1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 #include <trace/events/tcp.h> 46 47 /* People can turn this off for buggy TCP's found in printers etc. */ 48 int sysctl_tcp_retrans_collapse __read_mostly = 1; 49 50 /* People can turn this on to work with those rare, broken TCPs that 51 * interpret the window field as a signed quantity. 52 */ 53 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 54 55 /* Default TSQ limit of four TSO segments */ 56 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 57 58 /* This limits the percentage of the congestion window which we 59 * will allow a single TSO frame to consume. Building TSO frames 60 * which are too large can cause TCP streams to be bursty. 61 */ 62 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 63 64 /* By default, RFC2861 behavior. */ 65 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 66 67 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 68 int push_one, gfp_t gfp); 69 70 /* Account for new data that has been sent to the network. */ 71 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 72 { 73 struct inet_connection_sock *icsk = inet_csk(sk); 74 struct tcp_sock *tp = tcp_sk(sk); 75 unsigned int prior_packets = tp->packets_out; 76 77 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 78 79 __skb_unlink(skb, &sk->sk_write_queue); 80 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 81 82 tp->packets_out += tcp_skb_pcount(skb); 83 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 84 tcp_rearm_rto(sk); 85 86 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 87 tcp_skb_pcount(skb)); 88 } 89 90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 91 * window scaling factor due to loss of precision. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 102 (tp->rx_opt.wscale_ok && 103 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 104 return tp->snd_nxt; 105 else 106 return tcp_wnd_end(tp); 107 } 108 109 /* Calculate mss to advertise in SYN segment. 110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 111 * 112 * 1. It is independent of path mtu. 113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 115 * attached devices, because some buggy hosts are confused by 116 * large MSS. 117 * 4. We do not make 3, we advertise MSS, calculated from first 118 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 119 * This may be overridden via information stored in routing table. 120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 121 * probably even Jumbo". 122 */ 123 static __u16 tcp_advertise_mss(struct sock *sk) 124 { 125 struct tcp_sock *tp = tcp_sk(sk); 126 const struct dst_entry *dst = __sk_dst_get(sk); 127 int mss = tp->advmss; 128 129 if (dst) { 130 unsigned int metric = dst_metric_advmss(dst); 131 132 if (metric < mss) { 133 mss = metric; 134 tp->advmss = mss; 135 } 136 } 137 138 return (__u16)mss; 139 } 140 141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 142 * This is the first part of cwnd validation mechanism. 143 */ 144 void tcp_cwnd_restart(struct sock *sk, s32 delta) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 148 u32 cwnd = tp->snd_cwnd; 149 150 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 151 152 tp->snd_ssthresh = tcp_current_ssthresh(sk); 153 restart_cwnd = min(restart_cwnd, cwnd); 154 155 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 156 cwnd >>= 1; 157 tp->snd_cwnd = max(cwnd, restart_cwnd); 158 tp->snd_cwnd_stamp = tcp_jiffies32; 159 tp->snd_cwnd_used = 0; 160 } 161 162 /* Congestion state accounting after a packet has been sent. */ 163 static void tcp_event_data_sent(struct tcp_sock *tp, 164 struct sock *sk) 165 { 166 struct inet_connection_sock *icsk = inet_csk(sk); 167 const u32 now = tcp_jiffies32; 168 169 if (tcp_packets_in_flight(tp) == 0) 170 tcp_ca_event(sk, CA_EVENT_TX_START); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 178 icsk->icsk_ack.pingpong = 1; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 183 { 184 tcp_dec_quickack_mode(sk, pkts); 185 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 186 } 187 188 189 u32 tcp_default_init_rwnd(u32 mss) 190 { 191 /* Initial receive window should be twice of TCP_INIT_CWND to 192 * enable proper sending of new unsent data during fast recovery 193 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 194 * limit when mss is larger than 1460. 195 */ 196 u32 init_rwnd = TCP_INIT_CWND * 2; 197 198 if (mss > 1460) 199 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 200 return init_rwnd; 201 } 202 203 /* Determine a window scaling and initial window to offer. 204 * Based on the assumption that the given amount of space 205 * will be offered. Store the results in the tp structure. 206 * NOTE: for smooth operation initial space offering should 207 * be a multiple of mss if possible. We assume here that mss >= 1. 208 * This MUST be enforced by all callers. 209 */ 210 void tcp_select_initial_window(int __space, __u32 mss, 211 __u32 *rcv_wnd, __u32 *window_clamp, 212 int wscale_ok, __u8 *rcv_wscale, 213 __u32 init_rcv_wnd) 214 { 215 unsigned int space = (__space < 0 ? 0 : __space); 216 217 /* If no clamp set the clamp to the max possible scaled window */ 218 if (*window_clamp == 0) 219 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 220 space = min(*window_clamp, space); 221 222 /* Quantize space offering to a multiple of mss if possible. */ 223 if (space > mss) 224 space = rounddown(space, mss); 225 226 /* NOTE: offering an initial window larger than 32767 227 * will break some buggy TCP stacks. If the admin tells us 228 * it is likely we could be speaking with such a buggy stack 229 * we will truncate our initial window offering to 32K-1 230 * unless the remote has sent us a window scaling option, 231 * which we interpret as a sign the remote TCP is not 232 * misinterpreting the window field as a signed quantity. 233 */ 234 if (sysctl_tcp_workaround_signed_windows) 235 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 236 else 237 (*rcv_wnd) = space; 238 239 (*rcv_wscale) = 0; 240 if (wscale_ok) { 241 /* Set window scaling on max possible window */ 242 space = max_t(u32, space, sysctl_tcp_rmem[2]); 243 space = max_t(u32, space, sysctl_rmem_max); 244 space = min_t(u32, space, *window_clamp); 245 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 246 space >>= 1; 247 (*rcv_wscale)++; 248 } 249 } 250 251 if (mss > (1 << *rcv_wscale)) { 252 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 253 init_rcv_wnd = tcp_default_init_rwnd(mss); 254 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 255 } 256 257 /* Set the clamp no higher than max representable value */ 258 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 259 } 260 EXPORT_SYMBOL(tcp_select_initial_window); 261 262 /* Chose a new window to advertise, update state in tcp_sock for the 263 * socket, and return result with RFC1323 scaling applied. The return 264 * value can be stuffed directly into th->window for an outgoing 265 * frame. 266 */ 267 static u16 tcp_select_window(struct sock *sk) 268 { 269 struct tcp_sock *tp = tcp_sk(sk); 270 u32 old_win = tp->rcv_wnd; 271 u32 cur_win = tcp_receive_window(tp); 272 u32 new_win = __tcp_select_window(sk); 273 274 /* Never shrink the offered window */ 275 if (new_win < cur_win) { 276 /* Danger Will Robinson! 277 * Don't update rcv_wup/rcv_wnd here or else 278 * we will not be able to advertise a zero 279 * window in time. --DaveM 280 * 281 * Relax Will Robinson. 282 */ 283 if (new_win == 0) 284 NET_INC_STATS(sock_net(sk), 285 LINUX_MIB_TCPWANTZEROWINDOWADV); 286 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 287 } 288 tp->rcv_wnd = new_win; 289 tp->rcv_wup = tp->rcv_nxt; 290 291 /* Make sure we do not exceed the maximum possible 292 * scaled window. 293 */ 294 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 295 new_win = min(new_win, MAX_TCP_WINDOW); 296 else 297 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 298 299 /* RFC1323 scaling applied */ 300 new_win >>= tp->rx_opt.rcv_wscale; 301 302 /* If we advertise zero window, disable fast path. */ 303 if (new_win == 0) { 304 tp->pred_flags = 0; 305 if (old_win) 306 NET_INC_STATS(sock_net(sk), 307 LINUX_MIB_TCPTOZEROWINDOWADV); 308 } else if (old_win == 0) { 309 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 310 } 311 312 return new_win; 313 } 314 315 /* Packet ECN state for a SYN-ACK */ 316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 317 { 318 const struct tcp_sock *tp = tcp_sk(sk); 319 320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 321 if (!(tp->ecn_flags & TCP_ECN_OK)) 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 323 else if (tcp_ca_needs_ecn(sk) || 324 tcp_bpf_ca_needs_ecn(sk)) 325 INET_ECN_xmit(sk); 326 } 327 328 /* Packet ECN state for a SYN. */ 329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 333 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 334 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 354 { 355 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 356 /* tp->ecn_flags are cleared at a later point in time when 357 * SYN ACK is ultimatively being received. 358 */ 359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 360 } 361 362 static void 363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 364 { 365 if (inet_rsk(req)->ecn_ok) 366 th->ece = 1; 367 } 368 369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 370 * be sent. 371 */ 372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 373 struct tcphdr *th, int tcp_header_len) 374 { 375 struct tcp_sock *tp = tcp_sk(sk); 376 377 if (tp->ecn_flags & TCP_ECN_OK) { 378 /* Not-retransmitted data segment: set ECT and inject CWR. */ 379 if (skb->len != tcp_header_len && 380 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 381 INET_ECN_xmit(sk); 382 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 383 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 384 th->cwr = 1; 385 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 386 } 387 } else if (!tcp_ca_needs_ecn(sk)) { 388 /* ACK or retransmitted segment: clear ECT|CE */ 389 INET_ECN_dontxmit(sk); 390 } 391 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 392 th->ece = 1; 393 } 394 } 395 396 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 397 * auto increment end seqno. 398 */ 399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 400 { 401 skb->ip_summed = CHECKSUM_PARTIAL; 402 skb->csum = 0; 403 404 TCP_SKB_CB(skb)->tcp_flags = flags; 405 TCP_SKB_CB(skb)->sacked = 0; 406 407 tcp_skb_pcount_set(skb, 1); 408 409 TCP_SKB_CB(skb)->seq = seq; 410 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 411 seq++; 412 TCP_SKB_CB(skb)->end_seq = seq; 413 } 414 415 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 416 { 417 return tp->snd_una != tp->snd_up; 418 } 419 420 #define OPTION_SACK_ADVERTISE (1 << 0) 421 #define OPTION_TS (1 << 1) 422 #define OPTION_MD5 (1 << 2) 423 #define OPTION_WSCALE (1 << 3) 424 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 425 426 struct tcp_out_options { 427 u16 options; /* bit field of OPTION_* */ 428 u16 mss; /* 0 to disable */ 429 u8 ws; /* window scale, 0 to disable */ 430 u8 num_sack_blocks; /* number of SACK blocks to include */ 431 u8 hash_size; /* bytes in hash_location */ 432 __u8 *hash_location; /* temporary pointer, overloaded */ 433 __u32 tsval, tsecr; /* need to include OPTION_TS */ 434 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 435 }; 436 437 /* Write previously computed TCP options to the packet. 438 * 439 * Beware: Something in the Internet is very sensitive to the ordering of 440 * TCP options, we learned this through the hard way, so be careful here. 441 * Luckily we can at least blame others for their non-compliance but from 442 * inter-operability perspective it seems that we're somewhat stuck with 443 * the ordering which we have been using if we want to keep working with 444 * those broken things (not that it currently hurts anybody as there isn't 445 * particular reason why the ordering would need to be changed). 446 * 447 * At least SACK_PERM as the first option is known to lead to a disaster 448 * (but it may well be that other scenarios fail similarly). 449 */ 450 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 451 struct tcp_out_options *opts) 452 { 453 u16 options = opts->options; /* mungable copy */ 454 455 if (unlikely(OPTION_MD5 & options)) { 456 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 457 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 458 /* overload cookie hash location */ 459 opts->hash_location = (__u8 *)ptr; 460 ptr += 4; 461 } 462 463 if (unlikely(opts->mss)) { 464 *ptr++ = htonl((TCPOPT_MSS << 24) | 465 (TCPOLEN_MSS << 16) | 466 opts->mss); 467 } 468 469 if (likely(OPTION_TS & options)) { 470 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 471 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 472 (TCPOLEN_SACK_PERM << 16) | 473 (TCPOPT_TIMESTAMP << 8) | 474 TCPOLEN_TIMESTAMP); 475 options &= ~OPTION_SACK_ADVERTISE; 476 } else { 477 *ptr++ = htonl((TCPOPT_NOP << 24) | 478 (TCPOPT_NOP << 16) | 479 (TCPOPT_TIMESTAMP << 8) | 480 TCPOLEN_TIMESTAMP); 481 } 482 *ptr++ = htonl(opts->tsval); 483 *ptr++ = htonl(opts->tsecr); 484 } 485 486 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 487 *ptr++ = htonl((TCPOPT_NOP << 24) | 488 (TCPOPT_NOP << 16) | 489 (TCPOPT_SACK_PERM << 8) | 490 TCPOLEN_SACK_PERM); 491 } 492 493 if (unlikely(OPTION_WSCALE & options)) { 494 *ptr++ = htonl((TCPOPT_NOP << 24) | 495 (TCPOPT_WINDOW << 16) | 496 (TCPOLEN_WINDOW << 8) | 497 opts->ws); 498 } 499 500 if (unlikely(opts->num_sack_blocks)) { 501 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 502 tp->duplicate_sack : tp->selective_acks; 503 int this_sack; 504 505 *ptr++ = htonl((TCPOPT_NOP << 24) | 506 (TCPOPT_NOP << 16) | 507 (TCPOPT_SACK << 8) | 508 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 509 TCPOLEN_SACK_PERBLOCK))); 510 511 for (this_sack = 0; this_sack < opts->num_sack_blocks; 512 ++this_sack) { 513 *ptr++ = htonl(sp[this_sack].start_seq); 514 *ptr++ = htonl(sp[this_sack].end_seq); 515 } 516 517 tp->rx_opt.dsack = 0; 518 } 519 520 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 521 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 522 u8 *p = (u8 *)ptr; 523 u32 len; /* Fast Open option length */ 524 525 if (foc->exp) { 526 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 527 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 528 TCPOPT_FASTOPEN_MAGIC); 529 p += TCPOLEN_EXP_FASTOPEN_BASE; 530 } else { 531 len = TCPOLEN_FASTOPEN_BASE + foc->len; 532 *p++ = TCPOPT_FASTOPEN; 533 *p++ = len; 534 } 535 536 memcpy(p, foc->val, foc->len); 537 if ((len & 3) == 2) { 538 p[foc->len] = TCPOPT_NOP; 539 p[foc->len + 1] = TCPOPT_NOP; 540 } 541 ptr += (len + 3) >> 2; 542 } 543 } 544 545 /* Compute TCP options for SYN packets. This is not the final 546 * network wire format yet. 547 */ 548 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 549 struct tcp_out_options *opts, 550 struct tcp_md5sig_key **md5) 551 { 552 struct tcp_sock *tp = tcp_sk(sk); 553 unsigned int remaining = MAX_TCP_OPTION_SPACE; 554 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 555 556 #ifdef CONFIG_TCP_MD5SIG 557 *md5 = tp->af_specific->md5_lookup(sk, sk); 558 if (*md5) { 559 opts->options |= OPTION_MD5; 560 remaining -= TCPOLEN_MD5SIG_ALIGNED; 561 } 562 #else 563 *md5 = NULL; 564 #endif 565 566 /* We always get an MSS option. The option bytes which will be seen in 567 * normal data packets should timestamps be used, must be in the MSS 568 * advertised. But we subtract them from tp->mss_cache so that 569 * calculations in tcp_sendmsg are simpler etc. So account for this 570 * fact here if necessary. If we don't do this correctly, as a 571 * receiver we won't recognize data packets as being full sized when we 572 * should, and thus we won't abide by the delayed ACK rules correctly. 