1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 42 #include <linux/compiler.h> 43 #include <linux/gfp.h> 44 #include <linux/module.h> 45 #include <linux/static_key.h> 46 47 #include <trace/events/tcp.h> 48 49 /* Refresh clocks of a TCP socket, 50 * ensuring monotically increasing values. 51 */ 52 void tcp_mstamp_refresh(struct tcp_sock *tp) 53 { 54 u64 val = tcp_clock_ns(); 55 56 tp->tcp_clock_cache = val; 57 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 58 } 59 60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 61 int push_one, gfp_t gfp); 62 63 /* Account for new data that has been sent to the network. */ 64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 65 { 66 struct inet_connection_sock *icsk = inet_csk(sk); 67 struct tcp_sock *tp = tcp_sk(sk); 68 unsigned int prior_packets = tp->packets_out; 69 70 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 71 72 __skb_unlink(skb, &sk->sk_write_queue); 73 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 74 75 tp->packets_out += tcp_skb_pcount(skb); 76 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 77 tcp_rearm_rto(sk); 78 79 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 80 tcp_skb_pcount(skb)); 81 } 82 83 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 84 * window scaling factor due to loss of precision. 85 * If window has been shrunk, what should we make? It is not clear at all. 86 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 87 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 88 * invalid. OK, let's make this for now: 89 */ 90 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 91 { 92 const struct tcp_sock *tp = tcp_sk(sk); 93 94 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 95 (tp->rx_opt.wscale_ok && 96 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 97 return tp->snd_nxt; 98 else 99 return tcp_wnd_end(tp); 100 } 101 102 /* Calculate mss to advertise in SYN segment. 103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 104 * 105 * 1. It is independent of path mtu. 106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 108 * attached devices, because some buggy hosts are confused by 109 * large MSS. 110 * 4. We do not make 3, we advertise MSS, calculated from first 111 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 112 * This may be overridden via information stored in routing table. 113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 114 * probably even Jumbo". 115 */ 116 static __u16 tcp_advertise_mss(struct sock *sk) 117 { 118 struct tcp_sock *tp = tcp_sk(sk); 119 const struct dst_entry *dst = __sk_dst_get(sk); 120 int mss = tp->advmss; 121 122 if (dst) { 123 unsigned int metric = dst_metric_advmss(dst); 124 125 if (metric < mss) { 126 mss = metric; 127 tp->advmss = mss; 128 } 129 } 130 131 return (__u16)mss; 132 } 133 134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 135 * This is the first part of cwnd validation mechanism. 136 */ 137 void tcp_cwnd_restart(struct sock *sk, s32 delta) 138 { 139 struct tcp_sock *tp = tcp_sk(sk); 140 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 141 u32 cwnd = tp->snd_cwnd; 142 143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 144 145 tp->snd_ssthresh = tcp_current_ssthresh(sk); 146 restart_cwnd = min(restart_cwnd, cwnd); 147 148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 149 cwnd >>= 1; 150 tp->snd_cwnd = max(cwnd, restart_cwnd); 151 tp->snd_cwnd_stamp = tcp_jiffies32; 152 tp->snd_cwnd_used = 0; 153 } 154 155 /* Congestion state accounting after a packet has been sent. */ 156 static void tcp_event_data_sent(struct tcp_sock *tp, 157 struct sock *sk) 158 { 159 struct inet_connection_sock *icsk = inet_csk(sk); 160 const u32 now = tcp_jiffies32; 161 162 if (tcp_packets_in_flight(tp) == 0) 163 tcp_ca_event(sk, CA_EVENT_TX_START); 164 165 /* If this is the first data packet sent in response to the 166 * previous received data, 167 * and it is a reply for ato after last received packet, 168 * increase pingpong count. 169 */ 170 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 171 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 172 inet_csk_inc_pingpong_cnt(sk); 173 174 tp->lsndtime = now; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 179 u32 rcv_nxt) 180 { 181 struct tcp_sock *tp = tcp_sk(sk); 182 183 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) { 184 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 185 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 186 tp->compressed_ack = TCP_FASTRETRANS_THRESH; 187 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 188 __sock_put(sk); 189 } 190 191 if (unlikely(rcv_nxt != tp->rcv_nxt)) 192 return; /* Special ACK sent by DCTCP to reflect ECN */ 193 tcp_dec_quickack_mode(sk, pkts); 194 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 195 } 196 197 /* Determine a window scaling and initial window to offer. 198 * Based on the assumption that the given amount of space 199 * will be offered. Store the results in the tp structure. 200 * NOTE: for smooth operation initial space offering should 201 * be a multiple of mss if possible. We assume here that mss >= 1. 202 * This MUST be enforced by all callers. 203 */ 204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 205 __u32 *rcv_wnd, __u32 *window_clamp, 206 int wscale_ok, __u8 *rcv_wscale, 207 __u32 init_rcv_wnd) 208 { 209 unsigned int space = (__space < 0 ? 0 : __space); 210 211 /* If no clamp set the clamp to the max possible scaled window */ 212 if (*window_clamp == 0) 213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 214 space = min(*window_clamp, space); 215 216 /* Quantize space offering to a multiple of mss if possible. */ 217 if (space > mss) 218 space = rounddown(space, mss); 219 220 /* NOTE: offering an initial window larger than 32767 221 * will break some buggy TCP stacks. If the admin tells us 222 * it is likely we could be speaking with such a buggy stack 223 * we will truncate our initial window offering to 32K-1 224 * unless the remote has sent us a window scaling option, 225 * which we interpret as a sign the remote TCP is not 226 * misinterpreting the window field as a signed quantity. 227 */ 228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 230 else 231 (*rcv_wnd) = min_t(u32, space, U16_MAX); 232 233 if (init_rcv_wnd) 234 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 235 236 *rcv_wscale = 0; 237 if (wscale_ok) { 238 /* Set window scaling on max possible window */ 239 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 240 space = max_t(u32, space, sysctl_rmem_max); 241 space = min_t(u32, space, *window_clamp); 242 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 243 0, TCP_MAX_WSCALE); 244 } 245 /* Set the clamp no higher than max representable value */ 246 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 247 } 248 EXPORT_SYMBOL(tcp_select_initial_window); 249 250 /* Chose a new window to advertise, update state in tcp_sock for the 251 * socket, and return result with RFC1323 scaling applied. The return 252 * value can be stuffed directly into th->window for an outgoing 253 * frame. 254 */ 255 static u16 tcp_select_window(struct sock *sk) 256 { 257 struct tcp_sock *tp = tcp_sk(sk); 258 u32 old_win = tp->rcv_wnd; 259 u32 cur_win = tcp_receive_window(tp); 260 u32 new_win = __tcp_select_window(sk); 261 262 /* Never shrink the offered window */ 263 if (new_win < cur_win) { 264 /* Danger Will Robinson! 265 * Don't update rcv_wup/rcv_wnd here or else 266 * we will not be able to advertise a zero 267 * window in time. --DaveM 268 * 269 * Relax Will Robinson. 270 */ 271 if (new_win == 0) 272 NET_INC_STATS(sock_net(sk), 273 LINUX_MIB_TCPWANTZEROWINDOWADV); 274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 275 } 276 tp->rcv_wnd = new_win; 277 tp->rcv_wup = tp->rcv_nxt; 278 279 /* Make sure we do not exceed the maximum possible 280 * scaled window. 281 */ 282 if (!tp->rx_opt.rcv_wscale && 283 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 284 new_win = min(new_win, MAX_TCP_WINDOW); 285 else 286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 287 288 /* RFC1323 scaling applied */ 289 new_win >>= tp->rx_opt.rcv_wscale; 290 291 /* If we advertise zero window, disable fast path. */ 292 if (new_win == 0) { 293 tp->pred_flags = 0; 294 if (old_win) 295 NET_INC_STATS(sock_net(sk), 296 LINUX_MIB_TCPTOZEROWINDOWADV); 297 } else if (old_win == 0) { 298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 299 } 300 301 return new_win; 302 } 303 304 /* Packet ECN state for a SYN-ACK */ 305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 306 { 307 const struct tcp_sock *tp = tcp_sk(sk); 308 309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 310 if (!(tp->ecn_flags & TCP_ECN_OK)) 311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 312 else if (tcp_ca_needs_ecn(sk) || 313 tcp_bpf_ca_needs_ecn(sk)) 314 INET_ECN_xmit(sk); 315 } 316 317 /* Packet ECN state for a SYN. */ 318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 319 { 320 struct tcp_sock *tp = tcp_sk(sk); 321 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 322 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 323 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 324 325 if (!use_ecn) { 326 const struct dst_entry *dst = __sk_dst_get(sk); 327 328 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 329 use_ecn = true; 330 } 331 332 tp->ecn_flags = 0; 333 334 if (use_ecn) { 335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 336 tp->ecn_flags = TCP_ECN_OK; 337 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 338 INET_ECN_xmit(sk); 339 } 340 } 341 342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 343 { 344 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 345 /* tp->ecn_flags are cleared at a later point in time when 346 * SYN ACK is ultimatively being received. 347 */ 348 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 349 } 350 351 static void 352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 353 { 354 if (inet_rsk(req)->ecn_ok) 355 th->ece = 1; 356 } 357 358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 359 * be sent. 360 */ 361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 362 struct tcphdr *th, int tcp_header_len) 363 { 364 struct tcp_sock *tp = tcp_sk(sk); 365 366 if (tp->ecn_flags & TCP_ECN_OK) { 367 /* Not-retransmitted data segment: set ECT and inject CWR. */ 368 if (skb->len != tcp_header_len && 369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 370 INET_ECN_xmit(sk); 371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 373 th->cwr = 1; 374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 375 } 376 } else if (!tcp_ca_needs_ecn(sk)) { 377 /* ACK or retransmitted segment: clear ECT|CE */ 378 INET_ECN_dontxmit(sk); 379 } 380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 381 th->ece = 1; 382 } 383 } 384 385 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 386 * auto increment end seqno. 387 */ 388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 389 { 390 skb->ip_summed = CHECKSUM_PARTIAL; 391 392 TCP_SKB_CB(skb)->tcp_flags = flags; 393 TCP_SKB_CB(skb)->sacked = 0; 394 395 tcp_skb_pcount_set(skb, 1); 396 397 TCP_SKB_CB(skb)->seq = seq; 398 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 399 seq++; 400 TCP_SKB_CB(skb)->end_seq = seq; 401 } 402 403 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 404 { 405 return tp->snd_una != tp->snd_up; 406 } 407 408 #define OPTION_SACK_ADVERTISE (1 << 0) 409 #define OPTION_TS (1 << 1) 410 #define OPTION_MD5 (1 << 2) 411 #define OPTION_WSCALE (1 << 3) 412 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 413 #define OPTION_SMC (1 << 9) 414 415 static void smc_options_write(__be32 *ptr, u16 *options) 416 { 417 #if IS_ENABLED(CONFIG_SMC) 418 if (static_branch_unlikely(&tcp_have_smc)) { 419 if (unlikely(OPTION_SMC & *options)) { 420 *ptr++ = htonl((TCPOPT_NOP << 24) | 421 (TCPOPT_NOP << 16) | 422 (TCPOPT_EXP << 8) | 423 (TCPOLEN_EXP_SMC_BASE)); 424 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 425 } 426 } 427 #endif 428 } 429 430 struct tcp_out_options { 431 u16 options; /* bit field of OPTION_* */ 432 u16 mss; /* 0 to disable */ 433 u8 ws; /* window scale, 0 to disable */ 434 u8 num_sack_blocks; /* number of SACK blocks to include */ 435 u8 hash_size; /* bytes in hash_location */ 436 __u8 *hash_location; /* temporary pointer, overloaded */ 437 __u32 tsval, tsecr; /* need to include OPTION_TS */ 438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 439 }; 440 441 /* Write previously computed TCP options to the packet. 442 * 443 * Beware: Something in the Internet is very sensitive to the ordering of 444 * TCP options, we learned this through the hard way, so be careful here. 445 * Luckily we can at least blame others for their non-compliance but from 446 * inter-operability perspective it seems that we're somewhat stuck with 447 * the ordering which we have been using if we want to keep working with 448 * those broken things (not that it currently hurts anybody as there isn't 449 * particular reason why the ordering would need to be changed). 450 * 451 * At least SACK_PERM as the first option is known to lead to a disaster 452 * (but it may well be that other scenarios fail similarly). 