1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: Pedro Roque : Retransmit queue handled by TCP. 25 * : Fragmentation on mtu decrease 26 * : Segment collapse on retransmit 27 * : AF independence 28 * 29 * Linus Torvalds : send_delayed_ack 30 * David S. Miller : Charge memory using the right skb 31 * during syn/ack processing. 32 * David S. Miller : Output engine completely rewritten. 33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 34 * Cacophonix Gaul : draft-minshall-nagle-01 35 * J Hadi Salim : ECN support 36 * 37 */ 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/module.h> 43 #include <linux/smp_lock.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse = 1; 47 48 /* This limits the percentage of the congestion window which we 49 * will allow a single TSO frame to consume. Building TSO frames 50 * which are too large can cause TCP streams to be bursty. 51 */ 52 int sysctl_tcp_tso_win_divisor = 3; 53 54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, 55 struct sk_buff *skb) 56 { 57 sk->sk_send_head = skb->next; 58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) 59 sk->sk_send_head = NULL; 60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 61 tcp_packets_out_inc(sk, tp, skb); 62 } 63 64 /* SND.NXT, if window was not shrunk. 65 * If window has been shrunk, what should we make? It is not clear at all. 66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 68 * invalid. OK, let's make this for now: 69 */ 70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) 71 { 72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) 73 return tp->snd_nxt; 74 else 75 return tp->snd_una+tp->snd_wnd; 76 } 77 78 /* Calculate mss to advertise in SYN segment. 79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 80 * 81 * 1. It is independent of path mtu. 82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 84 * attached devices, because some buggy hosts are confused by 85 * large MSS. 86 * 4. We do not make 3, we advertise MSS, calculated from first 87 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 88 * This may be overridden via information stored in routing table. 89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 90 * probably even Jumbo". 91 */ 92 static __u16 tcp_advertise_mss(struct sock *sk) 93 { 94 struct tcp_sock *tp = tcp_sk(sk); 95 struct dst_entry *dst = __sk_dst_get(sk); 96 int mss = tp->advmss; 97 98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { 99 mss = dst_metric(dst, RTAX_ADVMSS); 100 tp->advmss = mss; 101 } 102 103 return (__u16)mss; 104 } 105 106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 107 * This is the first part of cwnd validation mechanism. */ 108 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) 109 { 110 struct tcp_sock *tp = tcp_sk(sk); 111 s32 delta = tcp_time_stamp - tp->lsndtime; 112 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 113 u32 cwnd = tp->snd_cwnd; 114 115 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 116 117 tp->snd_ssthresh = tcp_current_ssthresh(sk); 118 restart_cwnd = min(restart_cwnd, cwnd); 119 120 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 121 cwnd >>= 1; 122 tp->snd_cwnd = max(cwnd, restart_cwnd); 123 tp->snd_cwnd_stamp = tcp_time_stamp; 124 tp->snd_cwnd_used = 0; 125 } 126 127 static inline void tcp_event_data_sent(struct tcp_sock *tp, 128 struct sk_buff *skb, struct sock *sk) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const u32 now = tcp_time_stamp; 132 133 if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto) 134 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 135 136 tp->lsndtime = now; 137 138 /* If it is a reply for ato after last received 139 * packet, enter pingpong mode. 140 */ 141 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 142 icsk->icsk_ack.pingpong = 1; 143 } 144 145 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 146 { 147 tcp_dec_quickack_mode(sk, pkts); 148 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 149 } 150 151 /* Determine a window scaling and initial window to offer. 152 * Based on the assumption that the given amount of space 153 * will be offered. Store the results in the tp structure. 154 * NOTE: for smooth operation initial space offering should 155 * be a multiple of mss if possible. We assume here that mss >= 1. 156 * This MUST be enforced by all callers. 157 */ 158 void tcp_select_initial_window(int __space, __u32 mss, 159 __u32 *rcv_wnd, __u32 *window_clamp, 160 int wscale_ok, __u8 *rcv_wscale) 161 { 162 unsigned int space = (__space < 0 ? 0 : __space); 163 164 /* If no clamp set the clamp to the max possible scaled window */ 165 if (*window_clamp == 0) 166 (*window_clamp) = (65535 << 14); 167 space = min(*window_clamp, space); 168 169 /* Quantize space offering to a multiple of mss if possible. */ 170 if (space > mss) 171 space = (space / mss) * mss; 172 173 /* NOTE: offering an initial window larger than 32767 174 * will break some buggy TCP stacks. We try to be nice. 175 * If we are not window scaling, then this truncates 176 * our initial window offering to 32k. There should also 177 * be a sysctl option to stop being nice. 178 */ 179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 180 (*rcv_wscale) = 0; 181 if (wscale_ok) { 182 /* Set window scaling on max possible window 183 * See RFC1323 for an explanation of the limit to 14 184 */ 185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 186 while (space > 65535 && (*rcv_wscale) < 14) { 187 space >>= 1; 188 (*rcv_wscale)++; 189 } 190 } 191 192 /* Set initial window to value enough for senders, 193 * following RFC2414. Senders, not following this RFC, 194 * will be satisfied with 2. 195 */ 196 if (mss > (1<<*rcv_wscale)) { 197 int init_cwnd = 4; 198 if (mss > 1460*3) 199 init_cwnd = 2; 200 else if (mss > 1460) 201 init_cwnd = 3; 202 if (*rcv_wnd > init_cwnd*mss) 203 *rcv_wnd = init_cwnd*mss; 204 } 205 206 /* Set the clamp no higher than max representable value */ 207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 208 } 209 210 /* Chose a new window to advertise, update state in tcp_sock for the 211 * socket, and return result with RFC1323 scaling applied. The return 212 * value can be stuffed directly into th->window for an outgoing 213 * frame. 214 */ 215 static __inline__ u16 tcp_select_window(struct sock *sk) 216 { 217 struct tcp_sock *tp = tcp_sk(sk); 218 u32 cur_win = tcp_receive_window(tp); 219 u32 new_win = __tcp_select_window(sk); 220 221 /* Never shrink the offered window */ 222 if(new_win < cur_win) { 223 /* Danger Will Robinson! 224 * Don't update rcv_wup/rcv_wnd here or else 225 * we will not be able to advertise a zero 226 * window in time. --DaveM 227 * 228 * Relax Will Robinson. 229 */ 230 new_win = cur_win; 231 } 232 tp->rcv_wnd = new_win; 233 tp->rcv_wup = tp->rcv_nxt; 234 235 /* Make sure we do not exceed the maximum possible 236 * scaled window. 237 */ 238 if (!tp->rx_opt.rcv_wscale) 239 new_win = min(new_win, MAX_TCP_WINDOW); 240 else 241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 242 243 /* RFC1323 scaling applied */ 244 new_win >>= tp->rx_opt.rcv_wscale; 245 246 /* If we advertise zero window, disable fast path. */ 247 if (new_win == 0) 248 tp->pred_flags = 0; 249 250 return new_win; 251 } 252 253 254 /* This routine actually transmits TCP packets queued in by 255 * tcp_do_sendmsg(). This is used by both the initial 256 * transmission and possible later retransmissions. 257 * All SKB's seen here are completely headerless. It is our 258 * job to build the TCP header, and pass the packet down to 259 * IP so it can do the same plus pass the packet off to the 260 * device. 261 * 262 * We are working here with either a clone of the original 263 * SKB, or a fresh unique copy made by the retransmit engine. 