xref: /linux/net/ipv4/tcp_output.c (revision 83a37b3292f4aca799b355179ad6fbdd78a08e10)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 #include <trace/events/tcp.h>
46 
47 /* People can turn this off for buggy TCP's found in printers etc. */
48 int sysctl_tcp_retrans_collapse __read_mostly = 1;
49 
50 /* People can turn this on to work with those rare, broken TCPs that
51  * interpret the window field as a signed quantity.
52  */
53 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
54 
55 /* Default TSQ limit of four TSO segments */
56 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
57 
58 /* This limits the percentage of the congestion window which we
59  * will allow a single TSO frame to consume.  Building TSO frames
60  * which are too large can cause TCP streams to be bursty.
61  */
62 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
63 
64 /* By default, RFC2861 behavior.  */
65 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
66 
67 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
68 			   int push_one, gfp_t gfp);
69 
70 /* Account for new data that has been sent to the network. */
71 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
72 {
73 	struct inet_connection_sock *icsk = inet_csk(sk);
74 	struct tcp_sock *tp = tcp_sk(sk);
75 	unsigned int prior_packets = tp->packets_out;
76 
77 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
78 
79 	__skb_unlink(skb, &sk->sk_write_queue);
80 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
81 
82 	tp->packets_out += tcp_skb_pcount(skb);
83 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
84 		tcp_rearm_rto(sk);
85 
86 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
87 		      tcp_skb_pcount(skb));
88 }
89 
90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
91  * window scaling factor due to loss of precision.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102 	    (tp->rx_opt.wscale_ok &&
103 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 		return tp->snd_nxt;
105 	else
106 		return tcp_wnd_end(tp);
107 }
108 
109 /* Calculate mss to advertise in SYN segment.
110  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111  *
112  * 1. It is independent of path mtu.
113  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115  *    attached devices, because some buggy hosts are confused by
116  *    large MSS.
117  * 4. We do not make 3, we advertise MSS, calculated from first
118  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
119  *    This may be overridden via information stored in routing table.
120  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121  *    probably even Jumbo".
122  */
123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125 	struct tcp_sock *tp = tcp_sk(sk);
126 	const struct dst_entry *dst = __sk_dst_get(sk);
127 	int mss = tp->advmss;
128 
129 	if (dst) {
130 		unsigned int metric = dst_metric_advmss(dst);
131 
132 		if (metric < mss) {
133 			mss = metric;
134 			tp->advmss = mss;
135 		}
136 	}
137 
138 	return (__u16)mss;
139 }
140 
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142  * This is the first part of cwnd validation mechanism.
143  */
144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148 	u32 cwnd = tp->snd_cwnd;
149 
150 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151 
152 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
153 	restart_cwnd = min(restart_cwnd, cwnd);
154 
155 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156 		cwnd >>= 1;
157 	tp->snd_cwnd = max(cwnd, restart_cwnd);
158 	tp->snd_cwnd_stamp = tcp_jiffies32;
159 	tp->snd_cwnd_used = 0;
160 }
161 
162 /* Congestion state accounting after a packet has been sent. */
163 static void tcp_event_data_sent(struct tcp_sock *tp,
164 				struct sock *sk)
165 {
166 	struct inet_connection_sock *icsk = inet_csk(sk);
167 	const u32 now = tcp_jiffies32;
168 
169 	if (tcp_packets_in_flight(tp) == 0)
170 		tcp_ca_event(sk, CA_EVENT_TX_START);
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 		icsk->icsk_ack.pingpong = 1;
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
183 {
184 	tcp_dec_quickack_mode(sk, pkts);
185 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
186 }
187 
188 
189 u32 tcp_default_init_rwnd(u32 mss)
190 {
191 	/* Initial receive window should be twice of TCP_INIT_CWND to
192 	 * enable proper sending of new unsent data during fast recovery
193 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
194 	 * limit when mss is larger than 1460.
195 	 */
196 	u32 init_rwnd = TCP_INIT_CWND * 2;
197 
198 	if (mss > 1460)
199 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
200 	return init_rwnd;
201 }
202 
203 /* Determine a window scaling and initial window to offer.
204  * Based on the assumption that the given amount of space
205  * will be offered. Store the results in the tp structure.
206  * NOTE: for smooth operation initial space offering should
207  * be a multiple of mss if possible. We assume here that mss >= 1.
208  * This MUST be enforced by all callers.
209  */
210 void tcp_select_initial_window(int __space, __u32 mss,
211 			       __u32 *rcv_wnd, __u32 *window_clamp,
212 			       int wscale_ok, __u8 *rcv_wscale,
213 			       __u32 init_rcv_wnd)
214 {
215 	unsigned int space = (__space < 0 ? 0 : __space);
216 
217 	/* If no clamp set the clamp to the max possible scaled window */
218 	if (*window_clamp == 0)
219 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
220 	space = min(*window_clamp, space);
221 
222 	/* Quantize space offering to a multiple of mss if possible. */
223 	if (space > mss)
224 		space = rounddown(space, mss);
225 
226 	/* NOTE: offering an initial window larger than 32767
227 	 * will break some buggy TCP stacks. If the admin tells us
228 	 * it is likely we could be speaking with such a buggy stack
229 	 * we will truncate our initial window offering to 32K-1
230 	 * unless the remote has sent us a window scaling option,
231 	 * which we interpret as a sign the remote TCP is not
232 	 * misinterpreting the window field as a signed quantity.
233 	 */
234 	if (sysctl_tcp_workaround_signed_windows)
235 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
236 	else
237 		(*rcv_wnd) = space;
238 
239 	(*rcv_wscale) = 0;
240 	if (wscale_ok) {
241 		/* Set window scaling on max possible window */
242 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
243 		space = max_t(u32, space, sysctl_rmem_max);
244 		space = min_t(u32, space, *window_clamp);
245 		while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
246 			space >>= 1;
247 			(*rcv_wscale)++;
248 		}
249 	}
250 
251 	if (mss > (1 << *rcv_wscale)) {
252 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
253 			init_rcv_wnd = tcp_default_init_rwnd(mss);
254 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
255 	}
256 
257 	/* Set the clamp no higher than max representable value */
258 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
259 }
260 EXPORT_SYMBOL(tcp_select_initial_window);
261 
262 /* Chose a new window to advertise, update state in tcp_sock for the
263  * socket, and return result with RFC1323 scaling applied.  The return
264  * value can be stuffed directly into th->window for an outgoing
265  * frame.
266  */
267 static u16 tcp_select_window(struct sock *sk)
268 {
269 	struct tcp_sock *tp = tcp_sk(sk);
270 	u32 old_win = tp->rcv_wnd;
271 	u32 cur_win = tcp_receive_window(tp);
272 	u32 new_win = __tcp_select_window(sk);
273 
274 	/* Never shrink the offered window */
275 	if (new_win < cur_win) {
276 		/* Danger Will Robinson!
277 		 * Don't update rcv_wup/rcv_wnd here or else
278 		 * we will not be able to advertise a zero
279 		 * window in time.  --DaveM
280 		 *
281 		 * Relax Will Robinson.
282 		 */
283 		if (new_win == 0)
284 			NET_INC_STATS(sock_net(sk),
285 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
286 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
287 	}
288 	tp->rcv_wnd = new_win;
289 	tp->rcv_wup = tp->rcv_nxt;
290 
291 	/* Make sure we do not exceed the maximum possible
292 	 * scaled window.
293 	 */
294 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
295 		new_win = min(new_win, MAX_TCP_WINDOW);
296 	else
297 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
298 
299 	/* RFC1323 scaling applied */
300 	new_win >>= tp->rx_opt.rcv_wscale;
301 
302 	/* If we advertise zero window, disable fast path. */
303 	if (new_win == 0) {
304 		tp->pred_flags = 0;
305 		if (old_win)
306 			NET_INC_STATS(sock_net(sk),
307 				      LINUX_MIB_TCPTOZEROWINDOWADV);
308 	} else if (old_win == 0) {
309 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
310 	}
311 
312 	return new_win;
313 }
314 
315 /* Packet ECN state for a SYN-ACK */
316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317 {
318 	const struct tcp_sock *tp = tcp_sk(sk);
319 
320 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321 	if (!(tp->ecn_flags & TCP_ECN_OK))
322 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323 	else if (tcp_ca_needs_ecn(sk) ||
324 		 tcp_bpf_ca_needs_ecn(sk))
325 		INET_ECN_xmit(sk);
326 }
327 
328 /* Packet ECN state for a SYN.  */
329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
333 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
334 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
335 
336 	if (!use_ecn) {
337 		const struct dst_entry *dst = __sk_dst_get(sk);
338 
339 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 			use_ecn = true;
341 	}
342 
343 	tp->ecn_flags = 0;
344 
345 	if (use_ecn) {
346 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 		tp->ecn_flags = TCP_ECN_OK;
348 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
349 			INET_ECN_xmit(sk);
350 	}
351 }
352 
353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354 {
355 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
356 		/* tp->ecn_flags are cleared at a later point in time when
357 		 * SYN ACK is ultimatively being received.
358 		 */
359 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360 }
361 
362 static void
363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
364 {
365 	if (inet_rsk(req)->ecn_ok)
366 		th->ece = 1;
367 }
368 
369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
370  * be sent.
371  */
372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
373 			 struct tcphdr *th, int tcp_header_len)
374 {
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	if (tp->ecn_flags & TCP_ECN_OK) {
378 		/* Not-retransmitted data segment: set ECT and inject CWR. */
379 		if (skb->len != tcp_header_len &&
380 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
381 			INET_ECN_xmit(sk);
382 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
383 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
384 				th->cwr = 1;
385 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
386 			}
387 		} else if (!tcp_ca_needs_ecn(sk)) {
388 			/* ACK or retransmitted segment: clear ECT|CE */
389 			INET_ECN_dontxmit(sk);
390 		}
391 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
392 			th->ece = 1;
393 	}
394 }
395 
396 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
397  * auto increment end seqno.
398  */
399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
400 {
401 	skb->ip_summed = CHECKSUM_PARTIAL;
402 	skb->csum = 0;
403 
404 	TCP_SKB_CB(skb)->tcp_flags = flags;
405 	TCP_SKB_CB(skb)->sacked = 0;
406 
407 	tcp_skb_pcount_set(skb, 1);
408 
409 	TCP_SKB_CB(skb)->seq = seq;
410 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
411 		seq++;
412 	TCP_SKB_CB(skb)->end_seq = seq;
413 }
414 
415 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
416 {
417 	return tp->snd_una != tp->snd_up;
418 }
419 
420 #define OPTION_SACK_ADVERTISE	(1 << 0)
421 #define OPTION_TS		(1 << 1)
422 #define OPTION_MD5		(1 << 2)
423 #define OPTION_WSCALE		(1 << 3)
424 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
425 
426 struct tcp_out_options {
427 	u16 options;		/* bit field of OPTION_* */
428 	u16 mss;		/* 0 to disable */
429 	u8 ws;			/* window scale, 0 to disable */
430 	u8 num_sack_blocks;	/* number of SACK blocks to include */
431 	u8 hash_size;		/* bytes in hash_location */
432 	__u8 *hash_location;	/* temporary pointer, overloaded */
433 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
434 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
435 };
436 
437 /* Write previously computed TCP options to the packet.
438  *
439  * Beware: Something in the Internet is very sensitive to the ordering of
440  * TCP options, we learned this through the hard way, so be careful here.
441  * Luckily we can at least blame others for their non-compliance but from
442  * inter-operability perspective it seems that we're somewhat stuck with
443  * the ordering which we have been using if we want to keep working with
444  * those broken things (not that it currently hurts anybody as there isn't
445  * particular reason why the ordering would need to be changed).
446  *
447  * At least SACK_PERM as the first option is known to lead to a disaster
448  * (but it may well be that other scenarios fail similarly).
449  */
450 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
451 			      struct tcp_out_options *opts)
452 {
453 	u16 options = opts->options;	/* mungable copy */
454 
455 	if (unlikely(OPTION_MD5 & options)) {
456 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
457 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
458 		/* overload cookie hash location */
459 		opts->hash_location = (__u8 *)ptr;
460 		ptr += 4;
461 	}
462 
463 	if (unlikely(opts->mss)) {
464 		*ptr++ = htonl((TCPOPT_MSS << 24) |
465 			       (TCPOLEN_MSS << 16) |
466 			       opts->mss);
467 	}
468 
469 	if (likely(OPTION_TS & options)) {
470 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
471 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
472 				       (TCPOLEN_SACK_PERM << 16) |
473 				       (TCPOPT_TIMESTAMP << 8) |
474 				       TCPOLEN_TIMESTAMP);
475 			options &= ~OPTION_SACK_ADVERTISE;
476 		} else {
477 			*ptr++ = htonl((TCPOPT_NOP << 24) |
478 				       (TCPOPT_NOP << 16) |
479 				       (TCPOPT_TIMESTAMP << 8) |
480 				       TCPOLEN_TIMESTAMP);
481 		}
482 		*ptr++ = htonl(opts->tsval);
483 		*ptr++ = htonl(opts->tsecr);
484 	}
485 
486 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
487 		*ptr++ = htonl((TCPOPT_NOP << 24) |
488 			       (TCPOPT_NOP << 16) |
489 			       (TCPOPT_SACK_PERM << 8) |
490 			       TCPOLEN_SACK_PERM);
491 	}
492 
493 	if (unlikely(OPTION_WSCALE & options)) {
494 		*ptr++ = htonl((TCPOPT_NOP << 24) |
495 			       (TCPOPT_WINDOW << 16) |
496 			       (TCPOLEN_WINDOW << 8) |
497 			       opts->ws);
498 	}
499 
500 	if (unlikely(opts->num_sack_blocks)) {
501 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
502 			tp->duplicate_sack : tp->selective_acks;
503 		int this_sack;
504 
505 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
506 			       (TCPOPT_NOP  << 16) |
507 			       (TCPOPT_SACK <<  8) |
508 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
509 						     TCPOLEN_SACK_PERBLOCK)));
510 
511 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
512 		     ++this_sack) {
513 			*ptr++ = htonl(sp[this_sack].start_seq);
514 			*ptr++ = htonl(sp[this_sack].end_seq);
515 		}
516 
517 		tp->rx_opt.dsack = 0;
518 	}
519 
520 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
521 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
522 		u8 *p = (u8 *)ptr;
523 		u32 len; /* Fast Open option length */
524 
525 		if (foc->exp) {
526 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
527 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
528 				     TCPOPT_FASTOPEN_MAGIC);
529 			p += TCPOLEN_EXP_FASTOPEN_BASE;
530 		} else {
531 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
532 			*p++ = TCPOPT_FASTOPEN;
533 			*p++ = len;
534 		}
535 
536 		memcpy(p, foc->val, foc->len);
537 		if ((len & 3) == 2) {
538 			p[foc->len] = TCPOPT_NOP;
539 			p[foc->len + 1] = TCPOPT_NOP;
540 		}
541 		ptr += (len + 3) >> 2;
542 	}
543 }
544 
545 /* Compute TCP options for SYN packets. This is not the final
546  * network wire format yet.
