1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 #include <net/proto_memory.h> 43 44 #include <linux/compiler.h> 45 #include <linux/gfp.h> 46 #include <linux/module.h> 47 #include <linux/static_key.h> 48 #include <linux/skbuff_ref.h> 49 50 #include <trace/events/tcp.h> 51 52 /* Refresh clocks of a TCP socket, 53 * ensuring monotically increasing values. 54 */ 55 void tcp_mstamp_refresh(struct tcp_sock *tp) 56 { 57 u64 val = tcp_clock_ns(); 58 59 tp->tcp_clock_cache = val; 60 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 61 } 62 63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 64 int push_one, gfp_t gfp); 65 66 /* Account for new data that has been sent to the network. */ 67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 68 { 69 struct inet_connection_sock *icsk = inet_csk(sk); 70 struct tcp_sock *tp = tcp_sk(sk); 71 unsigned int prior_packets = tp->packets_out; 72 73 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 74 75 __skb_unlink(skb, &sk->sk_write_queue); 76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 77 78 if (tp->highest_sack == NULL) 79 tp->highest_sack = skb; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 83 tcp_rearm_rto(sk); 84 85 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 86 tcp_skb_pcount(skb)); 87 tcp_check_space(sk); 88 } 89 90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 91 * window scaling factor due to loss of precision. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 102 (tp->rx_opt.wscale_ok && 103 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 104 return tp->snd_nxt; 105 else 106 return tcp_wnd_end(tp); 107 } 108 109 /* Calculate mss to advertise in SYN segment. 110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 111 * 112 * 1. It is independent of path mtu. 113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 115 * attached devices, because some buggy hosts are confused by 116 * large MSS. 117 * 4. We do not make 3, we advertise MSS, calculated from first 118 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 119 * This may be overridden via information stored in routing table. 120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 121 * probably even Jumbo". 122 */ 123 static __u16 tcp_advertise_mss(struct sock *sk) 124 { 125 struct tcp_sock *tp = tcp_sk(sk); 126 const struct dst_entry *dst = __sk_dst_get(sk); 127 int mss = tp->advmss; 128 129 if (dst) { 130 unsigned int metric = dst_metric_advmss(dst); 131 132 if (metric < mss) { 133 mss = metric; 134 tp->advmss = mss; 135 } 136 } 137 138 return (__u16)mss; 139 } 140 141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 142 * This is the first part of cwnd validation mechanism. 143 */ 144 void tcp_cwnd_restart(struct sock *sk, s32 delta) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 148 u32 cwnd = tcp_snd_cwnd(tp); 149 150 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 151 152 tp->snd_ssthresh = tcp_current_ssthresh(sk); 153 restart_cwnd = min(restart_cwnd, cwnd); 154 155 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 156 cwnd >>= 1; 157 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 158 tp->snd_cwnd_stamp = tcp_jiffies32; 159 tp->snd_cwnd_used = 0; 160 } 161 162 /* Congestion state accounting after a packet has been sent. */ 163 static void tcp_event_data_sent(struct tcp_sock *tp, 164 struct sock *sk) 165 { 166 struct inet_connection_sock *icsk = inet_csk(sk); 167 const u32 now = tcp_jiffies32; 168 169 if (tcp_packets_in_flight(tp) == 0) 170 tcp_ca_event(sk, CA_EVENT_TX_START); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, increase pingpong count. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 178 inet_csk_inc_pingpong_cnt(sk); 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 183 { 184 struct tcp_sock *tp = tcp_sk(sk); 185 186 if (unlikely(tp->compressed_ack)) { 187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 188 tp->compressed_ack); 189 tp->compressed_ack = 0; 190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 191 __sock_put(sk); 192 } 193 194 if (unlikely(rcv_nxt != tp->rcv_nxt)) 195 return; /* Special ACK sent by DCTCP to reflect ECN */ 196 tcp_dec_quickack_mode(sk); 197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 198 } 199 200 /* Determine a window scaling and initial window to offer. 201 * Based on the assumption that the given amount of space 202 * will be offered. Store the results in the tp structure. 203 * NOTE: for smooth operation initial space offering should 204 * be a multiple of mss if possible. We assume here that mss >= 1. 205 * This MUST be enforced by all callers. 206 */ 207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 208 __u32 *rcv_wnd, __u32 *__window_clamp, 209 int wscale_ok, __u8 *rcv_wscale, 210 __u32 init_rcv_wnd) 211 { 212 unsigned int space = (__space < 0 ? 0 : __space); 213 u32 window_clamp = READ_ONCE(*__window_clamp); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (window_clamp == 0) 217 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = space; 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 244 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 245 space = min_t(u32, space, window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 WRITE_ONCE(*__window_clamp, 251 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 252 } 253 EXPORT_SYMBOL(tcp_select_initial_window); 254 255 /* Chose a new window to advertise, update state in tcp_sock for the 256 * socket, and return result with RFC1323 scaling applied. The return 257 * value can be stuffed directly into th->window for an outgoing 258 * frame. 259 */ 260 static u16 tcp_select_window(struct sock *sk) 261 { 262 struct tcp_sock *tp = tcp_sk(sk); 263 struct net *net = sock_net(sk); 264 u32 old_win = tp->rcv_wnd; 265 u32 cur_win, new_win; 266 267 /* Make the window 0 if we failed to queue the data because we 268 * are out of memory. 269 */ 270 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) { 271 tp->pred_flags = 0; 272 tp->rcv_wnd = 0; 273 tp->rcv_wup = tp->rcv_nxt; 274 return 0; 275 } 276 277 cur_win = tcp_receive_window(tp); 278 new_win = __tcp_select_window(sk); 279 if (new_win < cur_win) { 280 /* Danger Will Robinson! 281 * Don't update rcv_wup/rcv_wnd here or else 282 * we will not be able to advertise a zero 283 * window in time. --DaveM 284 * 285 * Relax Will Robinson. 286 */ 287 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 288 /* Never shrink the offered window */ 289 if (new_win == 0) 290 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 292 } 293 } 294 295 tp->rcv_wnd = new_win; 296 tp->rcv_wup = tp->rcv_nxt; 297 298 /* Make sure we do not exceed the maximum possible 299 * scaled window. 300 */ 301 if (!tp->rx_opt.rcv_wscale && 302 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 303 new_win = min(new_win, MAX_TCP_WINDOW); 304 else 305 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 306 307 /* RFC1323 scaling applied */ 308 new_win >>= tp->rx_opt.rcv_wscale; 309 310 /* If we advertise zero window, disable fast path. */ 311 if (new_win == 0) { 312 tp->pred_flags = 0; 313 if (old_win) 314 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 315 } else if (old_win == 0) { 316 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 317 } 318 319 return new_win; 320 } 321 322 /* Packet ECN state for a SYN-ACK */ 323 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 324 { 325 const struct tcp_sock *tp = tcp_sk(sk); 326 327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 328 if (!