1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 67 68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 69 int push_one, gfp_t gfp); 70 71 /* Account for new data that has been sent to the network. */ 72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 73 { 74 struct inet_connection_sock *icsk = inet_csk(sk); 75 struct tcp_sock *tp = tcp_sk(sk); 76 unsigned int prior_packets = tp->packets_out; 77 78 tcp_advance_send_head(sk, skb); 79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 84 tcp_rearm_rto(sk); 85 } 86 87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 88 tcp_skb_pcount(skb)); 89 } 90 91 /* SND.NXT, if window was not shrunk. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. */ 141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 s32 delta = tcp_time_stamp - tp->lsndtime; 145 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 146 u32 cwnd = tp->snd_cwnd; 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tp->snd_cwnd = max(cwnd, restart_cwnd); 156 tp->snd_cwnd_stamp = tcp_time_stamp; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_time_stamp; 166 const struct dst_entry *dst = __sk_dst_get(sk); 167 168 if (sysctl_tcp_slow_start_after_idle && 169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 170 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 178 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 179 icsk->icsk_ack.pingpong = 1; 180 } 181 182 /* Account for an ACK we sent. */ 183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 184 { 185 tcp_dec_quickack_mode(sk, pkts); 186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 187 } 188 189 190 u32 tcp_default_init_rwnd(u32 mss) 191 { 192 /* Initial receive window should be twice of TCP_INIT_CWND to 193 * enable proper sending of new unsent data during fast recovery 194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 195 * limit when mss is larger than 1460. 196 */ 197 u32 init_rwnd = TCP_INIT_CWND * 2; 198 199 if (mss > 1460) 200 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 201 return init_rwnd; 202 } 203 204 /* Determine a window scaling and initial window to offer. 205 * Based on the assumption that the given amount of space 206 * will be offered. Store the results in the tp structure. 207 * NOTE: for smooth operation initial space offering should 208 * be a multiple of mss if possible. We assume here that mss >= 1. 209 * This MUST be enforced by all callers. 210 */ 211 void tcp_select_initial_window(int __space, __u32 mss, 212 __u32 *rcv_wnd, __u32 *window_clamp, 213 int wscale_ok, __u8 *rcv_wscale, 214 __u32 init_rcv_wnd) 215 { 216 unsigned int space = (__space < 0 ? 0 : __space); 217 218 /* If no clamp set the clamp to the max possible scaled window */ 219 if (*window_clamp == 0) 220 (*window_clamp) = (65535 << 14); 221 space = min(*window_clamp, space); 222 223 /* Quantize space offering to a multiple of mss if possible. */ 224 if (space > mss) 225 space = (space / mss) * mss; 226 227 /* NOTE: offering an initial window larger than 32767 228 * will break some buggy TCP stacks. If the admin tells us 229 * it is likely we could be speaking with such a buggy stack 230 * we will truncate our initial window offering to 32K-1 231 * unless the remote has sent us a window scaling option, 232 * which we interpret as a sign the remote TCP is not 233 * misinterpreting the window field as a signed quantity. 234 */ 235 if (sysctl_tcp_workaround_signed_windows) 236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 237 else 238 (*rcv_wnd) = space; 239 240 (*rcv_wscale) = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window 243 * See RFC1323 for an explanation of the limit to 14 244 */ 245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 246 space = min_t(u32, space, *window_clamp); 247 while (space > 65535 && (*rcv_wscale) < 14) { 248 space >>= 1; 249 (*rcv_wscale)++; 250 } 251 } 252 253 if (mss > (1 << *rcv_wscale)) { 254 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 255 init_rcv_wnd = tcp_default_init_rwnd(mss); 256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 257 } 258 259 /* Set the clamp no higher than max representable value */ 260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 261 } 262 EXPORT_SYMBOL(tcp_select_initial_window); 263 264 /* Chose a new window to advertise, update state in tcp_sock for the 265 * socket, and return result with RFC1323 scaling applied. The return 266 * value can be stuffed directly into th->window for an outgoing 267 * frame. 268 */ 269 static u16 tcp_select_window(struct sock *sk) 270 { 271 struct tcp_sock *tp = tcp_sk(sk); 272 u32 old_win = tp->rcv_wnd; 273 u32 cur_win = tcp_receive_window(tp); 274 u32 new_win = __tcp_select_window(sk); 275 276 /* Never shrink the offered window */ 277 if (new_win < cur_win) { 278 /* Danger Will Robinson! 279 * Don't update rcv_wup/rcv_wnd here or else 280 * we will not be able to advertise a zero 281 * window in time. --DaveM 282 * 283 * Relax Will Robinson. 284 */ 285 if (new_win == 0) 286 NET_INC_STATS(sock_net(sk), 287 LINUX_MIB_TCPWANTZEROWINDOWADV); 288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 289 } 290 tp->rcv_wnd = new_win; 291 tp->rcv_wup = tp->rcv_nxt; 292 293 /* Make sure we do not exceed the maximum possible 294 * scaled window. 295 */ 296 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 297 new_win = min(new_win, MAX_TCP_WINDOW); 298 else 299 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 300 301 /* RFC1323 scaling applied */ 302 new_win >>= tp->rx_opt.rcv_wscale; 303 304 /* If we advertise zero window, disable fast path. */ 305 if (new_win == 0) { 306 tp->pred_flags = 0; 307 if (old_win) 308 NET_INC_STATS(sock_net(sk), 309 LINUX_MIB_TCPTOZEROWINDOWADV); 310 } else if (old_win == 0) { 311 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 312 } 313 314 return new_win; 315 } 316 317 /* Packet ECN state for a SYN-ACK */ 318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 319 { 320 const struct tcp_sock *tp = tcp_sk(sk); 321 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 323 if (!(tp->ecn_flags & TCP_ECN_OK)) 324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 325 else if (tcp_ca_needs_ecn(sk)) 326 INET_ECN_xmit(sk); 327 } 328 329 /* Packet ECN state for a SYN. */ 330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 331 { 332 struct tcp_sock *tp = tcp_sk(sk); 333 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 334 tcp_ca_needs_ecn(sk); 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk)) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 354 { 355 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 356 /* tp->ecn_flags are cleared at a later point in time when 357 * SYN ACK is ultimatively being received. 358 */ 359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 360 } 361 362 static void 363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th, 364 struct sock *sk) 365 { 366 if (inet_rsk(req)->ecn_ok) { 367 th->ece = 1; 368 if (tcp_ca_needs_ecn(sk)) 369 INET_ECN_xmit(sk); 370 } 371 } 372 373 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 374 * be sent. 375 */ 376 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 377 int tcp_header_len) 378 { 379 struct tcp_sock *tp = tcp_sk(sk); 380 381 if (tp->ecn_flags & TCP_ECN_OK) { 382 /* Not-retransmitted data segment: set ECT and inject CWR. */ 383 if (skb->len != tcp_header_len && 384 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 385 INET_ECN_xmit(sk); 386 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 387 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 388 tcp_hdr(skb)->cwr = 1; 389 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 390 } 391 } else if (!tcp_ca_needs_ecn(sk)) { 392 /* ACK or retransmitted segment: clear ECT|CE */ 393 INET_ECN_dontxmit(sk); 394 } 395 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 396 tcp_hdr(skb)->ece = 1; 397 } 398 } 399 400 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 401 * auto increment end seqno. 402 */ 403 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 404 { 405 skb->ip_summed = CHECKSUM_PARTIAL; 406 skb->csum = 0; 407 408 TCP_SKB_CB(skb)->tcp_flags = flags; 409 TCP_SKB_CB(skb)->sacked = 0; 410 411 tcp_skb_pcount_set(skb, 1); 412 413 TCP_SKB_CB(skb)->seq = seq; 414 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 415 seq++; 416 TCP_SKB_CB(skb)->end_seq = seq; 417 } 418 419 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 420 { 421 return tp->snd_una != tp->snd_up; 422 } 423 424 #define OPTION_SACK_ADVERTISE (1 << 0) 425 #define OPTION_TS (1 << 1) 426 #define OPTION_MD5 (1 << 2) 427 #define OPTION_WSCALE (1 << 3) 428 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 429 430 struct tcp_out_options { 431 u16 options; /* bit field of OPTION_* */ 432 u16 mss; /* 0 to disable */ 433 u8 ws; /* window scale, 0 to disable */ 434 u8 num_sack_blocks; /* number of SACK blocks to include */ 435 u8 hash_size; /* bytes in hash_location */ 436 __u8 *hash_location; /* temporary pointer, overloaded */ 437 __u32 tsval, tsecr; /* need to include OPTION_TS */ 438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 439 }; 440 441 /* Write previously computed TCP options to the packet. 442 * 443 * Beware: Something in the Internet is very sensitive to the ordering of 444 * TCP options, we learned this through the hard way, so be careful here. 445 * Luckily we can at least blame others for their non-compliance but from 446 * inter-operability perspective it seems that we're somewhat stuck with 447 * the ordering which we have been using if we want to keep working with 448 * those broken things (not that it currently hurts anybody as there isn't 449 * particular reason why the ordering would need to be changed). 450 * 451 * At least SACK_PERM as the first option is known to lead to a disaster 452 * (but it may well be that other scenarios fail similarly). 453 */ 454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 455 struct tcp_out_options *opts) 456 { 457 u16 options = opts->options; /* mungable copy */ 458 459 if (unlikely(OPTION_MD5 & options)) { 460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 462 /* overload cookie hash location */ 463 opts->hash_location = (__u8 *)ptr; 464 ptr += 4; 465 } 466 467 if (unlikely(opts->mss)) { 468 *ptr++ = htonl((TCPOPT_MSS << 24) | 469 (TCPOLEN_MSS << 16) | 470 opts->mss); 471 } 472 473 if (likely(OPTION_TS & options)) { 474 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 476 (TCPOLEN_SACK_PERM << 16) | 477 (TCPOPT_TIMESTAMP << 8) | 478 TCPOLEN_TIMESTAMP); 479 options &= ~OPTION_SACK_ADVERTISE; 480 } else { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_TIMESTAMP << 8) | 484 TCPOLEN_TIMESTAMP); 485 } 486 *ptr++ = htonl(opts->tsval); 487 *ptr++ = htonl(opts->tsecr); 488 } 489 490 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_NOP << 16) | 493 (TCPOPT_SACK_PERM << 8) | 494 TCPOLEN_SACK_PERM); 495 } 496 497 if (unlikely(OPTION_WSCALE & options)) { 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_WINDOW << 16) | 500 (TCPOLEN_WINDOW << 8) | 501 opts->ws); 502 } 503 504 if (unlikely(opts->num_sack_blocks)) { 505 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 506 tp->duplicate_sack : tp->selective_acks; 507 int this_sack; 508 509 *ptr++ = htonl((TCPOPT_NOP << 24) | 510 (TCPOPT_NOP << 16) | 511 (TCPOPT_SACK << 8) | 512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 513 TCPOLEN_SACK_PERBLOCK))); 514 515 for (this_sack = 0; this_sack < opts->num_sack_blocks; 516 ++this_sack) { 517 *ptr++ = htonl(sp[this_sack].start_seq); 518 *ptr++ = htonl(sp[this_sack].end_seq); 519 } 520 521 tp->rx_opt.dsack = 0; 522 } 523 524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 526 u8 *p = (u8 *)ptr; 527 u32 len; /* Fast Open option length */ 528 529 if (foc->exp) { 530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 532 TCPOPT_FASTOPEN_MAGIC); 533 p += TCPOLEN_EXP_FASTOPEN_BASE; 534 } else { 535 len = TCPOLEN_FASTOPEN_BASE + foc->len; 536 *p++ = TCPOPT_FASTOPEN; 537 *p++ = len; 538 } 539 540 memcpy(p, foc->val, foc->len); 541 if ((len & 3) == 2) { 542 p[foc->len] = TCPOPT_NOP; 543 p[foc->len + 1] = TCPOPT_NOP; 544 } 545 ptr += (len + 3) >> 2; 546 } 547 } 548 549 /* Compute TCP options for SYN packets. This is not the final 550 * network wire format yet. 551 */ 552 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 553 struct tcp_out_options *opts, 554 struct tcp_md5sig_key **md5) 555 { 556 struct tcp_sock *tp = tcp_sk(sk); 557 unsigned int remaining = MAX_TCP_OPTION_SPACE; 558 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 559 560 #ifdef CONFIG_TCP_MD5SIG 561 *md5 = tp->af_specific->md5_lookup(sk, sk); 562 if (*md5) { 563 opts->options |= OPTION_MD5; 564 remaining -= TCPOLEN_MD5SIG_ALIGNED; 565 } 566 #else 567 *md5 = NULL; 568 #endif 569 570 /* We always get an MSS option. The option bytes which will be seen in 571 * normal data packets should timestamps be used, must be in the MSS 572 * advertised. But we subtract them from tp->mss_cache so that 573 * calculations in tcp_sendmsg are simpler etc. So account for this 574 * fact here if necessary. If we don't do this correctly, as a 575 * receiver we won't recognize data packets as being full sized when we 576 * should, and thus we won't abide by the delayed ACK rules correctly. 577 * SACKs don't matter, we never delay an ACK when we have any of those 578 * going out. */ 579 opts->mss = tcp_advertise_mss(sk); 580 remaining -= TCPOLEN_MSS_ALIGNED; 581 582 if (likely(sysctl_tcp_timestamps && !