573 * SACKs don't matter, we never delay an ACK when we have any of those 574 * going out. */ 575 opts->mss = tcp_advertise_mss(sk); 576 remaining -= TCPOLEN_MSS_ALIGNED; 577 578 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 579 opts->options |= OPTION_TS; 580 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 581 opts->tsecr = tp->rx_opt.ts_recent; 582 remaining -= TCPOLEN_TSTAMP_ALIGNED; 583 } 584 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 585 opts->ws = tp->rx_opt.rcv_wscale; 586 opts->options |= OPTION_WSCALE; 587 remaining -= TCPOLEN_WSCALE_ALIGNED; 588 } 589 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 590 opts->options |= OPTION_SACK_ADVERTISE; 591 if (unlikely(!(OPTION_TS & opts->options))) 592 remaining -= TCPOLEN_SACKPERM_ALIGNED; 593 } 594 595 if (fastopen && fastopen->cookie.len >= 0) { 596 u32 need = fastopen->cookie.len; 597 598 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 599 TCPOLEN_FASTOPEN_BASE; 600 need = (need + 3) & ~3U; /* Align to 32 bits */ 601 if (remaining >= need) { 602 opts->options |= OPTION_FAST_OPEN_COOKIE; 603 opts->fastopen_cookie = &fastopen->cookie; 604 remaining -= need; 605 tp->syn_fastopen = 1; 606 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 607 } 608 } 609 610 return MAX_TCP_OPTION_SPACE - remaining; 611 } 612 613 /* Set up TCP options for SYN-ACKs. */ 614 static unsigned int tcp_synack_options(struct request_sock *req, 615 unsigned int mss, struct sk_buff *skb, 616 struct tcp_out_options *opts, 617 const struct tcp_md5sig_key *md5, 618 struct tcp_fastopen_cookie *foc) 619 { 620 struct inet_request_sock *ireq = inet_rsk(req); 621 unsigned int remaining = MAX_TCP_OPTION_SPACE; 622 623 #ifdef CONFIG_TCP_MD5SIG 624 if (md5) { 625 opts->options |= OPTION_MD5; 626 remaining -= TCPOLEN_MD5SIG_ALIGNED; 627 628 /* We can't fit any SACK blocks in a packet with MD5 + TS 629 * options. There was discussion about disabling SACK 630 * rather than TS in order to fit in better with old, 631 * buggy kernels, but that was deemed to be unnecessary. 632 */ 633 ireq->tstamp_ok &= !ireq->sack_ok; 634 } 635 #endif 636 637 /* We always send an MSS option. */ 638 opts->mss = mss; 639 remaining -= TCPOLEN_MSS_ALIGNED; 640 641 if (likely(ireq->wscale_ok)) { 642 opts->ws = ireq->rcv_wscale; 643 opts->options |= OPTION_WSCALE; 644 remaining -= TCPOLEN_WSCALE_ALIGNED; 645 } 646 if (likely(ireq->tstamp_ok)) { 647 opts->options |= OPTION_TS; 648 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 649 opts->tsecr = req->ts_recent; 650 remaining -= TCPOLEN_TSTAMP_ALIGNED; 651 } 652 if (likely(ireq->sack_ok)) { 653 opts->options |= OPTION_SACK_ADVERTISE; 654 if (unlikely(!ireq->tstamp_ok)) 655 remaining -= TCPOLEN_SACKPERM_ALIGNED; 656 } 657 if (foc != NULL && foc->len >= 0) { 658 u32 need = foc->len; 659 660 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 661 TCPOLEN_FASTOPEN_BASE; 662 need = (need + 3) & ~3U; /* Align to 32 bits */ 663 if (remaining >= need) { 664 opts->options |= OPTION_FAST_OPEN_COOKIE; 665 opts->fastopen_cookie = foc; 666 remaining -= need; 667 } 668 } 669 670 return MAX_TCP_OPTION_SPACE - remaining; 671 } 672 673 /* Compute TCP options for ESTABLISHED sockets. This is not the 674 * final wire format yet. 675 */ 676 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 677 struct tcp_out_options *opts, 678 struct tcp_md5sig_key **md5) 679 { 680 struct tcp_sock *tp = tcp_sk(sk); 681 unsigned int size = 0; 682 unsigned int eff_sacks; 683 684 opts->options = 0; 685 686 #ifdef CONFIG_TCP_MD5SIG 687 *md5 = tp->af_specific->md5_lookup(sk, sk); 688 if (unlikely(*md5)) { 689 opts->options |= OPTION_MD5; 690 size += TCPOLEN_MD5SIG_ALIGNED; 691 } 692 #else 693 *md5 = NULL; 694 #endif 695 696 if (likely(tp->rx_opt.tstamp_ok)) { 697 opts->options |= OPTION_TS; 698 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 699 opts->tsecr = tp->rx_opt.ts_recent; 700 size += TCPOLEN_TSTAMP_ALIGNED; 701 } 702 703 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 704 if (unlikely(eff_sacks)) { 705 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 706 opts->num_sack_blocks = 707 min_t(unsigned int, eff_sacks, 708 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 709 TCPOLEN_SACK_PERBLOCK); 710 size += TCPOLEN_SACK_BASE_ALIGNED + 711 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 712 } 713 714 return size; 715 } 716 717 718 /* TCP SMALL QUEUES (TSQ) 719 * 720 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 721 * to reduce RTT and bufferbloat. 722 * We do this using a special skb destructor (tcp_wfree). 723 * 724 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 725 * needs to be reallocated in a driver. 726 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 727 * 728 * Since transmit from skb destructor is forbidden, we use a tasklet 729 * to process all sockets that eventually need to send more skbs. 730 * We use one tasklet per cpu, with its own queue of sockets. 731 */ 732 struct tsq_tasklet { 733 struct tasklet_struct tasklet; 734 struct list_head head; /* queue of tcp sockets */ 735 }; 736 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 737 738 static void tcp_tsq_handler(struct sock *sk) 739 { 740 if ((1 << sk->sk_state) & 741 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 742 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 743 struct tcp_sock *tp = tcp_sk(sk); 744 745 if (tp->lost_out > tp->retrans_out && 746 tp->snd_cwnd > tcp_packets_in_flight(tp)) 747 tcp_xmit_retransmit_queue(sk); 748 749 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 750 0, GFP_ATOMIC); 751 } 752 } 753 /* 754 * One tasklet per cpu tries to send more skbs. 755 * We run in tasklet context but need to disable irqs when 756 * transferring tsq->head because tcp_wfree() might 757 * interrupt us (non NAPI drivers) 758 */ 759 static void tcp_tasklet_func(unsigned long data) 760 { 761 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 762 LIST_HEAD(list); 763 unsigned long flags; 764 struct list_head *q, *n; 765 struct tcp_sock *tp; 766 struct sock *sk; 767 768 local_irq_save(flags); 769 list_splice_init(&tsq->head, &list); 770 local_irq_restore(flags); 771 772 list_for_each_safe(q, n, &list) { 773 tp = list_entry(q, struct tcp_sock, tsq_node); 774 list_del(&tp->tsq_node); 775 776 sk = (struct sock *)tp; 777 smp_mb__before_atomic(); 778 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 779 780 if (!sk->sk_lock.owned && 781 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 782 bh_lock_sock(sk); 783 if (!sock_owned_by_user(sk)) { 784 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 785 tcp_tsq_handler(sk); 786 } 787 bh_unlock_sock(sk); 788 } 789 790 sk_free(sk); 791 } 792 } 793 794 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 795 TCPF_WRITE_TIMER_DEFERRED | \ 796 TCPF_DELACK_TIMER_DEFERRED | \ 797 TCPF_MTU_REDUCED_DEFERRED) 798 /** 799 * tcp_release_cb - tcp release_sock() callback 800 * @sk: socket 801 * 802 * called from release_sock() to perform protocol dependent 803 * actions before socket release. 804 */ 805 void tcp_release_cb(struct sock *sk) 806 { 807 unsigned long flags, nflags; 808 809 /* perform an atomic operation only if at least one flag is set */ 810 do { 811 flags = sk->sk_tsq_flags; 812 if (!(flags & TCP_DEFERRED_ALL)) 813 return; 814 nflags = flags & ~TCP_DEFERRED_ALL; 815 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 816 817 if (flags & TCPF_TSQ_DEFERRED) 818 tcp_tsq_handler(sk); 819 820 /* Here begins the tricky part : 821 * We are called from release_sock() with : 822 * 1) BH disabled 823 * 2) sk_lock.slock spinlock held 824 * 3) socket owned by us (sk->sk_lock.owned == 1) 825 * 826 * But following code is meant to be called from BH handlers, 827 * so we should keep BH disabled, but early release socket ownership 828 */ 829 sock_release_ownership(sk); 830 831 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 832 tcp_write_timer_handler(sk); 833 __sock_put(sk); 834 } 835 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 836 tcp_delack_timer_handler(sk); 837 __sock_put(sk); 838 } 839 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 840 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 841 __sock_put(sk); 842 } 843 } 844 EXPORT_SYMBOL(tcp_release_cb); 845 846 void __init tcp_tasklet_init(void) 847 { 848 int i; 849 850 for_each_possible_cpu(i) { 851 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 852 853 INIT_LIST_HEAD(&tsq->head); 854 tasklet_init(&tsq->tasklet, 855 tcp_tasklet_func, 856 (unsigned long)tsq); 857 } 858 } 859 860 /* 861 * Write buffer destructor automatically called from kfree_skb. 862 * We can't xmit new skbs from this context, as we might already 863 * hold qdisc lock. 864 */ 865 void tcp_wfree(struct sk_buff *skb) 866 { 867 struct sock *sk = skb->sk; 868 struct tcp_sock *tp = tcp_sk(sk); 869 unsigned long flags, nval, oval; 870 871 /* Keep one reference on sk_wmem_alloc. 872 * Will be released by sk_free() from here or tcp_tasklet_func() 873 */ 874 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 875 876 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 877 * Wait until our queues (qdisc + devices) are drained. 878 * This gives : 879 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 880 * - chance for incoming ACK (processed by another cpu maybe) 881 * to migrate this flow (skb->ooo_okay will be eventually set) 882 */ 883 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 884 goto out; 885 886 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 887 struct tsq_tasklet *tsq; 888 bool empty; 889 890 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 891 goto out; 892 893 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 894 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 895 if (nval != oval) 896 continue; 897 898 /* queue this socket to tasklet queue */ 899 local_irq_save(flags); 900 tsq = this_cpu_ptr(&tsq_tasklet); 901 empty = list_empty(&tsq->head); 902 list_add(&tp->tsq_node, &tsq->head); 903 if (empty) 904 tasklet_schedule(&tsq->tasklet); 905 local_irq_restore(flags); 906 return; 907 } 908 out: 909 sk_free(sk); 910 } 911 912 /* Note: Called under hard irq. 913 * We can not call TCP stack right away. 914 */ 915 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 916 { 917 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 918 struct sock *sk = (struct sock *)tp; 919 unsigned long nval, oval; 920 921 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 922 struct tsq_tasklet *tsq; 923 bool empty; 924 925 if (oval & TSQF_QUEUED) 926 break; 927 928 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 929 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 930 if (nval != oval) 931 continue; 932 933 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc)) 934 break; 935 /* queue this socket to tasklet queue */ 936 tsq = this_cpu_ptr(&tsq_tasklet); 937 empty = list_empty(&tsq->head); 938 list_add(&tp->tsq_node, &tsq->head); 939 if (empty) 940 tasklet_schedule(&tsq->tasklet); 941 break; 942 } 943 return HRTIMER_NORESTART; 944 } 945 946 /* BBR congestion control needs pacing. 947 * Same remark for SO_MAX_PACING_RATE. 948 * sch_fq packet scheduler is efficiently handling pacing, 949 * but is not always installed/used. 950 * Return true if TCP stack should pace packets itself. 951 */ 952 static bool tcp_needs_internal_pacing(const struct sock *sk) 953 { 954 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 955 } 956 957 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 958 { 959 u64 len_ns; 960 u32 rate; 961 962 if (!tcp_needs_internal_pacing(sk)) 963 return; 964 rate = sk->sk_pacing_rate; 965 if (!rate || rate == ~0U) 966 return; 967 968 /* Should account for header sizes as sch_fq does, 969 * but lets make things simple. 970 */ 971 len_ns = (u64)skb->len * NSEC_PER_SEC; 972 do_div(len_ns, rate); 973 hrtimer_start(&tcp_sk(sk)->pacing_timer, 974 ktime_add_ns(ktime_get(), len_ns), 975 HRTIMER_MODE_ABS_PINNED); 976 } 977 978 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 979 { 980 skb->skb_mstamp = tp->tcp_mstamp; 981 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 982 } 983 984 /* This routine actually transmits TCP packets queued in by 985 * tcp_do_sendmsg(). This is used by both the initial 986 * transmission and possible later retransmissions. 987 * All SKB's seen here are completely headerless. It is our 988 * job to build the TCP header, and pass the packet down to 989 * IP so it can do the same plus pass the packet off to the 990 * device. 991 * 992 * We are working here with either a clone of the original 993 * SKB, or a fresh unique copy made by the retransmit engine. 994 */ 995 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 996 gfp_t gfp_mask) 997 { 998 const struct inet_connection_sock *icsk = inet_csk(sk); 999 struct inet_sock *inet; 1000 struct tcp_sock *tp; 1001 struct tcp_skb_cb *tcb; 1002 struct tcp_out_options opts; 1003 unsigned int tcp_options_size, tcp_header_size; 1004 struct sk_buff *oskb = NULL; 1005 struct tcp_md5sig_key *md5; 1006 struct tcphdr *th; 1007 int err; 1008 1009 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1010 tp = tcp_sk(sk); 1011 1012 if (clone_it) { 1013 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1014 - tp->snd_una; 1015 oskb = skb; 1016 1017 tcp_skb_tsorted_save(oskb) { 1018 if (unlikely(skb_cloned(oskb))) 1019 skb = pskb_copy(oskb, gfp_mask); 1020 else 1021 skb = skb_clone(oskb, gfp_mask); 1022 } tcp_skb_tsorted_restore(oskb); 1023 1024 if (unlikely(!skb)) 1025 return -ENOBUFS; 1026 } 1027 skb->skb_mstamp = tp->tcp_mstamp; 1028 1029 inet = inet_sk(sk); 1030 tcb = TCP_SKB_CB(skb); 1031 memset(&opts, 0, sizeof(opts)); 1032 1033 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1034 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1035 else 1036 tcp_options_size = tcp_established_options(sk, skb, &opts, 1037 &md5); 1038 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1039 1040 /* if no packet is in qdisc/device queue, then allow XPS to select 1041 * another queue. We can be called from tcp_tsq_handler() 1042 * which holds one reference to sk_wmem_alloc. 