WIN fixed until:
1146  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1147  *
1148  * i.e. don't raise the right edge of the window until you can raise
1149  * it at least MSS bytes.
1150  *
1151  * Unfortunately, the recommended algorithm breaks header prediction,
1152  * since header prediction assumes th->window stays fixed.
1153  *
1154  * Strictly speaking, keeping th->window fixed violates the receiver
1155  * side SWS prevention criteria. The problem is that under this rule
1156  * a stream of single byte packets will cause the right side of the
1157  * window to always advance by a single byte.
1158  *
1159  * Of course, if the sender implements sender side SWS prevention
1160  * then this will not be a problem.
1161  *
1162  * BSD seems to make the following compromise:
1163  *
1164  *	If the free space is less than the 1/4 of the maximum
1165  *	space available and the free space is less than 1/2 mss,
1166  *	then set the window to 0.
1167  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1168  *	Otherwise, just prevent the window from shrinking
1169  *	and from being larger than the largest representable value.
1170  *
1171  * This prevents incremental opening of the window in the regime
1172  * where TCP is limited by the speed of the reader side taking
1173  * data out of the TCP receive queue. It does nothing about
1174  * those cases where the window is constrained on the sender side
1175  * because the pipeline is full.
1176  *
1177  * BSD also seems to "accidentally" limit itself to windows that are a
1178  * multiple of MSS, at least until the free space gets quite small.
1179  * This would appear to be a side effect of the mbuf implementation.
1180  * Combining these two algorithms results in the observed behavior
1181  * of having a fixed window size at almost all times.
1182  *
1183  * Below we obtain similar behavior by forcing the offered window to
1184  * a multiple of the mss when it is feasible to do so.
1185  *
1186  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1187  * Regular options like TIMESTAMP are taken into account.
1188  */
1189 u32 __tcp_select_window(struct sock *sk)
1190 {
1191 	struct inet_connection_sock *icsk = inet_csk(sk);
1192 	struct tcp_sock *tp = tcp_sk(sk);
1193 	/* MSS for the peer's data.  Previous versions used mss_clamp
1194 	 * here.  I don't know if the value based on our guesses
1195 	 * of peer's MSS is better for the performance.  It's more correct
1196 	 * but may be worse for the performance because of rcv_mss
1197 	 * fluctuations.  --SAW  1998/11/1
1198 	 */
1199 	int mss = icsk->icsk_ack.rcv_mss;
1200 	int free_space = tcp_space(sk);
1201 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1202 	int window;
1203 
1204 	if (mss > full_space)
1205 		mss = full_space;
1206 
1207 	if (free_space < full_space/2) {
1208 		icsk->icsk_ack.quick = 0;
1209 
1210 		if (tcp_memory_pressure)
1211 			tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1212 
1213 		if (free_space < mss)
1214 			return 0;
1215 	}
1216 
1217 	if (free_space > tp->rcv_ssthresh)
1218 		free_space = tp->rcv_ssthresh;
1219 
1220 	/* Don't do rounding if we are using window scaling, since the
1221 	 * scaled window will not line up with the MSS boundary anyway.
1222 	 */
1223 	window = tp->rcv_wnd;
1224 	if (tp->rx_opt.rcv_wscale) {
1225 		window = free_space;
1226 
1227 		/* Advertise enough space so that it won't get scaled away.
1228 		 * Import case: prevent zero window announcement if
1229 		 * 1<<rcv_wscale > mss.
1230 		 */
1231 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1232 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1233 				  << tp->rx_opt.rcv_wscale);
1234 	} else {
1235 		/* Get the largest window that is a nice multiple of mss.
1236 		 * Window clamp already applied above.
1237 		 * If our current window offering is within 1 mss of the
1238 		 * free space we just keep it. This prevents the divide
1239 		 * and multiply from happening most of the time.
1240 		 * We also don't do any window rounding when the free space
1241 		 * is too small.
1242 		 */
1243 		if (window <= free_space - mss || window > free_space)
1244 			window = (free_space/mss)*mss;
1245 	}
1246 
1247 	return window;
1248 }
1249 
1250 /* Attempt to collapse two adjacent SKB's during retransmission. */
1251 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1252 {
1253 	struct tcp_sock *tp = tcp_sk(sk);
1254 	struct sk_buff *next_skb = skb->next;
1255 
1256 	/* The first test we must make is that neither of these two
1257 	 * SKB's are still referenced by someone else.