*md5)) { 583 opts->options |= OPTION_TS; 584 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 585 opts->tsecr = tp->rx_opt.ts_recent; 586 remaining -= TCPOLEN_TSTAMP_ALIGNED; 587 } 588 if (likely(sysctl_tcp_window_scaling)) { 589 opts->ws = tp->rx_opt.rcv_wscale; 590 opts->options |= OPTION_WSCALE; 591 remaining -= TCPOLEN_WSCALE_ALIGNED; 592 } 593 if (likely(sysctl_tcp_sack)) { 594 opts->options |= OPTION_SACK_ADVERTISE; 595 if (unlikely(!(OPTION_TS & opts->options))) 596 remaining -= TCPOLEN_SACKPERM_ALIGNED; 597 } 598 599 if (fastopen && fastopen->cookie.len >= 0) { 600 u32 need = fastopen->cookie.len; 601 602 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 603 TCPOLEN_FASTOPEN_BASE; 604 need = (need + 3) & ~3U; /* Align to 32 bits */ 605 if (remaining >= need) { 606 opts->options |= OPTION_FAST_OPEN_COOKIE; 607 opts->fastopen_cookie = &fastopen->cookie; 608 remaining -= need; 609 tp->syn_fastopen = 1; 610 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 611 } 612 } 613 614 return MAX_TCP_OPTION_SPACE - remaining; 615 } 616 617 /* Set up TCP options for SYN-ACKs. */ 618 static unsigned int tcp_synack_options(struct sock *sk, 619 struct request_sock *req, 620 unsigned int mss, struct sk_buff *skb, 621 struct tcp_out_options *opts, 622 const struct tcp_md5sig_key *md5, 623 struct tcp_fastopen_cookie *foc) 624 { 625 struct inet_request_sock *ireq = inet_rsk(req); 626 unsigned int remaining = MAX_TCP_OPTION_SPACE; 627 628 #ifdef CONFIG_TCP_MD5SIG 629 if (md5) { 630 opts->options |= OPTION_MD5; 631 remaining -= TCPOLEN_MD5SIG_ALIGNED; 632 633 /* We can't fit any SACK blocks in a packet with MD5 + TS 634 * options. There was discussion about disabling SACK 635 * rather than TS in order to fit in better with old, 636 * buggy kernels, but that was deemed to be unnecessary. 637 */ 638 ireq->tstamp_ok &= !ireq->sack_ok; 639 } 640 #endif 641 642 /* We always send an MSS option. */ 643 opts->mss = mss; 644 remaining -= TCPOLEN_MSS_ALIGNED; 645 646 if (likely(ireq->wscale_ok)) { 647 opts->ws = ireq->rcv_wscale; 648 opts->options |= OPTION_WSCALE; 649 remaining -= TCPOLEN_WSCALE_ALIGNED; 650 } 651 if (likely(ireq->tstamp_ok)) { 652 opts->options |= OPTION_TS; 653 opts->tsval = tcp_skb_timestamp(skb); 654 opts->tsecr = req->ts_recent; 655 remaining -= TCPOLEN_TSTAMP_ALIGNED; 656 } 657 if (likely(ireq->sack_ok)) { 658 opts->options |= OPTION_SACK_ADVERTISE; 659 if (unlikely(!ireq->tstamp_ok)) 660 remaining -= TCPOLEN_SACKPERM_ALIGNED; 661 } 662 if (foc != NULL && foc->len >= 0) { 663 u32 need = foc->len; 664 665 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 666 TCPOLEN_FASTOPEN_BASE; 667 need = (need + 3) & ~3U; /* Align to 32 bits */ 668 if (remaining >= need) { 669 opts->options |= OPTION_FAST_OPEN_COOKIE; 670 opts->fastopen_cookie = foc; 671 remaining -= need; 672 } 673 } 674 675 return MAX_TCP_OPTION_SPACE - remaining; 676 } 677 678 /* Compute TCP options for ESTABLISHED sockets. This is not the 679 * final wire format yet. 680 */ 681 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 682 struct tcp_out_options *opts, 683 struct tcp_md5sig_key **md5) 684 { 685 struct tcp_sock *tp = tcp_sk(sk); 686 unsigned int size = 0; 687 unsigned int eff_sacks; 688 689 opts->options = 0; 690 691 #ifdef CONFIG_TCP_MD5SIG 692 *md5 = tp->af_specific->md5_lookup(sk, sk); 693 if (unlikely(*md5)) { 694 opts->options |= OPTION_MD5; 695 size += TCPOLEN_MD5SIG_ALIGNED; 696 } 697 #else 698 *md5 = NULL; 699 #endif 700 701 if (likely(tp->rx_opt.tstamp_ok)) { 702 opts->options |= OPTION_TS; 703 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 704 opts->tsecr = tp->rx_opt.ts_recent; 705 size += TCPOLEN_TSTAMP_ALIGNED; 706 } 707 708 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 709 if (unlikely(eff_sacks)) { 710 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 711 opts->num_sack_blocks = 712 min_t(unsigned int, eff_sacks, 713 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 714 TCPOLEN_SACK_PERBLOCK); 715 size += TCPOLEN_SACK_BASE_ALIGNED + 716 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 717 } 718 719 return size; 720 } 721 722 723 /* TCP SMALL QUEUES (TSQ) 724 * 725 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 726 * to reduce RTT and bufferbloat. 727 * We do this using a special skb destructor (tcp_wfree). 728 * 729 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 730 * needs to be reallocated in a driver. 731 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 732 * 733 * Since transmit from skb destructor is forbidden, we use a tasklet 734 * to process all sockets that eventually need to send more skbs. 735 * We use one tasklet per cpu, with its own queue of sockets. 736 */ 737 struct tsq_tasklet { 738 struct tasklet_struct tasklet; 739 struct list_head head; /* queue of tcp sockets */ 740 }; 741 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 742 743 static void tcp_tsq_handler(struct sock *sk) 744 { 745 if ((1 << sk->sk_state) & 746 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 747 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 748 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 749 0, GFP_ATOMIC); 750 } 751 /* 752 * One tasklet per cpu tries to send more skbs. 753 * We run in tasklet context but need to disable irqs when 754 * transferring tsq->head because tcp_wfree() might 755 * interrupt us (non NAPI drivers) 756 */ 757 static void tcp_tasklet_func(unsigned long data) 758 { 759 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 760 LIST_HEAD(list); 761 unsigned long flags; 762 struct list_head *q, *n; 763 struct tcp_sock *tp; 764 struct sock *sk; 765 766 local_irq_save(flags); 767 list_splice_init(&tsq->head, &list); 768 local_irq_restore(flags); 769 770 list_for_each_safe(q, n, &list) { 771 tp = list_entry(q, struct tcp_sock, tsq_node); 772 list_del(&tp->tsq_node); 773 774 sk = (struct sock *)tp; 775 bh_lock_sock(sk); 776 777 if (!sock_owned_by_user(sk)) { 778 tcp_tsq_handler(sk); 779 } else { 780 /* defer the work to tcp_release_cb() */ 781 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 782 } 783 bh_unlock_sock(sk); 784 785 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 786 sk_free(sk); 787 } 788 } 789 790 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 791 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 792 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 793 (1UL << TCP_MTU_REDUCED_DEFERRED)) 794 /** 795 * tcp_release_cb - tcp release_sock() callback 796 * @sk: socket 797 * 798 * called from release_sock() to perform protocol dependent 799 * actions before socket release. 800 */ 801 void tcp_release_cb(struct sock *sk) 802 { 803 struct tcp_sock *tp = tcp_sk(sk); 804 unsigned long flags, nflags; 805 806 /* perform an atomic operation only if at least one flag is set */ 807 do { 808 flags = tp->tsq_flags; 809 if (!(flags & TCP_DEFERRED_ALL)) 810 return; 811 nflags = flags & ~TCP_DEFERRED_ALL; 812 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 813 814 if (flags & (1UL << TCP_TSQ_DEFERRED)) 815 tcp_tsq_handler(sk); 816 817 /* Here begins the tricky part : 818 * We are called from release_sock() with : 819 * 1) BH disabled 820 * 2) sk_lock.slock spinlock held 821 * 3) socket owned by us (sk->sk_lock.owned == 1) 822 * 823 * But following code is meant to be called from BH handlers, 824 * so we should keep BH disabled, but early release socket ownership 825 */ 826 sock_release_ownership(sk); 827 828 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 829 tcp_write_timer_handler(sk); 830 __sock_put(sk); 831 } 832 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 833 tcp_delack_timer_handler(sk); 834 __sock_put(sk); 835 } 836 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 837 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 838 __sock_put(sk); 839 } 840 } 841 EXPORT_SYMBOL(tcp_release_cb); 842 843 void __init tcp_tasklet_init(void) 844 { 845 int i; 846 847 for_each_possible_cpu(i) { 848 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 849 850 INIT_LIST_HEAD(&tsq->head); 851 tasklet_init(&tsq->tasklet, 852 tcp_tasklet_func, 853 (unsigned long)tsq); 854 } 855 } 856 857 /* 858 * Write buffer destructor automatically called from kfree_skb. 859 * We can't xmit new skbs from this context, as we might already 860 * hold qdisc lock. 861 */ 862 void tcp_wfree(struct sk_buff *skb) 863 { 864 struct sock *sk = skb->sk; 865 struct tcp_sock *tp = tcp_sk(sk); 866 int wmem; 867 868 /* Keep one reference on sk_wmem_alloc. 869 * Will be released by sk_free() from here or tcp_tasklet_func() 870 */ 871 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 872 873 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 874 * Wait until our queues (qdisc + devices) are drained. 875 * This gives : 876 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 877 * - chance for incoming ACK (processed by another cpu maybe) 878 * to migrate this flow (skb->ooo_okay will be eventually set) 879 */ 880 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 881 goto out; 882 883 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 884 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 885 unsigned long flags; 886 struct tsq_tasklet *tsq; 887 888 /* queue this socket to tasklet queue */ 889 local_irq_save(flags); 890 tsq = this_cpu_ptr(&tsq_tasklet); 891 list_add(&tp->tsq_node, &tsq->head); 892 tasklet_schedule(&tsq->tasklet); 893 local_irq_restore(flags); 894 return; 895 } 896 out: 897 sk_free(sk); 898 } 899 900 /* This routine actually transmits TCP packets queued in by 901 * tcp_do_sendmsg(). This is used by both the initial 902 * transmission and possible later retransmissions. 903 * All SKB's seen here are completely headerless. It is our 904 * job to build the TCP header, and pass the packet down to 905 * IP so it can do the same plus pass the packet off to the 906 * device. 907 * 908 * We are working here with either a clone of the original 909 * SKB, or a fresh unique copy made by the retransmit engine. 910 */ 911 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 912 gfp_t gfp_mask) 913 { 914 const struct inet_connection_sock *icsk = inet_csk(sk); 915 struct inet_sock *inet; 916 struct tcp_sock *tp; 917 struct tcp_skb_cb *tcb; 918 struct tcp_out_options opts; 919 unsigned int tcp_options_size, tcp_header_size; 920 struct tcp_md5sig_key *md5; 921 struct tcphdr *th; 922 int err; 923 924 BUG_ON(!skb || !tcp_skb_pcount(skb)); 925 926 if (clone_it) { 927 skb_mstamp_get(&skb->skb_mstamp); 928 929 if (unlikely(skb_cloned(skb))) 930 skb = pskb_copy(skb, gfp_mask); 931 else 932 skb = skb_clone(skb, gfp_mask); 933 if (unlikely(!skb)) 934 return -ENOBUFS; 935 } 936 937 inet = inet_sk(sk); 938 tp = tcp_sk(sk); 939 tcb = TCP_SKB_CB(skb); 940 memset(&opts, 0, sizeof(opts)); 941 942 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 943 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 944 else 945 tcp_options_size = tcp_established_options(sk, skb, &opts, 946 &md5); 947 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 948 949 if (tcp_packets_in_flight(tp) == 0) 950 tcp_ca_event(sk, CA_EVENT_TX_START); 951 952 /* if no packet is in qdisc/device queue, then allow XPS to select 953 * another queue. We can be called from tcp_tsq_handler() 954 * which holds one reference to sk_wmem_alloc. 955 * 956 * TODO: Ideally, in-flight pure ACK packets should not matter here. 957 * One way to get this would be to set skb->truesize = 2 on them. 958 */ 959 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 960 961 skb_push(skb, tcp_header_size); 962 skb_reset_transport_header(skb); 963 964 skb_orphan(skb); 965 skb->sk = sk; 966 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree; 967 skb_set_hash_from_sk(skb, sk); 968 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 969 970 /* Build TCP header and checksum it. */ 971 th = tcp_hdr(skb); 972 th->source = inet->inet_sport; 973 th->dest = inet->inet_dport; 974 th->seq = htonl(tcb->seq); 975 th->ack_seq = htonl(tp->rcv_nxt); 976 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 977 tcb->tcp_flags); 978 979 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 980 /* RFC1323: The window in SYN & SYN/ACK segments 981 * is never scaled. 982 */ 983 th->window = htons(min(tp->rcv_wnd, 65535U)); 984 } else { 985 th->window = htons(tcp_select_window(sk)); 986 } 987 th->check = 0; 988 th->urg_ptr = 0; 989 990 /* The urg_mode check is necessary during a below snd_una win probe */ 991 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 992 if (before(tp->snd_up, tcb->seq + 0x10000)) { 993 th->urg_ptr = htons(tp->snd_up - tcb->seq); 994 th->urg = 1; 995 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 996 th->urg_ptr = htons(0xFFFF); 997 th->urg = 1; 998 } 999 } 1000 1001 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1002 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1003 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 1004 tcp_ecn_send(sk, skb, tcp_header_size); 1005 1006 #ifdef CONFIG_TCP_MD5SIG 1007 /* Calculate the MD5 hash, as we have all we need now */ 1008 if (md5) { 1009 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1010 tp->af_specific->calc_md5_hash(opts.hash_location, 1011 md5, sk, skb); 1012 } 1013 #endif 1014 1015 icsk->icsk_af_ops->send_check(sk, skb); 1016 1017 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1018 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1019 1020 if (skb->len != tcp_header_size) 1021 tcp_event_data_sent(tp, sk); 1022 1023 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1024 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1025 tcp_skb_pcount(skb)); 1026 1027 tp->segs_out += tcp_skb_pcount(skb); 1028 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1029 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1030 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1031 1032 /* Our usage of tstamp should remain private */ 1033 skb->tstamp.tv64 = 0; 1034 1035 /* Cleanup our debris for IP stacks */ 1036 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1037 sizeof(struct inet6_skb_parm))); 1038 1039 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1040 1041 if (likely(err <= 0)) 1042 return err; 1043 1044 tcp_enter_cwr(sk); 1045 1046 return net_xmit_eval(err); 1047 } 1048 1049 /* This routine just queues the buffer for sending. 