(tp->ecn_flags & TCP_ECN_OK)) 329 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 330 else if (tcp_ca_needs_ecn(sk) || 331 tcp_bpf_ca_needs_ecn(sk)) 332 INET_ECN_xmit(sk); 333 } 334 335 /* Packet ECN state for a SYN. */ 336 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 337 { 338 struct tcp_sock *tp = tcp_sk(sk); 339 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 340 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 341 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 342 343 if (!use_ecn) { 344 const struct dst_entry *dst = __sk_dst_get(sk); 345 346 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 347 use_ecn = true; 348 } 349 350 tp->ecn_flags = 0; 351 352 if (use_ecn) { 353 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 354 tp->ecn_flags = TCP_ECN_OK; 355 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 356 INET_ECN_xmit(sk); 357 } 358 } 359 360 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 361 { 362 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 363 /* tp->ecn_flags are cleared at a later point in time when 364 * SYN ACK is ultimatively being received. 365 */ 366 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 367 } 368 369 static void 370 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 371 { 372 if (inet_rsk(req)->ecn_ok) 373 th->ece = 1; 374 } 375 376 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 377 * be sent. 378 */ 379 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 380 struct tcphdr *th, int tcp_header_len) 381 { 382 struct tcp_sock *tp = tcp_sk(sk); 383 384 if (tp->ecn_flags & TCP_ECN_OK) { 385 /* Not-retransmitted data segment: set ECT and inject CWR. */ 386 if (skb->len != tcp_header_len && 387 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 388 INET_ECN_xmit(sk); 389 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 390 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 391 th->cwr = 1; 392 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 393 } 394 } else if (!tcp_ca_needs_ecn(sk)) { 395 /* ACK or retransmitted segment: clear ECT|CE */ 396 INET_ECN_dontxmit(sk); 397 } 398 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 399 th->ece = 1; 400 } 401 } 402 403 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 404 * auto increment end seqno. 405 */ 406 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 407 { 408 skb->ip_summed = CHECKSUM_PARTIAL; 409 410 TCP_SKB_CB(skb)->tcp_flags = flags; 411 412 tcp_skb_pcount_set(skb, 1); 413 414 TCP_SKB_CB(skb)->seq = seq; 415 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 416 seq++; 417 TCP_SKB_CB(skb)->end_seq = seq; 418 } 419 420 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 421 { 422 return tp->snd_una != tp->snd_up; 423 } 424 425 #define OPTION_SACK_ADVERTISE BIT(0) 426 #define OPTION_TS BIT(1) 427 #define OPTION_MD5 BIT(2) 428 #define OPTION_WSCALE BIT(3) 429 #define OPTION_FAST_OPEN_COOKIE BIT(8) 430 #define OPTION_SMC BIT(9) 431 #define OPTION_MPTCP BIT(10) 432 #define OPTION_AO BIT(11) 433 434 static void smc_options_write(__be32 *ptr, u16 *options) 435 { 436 #if IS_ENABLED(CONFIG_SMC) 437 if (static_branch_unlikely(&tcp_have_smc)) { 438 if (unlikely(OPTION_SMC & *options)) { 439 *ptr++ = htonl((TCPOPT_NOP << 24) | 440 (TCPOPT_NOP << 16) | 441 (TCPOPT_EXP << 8) | 442 (TCPOLEN_EXP_SMC_BASE)); 443 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 444 } 445 } 446 #endif 447 } 448 449 struct tcp_out_options { 450 u16 options; /* bit field of OPTION_* */ 451 u16 mss; /* 0 to disable */ 452 u8 ws; /* window scale, 0 to disable */ 453 u8 num_sack_blocks; /* number of SACK blocks to include */ 454 u8 hash_size; /* bytes in hash_location */ 455 u8 bpf_opt_len; /* length of BPF hdr option */ 456 __u8 *hash_location; /* temporary pointer, overloaded */ 457 __u32 tsval, tsecr; /* need to include OPTION_TS */ 458 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 459 struct mptcp_out_options mptcp; 460 }; 461 462 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 463 struct tcp_sock *tp, 464 struct tcp_out_options *opts) 465 { 466 #if IS_ENABLED(CONFIG_MPTCP) 467 if (unlikely(OPTION_MPTCP & opts->options)) 468 mptcp_write_options(th, ptr, tp, &opts->mptcp); 469 #endif 470 } 471 472 #ifdef CONFIG_CGROUP_BPF 473 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 474 enum tcp_synack_type synack_type) 475 { 476 if (unlikely(!skb)) 477 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 478 479 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 480 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 481 482 return 0; 483 } 484 485 /* req, syn_skb and synack_type are used when writing synack */ 486 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 487 struct request_sock *req, 488 struct sk_buff *syn_skb, 489 enum tcp_synack_type synack_type, 490 struct tcp_out_options *opts, 491 unsigned int *remaining) 492 { 493 struct bpf_sock_ops_kern sock_ops; 494 int err; 495 496 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 497 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 498 !*remaining) 499 return; 500 501 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 502 503 /* init sock_ops */ 504 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 505 506 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 507 508 if (req) { 509 /* The listen "sk" cannot be passed here because 510 * it is not locked. It would not make too much 511 * sense to do bpf_setsockopt(listen_sk) based 512 * on individual connection request also. 513 * 514 * Thus, "req" is passed here and the cgroup-bpf-progs 515 * of the listen "sk" will be run. 516 * 517 * "req" is also used here for fastopen even the "sk" here is 518 * a fullsock "child" sk. It is to keep the behavior 519 * consistent between fastopen and non-fastopen on 520 * the bpf programming side. 521 */ 522 sock_ops.sk = (struct sock *)req; 523 sock_ops.syn_skb = syn_skb; 524 } else { 525 sock_owned_by_me(sk); 526 527 sock_ops.is_fullsock = 1; 528 sock_ops.sk = sk; 529 } 530 531 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 532 sock_ops.remaining_opt_len = *remaining; 533 /* tcp_current_mss() does not pass a skb */ 534 if (skb) 535 bpf_skops_init_skb(&sock_ops, skb, 0); 536 537 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 538 539 if (err || sock_ops.remaining_opt_len == *remaining) 540 return; 541 542 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 543 /* round up to 4 bytes */ 544 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 545 546 *remaining -= opts->bpf_opt_len; 547 } 548 549 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 550 struct request_sock *req, 551 struct sk_buff *syn_skb, 552 enum tcp_synack_type synack_type, 553 struct tcp_out_options *opts) 554 { 555 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 556 struct bpf_sock_ops_kern sock_ops; 557 int err; 558 559 if (likely(!max_opt_len)) 560 return; 561 562 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 563 564 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 565 566 if (req) { 567 sock_ops.sk = (struct sock *)req; 568 sock_ops.syn_skb = syn_skb; 569 } else { 570 sock_owned_by_me(sk); 571 572 sock_ops.is_fullsock = 1; 573 sock_ops.sk = sk; 574 } 575 576 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 577 sock_ops.remaining_opt_len = max_opt_len; 578 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 579 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 580 581 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 582 583 if (err) 584 nr_written = 0; 585 else 586 nr_written = max_opt_len - sock_ops.remaining_opt_len; 587 588 if (nr_written < max_opt_len) 589 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 590 max_opt_len - nr_written); 591 } 592 #else 593 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 594 struct request_sock *req, 595 struct sk_buff *syn_skb, 596 enum tcp_synack_type synack_type, 597 struct tcp_out_options *opts, 598 unsigned int *remaining) 599 { 600 } 601 602 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 603 struct request_sock *req, 604 struct sk_buff *syn_skb, 605 enum tcp_synack_type synack_type, 606 struct tcp_out_options *opts) 607 { 608 } 609 #endif 610 611 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 612 const struct tcp_request_sock *tcprsk, 613 struct tcp_out_options *opts, 614 struct tcp_key *key, __be32 *ptr) 615 { 616 #ifdef CONFIG_TCP_AO 617 u8 maclen = tcp_ao_maclen(key->ao_key); 618 619 if (tcprsk) { 620 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 621 622 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 623 (tcprsk->ao_keyid << 8) | 624 (tcprsk->ao_rcv_next)); 625 } else { 626 struct tcp_ao_key *rnext_key; 627 struct tcp_ao_info *ao_info; 628 629 ao_info = rcu_dereference_check(tp->ao_info, 630 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 631 rnext_key = READ_ONCE(ao_info->rnext_key); 632 if (WARN_ON_ONCE(!rnext_key)) 633 return ptr; 634 *ptr++ = htonl((TCPOPT_AO << 24) | 635 (tcp_ao_len(key->ao_key) << 16) | 636 (key->ao_key->sndid << 8) | 637 (rnext_key->rcvid)); 638 } 639 opts->hash_location = (__u8 *)ptr; 640 ptr += maclen / sizeof(*ptr); 641 if (unlikely(maclen % sizeof(*ptr))) { 642 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 643 ptr++; 644 } 645 #endif 646 return ptr; 647 } 648 649 /* Write previously computed TCP options to the packet. 650 * 651 * Beware: Something in the Internet is very sensitive to the ordering of 652 * TCP options, we learned this through the hard way, so be careful here. 653 * Luckily we can at least blame others for their non-compliance but from 654 * inter-operability perspective it seems that we're somewhat stuck with 655 * the ordering which we have been using if we want to keep working with 656 * those broken things (not that it currently hurts anybody as there isn't 657 * particular reason why the ordering would need to be changed). 658 * 659 * At least SACK_PERM as the first option is known to lead to a disaster 660 * (but it may well be that other scenarios fail similarly). 661 */ 662 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 663 const struct tcp_request_sock *tcprsk, 664 struct tcp_out_options *opts, 665 struct tcp_key *key) 666 { 667 __be32 *ptr = (__be32 *)(th + 1); 668 u16 options = opts->options; /* mungable copy */ 669 670 if (tcp_key_is_md5(key)) { 671 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 672 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 673 /* overload cookie hash location */ 674 opts->hash_location = (__u8 *)ptr; 675 ptr += 4; 676 } else if (tcp_key_is_ao(key)) { 677 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 678 } 679 if (unlikely(opts->mss)) { 680 *ptr++ = htonl((TCPOPT_MSS << 24) | 681 (TCPOLEN_MSS << 16) | 682 opts->mss); 683 } 684 685 if (likely(OPTION_TS & options)) { 686 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 687 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 688 (TCPOLEN_SACK_PERM << 16) | 689 (TCPOPT_TIMESTAMP << 8) | 690 TCPOLEN_TIMESTAMP); 691 options &= ~OPTION_SACK_ADVERTISE; 692 } else { 693 *ptr++ = htonl((TCPOPT_NOP << 24) | 694 (TCPOPT_NOP << 16) | 695 (TCPOPT_TIMESTAMP << 8) | 696 TCPOLEN_TIMESTAMP); 697 } 698 *ptr++ = htonl(opts->tsval); 699 *ptr++ = htonl(opts->tsecr); 700 } 701 702 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 703 *ptr++ = htonl((TCPOPT_NOP << 24) | 704 (TCPOPT_NOP << 16) | 705 (TCPOPT_SACK_PERM << 8) | 706 TCPOLEN_SACK_PERM); 707 } 708 709 if (unlikely(OPTION_WSCALE & options)) { 710 *ptr++ = htonl((TCPOPT_NOP << 24) | 711 (TCPOPT_WINDOW << 16) | 712 (TCPOLEN_WINDOW << 8) | 713 opts->ws); 714 } 715 716 if (unlikely(opts->num_sack_blocks)) { 717 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 718 tp->duplicate_sack : tp->selective_acks; 719 int this_sack; 720 721 *ptr++ = htonl((TCPOPT_NOP << 24) | 722 (TCPOPT_NOP << 16) | 723 (TCPOPT_SACK << 8) | 724 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 725 TCPOLEN_SACK_PERBLOCK))); 726 727 for (this_sack = 0; this_sack < opts->num_sack_blocks; 728 ++this_sack) { 729 *ptr++ = htonl(sp[this_sack].start_seq); 730 *ptr++ = htonl(sp[this_sack].end_seq); 731 } 732 733 tp->rx_opt.dsack = 0; 734 } 735 736 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 737 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 738 u8 *p = (u8 *)ptr; 739 u32 len; /* Fast Open option length */ 740 741 if (foc->exp) { 742 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 743 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 744 TCPOPT_FASTOPEN_MAGIC); 745 p += TCPOLEN_EXP_FASTOPEN_BASE; 746 } else { 747 len = TCPOLEN_FASTOPEN_BASE + foc->len; 748 *p++ = TCPOPT_FASTOPEN; 749 *p++ = len; 750 } 751 752 memcpy(p, foc->val, foc->len); 753 if ((len & 3) == 2) { 754 p[foc->len] = TCPOPT_NOP; 755 p[foc->len + 1] = TCPOPT_NOP; 756 } 757 ptr += (len + 3) >> 2; 758 } 759 760 smc_options_write(ptr, &options); 761 762 mptcp_options_write(th, ptr, tp, opts); 763 } 764 765 static void smc_set_option(const struct tcp_sock *tp, 766 struct tcp_out_options *opts, 767 unsigned int *remaining) 768 { 769 #if IS_ENABLED(CONFIG_SMC) 770 if (static_branch_unlikely(&tcp_have_smc)) { 771 if (tp->syn_smc) { 772 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 773 opts->options |= OPTION_SMC; 774 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 775 } 776 } 777 } 778 #endif 779 } 780 781 static void smc_set_option_cond(const struct tcp_sock *tp, 782 const struct inet_request_sock *ireq, 783 struct tcp_out_options *opts, 784 unsigned int *remaining) 785 { 786 #if IS_ENABLED(CONFIG_SMC) 787 if (static_branch_unlikely(&tcp_have_smc)) { 788 if (tp->syn_smc && ireq->smc_ok) { 789 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 790 opts->options |= OPTION_SMC; 791 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 792 } 793 } 794 } 795 #endif 796 } 797 798 static void mptcp_set_option_cond(const struct request_sock *req, 799 struct tcp_out_options *opts, 800 unsigned int *remaining) 801 { 802 if (rsk_is_mptcp(req)) { 803 unsigned int size; 804 805 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 806 if (*remaining >= size) { 807 opts->options |= OPTION_MPTCP; 808 *remaining -= size; 809 } 810 } 811 } 812 } 813 814 /* Compute TCP options for SYN packets. This is not the final 815 * network wire format yet. 816 */ 817 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 818 struct tcp_out_options *opts, 819 struct tcp_key *key) 820 { 821 struct tcp_sock *tp = tcp_sk(sk); 822 unsigned int remaining = MAX_TCP_OPTION_SPACE; 823 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 824 bool timestamps; 825 826 /* Better than switch (key.type) as it has static branches */ 827 if (tcp_key_is_md5(key)) { 828 timestamps = false; 829 opts->options |= OPTION_MD5; 830 remaining -= TCPOLEN_MD5SIG_ALIGNED; 831 } else { 832 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 833 if (tcp_key_is_ao(key)) { 834 opts->options |= OPTION_AO; 835 remaining -= tcp_ao_len_aligned(key->ao_key); 836 } 837 } 838 839 /* We always get an MSS option. The option bytes which will be seen in 840 * normal data packets should timestamps be used, must be in the MSS 841 * advertised. But we subtract them from tp->mss_cache so that 842 * calculations in tcp_sendmsg are simpler etc. So account for this 843 * fact here if necessary. If we don't do this correctly, as a 844 * receiver we won't recognize data packets as being full sized when we 845 * should, and thus we won't abide by the delayed ACK rules correctly. 