1043 * 1044 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1045 * One way to get this would be to set skb->truesize = 2 on them. 1046 */ 1047 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1048 1049 /* If we had to use memory reserve to allocate this skb, 1050 * this might cause drops if packet is looped back : 1051 * Other socket might not have SOCK_MEMALLOC. 1052 * Packets not looped back do not care about pfmemalloc. 1053 */ 1054 skb->pfmemalloc = 0; 1055 1056 skb_push(skb, tcp_header_size); 1057 skb_reset_transport_header(skb); 1058 1059 skb_orphan(skb); 1060 skb->sk = sk; 1061 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1062 skb_set_hash_from_sk(skb, sk); 1063 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1064 1065 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1066 1067 /* Build TCP header and checksum it. */ 1068 th = (struct tcphdr *)skb->data; 1069 th->source = inet->inet_sport; 1070 th->dest = inet->inet_dport; 1071 th->seq = htonl(tcb->seq); 1072 th->ack_seq = htonl(tp->rcv_nxt); 1073 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1074 tcb->tcp_flags); 1075 1076 th->check = 0; 1077 th->urg_ptr = 0; 1078 1079 /* The urg_mode check is necessary during a below snd_una win probe */ 1080 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1081 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1082 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1083 th->urg = 1; 1084 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1085 th->urg_ptr = htons(0xFFFF); 1086 th->urg = 1; 1087 } 1088 } 1089 1090 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1091 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1092 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1093 th->window = htons(tcp_select_window(sk)); 1094 tcp_ecn_send(sk, skb, th, tcp_header_size); 1095 } else { 1096 /* RFC1323: The window in SYN & SYN/ACK segments 1097 * is never scaled. 1098 */ 1099 th->window = htons(min(tp->rcv_wnd, 65535U)); 1100 } 1101 #ifdef CONFIG_TCP_MD5SIG 1102 /* Calculate the MD5 hash, as we have all we need now */ 1103 if (md5) { 1104 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1105 tp->af_specific->calc_md5_hash(opts.hash_location, 1106 md5, sk, skb); 1107 } 1108 #endif 1109 1110 icsk->icsk_af_ops->send_check(sk, skb); 1111 1112 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1113 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1114 1115 if (skb->len != tcp_header_size) { 1116 tcp_event_data_sent(tp, sk); 1117 tp->data_segs_out += tcp_skb_pcount(skb); 1118 tcp_internal_pacing(sk, skb); 1119 } 1120 1121 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1122 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1123 tcp_skb_pcount(skb)); 1124 1125 tp->segs_out += tcp_skb_pcount(skb); 1126 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1127 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1128 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1129 1130 /* Our usage of tstamp should remain private */ 1131 skb->tstamp = 0; 1132 1133 /* Cleanup our debris for IP stacks */ 1134 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1135 sizeof(struct inet6_skb_parm))); 1136 1137 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1138 1139 if (unlikely(err > 0)) { 1140 tcp_enter_cwr(sk); 1141 err = net_xmit_eval(err); 1142 } 1143 if (!err && oskb) { 1144 tcp_update_skb_after_send(tp, oskb); 1145 tcp_rate_skb_sent(sk, oskb); 1146 } 1147 return err; 1148 } 1149 1150 /* This routine just queues the buffer for sending. 1151 * 1152 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1153 * otherwise socket can stall. 1154 */ 1155 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1156 { 1157 struct tcp_sock *tp = tcp_sk(sk); 1158 1159 /* Advance write_seq and place onto the write_queue. */ 1160 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1161 __skb_header_release(skb); 1162 tcp_add_write_queue_tail(sk, skb); 1163 sk->sk_wmem_queued += skb->truesize; 1164 sk_mem_charge(sk, skb->truesize); 1165 } 1166 1167 /* Initialize TSO segments for a packet. */ 1168 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1169 { 1170 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1171 /* Avoid the costly divide in the normal 1172 * non-TSO case. 1173 */ 1174 tcp_skb_pcount_set(skb, 1); 1175 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1176 } else { 1177 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1178 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1179 } 1180 } 1181 1182 /* When a modification to fackets out becomes necessary, we need to check 1183 * skb is counted to fackets_out or not. 1184 */ 1185 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1186 int decr) 1187 { 1188 struct tcp_sock *tp = tcp_sk(sk); 1189 1190 if (!tp->sacked_out || tcp_is_reno(tp)) 1191 return; 1192 1193 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1194 tp->fackets_out -= decr; 1195 } 1196 1197 /* Pcount in the middle of the write queue got changed, we need to do various 1198 * tweaks to fix counters 1199 */ 1200 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1201 { 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 1204 tp->packets_out -= decr; 1205 1206 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1207 tp->sacked_out -= decr; 1208 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1209 tp->retrans_out -= decr; 1210 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1211 tp->lost_out -= decr; 1212 1213 /* Reno case is special. Sigh... */ 1214 if (tcp_is_reno(tp) && decr > 0) 1215 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1216 1217 tcp_adjust_fackets_out(sk, skb, decr); 1218 1219 if (tp->lost_skb_hint && 1220 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1221 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1222 tp->lost_cnt_hint -= decr; 1223 1224 tcp_verify_left_out(tp); 1225 } 1226 1227 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1228 { 1229 return TCP_SKB_CB(skb)->txstamp_ack || 1230 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1231 } 1232 1233 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1234 { 1235 struct skb_shared_info *shinfo = skb_shinfo(skb); 1236 1237 if (unlikely(tcp_has_tx_tstamp(skb)) && 1238 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1239 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1240 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1241 1242 shinfo->tx_flags &= ~tsflags; 1243 shinfo2->tx_flags |= tsflags; 1244 swap(shinfo->tskey, shinfo2->tskey); 1245 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1246 TCP_SKB_CB(skb)->txstamp_ack = 0; 1247 } 1248 } 1249 1250 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1251 { 1252 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1253 TCP_SKB_CB(skb)->eor = 0; 1254 } 1255 1256 /* Insert buff after skb on the write or rtx queue of sk. */ 1257 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1258 struct sk_buff *buff, 1259 struct sock *sk, 1260 enum tcp_queue tcp_queue) 1261 { 1262 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1263 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1264 else 1265 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1266 } 1267 1268 /* Function to create two new TCP segments. Shrinks the given segment 1269 * to the specified size and appends a new segment with the rest of the 1270 * packet to the list. This won't be called frequently, I hope. 1271 * Remember, these are still headerless SKBs at this point. 1272 */ 1273 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1274 struct sk_buff *skb, u32 len, 1275 unsigned int mss_now, gfp_t gfp) 1276 { 1277 struct tcp_sock *tp = tcp_sk(sk); 1278 struct sk_buff *buff; 1279 int nsize, old_factor; 1280 int nlen; 1281 u8 flags; 1282 1283 if (WARN_ON(len > skb->len)) 1284 return -EINVAL; 1285 1286 nsize = skb_headlen(skb) - len; 1287 if (nsize < 0) 1288 nsize = 0; 1289 1290 if (skb_unclone(skb, gfp)) 1291 return -ENOMEM; 1292 1293 /* Get a new skb... force flag on. */ 1294 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1295 if (!buff) 1296 return -ENOMEM; /* We'll just try again later. */ 1297 1298 sk->sk_wmem_queued += buff->truesize; 1299 sk_mem_charge(sk, buff->truesize); 1300 nlen = skb->len - len - nsize; 1301 buff->truesize += nlen; 1302 skb->truesize -= nlen; 1303 1304 /* Correct the sequence numbers. */ 1305 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1306 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1307 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1308 1309 /* PSH and FIN should only be set in the second packet. */ 1310 flags = TCP_SKB_CB(skb)->tcp_flags; 1311 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1312 TCP_SKB_CB(buff)->tcp_flags = flags; 1313 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1314 tcp_skb_fragment_eor(skb, buff); 1315 1316 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1317 /* Copy and checksum data tail into the new buffer. */ 1318 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1319 skb_put(buff, nsize), 1320 nsize, 0); 1321 1322 skb_trim(skb, len); 1323 1324 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1325 } else { 1326 skb->ip_summed = CHECKSUM_PARTIAL; 1327 skb_split(skb, buff, len); 1328 } 1329 1330 buff->ip_summed = skb->ip_summed; 1331 1332 buff->tstamp = skb->tstamp; 1333 tcp_fragment_tstamp(skb, buff); 1334 1335 old_factor = tcp_skb_pcount(skb); 1336 1337 /* Fix up tso_factor for both original and new SKB. */ 1338 tcp_set_skb_tso_segs(skb, mss_now); 1339 tcp_set_skb_tso_segs(buff, mss_now); 1340 1341 /* Update delivered info for the new segment */ 1342 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1343 1344 /* If this packet has been sent out already, we must 1345 * adjust the various packet counters. 1346 */ 1347 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1348 int diff = old_factor - tcp_skb_pcount(skb) - 1349 tcp_skb_pcount(buff); 1350 1351 if (diff) 1352 tcp_adjust_pcount(sk, skb, diff); 1353 } 1354 1355 /* Link BUFF into the send queue. */ 1356 __skb_header_release(buff); 1357 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1358 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1359 1360 return 0; 1361 } 1362 1363 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1364 * data is not copied, but immediately discarded. 1365 */ 1366 static int __pskb_trim_head(struct sk_buff *skb, int len) 1367 { 1368 struct skb_shared_info *shinfo; 1369 int i, k, eat; 1370 1371 eat = min_t(int, len, skb_headlen(skb)); 1372 if (eat) { 1373 __skb_pull(skb, eat); 1374 len -= eat; 1375 if (!len) 1376 return 0; 1377 } 1378 eat = len; 1379 k = 0; 1380 shinfo = skb_shinfo(skb); 1381 for (i = 0; i < shinfo->nr_frags; i++) { 1382 int size = skb_frag_size(&shinfo->frags[i]); 1383 1384 if (size <= eat) { 1385 skb_frag_unref(skb, i); 1386 eat -= size; 1387 } else { 1388 shinfo->frags[k] = shinfo->frags[i]; 1389 if (eat) { 1390 shinfo->frags[k].page_offset += eat; 1391 skb_frag_size_sub(&shinfo->frags[k], eat); 1392 eat = 0; 1393 } 1394 k++; 1395 } 1396 } 1397 shinfo->nr_frags = k; 1398 1399 skb->data_len -= len; 1400 skb->len = skb->data_len; 1401 return len; 1402 } 1403 1404 /* Remove acked data from a packet in the transmit queue. */ 1405 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1406 { 1407 u32 delta_truesize; 1408 1409 if (skb_unclone(skb, GFP_ATOMIC)) 1410 return -ENOMEM; 1411 1412 delta_truesize = __pskb_trim_head(skb, len); 1413 1414 TCP_SKB_CB(skb)->seq += len; 1415 skb->ip_summed = CHECKSUM_PARTIAL; 1416 1417 if (delta_truesize) { 1418 skb->truesize -= delta_truesize; 1419 sk->sk_wmem_queued -= delta_truesize; 1420 sk_mem_uncharge(sk, delta_truesize); 1421 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1422 } 1423 1424 /* Any change of skb->len requires recalculation of tso factor. */ 1425 if (tcp_skb_pcount(skb) > 1) 1426 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1427 1428 return 0; 1429 } 1430 1431 /* Calculate MSS not accounting any TCP options. */ 1432 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1433 { 1434 const struct tcp_sock *tp = tcp_sk(sk); 1435 const struct inet_connection_sock *icsk = inet_csk(sk); 1436 int mss_now; 1437 1438 /* Calculate base mss without TCP options: 1439 It is MMS_S - sizeof(tcphdr) of rfc1122 1440 */ 1441 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1442 1443 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1444 if (icsk->icsk_af_ops->net_frag_header_len) { 1445 const struct dst_entry *dst = __sk_dst_get(sk); 1446 1447 if (dst && dst_allfrag(dst)) 1448 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1449 } 1450 1451 /* Clamp it (mss_clamp does not include tcp options) */ 1452 if (mss_now > tp->rx_opt.mss_clamp) 1453 mss_now = tp->rx_opt.mss_clamp; 1454 1455 /* Now subtract optional transport overhead */ 1456 mss_now -= icsk->icsk_ext_hdr_len; 1457 1458 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1459 if (mss_now < 48) 1460 mss_now = 48; 1461 return mss_now; 1462 } 1463 1464 /* Calculate MSS. Not accounting for SACKs here. */ 1465 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1466 { 1467 /* Subtract TCP options size, not including SACKs */ 1468 return __tcp_mtu_to_mss(sk, pmtu) - 1469 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1470 } 1471 1472 /* Inverse of above */ 1473 int tcp_mss_to_mtu(struct sock *sk, int mss) 1474 { 1475 const struct tcp_sock *tp = tcp_sk(sk); 1476 const struct inet_connection_sock *icsk = inet_csk(sk); 1477 int mtu; 1478 1479 mtu = mss + 1480 tp->tcp_header_len + 1481 icsk->icsk_ext_hdr_len + 1482 icsk->icsk_af_ops->net_header_len; 1483 1484 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1485 if (icsk->icsk_af_ops->net_frag_header_len) { 1486 const struct dst_entry *dst = __sk_dst_get(sk); 1487 1488 if (dst && dst_allfrag(dst)) 1489 mtu += icsk->icsk_af_ops->net_frag_header_len; 1490 } 1491 return mtu; 1492 } 1493 EXPORT_SYMBOL(tcp_mss_to_mtu); 1494 1495 /* MTU probing init per socket */ 1496 void tcp_mtup_init(struct sock *sk) 1497 { 1498 struct tcp_sock *tp = tcp_sk(sk); 1499 struct inet_connection_sock *icsk = inet_csk(sk); 1500 struct net *net = sock_net(sk); 1501 1502 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1503 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1504 icsk->icsk_af_ops->net_header_len; 1505 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1506 icsk->icsk_mtup.probe_size = 0; 1507 if (icsk->icsk_mtup.enabled) 1508 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1509 } 1510 EXPORT_SYMBOL(tcp_mtup_init); 1511 1512 /* This function synchronize snd mss to current pmtu/exthdr set. 1513 1514 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1515 for TCP options, but includes only bare TCP header. 