1258 	 */
1259 	if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1260 		int skb_size = skb->len, next_skb_size = next_skb->len;
1261 		u16 flags = TCP_SKB_CB(skb)->flags;
1262 
1263 		/* Also punt if next skb has been SACK'd. */
1264 		if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1265 			return;
1266 
1267 		/* Next skb is out of window. */
1268 		if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1269 			return;
1270 
1271 		/* Punt if not enough space exists in the first SKB for
1272 		 * the data in the second, or the total combined payload
1273 		 * would exceed the MSS.
1274 		 */
1275 		if ((next_skb_size > skb_tailroom(skb)) ||
1276 		    ((skb_size + next_skb_size) > mss_now))
1277 			return;
1278 
1279 		BUG_ON(tcp_skb_pcount(skb) != 1 ||
1280 		       tcp_skb_pcount(next_skb) != 1);
1281 
1282 		/* changing transmit queue under us so clear hints */
1283 		clear_all_retrans_hints(tp);
1284 
1285 		/* Ok.	We will be able to collapse the packet. */
1286 		__skb_unlink(next_skb, &sk->sk_write_queue);
1287 
1288 		memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1289 
1290 		if (next_skb->ip_summed == CHECKSUM_HW)
1291 			skb->ip_summed = CHECKSUM_HW;
1292 
1293 		if (skb->ip_summed != CHECKSUM_HW)
1294 			skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1295 
1296 		/* Update sequence range on original skb. */
1297 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1298 
1299 		/* Merge over control information. */
1300 		flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1301 		TCP_SKB_CB(skb)->flags = flags;
1302 
1303 		/* All done, get rid of second SKB and account for it so
1304 		 * packet counting does not break.
1305 		 */
1306 		TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1307 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1308 			tp->retrans_out -= tcp_skb_pcount(next_skb);
1309 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1310 			tp->lost_out -= tcp_skb_pcount(next_skb);
1311 			tp->left_out -= tcp_skb_pcount(next_skb);
1312 		}
1313 		/* Reno case is special. Sigh... */
1314 		if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1315 			tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1316 			tp->left_out -= tcp_skb_pcount(next_skb);
1317 		}
1318 
1319 		/* Not quite right: it can be > snd.fack, but
1320 		 * it is better to underestimate fackets.
1321 		 */
1322 		tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1323 		tcp_packets_out_dec(tp, next_skb);
1324 		sk_stream_free_skb(sk, next_skb);
1325 	}
1326 }
1327 
1328 /* Do a simple retransmit without using the backoff mechanisms in
1329  * tcp_timer. This is used for path mtu discovery.
1330  * The socket is already locked here.
1331  */
1332 void tcp_simple_retransmit(struct sock *sk)
1333 {
1334 	const struct inet_connection_sock *icsk = inet_csk(sk);
1335 	struct tcp_sock *tp = tcp_sk(sk);
1336 	struct sk_buff *skb;
1337 	unsigned int mss = tcp_current_mss(sk, 0);
1338 	int lost = 0;
1339 
1340 	sk_stream_for_retrans_queue(skb, sk) {
1341 		if (skb->len > mss &&
1342 		    !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1343 			if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1344 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1345 				tp->retrans_out -= tcp_skb_pcount(skb);
1346 			}
1347 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1348 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1349 				tp->lost_out += tcp_skb_pcount(skb);
1350 				lost = 1;
1351 			}
1352 		}
1353 	}
1354 
1355 	clear_all_retrans_hints(tp);
1356 
1357 	if (!lost)
1358 		return;
1359 
1360 	tcp_sync_left_out(tp);
1361 
1362  	/* Don't muck with the congestion window here.
1363 	 * Reason is that we do not increase amount of _data_
1364 	 * in network, but units changed and effective
1365 	 * cwnd/ssthresh really reduced now.
1366 	 */
1367 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
1368 		tp->high_seq = tp->snd_nxt;
1369 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
1370 		tp->prior_ssthresh = 0;
1371 		tp->undo_marker = 0;
1372 		tcp_set_ca_state(sk, TCP_CA_Loss);
1373 	}
1374 	tcp_xmit_retransmit_queue(sk);
1375 }
1376 
1377 /* This retransmits one SKB.  Policy decisions and retransmit queue
1378  * state updates are done by the caller.  Returns non-zero if an
1379  * error occurred which prevented the send.
