1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 42 #include <linux/compiler.h> 43 #include <linux/gfp.h> 44 #include <linux/module.h> 45 #include <linux/static_key.h> 46 47 #include <trace/events/tcp.h> 48 49 /* Refresh clocks of a TCP socket, 50 * ensuring monotically increasing values. 51 */ 52 void tcp_mstamp_refresh(struct tcp_sock *tp) 53 { 54 u64 val = tcp_clock_ns(); 55 56 tp->tcp_clock_cache = val; 57 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 58 } 59 60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 61 int push_one, gfp_t gfp); 62 63 /* Account for new data that has been sent to the network. */ 64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 65 { 66 struct inet_connection_sock *icsk = inet_csk(sk); 67 struct tcp_sock *tp = tcp_sk(sk); 68 unsigned int prior_packets = tp->packets_out; 69 70 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 71 72 __skb_unlink(skb, &sk->sk_write_queue); 73 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 74 75 tp->packets_out += tcp_skb_pcount(skb); 76 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 77 tcp_rearm_rto(sk); 78 79 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 80 tcp_skb_pcount(skb)); 81 } 82 83 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 84 * window scaling factor due to loss of precision. 85 * If window has been shrunk, what should we make? It is not clear at all. 86 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 87 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 88 * invalid. OK, let's make this for now: 89 */ 90 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 91 { 92 const struct tcp_sock *tp = tcp_sk(sk); 93 94 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 95 (tp->rx_opt.wscale_ok && 96 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 97 return tp->snd_nxt; 98 else 99 return tcp_wnd_end(tp); 100 } 101 102 /* Calculate mss to advertise in SYN segment. 103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 104 * 105 * 1. It is independent of path mtu. 106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 108 * attached devices, because some buggy hosts are confused by 109 * large MSS. 110 * 4. We do not make 3, we advertise MSS, calculated from first 111 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 112 * This may be overridden via information stored in routing table. 113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 114 * probably even Jumbo". 115 */ 116 static __u16 tcp_advertise_mss(struct sock *sk) 117 { 118 struct tcp_sock *tp = tcp_sk(sk); 119 const struct dst_entry *dst = __sk_dst_get(sk); 120 int mss = tp->advmss; 121 122 if (dst) { 123 unsigned int metric = dst_metric_advmss(dst); 124 125 if (metric < mss) { 126 mss = metric; 127 tp->advmss = mss; 128 } 129 } 130 131 return (__u16)mss; 132 } 133 134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 135 * This is the first part of cwnd validation mechanism. 136 */ 137 void tcp_cwnd_restart(struct sock *sk, s32 delta) 138 { 139 struct tcp_sock *tp = tcp_sk(sk); 140 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 141 u32 cwnd = tp->snd_cwnd; 142 143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 144 145 tp->snd_ssthresh = tcp_current_ssthresh(sk); 146 restart_cwnd = min(restart_cwnd, cwnd); 147 148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 149 cwnd >>= 1; 150 tp->snd_cwnd = max(cwnd, restart_cwnd); 151 tp->snd_cwnd_stamp = tcp_jiffies32; 152 tp->snd_cwnd_used = 0; 153 } 154 155 /* Congestion state accounting after a packet has been sent. */ 156 static void tcp_event_data_sent(struct tcp_sock *tp, 157 struct sock *sk) 158 { 159 struct inet_connection_sock *icsk = inet_csk(sk); 160 const u32 now = tcp_jiffies32; 161 162 if (tcp_packets_in_flight(tp) == 0) 163 tcp_ca_event(sk, CA_EVENT_TX_START); 164 165 /* If this is the first data packet sent in response to the 166 * previous received data, 167 * and it is a reply for ato after last received packet, 168 * increase pingpong count. 169 */ 170 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 171 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 172 inet_csk_inc_pingpong_cnt(sk); 173 174 tp->lsndtime = now; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 179 u32 rcv_nxt) 180 { 181 struct tcp_sock *tp = tcp_sk(sk); 182 183 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) { 184 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 185 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 186 tp->compressed_ack = TCP_FASTRETRANS_THRESH; 187 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 188 __sock_put(sk); 189 } 190 191 if (unlikely(rcv_nxt != tp->rcv_nxt)) 192 return; /* Special ACK sent by DCTCP to reflect ECN */ 193 tcp_dec_quickack_mode(sk, pkts); 194 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 195 } 196 197 /* Determine a window scaling and initial window to offer. 198 * Based on the assumption that the given amount of space 199 * will be offered. Store the results in the tp structure. 200 * NOTE: for smooth operation initial space offering should 201 * be a multiple of mss if possible. We assume here that mss >= 1. 202 * This MUST be enforced by all callers. 203 */ 204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 205 __u32 *rcv_wnd, __u32 *window_clamp, 206 int wscale_ok, __u8 *rcv_wscale, 207 __u32 init_rcv_wnd) 208 { 209 unsigned int space = (__space < 0 ? 0 : __space); 210 211 /* If no clamp set the clamp to the max possible scaled window */ 212 if (*window_clamp == 0) 213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 214 space = min(*window_clamp, space); 215 216 /* Quantize space offering to a multiple of mss if possible. */ 217 if (space > mss) 218 space = rounddown(space, mss); 219 220 /* NOTE: offering an initial window larger than 32767 221 * will break some buggy TCP stacks. If the admin tells us 222 * it is likely we could be speaking with such a buggy stack 223 * we will truncate our initial window offering to 32K-1 224 * unless the remote has sent us a window scaling option, 225 * which we interpret as a sign the remote TCP is not 226 * misinterpreting the window field as a signed quantity. 227 */ 228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 230 else 231 (*rcv_wnd) = min_t(u32, space, U16_MAX); 232 233 if (init_rcv_wnd) 234 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 235 236 *rcv_wscale = 0; 237 if (wscale_ok) { 238 /* Set window scaling on max possible window */ 239 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 240 space = max_t(u32, space, sysctl_rmem_max); 241 space = min_t(u32, space, *window_clamp); 242 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 243 0, TCP_MAX_WSCALE); 244 } 245 /* Set the clamp no higher than max representable value */ 246 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 247 } 248 EXPORT_SYMBOL(tcp_select_initial_window); 249 250 /* Chose a new window to advertise, update state in tcp_sock for the 251 * socket, and return result with RFC1323 scaling applied. The return 252 * value can be stuffed directly into th->window for an outgoing 253 * frame. 254 */ 255 static u16 tcp_select_window(struct sock *sk) 256 { 257 struct tcp_sock *tp = tcp_sk(sk); 258 u32 old_win = tp->rcv_wnd; 259 u32 cur_win = tcp_receive_window(tp); 260 u32 new_win = __tcp_select_window(sk); 261 262 /* Never shrink the offered window */ 263 if (new_win < cur_win) { 264 /* Danger Will Robinson! 265 * Don't update rcv_wup/rcv_wnd here or else 266 * we will not be able to advertise a zero 267 * window in time. --DaveM 268 * 269 * Relax Will Robinson. 270 */ 271 if (new_win == 0) 272 NET_INC_STATS(sock_net(sk), 273 LINUX_MIB_TCPWANTZEROWINDOWADV); 274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 275 } 276 tp->rcv_wnd = new_win; 277 tp->rcv_wup = tp->rcv_nxt; 278 279 /* Make sure we do not exceed the maximum possible 280 * scaled window. 281 */ 282 if (!tp->rx_opt.rcv_wscale && 283 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 284 new_win = min(new_win, MAX_TCP_WINDOW); 285 else 286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 287 288 /* RFC1323 scaling applied */ 289 new_win >>= tp->rx_opt.rcv_wscale; 290 291 /* If we advertise zero window, disable fast path. */ 292 if (new_win == 0) { 293 tp->pred_flags = 0; 294 if (old_win) 295 NET_INC_STATS(sock_net(sk), 296 LINUX_MIB_TCPTOZEROWINDOWADV); 297 } else if (old_win == 0) { 298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 299 } 300 301 return new_win; 302 } 303 304 /* Packet ECN state for a SYN-ACK */ 305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 306 { 307 const struct tcp_sock *tp = tcp_sk(sk); 308 309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 310 if (!(tp->ecn_flags & TCP_ECN_OK)) 311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 312 else if (tcp_ca_needs_ecn(sk) || 313 tcp_bpf_ca_needs_ecn(sk)) 314 INET_ECN_xmit(sk); 315 } 316 317 /* Packet ECN state for a SYN. */ 318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 319 { 320 struct tcp_sock *tp = tcp_sk(sk); 321 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 322 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 323 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 324 325 if (!use_ecn) { 326 const struct dst_entry *dst = __sk_dst_get(sk); 327 328 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 329 use_ecn = true; 330 } 331 332 tp->ecn_flags = 0; 333 334 if (use_ecn) { 335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 336 tp->ecn_flags = TCP_ECN_OK; 337 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 338 INET_ECN_xmit(sk); 339 } 340 } 341 342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 343 { 344 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 345 /* tp->ecn_flags are cleared at a later point in time when 346 * SYN ACK is ultimatively being received. 347 */ 348 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 349 } 350 351 static void 352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 353 { 354 if (inet_rsk(req)->ecn_ok) 355 th->ece = 1; 356 } 357 358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 359 * be sent. 360 */ 361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 362 struct tcphdr *th, int tcp_header_len) 363 { 364 struct tcp_sock *tp = tcp_sk(sk); 365 366 if (tp->ecn_flags & TCP_ECN_OK) { 367 /* Not-retransmitted data segment: set ECT and inject CWR. */ 368 if (skb->len != tcp_header_len && 369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 370 INET_ECN_xmit(sk); 371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 373 th->cwr = 1; 374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 375 } 376 } else if (!tcp_ca_needs_ecn(sk)) { 377 /* ACK or retransmitted segment: clear ECT|CE */ 378 INET_ECN_dontxmit(sk); 379 } 380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 381 th->ece = 1; 382 } 383 } 384 385 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 386 * auto increment end seqno. 387 */ 388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 389 { 390 skb->ip_summed = CHECKSUM_PARTIAL; 391 392 TCP_SKB_CB(skb)->tcp_flags = flags; 393 TCP_SKB_CB(skb)->sacked = 0; 394 395 tcp_skb_pcount_set(skb, 1); 396 397 TCP_SKB_CB(skb)->seq = seq; 398 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 399 seq++; 400 TCP_SKB_CB(skb)->end_seq = seq; 401 } 402 403 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 404 { 405 return tp->snd_una != tp->snd_up; 406 } 407 408 #define OPTION_SACK_ADVERTISE (1 << 0) 409 #define OPTION_TS (1 << 1) 410 #define OPTION_MD5 (1 << 2) 411 #define OPTION_WSCALE (1 << 3) 412 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 413 #define OPTION_SMC (1 << 9) 414 415 static void smc_options_write(__be32 *ptr, u16 *options) 416 { 417 #if IS_ENABLED(CONFIG_SMC) 418 if (static_branch_unlikely(&tcp_have_smc)) { 419 if (unlikely(OPTION_SMC & *options)) { 420 *ptr++ = htonl((TCPOPT_NOP << 24) | 421 (TCPOPT_NOP << 16) | 422 (TCPOPT_EXP << 8) | 423 (TCPOLEN_EXP_SMC_BASE)); 424 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 425 } 426 } 427 #endif 428 } 429 430 struct tcp_out_options { 431 u16 options; /* bit field of OPTION_* */ 432 u16 mss; /* 0 to disable */ 433 u8 ws; /* window scale, 0 to disable */ 434 u8 num_sack_blocks; /* number of SACK blocks to include */ 435 u8 hash_size; /* bytes in hash_location */ 436 __u8 *hash_location; /* temporary pointer, overloaded */ 437 __u32 tsval, tsecr; /* need to include OPTION_TS */ 438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 439 }; 440 441 /* Write previously computed TCP options to the packet. 442 * 443 * Beware: Something in the Internet is very sensitive to the ordering of 444 * TCP options, we learned this through the hard way, so be careful here. 445 * Luckily we can at least blame others for their non-compliance but from 446 * inter-operability perspective it seems that we're somewhat stuck with 447 * the ordering which we have been using if we want to keep working with 448 * those broken things (not that it currently hurts anybody as there isn't 449 * particular reason why the ordering would need to be changed). 450 * 451 * At least SACK_PERM as the first option is known to lead to a disaster 452 * (but it may well be that other scenarios fail similarly). 