1050 * 1051 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1052 * otherwise socket can stall. 1053 */ 1054 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1055 { 1056 struct tcp_sock *tp = tcp_sk(sk); 1057 1058 /* Advance write_seq and place onto the write_queue. */ 1059 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1060 __skb_header_release(skb); 1061 tcp_add_write_queue_tail(sk, skb); 1062 sk->sk_wmem_queued += skb->truesize; 1063 sk_mem_charge(sk, skb->truesize); 1064 } 1065 1066 /* Initialize TSO segments for a packet. */ 1067 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1068 { 1069 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1070 /* Avoid the costly divide in the normal 1071 * non-TSO case. 1072 */ 1073 tcp_skb_pcount_set(skb, 1); 1074 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1075 } else { 1076 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1077 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1078 } 1079 } 1080 1081 /* When a modification to fackets out becomes necessary, we need to check 1082 * skb is counted to fackets_out or not. 1083 */ 1084 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1085 int decr) 1086 { 1087 struct tcp_sock *tp = tcp_sk(sk); 1088 1089 if (!tp->sacked_out || tcp_is_reno(tp)) 1090 return; 1091 1092 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1093 tp->fackets_out -= decr; 1094 } 1095 1096 /* Pcount in the middle of the write queue got changed, we need to do various 1097 * tweaks to fix counters 1098 */ 1099 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1100 { 1101 struct tcp_sock *tp = tcp_sk(sk); 1102 1103 tp->packets_out -= decr; 1104 1105 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1106 tp->sacked_out -= decr; 1107 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1108 tp->retrans_out -= decr; 1109 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1110 tp->lost_out -= decr; 1111 1112 /* Reno case is special. Sigh... */ 1113 if (tcp_is_reno(tp) && decr > 0) 1114 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1115 1116 tcp_adjust_fackets_out(sk, skb, decr); 1117 1118 if (tp->lost_skb_hint && 1119 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1120 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1121 tp->lost_cnt_hint -= decr; 1122 1123 tcp_verify_left_out(tp); 1124 } 1125 1126 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1127 { 1128 struct skb_shared_info *shinfo = skb_shinfo(skb); 1129 1130 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) && 1131 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1132 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1133 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1134 1135 shinfo->tx_flags &= ~tsflags; 1136 shinfo2->tx_flags |= tsflags; 1137 swap(shinfo->tskey, shinfo2->tskey); 1138 } 1139 } 1140 1141 /* Function to create two new TCP segments. Shrinks the given segment 1142 * to the specified size and appends a new segment with the rest of the 1143 * packet to the list. This won't be called frequently, I hope. 1144 * Remember, these are still headerless SKBs at this point. 1145 */ 1146 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1147 unsigned int mss_now, gfp_t gfp) 1148 { 1149 struct tcp_sock *tp = tcp_sk(sk); 1150 struct sk_buff *buff; 1151 int nsize, old_factor; 1152 int nlen; 1153 u8 flags; 1154 1155 if (WARN_ON(len > skb->len)) 1156 return -EINVAL; 1157 1158 nsize = skb_headlen(skb) - len; 1159 if (nsize < 0) 1160 nsize = 0; 1161 1162 if (skb_unclone(skb, gfp)) 1163 return -ENOMEM; 1164 1165 /* Get a new skb... force flag on. */ 1166 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1167 if (!buff) 1168 return -ENOMEM; /* We'll just try again later. */ 1169 1170 sk->sk_wmem_queued += buff->truesize; 1171 sk_mem_charge(sk, buff->truesize); 1172 nlen = skb->len - len - nsize; 1173 buff->truesize += nlen; 1174 skb->truesize -= nlen; 1175 1176 /* Correct the sequence numbers. */ 1177 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1178 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1179 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1180 1181 /* PSH and FIN should only be set in the second packet. */ 1182 flags = TCP_SKB_CB(skb)->tcp_flags; 1183 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1184 TCP_SKB_CB(buff)->tcp_flags = flags; 1185 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1186 1187 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1188 /* Copy and checksum data tail into the new buffer. */ 1189 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1190 skb_put(buff, nsize), 1191 nsize, 0); 1192 1193 skb_trim(skb, len); 1194 1195 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1196 } else { 1197 skb->ip_summed = CHECKSUM_PARTIAL; 1198 skb_split(skb, buff, len); 1199 } 1200 1201 buff->ip_summed = skb->ip_summed; 1202 1203 buff->tstamp = skb->tstamp; 1204 tcp_fragment_tstamp(skb, buff); 1205 1206 old_factor = tcp_skb_pcount(skb); 1207 1208 /* Fix up tso_factor for both original and new SKB. */ 1209 tcp_set_skb_tso_segs(skb, mss_now); 1210 tcp_set_skb_tso_segs(buff, mss_now); 1211 1212 /* If this packet has been sent out already, we must 1213 * adjust the various packet counters. 1214 */ 1215 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1216 int diff = old_factor - tcp_skb_pcount(skb) - 1217 tcp_skb_pcount(buff); 1218 1219 if (diff) 1220 tcp_adjust_pcount(sk, skb, diff); 1221 } 1222 1223 /* Link BUFF into the send queue. */ 1224 __skb_header_release(buff); 1225 tcp_insert_write_queue_after(skb, buff, sk); 1226 1227 return 0; 1228 } 1229 1230 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1231 * eventually). The difference is that pulled data not copied, but 1232 * immediately discarded. 1233 */ 1234 static void __pskb_trim_head(struct sk_buff *skb, int len) 1235 { 1236 struct skb_shared_info *shinfo; 1237 int i, k, eat; 1238 1239 eat = min_t(int, len, skb_headlen(skb)); 1240 if (eat) { 1241 __skb_pull(skb, eat); 1242 len -= eat; 1243 if (!len) 1244 return; 1245 } 1246 eat = len; 1247 k = 0; 1248 shinfo = skb_shinfo(skb); 1249 for (i = 0; i < shinfo->nr_frags; i++) { 1250 int size = skb_frag_size(&shinfo->frags[i]); 1251 1252 if (size <= eat) { 1253 skb_frag_unref(skb, i); 1254 eat -= size; 1255 } else { 1256 shinfo->frags[k] = shinfo->frags[i]; 1257 if (eat) { 1258 shinfo->frags[k].page_offset += eat; 1259 skb_frag_size_sub(&shinfo->frags[k], eat); 1260 eat = 0; 1261 } 1262 k++; 1263 } 1264 } 1265 shinfo->nr_frags = k; 1266 1267 skb_reset_tail_pointer(skb); 1268 skb->data_len -= len; 1269 skb->len = skb->data_len; 1270 } 1271 1272 /* Remove acked data from a packet in the transmit queue. */ 1273 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1274 { 1275 if (skb_unclone(skb, GFP_ATOMIC)) 1276 return -ENOMEM; 1277 1278 __pskb_trim_head(skb, len); 1279 1280 TCP_SKB_CB(skb)->seq += len; 1281 skb->ip_summed = CHECKSUM_PARTIAL; 1282 1283 skb->truesize -= len; 1284 sk->sk_wmem_queued -= len; 1285 sk_mem_uncharge(sk, len); 1286 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1287 1288 /* Any change of skb->len requires recalculation of tso factor. */ 1289 if (tcp_skb_pcount(skb) > 1) 1290 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1291 1292 return 0; 1293 } 1294 1295 /* Calculate MSS not accounting any TCP options. */ 1296 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1297 { 1298 const struct tcp_sock *tp = tcp_sk(sk); 1299 const struct inet_connection_sock *icsk = inet_csk(sk); 1300 int mss_now; 1301 1302 /* Calculate base mss without TCP options: 1303 It is MMS_S - sizeof(tcphdr) of rfc1122 1304 */ 1305 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1306 1307 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1308 if (icsk->icsk_af_ops->net_frag_header_len) { 1309 const struct dst_entry *dst = __sk_dst_get(sk); 1310 1311 if (dst && dst_allfrag(dst)) 1312 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1313 } 1314 1315 /* Clamp it (mss_clamp does not include tcp options) */ 1316 if (mss_now > tp->rx_opt.mss_clamp) 1317 mss_now = tp->rx_opt.mss_clamp; 1318 1319 /* Now subtract optional transport overhead */ 1320 mss_now -= icsk->icsk_ext_hdr_len; 1321 1322 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1323 if (mss_now < 48) 1324 mss_now = 48; 1325 return mss_now; 1326 } 1327 1328 /* Calculate MSS. Not accounting for SACKs here. */ 1329 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1330 { 1331 /* Subtract TCP options size, not including SACKs */ 1332 return __tcp_mtu_to_mss(sk, pmtu) - 1333 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1334 } 1335 1336 /* Inverse of above */ 1337 int tcp_mss_to_mtu(struct sock *sk, int mss) 1338 { 1339 const struct tcp_sock *tp = tcp_sk(sk); 1340 const struct inet_connection_sock *icsk = inet_csk(sk); 1341 int mtu; 1342 1343 mtu = mss + 1344 tp->tcp_header_len + 1345 icsk->icsk_ext_hdr_len + 1346 icsk->icsk_af_ops->net_header_len; 1347 1348 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1349 if (icsk->icsk_af_ops->net_frag_header_len) { 1350 const struct dst_entry *dst = __sk_dst_get(sk); 1351 1352 if (dst && dst_allfrag(dst)) 1353 mtu += icsk->icsk_af_ops->net_frag_header_len; 1354 } 1355 return mtu; 1356 } 1357 1358 /* MTU probing init per socket */ 1359 void tcp_mtup_init(struct sock *sk) 1360 { 1361 struct tcp_sock *tp = tcp_sk(sk); 1362 struct inet_connection_sock *icsk = inet_csk(sk); 1363 struct net *net = sock_net(sk); 1364 1365 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1366 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1367 icsk->icsk_af_ops->net_header_len; 1368 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1369 icsk->icsk_mtup.probe_size = 0; 1370 if (icsk->icsk_mtup.enabled) 1371 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1372 } 1373 EXPORT_SYMBOL(tcp_mtup_init); 1374 1375 /* This function synchronize snd mss to current pmtu/exthdr set. 1376 1377 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1378 for TCP options, but includes only bare TCP header. 1379 1380 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1381 It is minimum of user_mss and mss received with SYN. 1382 It also does not include TCP options. 1383 1384 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1385 1386 tp->mss_cache is current effective sending mss, including 1387 all tcp options except for SACKs. It is evaluated, 1388 taking into account current pmtu, but never exceeds 1389 tp->rx_opt.mss_clamp. 1390 1391 NOTE1. rfc1122 clearly states that advertised MSS 1392 DOES NOT include either tcp or ip options. 1393 1394 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1395 are READ ONLY outside this function. --ANK (980731) 1396 */ 1397 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1398 { 1399 struct tcp_sock *tp = tcp_sk(sk); 1400 struct inet_connection_sock *icsk = inet_csk(sk); 1401 int mss_now; 1402 1403 if (icsk->icsk_mtup.search_high > pmtu) 1404 icsk->icsk_mtup.search_high = pmtu; 1405 1406 mss_now = tcp_mtu_to_mss(sk, pmtu); 1407 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1408 1409 /* And store cached results */ 1410 icsk->icsk_pmtu_cookie = pmtu; 1411 if (icsk->icsk_mtup.enabled) 1412 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1413 tp->mss_cache = mss_now; 1414 1415 return mss_now; 1416 } 1417 EXPORT_SYMBOL(tcp_sync_mss); 1418 1419 /* Compute the current effective MSS, taking SACKs and IP options, 1420 * and even PMTU discovery events into account. 1421 */ 1422 unsigned int tcp_current_mss(struct sock *sk) 1423 { 1424 const struct tcp_sock *tp = tcp_sk(sk); 1425 const struct dst_entry *dst = __sk_dst_get(sk); 1426 u32 mss_now; 1427 unsigned int header_len; 1428 struct tcp_out_options opts; 1429 struct tcp_md5sig_key *md5; 1430 1431 mss_now = tp->mss_cache; 1432 1433 if (dst) { 1434 u32 mtu = dst_mtu(dst); 1435 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1436 mss_now = tcp_sync_mss(sk, mtu); 1437 } 1438 1439 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1440 sizeof(struct tcphdr); 1441 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1442 * some common options. If this is an odd packet (because we have SACK 1443 * blocks etc) then our calculated header_len will be different, and 1444 * we have to adjust mss_now correspondingly */ 1445 if (header_len != tp->tcp_header_len) { 1446 int delta = (int) header_len - tp->tcp_header_len; 1447 mss_now -= delta; 1448 } 1449 1450 return mss_now; 1451 } 1452 1453 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1454 * As additional protections, we do not touch cwnd in retransmission phases, 1455 * and if application hit its sndbuf limit recently. 