1380  */
1381 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384  	unsigned int cur_mss = tcp_current_mss(sk, 0);
1385 	int err;
1386 
1387 	/* Do not sent more than we queued. 1/4 is reserved for possible
1388 	 * copying overhead: fragmentation, tunneling, mangling etc.
1389 	 */
1390 	if (atomic_read(&sk->sk_wmem_alloc) >
1391 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1392 		return -EAGAIN;
1393 
1394 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1395 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1396 			BUG();
1397 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1398 			return -ENOMEM;
1399 	}
1400 
1401 	/* If receiver has shrunk his window, and skb is out of
1402 	 * new window, do not retransmit it. The exception is the
1403 	 * case, when window is shrunk to zero. In this case
1404 	 * our retransmit serves as a zero window probe.
1405 	 */
1406 	if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1407 	    && TCP_SKB_CB(skb)->seq != tp->snd_una)
1408 		return -EAGAIN;
1409 
1410 	if (skb->len > cur_mss) {
1411 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1412 			return -ENOMEM; /* We'll try again later. */
1413 	}
1414 
1415 	/* Collapse two adjacent packets if worthwhile and we can. */
1416 	if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1417 	   (skb->len < (cur_mss >> 1)) &&
1418 	   (skb->next != sk->sk_send_head) &&
1419 	   (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1420 	   (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1421 	   (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1422 	   (sysctl_tcp_retrans_collapse != 0))
1423 		tcp_retrans_try_collapse(sk, skb, cur_mss);
1424 
1425 	if(tp->af_specific->rebuild_header(sk))
1426 		return -EHOSTUNREACH; /* Routing failure or similar. */
1427 
1428 	/* Some Solaris stacks overoptimize and ignore the FIN on a
1429 	 * retransmit when old data is attached.  So strip it off
1430 	 * since it is cheap to do so and saves bytes on the network.
1431 	 */
1432 	if(skb->len > 0 &&
1433 	   (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1434 	   tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1435 		if (!pskb_trim(skb, 0)) {
1436 			TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1437 			skb_shinfo(skb)->tso_segs = 1;
1438 			skb_shinfo(skb)->tso_size = 0;
1439 			skb->ip_summed = CHECKSUM_NONE;
1440 			skb->csum = 0;
1441 		}
1442 	}
1443 
1444 	/* Make a copy, if the first transmission SKB clone we made
1445 	 * is still in somebody's hands, else make a clone.
1446 	 */
1447 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1448 
1449 	err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1450 
1451 	if (err == 0) {
1452 		/* Update global TCP statistics. */
1453 		TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1454 
1455 		tp->total_retrans++;
1456 
1457 #if FASTRETRANS_DEBUG > 0
1458 		if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1459 			if (net_ratelimit())
1460 				printk(KERN_DEBUG "retrans_out leaked.\n");
1461 		}
1462 #endif
1463 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1464 		tp->retrans_out += tcp_skb_pcount(skb);
1465 
1466 		/* Save stamp of the first retransmit. */
1467 		if (!tp->retrans_stamp)
1468 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1469 
1470 		tp->undo_retrans++;
1471 
1472 		/* snd_nxt is stored to detect loss of retransmitted segment,
1473 		 * see tcp_input.c tcp_sacktag_write_queue().
1474 		 */
1475 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1476 	}
1477 	return err;
1478 }
1479 
1480 /* This gets called after a retransmit timeout, and the initially
1481  * retransmitted data is acknowledged.  It tries to continue
1482  * resending the rest of the retransmit queue, until either
1483  * we've sent it all or the congestion window limit is reached.
1484  * If doing SACK, the first ACK which comes back for a timeout
1485  * based retransmit packet might feed us FACK information again.
1486  * If so, we use it to avoid unnecessarily retransmissions.