453 */ 454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 455 struct tcp_out_options *opts) 456 { 457 u16 options = opts->options; /* mungable copy */ 458 459 if (unlikely(OPTION_MD5 & options)) { 460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 462 /* overload cookie hash location */ 463 opts->hash_location = (__u8 *)ptr; 464 ptr += 4; 465 } 466 467 if (unlikely(opts->mss)) { 468 *ptr++ = htonl((TCPOPT_MSS << 24) | 469 (TCPOLEN_MSS << 16) | 470 opts->mss); 471 } 472 473 if (likely(OPTION_TS & options)) { 474 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 476 (TCPOLEN_SACK_PERM << 16) | 477 (TCPOPT_TIMESTAMP << 8) | 478 TCPOLEN_TIMESTAMP); 479 options &= ~OPTION_SACK_ADVERTISE; 480 } else { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_TIMESTAMP << 8) | 484 TCPOLEN_TIMESTAMP); 485 } 486 *ptr++ = htonl(opts->tsval); 487 *ptr++ = htonl(opts->tsecr); 488 } 489 490 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_NOP << 16) | 493 (TCPOPT_SACK_PERM << 8) | 494 TCPOLEN_SACK_PERM); 495 } 496 497 if (unlikely(OPTION_WSCALE & options)) { 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_WINDOW << 16) | 500 (TCPOLEN_WINDOW << 8) | 501 opts->ws); 502 } 503 504 if (unlikely(opts->num_sack_blocks)) { 505 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 506 tp->duplicate_sack : tp->selective_acks; 507 int this_sack; 508 509 *ptr++ = htonl((TCPOPT_NOP << 24) | 510 (TCPOPT_NOP << 16) | 511 (TCPOPT_SACK << 8) | 512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 513 TCPOLEN_SACK_PERBLOCK))); 514 515 for (this_sack = 0; this_sack < opts->num_sack_blocks; 516 ++this_sack) { 517 *ptr++ = htonl(sp[this_sack].start_seq); 518 *ptr++ = htonl(sp[this_sack].end_seq); 519 } 520 521 tp->rx_opt.dsack = 0; 522 } 523 524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 526 u8 *p = (u8 *)ptr; 527 u32 len; /* Fast Open option length */ 528 529 if (foc->exp) { 530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 532 TCPOPT_FASTOPEN_MAGIC); 533 p += TCPOLEN_EXP_FASTOPEN_BASE; 534 } else { 535 len = TCPOLEN_FASTOPEN_BASE + foc->len; 536 *p++ = TCPOPT_FASTOPEN; 537 *p++ = len; 538 } 539 540 memcpy(p, foc->val, foc->len); 541 if ((len & 3) == 2) { 542 p[foc->len] = TCPOPT_NOP; 543 p[foc->len + 1] = TCPOPT_NOP; 544 } 545 ptr += (len + 3) >> 2; 546 } 547 548 smc_options_write(ptr, &options); 549 } 550 551 static void smc_set_option(const struct tcp_sock *tp, 552 struct tcp_out_options *opts, 553 unsigned int *remaining) 554 { 555 #if IS_ENABLED(CONFIG_SMC) 556 if (static_branch_unlikely(&tcp_have_smc)) { 557 if (tp->syn_smc) { 558 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 559 opts->options |= OPTION_SMC; 560 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 561 } 562 } 563 } 564 #endif 565 } 566 567 static void smc_set_option_cond(const struct tcp_sock *tp, 568 const struct inet_request_sock *ireq, 569 struct tcp_out_options *opts, 570 unsigned int *remaining) 571 { 572 #if IS_ENABLED(CONFIG_SMC) 573 if (static_branch_unlikely(&tcp_have_smc)) { 574 if (tp->syn_smc && ireq->smc_ok) { 575 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 576 opts->options |= OPTION_SMC; 577 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 578 } 579 } 580 } 581 #endif 582 } 583 584 /* Compute TCP options for SYN packets. This is not the final 585 * network wire format yet. 586 */ 587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 588 struct tcp_out_options *opts, 589 struct tcp_md5sig_key **md5) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 unsigned int remaining = MAX_TCP_OPTION_SPACE; 593 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 594 595 *md5 = NULL; 596 #ifdef CONFIG_TCP_MD5SIG 597 if (static_branch_unlikely(&tcp_md5_needed) && 598 rcu_access_pointer(tp->md5sig_info)) { 599 *md5 = tp->af_specific->md5_lookup(sk, sk); 600 if (*md5) { 601 opts->options |= OPTION_MD5; 602 remaining -= TCPOLEN_MD5SIG_ALIGNED; 603 } 604 } 605 #endif 606 607 /* We always get an MSS option. The option bytes which will be seen in 608 * normal data packets should timestamps be used, must be in the MSS 609 * advertised. But we subtract them from tp->mss_cache so that 610 * calculations in tcp_sendmsg are simpler etc. So account for this 611 * fact here if necessary. If we don't do this correctly, as a 612 * receiver we won't recognize data packets as being full sized when we 613 * should, and thus we won't abide by the delayed ACK rules correctly. 614 * SACKs don't matter, we never delay an ACK when we have any of those 615 * going out. */ 616 opts->mss = tcp_advertise_mss(sk); 617 remaining -= TCPOLEN_MSS_ALIGNED; 618 619 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 620 opts->options |= OPTION_TS; 621 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 622 opts->tsecr = tp->rx_opt.ts_recent; 623 remaining -= TCPOLEN_TSTAMP_ALIGNED; 624 } 625 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 626 opts->ws = tp->rx_opt.rcv_wscale; 627 opts->options |= OPTION_WSCALE; 628 remaining -= TCPOLEN_WSCALE_ALIGNED; 629 } 630 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 631 opts->options |= OPTION_SACK_ADVERTISE; 632 if (unlikely(!(OPTION_TS & opts->options))) 633 remaining -= TCPOLEN_SACKPERM_ALIGNED; 634 } 635 636 if (fastopen && fastopen->cookie.len >= 0) { 637 u32 need = fastopen->cookie.len; 638 639 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 640 TCPOLEN_FASTOPEN_BASE; 641 need = (need + 3) & ~3U; /* Align to 32 bits */ 642 if (remaining >= need) { 643 opts->options |= OPTION_FAST_OPEN_COOKIE; 644 opts->fastopen_cookie = &fastopen->cookie; 645 remaining -= need; 646 tp->syn_fastopen = 1; 647 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 648 } 649 } 650 651 smc_set_option(tp, opts, &remaining); 652 653 return MAX_TCP_OPTION_SPACE - remaining; 654 } 655 656 /* Set up TCP options for SYN-ACKs. */ 657 static unsigned int tcp_synack_options(const struct sock *sk, 658 struct request_sock *req, 659 unsigned int mss, struct sk_buff *skb, 660 struct tcp_out_options *opts, 661 const struct tcp_md5sig_key *md5, 662 struct tcp_fastopen_cookie *foc) 663 { 664 struct inet_request_sock *ireq = inet_rsk(req); 665 unsigned int remaining = MAX_TCP_OPTION_SPACE; 666 667 #ifdef CONFIG_TCP_MD5SIG 668 if (md5) { 669 opts->options |= OPTION_MD5; 670 remaining -= TCPOLEN_MD5SIG_ALIGNED; 671 672 /* We can't fit any SACK blocks in a packet with MD5 + TS 673 * options. There was discussion about disabling SACK 674 * rather than TS in order to fit in better with old, 675 * buggy kernels, but that was deemed to be unnecessary. 676 */ 677 ireq->tstamp_ok &= !ireq->sack_ok; 678 } 679 #endif 680 681 /* We always send an MSS option. */ 682 opts->mss = mss; 683 remaining -= TCPOLEN_MSS_ALIGNED; 684 685 if (likely(ireq->wscale_ok)) { 686 opts->ws = ireq->rcv_wscale; 687 opts->options |= OPTION_WSCALE; 688 remaining -= TCPOLEN_WSCALE_ALIGNED; 689 } 690 if (likely(ireq->tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 693 opts->tsecr = req->ts_recent; 694 remaining -= TCPOLEN_TSTAMP_ALIGNED; 695 } 696 if (likely(ireq->sack_ok)) { 697 opts->options |= OPTION_SACK_ADVERTISE; 698 if (unlikely(!ireq->tstamp_ok)) 699 remaining -= TCPOLEN_SACKPERM_ALIGNED; 700 } 701 if (foc != NULL && foc->len >= 0) { 702 u32 need = foc->len; 703 704 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 705 TCPOLEN_FASTOPEN_BASE; 706 need = (need + 3) & ~3U; /* Align to 32 bits */ 707 if (remaining >= need) { 708 opts->options |= OPTION_FAST_OPEN_COOKIE; 709 opts->fastopen_cookie = foc; 710 remaining -= need; 711 } 712 } 713 714 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 715 716 return MAX_TCP_OPTION_SPACE - remaining; 717 } 718 719 /* Compute TCP options for ESTABLISHED sockets. This is not the 720 * final wire format yet. 721 */ 722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 723 struct tcp_out_options *opts, 724 struct tcp_md5sig_key **md5) 725 { 726 struct tcp_sock *tp = tcp_sk(sk); 727 unsigned int size = 0; 728 unsigned int eff_sacks; 729 730 opts->options = 0; 731 732 *md5 = NULL; 733 #ifdef CONFIG_TCP_MD5SIG 734 if (static_branch_unlikely(&tcp_md5_needed) && 735 rcu_access_pointer(tp->md5sig_info)) { 736 *md5 = tp->af_specific->md5_lookup(sk, sk); 737 if (*md5) { 738 opts->options |= OPTION_MD5; 739 size += TCPOLEN_MD5SIG_ALIGNED; 740 } 741 } 742 #endif 743 744 if (likely(tp->rx_opt.tstamp_ok)) { 745 opts->options |= OPTION_TS; 746 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 747 opts->tsecr = tp->rx_opt.ts_recent; 748 size += TCPOLEN_TSTAMP_ALIGNED; 749 } 750 751 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 752 if (unlikely(eff_sacks)) { 753 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 754 opts->num_sack_blocks = 755 min_t(unsigned int, eff_sacks, 756 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 757 TCPOLEN_SACK_PERBLOCK); 758 size += TCPOLEN_SACK_BASE_ALIGNED + 759 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 760 } 761 762 return size; 763 } 764 765 766 /* TCP SMALL QUEUES (TSQ) 767 * 768 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 769 * to reduce RTT and bufferbloat. 770 * We do this using a special skb destructor (tcp_wfree). 771 * 772 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 773 * needs to be reallocated in a driver. 774 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 775 * 776 * Since transmit from skb destructor is forbidden, we use a tasklet 777 * to process all sockets that eventually need to send more skbs. 778 * We use one tasklet per cpu, with its own queue of sockets. 779 */ 780 struct tsq_tasklet { 781 struct tasklet_struct tasklet; 782 struct list_head head; /* queue of tcp sockets */ 783 }; 784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 785 786 static void tcp_tsq_write(struct sock *sk) 787 { 788 if ((1 << sk->sk_state) & 789 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 790 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 791 struct tcp_sock *tp = tcp_sk(sk); 792 793 if (tp->lost_out > tp->retrans_out && 794 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 795 tcp_mstamp_refresh(tp); 796 tcp_xmit_retransmit_queue(sk); 797 } 798 799 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 800 0, GFP_ATOMIC); 801 } 802 } 803 804 static void tcp_tsq_handler(struct sock *sk) 805 { 806 bh_lock_sock(sk); 807 if (!sock_owned_by_user(sk)) 808 tcp_tsq_write(sk); 809 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 810 sock_hold(sk); 811 bh_unlock_sock(sk); 812 } 813 /* 814 * One tasklet per cpu tries to send more skbs. 815 * We run in tasklet context but need to disable irqs when 816 * transferring tsq->head because tcp_wfree() might 817 * interrupt us (non NAPI drivers) 818 */ 819 static void tcp_tasklet_func(unsigned long data) 820 { 821 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 822 LIST_HEAD(list); 823 unsigned long flags; 824 struct list_head *q, *n; 825 struct tcp_sock *tp; 826 struct sock *sk; 827 828 local_irq_save(flags); 829 list_splice_init(&tsq->head, &list); 830 local_irq_restore(flags); 831 832 list_for_each_safe(q, n, &list) { 833 tp = list_entry(q, struct tcp_sock, tsq_node); 834 list_del(&tp->tsq_node); 835 836 sk = (struct sock *)tp; 837 smp_mb__before_atomic(); 838 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 839 840 tcp_tsq_handler(sk); 841 sk_free(sk); 842 } 843 } 844 845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 846 TCPF_WRITE_TIMER_DEFERRED | \ 847 TCPF_DELACK_TIMER_DEFERRED | \ 848 TCPF_MTU_REDUCED_DEFERRED) 849 /** 850 * tcp_release_cb - tcp release_sock() callback 851 * @sk: socket 852 * 853 * called from release_sock() to perform protocol dependent 854 * actions before socket release. 855 */ 856 void tcp_release_cb(struct sock *sk) 857 { 858 unsigned long flags, nflags; 859 860 /* perform an atomic operation only if at least one flag is set */ 861 do { 862 flags = sk->sk_tsq_flags; 863 if (!(flags & TCP_DEFERRED_ALL)) 864 return; 865 nflags = flags & ~TCP_DEFERRED_ALL; 866 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 867 868 if (flags & TCPF_TSQ_DEFERRED) { 869 tcp_tsq_write(sk); 870 __sock_put(sk); 871 } 872 /* Here begins the tricky part : 873 * We are called from release_sock() with : 874 * 1) BH disabled 875 * 2) sk_lock.slock spinlock held 876 * 3) socket owned by us (sk->sk_lock.owned == 1) 877 * 878 * But following code is meant to be called from BH handlers, 879 * so we should keep BH disabled, but early release socket ownership 880 */ 881 sock_release_ownership(sk); 882 883 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 884 tcp_write_timer_handler(sk); 885 __sock_put(sk); 886 } 887 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 888 tcp_delack_timer_handler(sk); 889 __sock_put(sk); 890 } 891 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 892 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 893 __sock_put(sk); 894 } 895 } 896 EXPORT_SYMBOL(tcp_release_cb); 897 898 void __init tcp_tasklet_init(void) 899 { 900 int i; 901 902 for_each_possible_cpu(i) { 903 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 904 905 INIT_LIST_HEAD(&tsq->head); 906 tasklet_init(&tsq->tasklet, 907 tcp_tasklet_func, 908 (unsigned long)tsq); 909 } 910 } 911 912 /* 913 * Write buffer destructor automatically called from kfree_skb. 914 * We can't xmit new skbs from this context, as we might already 915 * hold qdisc lock. 916 */ 917 void tcp_wfree(struct sk_buff *skb) 918 { 919 struct sock *sk = skb->sk; 920 struct tcp_sock *tp = tcp_sk(sk); 921 unsigned long flags, nval, oval; 922 923 /* Keep one reference on sk_wmem_alloc. 924 * Will be released by sk_free() from here or tcp_tasklet_func() 925 */ 926 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 927 928 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 929 * Wait until our queues (qdisc + devices) are drained. 930 * This gives : 931 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 932 * - chance for incoming ACK (processed by another cpu maybe) 933 * to migrate this flow (skb->ooo_okay will be eventually set) 934 */ 935 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 936 goto out; 937 938 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 939 struct tsq_tasklet *tsq; 940 bool empty; 941 942 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 943 goto out; 944 945 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 946 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 947 if (nval != oval) 948 continue; 949 950 /* queue this socket to tasklet queue */ 951 local_irq_save(flags); 952 tsq = this_cpu_ptr(&tsq_tasklet); 953 empty = list_empty(&tsq->head); 954 list_add(&tp->tsq_node, &tsq->head); 955 if (empty) 956 tasklet_schedule(&tsq->tasklet); 957 local_irq_restore(flags); 958 return; 959 } 960 out: 961 sk_free(sk); 962 } 963 964 /* Note: Called under soft irq. 965 * We can call TCP stack right away, unless socket is owned by user. 966 */ 967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 968 { 969 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 970 struct sock *sk = (struct sock *)tp; 971 972 tcp_tsq_handler(sk); 973 sock_put(sk); 974 975 return HRTIMER_NORESTART; 976 } 977 978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 979 u64 prior_wstamp) 980 { 981 struct tcp_sock *tp = tcp_sk(sk); 982 983 if (sk->sk_pacing_status != SK_PACING_NONE) { 984 unsigned long rate = sk->sk_pacing_rate; 985 986 /* Original sch_fq does not pace first 10 MSS 987 * Note that tp->data_segs_out overflows after 2^32 packets, 988 * this is a minor annoyance. 989 */ 990 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 991 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 992 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 993 994 /* take into account OS jitter */ 995 len_ns -= min_t(u64, len_ns / 2, credit); 996 tp->tcp_wstamp_ns += len_ns; 997 } 998 } 999 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1000 } 1001 1002 /* This routine actually transmits TCP packets queued in by 1003 * tcp_do_sendmsg(). This is used by both the initial 1004 * transmission and possible later retransmissions. 1005 * All SKB's seen here are completely headerless. It is our 1006 * job to build the TCP header, and pass the packet down to 1007 * IP so it can do the same plus pass the packet off to the 1008 * device. 1009 * 1010 * We are working here with either a clone of the original 1011 * SKB, or a fresh unique copy made by the retransmit engine. 