846 * SACKs don't matter, we never delay an ACK when we have any of those 847 * going out. */ 848 opts->mss = tcp_advertise_mss(sk); 849 remaining -= TCPOLEN_MSS_ALIGNED; 850 851 if (likely(timestamps)) { 852 opts->options |= OPTION_TS; 853 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 854 opts->tsecr = tp->rx_opt.ts_recent; 855 remaining -= TCPOLEN_TSTAMP_ALIGNED; 856 } 857 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 858 opts->ws = tp->rx_opt.rcv_wscale; 859 opts->options |= OPTION_WSCALE; 860 remaining -= TCPOLEN_WSCALE_ALIGNED; 861 } 862 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 863 opts->options |= OPTION_SACK_ADVERTISE; 864 if (unlikely(!(OPTION_TS & opts->options))) 865 remaining -= TCPOLEN_SACKPERM_ALIGNED; 866 } 867 868 if (fastopen && fastopen->cookie.len >= 0) { 869 u32 need = fastopen->cookie.len; 870 871 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 872 TCPOLEN_FASTOPEN_BASE; 873 need = (need + 3) & ~3U; /* Align to 32 bits */ 874 if (remaining >= need) { 875 opts->options |= OPTION_FAST_OPEN_COOKIE; 876 opts->fastopen_cookie = &fastopen->cookie; 877 remaining -= need; 878 tp->syn_fastopen = 1; 879 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 880 } 881 } 882 883 smc_set_option(tp, opts, &remaining); 884 885 if (sk_is_mptcp(sk)) { 886 unsigned int size; 887 888 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 889 if (remaining >= size) { 890 opts->options |= OPTION_MPTCP; 891 remaining -= size; 892 } 893 } 894 } 895 896 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 897 898 return MAX_TCP_OPTION_SPACE - remaining; 899 } 900 901 /* Set up TCP options for SYN-ACKs. */ 902 static unsigned int tcp_synack_options(const struct sock *sk, 903 struct request_sock *req, 904 unsigned int mss, struct sk_buff *skb, 905 struct tcp_out_options *opts, 906 const struct tcp_key *key, 907 struct tcp_fastopen_cookie *foc, 908 enum tcp_synack_type synack_type, 909 struct sk_buff *syn_skb) 910 { 911 struct inet_request_sock *ireq = inet_rsk(req); 912 unsigned int remaining = MAX_TCP_OPTION_SPACE; 913 914 if (tcp_key_is_md5(key)) { 915 opts->options |= OPTION_MD5; 916 remaining -= TCPOLEN_MD5SIG_ALIGNED; 917 918 /* We can't fit any SACK blocks in a packet with MD5 + TS 919 * options. There was discussion about disabling SACK 920 * rather than TS in order to fit in better with old, 921 * buggy kernels, but that was deemed to be unnecessary. 922 */ 923 if (synack_type != TCP_SYNACK_COOKIE) 924 ireq->tstamp_ok &= !ireq->sack_ok; 925 } else if (tcp_key_is_ao(key)) { 926 opts->options |= OPTION_AO; 927 remaining -= tcp_ao_len_aligned(key->ao_key); 928 ireq->tstamp_ok &= !ireq->sack_ok; 929 } 930 931 /* We always send an MSS option. */ 932 opts->mss = mss; 933 remaining -= TCPOLEN_MSS_ALIGNED; 934 935 if (likely(ireq->wscale_ok)) { 936 opts->ws = ireq->rcv_wscale; 937 opts->options |= OPTION_WSCALE; 938 remaining -= TCPOLEN_WSCALE_ALIGNED; 939 } 940 if (likely(ireq->tstamp_ok)) { 941 opts->options |= OPTION_TS; 942 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 943 tcp_rsk(req)->ts_off; 944 opts->tsecr = READ_ONCE(req->ts_recent); 945 remaining -= TCPOLEN_TSTAMP_ALIGNED; 946 } 947 if (likely(ireq->sack_ok)) { 948 opts->options |= OPTION_SACK_ADVERTISE; 949 if (unlikely(!ireq->tstamp_ok)) 950 remaining -= TCPOLEN_SACKPERM_ALIGNED; 951 } 952 if (foc != NULL && foc->len >= 0) { 953 u32 need = foc->len; 954 955 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 956 TCPOLEN_FASTOPEN_BASE; 957 need = (need + 3) & ~3U; /* Align to 32 bits */ 958 if (remaining >= need) { 959 opts->options |= OPTION_FAST_OPEN_COOKIE; 960 opts->fastopen_cookie = foc; 961 remaining -= need; 962 } 963 } 964 965 mptcp_set_option_cond(req, opts, &remaining); 966 967 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 968 969 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 970 synack_type, opts, &remaining); 971 972 return MAX_TCP_OPTION_SPACE - remaining; 973 } 974 975 /* Compute TCP options for ESTABLISHED sockets. This is not the 976 * final wire format yet. 977 */ 978 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 979 struct tcp_out_options *opts, 980 struct tcp_key *key) 981 { 982 struct tcp_sock *tp = tcp_sk(sk); 983 unsigned int size = 0; 984 unsigned int eff_sacks; 985 986 opts->options = 0; 987 988 /* Better than switch (key.type) as it has static branches */ 989 if (tcp_key_is_md5(key)) { 990 opts->options |= OPTION_MD5; 991 size += TCPOLEN_MD5SIG_ALIGNED; 992 } else if (tcp_key_is_ao(key)) { 993 opts->options |= OPTION_AO; 994 size += tcp_ao_len_aligned(key->ao_key); 995 } 996 997 if (likely(tp->rx_opt.tstamp_ok)) { 998 opts->options |= OPTION_TS; 999 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 1000 tp->tsoffset : 0; 1001 opts->tsecr = tp->rx_opt.ts_recent; 1002 size += TCPOLEN_TSTAMP_ALIGNED; 1003 } 1004 1005 /* MPTCP options have precedence over SACK for the limited TCP 1006 * option space because a MPTCP connection would be forced to 1007 * fall back to regular TCP if a required multipath option is 1008 * missing. SACK still gets a chance to use whatever space is 1009 * left. 1010 */ 1011 if (sk_is_mptcp(sk)) { 1012 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1013 unsigned int opt_size = 0; 1014 1015 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1016 &opts->mptcp)) { 1017 opts->options |= OPTION_MPTCP; 1018 size += opt_size; 1019 } 1020 } 1021 1022 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1023 if (unlikely(eff_sacks)) { 1024 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1025 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 1026 TCPOLEN_SACK_PERBLOCK)) 1027 return size; 1028 1029 opts->num_sack_blocks = 1030 min_t(unsigned int, eff_sacks, 1031 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1032 TCPOLEN_SACK_PERBLOCK); 1033 1034 size += TCPOLEN_SACK_BASE_ALIGNED + 1035 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1036 } 1037 1038 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1039 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1040 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1041 1042 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1043 1044 size = MAX_TCP_OPTION_SPACE - remaining; 1045 } 1046 1047 return size; 1048 } 1049 1050 1051 /* TCP SMALL QUEUES (TSQ) 1052 * 1053 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1054 * to reduce RTT and bufferbloat. 1055 * We do this using a special skb destructor (tcp_wfree). 1056 * 1057 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1058 * needs to be reallocated in a driver. 1059 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1060 * 1061 * Since transmit from skb destructor is forbidden, we use a tasklet 1062 * to process all sockets that eventually need to send more skbs. 1063 * We use one tasklet per cpu, with its own queue of sockets. 