1487  */
1488 void tcp_xmit_retransmit_queue(struct sock *sk)
1489 {
1490 	const struct inet_connection_sock *icsk = inet_csk(sk);
1491 	struct tcp_sock *tp = tcp_sk(sk);
1492 	struct sk_buff *skb;
1493 	int packet_cnt;
1494 
1495 	if (tp->retransmit_skb_hint) {
1496 		skb = tp->retransmit_skb_hint;
1497 		packet_cnt = tp->retransmit_cnt_hint;
1498 	}else{
1499 		skb = sk->sk_write_queue.next;
1500 		packet_cnt = 0;
1501 	}
1502 
1503 	/* First pass: retransmit lost packets. */
1504 	if (tp->lost_out) {
1505 		sk_stream_for_retrans_queue_from(skb, sk) {
1506 			__u8 sacked = TCP_SKB_CB(skb)->sacked;
1507 
1508 			/* we could do better than to assign each time */
1509 			tp->retransmit_skb_hint = skb;
1510 			tp->retransmit_cnt_hint = packet_cnt;
1511 
1512 			/* Assume this retransmit will generate
1513 			 * only one packet for congestion window
1514 			 * calculation purposes.  This works because
1515 			 * tcp_retransmit_skb() will chop up the
1516 			 * packet to be MSS sized and all the
1517 			 * packet counting works out.
1518 			 */
1519 			if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1520 				return;
1521 
1522 			if (sacked & TCPCB_LOST) {
1523 				if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1524 					if (tcp_retransmit_skb(sk, skb)) {
1525 						tp->retransmit_skb_hint = NULL;
1526 						return;
1527 					}
1528 					if (icsk->icsk_ca_state != TCP_CA_Loss)
1529 						NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1530 					else
1531 						NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1532 
1533 					if (skb ==
1534 					    skb_peek(&sk->sk_write_queue))
1535 						inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1536 									  inet_csk(sk)->icsk_rto,
1537 									  TCP_RTO_MAX);
1538 				}
1539 
1540 				packet_cnt += tcp_skb_pcount(skb);
1541 				if (packet_cnt >= tp->lost_out)
1542 					break;
1543 			}
1544 		}
1545 	}
1546 
1547 	/* OK, demanded retransmission is finished. */
1548 
1549 	/* Forward retransmissions are possible only during Recovery. */
1550 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
1551 		return;
1552 
1553 	/* No forward retransmissions in Reno are possible. */
1554 	if (!tp->rx_opt.sack_ok)
1555 		return;
1556 
1557 	/* Yeah, we have to make difficult choice between forward transmission
1558 	 * and retransmission... Both ways have their merits...
1559 	 *
1560 	 * For now we do not retransmit anything, while we have some new
1561 	 * segments to send.
1562 	 */
1563 
1564 	if (tcp_may_send_now(sk, tp))
1565 		return;
1566 
1567 	if (tp->forward_skb_hint) {
1568 		skb = tp->forward_skb_hint;
1569 		packet_cnt = tp->forward_cnt_hint;
1570 	} else{
1571 		skb = sk->sk_write_queue.next;
1572 		packet_cnt = 0;
1573 	}
1574 
1575 	sk_stream_for_retrans_queue_from(skb, sk) {
1576 		tp->forward_cnt_hint = packet_cnt;
1577 		tp->forward_skb_hint = skb;
1578 
1579 		/* Similar to the retransmit loop above we
1580 		 * can pretend that the retransmitted SKB
1581 		 * we send out here will be composed of one
1582 		 * real MSS sized packet because tcp_retransmit_skb()
1583 		 * will fragment it if necessary.
1584 		 */
1585 		if (++packet_cnt > tp->fackets_out)
1586 			break;
1587 
1588 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1589 			break;
1590 
1591 		if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1592 			continue;
1593 
1594 		/* Ok, retransmit it. */
1595 		if (tcp_retransmit_skb(sk, skb)) {
1596 			tp->forward_skb_hint = NULL;
1597 			break;
1598 		}
1599 
1600 		if (skb == skb_peek(&sk->sk_write_queue))
1601 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1602 						  inet_csk(sk)->icsk_rto,
1603 						  TCP_RTO_MAX);
1604 
1605 		NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1606 	}
1607 }
1608 
1609 
1610 /* Send a fin.  The caller locks the socket for us.  This cannot be
1611  * allowed to fail queueing a FIN frame under any circumstances.
1612  */
1613 void tcp_send_fin(struct sock *sk)
1614 {
1615 	struct tcp_sock *tp = tcp_sk(sk);
1616 	struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1617 	int mss_now;
1618 
1619 	/* Optimization, tack on the FIN if we have a queue of
1620 	 * unsent frames.  But be careful about outgoing SACKS
1621 	 * and IP options.