1012 */ 1013 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1014 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1015 { 1016 const struct inet_connection_sock *icsk = inet_csk(sk); 1017 struct inet_sock *inet; 1018 struct tcp_sock *tp; 1019 struct tcp_skb_cb *tcb; 1020 struct tcp_out_options opts; 1021 unsigned int tcp_options_size, tcp_header_size; 1022 struct sk_buff *oskb = NULL; 1023 struct tcp_md5sig_key *md5; 1024 struct tcphdr *th; 1025 u64 prior_wstamp; 1026 int err; 1027 1028 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1029 tp = tcp_sk(sk); 1030 prior_wstamp = tp->tcp_wstamp_ns; 1031 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1032 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1033 if (clone_it) { 1034 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1035 - tp->snd_una; 1036 oskb = skb; 1037 1038 tcp_skb_tsorted_save(oskb) { 1039 if (unlikely(skb_cloned(oskb))) 1040 skb = pskb_copy(oskb, gfp_mask); 1041 else 1042 skb = skb_clone(oskb, gfp_mask); 1043 } tcp_skb_tsorted_restore(oskb); 1044 1045 if (unlikely(!skb)) 1046 return -ENOBUFS; 1047 } 1048 1049 inet = inet_sk(sk); 1050 tcb = TCP_SKB_CB(skb); 1051 memset(&opts, 0, sizeof(opts)); 1052 1053 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1054 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1055 else 1056 tcp_options_size = tcp_established_options(sk, skb, &opts, 1057 &md5); 1058 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1059 1060 /* if no packet is in qdisc/device queue, then allow XPS to select 1061 * another queue. We can be called from tcp_tsq_handler() 1062 * which holds one reference to sk. 1063 * 1064 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1065 * One way to get this would be to set skb->truesize = 2 on them. 1066 */ 1067 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1068 1069 /* If we had to use memory reserve to allocate this skb, 1070 * this might cause drops if packet is looped back : 1071 * Other socket might not have SOCK_MEMALLOC. 1072 * Packets not looped back do not care about pfmemalloc. 1073 */ 1074 skb->pfmemalloc = 0; 1075 1076 skb_push(skb, tcp_header_size); 1077 skb_reset_transport_header(skb); 1078 1079 skb_orphan(skb); 1080 skb->sk = sk; 1081 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1082 skb_set_hash_from_sk(skb, sk); 1083 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1084 1085 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1086 1087 /* Build TCP header and checksum it. */ 1088 th = (struct tcphdr *)skb->data; 1089 th->source = inet->inet_sport; 1090 th->dest = inet->inet_dport; 1091 th->seq = htonl(tcb->seq); 1092 th->ack_seq = htonl(rcv_nxt); 1093 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1094 tcb->tcp_flags); 1095 1096 th->check = 0; 1097 th->urg_ptr = 0; 1098 1099 /* The urg_mode check is necessary during a below snd_una win probe */ 1100 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1101 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1102 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1103 th->urg = 1; 1104 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1105 th->urg_ptr = htons(0xFFFF); 1106 th->urg = 1; 1107 } 1108 } 1109 1110 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1111 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1112 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1113 th->window = htons(tcp_select_window(sk)); 1114 tcp_ecn_send(sk, skb, th, tcp_header_size); 1115 } else { 1116 /* RFC1323: The window in SYN & SYN/ACK segments 1117 * is never scaled. 1118 */ 1119 th->window = htons(min(tp->rcv_wnd, 65535U)); 1120 } 1121 #ifdef CONFIG_TCP_MD5SIG 1122 /* Calculate the MD5 hash, as we have all we need now */ 1123 if (md5) { 1124 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1125 tp->af_specific->calc_md5_hash(opts.hash_location, 1126 md5, sk, skb); 1127 } 1128 #endif 1129 1130 icsk->icsk_af_ops->send_check(sk, skb); 1131 1132 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1133 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1134 1135 if (skb->len != tcp_header_size) { 1136 tcp_event_data_sent(tp, sk); 1137 tp->data_segs_out += tcp_skb_pcount(skb); 1138 tp->bytes_sent += skb->len - tcp_header_size; 1139 } 1140 1141 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1142 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1143 tcp_skb_pcount(skb)); 1144 1145 tp->segs_out += tcp_skb_pcount(skb); 1146 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1147 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1148 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1149 1150 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1151 1152 /* Cleanup our debris for IP stacks */ 1153 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1154 sizeof(struct inet6_skb_parm))); 1155 1156 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1157 1158 if (unlikely(err > 0)) { 1159 tcp_enter_cwr(sk); 1160 err = net_xmit_eval(err); 1161 } 1162 if (!err && oskb) { 1163 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1164 tcp_rate_skb_sent(sk, oskb); 1165 } 1166 return err; 1167 } 1168 1169 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1170 gfp_t gfp_mask) 1171 { 1172 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1173 tcp_sk(sk)->rcv_nxt); 1174 } 1175 1176 /* This routine just queues the buffer for sending. 1177 * 1178 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1179 * otherwise socket can stall. 1180 */ 1181 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1182 { 1183 struct tcp_sock *tp = tcp_sk(sk); 1184 1185 /* Advance write_seq and place onto the write_queue. */ 1186 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1187 __skb_header_release(skb); 1188 tcp_add_write_queue_tail(sk, skb); 1189 sk->sk_wmem_queued += skb->truesize; 1190 sk_mem_charge(sk, skb->truesize); 1191 } 1192 1193 /* Initialize TSO segments for a packet. */ 1194 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1195 { 1196 if (skb->len <= mss_now) { 1197 /* Avoid the costly divide in the normal 1198 * non-TSO case. 1199 */ 1200 tcp_skb_pcount_set(skb, 1); 1201 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1202 } else { 1203 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1204 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1205 } 1206 } 1207 1208 /* Pcount in the middle of the write queue got changed, we need to do various 1209 * tweaks to fix counters 1210 */ 1211 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1212 { 1213 struct tcp_sock *tp = tcp_sk(sk); 1214 1215 tp->packets_out -= decr; 1216 1217 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1218 tp->sacked_out -= decr; 1219 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1220 tp->retrans_out -= decr; 1221 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1222 tp->lost_out -= decr; 1223 1224 /* Reno case is special. Sigh... */ 1225 if (tcp_is_reno(tp) && decr > 0) 1226 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1227 1228 if (tp->lost_skb_hint && 1229 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1230 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1231 tp->lost_cnt_hint -= decr; 1232 1233 tcp_verify_left_out(tp); 1234 } 1235 1236 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1237 { 1238 return TCP_SKB_CB(skb)->txstamp_ack || 1239 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1240 } 1241 1242 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1243 { 1244 struct skb_shared_info *shinfo = skb_shinfo(skb); 1245 1246 if (unlikely(tcp_has_tx_tstamp(skb)) && 1247 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1248 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1249 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1250 1251 shinfo->tx_flags &= ~tsflags; 1252 shinfo2->tx_flags |= tsflags; 1253 swap(shinfo->tskey, shinfo2->tskey); 1254 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1255 TCP_SKB_CB(skb)->txstamp_ack = 0; 1256 } 1257 } 1258 1259 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1260 { 1261 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1262 TCP_SKB_CB(skb)->eor = 0; 1263 } 1264 1265 /* Insert buff after skb on the write or rtx queue of sk. */ 1266 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1267 struct sk_buff *buff, 1268 struct sock *sk, 1269 enum tcp_queue tcp_queue) 1270 { 1271 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1272 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1273 else 1274 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1275 } 1276 1277 /* Function to create two new TCP segments. Shrinks the given segment 1278 * to the specified size and appends a new segment with the rest of the 1279 * packet to the list. This won't be called frequently, I hope. 1280 * Remember, these are still headerless SKBs at this point. 1281 */ 1282 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1283 struct sk_buff *skb, u32 len, 1284 unsigned int mss_now, gfp_t gfp) 1285 { 1286 struct tcp_sock *tp = tcp_sk(sk); 1287 struct sk_buff *buff; 1288 int nsize, old_factor; 1289 int nlen; 1290 u8 flags; 1291 1292 if (WARN_ON(len > skb->len)) 1293 return -EINVAL; 1294 1295 nsize = skb_headlen(skb) - len; 1296 if (nsize < 0) 1297 nsize = 0; 1298 1299 if (skb_unclone(skb, gfp)) 1300 return -ENOMEM; 1301 1302 /* Get a new skb... force flag on. */ 1303 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1304 if (!buff) 1305 return -ENOMEM; /* We'll just try again later. */ 1306 1307 sk->sk_wmem_queued += buff->truesize; 1308 sk_mem_charge(sk, buff->truesize); 1309 nlen = skb->len - len - nsize; 1310 buff->truesize += nlen; 1311 skb->truesize -= nlen; 1312 1313 /* Correct the sequence numbers. */ 1314 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1315 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1316 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1317 1318 /* PSH and FIN should only be set in the second packet. */ 1319 flags = TCP_SKB_CB(skb)->tcp_flags; 1320 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1321 TCP_SKB_CB(buff)->tcp_flags = flags; 1322 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1323 tcp_skb_fragment_eor(skb, buff); 1324 1325 skb_split(skb, buff, len); 1326 1327 buff->ip_summed = CHECKSUM_PARTIAL; 1328 1329 buff->tstamp = skb->tstamp; 1330 tcp_fragment_tstamp(skb, buff); 1331 1332 old_factor = tcp_skb_pcount(skb); 1333 1334 /* Fix up tso_factor for both original and new SKB. */ 1335 tcp_set_skb_tso_segs(skb, mss_now); 1336 tcp_set_skb_tso_segs(buff, mss_now); 1337 1338 /* Update delivered info for the new segment */ 1339 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1340 1341 /* If this packet has been sent out already, we must 1342 * adjust the various packet counters. 1343 */ 1344 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1345 int diff = old_factor - tcp_skb_pcount(skb) - 1346 tcp_skb_pcount(buff); 1347 1348 if (diff) 1349 tcp_adjust_pcount(sk, skb, diff); 1350 } 1351 1352 /* Link BUFF into the send queue. */ 1353 __skb_header_release(buff); 1354 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1355 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1356 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1357 1358 return 0; 1359 } 1360 1361 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1362 * data is not copied, but immediately discarded. 1363 */ 1364 static int __pskb_trim_head(struct sk_buff *skb, int len) 1365 { 1366 struct skb_shared_info *shinfo; 1367 int i, k, eat; 1368 1369 eat = min_t(int, len, skb_headlen(skb)); 1370 if (eat) { 1371 __skb_pull(skb, eat); 1372 len -= eat; 1373 if (!len) 1374 return 0; 1375 } 1376 eat = len; 1377 k = 0; 1378 shinfo = skb_shinfo(skb); 1379 for (i = 0; i < shinfo->nr_frags; i++) { 1380 int size = skb_frag_size(&shinfo->frags[i]); 1381 1382 if (size <= eat) { 1383 skb_frag_unref(skb, i); 1384 eat -= size; 1385 } else { 1386 shinfo->frags[k] = shinfo->frags[i]; 1387 if (eat) { 1388 shinfo->frags[k].page_offset += eat; 1389 skb_frag_size_sub(&shinfo->frags[k], eat); 1390 eat = 0; 1391 } 1392 k++; 1393 } 1394 } 1395 shinfo->nr_frags = k; 1396 1397 skb->data_len -= len; 1398 skb->len = skb->data_len; 1399 return len; 1400 } 1401 1402 /* Remove acked data from a packet in the transmit queue. */ 1403 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1404 { 1405 u32 delta_truesize; 1406 1407 if (skb_unclone(skb, GFP_ATOMIC)) 1408 return -ENOMEM; 1409 1410 delta_truesize = __pskb_trim_head(skb, len); 1411 1412 TCP_SKB_CB(skb)->seq += len; 1413 skb->ip_summed = CHECKSUM_PARTIAL; 1414 1415 if (delta_truesize) { 1416 skb->truesize -= delta_truesize; 1417 sk->sk_wmem_queued -= delta_truesize; 1418 sk_mem_uncharge(sk, delta_truesize); 1419 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1420 } 1421 1422 /* Any change of skb->len requires recalculation of tso factor. */ 1423 if (tcp_skb_pcount(skb) > 1) 1424 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1425 1426 return 0; 1427 } 1428 1429 /* Calculate MSS not accounting any TCP options. */ 1430 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1431 { 1432 const struct tcp_sock *tp = tcp_sk(sk); 1433 const struct inet_connection_sock *icsk = inet_csk(sk); 1434 int mss_now; 1435 1436 /* Calculate base mss without TCP options: 1437 It is MMS_S - sizeof(tcphdr) of rfc1122 1438 */ 1439 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1440 1441 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1442 if (icsk->icsk_af_ops->net_frag_header_len) { 1443 const struct dst_entry *dst = __sk_dst_get(sk); 1444 1445 if (dst && dst_allfrag(dst)) 1446 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1447 } 1448 1449 /* Clamp it (mss_clamp does not include tcp options) */ 1450 if (mss_now > tp->rx_opt.mss_clamp) 1451 mss_now = tp->rx_opt.mss_clamp; 1452 1453 /* Now subtract optional transport overhead */ 1454 mss_now -= icsk->icsk_ext_hdr_len; 1455 1456 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1457 if (mss_now < 48) 1458 mss_now = 48; 1459 return mss_now; 1460 } 1461 1462 /* Calculate MSS. Not accounting for SACKs here. */ 1463 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1464 { 1465 /* Subtract TCP options size, not including SACKs */ 1466 return __tcp_mtu_to_mss(sk, pmtu) - 1467 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1468 } 1469 1470 /* Inverse of above */ 1471 int tcp_mss_to_mtu(struct sock *sk, int mss) 1472 { 1473 const struct tcp_sock *tp = tcp_sk(sk); 1474 const struct inet_connection_sock *icsk = inet_csk(sk); 1475 int mtu; 1476 1477 mtu = mss + 1478 tp->tcp_header_len + 1479 icsk->icsk_ext_hdr_len + 1480 icsk->icsk_af_ops->net_header_len; 1481 1482 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1483 if (icsk->icsk_af_ops->net_frag_header_len) { 1484 const struct dst_entry *dst = __sk_dst_get(sk); 1485 1486 if (dst && dst_allfrag(dst)) 1487 mtu += icsk->icsk_af_ops->net_frag_header_len; 1488 } 1489 return mtu; 1490 } 1491 EXPORT_SYMBOL(tcp_mss_to_mtu); 1492 1493 /* MTU probing init per socket */ 1494 void tcp_mtup_init(struct sock *sk) 1495 { 1496 struct tcp_sock *tp = tcp_sk(sk); 1497 struct inet_connection_sock *icsk = inet_csk(sk); 1498 struct net *net = sock_net(sk); 1499 1500 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1501 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1502 icsk->icsk_af_ops->net_header_len; 1503 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1504 icsk->icsk_mtup.probe_size = 0; 1505 if (icsk->icsk_mtup.enabled) 1506 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1507 } 1508 EXPORT_SYMBOL(tcp_mtup_init); 1509 1510 /* This function synchronize snd mss to current pmtu/exthdr set. 1511 1512 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1513 for TCP options, but includes only bare TCP header. 