547  */
548 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
549 				struct tcp_out_options *opts,
550 				struct tcp_md5sig_key **md5)
551 {
552 	struct tcp_sock *tp = tcp_sk(sk);
553 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
554 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
555 
556 #ifdef CONFIG_TCP_MD5SIG
557 	*md5 = tp->af_specific->md5_lookup(sk, sk);
558 	if (*md5) {
559 		opts->options |= OPTION_MD5;
560 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
561 	}
562 #else
563 	*md5 = NULL;
564 #endif
565 
566 	/* We always get an MSS option.  The option bytes which will be seen in
567 	 * normal data packets should timestamps be used, must be in the MSS
568 	 * advertised.  But we subtract them from tp->mss_cache so that
569 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
570 	 * fact here if necessary.  If we don't do this correctly, as a
571 	 * receiver we won't recognize data packets as being full sized when we
572 	 * should, and thus we won't abide by the delayed ACK rules correctly.
573 	 * SACKs don't matter, we never delay an ACK when we have any of those
574 	 * going out.  */
575 	opts->mss = tcp_advertise_mss(sk);
576 	remaining -= TCPOLEN_MSS_ALIGNED;
577 
578 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
579 		opts->options |= OPTION_TS;
580 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
581 		opts->tsecr = tp->rx_opt.ts_recent;
582 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
583 	}
584 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
585 		opts->ws = tp->rx_opt.rcv_wscale;
586 		opts->options |= OPTION_WSCALE;
587 		remaining -= TCPOLEN_WSCALE_ALIGNED;
588 	}
589 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
590 		opts->options |= OPTION_SACK_ADVERTISE;
591 		if (unlikely(!(OPTION_TS & opts->options)))
592 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
593 	}
594 
595 	if (fastopen && fastopen->cookie.len >= 0) {
596 		u32 need = fastopen->cookie.len;
597 
598 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
599 					       TCPOLEN_FASTOPEN_BASE;
600 		need = (need + 3) & ~3U;  /* Align to 32 bits */
601 		if (remaining >= need) {
602 			opts->options |= OPTION_FAST_OPEN_COOKIE;
603 			opts->fastopen_cookie = &fastopen->cookie;
604 			remaining -= need;
605 			tp->syn_fastopen = 1;
606 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
607 		}
608 	}
609 
610 	return MAX_TCP_OPTION_SPACE - remaining;
611 }
612 
613 /* Set up TCP options for SYN-ACKs. */
614 static unsigned int tcp_synack_options(struct request_sock *req,
615 				       unsigned int mss, struct sk_buff *skb,
616 				       struct tcp_out_options *opts,
617 				       const struct tcp_md5sig_key *md5,
618 				       struct tcp_fastopen_cookie *foc)
619 {
620 	struct inet_request_sock *ireq = inet_rsk(req);
621 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
622 
623 #ifdef CONFIG_TCP_MD5SIG
624 	if (md5) {
625 		opts->options |= OPTION_MD5;
626 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
627 
628 		/* We can't fit any SACK blocks in a packet with MD5 + TS
629 		 * options. There was discussion about disabling SACK
630 		 * rather than TS in order to fit in better with old,
631 		 * buggy kernels, but that was deemed to be unnecessary.
632 		 */
633 		ireq->tstamp_ok &= !ireq->sack_ok;
634 	}
635 #endif
636 
637 	/* We always send an MSS option. */
638 	opts->mss = mss;
639 	remaining -= TCPOLEN_MSS_ALIGNED;
640 
641 	if (likely(ireq->wscale_ok)) {
642 		opts->ws = ireq->rcv_wscale;
643 		opts->options |= OPTION_WSCALE;
644 		remaining -= TCPOLEN_WSCALE_ALIGNED;
645 	}
646 	if (likely(ireq->tstamp_ok)) {
647 		opts->options |= OPTION_TS;
648 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
649 		opts->tsecr = req->ts_recent;
650 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
651 	}
652 	if (likely(ireq->sack_ok)) {
653 		opts->options |= OPTION_SACK_ADVERTISE;
654 		if (unlikely(!ireq->tstamp_ok))
655 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
656 	}
657 	if (foc != NULL && foc->len >= 0) {
658 		u32 need = foc->len;
659 
660 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
661 				   TCPOLEN_FASTOPEN_BASE;
662 		need = (need + 3) & ~3U;  /* Align to 32 bits */
663 		if (remaining >= need) {
664 			opts->options |= OPTION_FAST_OPEN_COOKIE;
665 			opts->fastopen_cookie = foc;
666 			remaining -= need;
667 		}
668 	}
669 
670 	return MAX_TCP_OPTION_SPACE - remaining;
671 }
672 
673 /* Compute TCP options for ESTABLISHED sockets. This is not the
674  * final wire format yet.
675  */
676 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
677 					struct tcp_out_options *opts,
678 					struct tcp_md5sig_key **md5)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	unsigned int size = 0;
682 	unsigned int eff_sacks;
683 
684 	opts->options = 0;
685 
686 #ifdef CONFIG_TCP_MD5SIG
687 	*md5 = tp->af_specific->md5_lookup(sk, sk);
688 	if (unlikely(*md5)) {
689 		opts->options |= OPTION_MD5;
690 		size += TCPOLEN_MD5SIG_ALIGNED;
691 	}
692 #else
693 	*md5 = NULL;
694 #endif
695 
696 	if (likely(tp->rx_opt.tstamp_ok)) {
697 		opts->options |= OPTION_TS;
698 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
699 		opts->tsecr = tp->rx_opt.ts_recent;
700 		size += TCPOLEN_TSTAMP_ALIGNED;
701 	}
702 
703 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
704 	if (unlikely(eff_sacks)) {
705 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
706 		opts->num_sack_blocks =
707 			min_t(unsigned int, eff_sacks,
708 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
709 			      TCPOLEN_SACK_PERBLOCK);
710 		size += TCPOLEN_SACK_BASE_ALIGNED +
711 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
712 	}
713 
714 	return size;
715 }
716 
717 
718 /* TCP SMALL QUEUES (TSQ)
719  *
720  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
721  * to reduce RTT and bufferbloat.
722  * We do this using a special skb destructor (tcp_wfree).
723  *
724  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
725  * needs to be reallocated in a driver.
726  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
727  *
728  * Since transmit from skb destructor is forbidden, we use a tasklet
729  * to process all sockets that eventually need to send more skbs.
730  * We use one tasklet per cpu, with its own queue of sockets.
731  */
732 struct tsq_tasklet {
733 	struct tasklet_struct	tasklet;
734 	struct list_head	head; /* queue of tcp sockets */
735 };
736 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
737 
738 static void tcp_tsq_handler(struct sock *sk)
739 {
740 	if ((1 << sk->sk_state) &
741 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
742 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
743 		struct tcp_sock *tp = tcp_sk(sk);
744 
745 		if (tp->lost_out > tp->retrans_out &&
746 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
747 			tcp_xmit_retransmit_queue(sk);
748 
749 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
750 			       0, GFP_ATOMIC);
751 	}
752 }
753 /*
754  * One tasklet per cpu tries to send more skbs.
755  * We run in tasklet context but need to disable irqs when
756  * transferring tsq->head because tcp_wfree() might
757  * interrupt us (non NAPI drivers)
758  */
759 static void tcp_tasklet_func(unsigned long data)
760 {
761 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
762 	LIST_HEAD(list);
763 	unsigned long flags;
764 	struct list_head *q, *n;
765 	struct tcp_sock *tp;
766 	struct sock *sk;
767 
768 	local_irq_save(flags);
769 	list_splice_init(&tsq->head, &list);
770 	local_irq_restore(flags);
771 
772 	list_for_each_safe(q, n, &list) {
773 		tp = list_entry(q, struct tcp_sock, tsq_node);
774 		list_del(&tp->tsq_node);
775 
776 		sk = (struct sock *)tp;
777 		smp_mb__before_atomic();
778 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
779 
780 		if (!sk->sk_lock.owned &&
781 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
782 			bh_lock_sock(sk);
783 			if (!sock_owned_by_user(sk)) {
784 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
785 				tcp_tsq_handler(sk);
786 			}
787 			bh_unlock_sock(sk);
788 		}
789 
790 		sk_free(sk);
791 	}
792 }
793 
794 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
795 			  TCPF_WRITE_TIMER_DEFERRED |	\
796 			  TCPF_DELACK_TIMER_DEFERRED |	\
797 			  TCPF_MTU_REDUCED_DEFERRED)
798 /**
799  * tcp_release_cb - tcp release_sock() callback
800  * @sk: socket
801  *
802  * called from release_sock() to perform protocol dependent
803  * actions before socket release.
804  */
805 void tcp_release_cb(struct sock *sk)
806 {
807 	unsigned long flags, nflags;
808 
809 	/* perform an atomic operation only if at least one flag is set */
810 	do {
811 		flags = sk->sk_tsq_flags;
812 		if (!(flags & TCP_DEFERRED_ALL))
813 			return;
814 		nflags = flags & ~TCP_DEFERRED_ALL;
815 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
816 
817 	if (flags & TCPF_TSQ_DEFERRED)
818 		tcp_tsq_handler(sk);
819 
820 	/* Here begins the tricky part :
821 	 * We are called from release_sock() with :
822 	 * 1) BH disabled
823 	 * 2) sk_lock.slock spinlock held
824 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
825 	 *
826 	 * But following code is meant to be called from BH handlers,
827 	 * so we should keep BH disabled, but early release socket ownership
828 	 */
829 	sock_release_ownership(sk);
830 
831 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
832 		tcp_write_timer_handler(sk);
833 		__sock_put(sk);
834 	}
835 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
836 		tcp_delack_timer_handler(sk);
837 		__sock_put(sk);
838 	}
839 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
840 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
841 		__sock_put(sk);
842 	}
843 }
844 EXPORT_SYMBOL(tcp_release_cb);
845 
846 void __init tcp_tasklet_init(void)
847 {
848 	int i;
849 
850 	for_each_possible_cpu(i) {
851 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
852 
853 		INIT_LIST_HEAD(&tsq->head);
854 		tasklet_init(&tsq->tasklet,
855 			     tcp_tasklet_func,
856 			     (unsigned long)tsq);
857 	}
858 }
859 
860 /*
861  * Write buffer destructor automatically called from kfree_skb.
862  * We can't xmit new skbs from this context, as we might already
863  * hold qdisc lock.
864  */
865 void tcp_wfree(struct sk_buff *skb)
866 {
867 	struct sock *sk = skb->sk;
868 	struct tcp_sock *tp = tcp_sk(sk);
869 	unsigned long flags, nval, oval;
870 
871 	/* Keep one reference on sk_wmem_alloc.
872 	 * Will be released by sk_free() from here or tcp_tasklet_func()
873 	 */
874 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
875 
876 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
877 	 * Wait until our queues (qdisc + devices) are drained.
878 	 * This gives :
879 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
880 	 * - chance for incoming ACK (processed by another cpu maybe)
881 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
882 	 */
883 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
884 		goto out;
885 
886 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
887 		struct tsq_tasklet *tsq;
888 		bool empty;
889 
890 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
891 			goto out;
892 
893 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
894 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
895 		if (nval != oval)
896 			continue;
897 
898 		/* queue this socket to tasklet queue */
899 		local_irq_save(flags);
900 		tsq = this_cpu_ptr(&tsq_tasklet);
901 		empty = list_empty(&tsq->head);
902 		list_add(&tp->tsq_node, &tsq->head);
903 		if (empty)
904 			tasklet_schedule(&tsq->tasklet);
905 		local_irq_restore(flags);
906 		return;
907 	}
908 out:
909 	sk_free(sk);
910 }
911 
912 /* Note: Called under hard irq.
913  * We can not call TCP stack right away.
914  */
915 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
916 {
917 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
918 	struct sock *sk = (struct sock *)tp;
919 	unsigned long nval, oval;
920 
921 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
922 		struct tsq_tasklet *tsq;
923 		bool empty;
924 
925 		if (oval & TSQF_QUEUED)
926 			break;
927 
928 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
929 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
930 		if (nval != oval)
931 			continue;
932 
933 		if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
934 			break;
935 		/* queue this socket to tasklet queue */
936 		tsq = this_cpu_ptr(&tsq_tasklet);
937 		empty = list_empty(&tsq->head);
938 		list_add(&tp->tsq_node, &tsq->head);
939 		if (empty)
940 			tasklet_schedule(&tsq->tasklet);
941 		break;
942 	}
943 	return HRTIMER_NORESTART;
944 }
945 
946 /* BBR congestion control needs pacing.
947  * Same remark for SO_MAX_PACING_RATE.
948  * sch_fq packet scheduler is efficiently handling pacing,
949  * but is not always installed/used.
950  * Return true if TCP stack should pace packets itself.
951  */
952 static bool tcp_needs_internal_pacing(const struct sock *sk)
953 {
954 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
955 }
956 
957 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
958 {
959 	u64 len_ns;
960 	u32 rate;
961 
962 	if (!tcp_needs_internal_pacing(sk))
963 		return;
964 	rate = sk->sk_pacing_rate;
965 	if (!rate || rate == ~0U)
966 		return;
967 
968 	/* Should account for header sizes as sch_fq does,
969 	 * but lets make things simple.
970 	 */
971 	len_ns = (u64)skb->len * NSEC_PER_SEC;
972 	do_div(len_ns, rate);
973 	hrtimer_start(&tcp_sk(sk)->pacing_timer,
974 		      ktime_add_ns(ktime_get(), len_ns),
975 		      HRTIMER_MODE_ABS_PINNED);
976 }
977 
978 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
979 {
980 	skb->skb_mstamp = tp->tcp_mstamp;
981 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
982 }
983 
984 /* This routine actually transmits TCP packets queued in by
985  * tcp_do_sendmsg().  This is used by both the initial
986  * transmission and possible later retransmissions.
987  * All SKB's seen here are completely headerless.  It is our
988  * job to build the TCP header, and pass the packet down to
989  * IP so it can do the same plus pass the packet off to the
990  * device.
991  *
992  * We are working here with either a clone of the original
993  * SKB, or a fresh unique copy made by the retransmit engine.