1622 	 */
1623 	mss_now = tcp_current_mss(sk, 1);
1624 
1625 	if (sk->sk_send_head != NULL) {
1626 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1627 		TCP_SKB_CB(skb)->end_seq++;
1628 		tp->write_seq++;
1629 	} else {
1630 		/* Socket is locked, keep trying until memory is available. */
1631 		for (;;) {
1632 			skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
1633 			if (skb)
1634 				break;
1635 			yield();
1636 		}
1637 
1638 		/* Reserve space for headers and prepare control bits. */
1639 		skb_reserve(skb, MAX_TCP_HEADER);
1640 		skb->csum = 0;
1641 		TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1642 		TCP_SKB_CB(skb)->sacked = 0;
1643 		skb_shinfo(skb)->tso_segs = 1;
1644 		skb_shinfo(skb)->tso_size = 0;
1645 
1646 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1647 		TCP_SKB_CB(skb)->seq = tp->write_seq;
1648 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1649 		tcp_queue_skb(sk, skb);
1650 	}
1651 	__tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1652 }
1653 
1654 /* We get here when a process closes a file descriptor (either due to
1655  * an explicit close() or as a byproduct of exit()'ing) and there
1656  * was unread data in the receive queue.  This behavior is recommended
1657  * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM
1658  */
1659 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
1660 {
1661 	struct tcp_sock *tp = tcp_sk(sk);
1662 	struct sk_buff *skb;
1663 
1664 	/* NOTE: No TCP options attached and we never retransmit this. */
1665 	skb = alloc_skb(MAX_TCP_HEADER, priority);
1666 	if (!skb) {
1667 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1668 		return;
1669 	}
1670 
1671 	/* Reserve space for headers and prepare control bits. */
1672 	skb_reserve(skb, MAX_TCP_HEADER);
1673 	skb->csum = 0;
1674 	TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1675 	TCP_SKB_CB(skb)->sacked = 0;
1676 	skb_shinfo(skb)->tso_segs = 1;
1677 	skb_shinfo(skb)->tso_size = 0;
1678 
1679 	/* Send it off. */
1680 	TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1681 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1682 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1683 	if (tcp_transmit_skb(sk, skb, 0, priority))
1684 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1685 }
1686 
1687 /* WARNING: This routine must only be called when we have already sent
1688  * a SYN packet that crossed the incoming SYN that caused this routine
1689  * to get called. If this assumption fails then the initial rcv_wnd
1690  * and rcv_wscale values will not be correct.
1691  */
1692 int tcp_send_synack(struct sock *sk)
1693 {
1694 	struct sk_buff* skb;
1695 
1696 	skb = skb_peek(&sk->sk_write_queue);
1697 	if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1698 		printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1699 		return -EFAULT;
1700 	}
1701 	if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1702 		if (skb_cloned(skb)) {
1703 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1704 			if (nskb == NULL)
1705 				return -ENOMEM;
1706 			__skb_unlink(skb, &sk->sk_write_queue);
1707 			skb_header_release(nskb);
1708 			__skb_queue_head(&sk->sk_write_queue, nskb);
1709 			sk_stream_free_skb(sk, skb);
1710 			sk_charge_skb(sk, nskb);
1711 			skb = nskb;
1712 		}
1713 
1714 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1715 		TCP_ECN_send_synack(tcp_sk(sk), skb);
1716 	}
1717 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1718 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1719 }
1720 
1721 /*
1722  * Prepare a SYN-ACK.