1456 */ 1457 static void tcp_cwnd_application_limited(struct sock *sk) 1458 { 1459 struct tcp_sock *tp = tcp_sk(sk); 1460 1461 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1462 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1463 /* Limited by application or receiver window. */ 1464 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1465 u32 win_used = max(tp->snd_cwnd_used, init_win); 1466 if (win_used < tp->snd_cwnd) { 1467 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1468 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1469 } 1470 tp->snd_cwnd_used = 0; 1471 } 1472 tp->snd_cwnd_stamp = tcp_time_stamp; 1473 } 1474 1475 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1476 { 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 1479 /* Track the maximum number of outstanding packets in each 1480 * window, and remember whether we were cwnd-limited then. 1481 */ 1482 if (!before(tp->snd_una, tp->max_packets_seq) || 1483 tp->packets_out > tp->max_packets_out) { 1484 tp->max_packets_out = tp->packets_out; 1485 tp->max_packets_seq = tp->snd_nxt; 1486 tp->is_cwnd_limited = is_cwnd_limited; 1487 } 1488 1489 if (tcp_is_cwnd_limited(sk)) { 1490 /* Network is feed fully. */ 1491 tp->snd_cwnd_used = 0; 1492 tp->snd_cwnd_stamp = tcp_time_stamp; 1493 } else { 1494 /* Network starves. */ 1495 if (tp->packets_out > tp->snd_cwnd_used) 1496 tp->snd_cwnd_used = tp->packets_out; 1497 1498 if (sysctl_tcp_slow_start_after_idle && 1499 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1500 tcp_cwnd_application_limited(sk); 1501 } 1502 } 1503 1504 /* Minshall's variant of the Nagle send check. */ 1505 static bool tcp_minshall_check(const struct tcp_sock *tp) 1506 { 1507 return after(tp->snd_sml, tp->snd_una) && 1508 !after(tp->snd_sml, tp->snd_nxt); 1509 } 1510 1511 /* Update snd_sml if this skb is under mss 1512 * Note that a TSO packet might end with a sub-mss segment 1513 * The test is really : 1514 * if ((skb->len % mss) != 0) 1515 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1516 * But we can avoid doing the divide again given we already have 1517 * skb_pcount = skb->len / mss_now 1518 */ 1519 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1520 const struct sk_buff *skb) 1521 { 1522 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1523 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1524 } 1525 1526 /* Return false, if packet can be sent now without violation Nagle's rules: 1527 * 1. It is full sized. (provided by caller in %partial bool) 1528 * 2. Or it contains FIN. (already checked by caller) 1529 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1530 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1531 * With Minshall's modification: all sent small packets are ACKed. 1532 */ 1533 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1534 int nonagle) 1535 { 1536 return partial && 1537 ((nonagle & TCP_NAGLE_CORK) || 1538 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1539 } 1540 1541 /* Return how many segs we'd like on a TSO packet, 1542 * to send one TSO packet per ms 1543 */ 1544 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now) 1545 { 1546 u32 bytes, segs; 1547 1548 bytes = min(sk->sk_pacing_rate >> 10, 1549 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1550 1551 /* Goal is to send at least one packet per ms, 1552 * not one big TSO packet every 100 ms. 1553 * This preserves ACK clocking and is consistent 1554 * with tcp_tso_should_defer() heuristic. 1555 */ 1556 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs); 1557 1558 return min_t(u32, segs, sk->sk_gso_max_segs); 1559 } 1560 1561 /* Returns the portion of skb which can be sent right away */ 1562 static unsigned int tcp_mss_split_point(const struct sock *sk, 1563 const struct sk_buff *skb, 1564 unsigned int mss_now, 1565 unsigned int max_segs, 1566 int nonagle) 1567 { 1568 const struct tcp_sock *tp = tcp_sk(sk); 1569 u32 partial, needed, window, max_len; 1570 1571 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1572 max_len = mss_now * max_segs; 1573 1574 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1575 return max_len; 1576 1577 needed = min(skb->len, window); 1578 1579 if (max_len <= needed) 1580 return max_len; 1581 1582 partial = needed % mss_now; 1583 /* If last segment is not a full MSS, check if Nagle rules allow us 1584 * to include this last segment in this skb. 1585 * Otherwise, we'll split the skb at last MSS boundary 1586 */ 1587 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1588 return needed - partial; 1589 1590 return needed; 1591 } 1592 1593 /* Can at least one segment of SKB be sent right now, according to the 1594 * congestion window rules? If so, return how many segments are allowed. 1595 */ 1596 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1597 const struct sk_buff *skb) 1598 { 1599 u32 in_flight, cwnd, halfcwnd; 1600 1601 /* Don't be strict about the congestion window for the final FIN. */ 1602 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1603 tcp_skb_pcount(skb) == 1) 1604 return 1; 1605 1606 in_flight = tcp_packets_in_flight(tp); 1607 cwnd = tp->snd_cwnd; 1608 if (in_flight >= cwnd) 1609 return 0; 1610 1611 /* For better scheduling, ensure we have at least 1612 * 2 GSO packets in flight. 1613 */ 1614 halfcwnd = max(cwnd >> 1, 1U); 1615 return min(halfcwnd, cwnd - in_flight); 1616 } 1617 1618 /* Initialize TSO state of a skb. 1619 * This must be invoked the first time we consider transmitting 1620 * SKB onto the wire. 1621 */ 1622 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1623 { 1624 int tso_segs = tcp_skb_pcount(skb); 1625 1626 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1627 tcp_set_skb_tso_segs(skb, mss_now); 1628 tso_segs = tcp_skb_pcount(skb); 1629 } 1630 return tso_segs; 1631 } 1632 1633 1634 /* Return true if the Nagle test allows this packet to be 1635 * sent now. 1636 */ 1637 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1638 unsigned int cur_mss, int nonagle) 1639 { 1640 /* Nagle rule does not apply to frames, which sit in the middle of the 1641 * write_queue (they have no chances to get new data). 1642 * 1643 * This is implemented in the callers, where they modify the 'nonagle' 1644 * argument based upon the location of SKB in the send queue. 1645 */ 1646 if (nonagle & TCP_NAGLE_PUSH) 1647 return true; 1648 1649 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1650 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1651 return true; 1652 1653 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1654 return true; 1655 1656 return false; 1657 } 1658 1659 /* Does at least the first segment of SKB fit into the send window? */ 1660 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1661 const struct sk_buff *skb, 1662 unsigned int cur_mss) 1663 { 1664 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1665 1666 if (skb->len > cur_mss) 1667 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1668 1669 return !after(end_seq, tcp_wnd_end(tp)); 1670 } 1671 1672 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1673 * should be put on the wire right now. If so, it returns the number of 1674 * packets allowed by the congestion window. 1675 */ 1676 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1677 unsigned int cur_mss, int nonagle) 1678 { 1679 const struct tcp_sock *tp = tcp_sk(sk); 1680 unsigned int cwnd_quota; 1681 1682 tcp_init_tso_segs(skb, cur_mss); 1683 1684 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1685 return 0; 1686 1687 cwnd_quota = tcp_cwnd_test(tp, skb); 1688 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1689 cwnd_quota = 0; 1690 1691 return cwnd_quota; 1692 } 1693 1694 /* Test if sending is allowed right now. */ 1695 bool tcp_may_send_now(struct sock *sk) 1696 { 1697 const struct tcp_sock *tp = tcp_sk(sk); 1698 struct sk_buff *skb = tcp_send_head(sk); 1699 1700 return skb && 1701 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1702 (tcp_skb_is_last(sk, skb) ? 1703 tp->nonagle : TCP_NAGLE_PUSH)); 1704 } 1705 1706 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1707 * which is put after SKB on the list. It is very much like 1708 * tcp_fragment() except that it may make several kinds of assumptions 1709 * in order to speed up the splitting operation. In particular, we 1710 * know that all the data is in scatter-gather pages, and that the 1711 * packet has never been sent out before (and thus is not cloned). 1712 */ 1713 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1714 unsigned int mss_now, gfp_t gfp) 1715 { 1716 struct sk_buff *buff; 1717 int nlen = skb->len - len; 1718 u8 flags; 1719 1720 /* All of a TSO frame must be composed of paged data. */ 1721 if (skb->len != skb->data_len) 1722 return tcp_fragment(sk, skb, len, mss_now, gfp); 1723 1724 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1725 if (unlikely(!buff)) 1726 return -ENOMEM; 1727 1728 sk->sk_wmem_queued += buff->truesize; 1729 sk_mem_charge(sk, buff->truesize); 1730 buff->truesize += nlen; 1731 skb->truesize -= nlen; 1732 1733 /* Correct the sequence numbers. */ 1734 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1735 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1736 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1737 1738 /* PSH and FIN should only be set in the second packet. */ 1739 flags = TCP_SKB_CB(skb)->tcp_flags; 1740 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1741 TCP_SKB_CB(buff)->tcp_flags = flags; 1742 1743 /* This packet was never sent out yet, so no SACK bits. */ 1744 TCP_SKB_CB(buff)->sacked = 0; 1745 1746 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1747 skb_split(skb, buff, len); 1748 tcp_fragment_tstamp(skb, buff); 1749 1750 /* Fix up tso_factor for both original and new SKB. */ 1751 tcp_set_skb_tso_segs(skb, mss_now); 1752 tcp_set_skb_tso_segs(buff, mss_now); 1753 1754 /* Link BUFF into the send queue. */ 1755 __skb_header_release(buff); 1756 tcp_insert_write_queue_after(skb, buff, sk); 1757 1758 return 0; 1759 } 1760 1761 /* Try to defer sending, if possible, in order to minimize the amount 1762 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1763 * 1764 * This algorithm is from John Heffner. 1765 */ 1766 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1767 bool *is_cwnd_limited, u32 max_segs) 1768 { 1769 const struct inet_connection_sock *icsk = inet_csk(sk); 1770 u32 age, send_win, cong_win, limit, in_flight; 1771 struct tcp_sock *tp = tcp_sk(sk); 1772 struct skb_mstamp now; 1773 struct sk_buff *head; 1774 int win_divisor; 1775 1776 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1777 goto send_now; 1778 1779 if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR))) 1780 goto send_now; 1781 1782 /* Avoid bursty behavior by allowing defer 1783 * only if the last write was recent. 1784 */ 1785 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1786 goto send_now; 1787 1788 in_flight = tcp_packets_in_flight(tp); 1789 1790 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1791 1792 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1793 1794 /* From in_flight test above, we know that cwnd > in_flight. */ 1795 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1796 1797 limit = min(send_win, cong_win); 1798 1799 /* If a full-sized TSO skb can be sent, do it. */ 1800 if (limit >= max_segs * tp->mss_cache) 1801 goto send_now; 1802 1803 /* Middle in queue won't get any more data, full sendable already? */ 1804 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1805 goto send_now; 1806 1807 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1808 if (win_divisor) { 1809 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1810 1811 /* If at least some fraction of a window is available, 1812 * just use it. 1813 */ 1814 chunk /= win_divisor; 1815 if (limit >= chunk) 1816 goto send_now; 1817 } else { 1818 /* Different approach, try not to defer past a single 1819 * ACK. Receiver should ACK every other full sized 1820 * frame, so if we have space for more than 3 frames 1821 * then send now. 1822 */ 1823 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1824 goto send_now; 1825 } 1826 1827 head = tcp_write_queue_head(sk); 1828 skb_mstamp_get(&now); 1829 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1830 /* If next ACK is likely to come too late (half srtt), do not defer */ 1831 if (age < (tp->srtt_us >> 4)) 1832 goto send_now; 1833 1834 /* Ok, it looks like it is advisable to defer. */ 1835 1836 if (cong_win < send_win && cong_win < skb->len) 1837 *is_cwnd_limited = true; 1838 1839 return true; 1840 1841 send_now: 1842 return false; 1843 } 1844 1845 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1846 { 1847 struct inet_connection_sock *icsk = inet_csk(sk); 1848 struct tcp_sock *tp = tcp_sk(sk); 1849 struct net *net = sock_net(sk); 1850 u32 interval; 1851 s32 delta; 1852 1853 interval = net->ipv4.sysctl_tcp_probe_interval; 1854 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1855 if (unlikely(delta >= interval * HZ)) { 1856 int mss = tcp_current_mss(sk); 1857 1858 /* Update current search range */ 1859 icsk->icsk_mtup.probe_size = 0; 1860 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1861 sizeof(struct tcphdr) + 1862 icsk->icsk_af_ops->net_header_len; 1863 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1864 1865 /* Update probe time stamp */ 1866 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1867 } 1868 } 1869 1870 /* Create a new MTU probe if we are ready. 