1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: Pedro Roque : Retransmit queue handled by TCP. 25 * : Fragmentation on mtu decrease 26 * : Segment collapse on retransmit 27 * : AF independence 28 * 29 * Linus Torvalds : send_delayed_ack 30 * David S. Miller : Charge memory using the right skb 31 * during syn/ack processing. 32 * David S. Miller : Output engine completely rewritten. 33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 34 * Cacophonix Gaul : draft-minshall-nagle-01 35 * J Hadi Salim : ECN support 36 * 37 */ 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/module.h> 43 #include <linux/smp_lock.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse = 1; 47 48 /* This limits the percentage of the congestion window which we 49 * will allow a single TSO frame to consume. Building TSO frames 50 * which are too large can cause TCP streams to be bursty. 51 */ 52 int sysctl_tcp_tso_win_divisor = 3; 53 54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, 55 struct sk_buff *skb) 56 { 57 sk->sk_send_head = skb->next; 58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) 59 sk->sk_send_head = NULL; 60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 61 tcp_packets_out_inc(sk, tp, skb); 62 } 63 64 /* SND.NXT, if window was not shrunk. 65 * If window has been shrunk, what should we make? It is not clear at all. 66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 68 * invalid. OK, let's make this for now: 69 */ 70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) 71 { 72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) 73 return tp->snd_nxt; 74 else 75 return tp->snd_una+tp->snd_wnd; 76 } 77 78 /* Calculate mss to advertise in SYN segment. 79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 80 * 81 * 1. It is independent of path mtu. 82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 84 * attached devices, because some buggy hosts are confused by 85 * large MSS. 86 * 4. We do not make 3, we advertise MSS, calculated from first 87 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 88 * This may be overridden via information stored in routing table. 89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 90 * probably even Jumbo". 91 */ 92 static __u16 tcp_advertise_mss(struct sock *sk) 93 { 94 struct tcp_sock *tp = tcp_sk(sk); 95 struct dst_entry *dst = __sk_dst_get(sk); 96 int mss = tp->advmss; 97 98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { 99 mss = dst_metric(dst, RTAX_ADVMSS); 100 tp->advmss = mss; 101 } 102 103 return (__u16)mss; 104 } 105 106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 107 * This is the first part of cwnd validation mechanism. */ 108 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) 109 { 110 struct tcp_sock *tp = tcp_sk(sk); 111 s32 delta = tcp_time_stamp - tp->lsndtime; 112 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 113 u32 cwnd = tp->snd_cwnd; 114 115 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 116 117 tp->snd_ssthresh = tcp_current_ssthresh(sk); 118 restart_cwnd = min(restart_cwnd, cwnd); 119 120 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 121 cwnd >>= 1; 122 tp->snd_cwnd = max(cwnd, restart_cwnd); 123 tp->snd_cwnd_stamp = tcp_time_stamp; 124 tp->snd_cwnd_used = 0; 125 } 126 127 static inline void tcp_event_data_sent(struct tcp_sock *tp, 128 struct sk_buff *skb, struct sock *sk) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const u32 now = tcp_time_stamp; 132 133 if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto) 134 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 135 136 tp->lsndtime = now; 137 138 /* If it is a reply for ato after last received 139 * packet, enter pingpong mode. 140 */ 141 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 142 icsk->icsk_ack.pingpong = 1; 143 } 144 145 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 146 { 147 tcp_dec_quickack_mode(sk, pkts); 148 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 149 } 150 151 /* Determine a window scaling and initial window to offer. 152 * Based on the assumption that the given amount of space 153 * will be offered. Store the results in the tp structure. 154 * NOTE: for smooth operation initial space offering should 155 * be a multiple of mss if possible. We assume here that mss >= 1. 156 * This MUST be enforced by all callers. 157 */ 158 void tcp_select_initial_window(int __space, __u32 mss, 159 __u32 *rcv_wnd, __u32 *window_clamp, 160 int wscale_ok, __u8 *rcv_wscale) 161 { 162 unsigned int space = (__space < 0 ? 0 : __space); 163 164 /* If no clamp set the clamp to the max possible scaled window */ 165 if (*window_clamp == 0) 166 (*window_clamp) = (65535 << 14); 167 space = min(*window_clamp, space); 168 169 /* Quantize space offering to a multiple of mss if possible. */ 170 if (space > mss) 171 space = (space / mss) * mss; 172 173 /* NOTE: offering an initial window larger than 32767 174 * will break some buggy TCP stacks. We try to be nice. 175 * If we are not window scaling, then this truncates 176 * our initial window offering to 32k. There should also 177 * be a sysctl option to stop being nice. 178 */ 179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 180 (*rcv_wscale) = 0; 181 if (wscale_ok) { 182 /* Set window scaling on max possible window 183 * See RFC1323 for an explanation of the limit to 14 184 */ 185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 186 while (space > 65535 && (*rcv_wscale) < 14) { 187 space >>= 1; 188 (*rcv_wscale)++; 189 } 190 } 191 192 /* Set initial window to value enough for senders, 193 * following RFC2414. Senders, not following this RFC, 194 * will be satisfied with 2. 195 */ 196 if (mss > (1<<*rcv_wscale)) { 197 int init_cwnd = 4; 198 if (mss > 1460*3) 199 init_cwnd = 2; 200 else if (mss > 1460) 201 init_cwnd = 3; 202 if (*rcv_wnd > init_cwnd*mss) 203 *rcv_wnd = init_cwnd*mss; 204 } 205 206 /* Set the clamp no higher than max representable value */ 207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 208 } 209 210 /* Chose a new window to advertise, update state in tcp_sock for the 211 * socket, and return result with RFC1323 scaling applied. The return 212 * value can be stuffed directly into th->window for an outgoing 213 * frame. 214 */ 215 static __inline__ u16 tcp_select_window(struct sock *sk) 216 { 217 struct tcp_sock *tp = tcp_sk(sk); 218 u32 cur_win = tcp_receive_window(tp); 219 u32 new_win = __tcp_select_window(sk); 220 221 /* Never shrink the offered window */ 222 if(new_win < cur_win) { 223 /* Danger Will Robinson! 224 * Don't update rcv_wup/rcv_wnd here or else 225 * we will not be able to advertise a zero 226 * window in time. --DaveM 227 * 228 * Relax Will Robinson. 229 */ 230 new_win = cur_win; 231 } 232 tp->rcv_wnd = new_win; 233 tp->rcv_wup = tp->rcv_nxt; 234 235 /* Make sure we do not exceed the maximum possible 236 * scaled window. 237 */ 238 if (!tp->rx_opt.rcv_wscale) 239 new_win = min(new_win, MAX_TCP_WINDOW); 240 else 241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 242 243 /* RFC1323 scaling applied */ 244 new_win >>= tp->rx_opt.rcv_wscale; 245 246 /* If we advertise zero window, disable fast path. */ 247 if (new_win == 0) 248 tp->pred_flags = 0; 249 250 return new_win; 251 } 252 253 254 /* This routine actually transmits TCP packets queued in by 255 * tcp_do_sendmsg(). This is used by both the initial 256 * transmission and possible later retransmissions. 257 * All SKB's seen here are completely headerless. It is our 258 * job to build the TCP header, and pass the packet down to 259 * IP so it can do the same plus pass the packet off to the 260 * device. 261 * 262 * We are working here with either a clone of the original 263 * SKB, or a fresh unique copy made by the retransmit engine. 