1723  */
1724 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
1725 				 struct request_sock *req)
1726 {
1727 	struct inet_request_sock *ireq = inet_rsk(req);
1728 	struct tcp_sock *tp = tcp_sk(sk);
1729 	struct tcphdr *th;
1730 	int tcp_header_size;
1731 	struct sk_buff *skb;
1732 
1733 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1734 	if (skb == NULL)
1735 		return NULL;
1736 
1737 	/* Reserve space for headers. */
1738 	skb_reserve(skb, MAX_TCP_HEADER);
1739 
1740 	skb->dst = dst_clone(dst);
1741 
1742 	tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
1743 			   (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1744 			   (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1745 			   /* SACK_PERM is in the place of NOP NOP of TS */
1746 			   ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1747 	skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1748 
1749 	memset(th, 0, sizeof(struct tcphdr));
1750 	th->syn = 1;
1751 	th->ack = 1;
1752 	if (dst->dev->features&NETIF_F_TSO)
1753 		ireq->ecn_ok = 0;
1754 	TCP_ECN_make_synack(req, th);
1755 	th->source = inet_sk(sk)->sport;
1756 	th->dest = ireq->rmt_port;
1757 	TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1758 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1759 	TCP_SKB_CB(skb)->sacked = 0;
1760 	skb_shinfo(skb)->tso_segs = 1;
1761 	skb_shinfo(skb)->tso_size = 0;
1762 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
1763 	th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1764 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1765 		__u8 rcv_wscale;
1766 		/* Set this up on the first call only */
1767 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1768 		/* tcp_full_space because it is guaranteed to be the first packet */
1769 		tcp_select_initial_window(tcp_full_space(sk),
1770 			dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1771 			&req->rcv_wnd,
1772 			&req->window_clamp,
1773 			ireq->wscale_ok,
1774 			&rcv_wscale);
1775 		ireq->rcv_wscale = rcv_wscale;
1776 	}
1777 
1778 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1779 	th->window = htons(req->rcv_wnd);
1780 
1781 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1782 	tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1783 			      ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1784 			      TCP_SKB_CB(skb)->when,
1785 			      req->ts_recent);
1786 
1787 	skb->csum = 0;
1788 	th->doff = (tcp_header_size >> 2);
1789 	TCP_INC_STATS(TCP_MIB_OUTSEGS);
1790 	return skb;
1791 }
1792 
1793 /*
1794  * Do all connect socket setups that can be done AF independent.
1795  */
1796 static inline void tcp_connect_init(struct sock *sk)
1797 {
1798 	struct dst_entry *dst = __sk_dst_get(sk);
1799 	struct tcp_sock *tp = tcp_sk(sk);
1800 	__u8 rcv_wscale;
1801 
1802 	/* We'll fix this up when we get a response from the other end.
1803 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1804 	 */
1805 	tp->tcp_header_len = sizeof(struct tcphdr) +
1806 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1807 
1808 	/* If user gave his TCP_MAXSEG, record it to clamp */
1809 	if (tp->rx_opt.user_mss)
1810 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1811 	tp->max_window = 0;
1812 	tcp_sync_mss(sk, dst_mtu(dst));
1813 
1814 	if (!tp->window_clamp)
1815 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1816 	tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1817 	tcp_initialize_rcv_mss(sk);
1818 
1819 	tcp_select_initial_window(tcp_full_space(sk),
1820 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1821 				  &tp->rcv_wnd,
1822 				  &tp->window_clamp,
1823 				  sysctl_tcp_window_scaling,
1824 				  &rcv_wscale);
1825 
1826 	tp->rx_opt.rcv_wscale = rcv_wscale;
1827 	tp->rcv_ssthresh = tp->rcv_wnd;
1828 
1829 	sk->sk_err = 0;
1830 	sock_reset_flag(sk, SOCK_DONE);
1831 	tp->snd_wnd = 0;
1832 	tcp_init_wl(tp, tp->write_seq, 0);
1833 	tp->snd_una = tp->write_seq;
1834 	tp->snd_sml = tp->write_seq;
1835 	tp->rcv_nxt = 0;
1836 	tp->rcv_wup = 0;
1837 	tp->copied_seq = 0;
1838 
1839 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1840 	inet_csk(sk)->icsk_retransmits = 0;
1841 	tcp_clear_retrans(tp);
1842 }
1843 
1844 /*
1845  * Build a SYN and send it off.