453 */ 454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 455 struct tcp_out_options *opts) 456 { 457 u16 options = opts->options; /* mungable copy */ 458 459 if (unlikely(OPTION_MD5 & options)) { 460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 462 /* overload cookie hash location */ 463 opts->hash_location = (__u8 *)ptr; 464 ptr += 4; 465 } 466 467 if (unlikely(opts->mss)) { 468 *ptr++ = htonl((TCPOPT_MSS << 24) | 469 (TCPOLEN_MSS << 16) | 470 opts->mss); 471 } 472 473 if (likely(OPTION_TS & options)) { 474 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 476 (TCPOLEN_SACK_PERM << 16) | 477 (TCPOPT_TIMESTAMP << 8) | 478 TCPOLEN_TIMESTAMP); 479 options &= ~OPTION_SACK_ADVERTISE; 480 } else { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_TIMESTAMP << 8) | 484 TCPOLEN_TIMESTAMP); 485 } 486 *ptr++ = htonl(opts->tsval); 487 *ptr++ = htonl(opts->tsecr); 488 } 489 490 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_NOP << 16) | 493 (TCPOPT_SACK_PERM << 8) | 494 TCPOLEN_SACK_PERM); 495 } 496 497 if (unlikely(OPTION_WSCALE & options)) { 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_WINDOW << 16) | 500 (TCPOLEN_WINDOW << 8) | 501 opts->ws); 502 } 503 504 if (unlikely(opts->num_sack_blocks)) { 505 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 506 tp->duplicate_sack : tp->selective_acks; 507 int this_sack; 508 509 *ptr++ = htonl((TCPOPT_NOP << 24) | 510 (TCPOPT_NOP << 16) | 511 (TCPOPT_SACK << 8) | 512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 513 TCPOLEN_SACK_PERBLOCK))); 514 515 for (this_sack = 0; this_sack < opts->num_sack_blocks; 516 ++this_sack) { 517 *ptr++ = htonl(sp[this_sack].start_seq); 518 *ptr++ = htonl(sp[this_sack].end_seq); 519 } 520 521 tp->rx_opt.dsack = 0; 522 } 523 524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 526 u8 *p = (u8 *)ptr; 527 u32 len; /* Fast Open option length */ 528 529 if (foc->exp) { 530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 532 TCPOPT_FASTOPEN_MAGIC); 533 p += TCPOLEN_EXP_FASTOPEN_BASE; 534 } else { 535 len = TCPOLEN_FASTOPEN_BASE + foc->len; 536 *p++ = TCPOPT_FASTOPEN; 537 *p++ = len; 538 } 539 540 memcpy(p, foc->val, foc->len); 541 if ((len & 3) == 2) { 542 p[foc->len] = TCPOPT_NOP; 543 p[foc->len + 1] = TCPOPT_NOP; 544 } 545 ptr += (len + 3) >> 2; 546 } 547 548 smc_options_write(ptr, &options); 549 } 550 551 static void smc_set_option(const struct tcp_sock *tp, 552 struct tcp_out_options *opts, 553 unsigned int *remaining) 554 { 555 #if IS_ENABLED(CONFIG_SMC) 556 if (static_branch_unlikely(&tcp_have_smc)) { 557 if (tp->syn_smc) { 558 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 559 opts->options |= OPTION_SMC; 560 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 561 } 562 } 563 } 564 #endif 565 } 566 567 static void smc_set_option_cond(const struct tcp_sock *tp, 568 const struct inet_request_sock *ireq, 569 struct tcp_out_options *opts, 570 unsigned int *remaining) 571 { 572 #if IS_ENABLED(CONFIG_SMC) 573 if (static_branch_unlikely(&tcp_have_smc)) { 574 if (tp->syn_smc && ireq->smc_ok) { 575 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 576 opts->options |= OPTION_SMC; 577 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 578 } 579 } 580 } 581 #endif 582 } 583 584 /* Compute TCP options for SYN packets. This is not the final 585 * network wire format yet. 586 */ 587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 588 struct tcp_out_options *opts, 589 struct tcp_md5sig_key **md5) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 unsigned int remaining = MAX_TCP_OPTION_SPACE; 593 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 594 595 *md5 = NULL; 596 #ifdef CONFIG_TCP_MD5SIG 597 if (static_branch_unlikely(&tcp_md5_needed) && 598 rcu_access_pointer(tp->md5sig_info)) { 599 *md5 = tp->af_specific->md5_lookup(sk, sk); 600 if (*md5) { 601 opts->options |= OPTION_MD5; 602 remaining -= TCPOLEN_MD5SIG_ALIGNED; 603 } 604 } 605 #endif 606 607 /* We always get an MSS option. The option bytes which will be seen in 608 * normal data packets should timestamps be used, must be in the MSS 609 * advertised. But we subtract them from tp->mss_cache so that 610 * calculations in tcp_sendmsg are simpler etc. So account for this 611 * fact here if necessary. If we don't do this correctly, as a 612 * receiver we won't recognize data packets as being full sized when we 613 * should, and thus we won't abide by the delayed ACK rules correctly. 614 * SACKs don't matter, we never delay an ACK when we have any of those 615 * going out. */ 616 opts->mss = tcp_advertise_mss(sk); 617 remaining -= TCPOLEN_MSS_ALIGNED; 618 619 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 620 opts->options |= OPTION_TS; 621 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 622 opts->tsecr = tp->rx_opt.ts_recent; 623 remaining -= TCPOLEN_TSTAMP_ALIGNED; 624 } 625 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 626 opts->ws = tp->rx_opt.rcv_wscale; 627 opts->options |= OPTION_WSCALE; 628 remaining -= TCPOLEN_WSCALE_ALIGNED; 629 } 630 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 631 opts->options |= OPTION_SACK_ADVERTISE; 632 if (unlikely(!(OPTION_TS & opts->options))) 633 remaining -= TCPOLEN_SACKPERM_ALIGNED; 634 } 635 636 if (fastopen && fastopen->cookie.len >= 0) { 637 u32 need = fastopen->cookie.len; 638 639 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 640 TCPOLEN_FASTOPEN_BASE; 641 need = (need + 3) & ~3U; /* Align to 32 bits */ 642 if (remaining >= need) { 643 opts->options |= OPTION_FAST_OPEN_COOKIE; 644 opts->fastopen_cookie = &fastopen->cookie; 645 remaining -= need; 646 tp->syn_fastopen = 1; 647 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 648 } 649 } 650 651 smc_set_option(tp, opts, &remaining); 652 653 return MAX_TCP_OPTION_SPACE - remaining; 654 } 655 656 /* Set up TCP options for SYN-ACKs. */ 657 static unsigned int tcp_synack_options(const struct sock *sk, 658 struct request_sock *req, 659 unsigned int mss, struct sk_buff *skb, 660 struct tcp_out_options *opts, 661 const struct tcp_md5sig_key *md5, 662 struct tcp_fastopen_cookie *foc) 663 { 664 struct inet_request_sock *ireq = inet_rsk(req); 665 unsigned int remaining = MAX_TCP_OPTION_SPACE; 666 667 #ifdef CONFIG_TCP_MD5SIG 668 if (md5) { 669 opts->options |= OPTION_MD5; 670 remaining -= TCPOLEN_MD5SIG_ALIGNED; 671 672 /* We can't fit any SACK blocks in a packet with MD5 + TS 673 * options. There was discussion about disabling SACK 674 * rather than TS in order to fit in better with old, 675 * buggy kernels, but that was deemed to be unnecessary. 676 */ 677 ireq->tstamp_ok &= !ireq->sack_ok; 678 } 679 #endif 680 681 /* We always send an MSS option. */ 682 opts->mss = mss; 683 remaining -= TCPOLEN_MSS_ALIGNED; 684 685 if (likely(ireq->wscale_ok)) { 686 opts->ws = ireq->rcv_wscale; 687 opts->options |= OPTION_WSCALE; 688 remaining -= TCPOLEN_WSCALE_ALIGNED; 689 } 690 if (likely(ireq->tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 693 opts->tsecr = req->ts_recent; 694 remaining -= TCPOLEN_TSTAMP_ALIGNED; 695 } 696 if (likely(ireq->sack_ok)) { 697 opts->options |= OPTION_SACK_ADVERTISE; 698 if (unlikely(!ireq->tstamp_ok)) 699 remaining -= TCPOLEN_SACKPERM_ALIGNED; 700 } 701 if (foc != NULL && foc->len >= 0) { 702 u32 need = foc->len; 703 704 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 705 TCPOLEN_FASTOPEN_BASE; 706 need = (need + 3) & ~3U; /* Align to 32 bits */ 707 if (remaining >= need) { 708 opts->options |= OPTION_FAST_OPEN_COOKIE; 709 opts->fastopen_cookie = foc; 710 remaining -= need; 711 } 712 } 713 714 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 715 716 return MAX_TCP_OPTION_SPACE - remaining; 717 } 718 719 /* Compute TCP options for ESTABLISHED sockets. This is not the 720 * final wire format yet. 721 */ 722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 723 struct tcp_out_options *opts, 724 struct tcp_md5sig_key **md5) 725 { 726 struct tcp_sock *tp = tcp_sk(sk); 727 unsigned int size = 0; 728 unsigned int eff_sacks; 729 730 opts->options = 0; 731 732 *md5 = NULL; 733 #ifdef CONFIG_TCP_MD5SIG 734 if (static_branch_unlikely(&tcp_md5_needed) && 735 rcu_access_pointer(tp->md5sig_info)) { 736 *md5 = tp->af_specific->md5_lookup(sk, sk); 737 if (*md5) { 738 opts->options |= OPTION_MD5; 739 size += TCPOLEN_MD5SIG_ALIGNED; 740 } 741 } 742 #endif 743 744 if (likely(tp->rx_opt.tstamp_ok)) { 745 opts->options |= OPTION_TS; 746 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 747 opts->tsecr = tp->rx_opt.ts_recent; 748 size += TCPOLEN_TSTAMP_ALIGNED; 749 } 750 751 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 752 if (unlikely(eff_sacks)) { 753 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 754 opts->num_sack_blocks = 755 min_t(unsigned int, eff_sacks, 756 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 757 TCPOLEN_SACK_PERBLOCK); 758 if (likely(opts->num_sack_blocks)) 759 size += TCPOLEN_SACK_BASE_ALIGNED + 760 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 761 } 762 763 return size; 764 } 765 766 767 /* TCP SMALL QUEUES (TSQ) 768 * 769 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 770 * to reduce RTT and bufferbloat. 771 * We do this using a special skb destructor (tcp_wfree). 772 * 773 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 774 * needs to be reallocated in a driver. 775 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 776 * 777 * Since transmit from skb destructor is forbidden, we use a tasklet 778 * to process all sockets that eventually need to send more skbs. 779 * We use one tasklet per cpu, with its own queue of sockets. 780 */ 781 struct tsq_tasklet { 782 struct tasklet_struct tasklet; 783 struct list_head head; /* queue of tcp sockets */ 784 }; 785 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 786 787 static void tcp_tsq_write(struct sock *sk) 788 { 789 if ((1 << sk->sk_state) & 790 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 791 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 792 struct tcp_sock *tp = tcp_sk(sk); 793 794 if (tp->lost_out > tp->retrans_out && 795 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 796 tcp_mstamp_refresh(tp); 797 tcp_xmit_retransmit_queue(sk); 798 } 799 800 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 801 0, GFP_ATOMIC); 802 } 803 } 804 805 static void tcp_tsq_handler(struct sock *sk) 806 { 807 bh_lock_sock(sk); 808 if (!sock_owned_by_user(sk)) 809 tcp_tsq_write(sk); 810 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 811 sock_hold(sk); 812 bh_unlock_sock(sk); 813 } 814 /* 815 * One tasklet per cpu tries to send more skbs. 816 * We run in tasklet context but need to disable irqs when 817 * transferring tsq->head because tcp_wfree() might 818 * interrupt us (non NAPI drivers) 819 */ 820 static void tcp_tasklet_func(unsigned long data) 821 { 822 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 823 LIST_HEAD(list); 824 unsigned long flags; 825 struct list_head *q, *n; 826 struct tcp_sock *tp; 827 struct sock *sk; 828 829 local_irq_save(flags); 830 list_splice_init(&tsq->head, &list); 831 local_irq_restore(flags); 832 833 list_for_each_safe(q, n, &list) { 834 tp = list_entry(q, struct tcp_sock, tsq_node); 835 list_del(&tp->tsq_node); 836 837 sk = (struct sock *)tp; 838 smp_mb__before_atomic(); 839 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 840 841 tcp_tsq_handler(sk); 842 sk_free(sk); 843 } 844 } 845 846 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 847 TCPF_WRITE_TIMER_DEFERRED | \ 848 TCPF_DELACK_TIMER_DEFERRED | \ 849 TCPF_MTU_REDUCED_DEFERRED) 850 /** 851 * tcp_release_cb - tcp release_sock() callback 852 * @sk: socket 853 * 854 * called from release_sock() to perform protocol dependent 855 * actions before socket release. 856 */ 857 void tcp_release_cb(struct sock *sk) 858 { 859 unsigned long flags, nflags; 860 861 /* perform an atomic operation only if at least one flag is set */ 862 do { 863 flags = sk->sk_tsq_flags; 864 if (!(flags & TCP_DEFERRED_ALL)) 865 return; 866 nflags = flags & ~TCP_DEFERRED_ALL; 867 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 868 869 if (flags & TCPF_TSQ_DEFERRED) { 870 tcp_tsq_write(sk); 871 __sock_put(sk); 872 } 873 /* Here begins the tricky part : 874 * We are called from release_sock() with : 875 * 1) BH disabled 876 * 2) sk_lock.slock spinlock held 877 * 3) socket owned by us (sk->sk_lock.owned == 1) 878 * 879 * But following code is meant to be called from BH handlers, 880 * so we should keep BH disabled, but early release socket ownership 881 */ 882 sock_release_ownership(sk); 883 884 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 885 tcp_write_timer_handler(sk); 886 __sock_put(sk); 887 } 888 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 889 tcp_delack_timer_handler(sk); 890 __sock_put(sk); 891 } 892 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 893 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 894 __sock_put(sk); 895 } 896 } 897 EXPORT_SYMBOL(tcp_release_cb); 898 899 void __init tcp_tasklet_init(void) 900 { 901 int i; 902 903 for_each_possible_cpu(i) { 904 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 905 906 INIT_LIST_HEAD(&tsq->head); 907 tasklet_init(&tsq->tasklet, 908 tcp_tasklet_func, 909 (unsigned long)tsq); 910 } 911 } 912 913 /* 914 * Write buffer destructor automatically called from kfree_skb. 915 * We can't xmit new skbs from this context, as we might already 916 * hold qdisc lock. 917 */ 918 void tcp_wfree(struct sk_buff *skb) 919 { 920 struct sock *sk = skb->sk; 921 struct tcp_sock *tp = tcp_sk(sk); 922 unsigned long flags, nval, oval; 923 924 /* Keep one reference on sk_wmem_alloc. 925 * Will be released by sk_free() from here or tcp_tasklet_func() 926 */ 927 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 928 929 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 930 * Wait until our queues (qdisc + devices) are drained. 931 * This gives : 932 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 933 * - chance for incoming ACK (processed by another cpu maybe) 934 * to migrate this flow (skb->ooo_okay will be eventually set) 935 */ 936 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 937 goto out; 938 939 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 940 struct tsq_tasklet *tsq; 941 bool empty; 942 943 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 944 goto out; 945 946 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 947 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 948 if (nval != oval) 949 continue; 950 951 /* queue this socket to tasklet queue */ 952 local_irq_save(flags); 953 tsq = this_cpu_ptr(&tsq_tasklet); 954 empty = list_empty(&tsq->head); 955 list_add(&tp->tsq_node, &tsq->head); 956 if (empty) 957 tasklet_schedule(&tsq->tasklet); 958 local_irq_restore(flags); 959 return; 960 } 961 out: 962 sk_free(sk); 963 } 964 965 /* Note: Called under soft irq. 966 * We can call TCP stack right away, unless socket is owned by user. 967 */ 968 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 969 { 970 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 971 struct sock *sk = (struct sock *)tp; 972 973 tcp_tsq_handler(sk); 974 sock_put(sk); 975 976 return HRTIMER_NORESTART; 977 } 978 979 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 980 u64 prior_wstamp) 981 { 982 struct tcp_sock *tp = tcp_sk(sk); 983 984 if (sk->sk_pacing_status != SK_PACING_NONE) { 985 unsigned long rate = sk->sk_pacing_rate; 986 987 /* Original sch_fq does not pace first 10 MSS 988 * Note that tp->data_segs_out overflows after 2^32 packets, 989 * this is a minor annoyance. 990 */ 991 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 992 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 993 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 994 995 /* take into account OS jitter */ 996 len_ns -= min_t(u64, len_ns / 2, credit); 997 tp->tcp_wstamp_ns += len_ns; 998 } 999 } 1000 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1001 } 1002 1003 /* This routine actually transmits TCP packets queued in by 1004 * tcp_do_sendmsg(). This is used by both the initial 1005 * transmission and possible later retransmissions. 1006 * All SKB's seen here are completely headerless. It is our 1007 * job to build the TCP header, and pass the packet down to 1008 * IP so it can do the same plus pass the packet off to the 1009 * device. 1010 * 1011 * We are working here with either a clone of the original 1012 * SKB, or a fresh unique copy made by the retransmit engine. 