1514 1515 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1516 It is minimum of user_mss and mss received with SYN. 1517 It also does not include TCP options. 1518 1519 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1520 1521 tp->mss_cache is current effective sending mss, including 1522 all tcp options except for SACKs. It is evaluated, 1523 taking into account current pmtu, but never exceeds 1524 tp->rx_opt.mss_clamp. 1525 1526 NOTE1. rfc1122 clearly states that advertised MSS 1527 DOES NOT include either tcp or ip options. 1528 1529 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1530 are READ ONLY outside this function. --ANK (980731) 1531 */ 1532 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1533 { 1534 struct tcp_sock *tp = tcp_sk(sk); 1535 struct inet_connection_sock *icsk = inet_csk(sk); 1536 int mss_now; 1537 1538 if (icsk->icsk_mtup.search_high > pmtu) 1539 icsk->icsk_mtup.search_high = pmtu; 1540 1541 mss_now = tcp_mtu_to_mss(sk, pmtu); 1542 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1543 1544 /* And store cached results */ 1545 icsk->icsk_pmtu_cookie = pmtu; 1546 if (icsk->icsk_mtup.enabled) 1547 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1548 tp->mss_cache = mss_now; 1549 1550 return mss_now; 1551 } 1552 EXPORT_SYMBOL(tcp_sync_mss); 1553 1554 /* Compute the current effective MSS, taking SACKs and IP options, 1555 * and even PMTU discovery events into account. 1556 */ 1557 unsigned int tcp_current_mss(struct sock *sk) 1558 { 1559 const struct tcp_sock *tp = tcp_sk(sk); 1560 const struct dst_entry *dst = __sk_dst_get(sk); 1561 u32 mss_now; 1562 unsigned int header_len; 1563 struct tcp_out_options opts; 1564 struct tcp_md5sig_key *md5; 1565 1566 mss_now = tp->mss_cache; 1567 1568 if (dst) { 1569 u32 mtu = dst_mtu(dst); 1570 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1571 mss_now = tcp_sync_mss(sk, mtu); 1572 } 1573 1574 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1575 sizeof(struct tcphdr); 1576 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1577 * some common options. If this is an odd packet (because we have SACK 1578 * blocks etc) then our calculated header_len will be different, and 1579 * we have to adjust mss_now correspondingly */ 1580 if (header_len != tp->tcp_header_len) { 1581 int delta = (int) header_len - tp->tcp_header_len; 1582 mss_now -= delta; 1583 } 1584 1585 return mss_now; 1586 } 1587 1588 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1589 * As additional protections, we do not touch cwnd in retransmission phases, 1590 * and if application hit its sndbuf limit recently. 1591 */ 1592 static void tcp_cwnd_application_limited(struct sock *sk) 1593 { 1594 struct tcp_sock *tp = tcp_sk(sk); 1595 1596 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1597 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1598 /* Limited by application or receiver window. */ 1599 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1600 u32 win_used = max(tp->snd_cwnd_used, init_win); 1601 if (win_used < tp->snd_cwnd) { 1602 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1603 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1604 } 1605 tp->snd_cwnd_used = 0; 1606 } 1607 tp->snd_cwnd_stamp = tcp_jiffies32; 1608 } 1609 1610 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1611 { 1612 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1613 struct tcp_sock *tp = tcp_sk(sk); 1614 1615 /* Track the maximum number of outstanding packets in each 1616 * window, and remember whether we were cwnd-limited then. 1617 */ 1618 if (!before(tp->snd_una, tp->max_packets_seq) || 1619 tp->packets_out > tp->max_packets_out) { 1620 tp->max_packets_out = tp->packets_out; 1621 tp->max_packets_seq = tp->snd_nxt; 1622 tp->is_cwnd_limited = is_cwnd_limited; 1623 } 1624 1625 if (tcp_is_cwnd_limited(sk)) { 1626 /* Network is feed fully. */ 1627 tp->snd_cwnd_used = 0; 1628 tp->snd_cwnd_stamp = tcp_jiffies32; 1629 } else { 1630 /* Network starves. */ 1631 if (tp->packets_out > tp->snd_cwnd_used) 1632 tp->snd_cwnd_used = tp->packets_out; 1633 1634 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1635 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1636 !ca_ops->cong_control) 1637 tcp_cwnd_application_limited(sk); 1638 1639 /* The following conditions together indicate the starvation 1640 * is caused by insufficient sender buffer: 1641 * 1) just sent some data (see tcp_write_xmit) 1642 * 2) not cwnd limited (this else condition) 1643 * 3) no more data to send (tcp_write_queue_empty()) 1644 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1645 */ 1646 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1647 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1648 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1649 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1650 } 1651 } 1652 1653 /* Minshall's variant of the Nagle send check. */ 1654 static bool tcp_minshall_check(const struct tcp_sock *tp) 1655 { 1656 return after(tp->snd_sml, tp->snd_una) && 1657 !after(tp->snd_sml, tp->snd_nxt); 1658 } 1659 1660 /* Update snd_sml if this skb is under mss 1661 * Note that a TSO packet might end with a sub-mss segment 1662 * The test is really : 1663 * if ((skb->len % mss) != 0) 1664 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1665 * But we can avoid doing the divide again given we already have 1666 * skb_pcount = skb->len / mss_now 1667 */ 1668 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1669 const struct sk_buff *skb) 1670 { 1671 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1672 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1673 } 1674 1675 /* Return false, if packet can be sent now without violation Nagle's rules: 1676 * 1. It is full sized. (provided by caller in %partial bool) 1677 * 2. Or it contains FIN. (already checked by caller) 1678 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1679 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1680 * With Minshall's modification: all sent small packets are ACKed. 1681 */ 1682 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1683 int nonagle) 1684 { 1685 return partial && 1686 ((nonagle & TCP_NAGLE_CORK) || 1687 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1688 } 1689 1690 /* Return how many segs we'd like on a TSO packet, 1691 * to send one TSO packet per ms 1692 */ 1693 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1694 int min_tso_segs) 1695 { 1696 u32 bytes, segs; 1697 1698 bytes = min_t(unsigned long, 1699 sk->sk_pacing_rate >> sk->sk_pacing_shift, 1700 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1701 1702 /* Goal is to send at least one packet per ms, 1703 * not one big TSO packet every 100 ms. 1704 * This preserves ACK clocking and is consistent 1705 * with tcp_tso_should_defer() heuristic. 1706 */ 1707 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1708 1709 return segs; 1710 } 1711 1712 /* Return the number of segments we want in the skb we are transmitting. 1713 * See if congestion control module wants to decide; otherwise, autosize. 1714 */ 1715 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1716 { 1717 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1718 u32 min_tso, tso_segs; 1719 1720 min_tso = ca_ops->min_tso_segs ? 1721 ca_ops->min_tso_segs(sk) : 1722 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1723 1724 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1725 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1726 } 1727 1728 /* Returns the portion of skb which can be sent right away */ 1729 static unsigned int tcp_mss_split_point(const struct sock *sk, 1730 const struct sk_buff *skb, 1731 unsigned int mss_now, 1732 unsigned int max_segs, 1733 int nonagle) 1734 { 1735 const struct tcp_sock *tp = tcp_sk(sk); 1736 u32 partial, needed, window, max_len; 1737 1738 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1739 max_len = mss_now * max_segs; 1740 1741 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1742 return max_len; 1743 1744 needed = min(skb->len, window); 1745 1746 if (max_len <= needed) 1747 return max_len; 1748 1749 partial = needed % mss_now; 1750 /* If last segment is not a full MSS, check if Nagle rules allow us 1751 * to include this last segment in this skb. 1752 * Otherwise, we'll split the skb at last MSS boundary 1753 */ 1754 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1755 return needed - partial; 1756 1757 return needed; 1758 } 1759 1760 /* Can at least one segment of SKB be sent right now, according to the 1761 * congestion window rules? If so, return how many segments are allowed. 1762 */ 1763 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1764 const struct sk_buff *skb) 1765 { 1766 u32 in_flight, cwnd, halfcwnd; 1767 1768 /* Don't be strict about the congestion window for the final FIN. */ 1769 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1770 tcp_skb_pcount(skb) == 1) 1771 return 1; 1772 1773 in_flight = tcp_packets_in_flight(tp); 1774 cwnd = tp->snd_cwnd; 1775 if (in_flight >= cwnd) 1776 return 0; 1777 1778 /* For better scheduling, ensure we have at least 1779 * 2 GSO packets in flight. 1780 */ 1781 halfcwnd = max(cwnd >> 1, 1U); 1782 return min(halfcwnd, cwnd - in_flight); 1783 } 1784 1785 /* Initialize TSO state of a skb. 1786 * This must be invoked the first time we consider transmitting 1787 * SKB onto the wire. 1788 */ 1789 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1790 { 1791 int tso_segs = tcp_skb_pcount(skb); 1792 1793 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1794 tcp_set_skb_tso_segs(skb, mss_now); 1795 tso_segs = tcp_skb_pcount(skb); 1796 } 1797 return tso_segs; 1798 } 1799 1800 1801 /* Return true if the Nagle test allows this packet to be 1802 * sent now. 1803 */ 1804 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1805 unsigned int cur_mss, int nonagle) 1806 { 1807 /* Nagle rule does not apply to frames, which sit in the middle of the 1808 * write_queue (they have no chances to get new data). 1809 * 1810 * This is implemented in the callers, where they modify the 'nonagle' 1811 * argument based upon the location of SKB in the send queue. 1812 */ 1813 if (nonagle & TCP_NAGLE_PUSH) 1814 return true; 1815 1816 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1817 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1818 return true; 1819 1820 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1821 return true; 1822 1823 return false; 1824 } 1825 1826 /* Does at least the first segment of SKB fit into the send window? */ 1827 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1828 const struct sk_buff *skb, 1829 unsigned int cur_mss) 1830 { 1831 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1832 1833 if (skb->len > cur_mss) 1834 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1835 1836 return !after(end_seq, tcp_wnd_end(tp)); 1837 } 1838 1839 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1840 * which is put after SKB on the list. It is very much like 1841 * tcp_fragment() except that it may make several kinds of assumptions 1842 * in order to speed up the splitting operation. In particular, we 1843 * know that all the data is in scatter-gather pages, and that the 1844 * packet has never been sent out before (and thus is not cloned). 1845 */ 1846 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1847 unsigned int mss_now, gfp_t gfp) 1848 { 1849 int nlen = skb->len - len; 1850 struct sk_buff *buff; 1851 u8 flags; 1852 1853 /* All of a TSO frame must be composed of paged data. */ 1854 if (skb->len != skb->data_len) 1855 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1856 skb, len, mss_now, gfp); 1857 1858 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1859 if (unlikely(!buff)) 1860 return -ENOMEM; 1861 1862 sk->sk_wmem_queued += buff->truesize; 1863 sk_mem_charge(sk, buff->truesize); 1864 buff->truesize += nlen; 1865 skb->truesize -= nlen; 1866 1867 /* Correct the sequence numbers. */ 1868 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1869 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1870 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1871 1872 /* PSH and FIN should only be set in the second packet. */ 1873 flags = TCP_SKB_CB(skb)->tcp_flags; 1874 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1875 TCP_SKB_CB(buff)->tcp_flags = flags; 1876 1877 /* This packet was never sent out yet, so no SACK bits. */ 1878 TCP_SKB_CB(buff)->sacked = 0; 1879 1880 tcp_skb_fragment_eor(skb, buff); 1881 1882 buff->ip_summed = CHECKSUM_PARTIAL; 1883 skb_split(skb, buff, len); 1884 tcp_fragment_tstamp(skb, buff); 1885 1886 /* Fix up tso_factor for both original and new SKB. */ 1887 tcp_set_skb_tso_segs(skb, mss_now); 1888 tcp_set_skb_tso_segs(buff, mss_now); 1889 1890 /* Link BUFF into the send queue. */ 1891 __skb_header_release(buff); 1892 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1893 1894 return 0; 1895 } 1896 1897 /* Try to defer sending, if possible, in order to minimize the amount 1898 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1899 * 1900 * This algorithm is from John Heffner. 1901 */ 1902 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1903 bool *is_cwnd_limited, 1904 bool *is_rwnd_limited, 1905 u32 max_segs) 1906 { 1907 const struct inet_connection_sock *icsk = inet_csk(sk); 1908 u32 send_win, cong_win, limit, in_flight; 1909 struct tcp_sock *tp = tcp_sk(sk); 1910 struct sk_buff *head; 1911 int win_divisor; 1912 s64 delta; 1913 1914 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1915 goto send_now; 1916 1917 /* Avoid bursty behavior by allowing defer 1918 * only if the last write was recent (1 ms). 1919 * Note that tp->tcp_wstamp_ns can be in the future if we have 1920 * packets waiting in a qdisc or device for EDT delivery. 