994  */
995 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
996 			    gfp_t gfp_mask)
997 {
998 	const struct inet_connection_sock *icsk = inet_csk(sk);
999 	struct inet_sock *inet;
1000 	struct tcp_sock *tp;
1001 	struct tcp_skb_cb *tcb;
1002 	struct tcp_out_options opts;
1003 	unsigned int tcp_options_size, tcp_header_size;
1004 	struct sk_buff *oskb = NULL;
1005 	struct tcp_md5sig_key *md5;
1006 	struct tcphdr *th;
1007 	int err;
1008 
1009 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1010 	tp = tcp_sk(sk);
1011 
1012 	if (clone_it) {
1013 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1014 			- tp->snd_una;
1015 		oskb = skb;
1016 
1017 		tcp_skb_tsorted_save(oskb) {
1018 			if (unlikely(skb_cloned(oskb)))
1019 				skb = pskb_copy(oskb, gfp_mask);
1020 			else
1021 				skb = skb_clone(oskb, gfp_mask);
1022 		} tcp_skb_tsorted_restore(oskb);
1023 
1024 		if (unlikely(!skb))
1025 			return -ENOBUFS;
1026 	}
1027 	skb->skb_mstamp = tp->tcp_mstamp;
1028 
1029 	inet = inet_sk(sk);
1030 	tcb = TCP_SKB_CB(skb);
1031 	memset(&opts, 0, sizeof(opts));
1032 
1033 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1034 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1035 	else
1036 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1037 							   &md5);
1038 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1039 
1040 	/* if no packet is in qdisc/device queue, then allow XPS to select
1041 	 * another queue. We can be called from tcp_tsq_handler()
1042 	 * which holds one reference to sk_wmem_alloc.
1043 	 *
1044 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1045 	 * One way to get this would be to set skb->truesize = 2 on them.
1046 	 */
1047 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1048 
1049 	/* If we had to use memory reserve to allocate this skb,
1050 	 * this might cause drops if packet is looped back :
1051 	 * Other socket might not have SOCK_MEMALLOC.
1052 	 * Packets not looped back do not care about pfmemalloc.
1053 	 */
1054 	skb->pfmemalloc = 0;
1055 
1056 	skb_push(skb, tcp_header_size);
1057 	skb_reset_transport_header(skb);
1058 
1059 	skb_orphan(skb);
1060 	skb->sk = sk;
1061 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1062 	skb_set_hash_from_sk(skb, sk);
1063 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1064 
1065 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1066 
1067 	/* Build TCP header and checksum it. */
1068 	th = (struct tcphdr *)skb->data;
1069 	th->source		= inet->inet_sport;
1070 	th->dest		= inet->inet_dport;
1071 	th->seq			= htonl(tcb->seq);
1072 	th->ack_seq		= htonl(tp->rcv_nxt);
1073 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1074 					tcb->tcp_flags);
1075 
1076 	th->check		= 0;
1077 	th->urg_ptr		= 0;
1078 
1079 	/* The urg_mode check is necessary during a below snd_una win probe */
1080 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1081 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1082 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1083 			th->urg = 1;
1084 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1085 			th->urg_ptr = htons(0xFFFF);
1086 			th->urg = 1;
1087 		}
1088 	}
1089 
1090 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1091 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1092 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1093 		th->window      = htons(tcp_select_window(sk));
1094 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1095 	} else {
1096 		/* RFC1323: The window in SYN & SYN/ACK segments
1097 		 * is never scaled.
1098 		 */
1099 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1100 	}
1101 #ifdef CONFIG_TCP_MD5SIG
1102 	/* Calculate the MD5 hash, as we have all we need now */
1103 	if (md5) {
1104 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1105 		tp->af_specific->calc_md5_hash(opts.hash_location,
1106 					       md5, sk, skb);
1107 	}
1108 #endif
1109 
1110 	icsk->icsk_af_ops->send_check(sk, skb);
1111 
1112 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1113 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1114 
1115 	if (skb->len != tcp_header_size) {
1116 		tcp_event_data_sent(tp, sk);
1117 		tp->data_segs_out += tcp_skb_pcount(skb);
1118 		tcp_internal_pacing(sk, skb);
1119 	}
1120 
1121 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1122 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1123 			      tcp_skb_pcount(skb));
1124 
1125 	tp->segs_out += tcp_skb_pcount(skb);
1126 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1127 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1128 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1129 
1130 	/* Our usage of tstamp should remain private */
1131 	skb->tstamp = 0;
1132 
1133 	/* Cleanup our debris for IP stacks */
1134 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1135 			       sizeof(struct inet6_skb_parm)));
1136 
1137 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1138 
1139 	if (unlikely(err > 0)) {
1140 		tcp_enter_cwr(sk);
1141 		err = net_xmit_eval(err);
1142 	}
1143 	if (!err && oskb) {
1144 		tcp_update_skb_after_send(tp, oskb);
1145 		tcp_rate_skb_sent(sk, oskb);
1146 	}
1147 	return err;
1148 }
1149 
1150 /* This routine just queues the buffer for sending.
1151  *
1152  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1153  * otherwise socket can stall.
1154  */
1155 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1156 {
1157 	struct tcp_sock *tp = tcp_sk(sk);
1158 
1159 	/* Advance write_seq and place onto the write_queue. */
1160 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1161 	__skb_header_release(skb);
1162 	tcp_add_write_queue_tail(sk, skb);
1163 	sk->sk_wmem_queued += skb->truesize;
1164 	sk_mem_charge(sk, skb->truesize);
1165 }
1166 
1167 /* Initialize TSO segments for a packet. */
1168 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1169 {
1170 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1171 		/* Avoid the costly divide in the normal
1172 		 * non-TSO case.
1173 		 */
1174 		tcp_skb_pcount_set(skb, 1);
1175 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1176 	} else {
1177 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1178 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1179 	}
1180 }
1181 
1182 /* When a modification to fackets out becomes necessary, we need to check
1183  * skb is counted to fackets_out or not.
1184  */
1185 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1186 				   int decr)
1187 {
1188 	struct tcp_sock *tp = tcp_sk(sk);
1189 
1190 	if (!tp->sacked_out || tcp_is_reno(tp))
1191 		return;
1192 
1193 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1194 		tp->fackets_out -= decr;
1195 }
1196 
1197 /* Pcount in the middle of the write queue got changed, we need to do various
1198  * tweaks to fix counters
1199  */
1200 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1201 {
1202 	struct tcp_sock *tp = tcp_sk(sk);
1203 
1204 	tp->packets_out -= decr;
1205 
1206 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1207 		tp->sacked_out -= decr;
1208 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1209 		tp->retrans_out -= decr;
1210 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1211 		tp->lost_out -= decr;
1212 
1213 	/* Reno case is special. Sigh... */
1214 	if (tcp_is_reno(tp) && decr > 0)
1215 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1216 
1217 	tcp_adjust_fackets_out(sk, skb, decr);
1218 
1219 	if (tp->lost_skb_hint &&
1220 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1221 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1222 		tp->lost_cnt_hint -= decr;
1223 
1224 	tcp_verify_left_out(tp);
1225 }
1226 
1227 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1228 {
1229 	return TCP_SKB_CB(skb)->txstamp_ack ||
1230 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1231 }
1232 
1233 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1234 {
1235 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1236 
1237 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1238 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1239 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1240 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1241 
1242 		shinfo->tx_flags &= ~tsflags;
1243 		shinfo2->tx_flags |= tsflags;
1244 		swap(shinfo->tskey, shinfo2->tskey);
1245 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1246 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1247 	}
1248 }
1249 
1250 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1251 {
1252 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1253 	TCP_SKB_CB(skb)->eor = 0;
1254 }
1255 
1256 /* Insert buff after skb on the write or rtx queue of sk.  */
1257 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1258 					 struct sk_buff *buff,
1259 					 struct sock *sk,
1260 					 enum tcp_queue tcp_queue)
1261 {
1262 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1263 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1264 	else
1265 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1266 }
1267 
1268 /* Function to create two new TCP segments.  Shrinks the given segment
1269  * to the specified size and appends a new segment with the rest of the
1270  * packet to the list.  This won't be called frequently, I hope.
1271  * Remember, these are still headerless SKBs at this point.
1272  */
1273 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1274 		 struct sk_buff *skb, u32 len,
1275 		 unsigned int mss_now, gfp_t gfp)
1276 {
1277 	struct tcp_sock *tp = tcp_sk(sk);
1278 	struct sk_buff *buff;
1279 	int nsize, old_factor;
1280 	int nlen;
1281 	u8 flags;
1282 
1283 	if (WARN_ON(len > skb->len))
1284 		return -EINVAL;
1285 
1286 	nsize = skb_headlen(skb) - len;
1287 	if (nsize < 0)
1288 		nsize = 0;
1289 
1290 	if (skb_unclone(skb, gfp))
1291 		return -ENOMEM;
1292 
1293 	/* Get a new skb... force flag on. */
1294 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1295 	if (!buff)
1296 		return -ENOMEM; /* We'll just try again later. */
1297 
1298 	sk->sk_wmem_queued += buff->truesize;
1299 	sk_mem_charge(sk, buff->truesize);
1300 	nlen = skb->len - len - nsize;
1301 	buff->truesize += nlen;
1302 	skb->truesize -= nlen;
1303 
1304 	/* Correct the sequence numbers. */
1305 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1306 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1307 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1308 
1309 	/* PSH and FIN should only be set in the second packet. */
1310 	flags = TCP_SKB_CB(skb)->tcp_flags;
1311 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1312 	TCP_SKB_CB(buff)->tcp_flags = flags;
1313 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1314 	tcp_skb_fragment_eor(skb, buff);
1315 
1316 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1317 		/* Copy and checksum data tail into the new buffer. */
1318 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1319 						       skb_put(buff, nsize),
1320 						       nsize, 0);
1321 
1322 		skb_trim(skb, len);
1323 
1324 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1325 	} else {
1326 		skb->ip_summed = CHECKSUM_PARTIAL;
1327 		skb_split(skb, buff, len);
1328 	}
1329 
1330 	buff->ip_summed = skb->ip_summed;
1331 
1332 	buff->tstamp = skb->tstamp;
1333 	tcp_fragment_tstamp(skb, buff);
1334 
1335 	old_factor = tcp_skb_pcount(skb);
1336 
1337 	/* Fix up tso_factor for both original and new SKB.  */
1338 	tcp_set_skb_tso_segs(skb, mss_now);
1339 	tcp_set_skb_tso_segs(buff, mss_now);
1340 
1341 	/* Update delivered info for the new segment */
1342 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1343 
1344 	/* If this packet has been sent out already, we must
1345 	 * adjust the various packet counters.
1346 	 */
1347 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1348 		int diff = old_factor - tcp_skb_pcount(skb) -
1349 			tcp_skb_pcount(buff);
1350 
1351 		if (diff)
1352 			tcp_adjust_pcount(sk, skb, diff);
1353 	}
1354 
1355 	/* Link BUFF into the send queue. */
1356 	__skb_header_release(buff);
1357 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1358 	list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1359 
1360 	return 0;
1361 }
1362 
1363 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1364  * data is not copied, but immediately discarded.
1365  */
1366 static int __pskb_trim_head(struct sk_buff *skb, int len)
1367 {
1368 	struct skb_shared_info *shinfo;
1369 	int i, k, eat;
1370 
1371 	eat = min_t(int, len, skb_headlen(skb));
1372 	if (eat) {
1373 		__skb_pull(skb, eat);
1374 		len -= eat;
1375 		if (!len)
1376 			return 0;
1377 	}
1378 	eat = len;
1379 	k = 0;
1380 	shinfo = skb_shinfo(skb);
1381 	for (i = 0; i < shinfo->nr_frags; i++) {
1382 		int size = skb_frag_size(&shinfo->frags[i]);
1383 
1384 		if (size <= eat) {
1385 			skb_frag_unref(skb, i);
1386 			eat -= size;
1387 		} else {
1388 			shinfo->frags[k] = shinfo->frags[i];
1389 			if (eat) {
1390 				shinfo->frags[k].page_offset += eat;
1391 				skb_frag_size_sub(&shinfo->frags[k], eat);
1392 				eat = 0;
1393 			}
1394 			k++;
1395 		}
1396 	}
1397 	shinfo->nr_frags = k;
1398 
1399 	skb->data_len -= len;
1400 	skb->len = skb->data_len;
1401 	return len;
1402 }
1403 
1404 /* Remove acked data from a packet in the transmit queue. */
1405 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1406 {
1407 	u32 delta_truesize;
1408 
1409 	if (skb_unclone(skb, GFP_ATOMIC))
1410 		return -ENOMEM;
1411 
1412 	delta_truesize = __pskb_trim_head(skb, len);
1413 
1414 	TCP_SKB_CB(skb)->seq += len;
1415 	skb->ip_summed = CHECKSUM_PARTIAL;
1416 
1417 	if (delta_truesize) {
1418 		skb->truesize	   -= delta_truesize;
1419 		sk->sk_wmem_queued -= delta_truesize;
1420 		sk_mem_uncharge(sk, delta_truesize);
1421 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1422 	}
1423 
1424 	/* Any change of skb->len requires recalculation of tso factor. */
1425 	if (tcp_skb_pcount(skb) > 1)
1426 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1427 
1428 	return 0;
1429 }
1430 
1431 /* Calculate MSS not accounting any TCP options.  */
1432 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1433 {
1434 	const struct tcp_sock *tp = tcp_sk(sk);
1435 	const struct inet_connection_sock *icsk = inet_csk(sk);
1436 	int mss_now;
1437 
1438 	/* Calculate base mss without TCP options:
1439 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1440 	 */
1441 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1442 
1443 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1444 	if (icsk->icsk_af_ops->net_frag_header_len) {
1445 		const struct dst_entry *dst = __sk_dst_get(sk);
1446 
1447 		if (dst && dst_allfrag(dst))
1448 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1449 	}
1450 
1451 	/* Clamp it (mss_clamp does not include tcp options) */
1452 	if (mss_now > tp->rx_opt.mss_clamp)
1453 		mss_now = tp->rx_opt.mss_clamp;
1454 
1455 	/* Now subtract optional transport overhead */
1456 	mss_now -= icsk->icsk_ext_hdr_len;
1457 
1458 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1459 	if (mss_now < 48)
1460 		mss_now = 48;
1461 	return mss_now;
1462 }
1463 
1464 /* Calculate MSS. Not accounting for SACKs here.  */
1465 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1466 {
1467 	/* Subtract TCP options size, not including SACKs */
1468 	return __tcp_mtu_to_mss(sk, pmtu) -
1469 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1470 }
1471 
1472 /* Inverse of above */
1473 int tcp_mss_to_mtu(struct sock *sk, int mss)
1474 {
1475 	const struct tcp_sock *tp = tcp_sk(sk);
1476 	const struct inet_connection_sock *icsk = inet_csk(sk);
1477 	int mtu;
1478 
1479 	mtu = mss +
1480 	      tp->tcp_header_len +
1481 	      icsk->icsk_ext_hdr_len +
1482 	      icsk->icsk_af_ops->net_header_len;
1483 
1484 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1485 	if (icsk->icsk_af_ops->net_frag_header_len) {
1486 		const struct dst_entry *dst = __sk_dst_get(sk);
1487 
1488 		if (dst && dst_allfrag(dst))
1489 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1490 	}
1491 	return mtu;
1492 }
1493 EXPORT_SYMBOL(tcp_mss_to_mtu);
1494 
1495 /* MTU probing init per socket */
1496 void tcp_mtup_init(struct sock *sk)
1497 {
1498 	struct tcp_sock *tp = tcp_sk(sk);
1499 	struct inet_connection_sock *icsk = inet_csk(sk);
1500 	struct net *net = sock_net(sk);
1501 
1502 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1503 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1504 			       icsk->icsk_af_ops->net_header_len;
1505 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1506 	icsk->icsk_mtup.probe_size = 0;
1507 	if (icsk->icsk_mtup.enabled)
1508 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1509 }
1510 EXPORT_SYMBOL(tcp_mtup_init);
1511 
1512 /* This function synchronize snd mss to current pmtu/exthdr set.