264 */ 265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb) 266 { 267 if (skb != NULL) { 268 const struct inet_connection_sock *icsk = inet_csk(sk); 269 struct inet_sock *inet = inet_sk(sk); 270 struct tcp_sock *tp = tcp_sk(sk); 271 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 272 int tcp_header_size = tp->tcp_header_len; 273 struct tcphdr *th; 274 int sysctl_flags; 275 int err; 276 277 BUG_ON(!tcp_skb_pcount(skb)); 278 279 #define SYSCTL_FLAG_TSTAMPS 0x1 280 #define SYSCTL_FLAG_WSCALE 0x2 281 #define SYSCTL_FLAG_SACK 0x4 282 283 /* If congestion control is doing timestamping */ 284 if (icsk->icsk_ca_ops->rtt_sample) 285 __net_timestamp(skb); 286 287 sysctl_flags = 0; 288 if (tcb->flags & TCPCB_FLAG_SYN) { 289 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; 290 if(sysctl_tcp_timestamps) { 291 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; 292 sysctl_flags |= SYSCTL_FLAG_TSTAMPS; 293 } 294 if(sysctl_tcp_window_scaling) { 295 tcp_header_size += TCPOLEN_WSCALE_ALIGNED; 296 sysctl_flags |= SYSCTL_FLAG_WSCALE; 297 } 298 if(sysctl_tcp_sack) { 299 sysctl_flags |= SYSCTL_FLAG_SACK; 300 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) 301 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; 302 } 303 } else if (tp->rx_opt.eff_sacks) { 304 /* A SACK is 2 pad bytes, a 2 byte header, plus 305 * 2 32-bit sequence numbers for each SACK block. 306 */ 307 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + 308 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 309 } 310 311 if (tcp_packets_in_flight(tp) == 0) 312 tcp_ca_event(sk, CA_EVENT_TX_START); 313 314 th = (struct tcphdr *) skb_push(skb, tcp_header_size); 315 skb->h.th = th; 316 skb_set_owner_w(skb, sk); 317 318 /* Build TCP header and checksum it. */ 319 th->source = inet->sport; 320 th->dest = inet->dport; 321 th->seq = htonl(tcb->seq); 322 th->ack_seq = htonl(tp->rcv_nxt); 323 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags); 324 if (tcb->flags & TCPCB_FLAG_SYN) { 325 /* RFC1323: The window in SYN & SYN/ACK segments 326 * is never scaled. 327 */ 328 th->window = htons(tp->rcv_wnd); 329 } else { 330 th->window = htons(tcp_select_window(sk)); 331 } 332 th->check = 0; 333 th->urg_ptr = 0; 334 335 if (tp->urg_mode && 336 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) { 337 th->urg_ptr = htons(tp->snd_up-tcb->seq); 338 th->urg = 1; 339 } 340 341 if (tcb->flags & TCPCB_FLAG_SYN) { 342 tcp_syn_build_options((__u32 *)(th + 1), 343 tcp_advertise_mss(sk), 344 (sysctl_flags & SYSCTL_FLAG_TSTAMPS), 345 (sysctl_flags & SYSCTL_FLAG_SACK), 346 (sysctl_flags & SYSCTL_FLAG_WSCALE), 347 tp->rx_opt.rcv_wscale, 348 tcb->when, 349 tp->rx_opt.ts_recent); 350 } else { 351 tcp_build_and_update_options((__u32 *)(th + 1), 352 tp, tcb->when); 353 354 TCP_ECN_send(sk, tp, skb, tcp_header_size); 355 } 356 tp->af_specific->send_check(sk, th, skb->len, skb); 357 358 if (tcb->flags & TCPCB_FLAG_ACK) 359 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 360 361 if (skb->len != tcp_header_size) 362 tcp_event_data_sent(tp, skb, sk); 363 364 TCP_INC_STATS(TCP_MIB_OUTSEGS); 365 366 err = tp->af_specific->queue_xmit(skb, 0); 367 if (err <= 0) 368 return err; 369 370 tcp_enter_cwr(sk); 371 372 /* NET_XMIT_CN is special. It does not guarantee, 373 * that this packet is lost. It tells that device 374 * is about to start to drop packets or already 375 * drops some packets of the same priority and 376 * invokes us to send less aggressively. 377 */ 378 return err == NET_XMIT_CN ? 0 : err; 379 } 380 return -ENOBUFS; 381 #undef SYSCTL_FLAG_TSTAMPS 382 #undef SYSCTL_FLAG_WSCALE 383 #undef SYSCTL_FLAG_SACK 384 } 385 386 387 /* This routine just queue's the buffer 388 * 389 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 390 * otherwise socket can stall. 391 */ 392 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 393 { 394 struct tcp_sock *tp = tcp_sk(sk); 395 396 /* Advance write_seq and place onto the write_queue. */ 397 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 398 skb_header_release(skb); 399 __skb_queue_tail(&sk->sk_write_queue, skb); 400 sk_charge_skb(sk, skb); 401 402 /* Queue it, remembering where we must start sending. */ 403 if (sk->sk_send_head == NULL) 404 sk->sk_send_head = skb; 405 } 406 407 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 408 { 409 if (skb->len <= mss_now || 410 !(sk->sk_route_caps & NETIF_F_TSO)) { 411 /* Avoid the costly divide in the normal 412 * non-TSO case. 413 */ 414 skb_shinfo(skb)->tso_segs = 1; 415 skb_shinfo(skb)->tso_size = 0; 416 } else { 417 unsigned int factor; 418 419 factor = skb->len + (mss_now - 1); 420 factor /= mss_now; 421 skb_shinfo(skb)->tso_segs = factor; 422 skb_shinfo(skb)->tso_size = mss_now; 423 } 424 } 425 426 /* Function to create two new TCP segments. Shrinks the given segment 427 * to the specified size and appends a new segment with the rest of the 428 * packet to the list. This won't be called frequently, I hope. 429 * Remember, these are still headerless SKBs at this point. 430 */ 431 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now) 432 { 433 struct tcp_sock *tp = tcp_sk(sk); 434 struct sk_buff *buff; 435 int nsize, old_factor; 436 u16 flags; 437 438 BUG_ON(len > skb->len); 439 nsize = skb_headlen(skb) - len; 440 if (nsize < 0) 441 nsize = 0; 442 443 if (skb_cloned(skb) && 444 skb_is_nonlinear(skb) && 445 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 446 return -ENOMEM; 447 448 /* Get a new skb... force flag on. */ 449 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 450 if (buff == NULL) 451 return -ENOMEM; /* We'll just try again later. */ 452 sk_charge_skb(sk, buff); 453 454 /* Correct the sequence numbers. */ 455 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 456 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 457 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 458 459 /* PSH and FIN should only be set in the second packet. */ 460 flags = TCP_SKB_CB(skb)->flags; 461 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 462 TCP_SKB_CB(buff)->flags = flags; 463 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 464 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; 465 466 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { 467 /* Copy and checksum data tail into the new buffer. */ 468 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), 469 nsize, 0); 470 471 skb_trim(skb, len); 472 473 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 474 } else { 475 skb->ip_summed = CHECKSUM_HW; 476 skb_split(skb, buff, len); 477 } 478 479 buff->ip_summed = skb->ip_summed; 480 481 /* Looks stupid, but our code really uses when of 482 * skbs, which it never sent before. --ANK 483 */ 484 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 485 buff->tstamp = skb->tstamp; 486 487 old_factor = tcp_skb_pcount(skb); 488 489 /* Fix up tso_factor for both original and new SKB. */ 490 tcp_set_skb_tso_segs(sk, skb, mss_now); 491 tcp_set_skb_tso_segs(sk, buff, mss_now); 492 493 /* If this packet has been sent out already, we must 494 * adjust the various packet counters. 495 */ 496 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 497 int diff = old_factor - tcp_skb_pcount(skb) - 498 tcp_skb_pcount(buff); 499 500 tp->packets_out -= diff; 501 502 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 503 tp->sacked_out -= diff; 504 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 505 tp->retrans_out -= diff; 506 507 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { 508 tp->lost_out -= diff; 509 tp->left_out -= diff; 510 } 511 512 if (diff > 0) { 513 /* Adjust Reno SACK estimate. */ 514 if (!tp->rx_opt.sack_ok) { 515 tp->sacked_out -= diff; 516 if ((int)tp->sacked_out < 0) 517 tp->sacked_out = 0; 518 tcp_sync_left_out(tp); 519 } 520 521 tp->fackets_out -= diff; 522 if ((int)tp->fackets_out < 0) 523 tp->fackets_out = 0; 524 } 525 } 526 527 /* Link BUFF into the send queue. */ 528 skb_header_release(buff); 529 __skb_append(skb, buff, &sk->sk_write_queue); 530 531 return 0; 532 } 533 534 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 535 * eventually). The difference is that pulled data not copied, but 536 * immediately discarded. 