1871 * MTU probe is regularly attempting to increase the path MTU by 1872 * deliberately sending larger packets. This discovers routing 1873 * changes resulting in larger path MTUs. 1874 * 1875 * Returns 0 if we should wait to probe (no cwnd available), 1876 * 1 if a probe was sent, 1877 * -1 otherwise 1878 */ 1879 static int tcp_mtu_probe(struct sock *sk) 1880 { 1881 struct tcp_sock *tp = tcp_sk(sk); 1882 struct inet_connection_sock *icsk = inet_csk(sk); 1883 struct sk_buff *skb, *nskb, *next; 1884 struct net *net = sock_net(sk); 1885 int len; 1886 int probe_size; 1887 int size_needed; 1888 int copy; 1889 int mss_now; 1890 int interval; 1891 1892 /* Not currently probing/verifying, 1893 * not in recovery, 1894 * have enough cwnd, and 1895 * not SACKing (the variable headers throw things off) */ 1896 if (!icsk->icsk_mtup.enabled || 1897 icsk->icsk_mtup.probe_size || 1898 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1899 tp->snd_cwnd < 11 || 1900 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1901 return -1; 1902 1903 /* Use binary search for probe_size between tcp_mss_base, 1904 * and current mss_clamp. if (search_high - search_low) 1905 * smaller than a threshold, backoff from probing. 1906 */ 1907 mss_now = tcp_current_mss(sk); 1908 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1909 icsk->icsk_mtup.search_low) >> 1); 1910 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1911 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1912 /* When misfortune happens, we are reprobing actively, 1913 * and then reprobe timer has expired. We stick with current 1914 * probing process by not resetting search range to its orignal. 1915 */ 1916 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1917 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1918 /* Check whether enough time has elaplased for 1919 * another round of probing. 1920 */ 1921 tcp_mtu_check_reprobe(sk); 1922 return -1; 1923 } 1924 1925 /* Have enough data in the send queue to probe? */ 1926 if (tp->write_seq - tp->snd_nxt < size_needed) 1927 return -1; 1928 1929 if (tp->snd_wnd < size_needed) 1930 return -1; 1931 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1932 return 0; 1933 1934 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1935 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1936 if (!tcp_packets_in_flight(tp)) 1937 return -1; 1938 else 1939 return 0; 1940 } 1941 1942 /* We're allowed to probe. Build it now. */ 1943 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 1944 if (!nskb) 1945 return -1; 1946 sk->sk_wmem_queued += nskb->truesize; 1947 sk_mem_charge(sk, nskb->truesize); 1948 1949 skb = tcp_send_head(sk); 1950 1951 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1952 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1953 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1954 TCP_SKB_CB(nskb)->sacked = 0; 1955 nskb->csum = 0; 1956 nskb->ip_summed = skb->ip_summed; 1957 1958 tcp_insert_write_queue_before(nskb, skb, sk); 1959 1960 len = 0; 1961 tcp_for_write_queue_from_safe(skb, next, sk) { 1962 copy = min_t(int, skb->len, probe_size - len); 1963 if (nskb->ip_summed) 1964 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1965 else 1966 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1967 skb_put(nskb, copy), 1968 copy, nskb->csum); 1969 1970 if (skb->len <= copy) { 1971 /* We've eaten all the data from this skb. 1972 * Throw it away. */ 1973 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1974 tcp_unlink_write_queue(skb, sk); 1975 sk_wmem_free_skb(sk, skb); 1976 } else { 1977 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1978 ~(TCPHDR_FIN|TCPHDR_PSH); 1979 if (!skb_shinfo(skb)->nr_frags) { 1980 skb_pull(skb, copy); 1981 if (skb->ip_summed != CHECKSUM_PARTIAL) 1982 skb->csum = csum_partial(skb->data, 1983 skb->len, 0); 1984 } else { 1985 __pskb_trim_head(skb, copy); 1986 tcp_set_skb_tso_segs(skb, mss_now); 1987 } 1988 TCP_SKB_CB(skb)->seq += copy; 1989 } 1990 1991 len += copy; 1992 1993 if (len >= probe_size) 1994 break; 1995 } 1996 tcp_init_tso_segs(nskb, nskb->len); 1997 1998 /* We're ready to send. If this fails, the probe will 1999 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2000 */ 2001 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2002 /* Decrement cwnd here because we are sending 2003 * effectively two packets. */ 2004 tp->snd_cwnd--; 2005 tcp_event_new_data_sent(sk, nskb); 2006 2007 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2008 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2009 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2010 2011 return 1; 2012 } 2013 2014 return -1; 2015 } 2016 2017 /* This routine writes packets to the network. It advances the 2018 * send_head. This happens as incoming acks open up the remote 2019 * window for us. 2020 * 2021 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2022 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2023 * account rare use of URG, this is not a big flaw. 2024 * 2025 * Send at most one packet when push_one > 0. Temporarily ignore 2026 * cwnd limit to force at most one packet out when push_one == 2. 2027 2028 * Returns true, if no segments are in flight and we have queued segments, 2029 * but cannot send anything now because of SWS or another problem. 2030 */ 2031 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2032 int push_one, gfp_t gfp) 2033 { 2034 struct tcp_sock *tp = tcp_sk(sk); 2035 struct sk_buff *skb; 2036 unsigned int tso_segs, sent_pkts; 2037 int cwnd_quota; 2038 int result; 2039 bool is_cwnd_limited = false; 2040 u32 max_segs; 2041 2042 sent_pkts = 0; 2043 2044 if (!push_one) { 2045 /* Do MTU probing. */ 2046 result = tcp_mtu_probe(sk); 2047 if (!result) { 2048 return false; 2049 } else if (result > 0) { 2050 sent_pkts = 1; 2051 } 2052 } 2053 2054 max_segs = tcp_tso_autosize(sk, mss_now); 2055 while ((skb = tcp_send_head(sk))) { 2056 unsigned int limit; 2057 2058 tso_segs = tcp_init_tso_segs(skb, mss_now); 2059 BUG_ON(!tso_segs); 2060 2061 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2062 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2063 skb_mstamp_get(&skb->skb_mstamp); 2064 goto repair; /* Skip network transmission */ 2065 } 2066 2067 cwnd_quota = tcp_cwnd_test(tp, skb); 2068 if (!cwnd_quota) { 2069 is_cwnd_limited = true; 2070 if (push_one == 2) 2071 /* Force out a loss probe pkt. */ 2072 cwnd_quota = 1; 2073 else 2074 break; 2075 } 2076 2077 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2078 break; 2079 2080 if (tso_segs == 1) { 2081 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2082 (tcp_skb_is_last(sk, skb) ? 2083 nonagle : TCP_NAGLE_PUSH)))) 2084 break; 2085 } else { 2086 if (!push_one && 2087 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2088 max_segs)) 2089 break; 2090 } 2091 2092 limit = mss_now; 2093 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2094 limit = tcp_mss_split_point(sk, skb, mss_now, 2095 min_t(unsigned int, 2096 cwnd_quota, 2097 max_segs), 2098 nonagle); 2099 2100 if (skb->len > limit && 2101 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2102 break; 2103 2104 /* TCP Small Queues : 2105 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2106 * This allows for : 2107 * - better RTT estimation and ACK scheduling 2108 * - faster recovery 2109 * - high rates 2110 * Alas, some drivers / subsystems require a fair amount 2111 * of queued bytes to ensure line rate. 2112 * One example is wifi aggregation (802.11 AMPDU) 2113 */ 2114 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2115 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2116 2117 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2118 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2119 /* It is possible TX completion already happened 2120 * before we set TSQ_THROTTLED, so we must 2121 * test again the condition. 2122 */ 2123 smp_mb__after_atomic(); 2124 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2125 break; 2126 } 2127 2128 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2129 break; 2130 2131 repair: 2132 /* Advance the send_head. This one is sent out. 2133 * This call will increment packets_out. 2134 */ 2135 tcp_event_new_data_sent(sk, skb); 2136 2137 tcp_minshall_update(tp, mss_now, skb); 2138 sent_pkts += tcp_skb_pcount(skb); 2139 2140 if (push_one) 2141 break; 2142 } 2143 2144 if (likely(sent_pkts)) { 2145 if (tcp_in_cwnd_reduction(sk)) 2146 tp->prr_out += sent_pkts; 2147 2148 /* Send one loss probe per tail loss episode. */ 2149 if (push_one != 2) 2150 tcp_schedule_loss_probe(sk); 2151 tcp_cwnd_validate(sk, is_cwnd_limited); 2152 return false; 2153 } 2154 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 2155 } 2156 2157 bool tcp_schedule_loss_probe(struct sock *sk) 2158 { 2159 struct inet_connection_sock *icsk = inet_csk(sk); 2160 struct tcp_sock *tp = tcp_sk(sk); 2161 u32 timeout, tlp_time_stamp, rto_time_stamp; 2162 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2163 2164 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2165 return false; 2166 /* No consecutive loss probes. */ 2167 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2168 tcp_rearm_rto(sk); 2169 return false; 2170 } 2171 /* Don't do any loss probe on a Fast Open connection before 3WHS 2172 * finishes. 2173 */ 2174 if (sk->sk_state == TCP_SYN_RECV) 2175 return false; 2176 2177 /* TLP is only scheduled when next timer event is RTO. */ 2178 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2179 return false; 2180 2181 /* Schedule a loss probe in 2*RTT for SACK capable connections 2182 * in Open state, that are either limited by cwnd or application. 2183 */ 2184 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out || 2185 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2186 return false; 2187 2188 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2189 tcp_send_head(sk)) 2190 return false; 2191 2192 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2193 * for delayed ack when there's one outstanding packet. 2194 */ 2195 timeout = rtt << 1; 2196 if (tp->packets_out == 1) 2197 timeout = max_t(u32, timeout, 2198 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2199 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2200 2201 /* If RTO is shorter, just schedule TLP in its place. */ 2202 tlp_time_stamp = tcp_time_stamp + timeout; 2203 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2204 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2205 s32 delta = rto_time_stamp - tcp_time_stamp; 2206 if (delta > 0) 2207 timeout = delta; 2208 } 2209 2210 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2211 TCP_RTO_MAX); 2212 return true; 2213 } 2214 2215 /* Thanks to skb fast clones, we can detect if a prior transmit of 2216 * a packet is still in a qdisc or driver queue. 2217 * In this case, there is very little point doing a retransmit ! 2218 * Note: This is called from BH context only. 2219 */ 2220 static bool skb_still_in_host_queue(const struct sock *sk, 2221 const struct sk_buff *skb) 2222 { 2223 if (unlikely(skb_fclone_busy(sk, skb))) { 2224 NET_INC_STATS_BH(sock_net(sk), 2225 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2226 return true; 2227 } 2228 return false; 2229 } 2230 2231 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2232 * retransmit the last segment. 2233 */ 2234 void tcp_send_loss_probe(struct sock *sk) 2235 { 2236 struct tcp_sock *tp = tcp_sk(sk); 2237 struct sk_buff *skb; 2238 int pcount; 2239 int mss = tcp_current_mss(sk); 2240 int err = -1; 2241 2242 if (tcp_send_head(sk)) { 2243 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2244 goto rearm_timer; 2245 } 2246 2247 /* At most one outstanding TLP retransmission. */ 2248 if (tp->tlp_high_seq) 2249 goto rearm_timer; 2250 2251 /* Retransmit last segment. */ 2252 skb = tcp_write_queue_tail(sk); 2253 if (WARN_ON(!skb)) 2254 goto rearm_timer; 2255 2256 if (skb_still_in_host_queue(sk, skb)) 2257 goto rearm_timer; 2258 2259 pcount = tcp_skb_pcount(skb); 2260 if (WARN_ON(!pcount)) 2261 goto rearm_timer; 2262 2263 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2264 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2265 GFP_ATOMIC))) 2266 goto rearm_timer; 2267 skb = tcp_write_queue_tail(sk); 2268 } 2269 2270 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2271 goto rearm_timer; 2272 2273 err = __tcp_retransmit_skb(sk, skb); 2274 2275 /* Record snd_nxt for loss detection. */ 2276 if (likely(!err)) 2277 tp->tlp_high_seq = tp->snd_nxt; 2278 2279 rearm_timer: 2280 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2281 inet_csk(sk)->icsk_rto, 2282 TCP_RTO_MAX); 2283 2284 if (likely(!err)) 2285 NET_INC_STATS_BH(sock_net(sk), 2286 LINUX_MIB_TCPLOSSPROBES); 2287 } 2288 2289 /* Push out any pending frames which were held back due to 2290 * TCP_CORK or attempt at coalescing tiny packets. 2291 * The socket must be locked by the caller. 2292 */ 2293 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2294 int nonagle) 2295 { 2296 /* If we are closed, the bytes will have to remain here. 2297 * In time closedown will finish, we empty the write queue and 2298 * all will be happy. 