1513 
1514    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1515    for TCP options, but includes only bare TCP header.
1516 
1517    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1518    It is minimum of user_mss and mss received with SYN.
1519    It also does not include TCP options.
1520 
1521    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1522 
1523    tp->mss_cache is current effective sending mss, including
1524    all tcp options except for SACKs. It is evaluated,
1525    taking into account current pmtu, but never exceeds
1526    tp->rx_opt.mss_clamp.
1527 
1528    NOTE1. rfc1122 clearly states that advertised MSS
1529    DOES NOT include either tcp or ip options.
1530 
1531    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1532    are READ ONLY outside this function.		--ANK (980731)
1533  */
1534 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1535 {
1536 	struct tcp_sock *tp = tcp_sk(sk);
1537 	struct inet_connection_sock *icsk = inet_csk(sk);
1538 	int mss_now;
1539 
1540 	if (icsk->icsk_mtup.search_high > pmtu)
1541 		icsk->icsk_mtup.search_high = pmtu;
1542 
1543 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1544 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1545 
1546 	/* And store cached results */
1547 	icsk->icsk_pmtu_cookie = pmtu;
1548 	if (icsk->icsk_mtup.enabled)
1549 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1550 	tp->mss_cache = mss_now;
1551 
1552 	return mss_now;
1553 }
1554 EXPORT_SYMBOL(tcp_sync_mss);
1555 
1556 /* Compute the current effective MSS, taking SACKs and IP options,
1557  * and even PMTU discovery events into account.
1558  */
1559 unsigned int tcp_current_mss(struct sock *sk)
1560 {
1561 	const struct tcp_sock *tp = tcp_sk(sk);
1562 	const struct dst_entry *dst = __sk_dst_get(sk);
1563 	u32 mss_now;
1564 	unsigned int header_len;
1565 	struct tcp_out_options opts;
1566 	struct tcp_md5sig_key *md5;
1567 
1568 	mss_now = tp->mss_cache;
1569 
1570 	if (dst) {
1571 		u32 mtu = dst_mtu(dst);
1572 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1573 			mss_now = tcp_sync_mss(sk, mtu);
1574 	}
1575 
1576 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1577 		     sizeof(struct tcphdr);
1578 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1579 	 * some common options. If this is an odd packet (because we have SACK
1580 	 * blocks etc) then our calculated header_len will be different, and
1581 	 * we have to adjust mss_now correspondingly */
1582 	if (header_len != tp->tcp_header_len) {
1583 		int delta = (int) header_len - tp->tcp_header_len;
1584 		mss_now -= delta;
1585 	}
1586 
1587 	return mss_now;
1588 }
1589 
1590 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1591  * As additional protections, we do not touch cwnd in retransmission phases,
1592  * and if application hit its sndbuf limit recently.
1593  */
1594 static void tcp_cwnd_application_limited(struct sock *sk)
1595 {
1596 	struct tcp_sock *tp = tcp_sk(sk);
1597 
1598 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1599 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1600 		/* Limited by application or receiver window. */
1601 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1602 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1603 		if (win_used < tp->snd_cwnd) {
1604 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1605 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1606 		}
1607 		tp->snd_cwnd_used = 0;
1608 	}
1609 	tp->snd_cwnd_stamp = tcp_jiffies32;
1610 }
1611 
1612 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1613 {
1614 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1615 	struct tcp_sock *tp = tcp_sk(sk);
1616 
1617 	/* Track the maximum number of outstanding packets in each
1618 	 * window, and remember whether we were cwnd-limited then.
1619 	 */
1620 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1621 	    tp->packets_out > tp->max_packets_out) {
1622 		tp->max_packets_out = tp->packets_out;
1623 		tp->max_packets_seq = tp->snd_nxt;
1624 		tp->is_cwnd_limited = is_cwnd_limited;
1625 	}
1626 
1627 	if (tcp_is_cwnd_limited(sk)) {
1628 		/* Network is feed fully. */
1629 		tp->snd_cwnd_used = 0;
1630 		tp->snd_cwnd_stamp = tcp_jiffies32;
1631 	} else {
1632 		/* Network starves. */
1633 		if (tp->packets_out > tp->snd_cwnd_used)
1634 			tp->snd_cwnd_used = tp->packets_out;
1635 
1636 		if (sysctl_tcp_slow_start_after_idle &&
1637 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1638 		    !ca_ops->cong_control)
1639 			tcp_cwnd_application_limited(sk);
1640 
1641 		/* The following conditions together indicate the starvation
1642 		 * is caused by insufficient sender buffer:
1643 		 * 1) just sent some data (see tcp_write_xmit)
1644 		 * 2) not cwnd limited (this else condition)
1645 		 * 3) no more data to send (tcp_write_queue_empty())
1646 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1647 		 */
1648 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1649 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1650 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1651 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1652 	}
1653 }
1654 
1655 /* Minshall's variant of the Nagle send check. */
1656 static bool tcp_minshall_check(const struct tcp_sock *tp)
1657 {
1658 	return after(tp->snd_sml, tp->snd_una) &&
1659 		!after(tp->snd_sml, tp->snd_nxt);
1660 }
1661 
1662 /* Update snd_sml if this skb is under mss
1663  * Note that a TSO packet might end with a sub-mss segment
1664  * The test is really :
1665  * if ((skb->len % mss) != 0)
1666  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1667  * But we can avoid doing the divide again given we already have
1668  *  skb_pcount = skb->len / mss_now
1669  */
1670 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1671 				const struct sk_buff *skb)
1672 {
1673 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1674 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1675 }
1676 
1677 /* Return false, if packet can be sent now without violation Nagle's rules:
1678  * 1. It is full sized. (provided by caller in %partial bool)
1679  * 2. Or it contains FIN. (already checked by caller)
1680  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1681  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1682  *    With Minshall's modification: all sent small packets are ACKed.
1683  */
1684 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1685 			    int nonagle)
1686 {
1687 	return partial &&
1688 		((nonagle & TCP_NAGLE_CORK) ||
1689 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1690 }
1691 
1692 /* Return how many segs we'd like on a TSO packet,
1693  * to send one TSO packet per ms
1694  */
1695 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1696 		     int min_tso_segs)
1697 {
1698 	u32 bytes, segs;
1699 
1700 	bytes = min(sk->sk_pacing_rate >> 10,
1701 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1702 
1703 	/* Goal is to send at least one packet per ms,
1704 	 * not one big TSO packet every 100 ms.
1705 	 * This preserves ACK clocking and is consistent
1706 	 * with tcp_tso_should_defer() heuristic.
1707 	 */
1708 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1709 
1710 	return min_t(u32, segs, sk->sk_gso_max_segs);
1711 }
1712 EXPORT_SYMBOL(tcp_tso_autosize);
1713 
1714 /* Return the number of segments we want in the skb we are transmitting.
1715  * See if congestion control module wants to decide; otherwise, autosize.
1716  */
1717 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1718 {
1719 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1720 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1721 
1722 	return tso_segs ? :
1723 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1724 }
1725 
1726 /* Returns the portion of skb which can be sent right away */
1727 static unsigned int tcp_mss_split_point(const struct sock *sk,
1728 					const struct sk_buff *skb,
1729 					unsigned int mss_now,
1730 					unsigned int max_segs,
1731 					int nonagle)
1732 {
1733 	const struct tcp_sock *tp = tcp_sk(sk);
1734 	u32 partial, needed, window, max_len;
1735 
1736 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1737 	max_len = mss_now * max_segs;
1738 
1739 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1740 		return max_len;
1741 
1742 	needed = min(skb->len, window);
1743 
1744 	if (max_len <= needed)
1745 		return max_len;
1746 
1747 	partial = needed % mss_now;
1748 	/* If last segment is not a full MSS, check if Nagle rules allow us
1749 	 * to include this last segment in this skb.
1750 	 * Otherwise, we'll split the skb at last MSS boundary
1751 	 */
1752 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1753 		return needed - partial;
1754 
1755 	return needed;
1756 }
1757 
1758 /* Can at least one segment of SKB be sent right now, according to the
1759  * congestion window rules?  If so, return how many segments are allowed.
1760  */
1761 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1762 					 const struct sk_buff *skb)
1763 {
1764 	u32 in_flight, cwnd, halfcwnd;
1765 
1766 	/* Don't be strict about the congestion window for the final FIN.  */
1767 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1768 	    tcp_skb_pcount(skb) == 1)
1769 		return 1;
1770 
1771 	in_flight = tcp_packets_in_flight(tp);
1772 	cwnd = tp->snd_cwnd;
1773 	if (in_flight >= cwnd)
1774 		return 0;
1775 
1776 	/* For better scheduling, ensure we have at least
1777 	 * 2 GSO packets in flight.
1778 	 */
1779 	halfcwnd = max(cwnd >> 1, 1U);
1780 	return min(halfcwnd, cwnd - in_flight);
1781 }
1782 
1783 /* Initialize TSO state of a skb.
1784  * This must be invoked the first time we consider transmitting
1785  * SKB onto the wire.
1786  */
1787 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1788 {
1789 	int tso_segs = tcp_skb_pcount(skb);
1790 
1791 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1792 		tcp_set_skb_tso_segs(skb, mss_now);
1793 		tso_segs = tcp_skb_pcount(skb);
1794 	}
1795 	return tso_segs;
1796 }
1797 
1798 
1799 /* Return true if the Nagle test allows this packet to be
1800  * sent now.
1801  */
1802 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1803 				  unsigned int cur_mss, int nonagle)
1804 {
1805 	/* Nagle rule does not apply to frames, which sit in the middle of the
1806 	 * write_queue (they have no chances to get new data).
1807 	 *
1808 	 * This is implemented in the callers, where they modify the 'nonagle'
1809 	 * argument based upon the location of SKB in the send queue.
1810 	 */
1811 	if (nonagle & TCP_NAGLE_PUSH)
1812 		return true;
1813 
1814 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1815 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1816 		return true;
1817 
1818 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1819 		return true;
1820 
1821 	return false;
1822 }
1823 
1824 /* Does at least the first segment of SKB fit into the send window? */
1825 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1826 			     const struct sk_buff *skb,
1827 			     unsigned int cur_mss)
1828 {
1829 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1830 
1831 	if (skb->len > cur_mss)
1832 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1833 
1834 	return !after(end_seq, tcp_wnd_end(tp));
1835 }
1836 
1837 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1838  * which is put after SKB on the list.  It is very much like
1839  * tcp_fragment() except that it may make several kinds of assumptions
1840  * in order to speed up the splitting operation.  In particular, we
1841  * know that all the data is in scatter-gather pages, and that the
1842  * packet has never been sent out before (and thus is not cloned).
1843  */
1844 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1845 			struct sk_buff *skb, unsigned int len,
1846 			unsigned int mss_now, gfp_t gfp)
1847 {
1848 	struct sk_buff *buff;
1849 	int nlen = skb->len - len;
1850 	u8 flags;
1851 
1852 	/* All of a TSO frame must be composed of paged data.  */
1853 	if (skb->len != skb->data_len)
1854 		return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1855 
1856 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1857 	if (unlikely(!buff))
1858 		return -ENOMEM;
1859 
1860 	sk->sk_wmem_queued += buff->truesize;
1861 	sk_mem_charge(sk, buff->truesize);
1862 	buff->truesize += nlen;
1863 	skb->truesize -= nlen;
1864 
1865 	/* Correct the sequence numbers. */
1866 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1867 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1868 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1869 
1870 	/* PSH and FIN should only be set in the second packet. */
1871 	flags = TCP_SKB_CB(skb)->tcp_flags;
1872 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1873 	TCP_SKB_CB(buff)->tcp_flags = flags;
1874 
1875 	/* This packet was never sent out yet, so no SACK bits. */
1876 	TCP_SKB_CB(buff)->sacked = 0;
1877 
1878 	tcp_skb_fragment_eor(skb, buff);
1879 
1880 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1881 	skb_split(skb, buff, len);
1882 	tcp_fragment_tstamp(skb, buff);
1883 
1884 	/* Fix up tso_factor for both original and new SKB.  */
1885 	tcp_set_skb_tso_segs(skb, mss_now);
1886 	tcp_set_skb_tso_segs(buff, mss_now);
1887 
1888 	/* Link BUFF into the send queue. */
1889 	__skb_header_release(buff);
1890 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1891 
1892 	return 0;
1893 }
1894 
1895 /* Try to defer sending, if possible, in order to minimize the amount
1896  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1897  *
1898  * This algorithm is from John Heffner.
1899  */
1900 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1901 				 bool *is_cwnd_limited, u32 max_segs)
1902 {
1903 	const struct inet_connection_sock *icsk = inet_csk(sk);
1904 	u32 age, send_win, cong_win, limit, in_flight;
1905 	struct tcp_sock *tp = tcp_sk(sk);
1906 	struct sk_buff *head;
1907 	int win_divisor;
1908 
1909 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1910 		goto send_now;
1911 
1912 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1913 		goto send_now;
1914 
1915 	/* Avoid bursty behavior by allowing defer
1916 	 * only if the last write was recent.