264 */ 265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask) 266 { 267 const struct inet_connection_sock *icsk = inet_csk(sk); 268 struct inet_sock *inet; 269 struct tcp_sock *tp; 270 struct tcp_skb_cb *tcb; 271 int tcp_header_size; 272 struct tcphdr *th; 273 int sysctl_flags; 274 int err; 275 276 BUG_ON(!skb || !tcp_skb_pcount(skb)); 277 278 /* If congestion control is doing timestamping, we must 279 * take such a timestamp before we potentially clone/copy. 280 */ 281 if (icsk->icsk_ca_ops->rtt_sample) 282 __net_timestamp(skb); 283 284 if (likely(clone_it)) { 285 if (unlikely(skb_cloned(skb))) 286 skb = pskb_copy(skb, gfp_mask); 287 else 288 skb = skb_clone(skb, gfp_mask); 289 if (unlikely(!skb)) 290 return -ENOBUFS; 291 } 292 293 inet = inet_sk(sk); 294 tp = tcp_sk(sk); 295 tcb = TCP_SKB_CB(skb); 296 tcp_header_size = tp->tcp_header_len; 297 298 #define SYSCTL_FLAG_TSTAMPS 0x1 299 #define SYSCTL_FLAG_WSCALE 0x2 300 #define SYSCTL_FLAG_SACK 0x4 301 302 sysctl_flags = 0; 303 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 304 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; 305 if(sysctl_tcp_timestamps) { 306 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; 307 sysctl_flags |= SYSCTL_FLAG_TSTAMPS; 308 } 309 if (sysctl_tcp_window_scaling) { 310 tcp_header_size += TCPOLEN_WSCALE_ALIGNED; 311 sysctl_flags |= SYSCTL_FLAG_WSCALE; 312 } 313 if (sysctl_tcp_sack) { 314 sysctl_flags |= SYSCTL_FLAG_SACK; 315 if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) 316 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; 317 } 318 } else if (unlikely(tp->rx_opt.eff_sacks)) { 319 /* A SACK is 2 pad bytes, a 2 byte header, plus 320 * 2 32-bit sequence numbers for each SACK block. 321 */ 322 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + 323 (tp->rx_opt.eff_sacks * 324 TCPOLEN_SACK_PERBLOCK)); 325 } 326 327 if (tcp_packets_in_flight(tp) == 0) 328 tcp_ca_event(sk, CA_EVENT_TX_START); 329 330 th = (struct tcphdr *) skb_push(skb, tcp_header_size); 331 skb->h.th = th; 332 skb_set_owner_w(skb, sk); 333 334 /* Build TCP header and checksum it. */ 335 th->source = inet->sport; 336 th->dest = inet->dport; 337 th->seq = htonl(tcb->seq); 338 th->ack_seq = htonl(tp->rcv_nxt); 339 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 340 tcb->flags); 341 342 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 343 /* RFC1323: The window in SYN & SYN/ACK segments 344 * is never scaled. 345 */ 346 th->window = htons(tp->rcv_wnd); 347 } else { 348 th->window = htons(tcp_select_window(sk)); 349 } 350 th->check = 0; 351 th->urg_ptr = 0; 352 353 if (unlikely(tp->urg_mode && 354 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF))) { 355 th->urg_ptr = htons(tp->snd_up-tcb->seq); 356 th->urg = 1; 357 } 358 359 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 360 tcp_syn_build_options((__u32 *)(th + 1), 361 tcp_advertise_mss(sk), 362 (sysctl_flags & SYSCTL_FLAG_TSTAMPS), 363 (sysctl_flags & SYSCTL_FLAG_SACK), 364 (sysctl_flags & SYSCTL_FLAG_WSCALE), 365 tp->rx_opt.rcv_wscale, 366 tcb->when, 367 tp->rx_opt.ts_recent); 368 } else { 369 tcp_build_and_update_options((__u32 *)(th + 1), 370 tp, tcb->when); 371 TCP_ECN_send(sk, tp, skb, tcp_header_size); 372 } 373 374 tp->af_specific->send_check(sk, th, skb->len, skb); 375 376 if (likely(tcb->flags & TCPCB_FLAG_ACK)) 377 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 378 379 if (skb->len != tcp_header_size) 380 tcp_event_data_sent(tp, skb, sk); 381 382 TCP_INC_STATS(TCP_MIB_OUTSEGS); 383 384 err = tp->af_specific->queue_xmit(skb, 0); 385 if (unlikely(err <= 0)) 386 return err; 387 388 tcp_enter_cwr(sk); 389 390 /* NET_XMIT_CN is special. It does not guarantee, 391 * that this packet is lost. It tells that device 392 * is about to start to drop packets or already 393 * drops some packets of the same priority and 394 * invokes us to send less aggressively. 395 */ 396 return err == NET_XMIT_CN ? 0 : err; 397 398 #undef SYSCTL_FLAG_TSTAMPS 399 #undef SYSCTL_FLAG_WSCALE 400 #undef SYSCTL_FLAG_SACK 401 } 402 403 404 /* This routine just queue's the buffer 405 * 406 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 407 * otherwise socket can stall. 408 */ 409 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 410 { 411 struct tcp_sock *tp = tcp_sk(sk); 412 413 /* Advance write_seq and place onto the write_queue. */ 414 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 415 skb_header_release(skb); 416 __skb_queue_tail(&sk->sk_write_queue, skb); 417 sk_charge_skb(sk, skb); 418 419 /* Queue it, remembering where we must start sending. */ 420 if (sk->sk_send_head == NULL) 421 sk->sk_send_head = skb; 422 } 423 424 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 425 { 426 if (skb->len <= mss_now || 427 !(sk->sk_route_caps & NETIF_F_TSO)) { 428 /* Avoid the costly divide in the normal 429 * non-TSO case. 430 */ 431 skb_shinfo(skb)->tso_segs = 1; 432 skb_shinfo(skb)->tso_size = 0; 433 } else { 434 unsigned int factor; 435 436 factor = skb->len + (mss_now - 1); 437 factor /= mss_now; 438 skb_shinfo(skb)->tso_segs = factor; 439 skb_shinfo(skb)->tso_size = mss_now; 440 } 441 } 442 443 /* Function to create two new TCP segments. Shrinks the given segment 444 * to the specified size and appends a new segment with the rest of the 445 * packet to the list. This won't be called frequently, I hope. 446 * Remember, these are still headerless SKBs at this point. 447 */ 448 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now) 449 { 450 struct tcp_sock *tp = tcp_sk(sk); 451 struct sk_buff *buff; 452 int nsize, old_factor; 453 u16 flags; 454 455 BUG_ON(len > skb->len); 456 457 clear_all_retrans_hints(tp); 458 nsize = skb_headlen(skb) - len; 459 if (nsize < 0) 460 nsize = 0; 461 462 if (skb_cloned(skb) && 463 skb_is_nonlinear(skb) && 464 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 465 return -ENOMEM; 466 467 /* Get a new skb... force flag on. */ 468 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 469 if (buff == NULL) 470 return -ENOMEM; /* We'll just try again later. */ 471 sk_charge_skb(sk, buff); 472 473 /* Correct the sequence numbers. */ 474 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 475 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 476 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 477 478 /* PSH and FIN should only be set in the second packet. */ 479 flags = TCP_SKB_CB(skb)->flags; 480 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 481 TCP_SKB_CB(buff)->flags = flags; 482 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 483 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; 484 485 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { 486 /* Copy and checksum data tail into the new buffer. */ 487 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), 488 nsize, 0); 489 490 skb_trim(skb, len); 491 492 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 493 } else { 494 skb->ip_summed = CHECKSUM_HW; 495 skb_split(skb, buff, len); 496 } 497 498 buff->ip_summed = skb->ip_summed; 499 500 /* Looks stupid, but our code really uses when of 501 * skbs, which it never sent before. --ANK 502 */ 503 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 504 buff->tstamp = skb->tstamp; 505 506 old_factor = tcp_skb_pcount(skb); 507 508 /* Fix up tso_factor for both original and new SKB. */ 509 tcp_set_skb_tso_segs(sk, skb, mss_now); 510 tcp_set_skb_tso_segs(sk, buff, mss_now); 511 512 /* If this packet has been sent out already, we must 513 * adjust the various packet counters. 514 */ 515 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 516 int diff = old_factor - tcp_skb_pcount(skb) - 517 tcp_skb_pcount(buff); 518 519 tp->packets_out -= diff; 520 521 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 522 tp->sacked_out -= diff; 523 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 524 tp->retrans_out -= diff; 525 526 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { 527 tp->lost_out -= diff; 528 tp->left_out -= diff; 529 } 530 531 if (diff > 0) { 532 /* Adjust Reno SACK estimate. */ 533 if (!tp->rx_opt.sack_ok) { 534 tp->sacked_out -= diff; 535 if ((int)tp->sacked_out < 0) 536 tp->sacked_out = 0; 537 tcp_sync_left_out(tp); 538 } 539 540 tp->fackets_out -= diff; 541 if ((int)tp->fackets_out < 0) 542 tp->fackets_out = 0; 543 } 544 } 545 546 /* Link BUFF into the send queue. */ 547 skb_header_release(buff); 548 __skb_append(skb, buff, &sk->sk_write_queue); 549 550 return 0; 551 } 552 553 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 554 * eventually). The difference is that pulled data not copied, but 555 * immediately discarded. 