1013 */ 1014 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1015 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1016 { 1017 const struct inet_connection_sock *icsk = inet_csk(sk); 1018 struct inet_sock *inet; 1019 struct tcp_sock *tp; 1020 struct tcp_skb_cb *tcb; 1021 struct tcp_out_options opts; 1022 unsigned int tcp_options_size, tcp_header_size; 1023 struct sk_buff *oskb = NULL; 1024 struct tcp_md5sig_key *md5; 1025 struct tcphdr *th; 1026 u64 prior_wstamp; 1027 int err; 1028 1029 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1030 tp = tcp_sk(sk); 1031 prior_wstamp = tp->tcp_wstamp_ns; 1032 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1033 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1034 if (clone_it) { 1035 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1036 - tp->snd_una; 1037 oskb = skb; 1038 1039 tcp_skb_tsorted_save(oskb) { 1040 if (unlikely(skb_cloned(oskb))) 1041 skb = pskb_copy(oskb, gfp_mask); 1042 else 1043 skb = skb_clone(oskb, gfp_mask); 1044 } tcp_skb_tsorted_restore(oskb); 1045 1046 if (unlikely(!skb)) 1047 return -ENOBUFS; 1048 } 1049 1050 inet = inet_sk(sk); 1051 tcb = TCP_SKB_CB(skb); 1052 memset(&opts, 0, sizeof(opts)); 1053 1054 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1055 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1056 } else { 1057 tcp_options_size = tcp_established_options(sk, skb, &opts, 1058 &md5); 1059 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1060 * at receiver : This slightly improve GRO performance. 1061 * Note that we do not force the PSH flag for non GSO packets, 1062 * because they might be sent under high congestion events, 1063 * and in this case it is better to delay the delivery of 1-MSS 1064 * packets and thus the corresponding ACK packet that would 1065 * release the following packet. 1066 */ 1067 if (tcp_skb_pcount(skb) > 1) 1068 tcb->tcp_flags |= TCPHDR_PSH; 1069 } 1070 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1071 1072 /* if no packet is in qdisc/device queue, then allow XPS to select 1073 * another queue. We can be called from tcp_tsq_handler() 1074 * which holds one reference to sk. 1075 * 1076 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1077 * One way to get this would be to set skb->truesize = 2 on them. 1078 */ 1079 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1080 1081 /* If we had to use memory reserve to allocate this skb, 1082 * this might cause drops if packet is looped back : 1083 * Other socket might not have SOCK_MEMALLOC. 1084 * Packets not looped back do not care about pfmemalloc. 1085 */ 1086 skb->pfmemalloc = 0; 1087 1088 skb_push(skb, tcp_header_size); 1089 skb_reset_transport_header(skb); 1090 1091 skb_orphan(skb); 1092 skb->sk = sk; 1093 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1094 skb_set_hash_from_sk(skb, sk); 1095 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1096 1097 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1098 1099 /* Build TCP header and checksum it. */ 1100 th = (struct tcphdr *)skb->data; 1101 th->source = inet->inet_sport; 1102 th->dest = inet->inet_dport; 1103 th->seq = htonl(tcb->seq); 1104 th->ack_seq = htonl(rcv_nxt); 1105 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1106 tcb->tcp_flags); 1107 1108 th->check = 0; 1109 th->urg_ptr = 0; 1110 1111 /* The urg_mode check is necessary during a below snd_una win probe */ 1112 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1113 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1114 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1115 th->urg = 1; 1116 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1117 th->urg_ptr = htons(0xFFFF); 1118 th->urg = 1; 1119 } 1120 } 1121 1122 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1123 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1124 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1125 th->window = htons(tcp_select_window(sk)); 1126 tcp_ecn_send(sk, skb, th, tcp_header_size); 1127 } else { 1128 /* RFC1323: The window in SYN & SYN/ACK segments 1129 * is never scaled. 1130 */ 1131 th->window = htons(min(tp->rcv_wnd, 65535U)); 1132 } 1133 #ifdef CONFIG_TCP_MD5SIG 1134 /* Calculate the MD5 hash, as we have all we need now */ 1135 if (md5) { 1136 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1137 tp->af_specific->calc_md5_hash(opts.hash_location, 1138 md5, sk, skb); 1139 } 1140 #endif 1141 1142 icsk->icsk_af_ops->send_check(sk, skb); 1143 1144 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1145 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1146 1147 if (skb->len != tcp_header_size) { 1148 tcp_event_data_sent(tp, sk); 1149 tp->data_segs_out += tcp_skb_pcount(skb); 1150 tp->bytes_sent += skb->len - tcp_header_size; 1151 } 1152 1153 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1154 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1155 tcp_skb_pcount(skb)); 1156 1157 tp->segs_out += tcp_skb_pcount(skb); 1158 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1159 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1160 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1161 1162 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1163 1164 /* Cleanup our debris for IP stacks */ 1165 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1166 sizeof(struct inet6_skb_parm))); 1167 1168 tcp_add_tx_delay(skb, tp); 1169 1170 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1171 1172 if (unlikely(err > 0)) { 1173 tcp_enter_cwr(sk); 1174 err = net_xmit_eval(err); 1175 } 1176 if (!err && oskb) { 1177 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1178 tcp_rate_skb_sent(sk, oskb); 1179 } 1180 return err; 1181 } 1182 1183 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1184 gfp_t gfp_mask) 1185 { 1186 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1187 tcp_sk(sk)->rcv_nxt); 1188 } 1189 1190 /* This routine just queues the buffer for sending. 1191 * 1192 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1193 * otherwise socket can stall. 1194 */ 1195 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1196 { 1197 struct tcp_sock *tp = tcp_sk(sk); 1198 1199 /* Advance write_seq and place onto the write_queue. */ 1200 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1201 __skb_header_release(skb); 1202 tcp_add_write_queue_tail(sk, skb); 1203 sk_wmem_queued_add(sk, skb->truesize); 1204 sk_mem_charge(sk, skb->truesize); 1205 } 1206 1207 /* Initialize TSO segments for a packet. */ 1208 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1209 { 1210 if (skb->len <= mss_now) { 1211 /* Avoid the costly divide in the normal 1212 * non-TSO case. 1213 */ 1214 tcp_skb_pcount_set(skb, 1); 1215 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1216 } else { 1217 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1218 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1219 } 1220 } 1221 1222 /* Pcount in the middle of the write queue got changed, we need to do various 1223 * tweaks to fix counters 1224 */ 1225 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1226 { 1227 struct tcp_sock *tp = tcp_sk(sk); 1228 1229 tp->packets_out -= decr; 1230 1231 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1232 tp->sacked_out -= decr; 1233 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1234 tp->retrans_out -= decr; 1235 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1236 tp->lost_out -= decr; 1237 1238 /* Reno case is special. Sigh... */ 1239 if (tcp_is_reno(tp) && decr > 0) 1240 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1241 1242 if (tp->lost_skb_hint && 1243 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1244 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1245 tp->lost_cnt_hint -= decr; 1246 1247 tcp_verify_left_out(tp); 1248 } 1249 1250 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1251 { 1252 return TCP_SKB_CB(skb)->txstamp_ack || 1253 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1254 } 1255 1256 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1257 { 1258 struct skb_shared_info *shinfo = skb_shinfo(skb); 1259 1260 if (unlikely(tcp_has_tx_tstamp(skb)) && 1261 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1262 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1263 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1264 1265 shinfo->tx_flags &= ~tsflags; 1266 shinfo2->tx_flags |= tsflags; 1267 swap(shinfo->tskey, shinfo2->tskey); 1268 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1269 TCP_SKB_CB(skb)->txstamp_ack = 0; 1270 } 1271 } 1272 1273 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1274 { 1275 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1276 TCP_SKB_CB(skb)->eor = 0; 1277 } 1278 1279 /* Insert buff after skb on the write or rtx queue of sk. */ 1280 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1281 struct sk_buff *buff, 1282 struct sock *sk, 1283 enum tcp_queue tcp_queue) 1284 { 1285 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1286 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1287 else 1288 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1289 } 1290 1291 /* Function to create two new TCP segments. Shrinks the given segment 1292 * to the specified size and appends a new segment with the rest of the 1293 * packet to the list. This won't be called frequently, I hope. 1294 * Remember, these are still headerless SKBs at this point. 1295 */ 1296 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1297 struct sk_buff *skb, u32 len, 1298 unsigned int mss_now, gfp_t gfp) 1299 { 1300 struct tcp_sock *tp = tcp_sk(sk); 1301 struct sk_buff *buff; 1302 int nsize, old_factor; 1303 long limit; 1304 int nlen; 1305 u8 flags; 1306 1307 if (WARN_ON(len > skb->len)) 1308 return -EINVAL; 1309 1310 nsize = skb_headlen(skb) - len; 1311 if (nsize < 0) 1312 nsize = 0; 1313 1314 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1315 * We need some allowance to not penalize applications setting small 1316 * SO_SNDBUF values. 1317 * Also allow first and last skb in retransmit queue to be split. 1318 */ 1319 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1320 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1321 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1322 skb != tcp_rtx_queue_head(sk) && 1323 skb != tcp_rtx_queue_tail(sk))) { 1324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1325 return -ENOMEM; 1326 } 1327 1328 if (skb_unclone(skb, gfp)) 1329 return -ENOMEM; 1330 1331 /* Get a new skb... force flag on. */ 1332 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1333 if (!buff) 1334 return -ENOMEM; /* We'll just try again later. */ 1335 skb_copy_decrypted(buff, skb); 1336 1337 sk_wmem_queued_add(sk, buff->truesize); 1338 sk_mem_charge(sk, buff->truesize); 1339 nlen = skb->len - len - nsize; 1340 buff->truesize += nlen; 1341 skb->truesize -= nlen; 1342 1343 /* Correct the sequence numbers. */ 1344 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1345 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1346 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1347 1348 /* PSH and FIN should only be set in the second packet. */ 1349 flags = TCP_SKB_CB(skb)->tcp_flags; 1350 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1351 TCP_SKB_CB(buff)->tcp_flags = flags; 1352 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1353 tcp_skb_fragment_eor(skb, buff); 1354 1355 skb_split(skb, buff, len); 1356 1357 buff->ip_summed = CHECKSUM_PARTIAL; 1358 1359 buff->tstamp = skb->tstamp; 1360 tcp_fragment_tstamp(skb, buff); 1361 1362 old_factor = tcp_skb_pcount(skb); 1363 1364 /* Fix up tso_factor for both original and new SKB. */ 1365 tcp_set_skb_tso_segs(skb, mss_now); 1366 tcp_set_skb_tso_segs(buff, mss_now); 1367 1368 /* Update delivered info for the new segment */ 1369 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1370 1371 /* If this packet has been sent out already, we must 1372 * adjust the various packet counters. 1373 */ 1374 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1375 int diff = old_factor - tcp_skb_pcount(skb) - 1376 tcp_skb_pcount(buff); 1377 1378 if (diff) 1379 tcp_adjust_pcount(sk, skb, diff); 1380 } 1381 1382 /* Link BUFF into the send queue. */ 1383 __skb_header_release(buff); 1384 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1385 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1386 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1387 1388 return 0; 1389 } 1390 1391 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1392 * data is not copied, but immediately discarded. 1393 */ 1394 static int __pskb_trim_head(struct sk_buff *skb, int len) 1395 { 1396 struct skb_shared_info *shinfo; 1397 int i, k, eat; 1398 1399 eat = min_t(int, len, skb_headlen(skb)); 1400 if (eat) { 1401 __skb_pull(skb, eat); 1402 len -= eat; 1403 if (!len) 1404 return 0; 1405 } 1406 eat = len; 1407 k = 0; 1408 shinfo = skb_shinfo(skb); 1409 for (i = 0; i < shinfo->nr_frags; i++) { 1410 int size = skb_frag_size(&shinfo->frags[i]); 1411 1412 if (size <= eat) { 1413 skb_frag_unref(skb, i); 1414 eat -= size; 1415 } else { 1416 shinfo->frags[k] = shinfo->frags[i]; 1417 if (eat) { 1418 skb_frag_off_add(&shinfo->frags[k], eat); 1419 skb_frag_size_sub(&shinfo->frags[k], eat); 1420 eat = 0; 1421 } 1422 k++; 1423 } 1424 } 1425 shinfo->nr_frags = k; 1426 1427 skb->data_len -= len; 1428 skb->len = skb->data_len; 1429 return len; 1430 } 1431 1432 /* Remove acked data from a packet in the transmit queue. */ 1433 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1434 { 1435 u32 delta_truesize; 1436 1437 if (skb_unclone(skb, GFP_ATOMIC)) 1438 return -ENOMEM; 1439 1440 delta_truesize = __pskb_trim_head(skb, len); 1441 1442 TCP_SKB_CB(skb)->seq += len; 1443 skb->ip_summed = CHECKSUM_PARTIAL; 1444 1445 if (delta_truesize) { 1446 skb->truesize -= delta_truesize; 1447 sk_wmem_queued_add(sk, -delta_truesize); 1448 sk_mem_uncharge(sk, delta_truesize); 1449 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1450 } 1451 1452 /* Any change of skb->len requires recalculation of tso factor. */ 1453 if (tcp_skb_pcount(skb) > 1) 1454 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1455 1456 return 0; 1457 } 1458 1459 /* Calculate MSS not accounting any TCP options. */ 1460 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1461 { 1462 const struct tcp_sock *tp = tcp_sk(sk); 1463 const struct inet_connection_sock *icsk = inet_csk(sk); 1464 int mss_now; 1465 1466 /* Calculate base mss without TCP options: 1467 It is MMS_S - sizeof(tcphdr) of rfc1122 1468 */ 1469 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1470 1471 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1472 if (icsk->icsk_af_ops->net_frag_header_len) { 1473 const struct dst_entry *dst = __sk_dst_get(sk); 1474 1475 if (dst && dst_allfrag(dst)) 1476 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1477 } 1478 1479 /* Clamp it (mss_clamp does not include tcp options) */ 1480 if (mss_now > tp->rx_opt.mss_clamp) 1481 mss_now = tp->rx_opt.mss_clamp; 1482 1483 /* Now subtract optional transport overhead */ 1484 mss_now -= icsk->icsk_ext_hdr_len; 1485 1486 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1487 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1488 return mss_now; 1489 } 1490 1491 /* Calculate MSS. Not accounting for SACKs here. */ 1492 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1493 { 1494 /* Subtract TCP options size, not including SACKs */ 1495 return __tcp_mtu_to_mss(sk, pmtu) - 1496 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1497 } 1498 1499 /* Inverse of above */ 1500 int tcp_mss_to_mtu(struct sock *sk, int mss) 1501 { 1502 const struct tcp_sock *tp = tcp_sk(sk); 1503 const struct inet_connection_sock *icsk = inet_csk(sk); 1504 int mtu; 1505 1506 mtu = mss + 1507 tp->tcp_header_len + 1508 icsk->icsk_ext_hdr_len + 1509 icsk->icsk_af_ops->net_header_len; 1510 1511 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1512 if (icsk->icsk_af_ops->net_frag_header_len) { 1513 const struct dst_entry *dst = __sk_dst_get(sk); 1514 1515 if (dst && dst_allfrag(dst)) 1516 mtu += icsk->icsk_af_ops->net_frag_header_len; 1517 } 1518 return mtu; 1519 } 1520 EXPORT_SYMBOL(tcp_mss_to_mtu); 1521 1522 /* MTU probing init per socket */ 1523 void tcp_mtup_init(struct sock *sk) 1524 { 1525 struct tcp_sock *tp = tcp_sk(sk); 1526 struct inet_connection_sock *icsk = inet_csk(sk); 1527 struct net *net = sock_net(sk); 1528 1529 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1530 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1531 icsk->icsk_af_ops->net_header_len; 1532 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1533 icsk->icsk_mtup.probe_size = 0; 1534 if (icsk->icsk_mtup.enabled) 1535 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1536 } 1537 EXPORT_SYMBOL(tcp_mtup_init); 1538 1539 /* This function synchronize snd mss to current pmtu/exthdr set. 1540 1541 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1542 for TCP options, but includes only bare TCP header. 