2299 */ 2300 if (unlikely(sk->sk_state == TCP_CLOSE)) 2301 return; 2302 2303 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2304 sk_gfp_atomic(sk, GFP_ATOMIC))) 2305 tcp_check_probe_timer(sk); 2306 } 2307 2308 /* Send _single_ skb sitting at the send head. This function requires 2309 * true push pending frames to setup probe timer etc. 2310 */ 2311 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2312 { 2313 struct sk_buff *skb = tcp_send_head(sk); 2314 2315 BUG_ON(!skb || skb->len < mss_now); 2316 2317 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2318 } 2319 2320 /* This function returns the amount that we can raise the 2321 * usable window based on the following constraints 2322 * 2323 * 1. The window can never be shrunk once it is offered (RFC 793) 2324 * 2. We limit memory per socket 2325 * 2326 * RFC 1122: 2327 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2328 * RECV.NEXT + RCV.WIN fixed until: 2329 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2330 * 2331 * i.e. don't raise the right edge of the window until you can raise 2332 * it at least MSS bytes. 2333 * 2334 * Unfortunately, the recommended algorithm breaks header prediction, 2335 * since header prediction assumes th->window stays fixed. 2336 * 2337 * Strictly speaking, keeping th->window fixed violates the receiver 2338 * side SWS prevention criteria. The problem is that under this rule 2339 * a stream of single byte packets will cause the right side of the 2340 * window to always advance by a single byte. 2341 * 2342 * Of course, if the sender implements sender side SWS prevention 2343 * then this will not be a problem. 2344 * 2345 * BSD seems to make the following compromise: 2346 * 2347 * If the free space is less than the 1/4 of the maximum 2348 * space available and the free space is less than 1/2 mss, 2349 * then set the window to 0. 2350 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2351 * Otherwise, just prevent the window from shrinking 2352 * and from being larger than the largest representable value. 2353 * 2354 * This prevents incremental opening of the window in the regime 2355 * where TCP is limited by the speed of the reader side taking 2356 * data out of the TCP receive queue. It does nothing about 2357 * those cases where the window is constrained on the sender side 2358 * because the pipeline is full. 2359 * 2360 * BSD also seems to "accidentally" limit itself to windows that are a 2361 * multiple of MSS, at least until the free space gets quite small. 2362 * This would appear to be a side effect of the mbuf implementation. 2363 * Combining these two algorithms results in the observed behavior 2364 * of having a fixed window size at almost all times. 2365 * 2366 * Below we obtain similar behavior by forcing the offered window to 2367 * a multiple of the mss when it is feasible to do so. 2368 * 2369 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2370 * Regular options like TIMESTAMP are taken into account. 2371 */ 2372 u32 __tcp_select_window(struct sock *sk) 2373 { 2374 struct inet_connection_sock *icsk = inet_csk(sk); 2375 struct tcp_sock *tp = tcp_sk(sk); 2376 /* MSS for the peer's data. Previous versions used mss_clamp 2377 * here. I don't know if the value based on our guesses 2378 * of peer's MSS is better for the performance. It's more correct 2379 * but may be worse for the performance because of rcv_mss 2380 * fluctuations. --SAW 1998/11/1 2381 */ 2382 int mss = icsk->icsk_ack.rcv_mss; 2383 int free_space = tcp_space(sk); 2384 int allowed_space = tcp_full_space(sk); 2385 int full_space = min_t(int, tp->window_clamp, allowed_space); 2386 int window; 2387 2388 if (mss > full_space) 2389 mss = full_space; 2390 2391 if (free_space < (full_space >> 1)) { 2392 icsk->icsk_ack.quick = 0; 2393 2394 if (tcp_under_memory_pressure(sk)) 2395 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2396 4U * tp->advmss); 2397 2398 /* free_space might become our new window, make sure we don't 2399 * increase it due to wscale. 2400 */ 2401 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2402 2403 /* if free space is less than mss estimate, or is below 1/16th 2404 * of the maximum allowed, try to move to zero-window, else 2405 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2406 * new incoming data is dropped due to memory limits. 2407 * With large window, mss test triggers way too late in order 2408 * to announce zero window in time before rmem limit kicks in. 2409 */ 2410 if (free_space < (allowed_space >> 4) || free_space < mss) 2411 return 0; 2412 } 2413 2414 if (free_space > tp->rcv_ssthresh) 2415 free_space = tp->rcv_ssthresh; 2416 2417 /* Don't do rounding if we are using window scaling, since the 2418 * scaled window will not line up with the MSS boundary anyway. 2419 */ 2420 window = tp->rcv_wnd; 2421 if (tp->rx_opt.rcv_wscale) { 2422 window = free_space; 2423 2424 /* Advertise enough space so that it won't get scaled away. 2425 * Import case: prevent zero window announcement if 2426 * 1<<rcv_wscale > mss. 2427 */ 2428 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2429 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2430 << tp->rx_opt.rcv_wscale); 2431 } else { 2432 /* Get the largest window that is a nice multiple of mss. 2433 * Window clamp already applied above. 2434 * If our current window offering is within 1 mss of the 2435 * free space we just keep it. This prevents the divide 2436 * and multiply from happening most of the time. 2437 * We also don't do any window rounding when the free space 2438 * is too small. 2439 */ 2440 if (window <= free_space - mss || window > free_space) 2441 window = (free_space / mss) * mss; 2442 else if (mss == full_space && 2443 free_space > window + (full_space >> 1)) 2444 window = free_space; 2445 } 2446 2447 return window; 2448 } 2449 2450 /* Collapses two adjacent SKB's during retransmission. */ 2451 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2452 { 2453 struct tcp_sock *tp = tcp_sk(sk); 2454 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2455 int skb_size, next_skb_size; 2456 2457 skb_size = skb->len; 2458 next_skb_size = next_skb->len; 2459 2460 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2461 2462 tcp_highest_sack_combine(sk, next_skb, skb); 2463 2464 tcp_unlink_write_queue(next_skb, sk); 2465 2466 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2467 next_skb_size); 2468 2469 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2470 skb->ip_summed = CHECKSUM_PARTIAL; 2471 2472 if (skb->ip_summed != CHECKSUM_PARTIAL) 2473 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2474 2475 /* Update sequence range on original skb. */ 2476 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2477 2478 /* Merge over control information. This moves PSH/FIN etc. over */ 2479 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2480 2481 /* All done, get rid of second SKB and account for it so 2482 * packet counting does not break. 2483 */ 2484 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2485 2486 /* changed transmit queue under us so clear hints */ 2487 tcp_clear_retrans_hints_partial(tp); 2488 if (next_skb == tp->retransmit_skb_hint) 2489 tp->retransmit_skb_hint = skb; 2490 2491 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2492 2493 sk_wmem_free_skb(sk, next_skb); 2494 } 2495 2496 /* Check if coalescing SKBs is legal. */ 2497 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2498 { 2499 if (tcp_skb_pcount(skb) > 1) 2500 return false; 2501 /* TODO: SACK collapsing could be used to remove this condition */ 2502 if (skb_shinfo(skb)->nr_frags != 0) 2503 return false; 2504 if (skb_cloned(skb)) 2505 return false; 2506 if (skb == tcp_send_head(sk)) 2507 return false; 2508 /* Some heurestics for collapsing over SACK'd could be invented */ 2509 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2510 return false; 2511 2512 return true; 2513 } 2514 2515 /* Collapse packets in the retransmit queue to make to create 2516 * less packets on the wire. This is only done on retransmission. 2517 */ 2518 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2519 int space) 2520 { 2521 struct tcp_sock *tp = tcp_sk(sk); 2522 struct sk_buff *skb = to, *tmp; 2523 bool first = true; 2524 2525 if (!sysctl_tcp_retrans_collapse) 2526 return; 2527 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2528 return; 2529 2530 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2531 if (!tcp_can_collapse(sk, skb)) 2532 break; 2533 2534 space -= skb->len; 2535 2536 if (first) { 2537 first = false; 2538 continue; 2539 } 2540 2541 if (space < 0) 2542 break; 2543 /* Punt if not enough space exists in the first SKB for 2544 * the data in the second 2545 */ 2546 if (skb->len > skb_availroom(to)) 2547 break; 2548 2549 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2550 break; 2551 2552 tcp_collapse_retrans(sk, to); 2553 } 2554 } 2555 2556 /* This retransmits one SKB. Policy decisions and retransmit queue 2557 * state updates are done by the caller. Returns non-zero if an 2558 * error occurred which prevented the send. 2559 */ 2560 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2561 { 2562 struct tcp_sock *tp = tcp_sk(sk); 2563 struct inet_connection_sock *icsk = inet_csk(sk); 2564 unsigned int cur_mss; 2565 int err; 2566 2567 /* Inconslusive MTU probe */ 2568 if (icsk->icsk_mtup.probe_size) { 2569 icsk->icsk_mtup.probe_size = 0; 2570 } 2571 2572 /* Do not sent more than we queued. 1/4 is reserved for possible 2573 * copying overhead: fragmentation, tunneling, mangling etc. 2574 */ 2575 if (atomic_read(&sk->sk_wmem_alloc) > 2576 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2577 return -EAGAIN; 2578 2579 if (skb_still_in_host_queue(sk, skb)) 2580 return -EBUSY; 2581 2582 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2583 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2584 BUG(); 2585 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2586 return -ENOMEM; 2587 } 2588 2589 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2590 return -EHOSTUNREACH; /* Routing failure or similar. */ 2591 2592 cur_mss = tcp_current_mss(sk); 2593 2594 /* If receiver has shrunk his window, and skb is out of 2595 * new window, do not retransmit it. The exception is the 2596 * case, when window is shrunk to zero. In this case 2597 * our retransmit serves as a zero window probe. 2598 */ 2599 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2600 TCP_SKB_CB(skb)->seq != tp->snd_una) 2601 return -EAGAIN; 2602 2603 if (skb->len > cur_mss) { 2604 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2605 return -ENOMEM; /* We'll try again later. */ 2606 } else { 2607 int oldpcount = tcp_skb_pcount(skb); 2608 2609 if (unlikely(oldpcount > 1)) { 2610 if (skb_unclone(skb, GFP_ATOMIC)) 2611 return -ENOMEM; 2612 tcp_init_tso_segs(skb, cur_mss); 2613 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2614 } 2615 } 2616 2617 /* RFC3168, section 6.1.1.1. ECN fallback */ 2618 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2619 tcp_ecn_clear_syn(sk, skb); 2620 2621 tcp_retrans_try_collapse(sk, skb, cur_mss); 2622 2623 /* Make a copy, if the first transmission SKB clone we made 2624 * is still in somebody's hands, else make a clone. 2625 */ 2626 2627 /* make sure skb->data is aligned on arches that require it 2628 * and check if ack-trimming & collapsing extended the headroom 2629 * beyond what csum_start can cover. 2630 */ 2631 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2632 skb_headroom(skb) >= 0xFFFF)) { 2633 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2634 GFP_ATOMIC); 2635 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2636 -ENOBUFS; 2637 } else { 2638 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2639 } 2640 2641 if (likely(!err)) { 2642 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2643 /* Update global TCP statistics. */ 2644 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2645 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2646 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2647 tp->total_retrans++; 2648 } 2649 return err; 2650 } 2651 2652 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2653 { 2654 struct tcp_sock *tp = tcp_sk(sk); 2655 int err = __tcp_retransmit_skb(sk, skb); 2656 2657 if (err == 0) { 2658 #if FASTRETRANS_DEBUG > 0 2659 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2660 net_dbg_ratelimited("retrans_out leaked\n"); 2661 } 2662 #endif 2663 if (!tp->retrans_out) 2664 tp->lost_retrans_low = tp->snd_nxt; 2665 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2666 tp->retrans_out += tcp_skb_pcount(skb); 2667 2668 /* Save stamp of the first retransmit. */ 2669 if (!tp->retrans_stamp) 2670 tp->retrans_stamp = tcp_skb_timestamp(skb); 2671 2672 /* snd_nxt is stored to detect loss of retransmitted segment, 2673 * see tcp_input.c tcp_sacktag_write_queue(). 2674 */ 2675 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2676 } else if (err != -EBUSY) { 2677 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2678 } 2679 2680 if (tp->undo_retrans < 0) 2681 tp->undo_retrans = 0; 2682 tp->undo_retrans += tcp_skb_pcount(skb); 2683 return err; 2684 } 2685 2686 /* Check if we forward retransmits are possible in the current 2687 * window/congestion state. 