556 */ 557 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) 558 { 559 int i, k, eat; 560 561 eat = len; 562 k = 0; 563 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { 564 if (skb_shinfo(skb)->frags[i].size <= eat) { 565 put_page(skb_shinfo(skb)->frags[i].page); 566 eat -= skb_shinfo(skb)->frags[i].size; 567 } else { 568 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 569 if (eat) { 570 skb_shinfo(skb)->frags[k].page_offset += eat; 571 skb_shinfo(skb)->frags[k].size -= eat; 572 eat = 0; 573 } 574 k++; 575 } 576 } 577 skb_shinfo(skb)->nr_frags = k; 578 579 skb->tail = skb->data; 580 skb->data_len -= len; 581 skb->len = skb->data_len; 582 return skb->tail; 583 } 584 585 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 586 { 587 if (skb_cloned(skb) && 588 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 589 return -ENOMEM; 590 591 if (len <= skb_headlen(skb)) { 592 __skb_pull(skb, len); 593 } else { 594 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) 595 return -ENOMEM; 596 } 597 598 TCP_SKB_CB(skb)->seq += len; 599 skb->ip_summed = CHECKSUM_HW; 600 601 skb->truesize -= len; 602 sk->sk_wmem_queued -= len; 603 sk->sk_forward_alloc += len; 604 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 605 606 /* Any change of skb->len requires recalculation of tso 607 * factor and mss. 608 */ 609 if (tcp_skb_pcount(skb) > 1) 610 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1)); 611 612 return 0; 613 } 614 615 /* This function synchronize snd mss to current pmtu/exthdr set. 616 617 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 618 for TCP options, but includes only bare TCP header. 619 620 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 621 It is minimum of user_mss and mss received with SYN. 622 It also does not include TCP options. 623 624 tp->pmtu_cookie is last pmtu, seen by this function. 625 626 tp->mss_cache is current effective sending mss, including 627 all tcp options except for SACKs. It is evaluated, 628 taking into account current pmtu, but never exceeds 629 tp->rx_opt.mss_clamp. 630 631 NOTE1. rfc1122 clearly states that advertised MSS 632 DOES NOT include either tcp or ip options. 633 634 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside 635 this function. --ANK (980731) 636 */ 637 638 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 639 { 640 struct tcp_sock *tp = tcp_sk(sk); 641 int mss_now; 642 643 /* Calculate base mss without TCP options: 644 It is MMS_S - sizeof(tcphdr) of rfc1122 645 */ 646 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); 647 648 /* Clamp it (mss_clamp does not include tcp options) */ 649 if (mss_now > tp->rx_opt.mss_clamp) 650 mss_now = tp->rx_opt.mss_clamp; 651 652 /* Now subtract optional transport overhead */ 653 mss_now -= tp->ext_header_len; 654 655 /* Then reserve room for full set of TCP options and 8 bytes of data */ 656 if (mss_now < 48) 657 mss_now = 48; 658 659 /* Now subtract TCP options size, not including SACKs */ 660 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 661 662 /* Bound mss with half of window */ 663 if (tp->max_window && mss_now > (tp->max_window>>1)) 664 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); 665 666 /* And store cached results */ 667 tp->pmtu_cookie = pmtu; 668 tp->mss_cache = mss_now; 669 670 return mss_now; 671 } 672 673 /* Compute the current effective MSS, taking SACKs and IP options, 674 * and even PMTU discovery events into account. 675 * 676 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up 677 * cannot be large. However, taking into account rare use of URG, this 678 * is not a big flaw. 679 */ 680 unsigned int tcp_current_mss(struct sock *sk, int large_allowed) 681 { 682 struct tcp_sock *tp = tcp_sk(sk); 683 struct dst_entry *dst = __sk_dst_get(sk); 684 u32 mss_now; 685 u16 xmit_size_goal; 686 int doing_tso = 0; 687 688 mss_now = tp->mss_cache; 689 690 if (large_allowed && 691 (sk->sk_route_caps & NETIF_F_TSO) && 692 !tp->urg_mode) 693 doing_tso = 1; 694 695 if (dst) { 696 u32 mtu = dst_mtu(dst); 697 if (mtu != tp->pmtu_cookie) 698 mss_now = tcp_sync_mss(sk, mtu); 699 } 700 701 if (tp->rx_opt.eff_sacks) 702 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + 703 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 704 705 xmit_size_goal = mss_now; 706 707 if (doing_tso) { 708 xmit_size_goal = 65535 - 709 tp->af_specific->net_header_len - 710 tp->ext_header_len - tp->tcp_header_len; 711 712 if (tp->max_window && 713 (xmit_size_goal > (tp->max_window >> 1))) 714 xmit_size_goal = max((tp->max_window >> 1), 715 68U - tp->tcp_header_len); 716 717 xmit_size_goal -= (xmit_size_goal % mss_now); 718 } 719 tp->xmit_size_goal = xmit_size_goal; 720 721 return mss_now; 722 } 723 724 /* Congestion window validation. (RFC2861) */ 725 726 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp) 727 { 728 __u32 packets_out = tp->packets_out; 729 730 if (packets_out >= tp->snd_cwnd) { 731 /* Network is feed fully. */ 732 tp->snd_cwnd_used = 0; 733 tp->snd_cwnd_stamp = tcp_time_stamp; 734 } else { 735 /* Network starves. */ 736 if (tp->packets_out > tp->snd_cwnd_used) 737 tp->snd_cwnd_used = tp->packets_out; 738 739 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 740 tcp_cwnd_application_limited(sk); 741 } 742 } 743 744 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd) 745 { 746 u32 window, cwnd_len; 747 748 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq); 749 cwnd_len = mss_now * cwnd; 750 return min(window, cwnd_len); 751 } 752 753 /* Can at least one segment of SKB be sent right now, according to the 754 * congestion window rules? If so, return how many segments are allowed. 755 */ 756 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb) 757 { 758 u32 in_flight, cwnd; 759 760 /* Don't be strict about the congestion window for the final FIN. */ 761 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 762 return 1; 763 764 in_flight = tcp_packets_in_flight(tp); 765 cwnd = tp->snd_cwnd; 766 if (in_flight < cwnd) 767 return (cwnd - in_flight); 768 769 return 0; 770 } 771 772 /* This must be invoked the first time we consider transmitting 773 * SKB onto the wire. 774 */ 775 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 776 { 777 int tso_segs = tcp_skb_pcount(skb); 778 779 if (!tso_segs || 780 (tso_segs > 1 && 781 skb_shinfo(skb)->tso_size != mss_now)) { 782 tcp_set_skb_tso_segs(sk, skb, mss_now); 783 tso_segs = tcp_skb_pcount(skb); 784 } 785 return tso_segs; 786 } 787 788 static inline int tcp_minshall_check(const struct tcp_sock *tp) 789 { 790 return after(tp->snd_sml,tp->snd_una) && 791 !after(tp->snd_sml, tp->snd_nxt); 792 } 793 794 /* Return 0, if packet can be sent now without violation Nagle's rules: 795 * 1. It is full sized. 796 * 2. Or it contains FIN. (already checked by caller) 797 * 3. Or TCP_NODELAY was set. 798 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 799 * With Minshall's modification: all sent small packets are ACKed. 800 */ 801 802 static inline int tcp_nagle_check(const struct tcp_sock *tp, 803 const struct sk_buff *skb, 804 unsigned mss_now, int nonagle) 805 { 806 return (skb->len < mss_now && 807 ((nonagle&TCP_NAGLE_CORK) || 808 (!nonagle && 809 tp->packets_out && 810 tcp_minshall_check(tp)))); 811 } 812 813 /* Return non-zero if the Nagle test allows this packet to be 814 * sent now. 815 */ 816 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 817 unsigned int cur_mss, int nonagle) 818 { 819 /* Nagle rule does not apply to frames, which sit in the middle of the 820 * write_queue (they have no chances to get new data). 821 * 822 * This is implemented in the callers, where they modify the 'nonagle' 823 * argument based upon the location of SKB in the send queue. 824 */ 825 if (nonagle & TCP_NAGLE_PUSH) 826 return 1; 827 828 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 829 if (tp->urg_mode || 830 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) 831 return 1; 832 833 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 834 return 1; 835 836 return 0; 837 } 838 839 /* Does at least the first segment of SKB fit into the send window? */ 840 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss) 841 { 842 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 843 844 if (skb->len > cur_mss) 845 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 846 847 return !after(end_seq, tp->snd_una + tp->snd_wnd); 848 } 849 850 /* This checks if the data bearing packet SKB (usually sk->sk_send_head) 851 * should be put on the wire right now. If so, it returns the number of 852 * packets allowed by the congestion window. 