537 */ 538 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) 539 { 540 int i, k, eat; 541 542 eat = len; 543 k = 0; 544 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { 545 if (skb_shinfo(skb)->frags[i].size <= eat) { 546 put_page(skb_shinfo(skb)->frags[i].page); 547 eat -= skb_shinfo(skb)->frags[i].size; 548 } else { 549 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 550 if (eat) { 551 skb_shinfo(skb)->frags[k].page_offset += eat; 552 skb_shinfo(skb)->frags[k].size -= eat; 553 eat = 0; 554 } 555 k++; 556 } 557 } 558 skb_shinfo(skb)->nr_frags = k; 559 560 skb->tail = skb->data; 561 skb->data_len -= len; 562 skb->len = skb->data_len; 563 return skb->tail; 564 } 565 566 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 567 { 568 if (skb_cloned(skb) && 569 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 570 return -ENOMEM; 571 572 if (len <= skb_headlen(skb)) { 573 __skb_pull(skb, len); 574 } else { 575 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) 576 return -ENOMEM; 577 } 578 579 TCP_SKB_CB(skb)->seq += len; 580 skb->ip_summed = CHECKSUM_HW; 581 582 skb->truesize -= len; 583 sk->sk_wmem_queued -= len; 584 sk->sk_forward_alloc += len; 585 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 586 587 /* Any change of skb->len requires recalculation of tso 588 * factor and mss. 589 */ 590 if (tcp_skb_pcount(skb) > 1) 591 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1)); 592 593 return 0; 594 } 595 596 /* This function synchronize snd mss to current pmtu/exthdr set. 597 598 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 599 for TCP options, but includes only bare TCP header. 600 601 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 602 It is minumum of user_mss and mss received with SYN. 603 It also does not include TCP options. 604 605 tp->pmtu_cookie is last pmtu, seen by this function. 606 607 tp->mss_cache is current effective sending mss, including 608 all tcp options except for SACKs. It is evaluated, 609 taking into account current pmtu, but never exceeds 610 tp->rx_opt.mss_clamp. 611 612 NOTE1. rfc1122 clearly states that advertised MSS 613 DOES NOT include either tcp or ip options. 614 615 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside 616 this function. --ANK (980731) 617 */ 618 619 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 620 { 621 struct tcp_sock *tp = tcp_sk(sk); 622 int mss_now; 623 624 /* Calculate base mss without TCP options: 625 It is MMS_S - sizeof(tcphdr) of rfc1122 626 */ 627 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); 628 629 /* Clamp it (mss_clamp does not include tcp options) */ 630 if (mss_now > tp->rx_opt.mss_clamp) 631 mss_now = tp->rx_opt.mss_clamp; 632 633 /* Now subtract optional transport overhead */ 634 mss_now -= tp->ext_header_len; 635 636 /* Then reserve room for full set of TCP options and 8 bytes of data */ 637 if (mss_now < 48) 638 mss_now = 48; 639 640 /* Now subtract TCP options size, not including SACKs */ 641 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 642 643 /* Bound mss with half of window */ 644 if (tp->max_window && mss_now > (tp->max_window>>1)) 645 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); 646 647 /* And store cached results */ 648 tp->pmtu_cookie = pmtu; 649 tp->mss_cache = mss_now; 650 651 return mss_now; 652 } 653 654 /* Compute the current effective MSS, taking SACKs and IP options, 655 * and even PMTU discovery events into account. 656 * 657 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up 658 * cannot be large. However, taking into account rare use of URG, this 659 * is not a big flaw. 660 */ 661 unsigned int tcp_current_mss(struct sock *sk, int large_allowed) 662 { 663 struct tcp_sock *tp = tcp_sk(sk); 664 struct dst_entry *dst = __sk_dst_get(sk); 665 u32 mss_now; 666 u16 xmit_size_goal; 667 int doing_tso = 0; 668 669 mss_now = tp->mss_cache; 670 671 if (large_allowed && 672 (sk->sk_route_caps & NETIF_F_TSO) && 673 !tp->urg_mode) 674 doing_tso = 1; 675 676 if (dst) { 677 u32 mtu = dst_mtu(dst); 678 if (mtu != tp->pmtu_cookie) 679 mss_now = tcp_sync_mss(sk, mtu); 680 } 681 682 if (tp->rx_opt.eff_sacks) 683 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + 684 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 685 686 xmit_size_goal = mss_now; 687 688 if (doing_tso) { 689 xmit_size_goal = 65535 - 690 tp->af_specific->net_header_len - 691 tp->ext_header_len - tp->tcp_header_len; 692 693 if (tp->max_window && 694 (xmit_size_goal > (tp->max_window >> 1))) 695 xmit_size_goal = max((tp->max_window >> 1), 696 68U - tp->tcp_header_len); 697 698 xmit_size_goal -= (xmit_size_goal % mss_now); 699 } 700 tp->xmit_size_goal = xmit_size_goal; 701 702 return mss_now; 703 } 704 705 /* Congestion window validation. (RFC2861) */ 706 707 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp) 708 { 709 __u32 packets_out = tp->packets_out; 710 711 if (packets_out >= tp->snd_cwnd) { 712 /* Network is feed fully. */ 713 tp->snd_cwnd_used = 0; 714 tp->snd_cwnd_stamp = tcp_time_stamp; 715 } else { 716 /* Network starves. */ 717 if (tp->packets_out > tp->snd_cwnd_used) 718 tp->snd_cwnd_used = tp->packets_out; 719 720 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 721 tcp_cwnd_application_limited(sk); 722 } 723 } 724 725 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd) 726 { 727 u32 window, cwnd_len; 728 729 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq); 730 cwnd_len = mss_now * cwnd; 731 return min(window, cwnd_len); 732 } 733 734 /* Can at least one segment of SKB be sent right now, according to the 735 * congestion window rules? If so, return how many segments are allowed. 736 */ 737 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb) 738 { 739 u32 in_flight, cwnd; 740 741 /* Don't be strict about the congestion window for the final FIN. */ 742 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 743 return 1; 744 745 in_flight = tcp_packets_in_flight(tp); 746 cwnd = tp->snd_cwnd; 747 if (in_flight < cwnd) 748 return (cwnd - in_flight); 749 750 return 0; 751 } 752 753 /* This must be invoked the first time we consider transmitting 754 * SKB onto the wire. 755 */ 756 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 757 { 758 int tso_segs = tcp_skb_pcount(skb); 759 760 if (!tso_segs || 761 (tso_segs > 1 && 762 skb_shinfo(skb)->tso_size != mss_now)) { 763 tcp_set_skb_tso_segs(sk, skb, mss_now); 764 tso_segs = tcp_skb_pcount(skb); 765 } 766 return tso_segs; 767 } 768 769 static inline int tcp_minshall_check(const struct tcp_sock *tp) 770 { 771 return after(tp->snd_sml,tp->snd_una) && 772 !after(tp->snd_sml, tp->snd_nxt); 773 } 774 775 /* Return 0, if packet can be sent now without violation Nagle's rules: 776 * 1. It is full sized. 777 * 2. Or it contains FIN. (already checked by caller) 778 * 3. Or TCP_NODELAY was set. 779 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 780 * With Minshall's modification: all sent small packets are ACKed. 781 */ 782 783 static inline int tcp_nagle_check(const struct tcp_sock *tp, 784 const struct sk_buff *skb, 785 unsigned mss_now, int nonagle) 786 { 787 return (skb->len < mss_now && 788 ((nonagle&TCP_NAGLE_CORK) || 789 (!nonagle && 790 tp->packets_out && 791 tcp_minshall_check(tp)))); 792 } 793 794 /* Return non-zero if the Nagle test allows this packet to be 795 * sent now. 796 */ 797 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 798 unsigned int cur_mss, int nonagle) 799 { 800 /* Nagle rule does not apply to frames, which sit in the middle of the 801 * write_queue (they have no chances to get new data). 802 * 803 * This is implemented in the callers, where they modify the 'nonagle' 804 * argument based upon the location of SKB in the send queue. 805 */ 806 if (nonagle & TCP_NAGLE_PUSH) 807 return 1; 808 809 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 810 if (tp->urg_mode || 811 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) 812 return 1; 813 814 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 815 return 1; 816 817 return 0; 818 } 819 820 /* Does at least the first segment of SKB fit into the send window? */ 821 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss) 822 { 823 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 824 825 if (skb->len > cur_mss) 826 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 827 828 return !after(end_seq, tp->snd_una + tp->snd_wnd); 829 } 830 831 /* This checks if the data bearing packet SKB (usually sk->sk_send_head) 832 * should be put on the wire right now. If so, it returns the number of 833 * packets allowed by the congestion window. 