1921 */ 1922 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 1923 if (delta > 0) 1924 goto send_now; 1925 1926 in_flight = tcp_packets_in_flight(tp); 1927 1928 BUG_ON(tcp_skb_pcount(skb) <= 1); 1929 BUG_ON(tp->snd_cwnd <= in_flight); 1930 1931 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1932 1933 /* From in_flight test above, we know that cwnd > in_flight. */ 1934 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1935 1936 limit = min(send_win, cong_win); 1937 1938 /* If a full-sized TSO skb can be sent, do it. */ 1939 if (limit >= max_segs * tp->mss_cache) 1940 goto send_now; 1941 1942 /* Middle in queue won't get any more data, full sendable already? */ 1943 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1944 goto send_now; 1945 1946 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1947 if (win_divisor) { 1948 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1949 1950 /* If at least some fraction of a window is available, 1951 * just use it. 1952 */ 1953 chunk /= win_divisor; 1954 if (limit >= chunk) 1955 goto send_now; 1956 } else { 1957 /* Different approach, try not to defer past a single 1958 * ACK. Receiver should ACK every other full sized 1959 * frame, so if we have space for more than 3 frames 1960 * then send now. 1961 */ 1962 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1963 goto send_now; 1964 } 1965 1966 /* TODO : use tsorted_sent_queue ? */ 1967 head = tcp_rtx_queue_head(sk); 1968 if (!head) 1969 goto send_now; 1970 delta = tp->tcp_clock_cache - head->tstamp; 1971 /* If next ACK is likely to come too late (half srtt), do not defer */ 1972 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 1973 goto send_now; 1974 1975 /* Ok, it looks like it is advisable to defer. 1976 * Three cases are tracked : 1977 * 1) We are cwnd-limited 1978 * 2) We are rwnd-limited 1979 * 3) We are application limited. 1980 */ 1981 if (cong_win < send_win) { 1982 if (cong_win <= skb->len) { 1983 *is_cwnd_limited = true; 1984 return true; 1985 } 1986 } else { 1987 if (send_win <= skb->len) { 1988 *is_rwnd_limited = true; 1989 return true; 1990 } 1991 } 1992 1993 /* If this packet won't get more data, do not wait. */ 1994 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 1995 TCP_SKB_CB(skb)->eor) 1996 goto send_now; 1997 1998 return true; 1999 2000 send_now: 2001 return false; 2002 } 2003 2004 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2005 { 2006 struct inet_connection_sock *icsk = inet_csk(sk); 2007 struct tcp_sock *tp = tcp_sk(sk); 2008 struct net *net = sock_net(sk); 2009 u32 interval; 2010 s32 delta; 2011 2012 interval = net->ipv4.sysctl_tcp_probe_interval; 2013 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2014 if (unlikely(delta >= interval * HZ)) { 2015 int mss = tcp_current_mss(sk); 2016 2017 /* Update current search range */ 2018 icsk->icsk_mtup.probe_size = 0; 2019 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2020 sizeof(struct tcphdr) + 2021 icsk->icsk_af_ops->net_header_len; 2022 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2023 2024 /* Update probe time stamp */ 2025 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2026 } 2027 } 2028 2029 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2030 { 2031 struct sk_buff *skb, *next; 2032 2033 skb = tcp_send_head(sk); 2034 tcp_for_write_queue_from_safe(skb, next, sk) { 2035 if (len <= skb->len) 2036 break; 2037 2038 if (unlikely(TCP_SKB_CB(skb)->eor)) 2039 return false; 2040 2041 len -= skb->len; 2042 } 2043 2044 return true; 2045 } 2046 2047 /* Create a new MTU probe if we are ready. 2048 * MTU probe is regularly attempting to increase the path MTU by 2049 * deliberately sending larger packets. This discovers routing 2050 * changes resulting in larger path MTUs. 2051 * 2052 * Returns 0 if we should wait to probe (no cwnd available), 2053 * 1 if a probe was sent, 2054 * -1 otherwise 2055 */ 2056 static int tcp_mtu_probe(struct sock *sk) 2057 { 2058 struct inet_connection_sock *icsk = inet_csk(sk); 2059 struct tcp_sock *tp = tcp_sk(sk); 2060 struct sk_buff *skb, *nskb, *next; 2061 struct net *net = sock_net(sk); 2062 int probe_size; 2063 int size_needed; 2064 int copy, len; 2065 int mss_now; 2066 int interval; 2067 2068 /* Not currently probing/verifying, 2069 * not in recovery, 2070 * have enough cwnd, and 2071 * not SACKing (the variable headers throw things off) 2072 */ 2073 if (likely(!icsk->icsk_mtup.enabled || 2074 icsk->icsk_mtup.probe_size || 2075 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2076 tp->snd_cwnd < 11 || 2077 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2078 return -1; 2079 2080 /* Use binary search for probe_size between tcp_mss_base, 2081 * and current mss_clamp. if (search_high - search_low) 2082 * smaller than a threshold, backoff from probing. 2083 */ 2084 mss_now = tcp_current_mss(sk); 2085 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2086 icsk->icsk_mtup.search_low) >> 1); 2087 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2088 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2089 /* When misfortune happens, we are reprobing actively, 2090 * and then reprobe timer has expired. We stick with current 2091 * probing process by not resetting search range to its orignal. 2092 */ 2093 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2094 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2095 /* Check whether enough time has elaplased for 2096 * another round of probing. 2097 */ 2098 tcp_mtu_check_reprobe(sk); 2099 return -1; 2100 } 2101 2102 /* Have enough data in the send queue to probe? */ 2103 if (tp->write_seq - tp->snd_nxt < size_needed) 2104 return -1; 2105 2106 if (tp->snd_wnd < size_needed) 2107 return -1; 2108 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2109 return 0; 2110 2111 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2112 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2113 if (!tcp_packets_in_flight(tp)) 2114 return -1; 2115 else 2116 return 0; 2117 } 2118 2119 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2120 return -1; 2121 2122 /* We're allowed to probe. Build it now. */ 2123 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2124 if (!nskb) 2125 return -1; 2126 sk->sk_wmem_queued += nskb->truesize; 2127 sk_mem_charge(sk, nskb->truesize); 2128 2129 skb = tcp_send_head(sk); 2130 2131 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2132 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2133 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2134 TCP_SKB_CB(nskb)->sacked = 0; 2135 nskb->csum = 0; 2136 nskb->ip_summed = CHECKSUM_PARTIAL; 2137 2138 tcp_insert_write_queue_before(nskb, skb, sk); 2139 tcp_highest_sack_replace(sk, skb, nskb); 2140 2141 len = 0; 2142 tcp_for_write_queue_from_safe(skb, next, sk) { 2143 copy = min_t(int, skb->len, probe_size - len); 2144 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2145 2146 if (skb->len <= copy) { 2147 /* We've eaten all the data from this skb. 2148 * Throw it away. */ 2149 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2150 /* If this is the last SKB we copy and eor is set 2151 * we need to propagate it to the new skb. 2152 */ 2153 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2154 tcp_unlink_write_queue(skb, sk); 2155 sk_wmem_free_skb(sk, skb); 2156 } else { 2157 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2158 ~(TCPHDR_FIN|TCPHDR_PSH); 2159 if (!skb_shinfo(skb)->nr_frags) { 2160 skb_pull(skb, copy); 2161 } else { 2162 __pskb_trim_head(skb, copy); 2163 tcp_set_skb_tso_segs(skb, mss_now); 2164 } 2165 TCP_SKB_CB(skb)->seq += copy; 2166 } 2167 2168 len += copy; 2169 2170 if (len >= probe_size) 2171 break; 2172 } 2173 tcp_init_tso_segs(nskb, nskb->len); 2174 2175 /* We're ready to send. If this fails, the probe will 2176 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2177 */ 2178 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2179 /* Decrement cwnd here because we are sending 2180 * effectively two packets. */ 2181 tp->snd_cwnd--; 2182 tcp_event_new_data_sent(sk, nskb); 2183 2184 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2185 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2186 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2187 2188 return 1; 2189 } 2190 2191 return -1; 2192 } 2193 2194 static bool tcp_pacing_check(struct sock *sk) 2195 { 2196 struct tcp_sock *tp = tcp_sk(sk); 2197 2198 if (!tcp_needs_internal_pacing(sk)) 2199 return false; 2200 2201 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2202 return false; 2203 2204 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2205 hrtimer_start(&tp->pacing_timer, 2206 ns_to_ktime(tp->tcp_wstamp_ns), 2207 HRTIMER_MODE_ABS_PINNED_SOFT); 2208 sock_hold(sk); 2209 } 2210 return true; 2211 } 2212 2213 /* TCP Small Queues : 2214 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2215 * (These limits are doubled for retransmits) 2216 * This allows for : 2217 * - better RTT estimation and ACK scheduling 2218 * - faster recovery 2219 * - high rates 2220 * Alas, some drivers / subsystems require a fair amount 2221 * of queued bytes to ensure line rate. 2222 * One example is wifi aggregation (802.11 AMPDU) 2223 */ 2224 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2225 unsigned int factor) 2226 { 2227 unsigned long limit; 2228 2229 limit = max_t(unsigned long, 2230 2 * skb->truesize, 2231 sk->sk_pacing_rate >> sk->sk_pacing_shift); 2232 if (sk->sk_pacing_status == SK_PACING_NONE) 2233 limit = min_t(unsigned long, limit, 2234 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2235 limit <<= factor; 2236 2237 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2238 /* Always send skb if rtx queue is empty. 2239 * No need to wait for TX completion to call us back, 2240 * after softirq/tasklet schedule. 2241 * This helps when TX completions are delayed too much. 2242 */ 2243 if (tcp_rtx_queue_empty(sk)) 2244 return false; 2245 2246 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2247 /* It is possible TX completion already happened 2248 * before we set TSQ_THROTTLED, so we must 2249 * test again the condition. 2250 */ 2251 smp_mb__after_atomic(); 2252 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2253 return true; 2254 } 2255 return false; 2256 } 2257 2258 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2259 { 2260 const u32 now = tcp_jiffies32; 2261 enum tcp_chrono old = tp->chrono_type; 2262 2263 if (old > TCP_CHRONO_UNSPEC) 2264 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2265 tp->chrono_start = now; 2266 tp->chrono_type = new; 2267 } 2268 2269 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2270 { 2271 struct tcp_sock *tp = tcp_sk(sk); 2272 2273 /* If there are multiple conditions worthy of tracking in a 2274 * chronograph then the highest priority enum takes precedence 2275 * over the other conditions. So that if something "more interesting" 2276 * starts happening, stop the previous chrono and start a new one. 2277 */ 2278 if (type > tp->chrono_type) 2279 tcp_chrono_set(tp, type); 2280 } 2281 2282 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2283 { 2284 struct tcp_sock *tp = tcp_sk(sk); 2285 2286 2287 /* There are multiple conditions worthy of tracking in a 2288 * chronograph, so that the highest priority enum takes 2289 * precedence over the other conditions (see tcp_chrono_start). 2290 * If a condition stops, we only stop chrono tracking if 2291 * it's the "most interesting" or current chrono we are 2292 * tracking and starts busy chrono if we have pending data. 2293 */ 2294 if (tcp_rtx_and_write_queues_empty(sk)) 2295 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2296 else if (type == tp->chrono_type) 2297 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2298 } 2299 2300 /* This routine writes packets to the network. It advances the 2301 * send_head. This happens as incoming acks open up the remote 2302 * window for us. 2303 * 2304 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2305 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2306 * account rare use of URG, this is not a big flaw. 2307 * 2308 * Send at most one packet when push_one > 0. Temporarily ignore 2309 * cwnd limit to force at most one packet out when push_one == 2. 2310 2311 * Returns true, if no segments are in flight and we have queued segments, 2312 * but cannot send anything now because of SWS or another problem. 2313 */ 2314 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2315 int push_one, gfp_t gfp) 2316 { 2317 struct tcp_sock *tp = tcp_sk(sk); 2318 struct sk_buff *skb; 2319 unsigned int tso_segs, sent_pkts; 2320 int cwnd_quota; 2321 int result; 2322 bool is_cwnd_limited = false, is_rwnd_limited = false; 2323 u32 max_segs; 2324 2325 sent_pkts = 0; 2326 2327 tcp_mstamp_refresh(tp); 2328 if (!push_one) { 2329 /* Do MTU probing. */ 2330 result = tcp_mtu_probe(sk); 2331 if (!result) { 2332 return false; 2333 } else if (result > 0) { 2334 sent_pkts = 1; 2335 } 2336 } 2337 2338 max_segs = tcp_tso_segs(sk, mss_now); 2339 while ((skb = tcp_send_head(sk))) { 2340 unsigned int limit; 2341 2342 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2343 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2344 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2345 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2346 tcp_init_tso_segs(skb, mss_now); 2347 goto repair; /* Skip network transmission */ 2348 } 2349 2350 if (tcp_pacing_check(sk)) 2351 break; 2352 2353 tso_segs = tcp_init_tso_segs(skb, mss_now); 2354 BUG_ON(!tso_segs); 2355 2356 cwnd_quota = tcp_cwnd_test(tp, skb); 2357 if (!cwnd_quota) { 2358 if (push_one == 2) 2359 /* Force out a loss probe pkt. */ 2360 cwnd_quota = 1; 2361 else 2362 break; 2363 } 2364 2365 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2366 is_rwnd_limited = true; 2367 break; 2368 } 2369 2370 if (tso_segs == 1) { 2371 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2372 (tcp_skb_is_last(sk, skb) ? 2373 nonagle : TCP_NAGLE_PUSH)))) 2374 break; 2375 } else { 2376 if (!push_one && 2377 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2378 &is_rwnd_limited, max_segs)) 2379 break; 2380 } 2381 2382 limit = mss_now; 2383 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2384 limit = tcp_mss_split_point(sk, skb, mss_now, 2385 min_t(unsigned int, 2386 cwnd_quota, 2387 max_segs), 2388 nonagle); 2389 2390 if (skb->len > limit && 2391 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2392 break; 2393 2394 if (tcp_small_queue_check(sk, skb, 0)) 2395 break; 2396 2397 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2398 break; 2399 2400 repair: 2401 /* Advance the send_head. This one is sent out. 2402 * This call will increment packets_out. 2403 */ 2404 tcp_event_new_data_sent(sk, skb); 2405 2406 tcp_minshall_update(tp, mss_now, skb); 2407 sent_pkts += tcp_skb_pcount(skb); 2408 2409 if (push_one) 2410 break; 2411 } 2412 2413 if (is_rwnd_limited) 2414 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2415 else 2416 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2417 2418 if (likely(sent_pkts)) { 2419 if (tcp_in_cwnd_reduction(sk)) 2420 tp->prr_out += sent_pkts; 2421 2422 /* Send one loss probe per tail loss episode. */ 2423 if (push_one != 2) 2424 tcp_schedule_loss_probe(sk, false); 2425 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2426 tcp_cwnd_validate(sk, is_cwnd_limited); 2427 return false; 2428 } 2429 return !tp->packets_out && !tcp_write_queue_empty(sk); 2430 } 2431 2432 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2433 { 2434 struct inet_connection_sock *icsk = inet_csk(sk); 2435 struct tcp_sock *tp = tcp_sk(sk); 2436 u32 timeout, rto_delta_us; 2437 int early_retrans; 2438 2439 /* Don't do any loss probe on a Fast Open connection before 3WHS 2440 * finishes. 