1846  */
1847 int tcp_connect(struct sock *sk)
1848 {
1849 	struct tcp_sock *tp = tcp_sk(sk);
1850 	struct sk_buff *buff;
1851 
1852 	tcp_connect_init(sk);
1853 
1854 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
1855 	if (unlikely(buff == NULL))
1856 		return -ENOBUFS;
1857 
1858 	/* Reserve space for headers. */
1859 	skb_reserve(buff, MAX_TCP_HEADER);
1860 
1861 	TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1862 	TCP_ECN_send_syn(sk, tp, buff);
1863 	TCP_SKB_CB(buff)->sacked = 0;
1864 	skb_shinfo(buff)->tso_segs = 1;
1865 	skb_shinfo(buff)->tso_size = 0;
1866 	buff->csum = 0;
1867 	TCP_SKB_CB(buff)->seq = tp->write_seq++;
1868 	TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1869 	tp->snd_nxt = tp->write_seq;
1870 	tp->pushed_seq = tp->write_seq;
1871 
1872 	/* Send it off. */
1873 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
1874 	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1875 	skb_header_release(buff);
1876 	__skb_queue_tail(&sk->sk_write_queue, buff);
1877 	sk_charge_skb(sk, buff);
1878 	tp->packets_out += tcp_skb_pcount(buff);
1879 	tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);
1880 	TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1881 
1882 	/* Timer for repeating the SYN until an answer. */
1883 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1884 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1885 	return 0;
1886 }
1887 
1888 /* Send out a delayed ack, the caller does the policy checking
1889  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
1890  * for details.
1891  */
1892 void tcp_send_delayed_ack(struct sock *sk)
1893 {
1894 	struct inet_connection_sock *icsk = inet_csk(sk);
1895 	int ato = icsk->icsk_ack.ato;
1896 	unsigned long timeout;
1897 
1898 	if (ato > TCP_DELACK_MIN) {
1899 		const struct tcp_sock *tp = tcp_sk(sk);
1900 		int max_ato = HZ/2;
1901 
1902 		if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
1903 			max_ato = TCP_DELACK_MAX;
1904 
1905 		/* Slow path, intersegment interval is "high". */
1906 
1907 		/* If some rtt estimate is known, use it to bound delayed ack.
1908 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
1909 		 * directly.
1910 		 */
1911 		if (tp->srtt) {
1912 			int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1913 
1914 			if (rtt < max_ato)
1915 				max_ato = rtt;
1916 		}
1917 
1918 		ato = min(ato, max_ato);
1919 	}
1920 
1921 	/* Stay within the limit we were given */
1922 	timeout = jiffies + ato;
1923 
1924 	/* Use new timeout only if there wasn't a older one earlier. */
1925 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
1926 		/* If delack timer was blocked or is about to expire,
1927 		 * send ACK now.
1928 		 */
1929 		if (icsk->icsk_ack.blocked ||
1930 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
1931 			tcp_send_ack(sk);
1932 			return;
1933 		}
1934 
1935 		if (!time_before(timeout, icsk->icsk_ack.timeout))
1936 			timeout = icsk->icsk_ack.timeout;
1937 	}
1938 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
1939 	icsk->icsk_ack.timeout = timeout;
1940 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
1941 }
1942 
1943 /* This routine sends an ack and also updates the window. */
1944 void tcp_send_ack(struct sock *sk)
1945 {
1946 	/* If we have been reset, we may not send again. */
1947 	if (sk->sk_state != TCP_CLOSE) {
1948 		struct tcp_sock *tp = tcp_sk(sk);
1949 		struct sk_buff *buff;
1950 
1951 		/* We are not putting this on the write queue, so
1952 		 * tcp_transmit_skb() will set the ownership to this
1953 		 * sock.
1954 		 */
1955 		buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1956 		if (buff == NULL) {
1957 			inet_csk_schedule_ack(sk);
1958 			inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
1959 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1960 						  TCP_DELACK_MAX, TCP_RTO_MAX);
1961 			return;
1962 		}
1963 
1964 		/* Reserve space for headers and prepare control bits. */
1965 		skb_reserve(buff, MAX_TCP_HEADER);
1966 		buff->csum = 0;
1967 		TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1968 		TCP_SKB_CB(buff)->sacked = 0;
1969 		skb_shinfo(buff)->tso_segs = 1;
1970 		skb_shinfo(buff)->tso_size = 0;
1971 
1972 		/* Send it off, this clears delayed acks for us. */
1973 		TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1974 		TCP_SKB_CB(buff)->when = tcp_time_stamp;
1975 		tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
1976 	}
1977 }
1978 
1979 /* This routine sends a packet with an out of date sequence
1980  * number. It assumes the other end will try to ack it.
1981  *
1982  * Question: what should we make while urgent mode?
1983  * 4.4BSD forces sending single byte of data. We cannot send
1984  * out of window data, because we have SND.NXT==SND.MAX...
1985  *
1986  * Current solution: to send TWO zero-length segments in urgent mode:
1987  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1988  * out-of-date with SND.UNA-1 to probe window.