853 */ 854 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 855 unsigned int cur_mss, int nonagle) 856 { 857 struct tcp_sock *tp = tcp_sk(sk); 858 unsigned int cwnd_quota; 859 860 tcp_init_tso_segs(sk, skb, cur_mss); 861 862 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 863 return 0; 864 865 cwnd_quota = tcp_cwnd_test(tp, skb); 866 if (cwnd_quota && 867 !tcp_snd_wnd_test(tp, skb, cur_mss)) 868 cwnd_quota = 0; 869 870 return cwnd_quota; 871 } 872 873 static inline int tcp_skb_is_last(const struct sock *sk, 874 const struct sk_buff *skb) 875 { 876 return skb->next == (struct sk_buff *)&sk->sk_write_queue; 877 } 878 879 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp) 880 { 881 struct sk_buff *skb = sk->sk_send_head; 882 883 return (skb && 884 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), 885 (tcp_skb_is_last(sk, skb) ? 886 TCP_NAGLE_PUSH : 887 tp->nonagle))); 888 } 889 890 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 891 * which is put after SKB on the list. It is very much like 892 * tcp_fragment() except that it may make several kinds of assumptions 893 * in order to speed up the splitting operation. In particular, we 894 * know that all the data is in scatter-gather pages, and that the 895 * packet has never been sent out before (and thus is not cloned). 896 */ 897 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now) 898 { 899 struct sk_buff *buff; 900 int nlen = skb->len - len; 901 u16 flags; 902 903 /* All of a TSO frame must be composed of paged data. */ 904 if (skb->len != skb->data_len) 905 return tcp_fragment(sk, skb, len, mss_now); 906 907 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC); 908 if (unlikely(buff == NULL)) 909 return -ENOMEM; 910 911 buff->truesize = nlen; 912 skb->truesize -= nlen; 913 914 /* Correct the sequence numbers. */ 915 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 916 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 917 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 918 919 /* PSH and FIN should only be set in the second packet. */ 920 flags = TCP_SKB_CB(skb)->flags; 921 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 922 TCP_SKB_CB(buff)->flags = flags; 923 924 /* This packet was never sent out yet, so no SACK bits. */ 925 TCP_SKB_CB(buff)->sacked = 0; 926 927 buff->ip_summed = skb->ip_summed = CHECKSUM_HW; 928 skb_split(skb, buff, len); 929 930 /* Fix up tso_factor for both original and new SKB. */ 931 tcp_set_skb_tso_segs(sk, skb, mss_now); 932 tcp_set_skb_tso_segs(sk, buff, mss_now); 933 934 /* Link BUFF into the send queue. */ 935 skb_header_release(buff); 936 __skb_append(skb, buff, &sk->sk_write_queue); 937 938 return 0; 939 } 940 941 /* Try to defer sending, if possible, in order to minimize the amount 942 * of TSO splitting we do. View it as a kind of TSO Nagle test. 943 * 944 * This algorithm is from John Heffner. 945 */ 946 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 947 { 948 const struct inet_connection_sock *icsk = inet_csk(sk); 949 u32 send_win, cong_win, limit, in_flight; 950 951 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 952 return 0; 953 954 if (icsk->icsk_ca_state != TCP_CA_Open) 955 return 0; 956 957 in_flight = tcp_packets_in_flight(tp); 958 959 BUG_ON(tcp_skb_pcount(skb) <= 1 || 960 (tp->snd_cwnd <= in_flight)); 961 962 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq; 963 964 /* From in_flight test above, we know that cwnd > in_flight. */ 965 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 966 967 limit = min(send_win, cong_win); 968 969 if (sysctl_tcp_tso_win_divisor) { 970 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 971 972 /* If at least some fraction of a window is available, 973 * just use it. 974 */ 975 chunk /= sysctl_tcp_tso_win_divisor; 976 if (limit >= chunk) 977 return 0; 978 } else { 979 /* Different approach, try not to defer past a single 980 * ACK. Receiver should ACK every other full sized 981 * frame, so if we have space for more than 3 frames 982 * then send now. 983 */ 984 if (limit > tcp_max_burst(tp) * tp->mss_cache) 985 return 0; 986 } 987 988 /* Ok, it looks like it is advisable to defer. */ 989 return 1; 990 } 991 992 /* This routine writes packets to the network. It advances the 993 * send_head. This happens as incoming acks open up the remote 994 * window for us. 995 * 996 * Returns 1, if no segments are in flight and we have queued segments, but 997 * cannot send anything now because of SWS or another problem. 998 */ 999 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) 1000 { 1001 struct tcp_sock *tp = tcp_sk(sk); 1002 struct sk_buff *skb; 1003 unsigned int tso_segs, sent_pkts; 1004 int cwnd_quota; 1005 1006 /* If we are closed, the bytes will have to remain here. 1007 * In time closedown will finish, we empty the write queue and all 1008 * will be happy. 1009 */ 1010 if (unlikely(sk->sk_state == TCP_CLOSE)) 1011 return 0; 1012 1013 sent_pkts = 0; 1014 while ((skb = sk->sk_send_head)) { 1015 unsigned int limit; 1016 1017 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1018 BUG_ON(!tso_segs); 1019 1020 cwnd_quota = tcp_cwnd_test(tp, skb); 1021 if (!cwnd_quota) 1022 break; 1023 1024 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1025 break; 1026 1027 if (tso_segs == 1) { 1028 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1029 (tcp_skb_is_last(sk, skb) ? 1030 nonagle : TCP_NAGLE_PUSH)))) 1031 break; 1032 } else { 1033 if (tcp_tso_should_defer(sk, tp, skb)) 1034 break; 1035 } 1036 1037 limit = mss_now; 1038 if (tso_segs > 1) { 1039 limit = tcp_window_allows(tp, skb, 1040 mss_now, cwnd_quota); 1041 1042 if (skb->len < limit) { 1043 unsigned int trim = skb->len % mss_now; 1044 1045 if (trim) 1046 limit = skb->len - trim; 1047 } 1048 } 1049 1050 if (skb->len > limit && 1051 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1052 break; 1053 1054 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1055 1056 if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC))) 1057 break; 1058 1059 /* Advance the send_head. This one is sent out. 1060 * This call will increment packets_out. 1061 */ 1062 update_send_head(sk, tp, skb); 1063 1064 tcp_minshall_update(tp, mss_now, skb); 1065 sent_pkts++; 1066 } 1067 1068 if (likely(sent_pkts)) { 1069 tcp_cwnd_validate(sk, tp); 1070 return 0; 1071 } 1072 return !tp->packets_out && sk->sk_send_head; 1073 } 1074 1075 /* Push out any pending frames which were held back due to 1076 * TCP_CORK or attempt at coalescing tiny packets. 1077 * The socket must be locked by the caller. 1078 */ 1079 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp, 1080 unsigned int cur_mss, int nonagle) 1081 { 1082 struct sk_buff *skb = sk->sk_send_head; 1083 1084 if (skb) { 1085 if (tcp_write_xmit(sk, cur_mss, nonagle)) 1086 tcp_check_probe_timer(sk, tp); 1087 } 1088 } 1089 1090 /* Send _single_ skb sitting at the send head. This function requires 1091 * true push pending frames to setup probe timer etc. 1092 */ 1093 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1094 { 1095 struct tcp_sock *tp = tcp_sk(sk); 1096 struct sk_buff *skb = sk->sk_send_head; 1097 unsigned int tso_segs, cwnd_quota; 1098 1099 BUG_ON(!skb || skb->len < mss_now); 1100 1101 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1102 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); 1103 1104 if (likely(cwnd_quota)) { 1105 unsigned int limit; 1106 1107 BUG_ON(!tso_segs); 1108 1109 limit = mss_now; 1110 if (tso_segs > 1) { 1111 limit = tcp_window_allows(tp, skb, 1112 mss_now, cwnd_quota); 1113 1114 if (skb->len < limit) { 1115 unsigned int trim = skb->len % mss_now; 1116 1117 if (trim) 1118 limit = skb->len - trim; 1119 } 1120 } 1121 1122 if (skb->len > limit && 1123 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1124 return; 1125 1126 /* Send it out now. */ 1127 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1128 1129 if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) { 1130 update_send_head(sk, tp, skb); 1131 tcp_cwnd_validate(sk, tp); 1132 return; 1133 } 1134 } 1135 } 1136 1137 /* This function returns the amount that we can raise the 1138 * usable window based on the following constraints 1139 * 1140 * 1. The window can never be shrunk once it is offered (RFC 793) 1141 * 2. We limit memory per socket 1142 * 1143 * RFC 1122: 1144 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1145 * RECV.NEXT + RCV.WIN fixed until: 1146 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1147 * 1148 * i.e. don't raise the right edge of the window until you can raise 1149 * it at least MSS bytes. 