1516 1517 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1518 It is minimum of user_mss and mss received with SYN. 1519 It also does not include TCP options. 1520 1521 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1522 1523 tp->mss_cache is current effective sending mss, including 1524 all tcp options except for SACKs. It is evaluated, 1525 taking into account current pmtu, but never exceeds 1526 tp->rx_opt.mss_clamp. 1527 1528 NOTE1. rfc1122 clearly states that advertised MSS 1529 DOES NOT include either tcp or ip options. 1530 1531 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1532 are READ ONLY outside this function. --ANK (980731) 1533 */ 1534 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1535 { 1536 struct tcp_sock *tp = tcp_sk(sk); 1537 struct inet_connection_sock *icsk = inet_csk(sk); 1538 int mss_now; 1539 1540 if (icsk->icsk_mtup.search_high > pmtu) 1541 icsk->icsk_mtup.search_high = pmtu; 1542 1543 mss_now = tcp_mtu_to_mss(sk, pmtu); 1544 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1545 1546 /* And store cached results */ 1547 icsk->icsk_pmtu_cookie = pmtu; 1548 if (icsk->icsk_mtup.enabled) 1549 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1550 tp->mss_cache = mss_now; 1551 1552 return mss_now; 1553 } 1554 EXPORT_SYMBOL(tcp_sync_mss); 1555 1556 /* Compute the current effective MSS, taking SACKs and IP options, 1557 * and even PMTU discovery events into account. 1558 */ 1559 unsigned int tcp_current_mss(struct sock *sk) 1560 { 1561 const struct tcp_sock *tp = tcp_sk(sk); 1562 const struct dst_entry *dst = __sk_dst_get(sk); 1563 u32 mss_now; 1564 unsigned int header_len; 1565 struct tcp_out_options opts; 1566 struct tcp_md5sig_key *md5; 1567 1568 mss_now = tp->mss_cache; 1569 1570 if (dst) { 1571 u32 mtu = dst_mtu(dst); 1572 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1573 mss_now = tcp_sync_mss(sk, mtu); 1574 } 1575 1576 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1577 sizeof(struct tcphdr); 1578 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1579 * some common options. If this is an odd packet (because we have SACK 1580 * blocks etc) then our calculated header_len will be different, and 1581 * we have to adjust mss_now correspondingly */ 1582 if (header_len != tp->tcp_header_len) { 1583 int delta = (int) header_len - tp->tcp_header_len; 1584 mss_now -= delta; 1585 } 1586 1587 return mss_now; 1588 } 1589 1590 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1591 * As additional protections, we do not touch cwnd in retransmission phases, 1592 * and if application hit its sndbuf limit recently. 1593 */ 1594 static void tcp_cwnd_application_limited(struct sock *sk) 1595 { 1596 struct tcp_sock *tp = tcp_sk(sk); 1597 1598 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1599 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1600 /* Limited by application or receiver window. */ 1601 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1602 u32 win_used = max(tp->snd_cwnd_used, init_win); 1603 if (win_used < tp->snd_cwnd) { 1604 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1605 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1606 } 1607 tp->snd_cwnd_used = 0; 1608 } 1609 tp->snd_cwnd_stamp = tcp_jiffies32; 1610 } 1611 1612 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1613 { 1614 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1615 struct tcp_sock *tp = tcp_sk(sk); 1616 1617 /* Track the maximum number of outstanding packets in each 1618 * window, and remember whether we were cwnd-limited then. 1619 */ 1620 if (!before(tp->snd_una, tp->max_packets_seq) || 1621 tp->packets_out > tp->max_packets_out) { 1622 tp->max_packets_out = tp->packets_out; 1623 tp->max_packets_seq = tp->snd_nxt; 1624 tp->is_cwnd_limited = is_cwnd_limited; 1625 } 1626 1627 if (tcp_is_cwnd_limited(sk)) { 1628 /* Network is feed fully. */ 1629 tp->snd_cwnd_used = 0; 1630 tp->snd_cwnd_stamp = tcp_jiffies32; 1631 } else { 1632 /* Network starves. */ 1633 if (tp->packets_out > tp->snd_cwnd_used) 1634 tp->snd_cwnd_used = tp->packets_out; 1635 1636 if (sysctl_tcp_slow_start_after_idle && 1637 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1638 !ca_ops->cong_control) 1639 tcp_cwnd_application_limited(sk); 1640 1641 /* The following conditions together indicate the starvation 1642 * is caused by insufficient sender buffer: 1643 * 1) just sent some data (see tcp_write_xmit) 1644 * 2) not cwnd limited (this else condition) 1645 * 3) no more data to send (tcp_write_queue_empty()) 1646 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1647 */ 1648 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1649 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1650 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1651 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1652 } 1653 } 1654 1655 /* Minshall's variant of the Nagle send check. */ 1656 static bool tcp_minshall_check(const struct tcp_sock *tp) 1657 { 1658 return after(tp->snd_sml, tp->snd_una) && 1659 !after(tp->snd_sml, tp->snd_nxt); 1660 } 1661 1662 /* Update snd_sml if this skb is under mss 1663 * Note that a TSO packet might end with a sub-mss segment 1664 * The test is really : 1665 * if ((skb->len % mss) != 0) 1666 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1667 * But we can avoid doing the divide again given we already have 1668 * skb_pcount = skb->len / mss_now 1669 */ 1670 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1671 const struct sk_buff *skb) 1672 { 1673 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1674 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1675 } 1676 1677 /* Return false, if packet can be sent now without violation Nagle's rules: 1678 * 1. It is full sized. (provided by caller in %partial bool) 1679 * 2. Or it contains FIN. (already checked by caller) 1680 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1681 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1682 * With Minshall's modification: all sent small packets are ACKed. 1683 */ 1684 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1685 int nonagle) 1686 { 1687 return partial && 1688 ((nonagle & TCP_NAGLE_CORK) || 1689 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1690 } 1691 1692 /* Return how many segs we'd like on a TSO packet, 1693 * to send one TSO packet per ms 1694 */ 1695 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1696 int min_tso_segs) 1697 { 1698 u32 bytes, segs; 1699 1700 bytes = min(sk->sk_pacing_rate >> 10, 1701 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1702 1703 /* Goal is to send at least one packet per ms, 1704 * not one big TSO packet every 100 ms. 1705 * This preserves ACK clocking and is consistent 1706 * with tcp_tso_should_defer() heuristic. 1707 */ 1708 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1709 1710 return min_t(u32, segs, sk->sk_gso_max_segs); 1711 } 1712 EXPORT_SYMBOL(tcp_tso_autosize); 1713 1714 /* Return the number of segments we want in the skb we are transmitting. 1715 * See if congestion control module wants to decide; otherwise, autosize. 1716 */ 1717 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1718 { 1719 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1720 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1721 1722 return tso_segs ? : 1723 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1724 } 1725 1726 /* Returns the portion of skb which can be sent right away */ 1727 static unsigned int tcp_mss_split_point(const struct sock *sk, 1728 const struct sk_buff *skb, 1729 unsigned int mss_now, 1730 unsigned int max_segs, 1731 int nonagle) 1732 { 1733 const struct tcp_sock *tp = tcp_sk(sk); 1734 u32 partial, needed, window, max_len; 1735 1736 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1737 max_len = mss_now * max_segs; 1738 1739 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1740 return max_len; 1741 1742 needed = min(skb->len, window); 1743 1744 if (max_len <= needed) 1745 return max_len; 1746 1747 partial = needed % mss_now; 1748 /* If last segment is not a full MSS, check if Nagle rules allow us 1749 * to include this last segment in this skb. 1750 * Otherwise, we'll split the skb at last MSS boundary 1751 */ 1752 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1753 return needed - partial; 1754 1755 return needed; 1756 } 1757 1758 /* Can at least one segment of SKB be sent right now, according to the 1759 * congestion window rules? If so, return how many segments are allowed. 1760 */ 1761 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1762 const struct sk_buff *skb) 1763 { 1764 u32 in_flight, cwnd, halfcwnd; 1765 1766 /* Don't be strict about the congestion window for the final FIN. */ 1767 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1768 tcp_skb_pcount(skb) == 1) 1769 return 1; 1770 1771 in_flight = tcp_packets_in_flight(tp); 1772 cwnd = tp->snd_cwnd; 1773 if (in_flight >= cwnd) 1774 return 0; 1775 1776 /* For better scheduling, ensure we have at least 1777 * 2 GSO packets in flight. 1778 */ 1779 halfcwnd = max(cwnd >> 1, 1U); 1780 return min(halfcwnd, cwnd - in_flight); 1781 } 1782 1783 /* Initialize TSO state of a skb. 1784 * This must be invoked the first time we consider transmitting 1785 * SKB onto the wire. 1786 */ 1787 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1788 { 1789 int tso_segs = tcp_skb_pcount(skb); 1790 1791 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1792 tcp_set_skb_tso_segs(skb, mss_now); 1793 tso_segs = tcp_skb_pcount(skb); 1794 } 1795 return tso_segs; 1796 } 1797 1798 1799 /* Return true if the Nagle test allows this packet to be 1800 * sent now. 1801 */ 1802 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1803 unsigned int cur_mss, int nonagle) 1804 { 1805 /* Nagle rule does not apply to frames, which sit in the middle of the 1806 * write_queue (they have no chances to get new data). 1807 * 1808 * This is implemented in the callers, where they modify the 'nonagle' 1809 * argument based upon the location of SKB in the send queue. 1810 */ 1811 if (nonagle & TCP_NAGLE_PUSH) 1812 return true; 1813 1814 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1815 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1816 return true; 1817 1818 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1819 return true; 1820 1821 return false; 1822 } 1823 1824 /* Does at least the first segment of SKB fit into the send window? */ 1825 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1826 const struct sk_buff *skb, 1827 unsigned int cur_mss) 1828 { 1829 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1830 1831 if (skb->len > cur_mss) 1832 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1833 1834 return !after(end_seq, tcp_wnd_end(tp)); 1835 } 1836 1837 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1838 * which is put after SKB on the list. It is very much like 1839 * tcp_fragment() except that it may make several kinds of assumptions 1840 * in order to speed up the splitting operation. In particular, we 1841 * know that all the data is in scatter-gather pages, and that the 1842 * packet has never been sent out before (and thus is not cloned). 1843 */ 1844 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1845 struct sk_buff *skb, unsigned int len, 1846 unsigned int mss_now, gfp_t gfp) 1847 { 1848 struct sk_buff *buff; 1849 int nlen = skb->len - len; 1850 u8 flags; 1851 1852 /* All of a TSO frame must be composed of paged data. */ 1853 if (skb->len != skb->data_len) 1854 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1855 1856 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1857 if (unlikely(!buff)) 1858 return -ENOMEM; 1859 1860 sk->sk_wmem_queued += buff->truesize; 1861 sk_mem_charge(sk, buff->truesize); 1862 buff->truesize += nlen; 1863 skb->truesize -= nlen; 1864 1865 /* Correct the sequence numbers. */ 1866 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1867 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1868 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1869 1870 /* PSH and FIN should only be set in the second packet. */ 1871 flags = TCP_SKB_CB(skb)->tcp_flags; 1872 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1873 TCP_SKB_CB(buff)->tcp_flags = flags; 1874 1875 /* This packet was never sent out yet, so no SACK bits. */ 1876 TCP_SKB_CB(buff)->sacked = 0; 1877 1878 tcp_skb_fragment_eor(skb, buff); 1879 1880 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1881 skb_split(skb, buff, len); 1882 tcp_fragment_tstamp(skb, buff); 1883 1884 /* Fix up tso_factor for both original and new SKB. */ 1885 tcp_set_skb_tso_segs(skb, mss_now); 1886 tcp_set_skb_tso_segs(buff, mss_now); 1887 1888 /* Link BUFF into the send queue. */ 1889 __skb_header_release(buff); 1890 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1891 1892 return 0; 1893 } 1894 1895 /* Try to defer sending, if possible, in order to minimize the amount 1896 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1897 * 1898 * This algorithm is from John Heffner. 1899 */ 1900 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1901 bool *is_cwnd_limited, u32 max_segs) 1902 { 1903 const struct inet_connection_sock *icsk = inet_csk(sk); 1904 u32 age, send_win, cong_win, limit, in_flight; 1905 struct tcp_sock *tp = tcp_sk(sk); 1906 struct sk_buff *head; 1907 int win_divisor; 1908 1909 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1910 goto send_now; 1911 1912 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1913 goto send_now; 1914 1915 /* Avoid bursty behavior by allowing defer 1916 * only if the last write was recent. 