1989  */
1990 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1991 {
1992 	struct tcp_sock *tp = tcp_sk(sk);
1993 	struct sk_buff *skb;
1994 
1995 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
1996 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1997 	if (skb == NULL)
1998 		return -1;
1999 
2000 	/* Reserve space for headers and set control bits. */
2001 	skb_reserve(skb, MAX_TCP_HEADER);
2002 	skb->csum = 0;
2003 	TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
2004 	TCP_SKB_CB(skb)->sacked = urgent;
2005 	skb_shinfo(skb)->tso_segs = 1;
2006 	skb_shinfo(skb)->tso_size = 0;
2007 
2008 	/* Use a previous sequence.  This should cause the other
2009 	 * end to send an ack.  Don't queue or clone SKB, just
2010 	 * send it.
2011 	 */
2012 	TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
2013 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
2014 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2015 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2016 }
2017 
2018 int tcp_write_wakeup(struct sock *sk)
2019 {
2020 	if (sk->sk_state != TCP_CLOSE) {
2021 		struct tcp_sock *tp = tcp_sk(sk);
2022 		struct sk_buff *skb;
2023 
2024 		if ((skb = sk->sk_send_head) != NULL &&
2025 		    before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
2026 			int err;
2027 			unsigned int mss = tcp_current_mss(sk, 0);
2028 			unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
2029 
2030 			if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2031 				tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2032 
2033 			/* We are probing the opening of a window
2034 			 * but the window size is != 0
2035 			 * must have been a result SWS avoidance ( sender )
2036 			 */
2037 			if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2038 			    skb->len > mss) {
2039 				seg_size = min(seg_size, mss);
2040 				TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2041 				if (tcp_fragment(sk, skb, seg_size, mss))
2042 					return -1;
2043 			} else if (!tcp_skb_pcount(skb))
2044 				tcp_set_skb_tso_segs(sk, skb, mss);
2045 
2046 			TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2047 			TCP_SKB_CB(skb)->when = tcp_time_stamp;
2048 			err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2049 			if (!err) {
2050 				update_send_head(sk, tp, skb);
2051 			}
2052 			return err;
2053 		} else {
2054 			if (tp->urg_mode &&
2055 			    between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
2056 				tcp_xmit_probe_skb(sk, TCPCB_URG);
2057 			return tcp_xmit_probe_skb(sk, 0);
2058 		}
2059 	}
2060 	return -1;
2061 }
2062 
2063 /* A window probe timeout has occurred.  If window is not closed send
2064  * a partial packet else a zero probe.
2065  */
2066 void tcp_send_probe0(struct sock *sk)
2067 {
2068 	struct inet_connection_sock *icsk = inet_csk(sk);
2069 	struct tcp_sock *tp = tcp_sk(sk);
2070 	int err;
2071 
2072 	err = tcp_write_wakeup(sk);
2073 
2074 	if (tp->packets_out || !sk->sk_send_head) {
2075 		/* Cancel probe timer, if it is not required. */
2076 		icsk->icsk_probes_out = 0;
2077 		icsk->icsk_backoff = 0;
2078 		return;
2079 	}
2080 
2081 	if (err <= 0) {
2082 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
2083 			icsk->icsk_backoff++;
2084 		icsk->icsk_probes_out++;
2085 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2086 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2087 					  TCP_RTO_MAX);
2088 	} else {
2089 		/* If packet was not sent due to local congestion,
2090 		 * do not backoff and do not remember icsk_probes_out.
2091 		 * Let local senders to fight for local resources.
2092 		 *
2093 		 * Use accumulated backoff yet.
2094 		 */
2095 		if (!icsk->icsk_probes_out)
2096 			icsk->icsk_probes_out = 1;
2097 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2098 					  min(icsk->icsk_rto << icsk->icsk_backoff,
2099 					      TCP_RESOURCE_PROBE_INTERVAL),
2100 					  TCP_RTO_MAX);
2101 	}
2102 }
2103 
2104 EXPORT_SYMBOL(tcp_connect);
2105 EXPORT_SYMBOL(tcp_make_synack);
2106 EXPORT_SYMBOL(tcp_simple_retransmit);
2107 EXPORT_SYMBOL(tcp_sync_mss);
2108 EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor);
2109