1543 1544 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1545 It is minimum of user_mss and mss received with SYN. 1546 It also does not include TCP options. 1547 1548 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1549 1550 tp->mss_cache is current effective sending mss, including 1551 all tcp options except for SACKs. It is evaluated, 1552 taking into account current pmtu, but never exceeds 1553 tp->rx_opt.mss_clamp. 1554 1555 NOTE1. rfc1122 clearly states that advertised MSS 1556 DOES NOT include either tcp or ip options. 1557 1558 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1559 are READ ONLY outside this function. --ANK (980731) 1560 */ 1561 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1562 { 1563 struct tcp_sock *tp = tcp_sk(sk); 1564 struct inet_connection_sock *icsk = inet_csk(sk); 1565 int mss_now; 1566 1567 if (icsk->icsk_mtup.search_high > pmtu) 1568 icsk->icsk_mtup.search_high = pmtu; 1569 1570 mss_now = tcp_mtu_to_mss(sk, pmtu); 1571 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1572 1573 /* And store cached results */ 1574 icsk->icsk_pmtu_cookie = pmtu; 1575 if (icsk->icsk_mtup.enabled) 1576 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1577 tp->mss_cache = mss_now; 1578 1579 return mss_now; 1580 } 1581 EXPORT_SYMBOL(tcp_sync_mss); 1582 1583 /* Compute the current effective MSS, taking SACKs and IP options, 1584 * and even PMTU discovery events into account. 1585 */ 1586 unsigned int tcp_current_mss(struct sock *sk) 1587 { 1588 const struct tcp_sock *tp = tcp_sk(sk); 1589 const struct dst_entry *dst = __sk_dst_get(sk); 1590 u32 mss_now; 1591 unsigned int header_len; 1592 struct tcp_out_options opts; 1593 struct tcp_md5sig_key *md5; 1594 1595 mss_now = tp->mss_cache; 1596 1597 if (dst) { 1598 u32 mtu = dst_mtu(dst); 1599 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1600 mss_now = tcp_sync_mss(sk, mtu); 1601 } 1602 1603 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1604 sizeof(struct tcphdr); 1605 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1606 * some common options. If this is an odd packet (because we have SACK 1607 * blocks etc) then our calculated header_len will be different, and 1608 * we have to adjust mss_now correspondingly */ 1609 if (header_len != tp->tcp_header_len) { 1610 int delta = (int) header_len - tp->tcp_header_len; 1611 mss_now -= delta; 1612 } 1613 1614 return mss_now; 1615 } 1616 1617 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1618 * As additional protections, we do not touch cwnd in retransmission phases, 1619 * and if application hit its sndbuf limit recently. 1620 */ 1621 static void tcp_cwnd_application_limited(struct sock *sk) 1622 { 1623 struct tcp_sock *tp = tcp_sk(sk); 1624 1625 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1626 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1627 /* Limited by application or receiver window. */ 1628 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1629 u32 win_used = max(tp->snd_cwnd_used, init_win); 1630 if (win_used < tp->snd_cwnd) { 1631 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1632 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1633 } 1634 tp->snd_cwnd_used = 0; 1635 } 1636 tp->snd_cwnd_stamp = tcp_jiffies32; 1637 } 1638 1639 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1640 { 1641 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1642 struct tcp_sock *tp = tcp_sk(sk); 1643 1644 /* Track the maximum number of outstanding packets in each 1645 * window, and remember whether we were cwnd-limited then. 1646 */ 1647 if (!before(tp->snd_una, tp->max_packets_seq) || 1648 tp->packets_out > tp->max_packets_out) { 1649 tp->max_packets_out = tp->packets_out; 1650 tp->max_packets_seq = tp->snd_nxt; 1651 tp->is_cwnd_limited = is_cwnd_limited; 1652 } 1653 1654 if (tcp_is_cwnd_limited(sk)) { 1655 /* Network is feed fully. */ 1656 tp->snd_cwnd_used = 0; 1657 tp->snd_cwnd_stamp = tcp_jiffies32; 1658 } else { 1659 /* Network starves. */ 1660 if (tp->packets_out > tp->snd_cwnd_used) 1661 tp->snd_cwnd_used = tp->packets_out; 1662 1663 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1664 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1665 !ca_ops->cong_control) 1666 tcp_cwnd_application_limited(sk); 1667 1668 /* The following conditions together indicate the starvation 1669 * is caused by insufficient sender buffer: 1670 * 1) just sent some data (see tcp_write_xmit) 1671 * 2) not cwnd limited (this else condition) 1672 * 3) no more data to send (tcp_write_queue_empty()) 1673 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1674 */ 1675 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1676 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1677 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1678 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1679 } 1680 } 1681 1682 /* Minshall's variant of the Nagle send check. */ 1683 static bool tcp_minshall_check(const struct tcp_sock *tp) 1684 { 1685 return after(tp->snd_sml, tp->snd_una) && 1686 !after(tp->snd_sml, tp->snd_nxt); 1687 } 1688 1689 /* Update snd_sml if this skb is under mss 1690 * Note that a TSO packet might end with a sub-mss segment 1691 * The test is really : 1692 * if ((skb->len % mss) != 0) 1693 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1694 * But we can avoid doing the divide again given we already have 1695 * skb_pcount = skb->len / mss_now 1696 */ 1697 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1698 const struct sk_buff *skb) 1699 { 1700 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1701 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1702 } 1703 1704 /* Return false, if packet can be sent now without violation Nagle's rules: 1705 * 1. It is full sized. (provided by caller in %partial bool) 1706 * 2. Or it contains FIN. (already checked by caller) 1707 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1708 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1709 * With Minshall's modification: all sent small packets are ACKed. 1710 */ 1711 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1712 int nonagle) 1713 { 1714 return partial && 1715 ((nonagle & TCP_NAGLE_CORK) || 1716 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1717 } 1718 1719 /* Return how many segs we'd like on a TSO packet, 1720 * to send one TSO packet per ms 1721 */ 1722 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1723 int min_tso_segs) 1724 { 1725 u32 bytes, segs; 1726 1727 bytes = min_t(unsigned long, 1728 sk->sk_pacing_rate >> sk->sk_pacing_shift, 1729 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1730 1731 /* Goal is to send at least one packet per ms, 1732 * not one big TSO packet every 100 ms. 1733 * This preserves ACK clocking and is consistent 1734 * with tcp_tso_should_defer() heuristic. 1735 */ 1736 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1737 1738 return segs; 1739 } 1740 1741 /* Return the number of segments we want in the skb we are transmitting. 1742 * See if congestion control module wants to decide; otherwise, autosize. 1743 */ 1744 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1745 { 1746 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1747 u32 min_tso, tso_segs; 1748 1749 min_tso = ca_ops->min_tso_segs ? 1750 ca_ops->min_tso_segs(sk) : 1751 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1752 1753 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1754 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1755 } 1756 1757 /* Returns the portion of skb which can be sent right away */ 1758 static unsigned int tcp_mss_split_point(const struct sock *sk, 1759 const struct sk_buff *skb, 1760 unsigned int mss_now, 1761 unsigned int max_segs, 1762 int nonagle) 1763 { 1764 const struct tcp_sock *tp = tcp_sk(sk); 1765 u32 partial, needed, window, max_len; 1766 1767 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1768 max_len = mss_now * max_segs; 1769 1770 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1771 return max_len; 1772 1773 needed = min(skb->len, window); 1774 1775 if (max_len <= needed) 1776 return max_len; 1777 1778 partial = needed % mss_now; 1779 /* If last segment is not a full MSS, check if Nagle rules allow us 1780 * to include this last segment in this skb. 1781 * Otherwise, we'll split the skb at last MSS boundary 1782 */ 1783 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1784 return needed - partial; 1785 1786 return needed; 1787 } 1788 1789 /* Can at least one segment of SKB be sent right now, according to the 1790 * congestion window rules? If so, return how many segments are allowed. 1791 */ 1792 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1793 const struct sk_buff *skb) 1794 { 1795 u32 in_flight, cwnd, halfcwnd; 1796 1797 /* Don't be strict about the congestion window for the final FIN. */ 1798 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1799 tcp_skb_pcount(skb) == 1) 1800 return 1; 1801 1802 in_flight = tcp_packets_in_flight(tp); 1803 cwnd = tp->snd_cwnd; 1804 if (in_flight >= cwnd) 1805 return 0; 1806 1807 /* For better scheduling, ensure we have at least 1808 * 2 GSO packets in flight. 1809 */ 1810 halfcwnd = max(cwnd >> 1, 1U); 1811 return min(halfcwnd, cwnd - in_flight); 1812 } 1813 1814 /* Initialize TSO state of a skb. 1815 * This must be invoked the first time we consider transmitting 1816 * SKB onto the wire. 1817 */ 1818 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1819 { 1820 int tso_segs = tcp_skb_pcount(skb); 1821 1822 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1823 tcp_set_skb_tso_segs(skb, mss_now); 1824 tso_segs = tcp_skb_pcount(skb); 1825 } 1826 return tso_segs; 1827 } 1828 1829 1830 /* Return true if the Nagle test allows this packet to be 1831 * sent now. 1832 */ 1833 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1834 unsigned int cur_mss, int nonagle) 1835 { 1836 /* Nagle rule does not apply to frames, which sit in the middle of the 1837 * write_queue (they have no chances to get new data). 1838 * 1839 * This is implemented in the callers, where they modify the 'nonagle' 1840 * argument based upon the location of SKB in the send queue. 1841 */ 1842 if (nonagle & TCP_NAGLE_PUSH) 1843 return true; 1844 1845 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1846 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1847 return true; 1848 1849 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1850 return true; 1851 1852 return false; 1853 } 1854 1855 /* Does at least the first segment of SKB fit into the send window? */ 1856 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1857 const struct sk_buff *skb, 1858 unsigned int cur_mss) 1859 { 1860 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1861 1862 if (skb->len > cur_mss) 1863 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1864 1865 return !after(end_seq, tcp_wnd_end(tp)); 1866 } 1867 1868 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1869 * which is put after SKB on the list. It is very much like 1870 * tcp_fragment() except that it may make several kinds of assumptions 1871 * in order to speed up the splitting operation. In particular, we 1872 * know that all the data is in scatter-gather pages, and that the 1873 * packet has never been sent out before (and thus is not cloned). 1874 */ 1875 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1876 unsigned int mss_now, gfp_t gfp) 1877 { 1878 int nlen = skb->len - len; 1879 struct sk_buff *buff; 1880 u8 flags; 1881 1882 /* All of a TSO frame must be composed of paged data. */ 1883 if (skb->len != skb->data_len) 1884 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1885 skb, len, mss_now, gfp); 1886 1887 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1888 if (unlikely(!buff)) 1889 return -ENOMEM; 1890 skb_copy_decrypted(buff, skb); 1891 1892 sk_wmem_queued_add(sk, buff->truesize); 1893 sk_mem_charge(sk, buff->truesize); 1894 buff->truesize += nlen; 1895 skb->truesize -= nlen; 1896 1897 /* Correct the sequence numbers. */ 1898 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1899 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1900 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1901 1902 /* PSH and FIN should only be set in the second packet. */ 1903 flags = TCP_SKB_CB(skb)->tcp_flags; 1904 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1905 TCP_SKB_CB(buff)->tcp_flags = flags; 1906 1907 /* This packet was never sent out yet, so no SACK bits. */ 1908 TCP_SKB_CB(buff)->sacked = 0; 1909 1910 tcp_skb_fragment_eor(skb, buff); 1911 1912 buff->ip_summed = CHECKSUM_PARTIAL; 1913 skb_split(skb, buff, len); 1914 tcp_fragment_tstamp(skb, buff); 1915 1916 /* Fix up tso_factor for both original and new SKB. */ 1917 tcp_set_skb_tso_segs(skb, mss_now); 1918 tcp_set_skb_tso_segs(buff, mss_now); 1919 1920 /* Link BUFF into the send queue. */ 1921 __skb_header_release(buff); 1922 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1923 1924 return 0; 1925 } 1926 1927 /* Try to defer sending, if possible, in order to minimize the amount 1928 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1929 * 1930 * This algorithm is from John Heffner. 1931 */ 1932 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1933 bool *is_cwnd_limited, 1934 bool *is_rwnd_limited, 1935 u32 max_segs) 1936 { 1937 const struct inet_connection_sock *icsk = inet_csk(sk); 1938 u32 send_win, cong_win, limit, in_flight; 1939 struct tcp_sock *tp = tcp_sk(sk); 1940 struct sk_buff *head; 1941 int win_divisor; 1942 s64 delta; 1943 1944 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1945 goto send_now; 1946 1947 /* Avoid bursty behavior by allowing defer 1948 * only if the last write was recent (1 ms). 1949 * Note that tp->tcp_wstamp_ns can be in the future if we have 1950 * packets waiting in a qdisc or device for EDT delivery. 