1917 */ 1918 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1919 goto send_now; 1920 1921 in_flight = tcp_packets_in_flight(tp); 1922 1923 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1924 1925 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1926 1927 /* From in_flight test above, we know that cwnd > in_flight. */ 1928 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1929 1930 limit = min(send_win, cong_win); 1931 1932 /* If a full-sized TSO skb can be sent, do it. */ 1933 if (limit >= max_segs * tp->mss_cache) 1934 goto send_now; 1935 1936 /* Middle in queue won't get any more data, full sendable already? */ 1937 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1938 goto send_now; 1939 1940 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1941 if (win_divisor) { 1942 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1943 1944 /* If at least some fraction of a window is available, 1945 * just use it. 1946 */ 1947 chunk /= win_divisor; 1948 if (limit >= chunk) 1949 goto send_now; 1950 } else { 1951 /* Different approach, try not to defer past a single 1952 * ACK. Receiver should ACK every other full sized 1953 * frame, so if we have space for more than 3 frames 1954 * then send now. 1955 */ 1956 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1957 goto send_now; 1958 } 1959 1960 /* TODO : use tsorted_sent_queue ? */ 1961 head = tcp_rtx_queue_head(sk); 1962 if (!head) 1963 goto send_now; 1964 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1965 /* If next ACK is likely to come too late (half srtt), do not defer */ 1966 if (age < (tp->srtt_us >> 4)) 1967 goto send_now; 1968 1969 /* Ok, it looks like it is advisable to defer. */ 1970 1971 if (cong_win < send_win && cong_win <= skb->len) 1972 *is_cwnd_limited = true; 1973 1974 return true; 1975 1976 send_now: 1977 return false; 1978 } 1979 1980 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1981 { 1982 struct inet_connection_sock *icsk = inet_csk(sk); 1983 struct tcp_sock *tp = tcp_sk(sk); 1984 struct net *net = sock_net(sk); 1985 u32 interval; 1986 s32 delta; 1987 1988 interval = net->ipv4.sysctl_tcp_probe_interval; 1989 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1990 if (unlikely(delta >= interval * HZ)) { 1991 int mss = tcp_current_mss(sk); 1992 1993 /* Update current search range */ 1994 icsk->icsk_mtup.probe_size = 0; 1995 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1996 sizeof(struct tcphdr) + 1997 icsk->icsk_af_ops->net_header_len; 1998 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1999 2000 /* Update probe time stamp */ 2001 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2002 } 2003 } 2004 2005 /* Create a new MTU probe if we are ready. 2006 * MTU probe is regularly attempting to increase the path MTU by 2007 * deliberately sending larger packets. This discovers routing 2008 * changes resulting in larger path MTUs. 2009 * 2010 * Returns 0 if we should wait to probe (no cwnd available), 2011 * 1 if a probe was sent, 2012 * -1 otherwise 2013 */ 2014 static int tcp_mtu_probe(struct sock *sk) 2015 { 2016 struct inet_connection_sock *icsk = inet_csk(sk); 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 struct sk_buff *skb, *nskb, *next; 2019 struct net *net = sock_net(sk); 2020 int probe_size; 2021 int size_needed; 2022 int copy, len; 2023 int mss_now; 2024 int interval; 2025 2026 /* Not currently probing/verifying, 2027 * not in recovery, 2028 * have enough cwnd, and 2029 * not SACKing (the variable headers throw things off) 2030 */ 2031 if (likely(!icsk->icsk_mtup.enabled || 2032 icsk->icsk_mtup.probe_size || 2033 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2034 tp->snd_cwnd < 11 || 2035 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2036 return -1; 2037 2038 /* Use binary search for probe_size between tcp_mss_base, 2039 * and current mss_clamp. if (search_high - search_low) 2040 * smaller than a threshold, backoff from probing. 2041 */ 2042 mss_now = tcp_current_mss(sk); 2043 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2044 icsk->icsk_mtup.search_low) >> 1); 2045 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2046 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2047 /* When misfortune happens, we are reprobing actively, 2048 * and then reprobe timer has expired. We stick with current 2049 * probing process by not resetting search range to its orignal. 2050 */ 2051 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2052 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2053 /* Check whether enough time has elaplased for 2054 * another round of probing. 2055 */ 2056 tcp_mtu_check_reprobe(sk); 2057 return -1; 2058 } 2059 2060 /* Have enough data in the send queue to probe? */ 2061 if (tp->write_seq - tp->snd_nxt < size_needed) 2062 return -1; 2063 2064 if (tp->snd_wnd < size_needed) 2065 return -1; 2066 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2067 return 0; 2068 2069 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2070 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2071 if (!tcp_packets_in_flight(tp)) 2072 return -1; 2073 else 2074 return 0; 2075 } 2076 2077 /* We're allowed to probe. Build it now. */ 2078 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2079 if (!nskb) 2080 return -1; 2081 sk->sk_wmem_queued += nskb->truesize; 2082 sk_mem_charge(sk, nskb->truesize); 2083 2084 skb = tcp_send_head(sk); 2085 2086 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2087 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2088 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2089 TCP_SKB_CB(nskb)->sacked = 0; 2090 nskb->csum = 0; 2091 nskb->ip_summed = skb->ip_summed; 2092 2093 tcp_insert_write_queue_before(nskb, skb, sk); 2094 2095 len = 0; 2096 tcp_for_write_queue_from_safe(skb, next, sk) { 2097 copy = min_t(int, skb->len, probe_size - len); 2098 if (nskb->ip_summed) { 2099 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2100 } else { 2101 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2102 skb_put(nskb, copy), 2103 copy, 0); 2104 nskb->csum = csum_block_add(nskb->csum, csum, len); 2105 } 2106 2107 if (skb->len <= copy) { 2108 /* We've eaten all the data from this skb. 2109 * Throw it away. */ 2110 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2111 tcp_unlink_write_queue(skb, sk); 2112 sk_wmem_free_skb(sk, skb); 2113 } else { 2114 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2115 ~(TCPHDR_FIN|TCPHDR_PSH); 2116 if (!skb_shinfo(skb)->nr_frags) { 2117 skb_pull(skb, copy); 2118 if (skb->ip_summed != CHECKSUM_PARTIAL) 2119 skb->csum = csum_partial(skb->data, 2120 skb->len, 0); 2121 } else { 2122 __pskb_trim_head(skb, copy); 2123 tcp_set_skb_tso_segs(skb, mss_now); 2124 } 2125 TCP_SKB_CB(skb)->seq += copy; 2126 } 2127 2128 len += copy; 2129 2130 if (len >= probe_size) 2131 break; 2132 } 2133 tcp_init_tso_segs(nskb, nskb->len); 2134 2135 /* We're ready to send. If this fails, the probe will 2136 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2137 */ 2138 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2139 /* Decrement cwnd here because we are sending 2140 * effectively two packets. */ 2141 tp->snd_cwnd--; 2142 tcp_event_new_data_sent(sk, nskb); 2143 2144 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2145 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2146 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2147 2148 return 1; 2149 } 2150 2151 return -1; 2152 } 2153 2154 static bool tcp_pacing_check(const struct sock *sk) 2155 { 2156 return tcp_needs_internal_pacing(sk) && 2157 hrtimer_active(&tcp_sk(sk)->pacing_timer); 2158 } 2159 2160 /* TCP Small Queues : 2161 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2162 * (These limits are doubled for retransmits) 2163 * This allows for : 2164 * - better RTT estimation and ACK scheduling 2165 * - faster recovery 2166 * - high rates 2167 * Alas, some drivers / subsystems require a fair amount 2168 * of queued bytes to ensure line rate. 2169 * One example is wifi aggregation (802.11 AMPDU) 2170 */ 2171 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2172 unsigned int factor) 2173 { 2174 unsigned int limit; 2175 2176 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2177 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2178 limit <<= factor; 2179 2180 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2181 /* Always send skb if rtx queue is empty. 2182 * No need to wait for TX completion to call us back, 2183 * after softirq/tasklet schedule. 2184 * This helps when TX completions are delayed too much. 2185 */ 2186 if (tcp_rtx_queue_empty(sk)) 2187 return false; 2188 2189 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2190 /* It is possible TX completion already happened 2191 * before we set TSQ_THROTTLED, so we must 2192 * test again the condition. 2193 */ 2194 smp_mb__after_atomic(); 2195 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2196 return true; 2197 } 2198 return false; 2199 } 2200 2201 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2202 { 2203 const u32 now = tcp_jiffies32; 2204 enum tcp_chrono old = tp->chrono_type; 2205 2206 if (old > TCP_CHRONO_UNSPEC) 2207 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2208 tp->chrono_start = now; 2209 tp->chrono_type = new; 2210 } 2211 2212 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2213 { 2214 struct tcp_sock *tp = tcp_sk(sk); 2215 2216 /* If there are multiple conditions worthy of tracking in a 2217 * chronograph then the highest priority enum takes precedence 2218 * over the other conditions. So that if something "more interesting" 2219 * starts happening, stop the previous chrono and start a new one. 2220 */ 2221 if (type > tp->chrono_type) 2222 tcp_chrono_set(tp, type); 2223 } 2224 2225 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2226 { 2227 struct tcp_sock *tp = tcp_sk(sk); 2228 2229 2230 /* There are multiple conditions worthy of tracking in a 2231 * chronograph, so that the highest priority enum takes 2232 * precedence over the other conditions (see tcp_chrono_start). 2233 * If a condition stops, we only stop chrono tracking if 2234 * it's the "most interesting" or current chrono we are 2235 * tracking and starts busy chrono if we have pending data. 2236 */ 2237 if (tcp_rtx_and_write_queues_empty(sk)) 2238 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2239 else if (type == tp->chrono_type) 2240 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2241 } 2242 2243 /* This routine writes packets to the network. It advances the 2244 * send_head. This happens as incoming acks open up the remote 2245 * window for us. 2246 * 2247 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2248 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2249 * account rare use of URG, this is not a big flaw. 2250 * 2251 * Send at most one packet when push_one > 0. Temporarily ignore 2252 * cwnd limit to force at most one packet out when push_one == 2. 2253 2254 * Returns true, if no segments are in flight and we have queued segments, 2255 * but cannot send anything now because of SWS or another problem. 2256 */ 2257 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2258 int push_one, gfp_t gfp) 2259 { 2260 struct tcp_sock *tp = tcp_sk(sk); 2261 struct sk_buff *skb; 2262 unsigned int tso_segs, sent_pkts; 2263 int cwnd_quota; 2264 int result; 2265 bool is_cwnd_limited = false, is_rwnd_limited = false; 2266 u32 max_segs; 2267 2268 sent_pkts = 0; 2269 2270 if (!push_one) { 2271 /* Do MTU probing. */ 2272 result = tcp_mtu_probe(sk); 2273 if (!result) { 2274 return false; 2275 } else if (result > 0) { 2276 sent_pkts = 1; 2277 } 2278 } 2279 2280 max_segs = tcp_tso_segs(sk, mss_now); 2281 tcp_mstamp_refresh(tp); 2282 while ((skb = tcp_send_head(sk))) { 2283 unsigned int limit; 2284 2285 if (tcp_pacing_check(sk)) 2286 break; 2287 2288 tso_segs = tcp_init_tso_segs(skb, mss_now); 2289 BUG_ON(!tso_segs); 2290 2291 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2292 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2293 tcp_update_skb_after_send(tp, skb); 2294 goto repair; /* Skip network transmission */ 2295 } 2296 2297 cwnd_quota = tcp_cwnd_test(tp, skb); 2298 if (!cwnd_quota) { 2299 if (push_one == 2) 2300 /* Force out a loss probe pkt. */ 2301 cwnd_quota = 1; 2302 else 2303 break; 2304 } 2305 2306 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2307 is_rwnd_limited = true; 2308 break; 2309 } 2310 2311 if (tso_segs == 1) { 2312 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2313 (tcp_skb_is_last(sk, skb) ? 2314 nonagle : TCP_NAGLE_PUSH)))) 2315 break; 2316 } else { 2317 if (!push_one && 2318 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2319 max_segs)) 2320 break; 2321 } 2322 2323 limit = mss_now; 2324 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2325 limit = tcp_mss_split_point(sk, skb, mss_now, 2326 min_t(unsigned int, 2327 cwnd_quota, 2328 max_segs), 2329 nonagle); 2330 2331 if (skb->len > limit && 2332 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2333 skb, limit, mss_now, gfp))) 2334 break; 2335 2336 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2337 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2338 if (tcp_small_queue_check(sk, skb, 0)) 2339 break; 2340 2341 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2342 break; 2343 2344 repair: 2345 /* Advance the send_head. This one is sent out. 2346 * This call will increment packets_out. 2347 */ 2348 tcp_event_new_data_sent(sk, skb); 2349 2350 tcp_minshall_update(tp, mss_now, skb); 2351 sent_pkts += tcp_skb_pcount(skb); 2352 2353 if (push_one) 2354 break; 2355 } 2356 2357 if (is_rwnd_limited) 2358 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2359 else 2360 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2361 2362 if (likely(sent_pkts)) { 2363 if (tcp_in_cwnd_reduction(sk)) 2364 tp->prr_out += sent_pkts; 2365 2366 /* Send one loss probe per tail loss episode. */ 2367 if (push_one != 2) 2368 tcp_schedule_loss_probe(sk); 2369 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2370 tcp_cwnd_validate(sk, is_cwnd_limited); 2371 return false; 2372 } 2373 return !tp->packets_out && !tcp_write_queue_empty(sk); 2374 } 2375 2376 bool tcp_schedule_loss_probe(struct sock *sk) 2377 { 2378 struct inet_connection_sock *icsk = inet_csk(sk); 2379 struct tcp_sock *tp = tcp_sk(sk); 2380 u32 timeout, rto_delta_us; 2381 2382 /* Don't do any loss probe on a Fast Open connection before 3WHS 2383 * finishes. 2384 */ 2385 if (tp->fastopen_rsk) 2386 return false; 2387 2388 /* Schedule a loss probe in 2*RTT for SACK capable connections 2389 * in Open state, that are either limited by cwnd or application. 