1917 	 */
1918 	if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1919 		goto send_now;
1920 
1921 	in_flight = tcp_packets_in_flight(tp);
1922 
1923 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1924 
1925 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1926 
1927 	/* From in_flight test above, we know that cwnd > in_flight.  */
1928 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1929 
1930 	limit = min(send_win, cong_win);
1931 
1932 	/* If a full-sized TSO skb can be sent, do it. */
1933 	if (limit >= max_segs * tp->mss_cache)
1934 		goto send_now;
1935 
1936 	/* Middle in queue won't get any more data, full sendable already? */
1937 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1938 		goto send_now;
1939 
1940 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1941 	if (win_divisor) {
1942 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1943 
1944 		/* If at least some fraction of a window is available,
1945 		 * just use it.
1946 		 */
1947 		chunk /= win_divisor;
1948 		if (limit >= chunk)
1949 			goto send_now;
1950 	} else {
1951 		/* Different approach, try not to defer past a single
1952 		 * ACK.  Receiver should ACK every other full sized
1953 		 * frame, so if we have space for more than 3 frames
1954 		 * then send now.
1955 		 */
1956 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1957 			goto send_now;
1958 	}
1959 
1960 	/* TODO : use tsorted_sent_queue ? */
1961 	head = tcp_rtx_queue_head(sk);
1962 	if (!head)
1963 		goto send_now;
1964 	age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1965 	/* If next ACK is likely to come too late (half srtt), do not defer */
1966 	if (age < (tp->srtt_us >> 4))
1967 		goto send_now;
1968 
1969 	/* Ok, it looks like it is advisable to defer. */
1970 
1971 	if (cong_win < send_win && cong_win <= skb->len)
1972 		*is_cwnd_limited = true;
1973 
1974 	return true;
1975 
1976 send_now:
1977 	return false;
1978 }
1979 
1980 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1981 {
1982 	struct inet_connection_sock *icsk = inet_csk(sk);
1983 	struct tcp_sock *tp = tcp_sk(sk);
1984 	struct net *net = sock_net(sk);
1985 	u32 interval;
1986 	s32 delta;
1987 
1988 	interval = net->ipv4.sysctl_tcp_probe_interval;
1989 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1990 	if (unlikely(delta >= interval * HZ)) {
1991 		int mss = tcp_current_mss(sk);
1992 
1993 		/* Update current search range */
1994 		icsk->icsk_mtup.probe_size = 0;
1995 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1996 			sizeof(struct tcphdr) +
1997 			icsk->icsk_af_ops->net_header_len;
1998 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1999 
2000 		/* Update probe time stamp */
2001 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2002 	}
2003 }
2004 
2005 /* Create a new MTU probe if we are ready.
2006  * MTU probe is regularly attempting to increase the path MTU by
2007  * deliberately sending larger packets.  This discovers routing
2008  * changes resulting in larger path MTUs.
2009  *
2010  * Returns 0 if we should wait to probe (no cwnd available),
2011  *         1 if a probe was sent,
2012  *         -1 otherwise
2013  */
2014 static int tcp_mtu_probe(struct sock *sk)
2015 {
2016 	struct inet_connection_sock *icsk = inet_csk(sk);
2017 	struct tcp_sock *tp = tcp_sk(sk);
2018 	struct sk_buff *skb, *nskb, *next;
2019 	struct net *net = sock_net(sk);
2020 	int probe_size;
2021 	int size_needed;
2022 	int copy, len;
2023 	int mss_now;
2024 	int interval;
2025 
2026 	/* Not currently probing/verifying,
2027 	 * not in recovery,
2028 	 * have enough cwnd, and
2029 	 * not SACKing (the variable headers throw things off)
2030 	 */
2031 	if (likely(!icsk->icsk_mtup.enabled ||
2032 		   icsk->icsk_mtup.probe_size ||
2033 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2034 		   tp->snd_cwnd < 11 ||
2035 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2036 		return -1;
2037 
2038 	/* Use binary search for probe_size between tcp_mss_base,
2039 	 * and current mss_clamp. if (search_high - search_low)
2040 	 * smaller than a threshold, backoff from probing.
2041 	 */
2042 	mss_now = tcp_current_mss(sk);
2043 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2044 				    icsk->icsk_mtup.search_low) >> 1);
2045 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2046 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2047 	/* When misfortune happens, we are reprobing actively,
2048 	 * and then reprobe timer has expired. We stick with current
2049 	 * probing process by not resetting search range to its orignal.
2050 	 */
2051 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2052 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2053 		/* Check whether enough time has elaplased for
2054 		 * another round of probing.
2055 		 */
2056 		tcp_mtu_check_reprobe(sk);
2057 		return -1;
2058 	}
2059 
2060 	/* Have enough data in the send queue to probe? */
2061 	if (tp->write_seq - tp->snd_nxt < size_needed)
2062 		return -1;
2063 
2064 	if (tp->snd_wnd < size_needed)
2065 		return -1;
2066 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2067 		return 0;
2068 
2069 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2070 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2071 		if (!tcp_packets_in_flight(tp))
2072 			return -1;
2073 		else
2074 			return 0;
2075 	}
2076 
2077 	/* We're allowed to probe.  Build it now. */
2078 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2079 	if (!nskb)
2080 		return -1;
2081 	sk->sk_wmem_queued += nskb->truesize;
2082 	sk_mem_charge(sk, nskb->truesize);
2083 
2084 	skb = tcp_send_head(sk);
2085 
2086 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2087 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2088 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2089 	TCP_SKB_CB(nskb)->sacked = 0;
2090 	nskb->csum = 0;
2091 	nskb->ip_summed = skb->ip_summed;
2092 
2093 	tcp_insert_write_queue_before(nskb, skb, sk);
2094 
2095 	len = 0;
2096 	tcp_for_write_queue_from_safe(skb, next, sk) {
2097 		copy = min_t(int, skb->len, probe_size - len);
2098 		if (nskb->ip_summed) {
2099 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2100 		} else {
2101 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2102 							     skb_put(nskb, copy),
2103 							     copy, 0);
2104 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2105 		}
2106 
2107 		if (skb->len <= copy) {
2108 			/* We've eaten all the data from this skb.
2109 			 * Throw it away. */
2110 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2111 			tcp_unlink_write_queue(skb, sk);
2112 			sk_wmem_free_skb(sk, skb);
2113 		} else {
2114 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2115 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2116 			if (!skb_shinfo(skb)->nr_frags) {
2117 				skb_pull(skb, copy);
2118 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2119 					skb->csum = csum_partial(skb->data,
2120 								 skb->len, 0);
2121 			} else {
2122 				__pskb_trim_head(skb, copy);
2123 				tcp_set_skb_tso_segs(skb, mss_now);
2124 			}
2125 			TCP_SKB_CB(skb)->seq += copy;
2126 		}
2127 
2128 		len += copy;
2129 
2130 		if (len >= probe_size)
2131 			break;
2132 	}
2133 	tcp_init_tso_segs(nskb, nskb->len);
2134 
2135 	/* We're ready to send.  If this fails, the probe will
2136 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2137 	 */
2138 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2139 		/* Decrement cwnd here because we are sending
2140 		 * effectively two packets. */
2141 		tp->snd_cwnd--;
2142 		tcp_event_new_data_sent(sk, nskb);
2143 
2144 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2145 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2146 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2147 
2148 		return 1;
2149 	}
2150 
2151 	return -1;
2152 }
2153 
2154 static bool tcp_pacing_check(const struct sock *sk)
2155 {
2156 	return tcp_needs_internal_pacing(sk) &&
2157 	       hrtimer_active(&tcp_sk(sk)->pacing_timer);
2158 }
2159 
2160 /* TCP Small Queues :
2161  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2162  * (These limits are doubled for retransmits)
2163  * This allows for :
2164  *  - better RTT estimation and ACK scheduling
2165  *  - faster recovery
2166  *  - high rates
2167  * Alas, some drivers / subsystems require a fair amount
2168  * of queued bytes to ensure line rate.
2169  * One example is wifi aggregation (802.11 AMPDU)
2170  */
2171 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2172 				  unsigned int factor)
2173 {
2174 	unsigned int limit;
2175 
2176 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2177 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2178 	limit <<= factor;
2179 
2180 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2181 		/* Always send skb if rtx queue is empty.
2182 		 * No need to wait for TX completion to call us back,
2183 		 * after softirq/tasklet schedule.
2184 		 * This helps when TX completions are delayed too much.
2185 		 */
2186 		if (tcp_rtx_queue_empty(sk))
2187 			return false;
2188 
2189 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2190 		/* It is possible TX completion already happened
2191 		 * before we set TSQ_THROTTLED, so we must
2192 		 * test again the condition.
2193 		 */
2194 		smp_mb__after_atomic();
2195 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2196 			return true;
2197 	}
2198 	return false;
2199 }
2200 
2201 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2202 {
2203 	const u32 now = tcp_jiffies32;
2204 	enum tcp_chrono old = tp->chrono_type;
2205 
2206 	if (old > TCP_CHRONO_UNSPEC)
2207 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2208 	tp->chrono_start = now;
2209 	tp->chrono_type = new;
2210 }
2211 
2212 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2213 {
2214 	struct tcp_sock *tp = tcp_sk(sk);
2215 
2216 	/* If there are multiple conditions worthy of tracking in a
2217 	 * chronograph then the highest priority enum takes precedence
2218 	 * over the other conditions. So that if something "more interesting"
2219 	 * starts happening, stop the previous chrono and start a new one.
2220 	 */
2221 	if (type > tp->chrono_type)
2222 		tcp_chrono_set(tp, type);
2223 }
2224 
2225 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2226 {
2227 	struct tcp_sock *tp = tcp_sk(sk);
2228 
2229 
2230 	/* There are multiple conditions worthy of tracking in a
2231 	 * chronograph, so that the highest priority enum takes
2232 	 * precedence over the other conditions (see tcp_chrono_start).
2233 	 * If a condition stops, we only stop chrono tracking if
2234 	 * it's the "most interesting" or current chrono we are
2235 	 * tracking and starts busy chrono if we have pending data.
2236 	 */
2237 	if (tcp_rtx_and_write_queues_empty(sk))
2238 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2239 	else if (type == tp->chrono_type)
2240 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2241 }
2242 
2243 /* This routine writes packets to the network.  It advances the
2244  * send_head.  This happens as incoming acks open up the remote
2245  * window for us.
2246  *
2247  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2248  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2249  * account rare use of URG, this is not a big flaw.
2250  *
2251  * Send at most one packet when push_one > 0. Temporarily ignore
2252  * cwnd limit to force at most one packet out when push_one == 2.
2253 
2254  * Returns true, if no segments are in flight and we have queued segments,
2255  * but cannot send anything now because of SWS or another problem.
2256  */
2257 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2258 			   int push_one, gfp_t gfp)
2259 {
2260 	struct tcp_sock *tp = tcp_sk(sk);
2261 	struct sk_buff *skb;
2262 	unsigned int tso_segs, sent_pkts;
2263 	int cwnd_quota;
2264 	int result;
2265 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2266 	u32 max_segs;
2267 
2268 	sent_pkts = 0;
2269 
2270 	if (!push_one) {
2271 		/* Do MTU probing. */
2272 		result = tcp_mtu_probe(sk);
2273 		if (!result) {
2274 			return false;
2275 		} else if (result > 0) {
2276 			sent_pkts = 1;
2277 		}
2278 	}
2279 
2280 	max_segs = tcp_tso_segs(sk, mss_now);
2281 	tcp_mstamp_refresh(tp);
2282 	while ((skb = tcp_send_head(sk))) {
2283 		unsigned int limit;
2284 
2285 		if (tcp_pacing_check(sk))
2286 			break;
2287 
2288 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2289 		BUG_ON(!tso_segs);
2290 
2291 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2292 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2293 			tcp_update_skb_after_send(tp, skb);
2294 			goto repair; /* Skip network transmission */
2295 		}
2296 
2297 		cwnd_quota = tcp_cwnd_test(tp, skb);
2298 		if (!cwnd_quota) {
2299 			if (push_one == 2)
2300 				/* Force out a loss probe pkt. */
2301 				cwnd_quota = 1;
2302 			else
2303 				break;
2304 		}
2305 
2306 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2307 			is_rwnd_limited = true;
2308 			break;
2309 		}
2310 
2311 		if (tso_segs == 1) {
2312 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2313 						     (tcp_skb_is_last(sk, skb) ?
2314 						      nonagle : TCP_NAGLE_PUSH))))
2315 				break;
2316 		} else {
2317 			if (!push_one &&
2318 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2319 						 max_segs))
2320 				break;
2321 		}
2322 
2323 		limit = mss_now;
2324 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2325 			limit = tcp_mss_split_point(sk, skb, mss_now,
2326 						    min_t(unsigned int,
2327 							  cwnd_quota,
2328 							  max_segs),
2329 						    nonagle);
2330 
2331 		if (skb->len > limit &&
2332 		    unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2333 					  skb, limit, mss_now, gfp)))
2334 			break;
2335 
2336 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2337 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2338 		if (tcp_small_queue_check(sk, skb, 0))
2339 			break;
2340 
2341 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2342 			break;
2343 
2344 repair:
2345 		/* Advance the send_head.  This one is sent out.
2346 		 * This call will increment packets_out.
2347 		 */
2348 		tcp_event_new_data_sent(sk, skb);
2349 
2350 		tcp_minshall_update(tp, mss_now, skb);
2351 		sent_pkts += tcp_skb_pcount(skb);
2352 
2353 		if (push_one)
2354 			break;
2355 	}
2356 
2357 	if (is_rwnd_limited)
2358 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2359 	else
2360 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2361 
2362 	if (likely(sent_pkts)) {
2363 		if (tcp_in_cwnd_reduction(sk))
2364 			tp->prr_out += sent_pkts;
2365 
2366 		/* Send one loss probe per tail loss episode. */
2367 		if (push_one != 2)
2368 			tcp_schedule_loss_probe(sk);
2369 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2370 		tcp_cwnd_validate(sk, is_cwnd_limited);
2371 		return false;
2372 	}
2373 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2374 }
2375 
2376 bool tcp_schedule_loss_probe(struct sock *sk)
2377 {
2378 	struct inet_connection_sock *icsk = inet_csk(sk);
2379 	struct tcp_sock *tp = tcp_sk(sk);
2380 	u32 timeout, rto_delta_us;
2381 
2382 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2383 	 * finishes.
2384 	 */
2385 	if (tp->fastopen_rsk)
2386 		return false;
2387 
2388 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2389 	 * in Open state, that are either limited by cwnd or application.