834 */ 835 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 836 unsigned int cur_mss, int nonagle) 837 { 838 struct tcp_sock *tp = tcp_sk(sk); 839 unsigned int cwnd_quota; 840 841 tcp_init_tso_segs(sk, skb, cur_mss); 842 843 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 844 return 0; 845 846 cwnd_quota = tcp_cwnd_test(tp, skb); 847 if (cwnd_quota && 848 !tcp_snd_wnd_test(tp, skb, cur_mss)) 849 cwnd_quota = 0; 850 851 return cwnd_quota; 852 } 853 854 static inline int tcp_skb_is_last(const struct sock *sk, 855 const struct sk_buff *skb) 856 { 857 return skb->next == (struct sk_buff *)&sk->sk_write_queue; 858 } 859 860 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp) 861 { 862 struct sk_buff *skb = sk->sk_send_head; 863 864 return (skb && 865 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), 866 (tcp_skb_is_last(sk, skb) ? 867 TCP_NAGLE_PUSH : 868 tp->nonagle))); 869 } 870 871 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 872 * which is put after SKB on the list. It is very much like 873 * tcp_fragment() except that it may make several kinds of assumptions 874 * in order to speed up the splitting operation. In particular, we 875 * know that all the data is in scatter-gather pages, and that the 876 * packet has never been sent out before (and thus is not cloned). 877 */ 878 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now) 879 { 880 struct sk_buff *buff; 881 int nlen = skb->len - len; 882 u16 flags; 883 884 /* All of a TSO frame must be composed of paged data. */ 885 if (skb->len != skb->data_len) 886 return tcp_fragment(sk, skb, len, mss_now); 887 888 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC); 889 if (unlikely(buff == NULL)) 890 return -ENOMEM; 891 892 buff->truesize = nlen; 893 skb->truesize -= nlen; 894 895 /* Correct the sequence numbers. */ 896 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 897 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 898 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 899 900 /* PSH and FIN should only be set in the second packet. */ 901 flags = TCP_SKB_CB(skb)->flags; 902 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 903 TCP_SKB_CB(buff)->flags = flags; 904 905 /* This packet was never sent out yet, so no SACK bits. */ 906 TCP_SKB_CB(buff)->sacked = 0; 907 908 buff->ip_summed = skb->ip_summed = CHECKSUM_HW; 909 skb_split(skb, buff, len); 910 911 /* Fix up tso_factor for both original and new SKB. */ 912 tcp_set_skb_tso_segs(sk, skb, mss_now); 913 tcp_set_skb_tso_segs(sk, buff, mss_now); 914 915 /* Link BUFF into the send queue. */ 916 skb_header_release(buff); 917 __skb_append(skb, buff, &sk->sk_write_queue); 918 919 return 0; 920 } 921 922 /* Try to defer sending, if possible, in order to minimize the amount 923 * of TSO splitting we do. View it as a kind of TSO Nagle test. 924 * 925 * This algorithm is from John Heffner. 926 */ 927 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 928 { 929 const struct inet_connection_sock *icsk = inet_csk(sk); 930 u32 send_win, cong_win, limit, in_flight; 931 932 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 933 return 0; 934 935 if (icsk->icsk_ca_state != TCP_CA_Open) 936 return 0; 937 938 in_flight = tcp_packets_in_flight(tp); 939 940 BUG_ON(tcp_skb_pcount(skb) <= 1 || 941 (tp->snd_cwnd <= in_flight)); 942 943 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq; 944 945 /* From in_flight test above, we know that cwnd > in_flight. */ 946 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 947 948 limit = min(send_win, cong_win); 949 950 if (sysctl_tcp_tso_win_divisor) { 951 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 952 953 /* If at least some fraction of a window is available, 954 * just use it. 955 */ 956 chunk /= sysctl_tcp_tso_win_divisor; 957 if (limit >= chunk) 958 return 0; 959 } else { 960 /* Different approach, try not to defer past a single 961 * ACK. Receiver should ACK every other full sized 962 * frame, so if we have space for more than 3 frames 963 * then send now. 964 */ 965 if (limit > tcp_max_burst(tp) * tp->mss_cache) 966 return 0; 967 } 968 969 /* Ok, it looks like it is advisable to defer. */ 970 return 1; 971 } 972 973 /* This routine writes packets to the network. It advances the 974 * send_head. This happens as incoming acks open up the remote 975 * window for us. 976 * 977 * Returns 1, if no segments are in flight and we have queued segments, but 978 * cannot send anything now because of SWS or another problem. 979 */ 980 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) 981 { 982 struct tcp_sock *tp = tcp_sk(sk); 983 struct sk_buff *skb; 984 unsigned int tso_segs, sent_pkts; 985 int cwnd_quota; 986 987 /* If we are closed, the bytes will have to remain here. 988 * In time closedown will finish, we empty the write queue and all 989 * will be happy. 990 */ 991 if (unlikely(sk->sk_state == TCP_CLOSE)) 992 return 0; 993 994 sent_pkts = 0; 995 while ((skb = sk->sk_send_head)) { 996 unsigned int limit; 997 998 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 999 BUG_ON(!tso_segs); 1000 1001 cwnd_quota = tcp_cwnd_test(tp, skb); 1002 if (!cwnd_quota) 1003 break; 1004 1005 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1006 break; 1007 1008 if (tso_segs == 1) { 1009 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1010 (tcp_skb_is_last(sk, skb) ? 1011 nonagle : TCP_NAGLE_PUSH)))) 1012 break; 1013 } else { 1014 if (tcp_tso_should_defer(sk, tp, skb)) 1015 break; 1016 } 1017 1018 limit = mss_now; 1019 if (tso_segs > 1) { 1020 limit = tcp_window_allows(tp, skb, 1021 mss_now, cwnd_quota); 1022 1023 if (skb->len < limit) { 1024 unsigned int trim = skb->len % mss_now; 1025 1026 if (trim) 1027 limit = skb->len - trim; 1028 } 1029 } 1030 1031 if (skb->len > limit && 1032 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1033 break; 1034 1035 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1036 1037 if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))) 1038 break; 1039 1040 /* Advance the send_head. This one is sent out. 1041 * This call will increment packets_out. 1042 */ 1043 update_send_head(sk, tp, skb); 1044 1045 tcp_minshall_update(tp, mss_now, skb); 1046 sent_pkts++; 1047 } 1048 1049 if (likely(sent_pkts)) { 1050 tcp_cwnd_validate(sk, tp); 1051 return 0; 1052 } 1053 return !tp->packets_out && sk->sk_send_head; 1054 } 1055 1056 /* Push out any pending frames which were held back due to 1057 * TCP_CORK or attempt at coalescing tiny packets. 1058 * The socket must be locked by the caller. 1059 */ 1060 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp, 1061 unsigned int cur_mss, int nonagle) 1062 { 1063 struct sk_buff *skb = sk->sk_send_head; 1064 1065 if (skb) { 1066 if (tcp_write_xmit(sk, cur_mss, nonagle)) 1067 tcp_check_probe_timer(sk, tp); 1068 } 1069 } 1070 1071 /* Send _single_ skb sitting at the send head. This function requires 1072 * true push pending frames to setup probe timer etc. 1073 */ 1074 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1075 { 1076 struct tcp_sock *tp = tcp_sk(sk); 1077 struct sk_buff *skb = sk->sk_send_head; 1078 unsigned int tso_segs, cwnd_quota; 1079 1080 BUG_ON(!skb || skb->len < mss_now); 1081 1082 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1083 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); 1084 1085 if (likely(cwnd_quota)) { 1086 unsigned int limit; 1087 1088 BUG_ON(!tso_segs); 1089 1090 limit = mss_now; 1091 if (tso_segs > 1) { 1092 limit = tcp_window_allows(tp, skb, 1093 mss_now, cwnd_quota); 1094 1095 if (skb->len < limit) { 1096 unsigned int trim = skb->len % mss_now; 1097 1098 if (trim) 1099 limit = skb->len - trim; 1100 } 1101 } 1102 1103 if (skb->len > limit && 1104 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1105 return; 1106 1107 /* Send it out now. */ 1108 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1109 1110 if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) { 1111 update_send_head(sk, tp, skb); 1112 tcp_cwnd_validate(sk, tp); 1113 return; 1114 } 1115 } 1116 } 1117 1118 /* This function returns the amount that we can raise the 1119 * usable window based on the following constraints 1120 * 1121 * 1. The window can never be shrunk once it is offered (RFC 793) 1122 * 2. We limit memory per socket 1123 * 1124 * RFC 1122: 1125 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1126 * RECV.NEXT + RCV.WIN fixed until: 1127 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1128 * 1129 * i.e. don't raise the right edge of the window until you can raise 1130 * it at least MSS bytes. 