2390 */ 2391 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) || 2392 !tp->packets_out || !tcp_is_sack(tp) || 2393 icsk->icsk_ca_state != TCP_CA_Open) 2394 return false; 2395 2396 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2397 !tcp_write_queue_empty(sk)) 2398 return false; 2399 2400 /* Probe timeout is 2*rtt. Add minimum RTO to account 2401 * for delayed ack when there's one outstanding packet. If no RTT 2402 * sample is available then probe after TCP_TIMEOUT_INIT. 2403 */ 2404 if (tp->srtt_us) { 2405 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2406 if (tp->packets_out == 1) 2407 timeout += TCP_RTO_MIN; 2408 else 2409 timeout += TCP_TIMEOUT_MIN; 2410 } else { 2411 timeout = TCP_TIMEOUT_INIT; 2412 } 2413 2414 /* If the RTO formula yields an earlier time, then use that time. */ 2415 rto_delta_us = tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2416 if (rto_delta_us > 0) 2417 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2418 2419 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2420 TCP_RTO_MAX); 2421 return true; 2422 } 2423 2424 /* Thanks to skb fast clones, we can detect if a prior transmit of 2425 * a packet is still in a qdisc or driver queue. 2426 * In this case, there is very little point doing a retransmit ! 2427 */ 2428 static bool skb_still_in_host_queue(const struct sock *sk, 2429 const struct sk_buff *skb) 2430 { 2431 if (unlikely(skb_fclone_busy(sk, skb))) { 2432 NET_INC_STATS(sock_net(sk), 2433 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2434 return true; 2435 } 2436 return false; 2437 } 2438 2439 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2440 * retransmit the last segment. 2441 */ 2442 void tcp_send_loss_probe(struct sock *sk) 2443 { 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 struct sk_buff *skb; 2446 int pcount; 2447 int mss = tcp_current_mss(sk); 2448 2449 skb = tcp_send_head(sk); 2450 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2451 pcount = tp->packets_out; 2452 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2453 if (tp->packets_out > pcount) 2454 goto probe_sent; 2455 goto rearm_timer; 2456 } 2457 skb = skb_rb_last(&sk->tcp_rtx_queue); 2458 2459 /* At most one outstanding TLP retransmission. */ 2460 if (tp->tlp_high_seq) 2461 goto rearm_timer; 2462 2463 /* Retransmit last segment. */ 2464 if (WARN_ON(!skb)) 2465 goto rearm_timer; 2466 2467 if (skb_still_in_host_queue(sk, skb)) 2468 goto rearm_timer; 2469 2470 pcount = tcp_skb_pcount(skb); 2471 if (WARN_ON(!pcount)) 2472 goto rearm_timer; 2473 2474 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2475 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2476 (pcount - 1) * mss, mss, 2477 GFP_ATOMIC))) 2478 goto rearm_timer; 2479 skb = skb_rb_next(skb); 2480 } 2481 2482 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2483 goto rearm_timer; 2484 2485 if (__tcp_retransmit_skb(sk, skb, 1)) 2486 goto rearm_timer; 2487 2488 /* Record snd_nxt for loss detection. */ 2489 tp->tlp_high_seq = tp->snd_nxt; 2490 2491 probe_sent: 2492 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2493 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2494 inet_csk(sk)->icsk_pending = 0; 2495 rearm_timer: 2496 tcp_rearm_rto(sk); 2497 } 2498 2499 /* Push out any pending frames which were held back due to 2500 * TCP_CORK or attempt at coalescing tiny packets. 2501 * The socket must be locked by the caller. 2502 */ 2503 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2504 int nonagle) 2505 { 2506 /* If we are closed, the bytes will have to remain here. 2507 * In time closedown will finish, we empty the write queue and 2508 * all will be happy. 2509 */ 2510 if (unlikely(sk->sk_state == TCP_CLOSE)) 2511 return; 2512 2513 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2514 sk_gfp_mask(sk, GFP_ATOMIC))) 2515 tcp_check_probe_timer(sk); 2516 } 2517 2518 /* Send _single_ skb sitting at the send head. This function requires 2519 * true push pending frames to setup probe timer etc. 2520 */ 2521 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2522 { 2523 struct sk_buff *skb = tcp_send_head(sk); 2524 2525 BUG_ON(!skb || skb->len < mss_now); 2526 2527 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2528 } 2529 2530 /* This function returns the amount that we can raise the 2531 * usable window based on the following constraints 2532 * 2533 * 1. The window can never be shrunk once it is offered (RFC 793) 2534 * 2. We limit memory per socket 2535 * 2536 * RFC 1122: 2537 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2538 * RECV.NEXT + RCV.WIN fixed until: 2539 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2540 * 2541 * i.e. don't raise the right edge of the window until you can raise 2542 * it at least MSS bytes. 2543 * 2544 * Unfortunately, the recommended algorithm breaks header prediction, 2545 * since header prediction assumes th->window stays fixed. 2546 * 2547 * Strictly speaking, keeping th->window fixed violates the receiver 2548 * side SWS prevention criteria. The problem is that under this rule 2549 * a stream of single byte packets will cause the right side of the 2550 * window to always advance by a single byte. 2551 * 2552 * Of course, if the sender implements sender side SWS prevention 2553 * then this will not be a problem. 2554 * 2555 * BSD seems to make the following compromise: 2556 * 2557 * If the free space is less than the 1/4 of the maximum 2558 * space available and the free space is less than 1/2 mss, 2559 * then set the window to 0. 2560 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2561 * Otherwise, just prevent the window from shrinking 2562 * and from being larger than the largest representable value. 2563 * 2564 * This prevents incremental opening of the window in the regime 2565 * where TCP is limited by the speed of the reader side taking 2566 * data out of the TCP receive queue. It does nothing about 2567 * those cases where the window is constrained on the sender side 2568 * because the pipeline is full. 2569 * 2570 * BSD also seems to "accidentally" limit itself to windows that are a 2571 * multiple of MSS, at least until the free space gets quite small. 2572 * This would appear to be a side effect of the mbuf implementation. 2573 * Combining these two algorithms results in the observed behavior 2574 * of having a fixed window size at almost all times. 2575 * 2576 * Below we obtain similar behavior by forcing the offered window to 2577 * a multiple of the mss when it is feasible to do so. 2578 * 2579 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2580 * Regular options like TIMESTAMP are taken into account. 2581 */ 2582 u32 __tcp_select_window(struct sock *sk) 2583 { 2584 struct inet_connection_sock *icsk = inet_csk(sk); 2585 struct tcp_sock *tp = tcp_sk(sk); 2586 /* MSS for the peer's data. Previous versions used mss_clamp 2587 * here. I don't know if the value based on our guesses 2588 * of peer's MSS is better for the performance. It's more correct 2589 * but may be worse for the performance because of rcv_mss 2590 * fluctuations. --SAW 1998/11/1 2591 */ 2592 int mss = icsk->icsk_ack.rcv_mss; 2593 int free_space = tcp_space(sk); 2594 int allowed_space = tcp_full_space(sk); 2595 int full_space = min_t(int, tp->window_clamp, allowed_space); 2596 int window; 2597 2598 if (unlikely(mss > full_space)) { 2599 mss = full_space; 2600 if (mss <= 0) 2601 return 0; 2602 } 2603 if (free_space < (full_space >> 1)) { 2604 icsk->icsk_ack.quick = 0; 2605 2606 if (tcp_under_memory_pressure(sk)) 2607 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2608 4U * tp->advmss); 2609 2610 /* free_space might become our new window, make sure we don't 2611 * increase it due to wscale. 2612 */ 2613 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2614 2615 /* if free space is less than mss estimate, or is below 1/16th 2616 * of the maximum allowed, try to move to zero-window, else 2617 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2618 * new incoming data is dropped due to memory limits. 2619 * With large window, mss test triggers way too late in order 2620 * to announce zero window in time before rmem limit kicks in. 2621 */ 2622 if (free_space < (allowed_space >> 4) || free_space < mss) 2623 return 0; 2624 } 2625 2626 if (free_space > tp->rcv_ssthresh) 2627 free_space = tp->rcv_ssthresh; 2628 2629 /* Don't do rounding if we are using window scaling, since the 2630 * scaled window will not line up with the MSS boundary anyway. 2631 */ 2632 if (tp->rx_opt.rcv_wscale) { 2633 window = free_space; 2634 2635 /* Advertise enough space so that it won't get scaled away. 2636 * Import case: prevent zero window announcement if 2637 * 1<<rcv_wscale > mss. 2638 */ 2639 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2640 } else { 2641 window = tp->rcv_wnd; 2642 /* Get the largest window that is a nice multiple of mss. 2643 * Window clamp already applied above. 2644 * If our current window offering is within 1 mss of the 2645 * free space we just keep it. This prevents the divide 2646 * and multiply from happening most of the time. 2647 * We also don't do any window rounding when the free space 2648 * is too small. 2649 */ 2650 if (window <= free_space - mss || window > free_space) 2651 window = rounddown(free_space, mss); 2652 else if (mss == full_space && 2653 free_space > window + (full_space >> 1)) 2654 window = free_space; 2655 } 2656 2657 return window; 2658 } 2659 2660 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2661 const struct sk_buff *next_skb) 2662 { 2663 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2664 const struct skb_shared_info *next_shinfo = 2665 skb_shinfo(next_skb); 2666 struct skb_shared_info *shinfo = skb_shinfo(skb); 2667 2668 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2669 shinfo->tskey = next_shinfo->tskey; 2670 TCP_SKB_CB(skb)->txstamp_ack |= 2671 TCP_SKB_CB(next_skb)->txstamp_ack; 2672 } 2673 } 2674 2675 /* Collapses two adjacent SKB's during retransmission. */ 2676 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2677 { 2678 struct tcp_sock *tp = tcp_sk(sk); 2679 struct sk_buff *next_skb = skb_rb_next(skb); 2680 int skb_size, next_skb_size; 2681 2682 skb_size = skb->len; 2683 next_skb_size = next_skb->len; 2684 2685 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2686 2687 if (next_skb_size) { 2688 if (next_skb_size <= skb_availroom(skb)) 2689 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2690 next_skb_size); 2691 else if (!skb_shift(skb, next_skb, next_skb_size)) 2692 return false; 2693 } 2694 tcp_highest_sack_combine(sk, next_skb, skb); 2695 2696 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2697 skb->ip_summed = CHECKSUM_PARTIAL; 2698 2699 if (skb->ip_summed != CHECKSUM_PARTIAL) 2700 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2701 2702 /* Update sequence range on original skb. */ 2703 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2704 2705 /* Merge over control information. This moves PSH/FIN etc. over */ 2706 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2707 2708 /* All done, get rid of second SKB and account for it so 2709 * packet counting does not break. 2710 */ 2711 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2712 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2713 2714 /* changed transmit queue under us so clear hints */ 2715 tcp_clear_retrans_hints_partial(tp); 2716 if (next_skb == tp->retransmit_skb_hint) 2717 tp->retransmit_skb_hint = skb; 2718 2719 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2720 2721 tcp_skb_collapse_tstamp(skb, next_skb); 2722 2723 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2724 return true; 2725 } 2726 2727 /* Check if coalescing SKBs is legal. */ 2728 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2729 { 2730 if (tcp_skb_pcount(skb) > 1) 2731 return false; 2732 if (skb_cloned(skb)) 2733 return false; 2734 /* Some heuristics for collapsing over SACK'd could be invented */ 2735 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2736 return false; 2737 2738 return true; 2739 } 2740 2741 /* Collapse packets in the retransmit queue to make to create 2742 * less packets on the wire. This is only done on retransmission. 2743 */ 2744 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2745 int space) 2746 { 2747 struct tcp_sock *tp = tcp_sk(sk); 2748 struct sk_buff *skb = to, *tmp; 2749 bool first = true; 2750 2751 if (!sysctl_tcp_retrans_collapse) 2752 return; 2753 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2754 return; 2755 2756 skb_rbtree_walk_from_safe(skb, tmp) { 2757 if (!tcp_can_collapse(sk, skb)) 2758 break; 2759 2760 if (!tcp_skb_can_collapse_to(to)) 2761 break; 2762 2763 space -= skb->len; 2764 2765 if (first) { 2766 first = false; 2767 continue; 2768 } 2769 2770 if (space < 0) 2771 break; 2772 2773 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2774 break; 2775 2776 if (!tcp_collapse_retrans(sk, to)) 2777 break; 2778 } 2779 } 2780 2781 /* This retransmits one SKB. Policy decisions and retransmit queue 2782 * state updates are done by the caller. Returns non-zero if an 2783 * error occurred which prevented the send. 2784 */ 2785 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2786 { 2787 struct inet_connection_sock *icsk = inet_csk(sk); 2788 struct tcp_sock *tp = tcp_sk(sk); 2789 unsigned int cur_mss; 2790 int diff, len, err; 2791 2792 2793 /* Inconclusive MTU probe */ 2794 if (icsk->icsk_mtup.probe_size) 2795 icsk->icsk_mtup.probe_size = 0; 2796 2797 /* Do not sent more than we queued. 1/4 is reserved for possible 2798 * copying overhead: fragmentation, tunneling, mangling etc. 2799 */ 2800 if (refcount_read(&sk->sk_wmem_alloc) > 2801 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2802 sk->sk_sndbuf)) 2803 return -EAGAIN; 2804 2805 if (skb_still_in_host_queue(sk, skb)) 2806 return -EBUSY; 2807 2808 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2809 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2810 BUG(); 2811 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2812 return -ENOMEM; 2813 } 2814 2815 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2816 return -EHOSTUNREACH; /* Routing failure or similar. */ 2817 2818 cur_mss = tcp_current_mss(sk); 2819 2820 /* If receiver has shrunk his window, and skb is out of 2821 * new window, do not retransmit it. The exception is the 2822 * case, when window is shrunk to zero. In this case 2823 * our retransmit serves as a zero window probe. 