2688 */ 2689 static bool tcp_can_forward_retransmit(struct sock *sk) 2690 { 2691 const struct inet_connection_sock *icsk = inet_csk(sk); 2692 const struct tcp_sock *tp = tcp_sk(sk); 2693 2694 /* Forward retransmissions are possible only during Recovery. */ 2695 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2696 return false; 2697 2698 /* No forward retransmissions in Reno are possible. */ 2699 if (tcp_is_reno(tp)) 2700 return false; 2701 2702 /* Yeah, we have to make difficult choice between forward transmission 2703 * and retransmission... Both ways have their merits... 2704 * 2705 * For now we do not retransmit anything, while we have some new 2706 * segments to send. In the other cases, follow rule 3 for 2707 * NextSeg() specified in RFC3517. 2708 */ 2709 2710 if (tcp_may_send_now(sk)) 2711 return false; 2712 2713 return true; 2714 } 2715 2716 /* This gets called after a retransmit timeout, and the initially 2717 * retransmitted data is acknowledged. It tries to continue 2718 * resending the rest of the retransmit queue, until either 2719 * we've sent it all or the congestion window limit is reached. 2720 * If doing SACK, the first ACK which comes back for a timeout 2721 * based retransmit packet might feed us FACK information again. 2722 * If so, we use it to avoid unnecessarily retransmissions. 2723 */ 2724 void tcp_xmit_retransmit_queue(struct sock *sk) 2725 { 2726 const struct inet_connection_sock *icsk = inet_csk(sk); 2727 struct tcp_sock *tp = tcp_sk(sk); 2728 struct sk_buff *skb; 2729 struct sk_buff *hole = NULL; 2730 u32 last_lost; 2731 int mib_idx; 2732 int fwd_rexmitting = 0; 2733 2734 if (!tp->packets_out) 2735 return; 2736 2737 if (!tp->lost_out) 2738 tp->retransmit_high = tp->snd_una; 2739 2740 if (tp->retransmit_skb_hint) { 2741 skb = tp->retransmit_skb_hint; 2742 last_lost = TCP_SKB_CB(skb)->end_seq; 2743 if (after(last_lost, tp->retransmit_high)) 2744 last_lost = tp->retransmit_high; 2745 } else { 2746 skb = tcp_write_queue_head(sk); 2747 last_lost = tp->snd_una; 2748 } 2749 2750 tcp_for_write_queue_from(skb, sk) { 2751 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2752 2753 if (skb == tcp_send_head(sk)) 2754 break; 2755 /* we could do better than to assign each time */ 2756 if (!hole) 2757 tp->retransmit_skb_hint = skb; 2758 2759 /* Assume this retransmit will generate 2760 * only one packet for congestion window 2761 * calculation purposes. This works because 2762 * tcp_retransmit_skb() will chop up the 2763 * packet to be MSS sized and all the 2764 * packet counting works out. 2765 */ 2766 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2767 return; 2768 2769 if (fwd_rexmitting) { 2770 begin_fwd: 2771 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2772 break; 2773 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2774 2775 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2776 tp->retransmit_high = last_lost; 2777 if (!tcp_can_forward_retransmit(sk)) 2778 break; 2779 /* Backtrack if necessary to non-L'ed skb */ 2780 if (hole) { 2781 skb = hole; 2782 hole = NULL; 2783 } 2784 fwd_rexmitting = 1; 2785 goto begin_fwd; 2786 2787 } else if (!(sacked & TCPCB_LOST)) { 2788 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2789 hole = skb; 2790 continue; 2791 2792 } else { 2793 last_lost = TCP_SKB_CB(skb)->end_seq; 2794 if (icsk->icsk_ca_state != TCP_CA_Loss) 2795 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2796 else 2797 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2798 } 2799 2800 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2801 continue; 2802 2803 if (tcp_retransmit_skb(sk, skb)) 2804 return; 2805 2806 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2807 2808 if (tcp_in_cwnd_reduction(sk)) 2809 tp->prr_out += tcp_skb_pcount(skb); 2810 2811 if (skb == tcp_write_queue_head(sk)) 2812 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2813 inet_csk(sk)->icsk_rto, 2814 TCP_RTO_MAX); 2815 } 2816 } 2817 2818 /* We allow to exceed memory limits for FIN packets to expedite 2819 * connection tear down and (memory) recovery. 2820 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2821 * or even be forced to close flow without any FIN. 2822 * In general, we want to allow one skb per socket to avoid hangs 2823 * with edge trigger epoll() 2824 */ 2825 void sk_forced_mem_schedule(struct sock *sk, int size) 2826 { 2827 int amt, status; 2828 2829 if (size <= sk->sk_forward_alloc) 2830 return; 2831 amt = sk_mem_pages(size); 2832 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2833 sk_memory_allocated_add(sk, amt, &status); 2834 } 2835 2836 /* Send a FIN. The caller locks the socket for us. 2837 * We should try to send a FIN packet really hard, but eventually give up. 2838 */ 2839 void tcp_send_fin(struct sock *sk) 2840 { 2841 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2842 struct tcp_sock *tp = tcp_sk(sk); 2843 2844 /* Optimization, tack on the FIN if we have one skb in write queue and 2845 * this skb was not yet sent, or we are under memory pressure. 2846 * Note: in the latter case, FIN packet will be sent after a timeout, 2847 * as TCP stack thinks it has already been transmitted. 2848 */ 2849 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2850 coalesce: 2851 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2852 TCP_SKB_CB(tskb)->end_seq++; 2853 tp->write_seq++; 2854 if (!tcp_send_head(sk)) { 2855 /* This means tskb was already sent. 2856 * Pretend we included the FIN on previous transmit. 2857 * We need to set tp->snd_nxt to the value it would have 2858 * if FIN had been sent. This is because retransmit path 2859 * does not change tp->snd_nxt. 2860 */ 2861 tp->snd_nxt++; 2862 return; 2863 } 2864 } else { 2865 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2866 if (unlikely(!skb)) { 2867 if (tskb) 2868 goto coalesce; 2869 return; 2870 } 2871 skb_reserve(skb, MAX_TCP_HEADER); 2872 sk_forced_mem_schedule(sk, skb->truesize); 2873 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2874 tcp_init_nondata_skb(skb, tp->write_seq, 2875 TCPHDR_ACK | TCPHDR_FIN); 2876 tcp_queue_skb(sk, skb); 2877 } 2878 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2879 } 2880 2881 /* We get here when a process closes a file descriptor (either due to 2882 * an explicit close() or as a byproduct of exit()'ing) and there 2883 * was unread data in the receive queue. This behavior is recommended 2884 * by RFC 2525, section 2.17. -DaveM 2885 */ 2886 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2887 { 2888 struct sk_buff *skb; 2889 2890 /* NOTE: No TCP options attached and we never retransmit this. */ 2891 skb = alloc_skb(MAX_TCP_HEADER, priority); 2892 if (!skb) { 2893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2894 return; 2895 } 2896 2897 /* Reserve space for headers and prepare control bits. */ 2898 skb_reserve(skb, MAX_TCP_HEADER); 2899 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2900 TCPHDR_ACK | TCPHDR_RST); 2901 /* Send it off. */ 2902 if (tcp_transmit_skb(sk, skb, 0, priority)) 2903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2904 2905 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2906 } 2907 2908 /* Send a crossed SYN-ACK during socket establishment. 2909 * WARNING: This routine must only be called when we have already sent 2910 * a SYN packet that crossed the incoming SYN that caused this routine 2911 * to get called. If this assumption fails then the initial rcv_wnd 2912 * and rcv_wscale values will not be correct. 2913 */ 2914 int tcp_send_synack(struct sock *sk) 2915 { 2916 struct sk_buff *skb; 2917 2918 skb = tcp_write_queue_head(sk); 2919 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2920 pr_debug("%s: wrong queue state\n", __func__); 2921 return -EFAULT; 2922 } 2923 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2924 if (skb_cloned(skb)) { 2925 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2926 if (!nskb) 2927 return -ENOMEM; 2928 tcp_unlink_write_queue(skb, sk); 2929 __skb_header_release(nskb); 2930 __tcp_add_write_queue_head(sk, nskb); 2931 sk_wmem_free_skb(sk, skb); 2932 sk->sk_wmem_queued += nskb->truesize; 2933 sk_mem_charge(sk, nskb->truesize); 2934 skb = nskb; 2935 } 2936 2937 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2938 tcp_ecn_send_synack(sk, skb); 2939 } 2940 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2941 } 2942 2943 /** 2944 * tcp_make_synack - Prepare a SYN-ACK. 2945 * sk: listener socket 2946 * dst: dst entry attached to the SYNACK 2947 * req: request_sock pointer 2948 * 2949 * Allocate one skb and build a SYNACK packet. 2950 * @dst is consumed : Caller should not use it again. 2951 */ 2952 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2953 struct request_sock *req, 2954 struct tcp_fastopen_cookie *foc) 2955 { 2956 struct tcp_out_options opts; 2957 struct inet_request_sock *ireq = inet_rsk(req); 2958 struct tcp_sock *tp = tcp_sk(sk); 2959 struct tcphdr *th; 2960 struct sk_buff *skb; 2961 struct tcp_md5sig_key *md5 = NULL; 2962 int tcp_header_size; 2963 int mss; 2964 2965 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC); 2966 if (unlikely(!skb)) { 2967 dst_release(dst); 2968 return NULL; 2969 } 2970 /* Reserve space for headers. */ 2971 skb_reserve(skb, MAX_TCP_HEADER); 2972 2973 skb_dst_set(skb, dst); 2974 2975 mss = dst_metric_advmss(dst); 2976 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2977 mss = tp->rx_opt.user_mss; 2978 2979 memset(&opts, 0, sizeof(opts)); 2980 #ifdef CONFIG_SYN_COOKIES 2981 if (unlikely(req->cookie_ts)) 2982 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 2983 else 2984 #endif 2985 skb_mstamp_get(&skb->skb_mstamp); 2986 2987 #ifdef CONFIG_TCP_MD5SIG 2988 rcu_read_lock(); 2989 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 2990 #endif 2991 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 2992 foc) + sizeof(*th); 2993 2994 skb_push(skb, tcp_header_size); 2995 skb_reset_transport_header(skb); 2996 2997 th = tcp_hdr(skb); 2998 memset(th, 0, sizeof(struct tcphdr)); 2999 th->syn = 1; 3000 th->ack = 1; 3001 tcp_ecn_make_synack(req, th, sk); 3002 th->source = htons(ireq->ir_num); 3003 th->dest = ireq->ir_rmt_port; 3004 /* Setting of flags are superfluous here for callers (and ECE is 3005 * not even correctly set) 3006 */ 3007 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3008 TCPHDR_SYN | TCPHDR_ACK); 3009 3010 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3011 /* XXX data is queued and acked as is. No buffer/window check */ 3012 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3013 3014 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3015 th->window = htons(min(req->rcv_wnd, 65535U)); 3016 tcp_options_write((__be32 *)(th + 1), tp, &opts); 3017 th->doff = (tcp_header_size >> 2); 3018 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 3019 3020 #ifdef CONFIG_TCP_MD5SIG 3021 /* Okay, we have all we need - do the md5 hash if needed */ 3022 if (md5) 3023 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3024 md5, req_to_sk(req), skb); 3025 rcu_read_unlock(); 3026 #endif 3027 3028 /* Do not fool tcpdump (if any), clean our debris */ 3029 skb->tstamp.tv64 = 0; 3030 return skb; 3031 } 3032 EXPORT_SYMBOL(tcp_make_synack); 3033 3034 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3035 { 3036 struct inet_connection_sock *icsk = inet_csk(sk); 3037 const struct tcp_congestion_ops *ca; 3038 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3039 3040 if (ca_key == TCP_CA_UNSPEC) 3041 return; 3042 3043 rcu_read_lock(); 3044 ca = tcp_ca_find_key(ca_key); 3045 if (likely(ca && try_module_get(ca->owner))) { 3046 module_put(icsk->icsk_ca_ops->owner); 3047 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3048 icsk->icsk_ca_ops = ca; 3049 } 3050 rcu_read_unlock(); 3051 } 3052 3053 /* Do all connect socket setups that can be done AF independent. */ 3054 static void tcp_connect_init(struct sock *sk) 3055 { 3056 const struct dst_entry *dst = __sk_dst_get(sk); 3057 struct tcp_sock *tp = tcp_sk(sk); 3058 __u8 rcv_wscale; 3059 3060 /* We'll fix this up when we get a response from the other end. 3061 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3062 */ 3063 tp->tcp_header_len = sizeof(struct tcphdr) + 3064 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3065 3066 #ifdef CONFIG_TCP_MD5SIG 3067 if (tp->af_specific->md5_lookup(sk, sk)) 3068 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3069 #endif 3070 3071 /* If user gave his TCP_MAXSEG, record it to clamp */ 3072 if (tp->rx_opt.user_mss) 3073 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3074 tp->max_window = 0; 3075 tcp_mtup_init(sk); 3076 tcp_sync_mss(sk, dst_mtu(dst)); 3077 3078 tcp_ca_dst_init(sk, dst); 3079 3080 if (!tp->window_clamp) 3081 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3082 tp->advmss = dst_metric_advmss(dst); 3083 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 3084 tp->advmss = tp->rx_opt.user_mss; 3085 3086 tcp_initialize_rcv_mss(sk); 3087 3088 /* limit the window selection if the user enforce a smaller rx buffer */ 3089 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3090 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3091 tp->window_clamp = tcp_full_space(sk); 3092 3093 tcp_select_initial_window(tcp_full_space(sk), 3094 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3095 &tp->rcv_wnd, 3096 &tp->window_clamp, 3097 sysctl_tcp_window_scaling, 3098 &rcv_wscale, 3099 dst_metric(dst, RTAX_INITRWND)); 3100 3101 tp->rx_opt.rcv_wscale = rcv_wscale; 3102 tp->rcv_ssthresh = tp->rcv_wnd; 3103 3104 sk->sk_err = 0; 3105 sock_reset_flag(sk, SOCK_DONE); 3106 tp->snd_wnd = 0; 3107 tcp_init_wl(tp, 0); 3108 tp->snd_una = tp->write_seq; 3109 tp->snd_sml = tp->write_seq; 3110 tp->snd_up = tp->write_seq; 3111 tp->snd_nxt = tp->write_seq; 3112 3113 if (likely(!tp->repair)) 3114 tp->rcv_nxt = 0; 3115 else 3116 tp->rcv_tstamp = tcp_time_stamp; 3117 tp->rcv_wup = tp->rcv_nxt; 3118 tp->copied_seq = tp->rcv_nxt; 3119 3120 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3121 inet_csk(sk)->icsk_retransmits = 0; 3122 tcp_clear_retrans(tp); 3123 } 3124 3125 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3126 { 3127 struct tcp_sock *tp = tcp_sk(sk); 3128 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3129 3130 tcb->end_seq += skb->len; 3131 __skb_header_release(skb); 3132 __tcp_add_write_queue_tail(sk, skb); 3133 sk->sk_wmem_queued += skb->truesize; 3134 sk_mem_charge(sk, skb->truesize); 3135 tp->write_seq = tcb->end_seq; 3136 tp->packets_out += tcp_skb_pcount(skb); 3137 } 3138 3139 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3140 * queue a data-only packet after the regular SYN, such that regular SYNs 3141 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3142 * only the SYN sequence, the data are retransmitted in the first ACK. 3143 * If cookie is not cached or other error occurs, falls back to send a 3144 * regular SYN with Fast Open cookie request option. 