1150 * 1151 * Unfortunately, the recommended algorithm breaks header prediction, 1152 * since header prediction assumes th->window stays fixed. 1153 * 1154 * Strictly speaking, keeping th->window fixed violates the receiver 1155 * side SWS prevention criteria. The problem is that under this rule 1156 * a stream of single byte packets will cause the right side of the 1157 * window to always advance by a single byte. 1158 * 1159 * Of course, if the sender implements sender side SWS prevention 1160 * then this will not be a problem. 1161 * 1162 * BSD seems to make the following compromise: 1163 * 1164 * If the free space is less than the 1/4 of the maximum 1165 * space available and the free space is less than 1/2 mss, 1166 * then set the window to 0. 1167 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1168 * Otherwise, just prevent the window from shrinking 1169 * and from being larger than the largest representable value. 1170 * 1171 * This prevents incremental opening of the window in the regime 1172 * where TCP is limited by the speed of the reader side taking 1173 * data out of the TCP receive queue. It does nothing about 1174 * those cases where the window is constrained on the sender side 1175 * because the pipeline is full. 1176 * 1177 * BSD also seems to "accidentally" limit itself to windows that are a 1178 * multiple of MSS, at least until the free space gets quite small. 1179 * This would appear to be a side effect of the mbuf implementation. 1180 * Combining these two algorithms results in the observed behavior 1181 * of having a fixed window size at almost all times. 1182 * 1183 * Below we obtain similar behavior by forcing the offered window to 1184 * a multiple of the mss when it is feasible to do so. 1185 * 1186 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1187 * Regular options like TIMESTAMP are taken into account. 1188 */ 1189 u32 __tcp_select_window(struct sock *sk) 1190 { 1191 struct inet_connection_sock *icsk = inet_csk(sk); 1192 struct tcp_sock *tp = tcp_sk(sk); 1193 /* MSS for the peer's data. Previous versions used mss_clamp 1194 * here. I don't know if the value based on our guesses 1195 * of peer's MSS is better for the performance. It's more correct 1196 * but may be worse for the performance because of rcv_mss 1197 * fluctuations. --SAW 1998/11/1 1198 */ 1199 int mss = icsk->icsk_ack.rcv_mss; 1200 int free_space = tcp_space(sk); 1201 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1202 int window; 1203 1204 if (mss > full_space) 1205 mss = full_space; 1206 1207 if (free_space < full_space/2) { 1208 icsk->icsk_ack.quick = 0; 1209 1210 if (tcp_memory_pressure) 1211 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); 1212 1213 if (free_space < mss) 1214 return 0; 1215 } 1216 1217 if (free_space > tp->rcv_ssthresh) 1218 free_space = tp->rcv_ssthresh; 1219 1220 /* Don't do rounding if we are using window scaling, since the 1221 * scaled window will not line up with the MSS boundary anyway. 1222 */ 1223 window = tp->rcv_wnd; 1224 if (tp->rx_opt.rcv_wscale) { 1225 window = free_space; 1226 1227 /* Advertise enough space so that it won't get scaled away. 1228 * Import case: prevent zero window announcement if 1229 * 1<<rcv_wscale > mss. 1230 */ 1231 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1232 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1233 << tp->rx_opt.rcv_wscale); 1234 } else { 1235 /* Get the largest window that is a nice multiple of mss. 1236 * Window clamp already applied above. 1237 * If our current window offering is within 1 mss of the 1238 * free space we just keep it. This prevents the divide 1239 * and multiply from happening most of the time. 1240 * We also don't do any window rounding when the free space 1241 * is too small. 1242 */ 1243 if (window <= free_space - mss || window > free_space) 1244 window = (free_space/mss)*mss; 1245 } 1246 1247 return window; 1248 } 1249 1250 /* Attempt to collapse two adjacent SKB's during retransmission. */ 1251 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) 1252 { 1253 struct tcp_sock *tp = tcp_sk(sk); 1254 struct sk_buff *next_skb = skb->next; 1255 1256 /* The first test we must make is that neither of these two 1257 * SKB's are still referenced by someone else. 1258 */ 1259 if (!skb_cloned(skb) && !skb_cloned(next_skb)) { 1260 int skb_size = skb->len, next_skb_size = next_skb->len; 1261 u16 flags = TCP_SKB_CB(skb)->flags; 1262 1263 /* Also punt if next skb has been SACK'd. */ 1264 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) 1265 return; 1266 1267 /* Next skb is out of window. */ 1268 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) 1269 return; 1270 1271 /* Punt if not enough space exists in the first SKB for 1272 * the data in the second, or the total combined payload 1273 * would exceed the MSS. 1274 */ 1275 if ((next_skb_size > skb_tailroom(skb)) || 1276 ((skb_size + next_skb_size) > mss_now)) 1277 return; 1278 1279 BUG_ON(tcp_skb_pcount(skb) != 1 || 1280 tcp_skb_pcount(next_skb) != 1); 1281 1282 /* changing transmit queue under us so clear hints */ 1283 clear_all_retrans_hints(tp); 1284 1285 /* Ok. We will be able to collapse the packet. */ 1286 __skb_unlink(next_skb, &sk->sk_write_queue); 1287 1288 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); 1289 1290 if (next_skb->ip_summed == CHECKSUM_HW) 1291 skb->ip_summed = CHECKSUM_HW; 1292 1293 if (skb->ip_summed != CHECKSUM_HW) 1294 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1295 1296 /* Update sequence range on original skb. */ 1297 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1298 1299 /* Merge over control information. */ 1300 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ 1301 TCP_SKB_CB(skb)->flags = flags; 1302 1303 /* All done, get rid of second SKB and account for it so 1304 * packet counting does not break. 1305 */ 1306 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); 1307 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) 1308 tp->retrans_out -= tcp_skb_pcount(next_skb); 1309 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { 1310 tp->lost_out -= tcp_skb_pcount(next_skb); 1311 tp->left_out -= tcp_skb_pcount(next_skb); 1312 } 1313 /* Reno case is special. Sigh... */ 1314 if (!tp->rx_opt.sack_ok && tp->sacked_out) { 1315 tcp_dec_pcount_approx(&tp->sacked_out, next_skb); 1316 tp->left_out -= tcp_skb_pcount(next_skb); 1317 } 1318 1319 /* Not quite right: it can be > snd.fack, but 1320 * it is better to underestimate fackets. 1321 */ 1322 tcp_dec_pcount_approx(&tp->fackets_out, next_skb); 1323 tcp_packets_out_dec(tp, next_skb); 1324 sk_stream_free_skb(sk, next_skb); 1325 } 1326 } 1327 1328 /* Do a simple retransmit without using the backoff mechanisms in 1329 * tcp_timer. This is used for path mtu discovery. 1330 * The socket is already locked here. 1331 */ 1332 void tcp_simple_retransmit(struct sock *sk) 1333 { 1334 const struct inet_connection_sock *icsk = inet_csk(sk); 1335 struct tcp_sock *tp = tcp_sk(sk); 1336 struct sk_buff *skb; 1337 unsigned int mss = tcp_current_mss(sk, 0); 1338 int lost = 0; 1339 1340 sk_stream_for_retrans_queue(skb, sk) { 1341 if (skb->len > mss && 1342 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1343 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1344 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1345 tp->retrans_out -= tcp_skb_pcount(skb); 1346 } 1347 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { 1348 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1349 tp->lost_out += tcp_skb_pcount(skb); 1350 lost = 1; 1351 } 1352 } 1353 } 1354 1355 clear_all_retrans_hints(tp); 1356 1357 if (!lost) 1358 return; 1359 1360 tcp_sync_left_out(tp); 1361 1362 /* Don't muck with the congestion window here. 1363 * Reason is that we do not increase amount of _data_ 1364 * in network, but units changed and effective 1365 * cwnd/ssthresh really reduced now. 1366 */ 1367 if (icsk->icsk_ca_state != TCP_CA_Loss) { 1368 tp->high_seq = tp->snd_nxt; 1369 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1370 tp->prior_ssthresh = 0; 1371 tp->undo_marker = 0; 1372 tcp_set_ca_state(sk, TCP_CA_Loss); 1373 } 1374 tcp_xmit_retransmit_queue(sk); 1375 } 1376 1377 /* This retransmits one SKB. Policy decisions and retransmit queue 1378 * state updates are done by the caller. Returns non-zero if an 1379 * error occurred which prevented the send. 1380 */ 1381 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 1382 { 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 unsigned int cur_mss = tcp_current_mss(sk, 0); 1385 int err; 1386 1387 /* Do not sent more than we queued. 