2824 */ 2825 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2826 TCP_SKB_CB(skb)->seq != tp->snd_una) 2827 return -EAGAIN; 2828 2829 len = cur_mss * segs; 2830 if (skb->len > len) { 2831 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2832 cur_mss, GFP_ATOMIC)) 2833 return -ENOMEM; /* We'll try again later. */ 2834 } else { 2835 if (skb_unclone(skb, GFP_ATOMIC)) 2836 return -ENOMEM; 2837 2838 diff = tcp_skb_pcount(skb); 2839 tcp_set_skb_tso_segs(skb, cur_mss); 2840 diff -= tcp_skb_pcount(skb); 2841 if (diff) 2842 tcp_adjust_pcount(sk, skb, diff); 2843 if (skb->len < cur_mss) 2844 tcp_retrans_try_collapse(sk, skb, cur_mss); 2845 } 2846 2847 /* RFC3168, section 6.1.1.1. ECN fallback */ 2848 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2849 tcp_ecn_clear_syn(sk, skb); 2850 2851 /* Update global and local TCP statistics. */ 2852 segs = tcp_skb_pcount(skb); 2853 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2854 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2855 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2856 tp->total_retrans += segs; 2857 2858 /* make sure skb->data is aligned on arches that require it 2859 * and check if ack-trimming & collapsing extended the headroom 2860 * beyond what csum_start can cover. 2861 */ 2862 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2863 skb_headroom(skb) >= 0xFFFF)) { 2864 struct sk_buff *nskb; 2865 2866 tcp_skb_tsorted_save(skb) { 2867 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2868 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2869 -ENOBUFS; 2870 } tcp_skb_tsorted_restore(skb); 2871 2872 if (!err) 2873 tcp_update_skb_after_send(tp, skb); 2874 } else { 2875 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2876 } 2877 2878 if (likely(!err)) { 2879 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2880 trace_tcp_retransmit_skb(sk, skb); 2881 } else if (err != -EBUSY) { 2882 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2883 } 2884 return err; 2885 } 2886 2887 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2888 { 2889 struct tcp_sock *tp = tcp_sk(sk); 2890 int err = __tcp_retransmit_skb(sk, skb, segs); 2891 2892 if (err == 0) { 2893 #if FASTRETRANS_DEBUG > 0 2894 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2895 net_dbg_ratelimited("retrans_out leaked\n"); 2896 } 2897 #endif 2898 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2899 tp->retrans_out += tcp_skb_pcount(skb); 2900 2901 /* Save stamp of the first retransmit. */ 2902 if (!tp->retrans_stamp) 2903 tp->retrans_stamp = tcp_skb_timestamp(skb); 2904 2905 } 2906 2907 if (tp->undo_retrans < 0) 2908 tp->undo_retrans = 0; 2909 tp->undo_retrans += tcp_skb_pcount(skb); 2910 return err; 2911 } 2912 2913 /* This gets called after a retransmit timeout, and the initially 2914 * retransmitted data is acknowledged. It tries to continue 2915 * resending the rest of the retransmit queue, until either 2916 * we've sent it all or the congestion window limit is reached. 2917 * If doing SACK, the first ACK which comes back for a timeout 2918 * based retransmit packet might feed us FACK information again. 2919 * If so, we use it to avoid unnecessarily retransmissions. 2920 */ 2921 void tcp_xmit_retransmit_queue(struct sock *sk) 2922 { 2923 const struct inet_connection_sock *icsk = inet_csk(sk); 2924 struct sk_buff *skb, *rtx_head = NULL, *hole = NULL; 2925 struct tcp_sock *tp = tcp_sk(sk); 2926 u32 max_segs; 2927 int mib_idx; 2928 2929 if (!tp->packets_out) 2930 return; 2931 2932 skb = tp->retransmit_skb_hint; 2933 if (!skb) { 2934 rtx_head = tcp_rtx_queue_head(sk); 2935 skb = rtx_head; 2936 } 2937 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2938 skb_rbtree_walk_from(skb) { 2939 __u8 sacked; 2940 int segs; 2941 2942 if (tcp_pacing_check(sk)) 2943 break; 2944 2945 /* we could do better than to assign each time */ 2946 if (!hole) 2947 tp->retransmit_skb_hint = skb; 2948 2949 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2950 if (segs <= 0) 2951 return; 2952 sacked = TCP_SKB_CB(skb)->sacked; 2953 /* In case tcp_shift_skb_data() have aggregated large skbs, 2954 * we need to make sure not sending too bigs TSO packets 2955 */ 2956 segs = min_t(int, segs, max_segs); 2957 2958 if (tp->retrans_out >= tp->lost_out) { 2959 break; 2960 } else if (!(sacked & TCPCB_LOST)) { 2961 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2962 hole = skb; 2963 continue; 2964 2965 } else { 2966 if (icsk->icsk_ca_state != TCP_CA_Loss) 2967 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2968 else 2969 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2970 } 2971 2972 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2973 continue; 2974 2975 if (tcp_small_queue_check(sk, skb, 1)) 2976 return; 2977 2978 if (tcp_retransmit_skb(sk, skb, segs)) 2979 return; 2980 2981 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2982 2983 if (tcp_in_cwnd_reduction(sk)) 2984 tp->prr_out += tcp_skb_pcount(skb); 2985 2986 if (skb == rtx_head && 2987 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 2988 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2989 inet_csk(sk)->icsk_rto, 2990 TCP_RTO_MAX); 2991 } 2992 } 2993 2994 /* We allow to exceed memory limits for FIN packets to expedite 2995 * connection tear down and (memory) recovery. 2996 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2997 * or even be forced to close flow without any FIN. 2998 * In general, we want to allow one skb per socket to avoid hangs 2999 * with edge trigger epoll() 3000 */ 3001 void sk_forced_mem_schedule(struct sock *sk, int size) 3002 { 3003 int amt; 3004 3005 if (size <= sk->sk_forward_alloc) 3006 return; 3007 amt = sk_mem_pages(size); 3008 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3009 sk_memory_allocated_add(sk, amt); 3010 3011 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3012 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3013 } 3014 3015 /* Send a FIN. The caller locks the socket for us. 3016 * We should try to send a FIN packet really hard, but eventually give up. 3017 */ 3018 void tcp_send_fin(struct sock *sk) 3019 { 3020 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3021 struct tcp_sock *tp = tcp_sk(sk); 3022 3023 /* Optimization, tack on the FIN if we have one skb in write queue and 3024 * this skb was not yet sent, or we are under memory pressure. 3025 * Note: in the latter case, FIN packet will be sent after a timeout, 3026 * as TCP stack thinks it has already been transmitted. 3027 */ 3028 if (!tskb && tcp_under_memory_pressure(sk)) 3029 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3030 3031 if (tskb) { 3032 coalesce: 3033 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3034 TCP_SKB_CB(tskb)->end_seq++; 3035 tp->write_seq++; 3036 if (tcp_write_queue_empty(sk)) { 3037 /* This means tskb was already sent. 3038 * Pretend we included the FIN on previous transmit. 3039 * We need to set tp->snd_nxt to the value it would have 3040 * if FIN had been sent. This is because retransmit path 3041 * does not change tp->snd_nxt. 3042 */ 3043 tp->snd_nxt++; 3044 return; 3045 } 3046 } else { 3047 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3048 if (unlikely(!skb)) { 3049 if (tskb) 3050 goto coalesce; 3051 return; 3052 } 3053 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3054 skb_reserve(skb, MAX_TCP_HEADER); 3055 sk_forced_mem_schedule(sk, skb->truesize); 3056 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3057 tcp_init_nondata_skb(skb, tp->write_seq, 3058 TCPHDR_ACK | TCPHDR_FIN); 3059 tcp_queue_skb(sk, skb); 3060 } 3061 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3062 } 3063 3064 /* We get here when a process closes a file descriptor (either due to 3065 * an explicit close() or as a byproduct of exit()'ing) and there 3066 * was unread data in the receive queue. This behavior is recommended 3067 * by RFC 2525, section 2.17. -DaveM 3068 */ 3069 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3070 { 3071 struct sk_buff *skb; 3072 3073 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3074 3075 /* NOTE: No TCP options attached and we never retransmit this. */ 3076 skb = alloc_skb(MAX_TCP_HEADER, priority); 3077 if (!skb) { 3078 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3079 return; 3080 } 3081 3082 /* Reserve space for headers and prepare control bits. */ 3083 skb_reserve(skb, MAX_TCP_HEADER); 3084 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3085 TCPHDR_ACK | TCPHDR_RST); 3086 tcp_mstamp_refresh(tcp_sk(sk)); 3087 /* Send it off. */ 3088 if (tcp_transmit_skb(sk, skb, 0, priority)) 3089 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3090 } 3091 3092 /* Send a crossed SYN-ACK during socket establishment. 3093 * WARNING: This routine must only be called when we have already sent 3094 * a SYN packet that crossed the incoming SYN that caused this routine 3095 * to get called. If this assumption fails then the initial rcv_wnd 3096 * and rcv_wscale values will not be correct. 3097 */ 3098 int tcp_send_synack(struct sock *sk) 3099 { 3100 struct sk_buff *skb; 3101 3102 skb = tcp_rtx_queue_head(sk); 3103 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3104 pr_err("%s: wrong queue state\n", __func__); 3105 return -EFAULT; 3106 } 3107 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3108 if (skb_cloned(skb)) { 3109 struct sk_buff *nskb; 3110 3111 tcp_skb_tsorted_save(skb) { 3112 nskb = skb_copy(skb, GFP_ATOMIC); 3113 } tcp_skb_tsorted_restore(skb); 3114 if (!nskb) 3115 return -ENOMEM; 3116 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3117 tcp_rtx_queue_unlink_and_free(skb, sk); 3118 __skb_header_release(nskb); 3119 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3120 sk->sk_wmem_queued += nskb->truesize; 3121 sk_mem_charge(sk, nskb->truesize); 3122 skb = nskb; 3123 } 3124 3125 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3126 tcp_ecn_send_synack(sk, skb); 3127 } 3128 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3129 } 3130 3131 /** 3132 * tcp_make_synack - Prepare a SYN-ACK. 3133 * sk: listener socket 3134 * dst: dst entry attached to the SYNACK 3135 * req: request_sock pointer 3136 * 3137 * Allocate one skb and build a SYNACK packet. 3138 * @dst is consumed : Caller should not use it again. 3139 */ 3140 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3141 struct request_sock *req, 3142 struct tcp_fastopen_cookie *foc, 3143 enum tcp_synack_type synack_type) 3144 { 3145 struct inet_request_sock *ireq = inet_rsk(req); 3146 const struct tcp_sock *tp = tcp_sk(sk); 3147 struct tcp_md5sig_key *md5 = NULL; 3148 struct tcp_out_options opts; 3149 struct sk_buff *skb; 3150 int tcp_header_size; 3151 struct tcphdr *th; 3152 int mss; 3153 3154 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3155 if (unlikely(!skb)) { 3156 dst_release(dst); 3157 return NULL; 3158 } 3159 /* Reserve space for headers. */ 3160 skb_reserve(skb, MAX_TCP_HEADER); 3161 3162 switch (synack_type) { 3163 case TCP_SYNACK_NORMAL: 3164 skb_set_owner_w(skb, req_to_sk(req)); 3165 break; 3166 case TCP_SYNACK_COOKIE: 3167 /* Under synflood, we do not attach skb to a socket, 3168 * to avoid false sharing. 3169 */ 3170 break; 3171 case TCP_SYNACK_FASTOPEN: 3172 /* sk is a const pointer, because we want to express multiple 3173 * cpu might call us concurrently. 3174 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3175 */ 3176 skb_set_owner_w(skb, (struct sock *)sk); 3177 break; 3178 } 3179 skb_dst_set(skb, dst); 3180 3181 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3182 3183 memset(&opts, 0, sizeof(opts)); 3184 #ifdef CONFIG_SYN_COOKIES 3185 if (unlikely(req->cookie_ts)) 3186 skb->skb_mstamp = cookie_init_timestamp(req); 3187 else 3188 #endif 3189 skb->skb_mstamp = tcp_clock_us(); 3190 3191 #ifdef CONFIG_TCP_MD5SIG 3192 rcu_read_lock(); 3193 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3194 #endif 3195 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3196 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3197 sizeof(*th); 3198 3199 skb_push(skb, tcp_header_size); 3200 skb_reset_transport_header(skb); 3201 3202 th = (struct tcphdr *)skb->data; 3203 memset(th, 0, sizeof(struct tcphdr)); 3204 th->syn = 1; 3205 th->ack = 1; 3206 tcp_ecn_make_synack(req, th); 3207 th->source = htons(ireq->ir_num); 3208 th->dest = ireq->ir_rmt_port; 3209 skb->mark = ireq->ir_mark; 3210 /* Setting of flags are superfluous here for callers (and ECE is 3211 * not even correctly set) 3212 */ 3213 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3214 TCPHDR_SYN | TCPHDR_ACK); 3215 3216 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3217 /* XXX data is queued and acked as is. No buffer/window check */ 3218 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3219 3220 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3221 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3222 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3223 th->doff = (tcp_header_size >> 2); 3224 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3225 3226 #ifdef CONFIG_TCP_MD5SIG 3227 /* Okay, we have all we need - do the md5 hash if needed */ 3228 if (md5) 3229 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3230 md5, req_to_sk(req), skb); 3231 rcu_read_unlock(); 3232 #endif 3233 3234 /* Do not fool tcpdump (if any), clean our debris */ 3235 skb->tstamp = 0; 3236 return skb; 3237 } 3238 EXPORT_SYMBOL(tcp_make_synack); 3239 3240 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3241 { 3242 struct inet_connection_sock *icsk = inet_csk(sk); 3243 const struct tcp_congestion_ops *ca; 3244 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3245 3246 if (ca_key == TCP_CA_UNSPEC) 3247 return; 3248 3249 rcu_read_lock(); 3250 ca = tcp_ca_find_key(ca_key); 3251 if (likely(ca && try_module_get(ca->owner))) { 3252 module_put(icsk->icsk_ca_ops->owner); 3253 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3254 icsk->icsk_ca_ops = ca; 3255 } 3256 rcu_read_unlock(); 3257 } 3258 3259 /* Do all connect socket setups that can be done AF independent. */ 3260 static void tcp_connect_init(struct sock *sk) 3261 { 3262 const struct dst_entry *dst = __sk_dst_get(sk); 3263 struct tcp_sock *tp = tcp_sk(sk); 3264 __u8 rcv_wscale; 3265 u32 rcv_wnd; 3266 3267 /* We'll fix this up when we get a response from the other end. 3268 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3269 */ 3270 tp->tcp_header_len = sizeof(struct tcphdr); 3271 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3272 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3273 3274 #ifdef CONFIG_TCP_MD5SIG 3275 if (tp->af_specific->md5_lookup(sk, sk)) 3276 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3277 #endif 3278 3279 /* If user gave his TCP_MAXSEG, record it to clamp */ 3280 if (tp->rx_opt.user_mss) 3281 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3282 tp->max_window = 0; 3283 tcp_mtup_init(sk); 3284 tcp_sync_mss(sk, dst_mtu(dst)); 3285 3286 tcp_ca_dst_init(sk, dst); 3287 3288 if (!tp->window_clamp) 3289 