1951 */ 1952 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 1953 if (delta > 0) 1954 goto send_now; 1955 1956 in_flight = tcp_packets_in_flight(tp); 1957 1958 BUG_ON(tcp_skb_pcount(skb) <= 1); 1959 BUG_ON(tp->snd_cwnd <= in_flight); 1960 1961 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1962 1963 /* From in_flight test above, we know that cwnd > in_flight. */ 1964 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1965 1966 limit = min(send_win, cong_win); 1967 1968 /* If a full-sized TSO skb can be sent, do it. */ 1969 if (limit >= max_segs * tp->mss_cache) 1970 goto send_now; 1971 1972 /* Middle in queue won't get any more data, full sendable already? */ 1973 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1974 goto send_now; 1975 1976 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1977 if (win_divisor) { 1978 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1979 1980 /* If at least some fraction of a window is available, 1981 * just use it. 1982 */ 1983 chunk /= win_divisor; 1984 if (limit >= chunk) 1985 goto send_now; 1986 } else { 1987 /* Different approach, try not to defer past a single 1988 * ACK. Receiver should ACK every other full sized 1989 * frame, so if we have space for more than 3 frames 1990 * then send now. 1991 */ 1992 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1993 goto send_now; 1994 } 1995 1996 /* TODO : use tsorted_sent_queue ? */ 1997 head = tcp_rtx_queue_head(sk); 1998 if (!head) 1999 goto send_now; 2000 delta = tp->tcp_clock_cache - head->tstamp; 2001 /* If next ACK is likely to come too late (half srtt), do not defer */ 2002 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2003 goto send_now; 2004 2005 /* Ok, it looks like it is advisable to defer. 2006 * Three cases are tracked : 2007 * 1) We are cwnd-limited 2008 * 2) We are rwnd-limited 2009 * 3) We are application limited. 2010 */ 2011 if (cong_win < send_win) { 2012 if (cong_win <= skb->len) { 2013 *is_cwnd_limited = true; 2014 return true; 2015 } 2016 } else { 2017 if (send_win <= skb->len) { 2018 *is_rwnd_limited = true; 2019 return true; 2020 } 2021 } 2022 2023 /* If this packet won't get more data, do not wait. */ 2024 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2025 TCP_SKB_CB(skb)->eor) 2026 goto send_now; 2027 2028 return true; 2029 2030 send_now: 2031 return false; 2032 } 2033 2034 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2035 { 2036 struct inet_connection_sock *icsk = inet_csk(sk); 2037 struct tcp_sock *tp = tcp_sk(sk); 2038 struct net *net = sock_net(sk); 2039 u32 interval; 2040 s32 delta; 2041 2042 interval = net->ipv4.sysctl_tcp_probe_interval; 2043 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2044 if (unlikely(delta >= interval * HZ)) { 2045 int mss = tcp_current_mss(sk); 2046 2047 /* Update current search range */ 2048 icsk->icsk_mtup.probe_size = 0; 2049 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2050 sizeof(struct tcphdr) + 2051 icsk->icsk_af_ops->net_header_len; 2052 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2053 2054 /* Update probe time stamp */ 2055 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2056 } 2057 } 2058 2059 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2060 { 2061 struct sk_buff *skb, *next; 2062 2063 skb = tcp_send_head(sk); 2064 tcp_for_write_queue_from_safe(skb, next, sk) { 2065 if (len <= skb->len) 2066 break; 2067 2068 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2069 return false; 2070 2071 len -= skb->len; 2072 } 2073 2074 return true; 2075 } 2076 2077 /* Create a new MTU probe if we are ready. 2078 * MTU probe is regularly attempting to increase the path MTU by 2079 * deliberately sending larger packets. This discovers routing 2080 * changes resulting in larger path MTUs. 2081 * 2082 * Returns 0 if we should wait to probe (no cwnd available), 2083 * 1 if a probe was sent, 2084 * -1 otherwise 2085 */ 2086 static int tcp_mtu_probe(struct sock *sk) 2087 { 2088 struct inet_connection_sock *icsk = inet_csk(sk); 2089 struct tcp_sock *tp = tcp_sk(sk); 2090 struct sk_buff *skb, *nskb, *next; 2091 struct net *net = sock_net(sk); 2092 int probe_size; 2093 int size_needed; 2094 int copy, len; 2095 int mss_now; 2096 int interval; 2097 2098 /* Not currently probing/verifying, 2099 * not in recovery, 2100 * have enough cwnd, and 2101 * not SACKing (the variable headers throw things off) 2102 */ 2103 if (likely(!icsk->icsk_mtup.enabled || 2104 icsk->icsk_mtup.probe_size || 2105 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2106 tp->snd_cwnd < 11 || 2107 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2108 return -1; 2109 2110 /* Use binary search for probe_size between tcp_mss_base, 2111 * and current mss_clamp. if (search_high - search_low) 2112 * smaller than a threshold, backoff from probing. 2113 */ 2114 mss_now = tcp_current_mss(sk); 2115 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2116 icsk->icsk_mtup.search_low) >> 1); 2117 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2118 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2119 /* When misfortune happens, we are reprobing actively, 2120 * and then reprobe timer has expired. We stick with current 2121 * probing process by not resetting search range to its orignal. 2122 */ 2123 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2124 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2125 /* Check whether enough time has elaplased for 2126 * another round of probing. 2127 */ 2128 tcp_mtu_check_reprobe(sk); 2129 return -1; 2130 } 2131 2132 /* Have enough data in the send queue to probe? */ 2133 if (tp->write_seq - tp->snd_nxt < size_needed) 2134 return -1; 2135 2136 if (tp->snd_wnd < size_needed) 2137 return -1; 2138 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2139 return 0; 2140 2141 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2142 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2143 if (!tcp_packets_in_flight(tp)) 2144 return -1; 2145 else 2146 return 0; 2147 } 2148 2149 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2150 return -1; 2151 2152 /* We're allowed to probe. Build it now. */ 2153 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2154 if (!nskb) 2155 return -1; 2156 sk_wmem_queued_add(sk, nskb->truesize); 2157 sk_mem_charge(sk, nskb->truesize); 2158 2159 skb = tcp_send_head(sk); 2160 skb_copy_decrypted(nskb, skb); 2161 2162 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2163 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2164 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2165 TCP_SKB_CB(nskb)->sacked = 0; 2166 nskb->csum = 0; 2167 nskb->ip_summed = CHECKSUM_PARTIAL; 2168 2169 tcp_insert_write_queue_before(nskb, skb, sk); 2170 tcp_highest_sack_replace(sk, skb, nskb); 2171 2172 len = 0; 2173 tcp_for_write_queue_from_safe(skb, next, sk) { 2174 copy = min_t(int, skb->len, probe_size - len); 2175 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2176 2177 if (skb->len <= copy) { 2178 /* We've eaten all the data from this skb. 2179 * Throw it away. */ 2180 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2181 /* If this is the last SKB we copy and eor is set 2182 * we need to propagate it to the new skb. 2183 */ 2184 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2185 tcp_skb_collapse_tstamp(nskb, skb); 2186 tcp_unlink_write_queue(skb, sk); 2187 sk_wmem_free_skb(sk, skb); 2188 } else { 2189 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2190 ~(TCPHDR_FIN|TCPHDR_PSH); 2191 if (!skb_shinfo(skb)->nr_frags) { 2192 skb_pull(skb, copy); 2193 } else { 2194 __pskb_trim_head(skb, copy); 2195 tcp_set_skb_tso_segs(skb, mss_now); 2196 } 2197 TCP_SKB_CB(skb)->seq += copy; 2198 } 2199 2200 len += copy; 2201 2202 if (len >= probe_size) 2203 break; 2204 } 2205 tcp_init_tso_segs(nskb, nskb->len); 2206 2207 /* We're ready to send. If this fails, the probe will 2208 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2209 */ 2210 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2211 /* Decrement cwnd here because we are sending 2212 * effectively two packets. */ 2213 tp->snd_cwnd--; 2214 tcp_event_new_data_sent(sk, nskb); 2215 2216 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2217 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2218 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2219 2220 return 1; 2221 } 2222 2223 return -1; 2224 } 2225 2226 static bool tcp_pacing_check(struct sock *sk) 2227 { 2228 struct tcp_sock *tp = tcp_sk(sk); 2229 2230 if (!tcp_needs_internal_pacing(sk)) 2231 return false; 2232 2233 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2234 return false; 2235 2236 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2237 hrtimer_start(&tp->pacing_timer, 2238 ns_to_ktime(tp->tcp_wstamp_ns), 2239 HRTIMER_MODE_ABS_PINNED_SOFT); 2240 sock_hold(sk); 2241 } 2242 return true; 2243 } 2244 2245 /* TCP Small Queues : 2246 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2247 * (These limits are doubled for retransmits) 2248 * This allows for : 2249 * - better RTT estimation and ACK scheduling 2250 * - faster recovery 2251 * - high rates 2252 * Alas, some drivers / subsystems require a fair amount 2253 * of queued bytes to ensure line rate. 2254 * One example is wifi aggregation (802.11 AMPDU) 2255 */ 2256 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2257 unsigned int factor) 2258 { 2259 unsigned long limit; 2260 2261 limit = max_t(unsigned long, 2262 2 * skb->truesize, 2263 sk->sk_pacing_rate >> sk->sk_pacing_shift); 2264 if (sk->sk_pacing_status == SK_PACING_NONE) 2265 limit = min_t(unsigned long, limit, 2266 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2267 limit <<= factor; 2268 2269 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2270 tcp_sk(sk)->tcp_tx_delay) { 2271 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2272 2273 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2274 * approximate our needs assuming an ~100% skb->truesize overhead. 2275 * USEC_PER_SEC is approximated by 2^20. 2276 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2277 */ 2278 extra_bytes >>= (20 - 1); 2279 limit += extra_bytes; 2280 } 2281 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2282 /* Always send skb if rtx queue is empty. 2283 * No need to wait for TX completion to call us back, 2284 * after softirq/tasklet schedule. 2285 * This helps when TX completions are delayed too much. 2286 */ 2287 if (tcp_rtx_queue_empty(sk)) 2288 return false; 2289 2290 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2291 /* It is possible TX completion already happened 2292 * before we set TSQ_THROTTLED, so we must 2293 * test again the condition. 2294 */ 2295 smp_mb__after_atomic(); 2296 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2297 return true; 2298 } 2299 return false; 2300 } 2301 2302 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2303 { 2304 const u32 now = tcp_jiffies32; 2305 enum tcp_chrono old = tp->chrono_type; 2306 2307 if (old > TCP_CHRONO_UNSPEC) 2308 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2309 tp->chrono_start = now; 2310 tp->chrono_type = new; 2311 } 2312 2313 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2314 { 2315 struct tcp_sock *tp = tcp_sk(sk); 2316 2317 /* If there are multiple conditions worthy of tracking in a 2318 * chronograph then the highest priority enum takes precedence 2319 * over the other conditions. So that if something "more interesting" 2320 * starts happening, stop the previous chrono and start a new one. 2321 */ 2322 if (type > tp->chrono_type) 2323 tcp_chrono_set(tp, type); 2324 } 2325 2326 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2327 { 2328 struct tcp_sock *tp = tcp_sk(sk); 2329 2330 2331 /* There are multiple conditions worthy of tracking in a 2332 * chronograph, so that the highest priority enum takes 2333 * precedence over the other conditions (see tcp_chrono_start). 2334 * If a condition stops, we only stop chrono tracking if 2335 * it's the "most interesting" or current chrono we are 2336 * tracking and starts busy chrono if we have pending data. 2337 */ 2338 if (tcp_rtx_and_write_queues_empty(sk)) 2339 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2340 else if (type == tp->chrono_type) 2341 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2342 } 2343 2344 /* This routine writes packets to the network. It advances the 2345 * send_head. This happens as incoming acks open up the remote 2346 * window for us. 2347 * 2348 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2349 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2350 * account rare use of URG, this is not a big flaw. 2351 * 2352 * Send at most one packet when push_one > 0. Temporarily ignore 2353 * cwnd limit to force at most one packet out when push_one == 2. 2354 2355 * Returns true, if no segments are in flight and we have queued segments, 2356 * but cannot send anything now because of SWS or another problem. 2357 */ 2358 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2359 int push_one, gfp_t gfp) 2360 { 2361 struct tcp_sock *tp = tcp_sk(sk); 2362 struct sk_buff *skb; 2363 unsigned int tso_segs, sent_pkts; 2364 int cwnd_quota; 2365 int result; 2366 bool is_cwnd_limited = false, is_rwnd_limited = false; 2367 u32 max_segs; 2368 2369 sent_pkts = 0; 2370 2371 tcp_mstamp_refresh(tp); 2372 if (!push_one) { 2373 /* Do MTU probing. */ 2374 result = tcp_mtu_probe(sk); 2375 if (!result) { 2376 return false; 2377 } else if (result > 0) { 2378 sent_pkts = 1; 2379 } 2380 } 2381 2382 max_segs = tcp_tso_segs(sk, mss_now); 2383 while ((skb = tcp_send_head(sk))) { 2384 unsigned int limit; 2385 2386 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2387 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2388 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2389 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2390 tcp_init_tso_segs(skb, mss_now); 2391 goto repair; /* Skip network transmission */ 2392 } 2393 2394 if (tcp_pacing_check(sk)) 2395 break; 2396 2397 tso_segs = tcp_init_tso_segs(skb, mss_now); 2398 BUG_ON(!tso_segs); 2399 2400 cwnd_quota = tcp_cwnd_test(tp, skb); 2401 if (!cwnd_quota) { 2402 if (push_one == 2) 2403 /* Force out a loss probe pkt. */ 2404 cwnd_quota = 1; 2405 else 2406 break; 2407 } 2408 2409 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2410 is_rwnd_limited = true; 2411 break; 2412 } 2413 2414 if (tso_segs == 1) { 2415 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2416 (tcp_skb_is_last(sk, skb) ? 2417 nonagle : TCP_NAGLE_PUSH)))) 2418 break; 2419 } else { 2420 if (!push_one && 2421 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2422 &is_rwnd_limited, max_segs)) 2423 break; 2424 } 2425 2426 limit = mss_now; 2427 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2428 limit = tcp_mss_split_point(sk, skb, mss_now, 2429 min_t(unsigned int, 2430 cwnd_quota, 2431 max_segs), 2432 nonagle); 2433 2434 if (skb->len > limit && 2435 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2436 break; 2437 2438 if (tcp_small_queue_check(sk, skb, 0)) 2439 break; 2440 2441 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2442 break; 2443 2444 repair: 2445 /* Advance the send_head. This one is sent out. 2446 * This call will increment packets_out. 2447 */ 2448 tcp_event_new_data_sent(sk, skb); 2449 2450 tcp_minshall_update(tp, mss_now, skb); 2451 sent_pkts += tcp_skb_pcount(skb); 2452 2453 if (push_one) 2454 break; 2455 } 2456 2457 if (is_rwnd_limited) 2458 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2459 else 2460 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2461 2462 if (likely(sent_pkts)) { 2463 if (tcp_in_cwnd_reduction(sk)) 2464 tp->prr_out += sent_pkts; 2465 2466 /* Send one loss probe per tail loss episode. */ 2467 if (push_one != 2) 2468 tcp_schedule_loss_probe(sk, false); 2469 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2470 tcp_cwnd_validate(sk, is_cwnd_limited); 2471 return false; 2472 } 2473 return !tp->packets_out && !tcp_write_queue_empty(sk); 2474 } 2475 2476 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2477 { 2478 struct inet_connection_sock *icsk = inet_csk(sk); 2479 struct tcp_sock *tp = tcp_sk(sk); 2480 u32 timeout, rto_delta_us; 2481 int early_retrans; 2482 2483 /* Don't do any loss probe on a Fast Open connection before 3WHS 2484 * finishes. 