1/4 is reserved for possible 1388 * copying overhead: fragmentation, tunneling, mangling etc. 1389 */ 1390 if (atomic_read(&sk->sk_wmem_alloc) > 1391 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 1392 return -EAGAIN; 1393 1394 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 1395 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1396 BUG(); 1397 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 1398 return -ENOMEM; 1399 } 1400 1401 /* If receiver has shrunk his window, and skb is out of 1402 * new window, do not retransmit it. The exception is the 1403 * case, when window is shrunk to zero. In this case 1404 * our retransmit serves as a zero window probe. 1405 */ 1406 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) 1407 && TCP_SKB_CB(skb)->seq != tp->snd_una) 1408 return -EAGAIN; 1409 1410 if (skb->len > cur_mss) { 1411 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 1412 return -ENOMEM; /* We'll try again later. */ 1413 } 1414 1415 /* Collapse two adjacent packets if worthwhile and we can. */ 1416 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && 1417 (skb->len < (cur_mss >> 1)) && 1418 (skb->next != sk->sk_send_head) && 1419 (skb->next != (struct sk_buff *)&sk->sk_write_queue) && 1420 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && 1421 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && 1422 (sysctl_tcp_retrans_collapse != 0)) 1423 tcp_retrans_try_collapse(sk, skb, cur_mss); 1424 1425 if(tp->af_specific->rebuild_header(sk)) 1426 return -EHOSTUNREACH; /* Routing failure or similar. */ 1427 1428 /* Some Solaris stacks overoptimize and ignore the FIN on a 1429 * retransmit when old data is attached. So strip it off 1430 * since it is cheap to do so and saves bytes on the network. 1431 */ 1432 if(skb->len > 0 && 1433 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1434 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 1435 if (!pskb_trim(skb, 0)) { 1436 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; 1437 skb_shinfo(skb)->tso_segs = 1; 1438 skb_shinfo(skb)->tso_size = 0; 1439 skb->ip_summed = CHECKSUM_NONE; 1440 skb->csum = 0; 1441 } 1442 } 1443 1444 /* Make a copy, if the first transmission SKB clone we made 1445 * is still in somebody's hands, else make a clone. 1446 */ 1447 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1448 1449 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 1450 1451 if (err == 0) { 1452 /* Update global TCP statistics. */ 1453 TCP_INC_STATS(TCP_MIB_RETRANSSEGS); 1454 1455 tp->total_retrans++; 1456 1457 #if FASTRETRANS_DEBUG > 0 1458 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1459 if (net_ratelimit()) 1460 printk(KERN_DEBUG "retrans_out leaked.\n"); 1461 } 1462 #endif 1463 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 1464 tp->retrans_out += tcp_skb_pcount(skb); 1465 1466 /* Save stamp of the first retransmit. */ 1467 if (!tp->retrans_stamp) 1468 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 1469 1470 tp->undo_retrans++; 1471 1472 /* snd_nxt is stored to detect loss of retransmitted segment, 1473 * see tcp_input.c tcp_sacktag_write_queue(). 1474 */ 1475 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 1476 } 1477 return err; 1478 } 1479 1480 /* This gets called after a retransmit timeout, and the initially 1481 * retransmitted data is acknowledged. It tries to continue 1482 * resending the rest of the retransmit queue, until either 1483 * we've sent it all or the congestion window limit is reached. 1484 * If doing SACK, the first ACK which comes back for a timeout 1485 * based retransmit packet might feed us FACK information again. 1486 * If so, we use it to avoid unnecessarily retransmissions. 1487 */ 1488 void tcp_xmit_retransmit_queue(struct sock *sk) 1489 { 1490 const struct inet_connection_sock *icsk = inet_csk(sk); 1491 struct tcp_sock *tp = tcp_sk(sk); 1492 struct sk_buff *skb; 1493 int packet_cnt; 1494 1495 if (tp->retransmit_skb_hint) { 1496 skb = tp->retransmit_skb_hint; 1497 packet_cnt = tp->retransmit_cnt_hint; 1498 }else{ 1499 skb = sk->sk_write_queue.next; 1500 packet_cnt = 0; 1501 } 1502 1503 /* First pass: retransmit lost packets. */ 1504 if (tp->lost_out) { 1505 sk_stream_for_retrans_queue_from(skb, sk) { 1506 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1507 1508 /* we could do better than to assign each time */ 1509 tp->retransmit_skb_hint = skb; 1510 tp->retransmit_cnt_hint = packet_cnt; 1511 1512 /* Assume this retransmit will generate 1513 * only one packet for congestion window 1514 * calculation purposes. This works because 1515 * tcp_retransmit_skb() will chop up the 1516 * packet to be MSS sized and all the 1517 * packet counting works out. 1518 */ 1519 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1520 return; 1521 1522 if (sacked & TCPCB_LOST) { 1523 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { 1524 if (tcp_retransmit_skb(sk, skb)) { 1525 tp->retransmit_skb_hint = NULL; 1526 return; 1527 } 1528 if (icsk->icsk_ca_state != TCP_CA_Loss) 1529 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); 1530 else 1531 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); 1532 1533 if (skb == 1534 skb_peek(&sk->sk_write_queue)) 1535 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1536 inet_csk(sk)->icsk_rto, 1537 TCP_RTO_MAX); 1538 } 1539 1540 packet_cnt += tcp_skb_pcount(skb); 1541 if (packet_cnt >= tp->lost_out) 1542 break; 1543 } 1544 } 1545 } 1546 1547 /* OK, demanded retransmission is finished. */ 1548 1549 /* Forward retransmissions are possible only during Recovery. */ 1550 if (icsk->icsk_ca_state != TCP_CA_Recovery) 1551 return; 1552 1553 /* No forward retransmissions in Reno are possible. */ 1554 if (!tp->rx_opt.sack_ok) 1555 return; 1556 1557 /* Yeah, we have to make difficult choice between forward transmission 1558 * and retransmission... Both ways have their merits... 1559 * 1560 * For now we do not retransmit anything, while we have some new 1561 * segments to send. 1562 */ 1563 1564 if (tcp_may_send_now(sk, tp)) 1565 return; 1566 1567 if (tp->forward_skb_hint) { 1568 skb = tp->forward_skb_hint; 1569 packet_cnt = tp->forward_cnt_hint; 1570 } else{ 1571 skb = sk->sk_write_queue.next; 1572 packet_cnt = 0; 1573 } 1574 1575 sk_stream_for_retrans_queue_from(skb, sk) { 1576 tp->forward_cnt_hint = packet_cnt; 1577 tp->forward_skb_hint = skb; 1578 1579 /* Similar to the retransmit loop above we 1580 * can pretend that the retransmitted SKB 1581 * we send out here will be composed of one 1582 * real MSS sized packet because tcp_retransmit_skb() 1583 * will fragment it if necessary. 1584 */ 1585 if (++packet_cnt > tp->fackets_out) 1586 break; 1587 1588 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1589 break; 1590 1591 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) 1592 continue; 1593 1594 /* Ok, retransmit it. */ 1595 if (tcp_retransmit_skb(sk, skb)) { 1596 tp->forward_skb_hint = NULL; 1597 break; 1598 } 1599 1600 if (skb == skb_peek(&sk->sk_write_queue)) 1601 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1602 inet_csk(sk)->icsk_rto, 1603 TCP_RTO_MAX); 1604 1605 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); 1606 } 1607 } 1608 1609 1610 /* Send a fin. The caller locks the socket for us. This cannot be 1611 * allowed to fail queueing a FIN frame under any circumstances. 