1064 */ 1065 struct tsq_tasklet { 1066 struct tasklet_struct tasklet; 1067 struct list_head head; /* queue of tcp sockets */ 1068 }; 1069 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1070 1071 static void tcp_tsq_write(struct sock *sk) 1072 { 1073 if ((1 << sk->sk_state) & 1074 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1075 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1076 struct tcp_sock *tp = tcp_sk(sk); 1077 1078 if (tp->lost_out > tp->retrans_out && 1079 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1080 tcp_mstamp_refresh(tp); 1081 tcp_xmit_retransmit_queue(sk); 1082 } 1083 1084 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1085 0, GFP_ATOMIC); 1086 } 1087 } 1088 1089 static void tcp_tsq_handler(struct sock *sk) 1090 { 1091 bh_lock_sock(sk); 1092 if (!sock_owned_by_user(sk)) 1093 tcp_tsq_write(sk); 1094 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1095 sock_hold(sk); 1096 bh_unlock_sock(sk); 1097 } 1098 /* 1099 * One tasklet per cpu tries to send more skbs. 1100 * We run in tasklet context but need to disable irqs when 1101 * transferring tsq->head because tcp_wfree() might 1102 * interrupt us (non NAPI drivers) 1103 */ 1104 static void tcp_tasklet_func(struct tasklet_struct *t) 1105 { 1106 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1107 LIST_HEAD(list); 1108 unsigned long flags; 1109 struct list_head *q, *n; 1110 struct tcp_sock *tp; 1111 struct sock *sk; 1112 1113 local_irq_save(flags); 1114 list_splice_init(&tsq->head, &list); 1115 local_irq_restore(flags); 1116 1117 list_for_each_safe(q, n, &list) { 1118 tp = list_entry(q, struct tcp_sock, tsq_node); 1119 list_del(&tp->tsq_node); 1120 1121 sk = (struct sock *)tp; 1122 smp_mb__before_atomic(); 1123 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1124 1125 tcp_tsq_handler(sk); 1126 sk_free(sk); 1127 } 1128 } 1129 1130 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1131 TCPF_WRITE_TIMER_DEFERRED | \ 1132 TCPF_DELACK_TIMER_DEFERRED | \ 1133 TCPF_MTU_REDUCED_DEFERRED | \ 1134 TCPF_ACK_DEFERRED) 1135 /** 1136 * tcp_release_cb - tcp release_sock() callback 1137 * @sk: socket 1138 * 1139 * called from release_sock() to perform protocol dependent 1140 * actions before socket release. 1141 */ 1142 void tcp_release_cb(struct sock *sk) 1143 { 1144 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1145 unsigned long nflags; 1146 1147 /* perform an atomic operation only if at least one flag is set */ 1148 do { 1149 if (!(flags & TCP_DEFERRED_ALL)) 1150 return; 1151 nflags = flags & ~TCP_DEFERRED_ALL; 1152 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1153 1154 if (flags & TCPF_TSQ_DEFERRED) { 1155 tcp_tsq_write(sk); 1156 __sock_put(sk); 1157 } 1158 1159 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1160 tcp_write_timer_handler(sk); 1161 __sock_put(sk); 1162 } 1163 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1164 tcp_delack_timer_handler(sk); 1165 __sock_put(sk); 1166 } 1167 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1168 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1169 __sock_put(sk); 1170 } 1171 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1172 tcp_send_ack(sk); 1173 } 1174 EXPORT_SYMBOL(tcp_release_cb); 1175 1176 void __init tcp_tasklet_init(void) 1177 { 1178 int i; 1179 1180 for_each_possible_cpu(i) { 1181 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1182 1183 INIT_LIST_HEAD(&tsq->head); 1184 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1185 } 1186 } 1187 1188 /* 1189 * Write buffer destructor automatically called from kfree_skb. 1190 * We can't xmit new skbs from this context, as we might already 1191 * hold qdisc lock. 1192 */ 1193 void tcp_wfree(struct sk_buff *skb) 1194 { 1195 struct sock *sk = skb->sk; 1196 struct tcp_sock *tp = tcp_sk(sk); 1197 unsigned long flags, nval, oval; 1198 struct tsq_tasklet *tsq; 1199 bool empty; 1200 1201 /* Keep one reference on sk_wmem_alloc. 1202 * Will be released by sk_free() from here or tcp_tasklet_func() 1203 */ 1204 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1205 1206 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1207 * Wait until our queues (qdisc + devices) are drained. 1208 * This gives : 1209 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1210 * - chance for incoming ACK (processed by another cpu maybe) 1211 * to migrate this flow (skb->ooo_okay will be eventually set) 1212 */ 1213 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1214 goto out; 1215 1216 oval = smp_load_acquire(&sk->sk_tsq_flags); 1217 do { 1218 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1219 goto out; 1220 1221 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1222 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1223 1224 /* queue this socket to tasklet queue */ 1225 local_irq_save(flags); 1226 tsq = this_cpu_ptr(&tsq_tasklet); 1227 empty = list_empty(&tsq->head); 1228 list_add(&tp->tsq_node, &tsq->head); 1229 if (empty) 1230 tasklet_schedule(&tsq->tasklet); 1231 local_irq_restore(flags); 1232 return; 1233 out: 1234 sk_free(sk); 1235 } 1236 1237 /* Note: Called under soft irq. 1238 * We can call TCP stack right away, unless socket is owned by user. 1239 */ 1240 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1241 { 1242 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1243 struct sock *sk = (struct sock *)tp; 1244 1245 tcp_tsq_handler(sk); 1246 sock_put(sk); 1247 1248 return HRTIMER_NORESTART; 1249 } 1250 1251 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1252 u64 prior_wstamp) 1253 { 1254 struct tcp_sock *tp = tcp_sk(sk); 1255 1256 if (sk->sk_pacing_status != SK_PACING_NONE) { 1257 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1258 1259 /* Original sch_fq does not pace first 10 MSS 1260 * Note that tp->data_segs_out overflows after 2^32 packets, 1261 * this is a minor annoyance. 1262 */ 1263 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1264 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1265 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1266 1267 /* take into account OS jitter */ 1268 len_ns -= min_t(u64, len_ns / 2, credit); 1269 tp->tcp_wstamp_ns += len_ns; 1270 } 1271 } 1272 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1273 } 1274 1275 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1276 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1277 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1278 1279 /* This routine actually transmits TCP packets queued in by 1280 * tcp_do_sendmsg(). This is used by both the initial 1281 * transmission and possible later retransmissions. 1282 * All SKB's seen here are completely headerless. It is our 1283 * job to build the TCP header, and pass the packet down to 1284 * IP so it can do the same plus pass the packet off to the 1285 * device. 1286 * 1287 * We are working here with either a clone of the original 1288 * SKB, or a fresh unique copy made by the retransmit engine. 1289 */ 1290 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1291 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1292 { 1293 const struct inet_connection_sock *icsk = inet_csk(sk); 1294 struct inet_sock *inet; 1295 struct tcp_sock *tp; 1296 struct tcp_skb_cb *tcb; 1297 struct tcp_out_options opts; 1298 unsigned int tcp_options_size, tcp_header_size; 1299 struct sk_buff *oskb = NULL; 1300 struct tcp_key key; 1301 struct tcphdr *th; 1302 u64 prior_wstamp; 1303 int err; 1304 1305 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1306 tp = tcp_sk(sk); 1307 prior_wstamp = tp->tcp_wstamp_ns; 1308 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1309 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 1310 if (clone_it) { 1311 oskb = skb; 1312 1313 tcp_skb_tsorted_save(oskb) { 1314 if (unlikely(skb_cloned(oskb))) 1315 skb = pskb_copy(oskb, gfp_mask); 1316 else 1317 skb = skb_clone(oskb, gfp_mask); 1318 } tcp_skb_tsorted_restore(oskb); 1319 1320 if (unlikely(!skb)) 1321 return -ENOBUFS; 1322 /* retransmit skbs might have a non zero value in skb->dev 1323 * because skb->dev is aliased with skb->rbnode.rb_left 1324 */ 1325 skb->dev = NULL; 1326 } 1327 1328 inet = inet_sk(sk); 1329 tcb = TCP_SKB_CB(skb); 1330 memset(&opts, 0, sizeof(opts)); 1331 1332 tcp_get_current_key(sk, &key); 1333 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1334 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1335 } else { 1336 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1337 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1338 * at receiver : This slightly improve GRO performance. 