2485 */ 2486 if (rcu_access_pointer(tp->fastopen_rsk)) 2487 return false; 2488 2489 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2490 /* Schedule a loss probe in 2*RTT for SACK capable connections 2491 * not in loss recovery, that are either limited by cwnd or application. 2492 */ 2493 if ((early_retrans != 3 && early_retrans != 4) || 2494 !tp->packets_out || !tcp_is_sack(tp) || 2495 (icsk->icsk_ca_state != TCP_CA_Open && 2496 icsk->icsk_ca_state != TCP_CA_CWR)) 2497 return false; 2498 2499 /* Probe timeout is 2*rtt. Add minimum RTO to account 2500 * for delayed ack when there's one outstanding packet. If no RTT 2501 * sample is available then probe after TCP_TIMEOUT_INIT. 2502 */ 2503 if (tp->srtt_us) { 2504 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2505 if (tp->packets_out == 1) 2506 timeout += TCP_RTO_MIN; 2507 else 2508 timeout += TCP_TIMEOUT_MIN; 2509 } else { 2510 timeout = TCP_TIMEOUT_INIT; 2511 } 2512 2513 /* If the RTO formula yields an earlier time, then use that time. */ 2514 rto_delta_us = advancing_rto ? 2515 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2516 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2517 if (rto_delta_us > 0) 2518 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2519 2520 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2521 TCP_RTO_MAX, NULL); 2522 return true; 2523 } 2524 2525 /* Thanks to skb fast clones, we can detect if a prior transmit of 2526 * a packet is still in a qdisc or driver queue. 2527 * In this case, there is very little point doing a retransmit ! 2528 */ 2529 static bool skb_still_in_host_queue(const struct sock *sk, 2530 const struct sk_buff *skb) 2531 { 2532 if (unlikely(skb_fclone_busy(sk, skb))) { 2533 NET_INC_STATS(sock_net(sk), 2534 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2535 return true; 2536 } 2537 return false; 2538 } 2539 2540 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2541 * retransmit the last segment. 2542 */ 2543 void tcp_send_loss_probe(struct sock *sk) 2544 { 2545 struct tcp_sock *tp = tcp_sk(sk); 2546 struct sk_buff *skb; 2547 int pcount; 2548 int mss = tcp_current_mss(sk); 2549 2550 skb = tcp_send_head(sk); 2551 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2552 pcount = tp->packets_out; 2553 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2554 if (tp->packets_out > pcount) 2555 goto probe_sent; 2556 goto rearm_timer; 2557 } 2558 skb = skb_rb_last(&sk->tcp_rtx_queue); 2559 if (unlikely(!skb)) { 2560 WARN_ONCE(tp->packets_out, 2561 "invalid inflight: %u state %u cwnd %u mss %d\n", 2562 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2563 inet_csk(sk)->icsk_pending = 0; 2564 return; 2565 } 2566 2567 /* At most one outstanding TLP retransmission. */ 2568 if (tp->tlp_high_seq) 2569 goto rearm_timer; 2570 2571 if (skb_still_in_host_queue(sk, skb)) 2572 goto rearm_timer; 2573 2574 pcount = tcp_skb_pcount(skb); 2575 if (WARN_ON(!pcount)) 2576 goto rearm_timer; 2577 2578 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2579 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2580 (pcount - 1) * mss, mss, 2581 GFP_ATOMIC))) 2582 goto rearm_timer; 2583 skb = skb_rb_next(skb); 2584 } 2585 2586 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2587 goto rearm_timer; 2588 2589 if (__tcp_retransmit_skb(sk, skb, 1)) 2590 goto rearm_timer; 2591 2592 /* Record snd_nxt for loss detection. */ 2593 tp->tlp_high_seq = tp->snd_nxt; 2594 2595 probe_sent: 2596 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2597 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2598 inet_csk(sk)->icsk_pending = 0; 2599 rearm_timer: 2600 tcp_rearm_rto(sk); 2601 } 2602 2603 /* Push out any pending frames which were held back due to 2604 * TCP_CORK or attempt at coalescing tiny packets. 2605 * The socket must be locked by the caller. 2606 */ 2607 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2608 int nonagle) 2609 { 2610 /* If we are closed, the bytes will have to remain here. 2611 * In time closedown will finish, we empty the write queue and 2612 * all will be happy. 2613 */ 2614 if (unlikely(sk->sk_state == TCP_CLOSE)) 2615 return; 2616 2617 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2618 sk_gfp_mask(sk, GFP_ATOMIC))) 2619 tcp_check_probe_timer(sk); 2620 } 2621 2622 /* Send _single_ skb sitting at the send head. This function requires 2623 * true push pending frames to setup probe timer etc. 2624 */ 2625 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2626 { 2627 struct sk_buff *skb = tcp_send_head(sk); 2628 2629 BUG_ON(!skb || skb->len < mss_now); 2630 2631 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2632 } 2633 2634 /* This function returns the amount that we can raise the 2635 * usable window based on the following constraints 2636 * 2637 * 1. The window can never be shrunk once it is offered (RFC 793) 2638 * 2. We limit memory per socket 2639 * 2640 * RFC 1122: 2641 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2642 * RECV.NEXT + RCV.WIN fixed until: 2643 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2644 * 2645 * i.e. don't raise the right edge of the window until you can raise 2646 * it at least MSS bytes. 2647 * 2648 * Unfortunately, the recommended algorithm breaks header prediction, 2649 * since header prediction assumes th->window stays fixed. 2650 * 2651 * Strictly speaking, keeping th->window fixed violates the receiver 2652 * side SWS prevention criteria. The problem is that under this rule 2653 * a stream of single byte packets will cause the right side of the 2654 * window to always advance by a single byte. 2655 * 2656 * Of course, if the sender implements sender side SWS prevention 2657 * then this will not be a problem. 2658 * 2659 * BSD seems to make the following compromise: 2660 * 2661 * If the free space is less than the 1/4 of the maximum 2662 * space available and the free space is less than 1/2 mss, 2663 * then set the window to 0. 2664 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2665 * Otherwise, just prevent the window from shrinking 2666 * and from being larger than the largest representable value. 2667 * 2668 * This prevents incremental opening of the window in the regime 2669 * where TCP is limited by the speed of the reader side taking 2670 * data out of the TCP receive queue. It does nothing about 2671 * those cases where the window is constrained on the sender side 2672 * because the pipeline is full. 2673 * 2674 * BSD also seems to "accidentally" limit itself to windows that are a 2675 * multiple of MSS, at least until the free space gets quite small. 2676 * This would appear to be a side effect of the mbuf implementation. 2677 * Combining these two algorithms results in the observed behavior 2678 * of having a fixed window size at almost all times. 2679 * 2680 * Below we obtain similar behavior by forcing the offered window to 2681 * a multiple of the mss when it is feasible to do so. 2682 * 2683 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2684 * Regular options like TIMESTAMP are taken into account. 2685 */ 2686 u32 __tcp_select_window(struct sock *sk) 2687 { 2688 struct inet_connection_sock *icsk = inet_csk(sk); 2689 struct tcp_sock *tp = tcp_sk(sk); 2690 /* MSS for the peer's data. Previous versions used mss_clamp 2691 * here. I don't know if the value based on our guesses 2692 * of peer's MSS is better for the performance. It's more correct 2693 * but may be worse for the performance because of rcv_mss 2694 * fluctuations. --SAW 1998/11/1 2695 */ 2696 int mss = icsk->icsk_ack.rcv_mss; 2697 int free_space = tcp_space(sk); 2698 int allowed_space = tcp_full_space(sk); 2699 int full_space = min_t(int, tp->window_clamp, allowed_space); 2700 int window; 2701 2702 if (unlikely(mss > full_space)) { 2703 mss = full_space; 2704 if (mss <= 0) 2705 return 0; 2706 } 2707 if (free_space < (full_space >> 1)) { 2708 icsk->icsk_ack.quick = 0; 2709 2710 if (tcp_under_memory_pressure(sk)) 2711 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2712 4U * tp->advmss); 2713 2714 /* free_space might become our new window, make sure we don't 2715 * increase it due to wscale. 2716 */ 2717 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2718 2719 /* if free space is less than mss estimate, or is below 1/16th 2720 * of the maximum allowed, try to move to zero-window, else 2721 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2722 * new incoming data is dropped due to memory limits. 2723 * With large window, mss test triggers way too late in order 2724 * to announce zero window in time before rmem limit kicks in. 2725 */ 2726 if (free_space < (allowed_space >> 4) || free_space < mss) 2727 return 0; 2728 } 2729 2730 if (free_space > tp->rcv_ssthresh) 2731 free_space = tp->rcv_ssthresh; 2732 2733 /* Don't do rounding if we are using window scaling, since the 2734 * scaled window will not line up with the MSS boundary anyway. 2735 */ 2736 if (tp->rx_opt.rcv_wscale) { 2737 window = free_space; 2738 2739 /* Advertise enough space so that it won't get scaled away. 2740 * Import case: prevent zero window announcement if 2741 * 1<<rcv_wscale > mss. 2742 */ 2743 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2744 } else { 2745 window = tp->rcv_wnd; 2746 /* Get the largest window that is a nice multiple of mss. 2747 * Window clamp already applied above. 2748 * If our current window offering is within 1 mss of the 2749 * free space we just keep it. This prevents the divide 2750 * and multiply from happening most of the time. 2751 * We also don't do any window rounding when the free space 2752 * is too small. 2753 */ 2754 if (window <= free_space - mss || window > free_space) 2755 window = rounddown(free_space, mss); 2756 else if (mss == full_space && 2757 free_space > window + (full_space >> 1)) 2758 window = free_space; 2759 } 2760 2761 return window; 2762 } 2763 2764 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2765 const struct sk_buff *next_skb) 2766 { 2767 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2768 const struct skb_shared_info *next_shinfo = 2769 skb_shinfo(next_skb); 2770 struct skb_shared_info *shinfo = skb_shinfo(skb); 2771 2772 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2773 shinfo->tskey = next_shinfo->tskey; 2774 TCP_SKB_CB(skb)->txstamp_ack |= 2775 TCP_SKB_CB(next_skb)->txstamp_ack; 2776 } 2777 } 2778 2779 /* Collapses two adjacent SKB's during retransmission. */ 2780 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2781 { 2782 struct tcp_sock *tp = tcp_sk(sk); 2783 struct sk_buff *next_skb = skb_rb_next(skb); 2784 int next_skb_size; 2785 2786 next_skb_size = next_skb->len; 2787 2788 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2789 2790 if (next_skb_size) { 2791 if (next_skb_size <= skb_availroom(skb)) 2792 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2793 next_skb_size); 2794 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 2795 return false; 2796 } 2797 tcp_highest_sack_replace(sk, next_skb, skb); 2798 2799 /* Update sequence range on original skb. */ 2800 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2801 2802 /* Merge over control information. This moves PSH/FIN etc. over */ 2803 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2804 2805 /* All done, get rid of second SKB and account for it so 2806 * packet counting does not break. 2807 */ 2808 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2809 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2810 2811 /* changed transmit queue under us so clear hints */ 2812 tcp_clear_retrans_hints_partial(tp); 2813 if (next_skb == tp->retransmit_skb_hint) 2814 tp->retransmit_skb_hint = skb; 2815 2816 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2817 2818 tcp_skb_collapse_tstamp(skb, next_skb); 2819 2820 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2821 return true; 2822 } 2823 2824 /* Check if coalescing SKBs is legal. */ 2825 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2826 { 2827 if (tcp_skb_pcount(skb) > 1) 2828 return false; 2829 if (skb_cloned(skb)) 2830 return false; 2831 /* Some heuristics for collapsing over SACK'd could be invented */ 2832 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2833 return false; 2834 2835 return true; 2836 } 2837 2838 /* Collapse packets in the retransmit queue to make to create 2839 * less packets on the wire. This is only done on retransmission. 2840 */ 2841 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2842 int space) 2843 { 2844 struct tcp_sock *tp = tcp_sk(sk); 2845 struct sk_buff *skb = to, *tmp; 2846 bool first = true; 2847 2848 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2849 return; 2850 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2851 return; 2852 2853 skb_rbtree_walk_from_safe(skb, tmp) { 2854 if (!tcp_can_collapse(sk, skb)) 2855 break; 2856 2857 if (!tcp_skb_can_collapse_to(to)) 2858 break; 2859 2860 space -= skb->len; 2861 2862 if (first) { 2863 first = false; 2864 continue; 2865 } 2866 2867 if (space < 0) 2868 break; 2869 2870 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2871 break; 2872 2873 if (!tcp_collapse_retrans(sk, to)) 2874 break; 2875 } 2876 } 2877 2878 /* This retransmits one SKB. Policy decisions and retransmit queue 2879 * state updates are done by the caller. Returns non-zero if an 2880 * error occurred which prevented the send. 2881 */ 2882 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2883 { 2884 struct inet_connection_sock *icsk = inet_csk(sk); 2885 struct tcp_sock *tp = tcp_sk(sk); 2886 unsigned int cur_mss; 2887 int diff, len, err; 2888 2889 2890 /* Inconclusive MTU probe */ 2891 if (icsk->icsk_mtup.probe_size) 2892 icsk->icsk_mtup.probe_size = 0; 2893 2894 /* Do not sent more than we queued. 1/4 is reserved for possible 2895 * copying overhead: fragmentation, tunneling, mangling etc. 2896 */ 2897 if (refcount_read(&sk->sk_wmem_alloc) > 2898 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2899 sk->sk_sndbuf)) 2900 return -EAGAIN; 2901 2902 if (skb_still_in_host_queue(sk, skb)) 2903 return -EBUSY; 2904 2905 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2906 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2907 WARN_ON_ONCE(1); 2908 return -EINVAL; 2909 } 2910 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2911 return -ENOMEM; 2912 } 2913 2914 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2915 return -EHOSTUNREACH; /* Routing failure or similar. */ 2916 2917 cur_mss = tcp_current_mss(sk); 2918 2919 /* If receiver has shrunk his window, and skb is out of 2920 * new window, do not retransmit it. The exception is the 2921 * case, when window is shrunk to zero. In this case 2922 * our retransmit serves as a zero window probe. 