1612 */ 1613 void tcp_send_fin(struct sock *sk) 1614 { 1615 struct tcp_sock *tp = tcp_sk(sk); 1616 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); 1617 int mss_now; 1618 1619 /* Optimization, tack on the FIN if we have a queue of 1620 * unsent frames. But be careful about outgoing SACKS 1621 * and IP options. 1622 */ 1623 mss_now = tcp_current_mss(sk, 1); 1624 1625 if (sk->sk_send_head != NULL) { 1626 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; 1627 TCP_SKB_CB(skb)->end_seq++; 1628 tp->write_seq++; 1629 } else { 1630 /* Socket is locked, keep trying until memory is available. */ 1631 for (;;) { 1632 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL); 1633 if (skb) 1634 break; 1635 yield(); 1636 } 1637 1638 /* Reserve space for headers and prepare control bits. */ 1639 skb_reserve(skb, MAX_TCP_HEADER); 1640 skb->csum = 0; 1641 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); 1642 TCP_SKB_CB(skb)->sacked = 0; 1643 skb_shinfo(skb)->tso_segs = 1; 1644 skb_shinfo(skb)->tso_size = 0; 1645 1646 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 1647 TCP_SKB_CB(skb)->seq = tp->write_seq; 1648 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1649 tcp_queue_skb(sk, skb); 1650 } 1651 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); 1652 } 1653 1654 /* We get here when a process closes a file descriptor (either due to 1655 * an explicit close() or as a byproduct of exit()'ing) and there 1656 * was unread data in the receive queue. This behavior is recommended 1657 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM 1658 */ 1659 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 1660 { 1661 struct tcp_sock *tp = tcp_sk(sk); 1662 struct sk_buff *skb; 1663 1664 /* NOTE: No TCP options attached and we never retransmit this. */ 1665 skb = alloc_skb(MAX_TCP_HEADER, priority); 1666 if (!skb) { 1667 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1668 return; 1669 } 1670 1671 /* Reserve space for headers and prepare control bits. */ 1672 skb_reserve(skb, MAX_TCP_HEADER); 1673 skb->csum = 0; 1674 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); 1675 TCP_SKB_CB(skb)->sacked = 0; 1676 skb_shinfo(skb)->tso_segs = 1; 1677 skb_shinfo(skb)->tso_size = 0; 1678 1679 /* Send it off. */ 1680 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); 1681 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1682 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1683 if (tcp_transmit_skb(sk, skb, 0, priority)) 1684 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1685 } 1686 1687 /* WARNING: This routine must only be called when we have already sent 1688 * a SYN packet that crossed the incoming SYN that caused this routine 1689 * to get called. If this assumption fails then the initial rcv_wnd 1690 * and rcv_wscale values will not be correct. 1691 */ 1692 int tcp_send_synack(struct sock *sk) 1693 { 1694 struct sk_buff* skb; 1695 1696 skb = skb_peek(&sk->sk_write_queue); 1697 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { 1698 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 1699 return -EFAULT; 1700 } 1701 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { 1702 if (skb_cloned(skb)) { 1703 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 1704 if (nskb == NULL) 1705 return -ENOMEM; 1706 __skb_unlink(skb, &sk->sk_write_queue); 1707 skb_header_release(nskb); 1708 __skb_queue_head(&sk->sk_write_queue, nskb); 1709 sk_stream_free_skb(sk, skb); 1710 sk_charge_skb(sk, nskb); 1711 skb = nskb; 1712 } 1713 1714 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; 1715 TCP_ECN_send_synack(tcp_sk(sk), skb); 1716 } 1717 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1718 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 1719 } 1720 1721 /* 1722 * Prepare a SYN-ACK. 1723 */ 1724 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, 1725 struct request_sock *req) 1726 { 1727 struct inet_request_sock *ireq = inet_rsk(req); 1728 struct tcp_sock *tp = tcp_sk(sk); 1729 struct tcphdr *th; 1730 int tcp_header_size; 1731 struct sk_buff *skb; 1732 1733 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 1734 if (skb == NULL) 1735 return NULL; 1736 1737 /* Reserve space for headers. */ 1738 skb_reserve(skb, MAX_TCP_HEADER); 1739 1740 skb->dst = dst_clone(dst); 1741 1742 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + 1743 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + 1744 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + 1745 /* SACK_PERM is in the place of NOP NOP of TS */ 1746 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); 1747 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); 1748 1749 memset(th, 0, sizeof(struct tcphdr)); 1750 th->syn = 1; 1751 th->ack = 1; 1752 if (dst->dev->features&NETIF_F_TSO) 1753 ireq->ecn_ok = 0; 1754 TCP_ECN_make_synack(req, th); 1755 th->source = inet_sk(sk)->sport; 1756 th->dest = ireq->rmt_port; 1757 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn; 1758 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1759 TCP_SKB_CB(skb)->sacked = 0; 1760 skb_shinfo(skb)->tso_segs = 1; 1761 skb_shinfo(skb)->tso_size = 0; 1762 th->seq = htonl(TCP_SKB_CB(skb)->seq); 1763 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 1764 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 1765 __u8 rcv_wscale; 1766 /* Set this up on the first call only */ 1767 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 1768 /* tcp_full_space because it is guaranteed to be the first packet */ 1769 tcp_select_initial_window(tcp_full_space(sk), 1770 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 1771 &req->rcv_wnd, 1772 &req->window_clamp, 1773 ireq->wscale_ok, 1774 &rcv_wscale); 1775 ireq->rcv_wscale = rcv_wscale; 1776 } 1777 1778 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 1779 th->window = htons(req->rcv_wnd); 1780 1781 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1782 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok, 1783 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale, 1784 TCP_SKB_CB(skb)->when, 1785 req->ts_recent); 1786 1787 skb->csum = 0; 1788 th->doff = (tcp_header_size >> 2); 1789 TCP_INC_STATS(TCP_MIB_OUTSEGS); 1790 return skb; 1791 } 1792 1793 /* 1794 * Do all connect socket setups that can be done AF independent. 1795 */ 1796 static inline void tcp_connect_init(struct sock *sk) 1797 { 1798 struct dst_entry *dst = __sk_dst_get(sk); 1799 struct tcp_sock *tp = tcp_sk(sk); 1800 __u8 rcv_wscale; 1801 1802 /* We'll fix this up when we get a response from the other end. 1803 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 1804 */ 1805 tp->tcp_header_len = sizeof(struct tcphdr) + 1806 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 1807 1808 /* If user gave his TCP_MAXSEG, record it to clamp */ 1809 if (tp->rx_opt.user_mss) 1810 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 1811 tp->max_window = 0; 1812 tcp_sync_mss(sk, dst_mtu(dst)); 1813 1814 if (!tp->window_clamp) 1815 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 1816 tp->advmss = dst_metric(dst, RTAX_ADVMSS); 1817 tcp_initialize_rcv_mss(sk); 1818 1819 tcp_select_initial_window(tcp_full_space(sk), 1820 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 1821 &tp->rcv_wnd, 1822 &tp->window_clamp, 1823 sysctl_tcp_window_scaling, 1824 &rcv_wscale); 1825 1826 tp->rx_opt.rcv_wscale = rcv_wscale; 1827 tp->rcv_ssthresh = tp->rcv_wnd; 1828 1829 sk->sk_err = 0; 1830 sock_reset_flag(sk, SOCK_DONE); 1831 tp->snd_wnd = 0; 1832 tcp_init_wl(tp, tp->write_seq, 0); 1833 tp->snd_una = tp->write_seq; 1834 tp->snd_sml = tp->write_seq; 1835 tp->rcv_nxt = 0; 1836 tp->rcv_wup = 0; 1837 tp->copied_seq = 0; 1838 1839 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 1840 inet_csk(sk)->icsk_retransmits = 0; 1841 tcp_clear_retrans(tp); 1842 } 1843 1844 /* 1845 * Build a SYN and send it off. 1846 */ 1847 int tcp_connect(struct sock *sk) 1848 { 1849 struct tcp_sock *tp = tcp_sk(sk); 1850 struct sk_buff *buff; 1851 1852 tcp_connect_init(sk); 1853 1854 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 1855 if (unlikely(buff == NULL)) 1856 return -ENOBUFS; 1857 1858 /* Reserve space for headers. */ 1859 skb_reserve(buff, MAX_TCP_HEADER); 1860 1861 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; 1862 TCP_ECN_send_syn(sk, tp, buff); 1863 TCP_SKB_CB(buff)->sacked = 0; 1864 skb_shinfo(buff)->tso_segs = 1; 1865 skb_shinfo(buff)->tso_size = 0; 1866 buff->csum = 0; 1867 TCP_SKB_CB(buff)->seq = tp->write_seq++; 1868 TCP_SKB_CB(buff)->end_seq = tp->write_seq; 1869 tp->snd_nxt = tp->write_seq; 1870 tp->pushed_seq = tp->write_seq; 1871 1872 /* Send it off. */ 1873 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1874 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 1875 skb_header_release(buff); 1876 __skb_queue_tail(&sk->sk_write_queue, buff); 1877 sk_charge_skb(sk, buff); 1878 tp->packets_out += tcp_skb_pcount(buff); 1879 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL); 1880 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); 1881 1882 /* Timer for repeating the SYN until an answer. */ 1883 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1884 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 1885 return 0; 1886 } 1887 1888 /* Send out a delayed ack, the caller does the policy checking 1889 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 1890 * for details. 