1339 * Note that we do not force the PSH flag for non GSO packets, 1340 * because they might be sent under high congestion events, 1341 * and in this case it is better to delay the delivery of 1-MSS 1342 * packets and thus the corresponding ACK packet that would 1343 * release the following packet. 1344 */ 1345 if (tcp_skb_pcount(skb) > 1) 1346 tcb->tcp_flags |= TCPHDR_PSH; 1347 } 1348 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1349 1350 /* We set skb->ooo_okay to one if this packet can select 1351 * a different TX queue than prior packets of this flow, 1352 * to avoid self inflicted reorders. 1353 * The 'other' queue decision is based on current cpu number 1354 * if XPS is enabled, or sk->sk_txhash otherwise. 1355 * We can switch to another (and better) queue if: 1356 * 1) No packet with payload is in qdisc/device queues. 1357 * Delays in TX completion can defeat the test 1358 * even if packets were already sent. 1359 * 2) Or rtx queue is empty. 1360 * This mitigates above case if ACK packets for 1361 * all prior packets were already processed. 1362 */ 1363 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1364 tcp_rtx_queue_empty(sk); 1365 1366 /* If we had to use memory reserve to allocate this skb, 1367 * this might cause drops if packet is looped back : 1368 * Other socket might not have SOCK_MEMALLOC. 1369 * Packets not looped back do not care about pfmemalloc. 1370 */ 1371 skb->pfmemalloc = 0; 1372 1373 skb_push(skb, tcp_header_size); 1374 skb_reset_transport_header(skb); 1375 1376 skb_orphan(skb); 1377 skb->sk = sk; 1378 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1379 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1380 1381 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1382 1383 /* Build TCP header and checksum it. */ 1384 th = (struct tcphdr *)skb->data; 1385 th->source = inet->inet_sport; 1386 th->dest = inet->inet_dport; 1387 th->seq = htonl(tcb->seq); 1388 th->ack_seq = htonl(rcv_nxt); 1389 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1390 tcb->tcp_flags); 1391 1392 th->check = 0; 1393 th->urg_ptr = 0; 1394 1395 /* The urg_mode check is necessary during a below snd_una win probe */ 1396 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1397 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1398 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1399 th->urg = 1; 1400 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1401 th->urg_ptr = htons(0xFFFF); 1402 th->urg = 1; 1403 } 1404 } 1405 1406 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1407 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1408 th->window = htons(tcp_select_window(sk)); 1409 tcp_ecn_send(sk, skb, th, tcp_header_size); 1410 } else { 1411 /* RFC1323: The window in SYN & SYN/ACK segments 1412 * is never scaled. 1413 */ 1414 th->window = htons(min(tp->rcv_wnd, 65535U)); 1415 } 1416 1417 tcp_options_write(th, tp, NULL, &opts, &key); 1418 1419 if (tcp_key_is_md5(&key)) { 1420 #ifdef CONFIG_TCP_MD5SIG 1421 /* Calculate the MD5 hash, as we have all we need now */ 1422 sk_gso_disable(sk); 1423 tp->af_specific->calc_md5_hash(opts.hash_location, 1424 key.md5_key, sk, skb); 1425 #endif 1426 } else if (tcp_key_is_ao(&key)) { 1427 int err; 1428 1429 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1430 opts.hash_location); 1431 if (err) { 1432 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1433 return -ENOMEM; 1434 } 1435 } 1436 1437 /* BPF prog is the last one writing header option */ 1438 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1439 1440 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1441 tcp_v6_send_check, tcp_v4_send_check, 1442 sk, skb); 1443 1444 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1445 tcp_event_ack_sent(sk, rcv_nxt); 1446 1447 if (skb->len != tcp_header_size) { 1448 tcp_event_data_sent(tp, sk); 1449 tp->data_segs_out += tcp_skb_pcount(skb); 1450 tp->bytes_sent += skb->len - tcp_header_size; 1451 } 1452 1453 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1454 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1455 tcp_skb_pcount(skb)); 1456 1457 tp->segs_out += tcp_skb_pcount(skb); 1458 skb_set_hash_from_sk(skb, sk); 1459 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1460 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1461 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1462 1463 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1464 1465 /* Cleanup our debris for IP stacks */ 1466 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1467 sizeof(struct inet6_skb_parm))); 1468 1469 tcp_add_tx_delay(skb, tp); 1470 1471 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1472 inet6_csk_xmit, ip_queue_xmit, 1473 sk, skb, &inet->cork.fl); 1474 1475 if (unlikely(err > 0)) { 1476 tcp_enter_cwr(sk); 1477 err = net_xmit_eval(err); 1478 } 1479 if (!err && oskb) { 1480 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1481 tcp_rate_skb_sent(sk, oskb); 1482 } 1483 return err; 1484 } 1485 1486 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1487 gfp_t gfp_mask) 1488 { 1489 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1490 tcp_sk(sk)->rcv_nxt); 1491 } 1492 1493 /* This routine just queues the buffer for sending. 1494 * 1495 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1496 * otherwise socket can stall. 1497 */ 1498 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1499 { 1500 struct tcp_sock *tp = tcp_sk(sk); 1501 1502 /* Advance write_seq and place onto the write_queue. */ 1503 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1504 __skb_header_release(skb); 1505 tcp_add_write_queue_tail(sk, skb); 1506 sk_wmem_queued_add(sk, skb->truesize); 1507 sk_mem_charge(sk, skb->truesize); 1508 } 1509 1510 /* Initialize TSO segments for a packet. */ 1511 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1512 { 1513 int tso_segs; 1514 1515 if (skb->len <= mss_now) { 1516 /* Avoid the costly divide in the normal 1517 * non-TSO case. 1518 */ 1519 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1520 tcp_skb_pcount_set(skb, 1); 1521 return 1; 1522 } 1523 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1524 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1525 tcp_skb_pcount_set(skb, tso_segs); 1526 return tso_segs; 1527 } 1528 1529 /* Pcount in the middle of the write queue got changed, we need to do various 1530 * tweaks to fix counters 1531 */ 1532 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1533 { 1534 struct tcp_sock *tp = tcp_sk(sk); 1535 1536 tp->packets_out -= decr; 1537 1538 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1539 tp->sacked_out -= decr; 1540 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1541 tp->retrans_out -= decr; 1542 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1543 tp->lost_out -= decr; 1544 1545 /* Reno case is special. Sigh... */ 1546 if (tcp_is_reno(tp) && decr > 0) 1547 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1548 1549 if (tp->lost_skb_hint && 