1131 * 1132 * Unfortunately, the recommended algorithm breaks header prediction, 1133 * since header prediction assumes th->window stays fixed. 1134 * 1135 * Strictly speaking, keeping th->window fixed violates the receiver 1136 * side SWS prevention criteria. The problem is that under this rule 1137 * a stream of single byte packets will cause the right side of the 1138 * window to always advance by a single byte. 1139 * 1140 * Of course, if the sender implements sender side SWS prevention 1141 * then this will not be a problem. 1142 * 1143 * BSD seems to make the following compromise: 1144 * 1145 * If the free space is less than the 1/4 of the maximum 1146 * space available and the free space is less than 1/2 mss, 1147 * then set the window to 0. 1148 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1149 * Otherwise, just prevent the window from shrinking 1150 * and from being larger than the largest representable value. 1151 * 1152 * This prevents incremental opening of the window in the regime 1153 * where TCP is limited by the speed of the reader side taking 1154 * data out of the TCP receive queue. It does nothing about 1155 * those cases where the window is constrained on the sender side 1156 * because the pipeline is full. 1157 * 1158 * BSD also seems to "accidentally" limit itself to windows that are a 1159 * multiple of MSS, at least until the free space gets quite small. 1160 * This would appear to be a side effect of the mbuf implementation. 1161 * Combining these two algorithms results in the observed behavior 1162 * of having a fixed window size at almost all times. 1163 * 1164 * Below we obtain similar behavior by forcing the offered window to 1165 * a multiple of the mss when it is feasible to do so. 1166 * 1167 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1168 * Regular options like TIMESTAMP are taken into account. 1169 */ 1170 u32 __tcp_select_window(struct sock *sk) 1171 { 1172 struct inet_connection_sock *icsk = inet_csk(sk); 1173 struct tcp_sock *tp = tcp_sk(sk); 1174 /* MSS for the peer's data. Previous verions used mss_clamp 1175 * here. I don't know if the value based on our guesses 1176 * of peer's MSS is better for the performance. It's more correct 1177 * but may be worse for the performance because of rcv_mss 1178 * fluctuations. --SAW 1998/11/1 1179 */ 1180 int mss = icsk->icsk_ack.rcv_mss; 1181 int free_space = tcp_space(sk); 1182 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1183 int window; 1184 1185 if (mss > full_space) 1186 mss = full_space; 1187 1188 if (free_space < full_space/2) { 1189 icsk->icsk_ack.quick = 0; 1190 1191 if (tcp_memory_pressure) 1192 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); 1193 1194 if (free_space < mss) 1195 return 0; 1196 } 1197 1198 if (free_space > tp->rcv_ssthresh) 1199 free_space = tp->rcv_ssthresh; 1200 1201 /* Don't do rounding if we are using window scaling, since the 1202 * scaled window will not line up with the MSS boundary anyway. 1203 */ 1204 window = tp->rcv_wnd; 1205 if (tp->rx_opt.rcv_wscale) { 1206 window = free_space; 1207 1208 /* Advertise enough space so that it won't get scaled away. 1209 * Import case: prevent zero window announcement if 1210 * 1<<rcv_wscale > mss. 1211 */ 1212 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1213 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1214 << tp->rx_opt.rcv_wscale); 1215 } else { 1216 /* Get the largest window that is a nice multiple of mss. 1217 * Window clamp already applied above. 1218 * If our current window offering is within 1 mss of the 1219 * free space we just keep it. This prevents the divide 1220 * and multiply from happening most of the time. 1221 * We also don't do any window rounding when the free space 1222 * is too small. 1223 */ 1224 if (window <= free_space - mss || window > free_space) 1225 window = (free_space/mss)*mss; 1226 } 1227 1228 return window; 1229 } 1230 1231 /* Attempt to collapse two adjacent SKB's during retransmission. */ 1232 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) 1233 { 1234 struct tcp_sock *tp = tcp_sk(sk); 1235 struct sk_buff *next_skb = skb->next; 1236 1237 /* The first test we must make is that neither of these two 1238 * SKB's are still referenced by someone else. 1239 */ 1240 if (!skb_cloned(skb) && !skb_cloned(next_skb)) { 1241 int skb_size = skb->len, next_skb_size = next_skb->len; 1242 u16 flags = TCP_SKB_CB(skb)->flags; 1243 1244 /* Also punt if next skb has been SACK'd. */ 1245 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) 1246 return; 1247 1248 /* Next skb is out of window. */ 1249 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) 1250 return; 1251 1252 /* Punt if not enough space exists in the first SKB for 1253 * the data in the second, or the total combined payload 1254 * would exceed the MSS. 1255 */ 1256 if ((next_skb_size > skb_tailroom(skb)) || 1257 ((skb_size + next_skb_size) > mss_now)) 1258 return; 1259 1260 BUG_ON(tcp_skb_pcount(skb) != 1 || 1261 tcp_skb_pcount(next_skb) != 1); 1262 1263 /* Ok. We will be able to collapse the packet. */ 1264 __skb_unlink(next_skb, &sk->sk_write_queue); 1265 1266 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); 1267 1268 if (next_skb->ip_summed == CHECKSUM_HW) 1269 skb->ip_summed = CHECKSUM_HW; 1270 1271 if (skb->ip_summed != CHECKSUM_HW) 1272 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1273 1274 /* Update sequence range on original skb. */ 1275 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1276 1277 /* Merge over control information. */ 1278 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ 1279 TCP_SKB_CB(skb)->flags = flags; 1280 1281 /* All done, get rid of second SKB and account for it so 1282 * packet counting does not break. 1283 */ 1284 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); 1285 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) 1286 tp->retrans_out -= tcp_skb_pcount(next_skb); 1287 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { 1288 tp->lost_out -= tcp_skb_pcount(next_skb); 1289 tp->left_out -= tcp_skb_pcount(next_skb); 1290 } 1291 /* Reno case is special. Sigh... */ 1292 if (!tp->rx_opt.sack_ok && tp->sacked_out) { 1293 tcp_dec_pcount_approx(&tp->sacked_out, next_skb); 1294 tp->left_out -= tcp_skb_pcount(next_skb); 1295 } 1296 1297 /* Not quite right: it can be > snd.fack, but 1298 * it is better to underestimate fackets. 1299 */ 1300 tcp_dec_pcount_approx(&tp->fackets_out, next_skb); 1301 tcp_packets_out_dec(tp, next_skb); 1302 sk_stream_free_skb(sk, next_skb); 1303 } 1304 } 1305 1306 /* Do a simple retransmit without using the backoff mechanisms in 1307 * tcp_timer. This is used for path mtu discovery. 