2923 */ 2924 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2925 TCP_SKB_CB(skb)->seq != tp->snd_una) 2926 return -EAGAIN; 2927 2928 len = cur_mss * segs; 2929 if (skb->len > len) { 2930 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2931 cur_mss, GFP_ATOMIC)) 2932 return -ENOMEM; /* We'll try again later. */ 2933 } else { 2934 if (skb_unclone(skb, GFP_ATOMIC)) 2935 return -ENOMEM; 2936 2937 diff = tcp_skb_pcount(skb); 2938 tcp_set_skb_tso_segs(skb, cur_mss); 2939 diff -= tcp_skb_pcount(skb); 2940 if (diff) 2941 tcp_adjust_pcount(sk, skb, diff); 2942 if (skb->len < cur_mss) 2943 tcp_retrans_try_collapse(sk, skb, cur_mss); 2944 } 2945 2946 /* RFC3168, section 6.1.1.1. ECN fallback */ 2947 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2948 tcp_ecn_clear_syn(sk, skb); 2949 2950 /* Update global and local TCP statistics. */ 2951 segs = tcp_skb_pcount(skb); 2952 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2953 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2954 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2955 tp->total_retrans += segs; 2956 tp->bytes_retrans += skb->len; 2957 2958 /* make sure skb->data is aligned on arches that require it 2959 * and check if ack-trimming & collapsing extended the headroom 2960 * beyond what csum_start can cover. 2961 */ 2962 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2963 skb_headroom(skb) >= 0xFFFF)) { 2964 struct sk_buff *nskb; 2965 2966 tcp_skb_tsorted_save(skb) { 2967 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2968 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2969 -ENOBUFS; 2970 } tcp_skb_tsorted_restore(skb); 2971 2972 if (!err) { 2973 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 2974 tcp_rate_skb_sent(sk, skb); 2975 } 2976 } else { 2977 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2978 } 2979 2980 /* To avoid taking spuriously low RTT samples based on a timestamp 2981 * for a transmit that never happened, always mark EVER_RETRANS 2982 */ 2983 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2984 2985 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2986 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2987 TCP_SKB_CB(skb)->seq, segs, err); 2988 2989 if (likely(!err)) { 2990 trace_tcp_retransmit_skb(sk, skb); 2991 } else if (err != -EBUSY) { 2992 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 2993 } 2994 return err; 2995 } 2996 2997 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2998 { 2999 struct tcp_sock *tp = tcp_sk(sk); 3000 int err = __tcp_retransmit_skb(sk, skb, segs); 3001 3002 if (err == 0) { 3003 #if FASTRETRANS_DEBUG > 0 3004 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3005 net_dbg_ratelimited("retrans_out leaked\n"); 3006 } 3007 #endif 3008 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3009 tp->retrans_out += tcp_skb_pcount(skb); 3010 } 3011 3012 /* Save stamp of the first (attempted) retransmit. */ 3013 if (!tp->retrans_stamp) 3014 tp->retrans_stamp = tcp_skb_timestamp(skb); 3015 3016 if (tp->undo_retrans < 0) 3017 tp->undo_retrans = 0; 3018 tp->undo_retrans += tcp_skb_pcount(skb); 3019 return err; 3020 } 3021 3022 /* This gets called after a retransmit timeout, and the initially 3023 * retransmitted data is acknowledged. It tries to continue 3024 * resending the rest of the retransmit queue, until either 3025 * we've sent it all or the congestion window limit is reached. 3026 */ 3027 void tcp_xmit_retransmit_queue(struct sock *sk) 3028 { 3029 const struct inet_connection_sock *icsk = inet_csk(sk); 3030 struct sk_buff *skb, *rtx_head, *hole = NULL; 3031 struct tcp_sock *tp = tcp_sk(sk); 3032 u32 max_segs; 3033 int mib_idx; 3034 3035 if (!tp->packets_out) 3036 return; 3037 3038 rtx_head = tcp_rtx_queue_head(sk); 3039 skb = tp->retransmit_skb_hint ?: rtx_head; 3040 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3041 skb_rbtree_walk_from(skb) { 3042 __u8 sacked; 3043 int segs; 3044 3045 if (tcp_pacing_check(sk)) 3046 break; 3047 3048 /* we could do better than to assign each time */ 3049 if (!hole) 3050 tp->retransmit_skb_hint = skb; 3051 3052 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3053 if (segs <= 0) 3054 return; 3055 sacked = TCP_SKB_CB(skb)->sacked; 3056 /* In case tcp_shift_skb_data() have aggregated large skbs, 3057 * we need to make sure not sending too bigs TSO packets 3058 */ 3059 segs = min_t(int, segs, max_segs); 3060 3061 if (tp->retrans_out >= tp->lost_out) { 3062 break; 3063 } else if (!(sacked & TCPCB_LOST)) { 3064 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3065 hole = skb; 3066 continue; 3067 3068 } else { 3069 if (icsk->icsk_ca_state != TCP_CA_Loss) 3070 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3071 else 3072 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3073 } 3074 3075 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3076 continue; 3077 3078 if (tcp_small_queue_check(sk, skb, 1)) 3079 return; 3080 3081 if (tcp_retransmit_skb(sk, skb, segs)) 3082 return; 3083 3084 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3085 3086 if (tcp_in_cwnd_reduction(sk)) 3087 tp->prr_out += tcp_skb_pcount(skb); 3088 3089 if (skb == rtx_head && 3090 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3091 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3092 inet_csk(sk)->icsk_rto, 3093 TCP_RTO_MAX, 3094 skb); 3095 } 3096 } 3097 3098 /* We allow to exceed memory limits for FIN packets to expedite 3099 * connection tear down and (memory) recovery. 3100 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3101 * or even be forced to close flow without any FIN. 3102 * In general, we want to allow one skb per socket to avoid hangs 3103 * with edge trigger epoll() 3104 */ 3105 void sk_forced_mem_schedule(struct sock *sk, int size) 3106 { 3107 int amt; 3108 3109 if (size <= sk->sk_forward_alloc) 3110 return; 3111 amt = sk_mem_pages(size); 3112 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3113 sk_memory_allocated_add(sk, amt); 3114 3115 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3116 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3117 } 3118 3119 /* Send a FIN. The caller locks the socket for us. 3120 * We should try to send a FIN packet really hard, but eventually give up. 3121 */ 3122 void tcp_send_fin(struct sock *sk) 3123 { 3124 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3125 struct tcp_sock *tp = tcp_sk(sk); 3126 3127 /* Optimization, tack on the FIN if we have one skb in write queue and 3128 * this skb was not yet sent, or we are under memory pressure. 3129 * Note: in the latter case, FIN packet will be sent after a timeout, 3130 * as TCP stack thinks it has already been transmitted. 3131 */ 3132 if (!tskb && tcp_under_memory_pressure(sk)) 3133 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3134 3135 if (tskb) { 3136 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3137 TCP_SKB_CB(tskb)->end_seq++; 3138 tp->write_seq++; 3139 if (tcp_write_queue_empty(sk)) { 3140 /* This means tskb was already sent. 3141 * Pretend we included the FIN on previous transmit. 3142 * We need to set tp->snd_nxt to the value it would have 3143 * if FIN had been sent. This is because retransmit path 3144 * does not change tp->snd_nxt. 3145 */ 3146 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3147 return; 3148 } 3149 } else { 3150 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3151 if (unlikely(!skb)) 3152 return; 3153 3154 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3155 skb_reserve(skb, MAX_TCP_HEADER); 3156 sk_forced_mem_schedule(sk, skb->truesize); 3157 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3158 tcp_init_nondata_skb(skb, tp->write_seq, 3159 TCPHDR_ACK | TCPHDR_FIN); 3160 tcp_queue_skb(sk, skb); 3161 } 3162 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3163 } 3164 3165 /* We get here when a process closes a file descriptor (either due to 3166 * an explicit close() or as a byproduct of exit()'ing) and there 3167 * was unread data in the receive queue. This behavior is recommended 3168 * by RFC 2525, section 2.17. -DaveM 3169 */ 3170 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3171 { 3172 struct sk_buff *skb; 3173 3174 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3175 3176 /* NOTE: No TCP options attached and we never retransmit this. */ 3177 skb = alloc_skb(MAX_TCP_HEADER, priority); 3178 if (!skb) { 3179 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3180 return; 3181 } 3182 3183 /* Reserve space for headers and prepare control bits. */ 3184 skb_reserve(skb, MAX_TCP_HEADER); 3185 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3186 TCPHDR_ACK | TCPHDR_RST); 3187 tcp_mstamp_refresh(tcp_sk(sk)); 3188 /* Send it off. */ 3189 if (tcp_transmit_skb(sk, skb, 0, priority)) 3190 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3191 3192 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3193 * skb here is different to the troublesome skb, so use NULL 3194 */ 3195 trace_tcp_send_reset(sk, NULL); 3196 } 3197 3198 /* Send a crossed SYN-ACK during socket establishment. 3199 * WARNING: This routine must only be called when we have already sent 3200 * a SYN packet that crossed the incoming SYN that caused this routine 3201 * to get called. If this assumption fails then the initial rcv_wnd 3202 * and rcv_wscale values will not be correct. 3203 */ 3204 int tcp_send_synack(struct sock *sk) 3205 { 3206 struct sk_buff *skb; 3207 3208 skb = tcp_rtx_queue_head(sk); 3209 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3210 pr_err("%s: wrong queue state\n", __func__); 3211 return -EFAULT; 3212 } 3213 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3214 if (skb_cloned(skb)) { 3215 struct sk_buff *nskb; 3216 3217 tcp_skb_tsorted_save(skb) { 3218 nskb = skb_copy(skb, GFP_ATOMIC); 3219 } tcp_skb_tsorted_restore(skb); 3220 if (!nskb) 3221 return -ENOMEM; 3222 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3223 tcp_rtx_queue_unlink_and_free(skb, sk); 3224 __skb_header_release(nskb); 3225 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3226 sk_wmem_queued_add(sk, nskb->truesize); 3227 sk_mem_charge(sk, nskb->truesize); 3228 skb = nskb; 3229 } 3230 3231 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3232 tcp_ecn_send_synack(sk, skb); 3233 } 3234 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3235 } 3236 3237 /** 3238 * tcp_make_synack - Prepare a SYN-ACK. 3239 * sk: listener socket 3240 * dst: dst entry attached to the SYNACK 3241 * req: request_sock pointer 3242 * 3243 * Allocate one skb and build a SYNACK packet. 3244 * @dst is consumed : Caller should not use it again. 3245 */ 3246 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3247 struct request_sock *req, 3248 struct tcp_fastopen_cookie *foc, 3249 enum tcp_synack_type synack_type) 3250 { 3251 struct inet_request_sock *ireq = inet_rsk(req); 3252 const struct tcp_sock *tp = tcp_sk(sk); 3253 struct tcp_md5sig_key *md5 = NULL; 3254 struct tcp_out_options opts; 3255 struct sk_buff *skb; 3256 int tcp_header_size; 3257 struct tcphdr *th; 3258 int mss; 3259 u64 now; 3260 3261 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3262 if (unlikely(!skb)) { 3263 dst_release(dst); 3264 return NULL; 3265 } 3266 /* Reserve space for headers. */ 3267 skb_reserve(skb, MAX_TCP_HEADER); 3268 3269 switch (synack_type) { 3270 case TCP_SYNACK_NORMAL: 3271 skb_set_owner_w(skb, req_to_sk(req)); 3272 break; 3273 case TCP_SYNACK_COOKIE: 3274 /* Under synflood, we do not attach skb to a socket, 3275 * to avoid false sharing. 3276 */ 3277 break; 3278 case TCP_SYNACK_FASTOPEN: 3279 /* sk is a const pointer, because we want to express multiple 3280 * cpu might call us concurrently. 3281 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3282 */ 3283 skb_set_owner_w(skb, (struct sock *)sk); 3284 break; 3285 } 3286 skb_dst_set(skb, dst); 3287 3288 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3289 3290 memset(&opts, 0, sizeof(opts)); 3291 now = tcp_clock_ns(); 3292 #ifdef CONFIG_SYN_COOKIES 3293 if (unlikely(req->cookie_ts)) 3294 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3295 else 3296 #endif 3297 { 3298 skb->skb_mstamp_ns = now; 3299 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3300 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3301 } 3302 3303 #ifdef CONFIG_TCP_MD5SIG 3304 rcu_read_lock(); 3305 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3306 #endif 3307 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3308 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3309 foc) + sizeof(*th); 3310 3311 skb_push(skb, tcp_header_size); 3312 skb_reset_transport_header(skb); 3313 3314 th = (struct tcphdr *)skb->data; 3315 memset(th, 0, sizeof(struct tcphdr)); 3316 th->syn = 1; 3317 th->ack = 1; 3318 tcp_ecn_make_synack(req, th); 3319 th->source = htons(ireq->ir_num); 3320 th->dest = ireq->ir_rmt_port; 3321 skb->mark = ireq->ir_mark; 3322 skb->ip_summed = CHECKSUM_PARTIAL; 3323 th->seq = htonl(tcp_rsk(req)->snt_isn); 3324 /* XXX data is queued and acked as is. No buffer/window check */ 3325 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3326 3327 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3328 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3329 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3330 th->doff = (tcp_header_size >> 2); 3331 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3332 3333 #ifdef CONFIG_TCP_MD5SIG 3334 /* Okay, we have all we need - do the md5 hash if needed */ 3335 if (md5) 3336 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3337 md5, req_to_sk(req), skb); 3338 rcu_read_unlock(); 3339 #endif 3340 3341 skb->skb_mstamp_ns = now; 3342 tcp_add_tx_delay(skb, tp); 3343 3344 return skb; 3345 } 3346 EXPORT_SYMBOL(tcp_make_synack); 3347 3348 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3349 { 3350 struct inet_connection_sock *icsk = inet_csk(sk); 3351 const struct tcp_congestion_ops *ca; 3352 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3353 3354 if (ca_key == TCP_CA_UNSPEC) 3355 return; 3356 3357 rcu_read_lock(); 3358 ca = tcp_ca_find_key(ca_key); 3359 if (likely(ca && try_module_get(ca->owner))) { 3360 module_put(icsk->icsk_ca_ops->owner); 3361 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3362 icsk->icsk_ca_ops = ca; 3363 } 3364 rcu_read_unlock(); 3365 } 3366 3367 /* Do all connect socket setups that can be done AF independent. */ 3368 static void tcp_connect_init(struct sock *sk) 3369 { 3370 const struct dst_entry *dst = __sk_dst_get(sk); 3371 struct tcp_sock *tp = tcp_sk(sk); 3372 __u8 rcv_wscale; 3373 u32 rcv_wnd; 3374 3375 /* We'll fix this up when we get a response from the other end. 3376 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3377 */ 3378 tp->tcp_header_len = sizeof(struct tcphdr); 3379 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3380 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3381 3382 #ifdef CONFIG_TCP_MD5SIG 