2390 	 */
2391 	if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2392 	    !tp->packets_out || !tcp_is_sack(tp) ||
2393 	    icsk->icsk_ca_state != TCP_CA_Open)
2394 		return false;
2395 
2396 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2397 	     !tcp_write_queue_empty(sk))
2398 		return false;
2399 
2400 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2401 	 * for delayed ack when there's one outstanding packet. If no RTT
2402 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2403 	 */
2404 	if (tp->srtt_us) {
2405 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2406 		if (tp->packets_out == 1)
2407 			timeout += TCP_RTO_MIN;
2408 		else
2409 			timeout += TCP_TIMEOUT_MIN;
2410 	} else {
2411 		timeout = TCP_TIMEOUT_INIT;
2412 	}
2413 
2414 	/* If the RTO formula yields an earlier time, then use that time. */
2415 	rto_delta_us = tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2416 	if (rto_delta_us > 0)
2417 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2418 
2419 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2420 				  TCP_RTO_MAX);
2421 	return true;
2422 }
2423 
2424 /* Thanks to skb fast clones, we can detect if a prior transmit of
2425  * a packet is still in a qdisc or driver queue.
2426  * In this case, there is very little point doing a retransmit !
2427  */
2428 static bool skb_still_in_host_queue(const struct sock *sk,
2429 				    const struct sk_buff *skb)
2430 {
2431 	if (unlikely(skb_fclone_busy(sk, skb))) {
2432 		NET_INC_STATS(sock_net(sk),
2433 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2434 		return true;
2435 	}
2436 	return false;
2437 }
2438 
2439 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2440  * retransmit the last segment.
2441  */
2442 void tcp_send_loss_probe(struct sock *sk)
2443 {
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 	struct sk_buff *skb;
2446 	int pcount;
2447 	int mss = tcp_current_mss(sk);
2448 
2449 	skb = tcp_send_head(sk);
2450 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2451 		pcount = tp->packets_out;
2452 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2453 		if (tp->packets_out > pcount)
2454 			goto probe_sent;
2455 		goto rearm_timer;
2456 	}
2457 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2458 
2459 	/* At most one outstanding TLP retransmission. */
2460 	if (tp->tlp_high_seq)
2461 		goto rearm_timer;
2462 
2463 	/* Retransmit last segment. */
2464 	if (WARN_ON(!skb))
2465 		goto rearm_timer;
2466 
2467 	if (skb_still_in_host_queue(sk, skb))
2468 		goto rearm_timer;
2469 
2470 	pcount = tcp_skb_pcount(skb);
2471 	if (WARN_ON(!pcount))
2472 		goto rearm_timer;
2473 
2474 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2475 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2476 					  (pcount - 1) * mss, mss,
2477 					  GFP_ATOMIC)))
2478 			goto rearm_timer;
2479 		skb = skb_rb_next(skb);
2480 	}
2481 
2482 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2483 		goto rearm_timer;
2484 
2485 	if (__tcp_retransmit_skb(sk, skb, 1))
2486 		goto rearm_timer;
2487 
2488 	/* Record snd_nxt for loss detection. */
2489 	tp->tlp_high_seq = tp->snd_nxt;
2490 
2491 probe_sent:
2492 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2493 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2494 	inet_csk(sk)->icsk_pending = 0;
2495 rearm_timer:
2496 	tcp_rearm_rto(sk);
2497 }
2498 
2499 /* Push out any pending frames which were held back due to
2500  * TCP_CORK or attempt at coalescing tiny packets.
2501  * The socket must be locked by the caller.
2502  */
2503 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2504 			       int nonagle)
2505 {
2506 	/* If we are closed, the bytes will have to remain here.
2507 	 * In time closedown will finish, we empty the write queue and
2508 	 * all will be happy.
2509 	 */
2510 	if (unlikely(sk->sk_state == TCP_CLOSE))
2511 		return;
2512 
2513 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2514 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2515 		tcp_check_probe_timer(sk);
2516 }
2517 
2518 /* Send _single_ skb sitting at the send head. This function requires
2519  * true push pending frames to setup probe timer etc.
2520  */
2521 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2522 {
2523 	struct sk_buff *skb = tcp_send_head(sk);
2524 
2525 	BUG_ON(!skb || skb->len < mss_now);
2526 
2527 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2528 }
2529 
2530 /* This function returns the amount that we can raise the
2531  * usable window based on the following constraints
2532  *
2533  * 1. The window can never be shrunk once it is offered (RFC 793)
2534  * 2. We limit memory per socket
2535  *
2536  * RFC 1122:
2537  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2538  *  RECV.NEXT + RCV.WIN fixed until:
2539  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2540  *
2541  * i.e. don't raise the right edge of the window until you can raise
2542  * it at least MSS bytes.
2543  *
2544  * Unfortunately, the recommended algorithm breaks header prediction,
2545  * since header prediction assumes th->window stays fixed.
2546  *
2547  * Strictly speaking, keeping th->window fixed violates the receiver
2548  * side SWS prevention criteria. The problem is that under this rule
2549  * a stream of single byte packets will cause the right side of the
2550  * window to always advance by a single byte.
2551  *
2552  * Of course, if the sender implements sender side SWS prevention
2553  * then this will not be a problem.
2554  *
2555  * BSD seems to make the following compromise:
2556  *
2557  *	If the free space is less than the 1/4 of the maximum
2558  *	space available and the free space is less than 1/2 mss,
2559  *	then set the window to 0.
2560  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2561  *	Otherwise, just prevent the window from shrinking
2562  *	and from being larger than the largest representable value.
2563  *
2564  * This prevents incremental opening of the window in the regime
2565  * where TCP is limited by the speed of the reader side taking
2566  * data out of the TCP receive queue. It does nothing about
2567  * those cases where the window is constrained on the sender side
2568  * because the pipeline is full.
2569  *
2570  * BSD also seems to "accidentally" limit itself to windows that are a
2571  * multiple of MSS, at least until the free space gets quite small.
2572  * This would appear to be a side effect of the mbuf implementation.
2573  * Combining these two algorithms results in the observed behavior
2574  * of having a fixed window size at almost all times.
2575  *
2576  * Below we obtain similar behavior by forcing the offered window to
2577  * a multiple of the mss when it is feasible to do so.
2578  *
2579  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2580  * Regular options like TIMESTAMP are taken into account.
2581  */
2582 u32 __tcp_select_window(struct sock *sk)
2583 {
2584 	struct inet_connection_sock *icsk = inet_csk(sk);
2585 	struct tcp_sock *tp = tcp_sk(sk);
2586 	/* MSS for the peer's data.  Previous versions used mss_clamp
2587 	 * here.  I don't know if the value based on our guesses
2588 	 * of peer's MSS is better for the performance.  It's more correct
2589 	 * but may be worse for the performance because of rcv_mss
2590 	 * fluctuations.  --SAW  1998/11/1
2591 	 */
2592 	int mss = icsk->icsk_ack.rcv_mss;
2593 	int free_space = tcp_space(sk);
2594 	int allowed_space = tcp_full_space(sk);
2595 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2596 	int window;
2597 
2598 	if (unlikely(mss > full_space)) {
2599 		mss = full_space;
2600 		if (mss <= 0)
2601 			return 0;
2602 	}
2603 	if (free_space < (full_space >> 1)) {
2604 		icsk->icsk_ack.quick = 0;
2605 
2606 		if (tcp_under_memory_pressure(sk))
2607 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2608 					       4U * tp->advmss);
2609 
2610 		/* free_space might become our new window, make sure we don't
2611 		 * increase it due to wscale.
2612 		 */
2613 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2614 
2615 		/* if free space is less than mss estimate, or is below 1/16th
2616 		 * of the maximum allowed, try to move to zero-window, else
2617 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2618 		 * new incoming data is dropped due to memory limits.
2619 		 * With large window, mss test triggers way too late in order
2620 		 * to announce zero window in time before rmem limit kicks in.
2621 		 */
2622 		if (free_space < (allowed_space >> 4) || free_space < mss)
2623 			return 0;
2624 	}
2625 
2626 	if (free_space > tp->rcv_ssthresh)
2627 		free_space = tp->rcv_ssthresh;
2628 
2629 	/* Don't do rounding if we are using window scaling, since the
2630 	 * scaled window will not line up with the MSS boundary anyway.
2631 	 */
2632 	if (tp->rx_opt.rcv_wscale) {
2633 		window = free_space;
2634 
2635 		/* Advertise enough space so that it won't get scaled away.
2636 		 * Import case: prevent zero window announcement if
2637 		 * 1<<rcv_wscale > mss.
2638 		 */
2639 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2640 	} else {
2641 		window = tp->rcv_wnd;
2642 		/* Get the largest window that is a nice multiple of mss.
2643 		 * Window clamp already applied above.
2644 		 * If our current window offering is within 1 mss of the
2645 		 * free space we just keep it. This prevents the divide
2646 		 * and multiply from happening most of the time.
2647 		 * We also don't do any window rounding when the free space
2648 		 * is too small.
2649 		 */
2650 		if (window <= free_space - mss || window > free_space)
2651 			window = rounddown(free_space, mss);
2652 		else if (mss == full_space &&
2653 			 free_space > window + (full_space >> 1))
2654 			window = free_space;
2655 	}
2656 
2657 	return window;
2658 }
2659 
2660 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2661 			     const struct sk_buff *next_skb)
2662 {
2663 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2664 		const struct skb_shared_info *next_shinfo =
2665 			skb_shinfo(next_skb);
2666 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2667 
2668 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2669 		shinfo->tskey = next_shinfo->tskey;
2670 		TCP_SKB_CB(skb)->txstamp_ack |=
2671 			TCP_SKB_CB(next_skb)->txstamp_ack;
2672 	}
2673 }
2674 
2675 /* Collapses two adjacent SKB's during retransmission. */
2676 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2677 {
2678 	struct tcp_sock *tp = tcp_sk(sk);
2679 	struct sk_buff *next_skb = skb_rb_next(skb);
2680 	int skb_size, next_skb_size;
2681 
2682 	skb_size = skb->len;
2683 	next_skb_size = next_skb->len;
2684 
2685 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2686 
2687 	if (next_skb_size) {
2688 		if (next_skb_size <= skb_availroom(skb))
2689 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2690 				      next_skb_size);
2691 		else if (!skb_shift(skb, next_skb, next_skb_size))
2692 			return false;
2693 	}
2694 	tcp_highest_sack_combine(sk, next_skb, skb);
2695 
2696 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2697 		skb->ip_summed = CHECKSUM_PARTIAL;
2698 
2699 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2700 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2701 
2702 	/* Update sequence range on original skb. */
2703 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2704 
2705 	/* Merge over control information. This moves PSH/FIN etc. over */
2706 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2707 
2708 	/* All done, get rid of second SKB and account for it so
2709 	 * packet counting does not break.
2710 	 */
2711 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2712 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2713 
2714 	/* changed transmit queue under us so clear hints */
2715 	tcp_clear_retrans_hints_partial(tp);
2716 	if (next_skb == tp->retransmit_skb_hint)
2717 		tp->retransmit_skb_hint = skb;
2718 
2719 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2720 
2721 	tcp_skb_collapse_tstamp(skb, next_skb);
2722 
2723 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2724 	return true;
2725 }
2726 
2727 /* Check if coalescing SKBs is legal. */
2728 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2729 {
2730 	if (tcp_skb_pcount(skb) > 1)
2731 		return false;
2732 	if (skb_cloned(skb))
2733 		return false;
2734 	/* Some heuristics for collapsing over SACK'd could be invented */
2735 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2736 		return false;
2737 
2738 	return true;
2739 }
2740 
2741 /* Collapse packets in the retransmit queue to make to create
2742  * less packets on the wire. This is only done on retransmission.
2743  */
2744 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2745 				     int space)
2746 {
2747 	struct tcp_sock *tp = tcp_sk(sk);
2748 	struct sk_buff *skb = to, *tmp;
2749 	bool first = true;
2750 
2751 	if (!sysctl_tcp_retrans_collapse)
2752 		return;
2753 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2754 		return;
2755 
2756 	skb_rbtree_walk_from_safe(skb, tmp) {
2757 		if (!tcp_can_collapse(sk, skb))
2758 			break;
2759 
2760 		if (!tcp_skb_can_collapse_to(to))
2761 			break;
2762 
2763 		space -= skb->len;
2764 
2765 		if (first) {
2766 			first = false;
2767 			continue;
2768 		}
2769 
2770 		if (space < 0)
2771 			break;
2772 
2773 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2774 			break;
2775 
2776 		if (!tcp_collapse_retrans(sk, to))
2777 			break;
2778 	}
2779 }
2780 
2781 /* This retransmits one SKB.  Policy decisions and retransmit queue
2782  * state updates are done by the caller.  Returns non-zero if an
2783  * error occurred which prevented the send.
2784  */
2785 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2786 {
2787 	struct inet_connection_sock *icsk = inet_csk(sk);
2788 	struct tcp_sock *tp = tcp_sk(sk);
2789 	unsigned int cur_mss;
2790 	int diff, len, err;
2791 
2792 
2793 	/* Inconclusive MTU probe */
2794 	if (icsk->icsk_mtup.probe_size)
2795 		icsk->icsk_mtup.probe_size = 0;
2796 
2797 	/* Do not sent more than we queued. 1/4 is reserved for possible
2798 	 * copying overhead: fragmentation, tunneling, mangling etc.
2799 	 */
2800 	if (refcount_read(&sk->sk_wmem_alloc) >
2801 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2802 		  sk->sk_sndbuf))
2803 		return -EAGAIN;
2804 
2805 	if (skb_still_in_host_queue(sk, skb))
2806 		return -EBUSY;
2807 
2808 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2809 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2810 			BUG();
2811 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2812 			return -ENOMEM;
2813 	}
2814 
2815 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2816 		return -EHOSTUNREACH; /* Routing failure or similar. */
2817 
2818 	cur_mss = tcp_current_mss(sk);
2819 
2820 	/* If receiver has shrunk his window, and skb is out of
2821 	 * new window, do not retransmit it. The exception is the
2822 	 * case, when window is shrunk to zero. In this case
2823 	 * our retransmit serves as a zero window probe.