1550 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1551 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1552 tp->lost_cnt_hint -= decr; 1553 1554 tcp_verify_left_out(tp); 1555 } 1556 1557 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1558 { 1559 return TCP_SKB_CB(skb)->txstamp_ack || 1560 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1561 } 1562 1563 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1564 { 1565 struct skb_shared_info *shinfo = skb_shinfo(skb); 1566 1567 if (unlikely(tcp_has_tx_tstamp(skb)) && 1568 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1569 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1570 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1571 1572 shinfo->tx_flags &= ~tsflags; 1573 shinfo2->tx_flags |= tsflags; 1574 swap(shinfo->tskey, shinfo2->tskey); 1575 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1576 TCP_SKB_CB(skb)->txstamp_ack = 0; 1577 } 1578 } 1579 1580 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1581 { 1582 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1583 TCP_SKB_CB(skb)->eor = 0; 1584 } 1585 1586 /* Insert buff after skb on the write or rtx queue of sk. */ 1587 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1588 struct sk_buff *buff, 1589 struct sock *sk, 1590 enum tcp_queue tcp_queue) 1591 { 1592 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1593 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1594 else 1595 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1596 } 1597 1598 /* Function to create two new TCP segments. Shrinks the given segment 1599 * to the specified size and appends a new segment with the rest of the 1600 * packet to the list. This won't be called frequently, I hope. 1601 * Remember, these are still headerless SKBs at this point. 1602 */ 1603 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1604 struct sk_buff *skb, u32 len, 1605 unsigned int mss_now, gfp_t gfp) 1606 { 1607 struct tcp_sock *tp = tcp_sk(sk); 1608 struct sk_buff *buff; 1609 int old_factor; 1610 long limit; 1611 int nlen; 1612 u8 flags; 1613 1614 if (WARN_ON(len > skb->len)) 1615 return -EINVAL; 1616 1617 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1618 1619 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1620 * We need some allowance to not penalize applications setting small 1621 * SO_SNDBUF values. 1622 * Also allow first and last skb in retransmit queue to be split. 1623 */ 1624 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1625 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1626 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1627 skb != tcp_rtx_queue_head(sk) && 1628 skb != tcp_rtx_queue_tail(sk))) { 1629 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1630 return -ENOMEM; 1631 } 1632 1633 if (skb_unclone_keeptruesize(skb, gfp)) 1634 return -ENOMEM; 1635 1636 /* Get a new skb... force flag on. */ 1637 buff = tcp_stream_alloc_skb(sk, gfp, true); 1638 if (!buff) 1639 return -ENOMEM; /* We'll just try again later. */ 1640 skb_copy_decrypted(buff, skb); 1641 mptcp_skb_ext_copy(buff, skb); 1642 1643 sk_wmem_queued_add(sk, buff->truesize); 1644 sk_mem_charge(sk, buff->truesize); 1645 nlen = skb->len - len; 1646 buff->truesize += nlen; 1647 skb->truesize -= nlen; 1648 1649 /* Correct the sequence numbers. */ 1650 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1651 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1652 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1653 1654 /* PSH and FIN should only be set in the second packet. */ 1655 flags = TCP_SKB_CB(skb)->tcp_flags; 1656 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1657 TCP_SKB_CB(buff)->tcp_flags = flags; 1658 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1659 tcp_skb_fragment_eor(skb, buff); 1660 1661 skb_split(skb, buff, len); 1662 1663 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC); 1664 tcp_fragment_tstamp(skb, buff); 1665 1666 old_factor = tcp_skb_pcount(skb); 1667 1668 /* Fix up tso_factor for both original and new SKB. */ 1669 tcp_set_skb_tso_segs(skb, mss_now); 1670 tcp_set_skb_tso_segs(buff, mss_now); 1671 1672 /* Update delivered info for the new segment */ 1673 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1674 1675 /* If this packet has been sent out already, we must 1676 * adjust the various packet counters. 1677 */ 1678 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1679 int diff = old_factor - tcp_skb_pcount(skb) - 1680 tcp_skb_pcount(buff); 1681 1682 if (diff) 1683 tcp_adjust_pcount(sk, skb, diff); 1684 } 1685 1686 /* Link BUFF into the send queue. */ 1687 __skb_header_release(buff); 1688 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1689 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1690 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1691 1692 return 0; 1693 } 1694 1695 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1696 * data is not copied, but immediately discarded. 1697 */ 1698 static int __pskb_trim_head(struct sk_buff *skb, int len) 1699 { 1700 struct skb_shared_info *shinfo; 1701 int i, k, eat; 1702 1703 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1704 eat = len; 1705 k = 0; 1706 shinfo = skb_shinfo(skb); 1707 for (i = 0; i < shinfo->nr_frags; i++) { 1708 int size = skb_frag_size(&shinfo->frags[i]); 1709 1710 if (size <= eat) { 1711 skb_frag_unref(skb, i); 1712 eat -= size; 1713 } else { 1714 shinfo->frags[k] = shinfo->frags[i]; 1715 if (eat) { 1716 skb_frag_off_add(&shinfo->frags[k], eat); 1717 skb_frag_size_sub(&shinfo->frags[k], eat); 1718 eat = 0; 1719 } 1720 k++; 1721 } 1722 } 1723 shinfo->nr_frags = k; 1724 1725 skb->data_len -= len; 1726 skb->len = skb->data_len; 1727 return len; 1728 } 1729 1730 /* Remove acked data from a packet in the transmit queue. */ 1731 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1732 { 1733 u32 delta_truesize; 1734 1735 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1736 return -ENOMEM; 1737 1738 delta_truesize = __pskb_trim_head(skb, len); 1739 1740 TCP_SKB_CB(skb)->seq += len; 1741 1742 skb->truesize -= delta_truesize; 1743 sk_wmem_queued_add(sk, -delta_truesize); 1744 if (!skb_zcopy_pure(skb)) 1745 sk_mem_uncharge(sk, delta_truesize); 1746 1747 /* Any change of skb->len requires recalculation of tso factor. */ 1748 if (tcp_skb_pcount(skb) > 1) 1749 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1750 1751 return 0; 1752 } 1753 1754 /* Calculate MSS not accounting any TCP options. */ 1755 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1756 { 1757 const struct tcp_sock *tp = tcp_sk(sk); 1758 const struct inet_connection_sock *icsk = inet_csk(sk); 1759 int mss_now; 1760 1761 /* Calculate base mss without TCP options: 1762 It is MMS_S - sizeof(tcphdr) of rfc1122 1763 */ 1764 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1765 1766 /* Clamp it (mss_clamp does not include tcp options) */ 1767 if (mss_now > tp->rx_opt.mss_clamp) 1768 mss_now = tp->rx_opt.mss_clamp; 1769 1770 /* Now subtract optional transport overhead */ 1771 mss_now -= icsk->icsk_ext_hdr_len; 1772 1773 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1774 mss_now = max(mss_now, 1775 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1776 return mss_now; 1777 } 1778 1779 /* Calculate MSS. Not accounting for SACKs here. */ 1780 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1781 { 1782 /* Subtract TCP options size, not including SACKs */ 1783 return __tcp_mtu_to_mss(sk, pmtu) - 1784 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1785 } 1786 EXPORT_SYMBOL(tcp_mtu_to_mss); 