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3290 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3291 3292 tcp_initialize_rcv_mss(sk); 3293 3294 /* limit the window selection if the user enforce a smaller rx buffer */ 3295 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3296 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3297 tp->window_clamp = tcp_full_space(sk); 3298 3299 rcv_wnd = tcp_rwnd_init_bpf(sk); 3300 if (rcv_wnd == 0) 3301 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3302 3303 tcp_select_initial_window(tcp_full_space(sk), 3304 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3305 &tp->rcv_wnd, 3306 &tp->window_clamp, 3307 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3308 &rcv_wscale, 3309 rcv_wnd); 3310 3311 tp->rx_opt.rcv_wscale = rcv_wscale; 3312 tp->rcv_ssthresh = tp->rcv_wnd; 3313 3314 sk->sk_err = 0; 3315 sock_reset_flag(sk, SOCK_DONE); 3316 tp->snd_wnd = 0; 3317 tcp_init_wl(tp, 0); 3318 tp->snd_una = tp->write_seq; 3319 tp->snd_sml = tp->write_seq; 3320 tp->snd_up = tp->write_seq; 3321 tp->snd_nxt = tp->write_seq; 3322 3323 if (likely(!tp->repair)) 3324 tp->rcv_nxt = 0; 3325 else 3326 tp->rcv_tstamp = tcp_jiffies32; 3327 tp->rcv_wup = tp->rcv_nxt; 3328 tp->copied_seq = tp->rcv_nxt; 3329 3330 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3331 inet_csk(sk)->icsk_retransmits = 0; 3332 tcp_clear_retrans(tp); 3333 } 3334 3335 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3336 { 3337 struct tcp_sock *tp = tcp_sk(sk); 3338 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3339 3340 tcb->end_seq += skb->len; 3341 __skb_header_release(skb); 3342 sk->sk_wmem_queued += skb->truesize; 3343 sk_mem_charge(sk, skb->truesize); 3344 tp->write_seq = tcb->end_seq; 3345 tp->packets_out += tcp_skb_pcount(skb); 3346 } 3347 3348 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3349 * queue a data-only packet after the regular SYN, such that regular SYNs 3350 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3351 * only the SYN sequence, the data are retransmitted in the first ACK. 3352 * If cookie is not cached or other error occurs, falls back to send a 3353 * regular SYN with Fast Open cookie request option. 3354 */ 3355 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3356 { 3357 struct tcp_sock *tp = tcp_sk(sk); 3358 struct tcp_fastopen_request *fo = tp->fastopen_req; 3359 int space, err = 0; 3360 struct sk_buff *syn_data; 3361 3362 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3363 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3364 goto fallback; 3365 3366 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3367 * user-MSS. Reserve maximum option space for middleboxes that add 3368 * private TCP options. The cost is reduced data space in SYN :( 3369 */ 3370 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3371 3372 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3373 MAX_TCP_OPTION_SPACE; 3374 3375 space = min_t(size_t, space, fo->size); 3376 3377 /* limit to order-0 allocations */ 3378 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3379 3380 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3381 if (!syn_data) 3382 goto fallback; 3383 syn_data->ip_summed = CHECKSUM_PARTIAL; 3384 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3385 if (space) { 3386 int copied = copy_from_iter(skb_put(syn_data, space), space, 3387 &fo->data->msg_iter); 3388 if (unlikely(!copied)) { 3389 kfree_skb(syn_data); 3390 goto fallback; 3391 } 3392 if (copied != space) { 3393 skb_trim(syn_data, copied); 3394 space = copied; 3395 } 3396 } 3397 /* No more data pending in inet_wait_for_connect() */ 3398 if (space == fo->size) 3399 fo->data = NULL; 3400 fo->copied = space; 3401 3402 tcp_connect_queue_skb(sk, syn_data); 3403 if (syn_data->len) 3404 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3405 3406 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3407 3408 syn->skb_mstamp = syn_data->skb_mstamp; 3409 3410 /* Now full SYN+DATA was cloned and sent (or not), 3411 * remove the SYN from the original skb (syn_data) 3412 * we keep in write queue in case of a retransmit, as we 3413 * also have the SYN packet (with no data) in the same queue. 3414 */ 3415 TCP_SKB_CB(syn_data)->seq++; 3416 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3417 if (!err) { 3418 tp->syn_data = (fo->copied > 0); 3419 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3420 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3421 goto done; 3422 } 3423 3424 /* data was not sent, put it in write_queue */ 3425 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3426 tp->packets_out -= tcp_skb_pcount(syn_data); 3427 3428 fallback: 3429 /* Send a regular SYN with Fast Open cookie request option */ 3430 if (fo->cookie.len > 0) 3431 fo->cookie.len = 0; 3432 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3433 if (err) 3434 tp->syn_fastopen = 0; 3435 done: 3436 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3437 return err; 3438 } 3439 3440 /* Build a SYN and send it off. */ 3441 int tcp_connect(struct sock *sk) 3442 { 3443 struct tcp_sock *tp = tcp_sk(sk); 3444 struct sk_buff *buff; 3445 int err; 3446 3447 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB); 3448 3449 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3450 return -EHOSTUNREACH; /* Routing failure or similar. */ 3451 3452 tcp_connect_init(sk); 3453 3454 if (unlikely(tp->repair)) { 3455 tcp_finish_connect(sk, NULL); 3456 return 0; 3457 } 3458 3459 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3460 if (unlikely(!buff)) 3461 return -ENOBUFS; 3462 3463 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3464 tcp_mstamp_refresh(tp); 3465 tp->retrans_stamp = tcp_time_stamp(tp); 3466 tcp_connect_queue_skb(sk, buff); 3467 tcp_ecn_send_syn(sk, buff); 3468 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3469 3470 /* Send off SYN; include data in Fast Open. */ 3471 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3472 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3473 if (err == -ECONNREFUSED) 3474 return err; 3475 3476 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3477 * in order to make this packet get counted in tcpOutSegs. 3478 */ 3479 tp->snd_nxt = tp->write_seq; 3480 tp->pushed_seq = tp->write_seq; 3481 buff = tcp_send_head(sk); 3482 if (unlikely(buff)) { 3483 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3484 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3485 } 3486 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3487 3488 /* Timer for repeating the SYN until an answer. */ 3489 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3490 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3491 return 0; 3492 } 3493 EXPORT_SYMBOL(tcp_connect); 3494 3495 /* Send out a delayed ack, the caller does the policy checking 3496 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3497 * for details. 3498 */ 3499 void tcp_send_delayed_ack(struct sock *sk) 3500 { 3501 struct inet_connection_sock *icsk = inet_csk(sk); 3502 int ato = icsk->icsk_ack.ato; 3503 unsigned long timeout; 3504 3505 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3506 3507 if (ato > TCP_DELACK_MIN) { 3508 const struct tcp_sock *tp = tcp_sk(sk); 3509 int max_ato = HZ / 2; 3510 3511 if (icsk->icsk_ack.pingpong || 3512 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3513 max_ato = TCP_DELACK_MAX; 3514 3515 /* Slow path, intersegment interval is "high". */ 3516 3517 /* If some rtt estimate is known, use it to bound delayed ack. 3518 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3519 * directly. 3520 */ 3521 if (tp->srtt_us) { 3522 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3523 TCP_DELACK_MIN); 3524 3525 if (rtt < max_ato) 3526 max_ato = rtt; 3527 } 3528 3529 ato = min(ato, max_ato); 3530 } 3531 3532 /* Stay within the limit we were given */ 3533 timeout = jiffies + ato; 3534 3535 /* Use new timeout only if there wasn't a older one earlier. */ 3536 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3537 /* If delack timer was blocked or is about to expire, 3538 * send ACK now. 3539 */ 3540 if (icsk->icsk_ack.blocked || 3541 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3542 tcp_send_ack(sk); 3543 return; 3544 } 3545 3546 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3547 timeout = icsk->icsk_ack.timeout; 3548 } 3549 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3550 icsk->icsk_ack.timeout = timeout; 3551 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3552 } 3553 3554 /* This routine sends an ack and also updates the window. */ 3555 void tcp_send_ack(struct sock *sk) 3556 { 3557 struct sk_buff *buff; 3558 3559 /* If we have been reset, we may not send again. */ 3560 if (sk->sk_state == TCP_CLOSE) 3561 return; 3562 3563 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3564 3565 /* We are not putting this on the write queue, so 3566 * tcp_transmit_skb() will set the ownership to this 3567 * sock. 3568 */ 3569 buff = alloc_skb(MAX_TCP_HEADER, 3570 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3571 if (unlikely(!buff)) { 3572 inet_csk_schedule_ack(sk); 3573 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3574 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3575 TCP_DELACK_MAX, TCP_RTO_MAX); 3576 return; 3577 } 3578 3579 /* Reserve space for headers and prepare control bits. */ 3580 skb_reserve(buff, MAX_TCP_HEADER); 3581 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3582 3583 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3584 * too much. 3585 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3586 */ 3587 skb_set_tcp_pure_ack(buff); 3588 3589 /* Send it off, this clears delayed acks for us. */ 3590 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3591 } 3592 EXPORT_SYMBOL_GPL(tcp_send_ack); 3593 3594 /* This routine sends a packet with an out of date sequence 3595 * number. It assumes the other end will try to ack it. 3596 * 3597 * Question: what should we make while urgent mode? 3598 * 4.4BSD forces sending single byte of data. We cannot send 3599 * out of window data, because we have SND.NXT==SND.MAX... 3600 * 3601 * Current solution: to send TWO zero-length segments in urgent mode: 3602 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3603 * out-of-date with SND.UNA-1 to probe window. 3604 */ 3605 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3606 { 3607 struct tcp_sock *tp = tcp_sk(sk); 3608 struct sk_buff *skb; 3609 3610 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3611 skb = alloc_skb(MAX_TCP_HEADER, 3612 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3613 if (!skb) 3614 return -1; 3615 3616 /* Reserve space for headers and set control bits. */ 3617 skb_reserve(skb, MAX_TCP_HEADER); 3618 /* Use a previous sequence. This should cause the other 3619 * end to send an ack. Don't queue or clone SKB, just 3620 * send it. 3621 */ 3622 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3623 NET_INC_STATS(sock_net(sk), mib); 3624 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3625 } 3626 3627 /* Called from setsockopt( ... TCP_REPAIR ) */ 3628 void tcp_send_window_probe(struct sock *sk) 3629 { 3630 if (sk->sk_state == TCP_ESTABLISHED) { 3631 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3632 tcp_mstamp_refresh(tcp_sk(sk)); 3633 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3634 } 3635 } 3636 3637 /* Initiate keepalive or window probe from timer. */ 3638 int tcp_write_wakeup(struct sock *sk, int mib) 3639 { 3640 struct tcp_sock *tp = tcp_sk(sk); 3641 struct sk_buff *skb; 3642 3643 if (sk->sk_state == TCP_CLOSE) 3644 return -1; 3645 3646 skb = tcp_send_head(sk); 3647 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3648 int err; 3649 unsigned int mss = tcp_current_mss(sk); 3650 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3651 3652 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3653 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3654 3655 /* We are probing the opening of a window 3656 * but the window size is != 0 3657 * must have been a result SWS avoidance ( sender ) 3658 */ 3659 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3660 skb->len > mss) { 3661 seg_size = min(seg_size, mss); 3662 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3663 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3664 skb, seg_size, mss, GFP_ATOMIC)) 3665 return -1; 3666 } else if (!tcp_skb_pcount(skb)) 3667 tcp_set_skb_tso_segs(skb, mss); 3668 3669 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3670 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3671 if (!err) 3672 tcp_event_new_data_sent(sk, skb); 3673 return err; 3674 } else { 3675 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3676 tcp_xmit_probe_skb(sk, 1, mib); 3677 return tcp_xmit_probe_skb(sk, 0, mib); 3678 } 3679 } 3680 3681 /* A window probe timeout has occurred. If window is not closed send 3682 * a partial packet else a zero probe. 3683 */ 3684 void tcp_send_probe0(struct sock *sk) 3685 { 3686 struct inet_connection_sock *icsk = inet_csk(sk); 3687 struct tcp_sock *tp = tcp_sk(sk); 3688 struct net *net = sock_net(sk); 3689 unsigned long probe_max; 3690 int err; 3691 3692 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3693 3694 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3695 /* Cancel probe timer, if it is not required. */ 3696 icsk->icsk_probes_out = 0; 3697 icsk->icsk_backoff = 0; 3698 return; 3699 } 3700 3701 if (err <= 0) { 3702 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3703 icsk->icsk_backoff++; 3704 icsk->icsk_probes_out++; 3705 probe_max = TCP_RTO_MAX; 3706 } else { 3707 /* If packet was not sent due to local congestion, 3708 * do not backoff and do not remember icsk_probes_out. 3709 * Let local senders to fight for local resources. 3710 * 3711 * Use accumulated backoff yet. 3712 */ 3713 if (!icsk->icsk_probes_out) 3714 icsk->icsk_probes_out = 1; 3715 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3716 } 3717 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3718 tcp_probe0_when(sk, probe_max), 3719 TCP_RTO_MAX); 3720 } 3721 3722 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3723 { 3724 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3725 struct flowi fl; 3726 int res; 3727 3728 tcp_rsk(req)->txhash = net_tx_rndhash(); 3729 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3730 if (!res) { 3731 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3732 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3733 if (unlikely(tcp_passive_fastopen(sk))) 3734 tcp_sk(sk)->total_retrans++; 3735 } 3736 return res; 3737 } 3738 EXPORT_SYMBOL(tcp_rtx_synack); 3739