2824 	 */
2825 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2826 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2827 		return -EAGAIN;
2828 
2829 	len = cur_mss * segs;
2830 	if (skb->len > len) {
2831 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2832 				 cur_mss, GFP_ATOMIC))
2833 			return -ENOMEM; /* We'll try again later. */
2834 	} else {
2835 		if (skb_unclone(skb, GFP_ATOMIC))
2836 			return -ENOMEM;
2837 
2838 		diff = tcp_skb_pcount(skb);
2839 		tcp_set_skb_tso_segs(skb, cur_mss);
2840 		diff -= tcp_skb_pcount(skb);
2841 		if (diff)
2842 			tcp_adjust_pcount(sk, skb, diff);
2843 		if (skb->len < cur_mss)
2844 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2845 	}
2846 
2847 	/* RFC3168, section 6.1.1.1. ECN fallback */
2848 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2849 		tcp_ecn_clear_syn(sk, skb);
2850 
2851 	/* Update global and local TCP statistics. */
2852 	segs = tcp_skb_pcount(skb);
2853 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2854 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2855 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2856 	tp->total_retrans += segs;
2857 
2858 	/* make sure skb->data is aligned on arches that require it
2859 	 * and check if ack-trimming & collapsing extended the headroom
2860 	 * beyond what csum_start can cover.
2861 	 */
2862 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2863 		     skb_headroom(skb) >= 0xFFFF)) {
2864 		struct sk_buff *nskb;
2865 
2866 		tcp_skb_tsorted_save(skb) {
2867 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2868 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2869 				     -ENOBUFS;
2870 		} tcp_skb_tsorted_restore(skb);
2871 
2872 		if (!err)
2873 			tcp_update_skb_after_send(tp, skb);
2874 	} else {
2875 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2876 	}
2877 
2878 	if (likely(!err)) {
2879 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2880 		trace_tcp_retransmit_skb(sk, skb);
2881 	} else if (err != -EBUSY) {
2882 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2883 	}
2884 	return err;
2885 }
2886 
2887 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2888 {
2889 	struct tcp_sock *tp = tcp_sk(sk);
2890 	int err = __tcp_retransmit_skb(sk, skb, segs);
2891 
2892 	if (err == 0) {
2893 #if FASTRETRANS_DEBUG > 0
2894 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2895 			net_dbg_ratelimited("retrans_out leaked\n");
2896 		}
2897 #endif
2898 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2899 		tp->retrans_out += tcp_skb_pcount(skb);
2900 
2901 		/* Save stamp of the first retransmit. */
2902 		if (!tp->retrans_stamp)
2903 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2904 
2905 	}
2906 
2907 	if (tp->undo_retrans < 0)
2908 		tp->undo_retrans = 0;
2909 	tp->undo_retrans += tcp_skb_pcount(skb);
2910 	return err;
2911 }
2912 
2913 /* This gets called after a retransmit timeout, and the initially
2914  * retransmitted data is acknowledged.  It tries to continue
2915  * resending the rest of the retransmit queue, until either
2916  * we've sent it all or the congestion window limit is reached.
2917  * If doing SACK, the first ACK which comes back for a timeout
2918  * based retransmit packet might feed us FACK information again.
2919  * If so, we use it to avoid unnecessarily retransmissions.
2920  */
2921 void tcp_xmit_retransmit_queue(struct sock *sk)
2922 {
2923 	const struct inet_connection_sock *icsk = inet_csk(sk);
2924 	struct sk_buff *skb, *rtx_head = NULL, *hole = NULL;
2925 	struct tcp_sock *tp = tcp_sk(sk);
2926 	u32 max_segs;
2927 	int mib_idx;
2928 
2929 	if (!tp->packets_out)
2930 		return;
2931 
2932 	skb = tp->retransmit_skb_hint;
2933 	if (!skb) {
2934 		rtx_head = tcp_rtx_queue_head(sk);
2935 		skb = rtx_head;
2936 	}
2937 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2938 	skb_rbtree_walk_from(skb) {
2939 		__u8 sacked;
2940 		int segs;
2941 
2942 		if (tcp_pacing_check(sk))
2943 			break;
2944 
2945 		/* we could do better than to assign each time */
2946 		if (!hole)
2947 			tp->retransmit_skb_hint = skb;
2948 
2949 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2950 		if (segs <= 0)
2951 			return;
2952 		sacked = TCP_SKB_CB(skb)->sacked;
2953 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2954 		 * we need to make sure not sending too bigs TSO packets
2955 		 */
2956 		segs = min_t(int, segs, max_segs);
2957 
2958 		if (tp->retrans_out >= tp->lost_out) {
2959 			break;
2960 		} else if (!(sacked & TCPCB_LOST)) {
2961 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2962 				hole = skb;
2963 			continue;
2964 
2965 		} else {
2966 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2967 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2968 			else
2969 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2970 		}
2971 
2972 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2973 			continue;
2974 
2975 		if (tcp_small_queue_check(sk, skb, 1))
2976 			return;
2977 
2978 		if (tcp_retransmit_skb(sk, skb, segs))
2979 			return;
2980 
2981 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2982 
2983 		if (tcp_in_cwnd_reduction(sk))
2984 			tp->prr_out += tcp_skb_pcount(skb);
2985 
2986 		if (skb == rtx_head &&
2987 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2988 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2989 						  inet_csk(sk)->icsk_rto,
2990 						  TCP_RTO_MAX);
2991 	}
2992 }
2993 
2994 /* We allow to exceed memory limits for FIN packets to expedite
2995  * connection tear down and (memory) recovery.
2996  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2997  * or even be forced to close flow without any FIN.
2998  * In general, we want to allow one skb per socket to avoid hangs
2999  * with edge trigger epoll()
3000  */
3001 void sk_forced_mem_schedule(struct sock *sk, int size)
3002 {
3003 	int amt;
3004 
3005 	if (size <= sk->sk_forward_alloc)
3006 		return;
3007 	amt = sk_mem_pages(size);
3008 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3009 	sk_memory_allocated_add(sk, amt);
3010 
3011 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3012 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3013 }
3014 
3015 /* Send a FIN. The caller locks the socket for us.
3016  * We should try to send a FIN packet really hard, but eventually give up.
3017  */
3018 void tcp_send_fin(struct sock *sk)
3019 {
3020 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3021 	struct tcp_sock *tp = tcp_sk(sk);
3022 
3023 	/* Optimization, tack on the FIN if we have one skb in write queue and
3024 	 * this skb was not yet sent, or we are under memory pressure.
3025 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3026 	 * as TCP stack thinks it has already been transmitted.
3027 	 */
3028 	if (!tskb && tcp_under_memory_pressure(sk))
3029 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3030 
3031 	if (tskb) {
3032 coalesce:
3033 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3034 		TCP_SKB_CB(tskb)->end_seq++;
3035 		tp->write_seq++;
3036 		if (tcp_write_queue_empty(sk)) {
3037 			/* This means tskb was already sent.
3038 			 * Pretend we included the FIN on previous transmit.
3039 			 * We need to set tp->snd_nxt to the value it would have
3040 			 * if FIN had been sent. This is because retransmit path
3041 			 * does not change tp->snd_nxt.
3042 			 */
3043 			tp->snd_nxt++;
3044 			return;
3045 		}
3046 	} else {
3047 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3048 		if (unlikely(!skb)) {
3049 			if (tskb)
3050 				goto coalesce;
3051 			return;
3052 		}
3053 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3054 		skb_reserve(skb, MAX_TCP_HEADER);
3055 		sk_forced_mem_schedule(sk, skb->truesize);
3056 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3057 		tcp_init_nondata_skb(skb, tp->write_seq,
3058 				     TCPHDR_ACK | TCPHDR_FIN);
3059 		tcp_queue_skb(sk, skb);
3060 	}
3061 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3062 }
3063 
3064 /* We get here when a process closes a file descriptor (either due to
3065  * an explicit close() or as a byproduct of exit()'ing) and there
3066  * was unread data in the receive queue.  This behavior is recommended
3067  * by RFC 2525, section 2.17.  -DaveM
3068  */
3069 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3070 {
3071 	struct sk_buff *skb;
3072 
3073 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3074 
3075 	/* NOTE: No TCP options attached and we never retransmit this. */
3076 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3077 	if (!skb) {
3078 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3079 		return;
3080 	}
3081 
3082 	/* Reserve space for headers and prepare control bits. */
3083 	skb_reserve(skb, MAX_TCP_HEADER);
3084 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3085 			     TCPHDR_ACK | TCPHDR_RST);
3086 	tcp_mstamp_refresh(tcp_sk(sk));
3087 	/* Send it off. */
3088 	if (tcp_transmit_skb(sk, skb, 0, priority))
3089 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3090 }
3091 
3092 /* Send a crossed SYN-ACK during socket establishment.
3093  * WARNING: This routine must only be called when we have already sent
3094  * a SYN packet that crossed the incoming SYN that caused this routine
3095  * to get called. If this assumption fails then the initial rcv_wnd
3096  * and rcv_wscale values will not be correct.
3097  */
3098 int tcp_send_synack(struct sock *sk)
3099 {
3100 	struct sk_buff *skb;
3101 
3102 	skb = tcp_rtx_queue_head(sk);
3103 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3104 		pr_err("%s: wrong queue state\n", __func__);
3105 		return -EFAULT;
3106 	}
3107 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3108 		if (skb_cloned(skb)) {
3109 			struct sk_buff *nskb;
3110 
3111 			tcp_skb_tsorted_save(skb) {
3112 				nskb = skb_copy(skb, GFP_ATOMIC);
3113 			} tcp_skb_tsorted_restore(skb);
3114 			if (!nskb)
3115 				return -ENOMEM;
3116 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3117 			tcp_rtx_queue_unlink_and_free(skb, sk);
3118 			__skb_header_release(nskb);
3119 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3120 			sk->sk_wmem_queued += nskb->truesize;
3121 			sk_mem_charge(sk, nskb->truesize);
3122 			skb = nskb;
3123 		}
3124 
3125 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3126 		tcp_ecn_send_synack(sk, skb);
3127 	}
3128 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3129 }
3130 
3131 /**
3132  * tcp_make_synack - Prepare a SYN-ACK.
3133  * sk: listener socket
3134  * dst: dst entry attached to the SYNACK
3135  * req: request_sock pointer
3136  *
3137  * Allocate one skb and build a SYNACK packet.
3138  * @dst is consumed : Caller should not use it again.
3139  */
3140 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3141 				struct request_sock *req,
3142 				struct tcp_fastopen_cookie *foc,
3143 				enum tcp_synack_type synack_type)
3144 {
3145 	struct inet_request_sock *ireq = inet_rsk(req);
3146 	const struct tcp_sock *tp = tcp_sk(sk);
3147 	struct tcp_md5sig_key *md5 = NULL;
3148 	struct tcp_out_options opts;
3149 	struct sk_buff *skb;
3150 	int tcp_header_size;
3151 	struct tcphdr *th;
3152 	int mss;
3153 
3154 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3155 	if (unlikely(!skb)) {
3156 		dst_release(dst);
3157 		return NULL;
3158 	}
3159 	/* Reserve space for headers. */
3160 	skb_reserve(skb, MAX_TCP_HEADER);
3161 
3162 	switch (synack_type) {
3163 	case TCP_SYNACK_NORMAL:
3164 		skb_set_owner_w(skb, req_to_sk(req));
3165 		break;
3166 	case TCP_SYNACK_COOKIE:
3167 		/* Under synflood, we do not attach skb to a socket,
3168 		 * to avoid false sharing.
3169 		 */
3170 		break;
3171 	case TCP_SYNACK_FASTOPEN:
3172 		/* sk is a const pointer, because we want to express multiple
3173 		 * cpu might call us concurrently.
3174 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3175 		 */
3176 		skb_set_owner_w(skb, (struct sock *)sk);
3177 		break;
3178 	}
3179 	skb_dst_set(skb, dst);
3180 
3181 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3182 
3183 	memset(&opts, 0, sizeof(opts));
3184 #ifdef CONFIG_SYN_COOKIES
3185 	if (unlikely(req->cookie_ts))
3186 		skb->skb_mstamp = cookie_init_timestamp(req);
3187 	else
3188 #endif
3189 		skb->skb_mstamp = tcp_clock_us();
3190 
3191 #ifdef CONFIG_TCP_MD5SIG
3192 	rcu_read_lock();
3193 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3194 #endif
3195 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3196 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3197 			  sizeof(*th);
3198 
3199 	skb_push(skb, tcp_header_size);
3200 	skb_reset_transport_header(skb);
3201 
3202 	th = (struct tcphdr *)skb->data;
3203 	memset(th, 0, sizeof(struct tcphdr));
3204 	th->syn = 1;
3205 	th->ack = 1;
3206 	tcp_ecn_make_synack(req, th);
3207 	th->source = htons(ireq->ir_num);
3208 	th->dest = ireq->ir_rmt_port;
3209 	skb->mark = ireq->ir_mark;
3210 	/* Setting of flags are superfluous here for callers (and ECE is
3211 	 * not even correctly set)
3212 	 */
3213 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3214 			     TCPHDR_SYN | TCPHDR_ACK);
3215 
3216 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3217 	/* XXX data is queued and acked as is. No buffer/window check */
3218 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3219 
3220 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3221 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3222 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3223 	th->doff = (tcp_header_size >> 2);
3224 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3225 
3226 #ifdef CONFIG_TCP_MD5SIG
3227 	/* Okay, we have all we need - do the md5 hash if needed */
3228 	if (md5)
3229 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3230 					       md5, req_to_sk(req), skb);
3231 	rcu_read_unlock();
3232 #endif
3233 
3234 	/* Do not fool tcpdump (if any), clean our debris */
3235 	skb->tstamp = 0;
3236 	return skb;
3237 }
3238 EXPORT_SYMBOL(tcp_make_synack);
3239 
3240 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3241 {
3242 	struct inet_connection_sock *icsk = inet_csk(sk);
3243 	const struct tcp_congestion_ops *ca;
3244 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3245 
3246 	if (ca_key == TCP_CA_UNSPEC)
3247 		return;
3248 
3249 	rcu_read_lock();
3250 	ca = tcp_ca_find_key(ca_key);
3251 	if (likely(ca && try_module_get(ca->owner))) {
3252 		module_put(icsk->icsk_ca_ops->owner);
3253 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3254 		icsk->icsk_ca_ops = ca;
3255 	}
3256 	rcu_read_unlock();
3257 }
3258 
3259 /* Do all connect socket setups that can be done AF independent. */
3260 static void tcp_connect_init(struct sock *sk)
3261 {
3262 	const struct dst_entry *dst = __sk_dst_get(sk);
3263 	struct tcp_sock *tp = tcp_sk(sk);
3264 	__u8 rcv_wscale;
3265 	u32 rcv_wnd;
3266 
3267 	/* We'll fix this up when we get a response from the other end.