3145 */ 3146 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3147 { 3148 struct tcp_sock *tp = tcp_sk(sk); 3149 struct tcp_fastopen_request *fo = tp->fastopen_req; 3150 int syn_loss = 0, space, err = 0, copied; 3151 unsigned long last_syn_loss = 0; 3152 struct sk_buff *syn_data; 3153 3154 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3155 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3156 &syn_loss, &last_syn_loss); 3157 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3158 if (syn_loss > 1 && 3159 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3160 fo->cookie.len = -1; 3161 goto fallback; 3162 } 3163 3164 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3165 fo->cookie.len = -1; 3166 else if (fo->cookie.len <= 0) 3167 goto fallback; 3168 3169 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3170 * user-MSS. Reserve maximum option space for middleboxes that add 3171 * private TCP options. The cost is reduced data space in SYN :( 3172 */ 3173 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3174 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3175 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3176 MAX_TCP_OPTION_SPACE; 3177 3178 space = min_t(size_t, space, fo->size); 3179 3180 /* limit to order-0 allocations */ 3181 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3182 3183 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3184 if (!syn_data) 3185 goto fallback; 3186 syn_data->ip_summed = CHECKSUM_PARTIAL; 3187 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3188 copied = copy_from_iter(skb_put(syn_data, space), space, 3189 &fo->data->msg_iter); 3190 if (unlikely(!copied)) { 3191 kfree_skb(syn_data); 3192 goto fallback; 3193 } 3194 if (copied != space) { 3195 skb_trim(syn_data, copied); 3196 space = copied; 3197 } 3198 3199 /* No more data pending in inet_wait_for_connect() */ 3200 if (space == fo->size) 3201 fo->data = NULL; 3202 fo->copied = space; 3203 3204 tcp_connect_queue_skb(sk, syn_data); 3205 3206 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3207 3208 syn->skb_mstamp = syn_data->skb_mstamp; 3209 3210 /* Now full SYN+DATA was cloned and sent (or not), 3211 * remove the SYN from the original skb (syn_data) 3212 * we keep in write queue in case of a retransmit, as we 3213 * also have the SYN packet (with no data) in the same queue. 3214 */ 3215 TCP_SKB_CB(syn_data)->seq++; 3216 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3217 if (!err) { 3218 tp->syn_data = (fo->copied > 0); 3219 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3220 goto done; 3221 } 3222 3223 fallback: 3224 /* Send a regular SYN with Fast Open cookie request option */ 3225 if (fo->cookie.len > 0) 3226 fo->cookie.len = 0; 3227 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3228 if (err) 3229 tp->syn_fastopen = 0; 3230 done: 3231 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3232 return err; 3233 } 3234 3235 /* Build a SYN and send it off. */ 3236 int tcp_connect(struct sock *sk) 3237 { 3238 struct tcp_sock *tp = tcp_sk(sk); 3239 struct sk_buff *buff; 3240 int err; 3241 3242 tcp_connect_init(sk); 3243 3244 if (unlikely(tp->repair)) { 3245 tcp_finish_connect(sk, NULL); 3246 return 0; 3247 } 3248 3249 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3250 if (unlikely(!buff)) 3251 return -ENOBUFS; 3252 3253 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3254 tp->retrans_stamp = tcp_time_stamp; 3255 tcp_connect_queue_skb(sk, buff); 3256 tcp_ecn_send_syn(sk, buff); 3257 3258 /* Send off SYN; include data in Fast Open. */ 3259 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3260 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3261 if (err == -ECONNREFUSED) 3262 return err; 3263 3264 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3265 * in order to make this packet get counted in tcpOutSegs. 3266 */ 3267 tp->snd_nxt = tp->write_seq; 3268 tp->pushed_seq = tp->write_seq; 3269 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3270 3271 /* Timer for repeating the SYN until an answer. */ 3272 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3273 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3274 return 0; 3275 } 3276 EXPORT_SYMBOL(tcp_connect); 3277 3278 /* Send out a delayed ack, the caller does the policy checking 3279 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3280 * for details. 3281 */ 3282 void tcp_send_delayed_ack(struct sock *sk) 3283 { 3284 struct inet_connection_sock *icsk = inet_csk(sk); 3285 int ato = icsk->icsk_ack.ato; 3286 unsigned long timeout; 3287 3288 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3289 3290 if (ato > TCP_DELACK_MIN) { 3291 const struct tcp_sock *tp = tcp_sk(sk); 3292 int max_ato = HZ / 2; 3293 3294 if (icsk->icsk_ack.pingpong || 3295 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3296 max_ato = TCP_DELACK_MAX; 3297 3298 /* Slow path, intersegment interval is "high". */ 3299 3300 /* If some rtt estimate is known, use it to bound delayed ack. 3301 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3302 * directly. 3303 */ 3304 if (tp->srtt_us) { 3305 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3306 TCP_DELACK_MIN); 3307 3308 if (rtt < max_ato) 3309 max_ato = rtt; 3310 } 3311 3312 ato = min(ato, max_ato); 3313 } 3314 3315 /* Stay within the limit we were given */ 3316 timeout = jiffies + ato; 3317 3318 /* Use new timeout only if there wasn't a older one earlier. */ 3319 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3320 /* If delack timer was blocked or is about to expire, 3321 * send ACK now. 3322 */ 3323 if (icsk->icsk_ack.blocked || 3324 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3325 tcp_send_ack(sk); 3326 return; 3327 } 3328 3329 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3330 timeout = icsk->icsk_ack.timeout; 3331 } 3332 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3333 icsk->icsk_ack.timeout = timeout; 3334 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3335 } 3336 3337 /* This routine sends an ack and also updates the window. */ 3338 void tcp_send_ack(struct sock *sk) 3339 { 3340 struct sk_buff *buff; 3341 3342 /* If we have been reset, we may not send again. */ 3343 if (sk->sk_state == TCP_CLOSE) 3344 return; 3345 3346 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3347 3348 /* We are not putting this on the write queue, so 3349 * tcp_transmit_skb() will set the ownership to this 3350 * sock. 3351 */ 3352 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3353 if (!buff) { 3354 inet_csk_schedule_ack(sk); 3355 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3356 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3357 TCP_DELACK_MAX, TCP_RTO_MAX); 3358 return; 3359 } 3360 3361 /* Reserve space for headers and prepare control bits. */ 3362 skb_reserve(buff, MAX_TCP_HEADER); 3363 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3364 3365 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3366 * too much. 3367 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3368 * We also avoid tcp_wfree() overhead (cache line miss accessing 3369 * tp->tsq_flags) by using regular sock_wfree() 3370 */ 3371 skb_set_tcp_pure_ack(buff); 3372 3373 /* Send it off, this clears delayed acks for us. */ 3374 skb_mstamp_get(&buff->skb_mstamp); 3375 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3376 } 3377 EXPORT_SYMBOL_GPL(tcp_send_ack); 3378 3379 /* This routine sends a packet with an out of date sequence 3380 * number. It assumes the other end will try to ack it. 3381 * 3382 * Question: what should we make while urgent mode? 3383 * 4.4BSD forces sending single byte of data. We cannot send 3384 * out of window data, because we have SND.NXT==SND.MAX... 3385 * 3386 * Current solution: to send TWO zero-length segments in urgent mode: 3387 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3388 * out-of-date with SND.UNA-1 to probe window. 3389 */ 3390 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3391 { 3392 struct tcp_sock *tp = tcp_sk(sk); 3393 struct sk_buff *skb; 3394 3395 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3396 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3397 if (!skb) 3398 return -1; 3399 3400 /* Reserve space for headers and set control bits. */ 3401 skb_reserve(skb, MAX_TCP_HEADER); 3402 /* Use a previous sequence. This should cause the other 3403 * end to send an ack. Don't queue or clone SKB, just 3404 * send it. 3405 */ 3406 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3407 skb_mstamp_get(&skb->skb_mstamp); 3408 NET_INC_STATS_BH(sock_net(sk), mib); 3409 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3410 } 3411 3412 void tcp_send_window_probe(struct sock *sk) 3413 { 3414 if (sk->sk_state == TCP_ESTABLISHED) { 3415 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3416 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3417 } 3418 } 3419 3420 /* Initiate keepalive or window probe from timer. */ 3421 int tcp_write_wakeup(struct sock *sk, int mib) 3422 { 3423 struct tcp_sock *tp = tcp_sk(sk); 3424 struct sk_buff *skb; 3425 3426 if (sk->sk_state == TCP_CLOSE) 3427 return -1; 3428 3429 skb = tcp_send_head(sk); 3430 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3431 int err; 3432 unsigned int mss = tcp_current_mss(sk); 3433 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3434 3435 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3436 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3437 3438 /* We are probing the opening of a window 3439 * but the window size is != 0 3440 * must have been a result SWS avoidance ( sender ) 3441 */ 3442 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3443 skb->len > mss) { 3444 seg_size = min(seg_size, mss); 3445 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3446 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3447 return -1; 3448 } else if (!tcp_skb_pcount(skb)) 3449 tcp_set_skb_tso_segs(skb, mss); 3450 3451 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3452 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3453 if (!err) 3454 tcp_event_new_data_sent(sk, skb); 3455 return err; 3456 } else { 3457 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3458 tcp_xmit_probe_skb(sk, 1, mib); 3459 return tcp_xmit_probe_skb(sk, 0, mib); 3460 } 3461 } 3462 3463 /* A window probe timeout has occurred. If window is not closed send 3464 * a partial packet else a zero probe. 3465 */ 3466 void tcp_send_probe0(struct sock *sk) 3467 { 3468 struct inet_connection_sock *icsk = inet_csk(sk); 3469 struct tcp_sock *tp = tcp_sk(sk); 3470 unsigned long probe_max; 3471 int err; 3472 3473 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3474 3475 if (tp->packets_out || !tcp_send_head(sk)) { 3476 /* Cancel probe timer, if it is not required. */ 3477 icsk->icsk_probes_out = 0; 3478 icsk->icsk_backoff = 0; 3479 return; 3480 } 3481 3482 if (err <= 0) { 3483 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3484 icsk->icsk_backoff++; 3485 icsk->icsk_probes_out++; 3486 probe_max = TCP_RTO_MAX; 3487 } else { 3488 /* If packet was not sent due to local congestion, 3489 * do not backoff and do not remember icsk_probes_out. 3490 * Let local senders to fight for local resources. 3491 * 3492 * Use accumulated backoff yet. 3493 */ 3494 if (!icsk->icsk_probes_out) 3495 icsk->icsk_probes_out = 1; 3496 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3497 } 3498 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3499 tcp_probe0_when(sk, probe_max), 3500 TCP_RTO_MAX); 3501 } 3502 3503 int tcp_rtx_synack(struct sock *sk, struct request_sock *req) 3504 { 3505 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3506 struct flowi fl; 3507 int res; 3508 3509 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL); 3510 if (!res) { 3511 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3512 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3513 } 3514 return res; 3515 } 3516 EXPORT_SYMBOL(tcp_rtx_synack); 3517