1308 * The socket is already locked here. 1309 */ 1310 void tcp_simple_retransmit(struct sock *sk) 1311 { 1312 const struct inet_connection_sock *icsk = inet_csk(sk); 1313 struct tcp_sock *tp = tcp_sk(sk); 1314 struct sk_buff *skb; 1315 unsigned int mss = tcp_current_mss(sk, 0); 1316 int lost = 0; 1317 1318 sk_stream_for_retrans_queue(skb, sk) { 1319 if (skb->len > mss && 1320 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1321 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1322 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1323 tp->retrans_out -= tcp_skb_pcount(skb); 1324 } 1325 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { 1326 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1327 tp->lost_out += tcp_skb_pcount(skb); 1328 lost = 1; 1329 } 1330 } 1331 } 1332 1333 if (!lost) 1334 return; 1335 1336 tcp_sync_left_out(tp); 1337 1338 /* Don't muck with the congestion window here. 1339 * Reason is that we do not increase amount of _data_ 1340 * in network, but units changed and effective 1341 * cwnd/ssthresh really reduced now. 1342 */ 1343 if (icsk->icsk_ca_state != TCP_CA_Loss) { 1344 tp->high_seq = tp->snd_nxt; 1345 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1346 tp->prior_ssthresh = 0; 1347 tp->undo_marker = 0; 1348 tcp_set_ca_state(sk, TCP_CA_Loss); 1349 } 1350 tcp_xmit_retransmit_queue(sk); 1351 } 1352 1353 /* This retransmits one SKB. Policy decisions and retransmit queue 1354 * state updates are done by the caller. Returns non-zero if an 1355 * error occurred which prevented the send. 1356 */ 1357 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 1358 { 1359 struct tcp_sock *tp = tcp_sk(sk); 1360 unsigned int cur_mss = tcp_current_mss(sk, 0); 1361 int err; 1362 1363 /* Do not sent more than we queued. 1/4 is reserved for possible 1364 * copying overhead: frgagmentation, tunneling, mangling etc. 1365 */ 1366 if (atomic_read(&sk->sk_wmem_alloc) > 1367 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 1368 return -EAGAIN; 1369 1370 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 1371 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1372 BUG(); 1373 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 1374 return -ENOMEM; 1375 } 1376 1377 /* If receiver has shrunk his window, and skb is out of 1378 * new window, do not retransmit it. The exception is the 1379 * case, when window is shrunk to zero. In this case 1380 * our retransmit serves as a zero window probe. 1381 */ 1382 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) 1383 && TCP_SKB_CB(skb)->seq != tp->snd_una) 1384 return -EAGAIN; 1385 1386 if (skb->len > cur_mss) { 1387 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 1388 return -ENOMEM; /* We'll try again later. */ 1389 } 1390 1391 /* Collapse two adjacent packets if worthwhile and we can. */ 1392 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && 1393 (skb->len < (cur_mss >> 1)) && 1394 (skb->next != sk->sk_send_head) && 1395 (skb->next != (struct sk_buff *)&sk->sk_write_queue) && 1396 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && 1397 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && 1398 (sysctl_tcp_retrans_collapse != 0)) 1399 tcp_retrans_try_collapse(sk, skb, cur_mss); 1400 1401 if(tp->af_specific->rebuild_header(sk)) 1402 return -EHOSTUNREACH; /* Routing failure or similar. */ 1403 1404 /* Some Solaris stacks overoptimize and ignore the FIN on a 1405 * retransmit when old data is attached. So strip it off 1406 * since it is cheap to do so and saves bytes on the network. 1407 */ 1408 if(skb->len > 0 && 1409 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1410 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 1411 if (!pskb_trim(skb, 0)) { 1412 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; 1413 skb_shinfo(skb)->tso_segs = 1; 1414 skb_shinfo(skb)->tso_size = 0; 1415 skb->ip_summed = CHECKSUM_NONE; 1416 skb->csum = 0; 1417 } 1418 } 1419 1420 /* Make a copy, if the first transmission SKB clone we made 1421 * is still in somebody's hands, else make a clone. 1422 */ 1423 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1424 1425 err = tcp_transmit_skb(sk, (skb_cloned(skb) ? 1426 pskb_copy(skb, GFP_ATOMIC): 1427 skb_clone(skb, GFP_ATOMIC))); 1428 1429 if (err == 0) { 1430 /* Update global TCP statistics. */ 1431 TCP_INC_STATS(TCP_MIB_RETRANSSEGS); 1432 1433 tp->total_retrans++; 1434 1435 #if FASTRETRANS_DEBUG > 0 1436 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1437 if (net_ratelimit()) 1438 printk(KERN_DEBUG "retrans_out leaked.\n"); 1439 } 1440 #endif 1441 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 1442 tp->retrans_out += tcp_skb_pcount(skb); 1443 1444 /* Save stamp of the first retransmit. */ 1445 if (!tp->retrans_stamp) 1446 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 1447 1448 tp->undo_retrans++; 1449 1450 /* snd_nxt is stored to detect loss of retransmitted segment, 1451 * see tcp_input.c tcp_sacktag_write_queue(). 1452 */ 1453 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 1454 } 1455 return err; 1456 } 1457 1458 /* This gets called after a retransmit timeout, and the initially 1459 * retransmitted data is acknowledged. It tries to continue 1460 * resending the rest of the retransmit queue, until either 1461 * we've sent it all or the congestion window limit is reached. 1462 * If doing SACK, the first ACK which comes back for a timeout 1463 * based retransmit packet might feed us FACK information again. 1464 * If so, we use it to avoid unnecessarily retransmissions. 1465 */ 1466 void tcp_xmit_retransmit_queue(struct sock *sk) 1467 { 1468 const struct inet_connection_sock *icsk = inet_csk(sk); 1469 struct tcp_sock *tp = tcp_sk(sk); 1470 struct sk_buff *skb; 1471 int packet_cnt = tp->lost_out; 1472 1473 /* First pass: retransmit lost packets. */ 1474 if (packet_cnt) { 1475 sk_stream_for_retrans_queue(skb, sk) { 1476 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1477 1478 /* Assume this retransmit will generate 1479 * only one packet for congestion window 1480 * calculation purposes. This works because 1481 * tcp_retransmit_skb() will chop up the 1482 * packet to be MSS sized and all the 1483 * packet counting works out. 1484 */ 1485 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1486 return; 1487 1488 if (sacked&TCPCB_LOST) { 1489 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { 1490 if (tcp_retransmit_skb(sk, skb)) 1491 return; 1492 if (icsk->icsk_ca_state != TCP_CA_Loss) 1493 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); 1494 else 1495 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); 1496 1497 if (skb == 1498 skb_peek(&sk->sk_write_queue)) 1499 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1500 inet_csk(sk)->icsk_rto, 1501 TCP_RTO_MAX); 1502 } 1503 1504 packet_cnt -= tcp_skb_pcount(skb); 1505 if (packet_cnt <= 0) 1506 break; 1507 } 1508 } 1509 } 1510 1511 /* OK, demanded retransmission is finished. */ 1512 1513 /* Forward retransmissions are possible only during Recovery. */ 1514 if (icsk->icsk_ca_state != TCP_CA_Recovery) 1515 return; 1516 1517 /* No forward retransmissions in Reno are possible. */ 1518 if (!tp->rx_opt.sack_ok) 1519 return; 1520 1521 /* Yeah, we have to make difficult choice between forward transmission 1522 * and retransmission... Both ways have their merits... 1523 * 1524 * For now we do not retransmit anything, while we have some new 1525 * segments to send. 1526 */ 1527 1528 if (tcp_may_send_now(sk, tp)) 1529 return; 1530 1531 packet_cnt = 0; 1532 1533 sk_stream_for_retrans_queue(skb, sk) { 1534 /* Similar to the retransmit loop above we 1535 * can pretend that the retransmitted SKB 1536 * we send out here will be composed of one 1537 * real MSS sized packet because tcp_retransmit_skb() 1538 * will fragment it if necessary. 1539 */ 1540 if (++packet_cnt > tp->fackets_out) 1541 break; 1542 1543 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1544 break; 1545 1546 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) 1547 continue; 1548 1549 /* Ok, retransmit it. */ 1550 if (tcp_retransmit_skb(sk, skb)) 1551 break; 1552 1553 if (skb == skb_peek(&sk->sk_write_queue)) 1554 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1555 inet_csk(sk)->icsk_rto, 1556 TCP_RTO_MAX); 1557 1558 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); 1559 } 1560 } 1561 1562 1563 /* Send a fin. The caller locks the socket for us. This cannot be 1564 * allowed to fail queueing a FIN frame under any circumstances. 1565 */ 1566 void tcp_send_fin(struct sock *sk) 1567 { 1568 struct tcp_sock *tp = tcp_sk(sk); 1569 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); 1570 int mss_now; 1571 1572 /* Optimization, tack on the FIN if we have a queue of 1573 * unsent frames. But be careful about outgoing SACKS 1574 * and IP options. 