2441 */ 2442 if (tp->fastopen_rsk) 2443 return false; 2444 2445 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2446 /* Schedule a loss probe in 2*RTT for SACK capable connections 2447 * not in loss recovery, that are either limited by cwnd or application. 2448 */ 2449 if ((early_retrans != 3 && early_retrans != 4) || 2450 !tp->packets_out || !tcp_is_sack(tp) || 2451 (icsk->icsk_ca_state != TCP_CA_Open && 2452 icsk->icsk_ca_state != TCP_CA_CWR)) 2453 return false; 2454 2455 /* Probe timeout is 2*rtt. Add minimum RTO to account 2456 * for delayed ack when there's one outstanding packet. If no RTT 2457 * sample is available then probe after TCP_TIMEOUT_INIT. 2458 */ 2459 if (tp->srtt_us) { 2460 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2461 if (tp->packets_out == 1) 2462 timeout += TCP_RTO_MIN; 2463 else 2464 timeout += TCP_TIMEOUT_MIN; 2465 } else { 2466 timeout = TCP_TIMEOUT_INIT; 2467 } 2468 2469 /* If the RTO formula yields an earlier time, then use that time. */ 2470 rto_delta_us = advancing_rto ? 2471 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2472 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2473 if (rto_delta_us > 0) 2474 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2475 2476 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2477 TCP_RTO_MAX, NULL); 2478 return true; 2479 } 2480 2481 /* Thanks to skb fast clones, we can detect if a prior transmit of 2482 * a packet is still in a qdisc or driver queue. 2483 * In this case, there is very little point doing a retransmit ! 2484 */ 2485 static bool skb_still_in_host_queue(const struct sock *sk, 2486 const struct sk_buff *skb) 2487 { 2488 if (unlikely(skb_fclone_busy(sk, skb))) { 2489 NET_INC_STATS(sock_net(sk), 2490 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2491 return true; 2492 } 2493 return false; 2494 } 2495 2496 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2497 * retransmit the last segment. 2498 */ 2499 void tcp_send_loss_probe(struct sock *sk) 2500 { 2501 struct tcp_sock *tp = tcp_sk(sk); 2502 struct sk_buff *skb; 2503 int pcount; 2504 int mss = tcp_current_mss(sk); 2505 2506 skb = tcp_send_head(sk); 2507 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2508 pcount = tp->packets_out; 2509 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2510 if (tp->packets_out > pcount) 2511 goto probe_sent; 2512 goto rearm_timer; 2513 } 2514 skb = skb_rb_last(&sk->tcp_rtx_queue); 2515 if (unlikely(!skb)) { 2516 WARN_ONCE(tp->packets_out, 2517 "invalid inflight: %u state %u cwnd %u mss %d\n", 2518 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2519 inet_csk(sk)->icsk_pending = 0; 2520 return; 2521 } 2522 2523 /* At most one outstanding TLP retransmission. */ 2524 if (tp->tlp_high_seq) 2525 goto rearm_timer; 2526 2527 if (skb_still_in_host_queue(sk, skb)) 2528 goto rearm_timer; 2529 2530 pcount = tcp_skb_pcount(skb); 2531 if (WARN_ON(!pcount)) 2532 goto rearm_timer; 2533 2534 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2535 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2536 (pcount - 1) * mss, mss, 2537 GFP_ATOMIC))) 2538 goto rearm_timer; 2539 skb = skb_rb_next(skb); 2540 } 2541 2542 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2543 goto rearm_timer; 2544 2545 if (__tcp_retransmit_skb(sk, skb, 1)) 2546 goto rearm_timer; 2547 2548 /* Record snd_nxt for loss detection. */ 2549 tp->tlp_high_seq = tp->snd_nxt; 2550 2551 probe_sent: 2552 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2553 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2554 inet_csk(sk)->icsk_pending = 0; 2555 rearm_timer: 2556 tcp_rearm_rto(sk); 2557 } 2558 2559 /* Push out any pending frames which were held back due to 2560 * TCP_CORK or attempt at coalescing tiny packets. 2561 * The socket must be locked by the caller. 2562 */ 2563 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2564 int nonagle) 2565 { 2566 /* If we are closed, the bytes will have to remain here. 2567 * In time closedown will finish, we empty the write queue and 2568 * all will be happy. 2569 */ 2570 if (unlikely(sk->sk_state == TCP_CLOSE)) 2571 return; 2572 2573 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2574 sk_gfp_mask(sk, GFP_ATOMIC))) 2575 tcp_check_probe_timer(sk); 2576 } 2577 2578 /* Send _single_ skb sitting at the send head. This function requires 2579 * true push pending frames to setup probe timer etc. 2580 */ 2581 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2582 { 2583 struct sk_buff *skb = tcp_send_head(sk); 2584 2585 BUG_ON(!skb || skb->len < mss_now); 2586 2587 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2588 } 2589 2590 /* This function returns the amount that we can raise the 2591 * usable window based on the following constraints 2592 * 2593 * 1. The window can never be shrunk once it is offered (RFC 793) 2594 * 2. We limit memory per socket 2595 * 2596 * RFC 1122: 2597 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2598 * RECV.NEXT + RCV.WIN fixed until: 2599 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2600 * 2601 * i.e. don't raise the right edge of the window until you can raise 2602 * it at least MSS bytes. 2603 * 2604 * Unfortunately, the recommended algorithm breaks header prediction, 2605 * since header prediction assumes th->window stays fixed. 2606 * 2607 * Strictly speaking, keeping th->window fixed violates the receiver 2608 * side SWS prevention criteria. The problem is that under this rule 2609 * a stream of single byte packets will cause the right side of the 2610 * window to always advance by a single byte. 2611 * 2612 * Of course, if the sender implements sender side SWS prevention 2613 * then this will not be a problem. 2614 * 2615 * BSD seems to make the following compromise: 2616 * 2617 * If the free space is less than the 1/4 of the maximum 2618 * space available and the free space is less than 1/2 mss, 2619 * then set the window to 0. 2620 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2621 * Otherwise, just prevent the window from shrinking 2622 * and from being larger than the largest representable value. 2623 * 2624 * This prevents incremental opening of the window in the regime 2625 * where TCP is limited by the speed of the reader side taking 2626 * data out of the TCP receive queue. It does nothing about 2627 * those cases where the window is constrained on the sender side 2628 * because the pipeline is full. 2629 * 2630 * BSD also seems to "accidentally" limit itself to windows that are a 2631 * multiple of MSS, at least until the free space gets quite small. 2632 * This would appear to be a side effect of the mbuf implementation. 2633 * Combining these two algorithms results in the observed behavior 2634 * of having a fixed window size at almost all times. 2635 * 2636 * Below we obtain similar behavior by forcing the offered window to 2637 * a multiple of the mss when it is feasible to do so. 2638 * 2639 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2640 * Regular options like TIMESTAMP are taken into account. 2641 */ 2642 u32 __tcp_select_window(struct sock *sk) 2643 { 2644 struct inet_connection_sock *icsk = inet_csk(sk); 2645 struct tcp_sock *tp = tcp_sk(sk); 2646 /* MSS for the peer's data. Previous versions used mss_clamp 2647 * here. I don't know if the value based on our guesses 2648 * of peer's MSS is better for the performance. It's more correct 2649 * but may be worse for the performance because of rcv_mss 2650 * fluctuations. --SAW 1998/11/1 2651 */ 2652 int mss = icsk->icsk_ack.rcv_mss; 2653 int free_space = tcp_space(sk); 2654 int allowed_space = tcp_full_space(sk); 2655 int full_space = min_t(int, tp->window_clamp, allowed_space); 2656 int window; 2657 2658 if (unlikely(mss > full_space)) { 2659 mss = full_space; 2660 if (mss <= 0) 2661 return 0; 2662 } 2663 if (free_space < (full_space >> 1)) { 2664 icsk->icsk_ack.quick = 0; 2665 2666 if (tcp_under_memory_pressure(sk)) 2667 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2668 4U * tp->advmss); 2669 2670 /* free_space might become our new window, make sure we don't 2671 * increase it due to wscale. 2672 */ 2673 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2674 2675 /* if free space is less than mss estimate, or is below 1/16th 2676 * of the maximum allowed, try to move to zero-window, else 2677 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2678 * new incoming data is dropped due to memory limits. 2679 * With large window, mss test triggers way too late in order 2680 * to announce zero window in time before rmem limit kicks in. 2681 */ 2682 if (free_space < (allowed_space >> 4) || free_space < mss) 2683 return 0; 2684 } 2685 2686 if (free_space > tp->rcv_ssthresh) 2687 free_space = tp->rcv_ssthresh; 2688 2689 /* Don't do rounding if we are using window scaling, since the 2690 * scaled window will not line up with the MSS boundary anyway. 2691 */ 2692 if (tp->rx_opt.rcv_wscale) { 2693 window = free_space; 2694 2695 /* Advertise enough space so that it won't get scaled away. 2696 * Import case: prevent zero window announcement if 2697 * 1<<rcv_wscale > mss. 2698 */ 2699 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2700 } else { 2701 window = tp->rcv_wnd; 2702 /* Get the largest window that is a nice multiple of mss. 2703 * Window clamp already applied above. 2704 * If our current window offering is within 1 mss of the 2705 * free space we just keep it. This prevents the divide 2706 * and multiply from happening most of the time. 2707 * We also don't do any window rounding when the free space 2708 * is too small. 2709 */ 2710 if (window <= free_space - mss || window > free_space) 2711 window = rounddown(free_space, mss); 2712 else if (mss == full_space && 2713 free_space > window + (full_space >> 1)) 2714 window = free_space; 2715 } 2716 2717 return window; 2718 } 2719 2720 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2721 const struct sk_buff *next_skb) 2722 { 2723 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2724 const struct skb_shared_info *next_shinfo = 2725 skb_shinfo(next_skb); 2726 struct skb_shared_info *shinfo = skb_shinfo(skb); 2727 2728 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2729 shinfo->tskey = next_shinfo->tskey; 2730 TCP_SKB_CB(skb)->txstamp_ack |= 2731 TCP_SKB_CB(next_skb)->txstamp_ack; 2732 } 2733 } 2734 2735 /* Collapses two adjacent SKB's during retransmission. */ 2736 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2737 { 2738 struct tcp_sock *tp = tcp_sk(sk); 2739 struct sk_buff *next_skb = skb_rb_next(skb); 2740 int next_skb_size; 2741 2742 next_skb_size = next_skb->len; 2743 2744 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2745 2746 if (next_skb_size) { 2747 if (next_skb_size <= skb_availroom(skb)) 2748 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2749 next_skb_size); 2750 else if (!skb_shift(skb, next_skb, next_skb_size)) 2751 return false; 2752 } 2753 tcp_highest_sack_replace(sk, next_skb, skb); 2754 2755 /* Update sequence range on original skb. */ 2756 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2757 2758 /* Merge over control information. This moves PSH/FIN etc. over */ 2759 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2760 2761 /* All done, get rid of second SKB and account for it so 2762 * packet counting does not break. 2763 */ 2764 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2765 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2766 2767 /* changed transmit queue under us so clear hints */ 2768 tcp_clear_retrans_hints_partial(tp); 2769 if (next_skb == tp->retransmit_skb_hint) 2770 tp->retransmit_skb_hint = skb; 2771 2772 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2773 2774 tcp_skb_collapse_tstamp(skb, next_skb); 2775 2776 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2777 return true; 2778 } 2779 2780 /* Check if coalescing SKBs is legal. */ 2781 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2782 { 2783 if (tcp_skb_pcount(skb) > 1) 2784 return false; 2785 if (skb_cloned(skb)) 2786 return false; 2787 /* Some heuristics for collapsing over SACK'd could be invented */ 2788 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2789 return false; 2790 2791 return true; 2792 } 2793 2794 /* Collapse packets in the retransmit queue to make to create 2795 * less packets on the wire. This is only done on retransmission. 2796 */ 2797 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2798 int space) 2799 { 2800 struct tcp_sock *tp = tcp_sk(sk); 2801 struct sk_buff *skb = to, *tmp; 2802 bool first = true; 2803 2804 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2805 return; 2806 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2807 return; 2808 2809 skb_rbtree_walk_from_safe(skb, tmp) { 2810 if (!tcp_can_collapse(sk, skb)) 2811 break; 2812 2813 if (!tcp_skb_can_collapse_to(to)) 2814 break; 2815 2816 space -= skb->len; 2817 2818 if (first) { 2819 first = false; 2820 continue; 2821 } 2822 2823 if (space < 0) 2824 break; 2825 2826 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2827 break; 2828 2829 if (!tcp_collapse_retrans(sk, to)) 2830 break; 2831 } 2832 } 2833 2834 /* This retransmits one SKB. Policy decisions and retransmit queue 2835 * state updates are done by the caller. Returns non-zero if an 2836 * error occurred which prevented the send. 2837 */ 2838 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2839 { 2840 struct inet_connection_sock *icsk = inet_csk(sk); 2841 struct tcp_sock *tp = tcp_sk(sk); 2842 unsigned int cur_mss; 2843 int diff, len, err; 2844 2845 2846 /* Inconclusive MTU probe */ 2847 if (icsk->icsk_mtup.probe_size) 2848 icsk->icsk_mtup.probe_size = 0; 2849 2850 /* Do not sent more than we queued. 1/4 is reserved for possible 2851 * copying overhead: fragmentation, tunneling, mangling etc. 2852 */ 2853 if (refcount_read(&sk->sk_wmem_alloc) > 2854 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2855 sk->sk_sndbuf)) 2856 return -EAGAIN; 2857 2858 if (skb_still_in_host_queue(sk, skb)) 2859 return -EBUSY; 2860 2861 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2862 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2863 WARN_ON_ONCE(1); 2864 return -EINVAL; 2865 } 2866 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2867 return -ENOMEM; 2868 } 2869 2870 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2871 return -EHOSTUNREACH; /* Routing failure or similar. */ 2872 2873 cur_mss = tcp_current_mss(sk); 2874 2875 /* If receiver has shrunk his window, and skb is out of 2876 * new window, do not retransmit it. The exception is the 2877 * case, when window is shrunk to zero. In this case 2878 * our retransmit serves as a zero window probe. 