3268 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3269 	 */
3270 	tp->tcp_header_len = sizeof(struct tcphdr);
3271 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3272 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3273 
3274 #ifdef CONFIG_TCP_MD5SIG
3275 	if (tp->af_specific->md5_lookup(sk, sk))
3276 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3277 #endif
3278 
3279 	/* If user gave his TCP_MAXSEG, record it to clamp */
3280 	if (tp->rx_opt.user_mss)
3281 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3282 	tp->max_window = 0;
3283 	tcp_mtup_init(sk);
3284 	tcp_sync_mss(sk, dst_mtu(dst));
3285 
3286 	tcp_ca_dst_init(sk, dst);
3287 
3288 	if (!tp->window_clamp)
3289 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3290 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3291 
3292 	tcp_initialize_rcv_mss(sk);
3293 
3294 	/* limit the window selection if the user enforce a smaller rx buffer */
3295 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3296 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3297 		tp->window_clamp = tcp_full_space(sk);
3298 
3299 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3300 	if (rcv_wnd == 0)
3301 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3302 
3303 	tcp_select_initial_window(tcp_full_space(sk),
3304 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3305 				  &tp->rcv_wnd,
3306 				  &tp->window_clamp,
3307 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3308 				  &rcv_wscale,
3309 				  rcv_wnd);
3310 
3311 	tp->rx_opt.rcv_wscale = rcv_wscale;
3312 	tp->rcv_ssthresh = tp->rcv_wnd;
3313 
3314 	sk->sk_err = 0;
3315 	sock_reset_flag(sk, SOCK_DONE);
3316 	tp->snd_wnd = 0;
3317 	tcp_init_wl(tp, 0);
3318 	tp->snd_una = tp->write_seq;
3319 	tp->snd_sml = tp->write_seq;
3320 	tp->snd_up = tp->write_seq;
3321 	tp->snd_nxt = tp->write_seq;
3322 
3323 	if (likely(!tp->repair))
3324 		tp->rcv_nxt = 0;
3325 	else
3326 		tp->rcv_tstamp = tcp_jiffies32;
3327 	tp->rcv_wup = tp->rcv_nxt;
3328 	tp->copied_seq = tp->rcv_nxt;
3329 
3330 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3331 	inet_csk(sk)->icsk_retransmits = 0;
3332 	tcp_clear_retrans(tp);
3333 }
3334 
3335 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3336 {
3337 	struct tcp_sock *tp = tcp_sk(sk);
3338 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3339 
3340 	tcb->end_seq += skb->len;
3341 	__skb_header_release(skb);
3342 	sk->sk_wmem_queued += skb->truesize;
3343 	sk_mem_charge(sk, skb->truesize);
3344 	tp->write_seq = tcb->end_seq;
3345 	tp->packets_out += tcp_skb_pcount(skb);
3346 }
3347 
3348 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3349  * queue a data-only packet after the regular SYN, such that regular SYNs
3350  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3351  * only the SYN sequence, the data are retransmitted in the first ACK.
3352  * If cookie is not cached or other error occurs, falls back to send a
3353  * regular SYN with Fast Open cookie request option.
3354  */
3355 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3356 {
3357 	struct tcp_sock *tp = tcp_sk(sk);
3358 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3359 	int space, err = 0;
3360 	struct sk_buff *syn_data;
3361 
3362 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3363 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3364 		goto fallback;
3365 
3366 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3367 	 * user-MSS. Reserve maximum option space for middleboxes that add
3368 	 * private TCP options. The cost is reduced data space in SYN :(
3369 	 */
3370 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3371 
3372 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3373 		MAX_TCP_OPTION_SPACE;
3374 
3375 	space = min_t(size_t, space, fo->size);
3376 
3377 	/* limit to order-0 allocations */
3378 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3379 
3380 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3381 	if (!syn_data)
3382 		goto fallback;
3383 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3384 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3385 	if (space) {
3386 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3387 					    &fo->data->msg_iter);
3388 		if (unlikely(!copied)) {
3389 			kfree_skb(syn_data);
3390 			goto fallback;
3391 		}
3392 		if (copied != space) {
3393 			skb_trim(syn_data, copied);
3394 			space = copied;
3395 		}
3396 	}
3397 	/* No more data pending in inet_wait_for_connect() */
3398 	if (space == fo->size)
3399 		fo->data = NULL;
3400 	fo->copied = space;
3401 
3402 	tcp_connect_queue_skb(sk, syn_data);
3403 	if (syn_data->len)
3404 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3405 
3406 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3407 
3408 	syn->skb_mstamp = syn_data->skb_mstamp;
3409 
3410 	/* Now full SYN+DATA was cloned and sent (or not),
3411 	 * remove the SYN from the original skb (syn_data)
3412 	 * we keep in write queue in case of a retransmit, as we
3413 	 * also have the SYN packet (with no data) in the same queue.
3414 	 */
3415 	TCP_SKB_CB(syn_data)->seq++;
3416 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3417 	if (!err) {
3418 		tp->syn_data = (fo->copied > 0);
3419 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3420 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3421 		goto done;
3422 	}
3423 
3424 	/* data was not sent, put it in write_queue */
3425 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3426 	tp->packets_out -= tcp_skb_pcount(syn_data);
3427 
3428 fallback:
3429 	/* Send a regular SYN with Fast Open cookie request option */
3430 	if (fo->cookie.len > 0)
3431 		fo->cookie.len = 0;
3432 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3433 	if (err)
3434 		tp->syn_fastopen = 0;
3435 done:
3436 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3437 	return err;
3438 }
3439 
3440 /* Build a SYN and send it off. */
3441 int tcp_connect(struct sock *sk)
3442 {
3443 	struct tcp_sock *tp = tcp_sk(sk);
3444 	struct sk_buff *buff;
3445 	int err;
3446 
3447 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3448 
3449 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3450 		return -EHOSTUNREACH; /* Routing failure or similar. */
3451 
3452 	tcp_connect_init(sk);
3453 
3454 	if (unlikely(tp->repair)) {
3455 		tcp_finish_connect(sk, NULL);
3456 		return 0;
3457 	}
3458 
3459 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3460 	if (unlikely(!buff))
3461 		return -ENOBUFS;
3462 
3463 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3464 	tcp_mstamp_refresh(tp);
3465 	tp->retrans_stamp = tcp_time_stamp(tp);
3466 	tcp_connect_queue_skb(sk, buff);
3467 	tcp_ecn_send_syn(sk, buff);
3468 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3469 
3470 	/* Send off SYN; include data in Fast Open. */
3471 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3472 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3473 	if (err == -ECONNREFUSED)
3474 		return err;
3475 
3476 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3477 	 * in order to make this packet get counted in tcpOutSegs.
3478 	 */
3479 	tp->snd_nxt = tp->write_seq;
3480 	tp->pushed_seq = tp->write_seq;
3481 	buff = tcp_send_head(sk);
3482 	if (unlikely(buff)) {
3483 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3484 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3485 	}
3486 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3487 
3488 	/* Timer for repeating the SYN until an answer. */
3489 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3490 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3491 	return 0;
3492 }
3493 EXPORT_SYMBOL(tcp_connect);
3494 
3495 /* Send out a delayed ack, the caller does the policy checking
3496  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3497  * for details.
3498  */
3499 void tcp_send_delayed_ack(struct sock *sk)
3500 {
3501 	struct inet_connection_sock *icsk = inet_csk(sk);
3502 	int ato = icsk->icsk_ack.ato;
3503 	unsigned long timeout;
3504 
3505 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3506 
3507 	if (ato > TCP_DELACK_MIN) {
3508 		const struct tcp_sock *tp = tcp_sk(sk);
3509 		int max_ato = HZ / 2;
3510 
3511 		if (icsk->icsk_ack.pingpong ||
3512 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3513 			max_ato = TCP_DELACK_MAX;
3514 
3515 		/* Slow path, intersegment interval is "high". */
3516 
3517 		/* If some rtt estimate is known, use it to bound delayed ack.
3518 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3519 		 * directly.
3520 		 */
3521 		if (tp->srtt_us) {
3522 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3523 					TCP_DELACK_MIN);
3524 
3525 			if (rtt < max_ato)
3526 				max_ato = rtt;
3527 		}
3528 
3529 		ato = min(ato, max_ato);
3530 	}
3531 
3532 	/* Stay within the limit we were given */
3533 	timeout = jiffies + ato;
3534 
3535 	/* Use new timeout only if there wasn't a older one earlier. */
3536 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3537 		/* If delack timer was blocked or is about to expire,
3538 		 * send ACK now.
3539 		 */
3540 		if (icsk->icsk_ack.blocked ||
3541 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3542 			tcp_send_ack(sk);
3543 			return;
3544 		}
3545 
3546 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3547 			timeout = icsk->icsk_ack.timeout;
3548 	}
3549 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3550 	icsk->icsk_ack.timeout = timeout;
3551 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3552 }
3553 
3554 /* This routine sends an ack and also updates the window. */
3555 void tcp_send_ack(struct sock *sk)
3556 {
3557 	struct sk_buff *buff;
3558 
3559 	/* If we have been reset, we may not send again. */
3560 	if (sk->sk_state == TCP_CLOSE)
3561 		return;
3562 
3563 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3564 
3565 	/* We are not putting this on the write queue, so
3566 	 * tcp_transmit_skb() will set the ownership to this
3567 	 * sock.
3568 	 */
3569 	buff = alloc_skb(MAX_TCP_HEADER,
3570 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3571 	if (unlikely(!buff)) {
3572 		inet_csk_schedule_ack(sk);
3573 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3574 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3575 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3576 		return;
3577 	}
3578 
3579 	/* Reserve space for headers and prepare control bits. */
3580 	skb_reserve(buff, MAX_TCP_HEADER);
3581 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3582 
3583 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3584 	 * too much.
3585 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3586 	 */
3587 	skb_set_tcp_pure_ack(buff);
3588 
3589 	/* Send it off, this clears delayed acks for us. */
3590 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3591 }
3592 EXPORT_SYMBOL_GPL(tcp_send_ack);
3593 
3594 /* This routine sends a packet with an out of date sequence
3595  * number. It assumes the other end will try to ack it.
3596  *
3597  * Question: what should we make while urgent mode?
3598  * 4.4BSD forces sending single byte of data. We cannot send
3599  * out of window data, because we have SND.NXT==SND.MAX...
3600  *
3601  * Current solution: to send TWO zero-length segments in urgent mode:
3602  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3603  * out-of-date with SND.UNA-1 to probe window.
3604  */
3605 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3606 {
3607 	struct tcp_sock *tp = tcp_sk(sk);
3608 	struct sk_buff *skb;
3609 
3610 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3611 	skb = alloc_skb(MAX_TCP_HEADER,
3612 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3613 	if (!skb)
3614 		return -1;
3615 
3616 	/* Reserve space for headers and set control bits. */
3617 	skb_reserve(skb, MAX_TCP_HEADER);
3618 	/* Use a previous sequence.  This should cause the other
3619 	 * end to send an ack.  Don't queue or clone SKB, just
3620 	 * send it.
3621 	 */
3622 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3623 	NET_INC_STATS(sock_net(sk), mib);
3624 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3625 }
3626 
3627 /* Called from setsockopt( ... TCP_REPAIR ) */
3628 void tcp_send_window_probe(struct sock *sk)
3629 {
3630 	if (sk->sk_state == TCP_ESTABLISHED) {
3631 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3632 		tcp_mstamp_refresh(tcp_sk(sk));
3633 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3634 	}
3635 }
3636 
3637 /* Initiate keepalive or window probe from timer. */
3638 int tcp_write_wakeup(struct sock *sk, int mib)
3639 {
3640 	struct tcp_sock *tp = tcp_sk(sk);
3641 	struct sk_buff *skb;
3642 
3643 	if (sk->sk_state == TCP_CLOSE)
3644 		return -1;
3645 
3646 	skb = tcp_send_head(sk);
3647 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3648 		int err;
3649 		unsigned int mss = tcp_current_mss(sk);
3650 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3651 
3652 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3653 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3654 
3655 		/* We are probing the opening of a window
3656 		 * but the window size is != 0
3657 		 * must have been a result SWS avoidance ( sender )
3658 		 */
3659 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3660 		    skb->len > mss) {
3661 			seg_size = min(seg_size, mss);
3662 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3663 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3664 					 skb, seg_size, mss, GFP_ATOMIC))
3665 				return -1;
3666 		} else if (!tcp_skb_pcount(skb))
3667 			tcp_set_skb_tso_segs(skb, mss);
3668 
3669 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3670 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3671 		if (!err)
3672 			tcp_event_new_data_sent(sk, skb);
3673 		return err;
3674 	} else {
3675 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3676 			tcp_xmit_probe_skb(sk, 1, mib);
3677 		return tcp_xmit_probe_skb(sk, 0, mib);
3678 	}
3679 }
3680 
3681 /* A window probe timeout has occurred.  If window is not closed send
3682  * a partial packet else a zero probe.
3683  */
3684 void tcp_send_probe0(struct sock *sk)
3685 {
3686 	struct inet_connection_sock *icsk = inet_csk(sk);
3687 	struct tcp_sock *tp = tcp_sk(sk);
3688 	struct net *net = sock_net(sk);
3689 	unsigned long probe_max;
3690 	int err;
3691 
3692 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3693 
3694 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3695 		/* Cancel probe timer, if it is not required. */
3696 		icsk->icsk_probes_out = 0;
3697 		icsk->icsk_backoff = 0;
3698 		return;
3699 	}
3700 
3701 	if (err <= 0) {
3702 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3703 			icsk->icsk_backoff++;
3704 		icsk->icsk_probes_out++;
3705 		probe_max = TCP_RTO_MAX;
3706 	} else {
3707 		/* If packet was not sent due to local congestion,
3708 		 * do not backoff and do not remember icsk_probes_out.
3709 		 * Let local senders to fight for local resources.
3710 		 *
3711 		 * Use accumulated backoff yet.
3712 		 */
3713 		if (!icsk->icsk_probes_out)
3714 			icsk->icsk_probes_out = 1;
3715 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3716 	}
3717 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3718 				  tcp_probe0_when(sk, probe_max),
3719 				  TCP_RTO_MAX);
3720 }
3721 
3722 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3723 {
3724 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3725 	struct flowi fl;
3726 	int res;
3727 
3728 	tcp_rsk(req)->txhash = net_tx_rndhash();
3729 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3730 	if (!res) {
3731 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3732 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3733 		if (unlikely(tcp_passive_fastopen(sk)))
3734 			tcp_sk(sk)->total_retrans++;
3735 	}
3736 	return res;
3737 }
3738 EXPORT_SYMBOL(tcp_rtx_synack);
3739