1575 */ 1576 mss_now = tcp_current_mss(sk, 1); 1577 1578 if (sk->sk_send_head != NULL) { 1579 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; 1580 TCP_SKB_CB(skb)->end_seq++; 1581 tp->write_seq++; 1582 } else { 1583 /* Socket is locked, keep trying until memory is available. */ 1584 for (;;) { 1585 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL); 1586 if (skb) 1587 break; 1588 yield(); 1589 } 1590 1591 /* Reserve space for headers and prepare control bits. */ 1592 skb_reserve(skb, MAX_TCP_HEADER); 1593 skb->csum = 0; 1594 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); 1595 TCP_SKB_CB(skb)->sacked = 0; 1596 skb_shinfo(skb)->tso_segs = 1; 1597 skb_shinfo(skb)->tso_size = 0; 1598 1599 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 1600 TCP_SKB_CB(skb)->seq = tp->write_seq; 1601 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1602 tcp_queue_skb(sk, skb); 1603 } 1604 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); 1605 } 1606 1607 /* We get here when a process closes a file descriptor (either due to 1608 * an explicit close() or as a byproduct of exit()'ing) and there 1609 * was unread data in the receive queue. This behavior is recommended 1610 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM 1611 */ 1612 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 1613 { 1614 struct tcp_sock *tp = tcp_sk(sk); 1615 struct sk_buff *skb; 1616 1617 /* NOTE: No TCP options attached and we never retransmit this. */ 1618 skb = alloc_skb(MAX_TCP_HEADER, priority); 1619 if (!skb) { 1620 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1621 return; 1622 } 1623 1624 /* Reserve space for headers and prepare control bits. */ 1625 skb_reserve(skb, MAX_TCP_HEADER); 1626 skb->csum = 0; 1627 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); 1628 TCP_SKB_CB(skb)->sacked = 0; 1629 skb_shinfo(skb)->tso_segs = 1; 1630 skb_shinfo(skb)->tso_size = 0; 1631 1632 /* Send it off. */ 1633 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); 1634 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1635 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1636 if (tcp_transmit_skb(sk, skb)) 1637 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1638 } 1639 1640 /* WARNING: This routine must only be called when we have already sent 1641 * a SYN packet that crossed the incoming SYN that caused this routine 1642 * to get called. If this assumption fails then the initial rcv_wnd 1643 * and rcv_wscale values will not be correct. 1644 */ 1645 int tcp_send_synack(struct sock *sk) 1646 { 1647 struct sk_buff* skb; 1648 1649 skb = skb_peek(&sk->sk_write_queue); 1650 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { 1651 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 1652 return -EFAULT; 1653 } 1654 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { 1655 if (skb_cloned(skb)) { 1656 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 1657 if (nskb == NULL) 1658 return -ENOMEM; 1659 __skb_unlink(skb, &sk->sk_write_queue); 1660 skb_header_release(nskb); 1661 __skb_queue_head(&sk->sk_write_queue, nskb); 1662 sk_stream_free_skb(sk, skb); 1663 sk_charge_skb(sk, nskb); 1664 skb = nskb; 1665 } 1666 1667 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; 1668 TCP_ECN_send_synack(tcp_sk(sk), skb); 1669 } 1670 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1671 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); 1672 } 1673 1674 /* 1675 * Prepare a SYN-ACK. 1676 */ 1677 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, 1678 struct request_sock *req) 1679 { 1680 struct inet_request_sock *ireq = inet_rsk(req); 1681 struct tcp_sock *tp = tcp_sk(sk); 1682 struct tcphdr *th; 1683 int tcp_header_size; 1684 struct sk_buff *skb; 1685 1686 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 1687 if (skb == NULL) 1688 return NULL; 1689 1690 /* Reserve space for headers. */ 1691 skb_reserve(skb, MAX_TCP_HEADER); 1692 1693 skb->dst = dst_clone(dst); 1694 1695 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + 1696 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + 1697 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + 1698 /* SACK_PERM is in the place of NOP NOP of TS */ 1699 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); 1700 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); 1701 1702 memset(th, 0, sizeof(struct tcphdr)); 1703 th->syn = 1; 1704 th->ack = 1; 1705 if (dst->dev->features&NETIF_F_TSO) 1706 ireq->ecn_ok = 0; 1707 TCP_ECN_make_synack(req, th); 1708 th->source = inet_sk(sk)->sport; 1709 th->dest = ireq->rmt_port; 1710 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn; 1711 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1712 TCP_SKB_CB(skb)->sacked = 0; 1713 skb_shinfo(skb)->tso_segs = 1; 1714 skb_shinfo(skb)->tso_size = 0; 1715 th->seq = htonl(TCP_SKB_CB(skb)->seq); 1716 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 1717 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 1718 __u8 rcv_wscale; 1719 /* Set this up on the first call only */ 1720 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 1721 /* tcp_full_space because it is guaranteed to be the first packet */ 1722 tcp_select_initial_window(tcp_full_space(sk), 1723 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 1724 &req->rcv_wnd, 1725 &req->window_clamp, 1726 ireq->wscale_ok, 1727 &rcv_wscale); 1728 ireq->rcv_wscale = rcv_wscale; 1729 } 1730 1731 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 1732 th->window = htons(req->rcv_wnd); 1733 1734 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1735 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok, 1736 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale, 1737 TCP_SKB_CB(skb)->when, 1738 req->ts_recent); 1739 1740 skb->csum = 0; 1741 th->doff = (tcp_header_size >> 2); 1742 TCP_INC_STATS(TCP_MIB_OUTSEGS); 1743 return skb; 1744 } 1745 1746 /* 1747 * Do all connect socket setups that can be done AF independent. 1748 */ 1749 static inline void tcp_connect_init(struct sock *sk) 1750 { 1751 struct dst_entry *dst = __sk_dst_get(sk); 1752 struct tcp_sock *tp = tcp_sk(sk); 1753 __u8 rcv_wscale; 1754 1755 /* We'll fix this up when we get a response from the other end. 1756 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 1757 */ 1758 tp->tcp_header_len = sizeof(struct tcphdr) + 1759 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 1760 1761 /* If user gave his TCP_MAXSEG, record it to clamp */ 1762 if (tp->rx_opt.user_mss) 1763 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 1764 tp->max_window = 0; 1765 tcp_sync_mss(sk, dst_mtu(dst)); 1766 1767 if (!tp->window_clamp) 1768 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 1769 tp->advmss = dst_metric(dst, RTAX_ADVMSS); 1770 tcp_initialize_rcv_mss(sk); 1771 1772 tcp_select_initial_window(tcp_full_space(sk), 1773 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 1774 &tp->rcv_wnd, 1775 &tp->window_clamp, 1776 sysctl_tcp_window_scaling, 1777 &rcv_wscale); 1778 1779 tp->rx_opt.rcv_wscale = rcv_wscale; 1780 tp->rcv_ssthresh = tp->rcv_wnd; 1781 1782 sk->sk_err = 0; 1783 sock_reset_flag(sk, SOCK_DONE); 1784 tp->snd_wnd = 0; 1785 tcp_init_wl(tp, tp->write_seq, 0); 1786 tp->snd_una = tp->write_seq; 1787 tp->snd_sml = tp->write_seq; 1788 tp->rcv_nxt = 0; 1789 tp->rcv_wup = 0; 1790 tp->copied_seq = 0; 1791 1792 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 1793 inet_csk(sk)->icsk_retransmits = 0; 1794 tcp_clear_retrans(tp); 1795 } 1796 1797 /* 1798 * Build a SYN and send it off. 1799 */ 1800 int tcp_connect(struct sock *sk) 1801 { 1802 struct tcp_sock *tp = tcp_sk(sk); 1803 struct sk_buff *buff; 1804 1805 tcp_connect_init(sk); 1806 1807 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 1808 if (unlikely(buff == NULL)) 1809 return -ENOBUFS; 1810 1811 /* Reserve space for headers. */ 1812 skb_reserve(buff, MAX_TCP_HEADER); 1813 1814 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; 1815 TCP_ECN_send_syn(sk, tp, buff); 1816 TCP_SKB_CB(buff)->sacked = 0; 1817 skb_shinfo(buff)->tso_segs = 1; 1818 skb_shinfo(buff)->tso_size = 0; 1819 buff->csum = 0; 1820 TCP_SKB_CB(buff)->seq = tp->write_seq++; 1821 TCP_SKB_CB(buff)->end_seq = tp->write_seq; 1822 tp->snd_nxt = tp->write_seq; 1823 tp->pushed_seq = tp->write_seq; 1824 1825 /* Send it off. */ 1826 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1827 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 1828 skb_header_release(buff); 1829 __skb_queue_tail(&sk->sk_write_queue, buff); 1830 sk_charge_skb(sk, buff); 1831 tp->packets_out += tcp_skb_pcount(buff); 1832 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL)); 1833 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); 1834 1835 /* Timer for repeating the SYN until an answer. */ 1836 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1837 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 1838 return 0; 1839 } 1840 1841 /* Send out a delayed ack, the caller does the policy checking 1842 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 1843 * for details. 