2879 */ 2880 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2881 TCP_SKB_CB(skb)->seq != tp->snd_una) 2882 return -EAGAIN; 2883 2884 len = cur_mss * segs; 2885 if (skb->len > len) { 2886 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2887 cur_mss, GFP_ATOMIC)) 2888 return -ENOMEM; /* We'll try again later. */ 2889 } else { 2890 if (skb_unclone(skb, GFP_ATOMIC)) 2891 return -ENOMEM; 2892 2893 diff = tcp_skb_pcount(skb); 2894 tcp_set_skb_tso_segs(skb, cur_mss); 2895 diff -= tcp_skb_pcount(skb); 2896 if (diff) 2897 tcp_adjust_pcount(sk, skb, diff); 2898 if (skb->len < cur_mss) 2899 tcp_retrans_try_collapse(sk, skb, cur_mss); 2900 } 2901 2902 /* RFC3168, section 6.1.1.1. ECN fallback */ 2903 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2904 tcp_ecn_clear_syn(sk, skb); 2905 2906 /* Update global and local TCP statistics. */ 2907 segs = tcp_skb_pcount(skb); 2908 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2909 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2910 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2911 tp->total_retrans += segs; 2912 tp->bytes_retrans += skb->len; 2913 2914 /* make sure skb->data is aligned on arches that require it 2915 * and check if ack-trimming & collapsing extended the headroom 2916 * beyond what csum_start can cover. 2917 */ 2918 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2919 skb_headroom(skb) >= 0xFFFF)) { 2920 struct sk_buff *nskb; 2921 2922 tcp_skb_tsorted_save(skb) { 2923 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2924 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2925 -ENOBUFS; 2926 } tcp_skb_tsorted_restore(skb); 2927 2928 if (!err) { 2929 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 2930 tcp_rate_skb_sent(sk, skb); 2931 } 2932 } else { 2933 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2934 } 2935 2936 /* To avoid taking spuriously low RTT samples based on a timestamp 2937 * for a transmit that never happened, always mark EVER_RETRANS 2938 */ 2939 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2940 2941 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2942 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2943 TCP_SKB_CB(skb)->seq, segs, err); 2944 2945 if (likely(!err)) { 2946 trace_tcp_retransmit_skb(sk, skb); 2947 } else if (err != -EBUSY) { 2948 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 2949 } 2950 return err; 2951 } 2952 2953 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2954 { 2955 struct tcp_sock *tp = tcp_sk(sk); 2956 int err = __tcp_retransmit_skb(sk, skb, segs); 2957 2958 if (err == 0) { 2959 #if FASTRETRANS_DEBUG > 0 2960 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2961 net_dbg_ratelimited("retrans_out leaked\n"); 2962 } 2963 #endif 2964 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2965 tp->retrans_out += tcp_skb_pcount(skb); 2966 } 2967 2968 /* Save stamp of the first (attempted) retransmit. */ 2969 if (!tp->retrans_stamp) 2970 tp->retrans_stamp = tcp_skb_timestamp(skb); 2971 2972 if (tp->undo_retrans < 0) 2973 tp->undo_retrans = 0; 2974 tp->undo_retrans += tcp_skb_pcount(skb); 2975 return err; 2976 } 2977 2978 /* This gets called after a retransmit timeout, and the initially 2979 * retransmitted data is acknowledged. It tries to continue 2980 * resending the rest of the retransmit queue, until either 2981 * we've sent it all or the congestion window limit is reached. 2982 */ 2983 void tcp_xmit_retransmit_queue(struct sock *sk) 2984 { 2985 const struct inet_connection_sock *icsk = inet_csk(sk); 2986 struct sk_buff *skb, *rtx_head, *hole = NULL; 2987 struct tcp_sock *tp = tcp_sk(sk); 2988 u32 max_segs; 2989 int mib_idx; 2990 2991 if (!tp->packets_out) 2992 return; 2993 2994 rtx_head = tcp_rtx_queue_head(sk); 2995 skb = tp->retransmit_skb_hint ?: rtx_head; 2996 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2997 skb_rbtree_walk_from(skb) { 2998 __u8 sacked; 2999 int segs; 3000 3001 if (tcp_pacing_check(sk)) 3002 break; 3003 3004 /* we could do better than to assign each time */ 3005 if (!hole) 3006 tp->retransmit_skb_hint = skb; 3007 3008 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3009 if (segs <= 0) 3010 return; 3011 sacked = TCP_SKB_CB(skb)->sacked; 3012 /* In case tcp_shift_skb_data() have aggregated large skbs, 3013 * we need to make sure not sending too bigs TSO packets 3014 */ 3015 segs = min_t(int, segs, max_segs); 3016 3017 if (tp->retrans_out >= tp->lost_out) { 3018 break; 3019 } else if (!(sacked & TCPCB_LOST)) { 3020 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3021 hole = skb; 3022 continue; 3023 3024 } else { 3025 if (icsk->icsk_ca_state != TCP_CA_Loss) 3026 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3027 else 3028 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3029 } 3030 3031 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3032 continue; 3033 3034 if (tcp_small_queue_check(sk, skb, 1)) 3035 return; 3036 3037 if (tcp_retransmit_skb(sk, skb, segs)) 3038 return; 3039 3040 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3041 3042 if (tcp_in_cwnd_reduction(sk)) 3043 tp->prr_out += tcp_skb_pcount(skb); 3044 3045 if (skb == rtx_head && 3046 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3047 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3048 inet_csk(sk)->icsk_rto, 3049 TCP_RTO_MAX, 3050 skb); 3051 } 3052 } 3053 3054 /* We allow to exceed memory limits for FIN packets to expedite 3055 * connection tear down and (memory) recovery. 3056 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3057 * or even be forced to close flow without any FIN. 3058 * In general, we want to allow one skb per socket to avoid hangs 3059 * with edge trigger epoll() 3060 */ 3061 void sk_forced_mem_schedule(struct sock *sk, int size) 3062 { 3063 int amt; 3064 3065 if (size <= sk->sk_forward_alloc) 3066 return; 3067 amt = sk_mem_pages(size); 3068 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3069 sk_memory_allocated_add(sk, amt); 3070 3071 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3072 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3073 } 3074 3075 /* Send a FIN. The caller locks the socket for us. 3076 * We should try to send a FIN packet really hard, but eventually give up. 3077 */ 3078 void tcp_send_fin(struct sock *sk) 3079 { 3080 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3081 struct tcp_sock *tp = tcp_sk(sk); 3082 3083 /* Optimization, tack on the FIN if we have one skb in write queue and 3084 * this skb was not yet sent, or we are under memory pressure. 3085 * Note: in the latter case, FIN packet will be sent after a timeout, 3086 * as TCP stack thinks it has already been transmitted. 3087 */ 3088 if (!tskb && tcp_under_memory_pressure(sk)) 3089 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3090 3091 if (tskb) { 3092 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3093 TCP_SKB_CB(tskb)->end_seq++; 3094 tp->write_seq++; 3095 if (tcp_write_queue_empty(sk)) { 3096 /* This means tskb was already sent. 3097 * Pretend we included the FIN on previous transmit. 3098 * We need to set tp->snd_nxt to the value it would have 3099 * if FIN had been sent. This is because retransmit path 3100 * does not change tp->snd_nxt. 3101 */ 3102 tp->snd_nxt++; 3103 return; 3104 } 3105 } else { 3106 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3107 if (unlikely(!skb)) 3108 return; 3109 3110 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3111 skb_reserve(skb, MAX_TCP_HEADER); 3112 sk_forced_mem_schedule(sk, skb->truesize); 3113 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3114 tcp_init_nondata_skb(skb, tp->write_seq, 3115 TCPHDR_ACK | TCPHDR_FIN); 3116 tcp_queue_skb(sk, skb); 3117 } 3118 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3119 } 3120 3121 /* We get here when a process closes a file descriptor (either due to 3122 * an explicit close() or as a byproduct of exit()'ing) and there 3123 * was unread data in the receive queue. This behavior is recommended 3124 * by RFC 2525, section 2.17. -DaveM 3125 */ 3126 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3127 { 3128 struct sk_buff *skb; 3129 3130 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3131 3132 /* NOTE: No TCP options attached and we never retransmit this. */ 3133 skb = alloc_skb(MAX_TCP_HEADER, priority); 3134 if (!skb) { 3135 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3136 return; 3137 } 3138 3139 /* Reserve space for headers and prepare control bits. */ 3140 skb_reserve(skb, MAX_TCP_HEADER); 3141 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3142 TCPHDR_ACK | TCPHDR_RST); 3143 tcp_mstamp_refresh(tcp_sk(sk)); 3144 /* Send it off. */ 3145 if (tcp_transmit_skb(sk, skb, 0, priority)) 3146 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3147 3148 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3149 * skb here is different to the troublesome skb, so use NULL 3150 */ 3151 trace_tcp_send_reset(sk, NULL); 3152 } 3153 3154 /* Send a crossed SYN-ACK during socket establishment. 3155 * WARNING: This routine must only be called when we have already sent 3156 * a SYN packet that crossed the incoming SYN that caused this routine 3157 * to get called. If this assumption fails then the initial rcv_wnd 3158 * and rcv_wscale values will not be correct. 3159 */ 3160 int tcp_send_synack(struct sock *sk) 3161 { 3162 struct sk_buff *skb; 3163 3164 skb = tcp_rtx_queue_head(sk); 3165 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3166 pr_err("%s: wrong queue state\n", __func__); 3167 return -EFAULT; 3168 } 3169 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3170 if (skb_cloned(skb)) { 3171 struct sk_buff *nskb; 3172 3173 tcp_skb_tsorted_save(skb) { 3174 nskb = skb_copy(skb, GFP_ATOMIC); 3175 } tcp_skb_tsorted_restore(skb); 3176 if (!nskb) 3177 return -ENOMEM; 3178 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3179 tcp_rtx_queue_unlink_and_free(skb, sk); 3180 __skb_header_release(nskb); 3181 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3182 sk->sk_wmem_queued += nskb->truesize; 3183 sk_mem_charge(sk, nskb->truesize); 3184 skb = nskb; 3185 } 3186 3187 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3188 tcp_ecn_send_synack(sk, skb); 3189 } 3190 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3191 } 3192 3193 /** 3194 * tcp_make_synack - Prepare a SYN-ACK. 3195 * sk: listener socket 3196 * dst: dst entry attached to the SYNACK 3197 * req: request_sock pointer 3198 * 3199 * Allocate one skb and build a SYNACK packet. 3200 * @dst is consumed : Caller should not use it again. 3201 */ 3202 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3203 struct request_sock *req, 3204 struct tcp_fastopen_cookie *foc, 3205 enum tcp_synack_type synack_type) 3206 { 3207 struct inet_request_sock *ireq = inet_rsk(req); 3208 const struct tcp_sock *tp = tcp_sk(sk); 3209 struct tcp_md5sig_key *md5 = NULL; 3210 struct tcp_out_options opts; 3211 struct sk_buff *skb; 3212 int tcp_header_size; 3213 struct tcphdr *th; 3214 int mss; 3215 3216 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3217 if (unlikely(!skb)) { 3218 dst_release(dst); 3219 return NULL; 3220 } 3221 /* Reserve space for headers. */ 3222 skb_reserve(skb, MAX_TCP_HEADER); 3223 3224 switch (synack_type) { 3225 case TCP_SYNACK_NORMAL: 3226 skb_set_owner_w(skb, req_to_sk(req)); 3227 break; 3228 case TCP_SYNACK_COOKIE: 3229 /* Under synflood, we do not attach skb to a socket, 3230 * to avoid false sharing. 3231 */ 3232 break; 3233 case TCP_SYNACK_FASTOPEN: 3234 /* sk is a const pointer, because we want to express multiple 3235 * cpu might call us concurrently. 3236 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3237 */ 3238 skb_set_owner_w(skb, (struct sock *)sk); 3239 break; 3240 } 3241 skb_dst_set(skb, dst); 3242 3243 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3244 3245 memset(&opts, 0, sizeof(opts)); 3246 #ifdef CONFIG_SYN_COOKIES 3247 if (unlikely(req->cookie_ts)) 3248 skb->skb_mstamp_ns = cookie_init_timestamp(req); 3249 else 3250 #endif 3251 { 3252 skb->skb_mstamp_ns = tcp_clock_ns(); 3253 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3254 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3255 } 3256 3257 #ifdef CONFIG_TCP_MD5SIG 3258 rcu_read_lock(); 3259 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3260 #endif 3261 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3262 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3263 foc) + sizeof(*th); 3264 3265 skb_push(skb, tcp_header_size); 3266 skb_reset_transport_header(skb); 3267 3268 th = (struct tcphdr *)skb->data; 3269 memset(th, 0, sizeof(struct tcphdr)); 3270 th->syn = 1; 3271 th->ack = 1; 3272 tcp_ecn_make_synack(req, th); 3273 th->source = htons(ireq->ir_num); 3274 th->dest = ireq->ir_rmt_port; 3275 skb->mark = ireq->ir_mark; 3276 skb->ip_summed = CHECKSUM_PARTIAL; 3277 th->seq = htonl(tcp_rsk(req)->snt_isn); 3278 /* XXX data is queued and acked as is. No buffer/window check */ 3279 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3280 3281 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3282 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3283 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3284 th->doff = (tcp_header_size >> 2); 3285 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3286 3287 #ifdef CONFIG_TCP_MD5SIG 3288 /* Okay, we have all we need - do the md5 hash if needed */ 3289 if (md5) 3290 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3291 md5, req_to_sk(req), skb); 3292 rcu_read_unlock(); 3293 #endif 3294 3295 /* Do not fool tcpdump (if any), clean our debris */ 3296 skb->tstamp = 0; 3297 return skb; 3298 } 3299 EXPORT_SYMBOL(tcp_make_synack); 3300 3301 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3302 { 3303 struct inet_connection_sock *icsk = inet_csk(sk); 3304 const struct tcp_congestion_ops *ca; 3305 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3306 3307 if (ca_key == TCP_CA_UNSPEC) 3308 return; 3309 3310 rcu_read_lock(); 3311 ca = tcp_ca_find_key(ca_key); 3312 if (likely(ca && try_module_get(ca->owner))) { 3313 module_put(icsk->icsk_ca_ops->owner); 3314 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3315 icsk->icsk_ca_ops = ca; 3316 } 3317 rcu_read_unlock(); 3318 } 3319 3320 /* Do all connect socket setups that can be done AF independent. */ 3321 static void tcp_connect_init(struct sock *sk) 3322 { 3323 const struct dst_entry *dst = __sk_dst_get(sk); 3324 struct tcp_sock *tp = tcp_sk(sk); 3325 __u8 rcv_wscale; 3326 u32 rcv_wnd; 3327 3328 /* We'll fix this up when we get a response from the other end. 3329 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3330 */ 3331 tp->tcp_header_len = sizeof(struct tcphdr); 3332 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3333 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3334 3335 #ifdef CONFIG_TCP_MD5SIG 3336 if (tp->af_specific->md5_lookup(sk, sk)) 3337 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3338 #endif 3339 3340 /* If user gave his