1891 */ 1892 void tcp_send_delayed_ack(struct sock *sk) 1893 { 1894 struct inet_connection_sock *icsk = inet_csk(sk); 1895 int ato = icsk->icsk_ack.ato; 1896 unsigned long timeout; 1897 1898 if (ato > TCP_DELACK_MIN) { 1899 const struct tcp_sock *tp = tcp_sk(sk); 1900 int max_ato = HZ/2; 1901 1902 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 1903 max_ato = TCP_DELACK_MAX; 1904 1905 /* Slow path, intersegment interval is "high". */ 1906 1907 /* If some rtt estimate is known, use it to bound delayed ack. 1908 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 1909 * directly. 1910 */ 1911 if (tp->srtt) { 1912 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); 1913 1914 if (rtt < max_ato) 1915 max_ato = rtt; 1916 } 1917 1918 ato = min(ato, max_ato); 1919 } 1920 1921 /* Stay within the limit we were given */ 1922 timeout = jiffies + ato; 1923 1924 /* Use new timeout only if there wasn't a older one earlier. */ 1925 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 1926 /* If delack timer was blocked or is about to expire, 1927 * send ACK now. 1928 */ 1929 if (icsk->icsk_ack.blocked || 1930 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 1931 tcp_send_ack(sk); 1932 return; 1933 } 1934 1935 if (!time_before(timeout, icsk->icsk_ack.timeout)) 1936 timeout = icsk->icsk_ack.timeout; 1937 } 1938 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 1939 icsk->icsk_ack.timeout = timeout; 1940 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 1941 } 1942 1943 /* This routine sends an ack and also updates the window. */ 1944 void tcp_send_ack(struct sock *sk) 1945 { 1946 /* If we have been reset, we may not send again. */ 1947 if (sk->sk_state != TCP_CLOSE) { 1948 struct tcp_sock *tp = tcp_sk(sk); 1949 struct sk_buff *buff; 1950 1951 /* We are not putting this on the write queue, so 1952 * tcp_transmit_skb() will set the ownership to this 1953 * sock. 1954 */ 1955 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1956 if (buff == NULL) { 1957 inet_csk_schedule_ack(sk); 1958 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 1959 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1960 TCP_DELACK_MAX, TCP_RTO_MAX); 1961 return; 1962 } 1963 1964 /* Reserve space for headers and prepare control bits. */ 1965 skb_reserve(buff, MAX_TCP_HEADER); 1966 buff->csum = 0; 1967 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; 1968 TCP_SKB_CB(buff)->sacked = 0; 1969 skb_shinfo(buff)->tso_segs = 1; 1970 skb_shinfo(buff)->tso_size = 0; 1971 1972 /* Send it off, this clears delayed acks for us. */ 1973 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); 1974 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1975 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); 1976 } 1977 } 1978 1979 /* This routine sends a packet with an out of date sequence 1980 * number. It assumes the other end will try to ack it. 1981 * 1982 * Question: what should we make while urgent mode? 1983 * 4.4BSD forces sending single byte of data. We cannot send 1984 * out of window data, because we have SND.NXT==SND.MAX... 1985 * 1986 * Current solution: to send TWO zero-length segments in urgent mode: 1987 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 1988 * out-of-date with SND.UNA-1 to probe window. 1989 */ 1990 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 1991 { 1992 struct tcp_sock *tp = tcp_sk(sk); 1993 struct sk_buff *skb; 1994 1995 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 1996 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1997 if (skb == NULL) 1998 return -1; 1999 2000 /* Reserve space for headers and set control bits. */ 2001 skb_reserve(skb, MAX_TCP_HEADER); 2002 skb->csum = 0; 2003 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; 2004 TCP_SKB_CB(skb)->sacked = urgent; 2005 skb_shinfo(skb)->tso_segs = 1; 2006 skb_shinfo(skb)->tso_size = 0; 2007 2008 /* Use a previous sequence. This should cause the other 2009 * end to send an ack. Don't queue or clone SKB, just 2010 * send it. 2011 */ 2012 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; 2013 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 2014 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2015 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 2016 } 2017 2018 int tcp_write_wakeup(struct sock *sk) 2019 { 2020 if (sk->sk_state != TCP_CLOSE) { 2021 struct tcp_sock *tp = tcp_sk(sk); 2022 struct sk_buff *skb; 2023 2024 if ((skb = sk->sk_send_head) != NULL && 2025 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { 2026 int err; 2027 unsigned int mss = tcp_current_mss(sk, 0); 2028 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; 2029 2030 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 2031 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 2032 2033 /* We are probing the opening of a window 2034 * but the window size is != 0 2035 * must have been a result SWS avoidance ( sender ) 2036 */ 2037 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 2038 skb->len > mss) { 2039 seg_size = min(seg_size, mss); 2040 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2041 if (tcp_fragment(sk, skb, seg_size, mss)) 2042 return -1; 2043 } else if (!tcp_skb_pcount(skb)) 2044 tcp_set_skb_tso_segs(sk, skb, mss); 2045 2046 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2047 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2048 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2049 if (!err) { 2050 update_send_head(sk, tp, skb); 2051 } 2052 return err; 2053 } else { 2054 if (tp->urg_mode && 2055 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) 2056 tcp_xmit_probe_skb(sk, TCPCB_URG); 2057 return tcp_xmit_probe_skb(sk, 0); 2058 } 2059 } 2060 return -1; 2061 } 2062 2063 /* A window probe timeout has occurred. If window is not closed send 2064 * a partial packet else a zero probe. 2065 */ 2066 void tcp_send_probe0(struct sock *sk) 2067 { 2068 struct inet_connection_sock *icsk = inet_csk(sk); 2069 struct tcp_sock *tp = tcp_sk(sk); 2070 int err; 2071 2072 err = tcp_write_wakeup(sk); 2073 2074 if (tp->packets_out || !sk->sk_send_head) { 2075 /* Cancel probe timer, if it is not required. */ 2076 icsk->icsk_probes_out = 0; 2077 icsk->icsk_backoff = 0; 2078 return; 2079 } 2080 2081 if (err <= 0) { 2082 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2083 icsk->icsk_backoff++; 2084 icsk->icsk_probes_out++; 2085 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2086 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2087 TCP_RTO_MAX); 2088 } else { 2089 /* If packet was not sent due to local congestion, 2090 * do not backoff and do not remember icsk_probes_out. 2091 * Let local senders to fight for local resources. 2092 * 2093 * Use accumulated backoff yet. 2094 */ 2095 if (!icsk->icsk_probes_out) 2096 icsk->icsk_probes_out = 1; 2097 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2098 min(icsk->icsk_rto << icsk->icsk_backoff, 2099 TCP_RESOURCE_PROBE_INTERVAL), 2100 TCP_RTO_MAX); 2101 } 2102 } 2103 2104 EXPORT_SYMBOL(tcp_connect); 2105 EXPORT_SYMBOL(tcp_make_synack); 2106 EXPORT_SYMBOL(tcp_simple_retransmit); 2107 EXPORT_SYMBOL(tcp_sync_mss); 2108 EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor); 2109