1844 */ 1845 void tcp_send_delayed_ack(struct sock *sk) 1846 { 1847 struct inet_connection_sock *icsk = inet_csk(sk); 1848 int ato = icsk->icsk_ack.ato; 1849 unsigned long timeout; 1850 1851 if (ato > TCP_DELACK_MIN) { 1852 const struct tcp_sock *tp = tcp_sk(sk); 1853 int max_ato = HZ/2; 1854 1855 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 1856 max_ato = TCP_DELACK_MAX; 1857 1858 /* Slow path, intersegment interval is "high". */ 1859 1860 /* If some rtt estimate is known, use it to bound delayed ack. 1861 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 1862 * directly. 1863 */ 1864 if (tp->srtt) { 1865 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); 1866 1867 if (rtt < max_ato) 1868 max_ato = rtt; 1869 } 1870 1871 ato = min(ato, max_ato); 1872 } 1873 1874 /* Stay within the limit we were given */ 1875 timeout = jiffies + ato; 1876 1877 /* Use new timeout only if there wasn't a older one earlier. */ 1878 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 1879 /* If delack timer was blocked or is about to expire, 1880 * send ACK now. 1881 */ 1882 if (icsk->icsk_ack.blocked || 1883 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 1884 tcp_send_ack(sk); 1885 return; 1886 } 1887 1888 if (!time_before(timeout, icsk->icsk_ack.timeout)) 1889 timeout = icsk->icsk_ack.timeout; 1890 } 1891 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 1892 icsk->icsk_ack.timeout = timeout; 1893 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 1894 } 1895 1896 /* This routine sends an ack and also updates the window. */ 1897 void tcp_send_ack(struct sock *sk) 1898 { 1899 /* If we have been reset, we may not send again. */ 1900 if (sk->sk_state != TCP_CLOSE) { 1901 struct tcp_sock *tp = tcp_sk(sk); 1902 struct sk_buff *buff; 1903 1904 /* We are not putting this on the write queue, so 1905 * tcp_transmit_skb() will set the ownership to this 1906 * sock. 1907 */ 1908 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1909 if (buff == NULL) { 1910 inet_csk_schedule_ack(sk); 1911 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 1912 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1913 TCP_DELACK_MAX, TCP_RTO_MAX); 1914 return; 1915 } 1916 1917 /* Reserve space for headers and prepare control bits. */ 1918 skb_reserve(buff, MAX_TCP_HEADER); 1919 buff->csum = 0; 1920 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; 1921 TCP_SKB_CB(buff)->sacked = 0; 1922 skb_shinfo(buff)->tso_segs = 1; 1923 skb_shinfo(buff)->tso_size = 0; 1924 1925 /* Send it off, this clears delayed acks for us. */ 1926 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); 1927 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1928 tcp_transmit_skb(sk, buff); 1929 } 1930 } 1931 1932 /* This routine sends a packet with an out of date sequence 1933 * number. It assumes the other end will try to ack it. 1934 * 1935 * Question: what should we make while urgent mode? 1936 * 4.4BSD forces sending single byte of data. We cannot send 1937 * out of window data, because we have SND.NXT==SND.MAX... 1938 * 1939 * Current solution: to send TWO zero-length segments in urgent mode: 1940 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 1941 * out-of-date with SND.UNA-1 to probe window. 1942 */ 1943 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 1944 { 1945 struct tcp_sock *tp = tcp_sk(sk); 1946 struct sk_buff *skb; 1947 1948 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 1949 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1950 if (skb == NULL) 1951 return -1; 1952 1953 /* Reserve space for headers and set control bits. */ 1954 skb_reserve(skb, MAX_TCP_HEADER); 1955 skb->csum = 0; 1956 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; 1957 TCP_SKB_CB(skb)->sacked = urgent; 1958 skb_shinfo(skb)->tso_segs = 1; 1959 skb_shinfo(skb)->tso_size = 0; 1960 1961 /* Use a previous sequence. This should cause the other 1962 * end to send an ack. Don't queue or clone SKB, just 1963 * send it. 1964 */ 1965 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; 1966 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1967 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1968 return tcp_transmit_skb(sk, skb); 1969 } 1970 1971 int tcp_write_wakeup(struct sock *sk) 1972 { 1973 if (sk->sk_state != TCP_CLOSE) { 1974 struct tcp_sock *tp = tcp_sk(sk); 1975 struct sk_buff *skb; 1976 1977 if ((skb = sk->sk_send_head) != NULL && 1978 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { 1979 int err; 1980 unsigned int mss = tcp_current_mss(sk, 0); 1981 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; 1982 1983 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 1984 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 1985 1986 /* We are probing the opening of a window 1987 * but the window size is != 0 1988 * must have been a result SWS avoidance ( sender ) 1989 */ 1990 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 1991 skb->len > mss) { 1992 seg_size = min(seg_size, mss); 1993 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 1994 if (tcp_fragment(sk, skb, seg_size, mss)) 1995 return -1; 1996 } else if (!tcp_skb_pcount(skb)) 1997 tcp_set_skb_tso_segs(sk, skb, mss); 1998 1999 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2000 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2001 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); 2002 if (!err) { 2003 update_send_head(sk, tp, skb); 2004 } 2005 return err; 2006 } else { 2007 if (tp->urg_mode && 2008 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) 2009 tcp_xmit_probe_skb(sk, TCPCB_URG); 2010 return tcp_xmit_probe_skb(sk, 0); 2011 } 2012 } 2013 return -1; 2014 } 2015 2016 /* A window probe timeout has occurred. If window is not closed send 2017 * a partial packet else a zero probe. 2018 */ 2019 void tcp_send_probe0(struct sock *sk) 2020 { 2021 struct inet_connection_sock *icsk = inet_csk(sk); 2022 struct tcp_sock *tp = tcp_sk(sk); 2023 int err; 2024 2025 err = tcp_write_wakeup(sk); 2026 2027 if (tp->packets_out || !sk->sk_send_head) { 2028 /* Cancel probe timer, if it is not required. */ 2029 icsk->icsk_probes_out = 0; 2030 icsk->icsk_backoff = 0; 2031 return; 2032 } 2033 2034 if (err <= 0) { 2035 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2036 icsk->icsk_backoff++; 2037 icsk->icsk_probes_out++; 2038 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2039 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2040 TCP_RTO_MAX); 2041 } else { 2042 /* If packet was not sent due to local congestion, 2043 * do not backoff and do not remember icsk_probes_out. 2044 * Let local senders to fight for local resources. 2045 * 2046 * Use accumulated backoff yet. 2047 */ 2048 if (!icsk->icsk_probes_out) 2049 icsk->icsk_probes_out = 1; 2050 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2051 min(icsk->icsk_rto << icsk->icsk_backoff, 2052 TCP_RESOURCE_PROBE_INTERVAL), 2053 TCP_RTO_MAX); 2054 } 2055 } 2056 2057 EXPORT_SYMBOL(tcp_connect); 2058 EXPORT_SYMBOL(tcp_make_synack); 2059 EXPORT_SYMBOL(tcp_simple_retransmit); 2060 EXPORT_SYMBOL(tcp_sync_mss); 2061