TCP_MAXSEG, record it to clamp */ 3341 if (tp->rx_opt.user_mss) 3342 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3343 tp->max_window = 0; 3344 tcp_mtup_init(sk); 3345 tcp_sync_mss(sk, dst_mtu(dst)); 3346 3347 tcp_ca_dst_init(sk, dst); 3348 3349 if (!tp->window_clamp) 3350 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3351 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3352 3353 tcp_initialize_rcv_mss(sk); 3354 3355 /* limit the window selection if the user enforce a smaller rx buffer */ 3356 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3357 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3358 tp->window_clamp = tcp_full_space(sk); 3359 3360 rcv_wnd = tcp_rwnd_init_bpf(sk); 3361 if (rcv_wnd == 0) 3362 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3363 3364 tcp_select_initial_window(sk, tcp_full_space(sk), 3365 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3366 &tp->rcv_wnd, 3367 &tp->window_clamp, 3368 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3369 &rcv_wscale, 3370 rcv_wnd); 3371 3372 tp->rx_opt.rcv_wscale = rcv_wscale; 3373 tp->rcv_ssthresh = tp->rcv_wnd; 3374 3375 sk->sk_err = 0; 3376 sock_reset_flag(sk, SOCK_DONE); 3377 tp->snd_wnd = 0; 3378 tcp_init_wl(tp, 0); 3379 tcp_write_queue_purge(sk); 3380 tp->snd_una = tp->write_seq; 3381 tp->snd_sml = tp->write_seq; 3382 tp->snd_up = tp->write_seq; 3383 tp->snd_nxt = tp->write_seq; 3384 3385 if (likely(!tp->repair)) 3386 tp->rcv_nxt = 0; 3387 else 3388 tp->rcv_tstamp = tcp_jiffies32; 3389 tp->rcv_wup = tp->rcv_nxt; 3390 tp->copied_seq = tp->rcv_nxt; 3391 3392 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3393 inet_csk(sk)->icsk_retransmits = 0; 3394 tcp_clear_retrans(tp); 3395 } 3396 3397 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3398 { 3399 struct tcp_sock *tp = tcp_sk(sk); 3400 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3401 3402 tcb->end_seq += skb->len; 3403 __skb_header_release(skb); 3404 sk->sk_wmem_queued += skb->truesize; 3405 sk_mem_charge(sk, skb->truesize); 3406 tp->write_seq = tcb->end_seq; 3407 tp->packets_out += tcp_skb_pcount(skb); 3408 } 3409 3410 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3411 * queue a data-only packet after the regular SYN, such that regular SYNs 3412 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3413 * only the SYN sequence, the data are retransmitted in the first ACK. 3414 * If cookie is not cached or other error occurs, falls back to send a 3415 * regular SYN with Fast Open cookie request option. 3416 */ 3417 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3418 { 3419 struct tcp_sock *tp = tcp_sk(sk); 3420 struct tcp_fastopen_request *fo = tp->fastopen_req; 3421 int space, err = 0; 3422 struct sk_buff *syn_data; 3423 3424 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3425 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3426 goto fallback; 3427 3428 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3429 * user-MSS. Reserve maximum option space for middleboxes that add 3430 * private TCP options. The cost is reduced data space in SYN :( 3431 */ 3432 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3433 3434 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3435 MAX_TCP_OPTION_SPACE; 3436 3437 space = min_t(size_t, space, fo->size); 3438 3439 /* limit to order-0 allocations */ 3440 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3441 3442 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3443 if (!syn_data) 3444 goto fallback; 3445 syn_data->ip_summed = CHECKSUM_PARTIAL; 3446 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3447 if (space) { 3448 int copied = copy_from_iter(skb_put(syn_data, space), space, 3449 &fo->data->msg_iter); 3450 if (unlikely(!copied)) { 3451 tcp_skb_tsorted_anchor_cleanup(syn_data); 3452 kfree_skb(syn_data); 3453 goto fallback; 3454 } 3455 if (copied != space) { 3456 skb_trim(syn_data, copied); 3457 space = copied; 3458 } 3459 skb_zcopy_set(syn_data, fo->uarg, NULL); 3460 } 3461 /* No more data pending in inet_wait_for_connect() */ 3462 if (space == fo->size) 3463 fo->data = NULL; 3464 fo->copied = space; 3465 3466 tcp_connect_queue_skb(sk, syn_data); 3467 if (syn_data->len) 3468 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3469 3470 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3471 3472 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3473 3474 /* Now full SYN+DATA was cloned and sent (or not), 3475 * remove the SYN from the original skb (syn_data) 3476 * we keep in write queue in case of a retransmit, as we 3477 * also have the SYN packet (with no data) in the same queue. 3478 */ 3479 TCP_SKB_CB(syn_data)->seq++; 3480 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3481 if (!err) { 3482 tp->syn_data = (fo->copied > 0); 3483 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3484 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3485 goto done; 3486 } 3487 3488 /* data was not sent, put it in write_queue */ 3489 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3490 tp->packets_out -= tcp_skb_pcount(syn_data); 3491 3492 fallback: 3493 /* Send a regular SYN with Fast Open cookie request option */ 3494 if (fo->cookie.len > 0) 3495 fo->cookie.len = 0; 3496 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3497 if (err) 3498 tp->syn_fastopen = 0; 3499 done: 3500 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3501 return err; 3502 } 3503 3504 /* Build a SYN and send it off. */ 3505 int tcp_connect(struct sock *sk) 3506 { 3507 struct tcp_sock *tp = tcp_sk(sk); 3508 struct sk_buff *buff; 3509 int err; 3510 3511 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3512 3513 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3514 return -EHOSTUNREACH; /* Routing failure or similar. */ 3515 3516 tcp_connect_init(sk); 3517 3518 if (unlikely(tp->repair)) { 3519 tcp_finish_connect(sk, NULL); 3520 return 0; 3521 } 3522 3523 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3524 if (unlikely(!buff)) 3525 return -ENOBUFS; 3526 3527 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3528 tcp_mstamp_refresh(tp); 3529 tp->retrans_stamp = tcp_time_stamp(tp); 3530 tcp_connect_queue_skb(sk, buff); 3531 tcp_ecn_send_syn(sk, buff); 3532 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3533 3534 /* Send off SYN; include data in Fast Open. */ 3535 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3536 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3537 if (err == -ECONNREFUSED) 3538 return err; 3539 3540 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3541 * in order to make this packet get counted in tcpOutSegs. 3542 */ 3543 tp->snd_nxt = tp->write_seq; 3544 tp->pushed_seq = tp->write_seq; 3545 buff = tcp_send_head(sk); 3546 if (unlikely(buff)) { 3547 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3548 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3549 } 3550 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3551 3552 /* Timer for repeating the SYN until an answer. */ 3553 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3554 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3555 return 0; 3556 } 3557 EXPORT_SYMBOL(tcp_connect); 3558 3559 /* Send out a delayed ack, the caller does the policy checking 3560 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3561 * for details. 3562 */ 3563 void tcp_send_delayed_ack(struct sock *sk) 3564 { 3565 struct inet_connection_sock *icsk = inet_csk(sk); 3566 int ato = icsk->icsk_ack.ato; 3567 unsigned long timeout; 3568 3569 if (ato > TCP_DELACK_MIN) { 3570 const struct tcp_sock *tp = tcp_sk(sk); 3571 int max_ato = HZ / 2; 3572 3573 if (inet_csk_in_pingpong_mode(sk) || 3574 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3575 max_ato = TCP_DELACK_MAX; 3576 3577 /* Slow path, intersegment interval is "high". */ 3578 3579 /* If some rtt estimate is known, use it to bound delayed ack. 3580 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3581 * directly. 3582 */ 3583 if (tp->srtt_us) { 3584 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3585 TCP_DELACK_MIN); 3586 3587 if (rtt < max_ato) 3588 max_ato = rtt; 3589 } 3590 3591 ato = min(ato, max_ato); 3592 } 3593 3594 /* Stay within the limit we were given */ 3595 timeout = jiffies + ato; 3596 3597 /* Use new timeout only if there wasn't a older one earlier. */ 3598 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3599 /* If delack timer was blocked or is about to expire, 3600 * send ACK now. 3601 */ 3602 if (icsk->icsk_ack.blocked || 3603 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3604 tcp_send_ack(sk); 3605 return; 3606 } 3607 3608 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3609 timeout = icsk->icsk_ack.timeout; 3610 } 3611 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3612 icsk->icsk_ack.timeout = timeout; 3613 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3614 } 3615 3616 /* This routine sends an ack and also updates the window. */ 3617 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3618 { 3619 struct sk_buff *buff; 3620 3621 /* If we have been reset, we may not send again. */ 3622 if (sk->sk_state == TCP_CLOSE) 3623 return; 3624 3625 /* We are not putting this on the write queue, so 3626 * tcp_transmit_skb() will set the ownership to this 3627 * sock. 3628 */ 3629 buff = alloc_skb(MAX_TCP_HEADER, 3630 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3631 if (unlikely(!buff)) { 3632 inet_csk_schedule_ack(sk); 3633 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3634 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3635 TCP_DELACK_MAX, TCP_RTO_MAX); 3636 return; 3637 } 3638 3639 /* Reserve space for headers and prepare control bits. */ 3640 skb_reserve(buff, MAX_TCP_HEADER); 3641 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3642 3643 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3644 * too much. 3645 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3646 */ 3647 skb_set_tcp_pure_ack(buff); 3648 3649 /* Send it off, this clears delayed acks for us. */ 3650 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3651 } 3652 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3653 3654 void tcp_send_ack(struct sock *sk) 3655 { 3656 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3657 } 3658 3659 /* This routine sends a packet with an out of date sequence 3660 * number. It assumes the other end will try to ack it. 3661 * 3662 * Question: what should we make while urgent mode? 3663 * 4.4BSD forces sending single byte of data. We cannot send 3664 * out of window data, because we have SND.NXT==SND.MAX... 3665 * 3666 * Current solution: to send TWO zero-length segments in urgent mode: 3667 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3668 * out-of-date with SND.UNA-1 to probe window. 3669 */ 3670 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3671 { 3672 struct tcp_sock *tp = tcp_sk(sk); 3673 struct sk_buff *skb; 3674 3675 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3676 skb = alloc_skb(MAX_TCP_HEADER, 3677 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3678 if (!skb) 3679 return -1; 3680 3681 /* Reserve space for headers and set control bits. */ 3682 skb_reserve(skb, MAX_TCP_HEADER); 3683 /* Use a previous sequence. This should cause the other 3684 * end to send an ack. Don't queue or clone SKB, just 3685 * send it. 3686 */ 3687 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3688 NET_INC_STATS(sock_net(sk), mib); 3689 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3690 } 3691 3692 /* Called from setsockopt( ... TCP_REPAIR ) */ 3693 void tcp_send_window_probe(struct sock *sk) 3694 { 3695 if (sk->sk_state == TCP_ESTABLISHED) { 3696 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3697 tcp_mstamp_refresh(tcp_sk(sk)); 3698 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3699 } 3700 } 3701 3702 /* Initiate keepalive or window probe from timer. */ 3703 int tcp_write_wakeup(struct sock *sk, int mib) 3704 { 3705 struct tcp_sock *tp = tcp_sk(sk); 3706 struct sk_buff *skb; 3707 3708 if (sk->sk_state == TCP_CLOSE) 3709 return -1; 3710 3711 skb = tcp_send_head(sk); 3712 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3713 int err; 3714 unsigned int mss = tcp_current_mss(sk); 3715 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3716 3717 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3718 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3719 3720 /* We are probing the opening of a window 3721 * but the window size is != 0 3722 * must have been a result SWS avoidance ( sender ) 3723 */ 3724 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3725 skb->len > mss) { 3726 seg_size = min(seg_size, mss); 3727 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3728 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3729 skb, seg_size, mss, GFP_ATOMIC)) 3730 return -1; 3731 } else if (!tcp_skb_pcount(skb)) 3732 tcp_set_skb_tso_segs(skb, mss); 3733 3734 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3735 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3736 if (!err) 3737 tcp_event_new_data_sent(sk, skb); 3738 return err; 3739 } else { 3740 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3741 tcp_xmit_probe_skb(sk, 1, mib); 3742 return tcp_xmit_probe_skb(sk, 0, mib); 3743 } 3744 } 3745 3746 /* A window probe timeout has occurred. If window is not closed send 3747 * a partial packet else a zero probe. 3748 */ 3749 void tcp_send_probe0(struct sock *sk) 3750 { 3751 struct inet_connection_sock *icsk = inet_csk(sk); 3752 struct tcp_sock *tp = tcp_sk(sk); 3753 struct net *net = sock_net(sk); 3754 unsigned long timeout; 3755 int err; 3756 3757 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3758 3759 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3760 /* Cancel probe timer, if it is not required. */ 3761 icsk->icsk_probes_out = 0; 3762 icsk->icsk_backoff = 0; 3763 return; 3764 } 3765 3766 icsk->icsk_probes_out++; 3767 if (err <= 0) { 3768 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3769 icsk->icsk_backoff++; 3770 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3771 } else { 3772 /* If packet was not sent due to local congestion, 3773 * Let senders fight for local resources conservatively. 3774 */ 3775 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3776 } 3777 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL); 3778 } 3779 3780 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3781 { 3782 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3783 struct flowi fl; 3784 int res; 3785 3786 tcp_rsk(req)->txhash = net_tx_rndhash(); 3787 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3788 if (!res) { 3789 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3790 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3791 if (unlikely(tcp_passive_fastopen(sk))) 3792 tcp_sk(sk)->total_retrans++; 3793 trace_tcp_retransmit_synack(sk, req); 3794 } 3795 return res; 3796 } 3797 EXPORT_SYMBOL(tcp_rtx_synack); 3798