3383 if (tp->af_specific->md5_lookup(sk, sk)) 3384 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3385 #endif 3386 3387 /* If user gave his TCP_MAXSEG, record it to clamp */ 3388 if (tp->rx_opt.user_mss) 3389 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3390 tp->max_window = 0; 3391 tcp_mtup_init(sk); 3392 tcp_sync_mss(sk, dst_mtu(dst)); 3393 3394 tcp_ca_dst_init(sk, dst); 3395 3396 if (!tp->window_clamp) 3397 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3398 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3399 3400 tcp_initialize_rcv_mss(sk); 3401 3402 /* limit the window selection if the user enforce a smaller rx buffer */ 3403 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3404 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3405 tp->window_clamp = tcp_full_space(sk); 3406 3407 rcv_wnd = tcp_rwnd_init_bpf(sk); 3408 if (rcv_wnd == 0) 3409 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3410 3411 tcp_select_initial_window(sk, tcp_full_space(sk), 3412 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3413 &tp->rcv_wnd, 3414 &tp->window_clamp, 3415 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3416 &rcv_wscale, 3417 rcv_wnd); 3418 3419 tp->rx_opt.rcv_wscale = rcv_wscale; 3420 tp->rcv_ssthresh = tp->rcv_wnd; 3421 3422 sk->sk_err = 0; 3423 sock_reset_flag(sk, SOCK_DONE); 3424 tp->snd_wnd = 0; 3425 tcp_init_wl(tp, 0); 3426 tcp_write_queue_purge(sk); 3427 tp->snd_una = tp->write_seq; 3428 tp->snd_sml = tp->write_seq; 3429 tp->snd_up = tp->write_seq; 3430 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3431 3432 if (likely(!tp->repair)) 3433 tp->rcv_nxt = 0; 3434 else 3435 tp->rcv_tstamp = tcp_jiffies32; 3436 tp->rcv_wup = tp->rcv_nxt; 3437 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3438 3439 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3440 inet_csk(sk)->icsk_retransmits = 0; 3441 tcp_clear_retrans(tp); 3442 } 3443 3444 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3445 { 3446 struct tcp_sock *tp = tcp_sk(sk); 3447 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3448 3449 tcb->end_seq += skb->len; 3450 __skb_header_release(skb); 3451 sk_wmem_queued_add(sk, skb->truesize); 3452 sk_mem_charge(sk, skb->truesize); 3453 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3454 tp->packets_out += tcp_skb_pcount(skb); 3455 } 3456 3457 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3458 * queue a data-only packet after the regular SYN, such that regular SYNs 3459 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3460 * only the SYN sequence, the data are retransmitted in the first ACK. 3461 * If cookie is not cached or other error occurs, falls back to send a 3462 * regular SYN with Fast Open cookie request option. 3463 */ 3464 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3465 { 3466 struct tcp_sock *tp = tcp_sk(sk); 3467 struct tcp_fastopen_request *fo = tp->fastopen_req; 3468 int space, err = 0; 3469 struct sk_buff *syn_data; 3470 3471 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3472 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3473 goto fallback; 3474 3475 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3476 * user-MSS. Reserve maximum option space for middleboxes that add 3477 * private TCP options. The cost is reduced data space in SYN :( 3478 */ 3479 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3480 3481 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3482 MAX_TCP_OPTION_SPACE; 3483 3484 space = min_t(size_t, space, fo->size); 3485 3486 /* limit to order-0 allocations */ 3487 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3488 3489 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3490 if (!syn_data) 3491 goto fallback; 3492 syn_data->ip_summed = CHECKSUM_PARTIAL; 3493 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3494 if (space) { 3495 int copied = copy_from_iter(skb_put(syn_data, space), space, 3496 &fo->data->msg_iter); 3497 if (unlikely(!copied)) { 3498 tcp_skb_tsorted_anchor_cleanup(syn_data); 3499 kfree_skb(syn_data); 3500 goto fallback; 3501 } 3502 if (copied != space) { 3503 skb_trim(syn_data, copied); 3504 space = copied; 3505 } 3506 skb_zcopy_set(syn_data, fo->uarg, NULL); 3507 } 3508 /* No more data pending in inet_wait_for_connect() */ 3509 if (space == fo->size) 3510 fo->data = NULL; 3511 fo->copied = space; 3512 3513 tcp_connect_queue_skb(sk, syn_data); 3514 if (syn_data->len) 3515 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3516 3517 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3518 3519 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3520 3521 /* Now full SYN+DATA was cloned and sent (or not), 3522 * remove the SYN from the original skb (syn_data) 3523 * we keep in write queue in case of a retransmit, as we 3524 * also have the SYN packet (with no data) in the same queue. 3525 */ 3526 TCP_SKB_CB(syn_data)->seq++; 3527 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3528 if (!err) { 3529 tp->syn_data = (fo->copied > 0); 3530 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3531 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3532 goto done; 3533 } 3534 3535 /* data was not sent, put it in write_queue */ 3536 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3537 tp->packets_out -= tcp_skb_pcount(syn_data); 3538 3539 fallback: 3540 /* Send a regular SYN with Fast Open cookie request option */ 3541 if (fo->cookie.len > 0) 3542 fo->cookie.len = 0; 3543 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3544 if (err) 3545 tp->syn_fastopen = 0; 3546 done: 3547 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3548 return err; 3549 } 3550 3551 /* Build a SYN and send it off. */ 3552 int tcp_connect(struct sock *sk) 3553 { 3554 struct tcp_sock *tp = tcp_sk(sk); 3555 struct sk_buff *buff; 3556 int err; 3557 3558 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3559 3560 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3561 return -EHOSTUNREACH; /* Routing failure or similar. */ 3562 3563 tcp_connect_init(sk); 3564 3565 if (unlikely(tp->repair)) { 3566 tcp_finish_connect(sk, NULL); 3567 return 0; 3568 } 3569 3570 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3571 if (unlikely(!buff)) 3572 return -ENOBUFS; 3573 3574 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3575 tcp_mstamp_refresh(tp); 3576 tp->retrans_stamp = tcp_time_stamp(tp); 3577 tcp_connect_queue_skb(sk, buff); 3578 tcp_ecn_send_syn(sk, buff); 3579 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3580 3581 /* Send off SYN; include data in Fast Open. */ 3582 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3583 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3584 if (err == -ECONNREFUSED) 3585 return err; 3586 3587 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3588 * in order to make this packet get counted in tcpOutSegs. 3589 */ 3590 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3591 tp->pushed_seq = tp->write_seq; 3592 buff = tcp_send_head(sk); 3593 if (unlikely(buff)) { 3594 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3595 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3596 } 3597 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3598 3599 /* Timer for repeating the SYN until an answer. */ 3600 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3601 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3602 return 0; 3603 } 3604 EXPORT_SYMBOL(tcp_connect); 3605 3606 /* Send out a delayed ack, the caller does the policy checking 3607 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3608 * for details. 3609 */ 3610 void tcp_send_delayed_ack(struct sock *sk) 3611 { 3612 struct inet_connection_sock *icsk = inet_csk(sk); 3613 int ato = icsk->icsk_ack.ato; 3614 unsigned long timeout; 3615 3616 if (ato > TCP_DELACK_MIN) { 3617 const struct tcp_sock *tp = tcp_sk(sk); 3618 int max_ato = HZ / 2; 3619 3620 if (inet_csk_in_pingpong_mode(sk) || 3621 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3622 max_ato = TCP_DELACK_MAX; 3623 3624 /* Slow path, intersegment interval is "high". */ 3625 3626 /* If some rtt estimate is known, use it to bound delayed ack. 3627 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3628 * directly. 3629 */ 3630 if (tp->srtt_us) { 3631 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3632 TCP_DELACK_MIN); 3633 3634 if (rtt < max_ato) 3635 max_ato = rtt; 3636 } 3637 3638 ato = min(ato, max_ato); 3639 } 3640 3641 /* Stay within the limit we were given */ 3642 timeout = jiffies + ato; 3643 3644 /* Use new timeout only if there wasn't a older one earlier. */ 3645 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3646 /* If delack timer was blocked or is about to expire, 3647 * send ACK now. 3648 */ 3649 if (icsk->icsk_ack.blocked || 3650 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3651 tcp_send_ack(sk); 3652 return; 3653 } 3654 3655 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3656 timeout = icsk->icsk_ack.timeout; 3657 } 3658 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3659 icsk->icsk_ack.timeout = timeout; 3660 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3661 } 3662 3663 /* This routine sends an ack and also updates the window. */ 3664 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3665 { 3666 struct sk_buff *buff; 3667 3668 /* If we have been reset, we may not send again. */ 3669 if (sk->sk_state == TCP_CLOSE) 3670 return; 3671 3672 /* We are not putting this on the write queue, so 3673 * tcp_transmit_skb() will set the ownership to this 3674 * sock. 3675 */ 3676 buff = alloc_skb(MAX_TCP_HEADER, 3677 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3678 if (unlikely(!buff)) { 3679 inet_csk_schedule_ack(sk); 3680 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3681 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3682 TCP_DELACK_MAX, TCP_RTO_MAX); 3683 return; 3684 } 3685 3686 /* Reserve space for headers and prepare control bits. */ 3687 skb_reserve(buff, MAX_TCP_HEADER); 3688 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3689 3690 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3691 * too much. 3692 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3693 */ 3694 skb_set_tcp_pure_ack(buff); 3695 3696 /* Send it off, this clears delayed acks for us. */ 3697 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3698 } 3699 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3700 3701 void tcp_send_ack(struct sock *sk) 3702 { 3703 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3704 } 3705 3706 /* This routine sends a packet with an out of date sequence 3707 * number. It assumes the other end will try to ack it. 3708 * 3709 * Question: what should we make while urgent mode? 3710 * 4.4BSD forces sending single byte of data. We cannot send 3711 * out of window data, because we have SND.NXT==SND.MAX... 3712 * 3713 * Current solution: to send TWO zero-length segments in urgent mode: 3714 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3715 * out-of-date with SND.UNA-1 to probe window. 3716 */ 3717 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3718 { 3719 struct tcp_sock *tp = tcp_sk(sk); 3720 struct sk_buff *skb; 3721 3722 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3723 skb = alloc_skb(MAX_TCP_HEADER, 3724 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3725 if (!skb) 3726 return -1; 3727 3728 /* Reserve space for headers and set control bits. */ 3729 skb_reserve(skb, MAX_TCP_HEADER); 3730 /* Use a previous sequence. This should cause the other 3731 * end to send an ack. Don't queue or clone SKB, just 3732 * send it. 3733 */ 3734 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3735 NET_INC_STATS(sock_net(sk), mib); 3736 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3737 } 3738 3739 /* Called from setsockopt( ... TCP_REPAIR ) */ 3740 void tcp_send_window_probe(struct sock *sk) 3741 { 3742 if (sk->sk_state == TCP_ESTABLISHED) { 3743 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3744 tcp_mstamp_refresh(tcp_sk(sk)); 3745 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3746 } 3747 } 3748 3749 /* Initiate keepalive or window probe from timer. */ 3750 int tcp_write_wakeup(struct sock *sk, int mib) 3751 { 3752 struct tcp_sock *tp = tcp_sk(sk); 3753 struct sk_buff *skb; 3754 3755 if (sk->sk_state == TCP_CLOSE) 3756 return -1; 3757 3758 skb = tcp_send_head(sk); 3759 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3760 int err; 3761 unsigned int mss = tcp_current_mss(sk); 3762 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3763 3764 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3765 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3766 3767 /* We are probing the opening of a window 3768 * but the window size is != 0 3769 * must have been a result SWS avoidance ( sender ) 3770 */ 3771 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3772 skb->len > mss) { 3773 seg_size = min(seg_size, mss); 3774 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3775 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3776 skb, seg_size, mss, GFP_ATOMIC)) 3777 return -1; 3778 } else if (!tcp_skb_pcount(skb)) 3779 tcp_set_skb_tso_segs(skb, mss); 3780 3781 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3782 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3783 if (!err) 3784 tcp_event_new_data_sent(sk, skb); 3785 return err; 3786 } else { 3787 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3788 tcp_xmit_probe_skb(sk, 1, mib); 3789 return tcp_xmit_probe_skb(sk, 0, mib); 3790 } 3791 } 3792 3793 /* A window probe timeout has occurred. If window is not closed send 3794 * a partial packet else a zero probe. 3795 */ 3796 void tcp_send_probe0(struct sock *sk) 3797 { 3798 struct inet_connection_sock *icsk = inet_csk(sk); 3799 struct tcp_sock *tp = tcp_sk(sk); 3800 struct net *net = sock_net(sk); 3801 unsigned long timeout; 3802 int err; 3803 3804 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3805 3806 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3807 /* Cancel probe timer, if it is not required. */ 3808 icsk->icsk_probes_out = 0; 3809 icsk->icsk_backoff = 0; 3810 return; 3811 } 3812 3813 icsk->icsk_probes_out++; 3814 if (err <= 0) { 3815 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3816 icsk->icsk_backoff++; 3817 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3818 } else { 3819 /* If packet was not sent due to local congestion, 3820 * Let senders fight for local resources conservatively. 3821 */ 3822 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3823 } 3824 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL); 3825 } 3826 3827 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3828 { 3829 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3830 struct flowi fl; 3831 int res; 3832 3833 tcp_rsk(req)->txhash = net_tx_rndhash(); 3834 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3835 if (!res) { 3836 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3837 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3838 if (unlikely(tcp_passive_fastopen(sk))) 3839 tcp_sk(sk)->total_retrans++; 3840 trace_tcp_retransmit_synack(sk, req); 3841 } 3842 return res; 3843 } 3844 EXPORT_SYMBOL(tcp_rtx_synack); 3845