1787 1788 /* Inverse of above */ 1789 int tcp_mss_to_mtu(struct sock *sk, int mss) 1790 { 1791 const struct tcp_sock *tp = tcp_sk(sk); 1792 const struct inet_connection_sock *icsk = inet_csk(sk); 1793 1794 return mss + 1795 tp->tcp_header_len + 1796 icsk->icsk_ext_hdr_len + 1797 icsk->icsk_af_ops->net_header_len; 1798 } 1799 EXPORT_SYMBOL(tcp_mss_to_mtu); 1800 1801 /* MTU probing init per socket */ 1802 void tcp_mtup_init(struct sock *sk) 1803 { 1804 struct tcp_sock *tp = tcp_sk(sk); 1805 struct inet_connection_sock *icsk = inet_csk(sk); 1806 struct net *net = sock_net(sk); 1807 1808 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1809 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1810 icsk->icsk_af_ops->net_header_len; 1811 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1812 icsk->icsk_mtup.probe_size = 0; 1813 if (icsk->icsk_mtup.enabled) 1814 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1815 } 1816 EXPORT_SYMBOL(tcp_mtup_init); 1817 1818 /* This function synchronize snd mss to current pmtu/exthdr set. 1819 1820 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1821 for TCP options, but includes only bare TCP header. 1822 1823 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1824 It is minimum of user_mss and mss received with SYN. 1825 It also does not include TCP options. 1826 1827 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1828 1829 tp->mss_cache is current effective sending mss, including 1830 all tcp options except for SACKs. It is evaluated, 1831 taking into account current pmtu, but never exceeds 1832 tp->rx_opt.mss_clamp. 1833 1834 NOTE1. rfc1122 clearly states that advertised MSS 1835 DOES NOT include either tcp or ip options. 1836 1837 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1838 are READ ONLY outside this function. --ANK (980731) 1839 */ 1840 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1841 { 1842 struct tcp_sock *tp = tcp_sk(sk); 1843 struct inet_connection_sock *icsk = inet_csk(sk); 1844 int mss_now; 1845 1846 if (icsk->icsk_mtup.search_high > pmtu) 1847 icsk->icsk_mtup.search_high = pmtu; 1848 1849 mss_now = tcp_mtu_to_mss(sk, pmtu); 1850 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1851 1852 /* And store cached results */ 1853 icsk->icsk_pmtu_cookie = pmtu; 1854 if (icsk->icsk_mtup.enabled) 1855 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1856 tp->mss_cache = mss_now; 1857 1858 return mss_now; 1859 } 1860 EXPORT_SYMBOL(tcp_sync_mss); 1861 1862 /* Compute the current effective MSS, taking SACKs and IP options, 1863 * and even PMTU discovery events into account. 1864 */ 1865 unsigned int tcp_current_mss(struct sock *sk) 1866 { 1867 const struct tcp_sock *tp = tcp_sk(sk); 1868 const struct dst_entry *dst = __sk_dst_get(sk); 1869 u32 mss_now; 1870 unsigned int header_len; 1871 struct tcp_out_options opts; 1872 struct tcp_key key; 1873 1874 mss_now = tp->mss_cache; 1875 1876 if (dst) { 1877 u32 mtu = dst_mtu(dst); 1878 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1879 mss_now = tcp_sync_mss(sk, mtu); 1880 } 1881 tcp_get_current_key(sk, &key); 1882 header_len = tcp_established_options(sk, NULL, &opts, &key) + 1883 sizeof(struct tcphdr); 1884 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1885 * some common options. If this is an odd packet (because we have SACK 1886 * blocks etc) then our calculated header_len will be different, and 1887 * we have to adjust mss_now correspondingly */ 1888 if (header_len != tp->tcp_header_len) { 1889 int delta = (int) header_len - tp->tcp_header_len; 1890 mss_now -= delta; 1891 } 1892 1893 return mss_now; 1894 } 1895 1896 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1897 * As additional protections, we do not touch cwnd in retransmission phases, 1898 * and if application hit its sndbuf limit recently. 1899 */ 1900 static void tcp_cwnd_application_limited(struct sock *sk) 1901 { 1902 struct tcp_sock *tp = tcp_sk(sk); 1903 1904 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1905 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1906 /* Limited by application or receiver window. */ 1907 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1908 u32 win_used = max(tp->snd_cwnd_used, init_win); 1909 if (win_used < tcp_snd_cwnd(tp)) { 1910 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1911 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1912 } 1913 tp->snd_cwnd_used = 0; 1914 } 1915 tp->snd_cwnd_stamp = tcp_jiffies32; 1916 } 1917 1918 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1919 { 1920 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1921 struct tcp_sock *tp = tcp_sk(sk); 1922 1923 /* Track the strongest available signal of the degree to which the cwnd 1924 * is fully utilized. If cwnd-limited then remember that fact for the 1925 * current window. If not cwnd-limited then track the maximum number of 1926 * outstanding packets in the current window. (If cwnd-limited then we 1927 * chose to not update tp->max_packets_out to avoid an extra else 1928 * clause with no functional impact.) 1929 */ 1930 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1931 is_cwnd_limited || 1932 (!tp->is_cwnd_limited && 1933 tp->packets_out > tp->max_packets_out)) { 1934 tp->is_cwnd_limited = is_cwnd_limited; 1935 tp->max_packets_out = tp->packets_out; 1936 tp->cwnd_usage_seq = tp->snd_nxt; 1937 } 1938 1939 if (tcp_is_cwnd_limited(sk)) { 1940 /* Network is feed fully. */ 1941 tp->snd_cwnd_used = 0; 1942 tp->snd_cwnd_stamp = tcp_jiffies32; 1943 } else { 1944 /* Network starves. */ 1945 if (tp->packets_out > tp->snd_cwnd_used) 1946 tp->snd_cwnd_used = tp->packets_out; 1947 1948 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1949 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1950 !ca_ops->cong_control) 1951 tcp_cwnd_application_limited(sk); 1952 1953 /* The following conditions together indicate the starvation 1954 * is caused by insufficient sender buffer: 1955 * 1) just sent some data (see tcp_write_xmit) 1956 * 2) not cwnd limited (this else condition) 1957 * 3) no more data to send (tcp_write_queue_empty()) 1958 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1959 */ 1960 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1961 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1962 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1963 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1964 } 1965 } 1966 1967 /* Minshall's variant of the Nagle send check. */ 1968 static bool tcp_minshall_check(const struct tcp_sock *tp) 1969 { 1970 return after(tp->snd_sml, tp->snd_una) && 1971 !after(tp->snd_sml, tp->snd_nxt); 1972 } 1973 1974 /* Update snd_sml if this skb is under mss 1975 * Note that a TSO packet might end with a sub-mss segment 1976 * The test is really : 1977 * if ((skb->len % mss) != 0) 1978 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1979 * But we can avoid doing the divide again given we already have 1980 * skb_pcount = skb->len / mss_now 1981 */ 1982 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1983 const struct sk_buff *skb) 1984 { 1985 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1986 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1987 } 1988 1989 /* Return false, if packet can be sent now without violation Nagle's rules: 1990 * 1. It is full sized. (provided by caller in %partial bool) 1991 * 2. Or it contains FIN. (already checked by caller) 1992 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1993 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1994 * With Minshall's modification: all sent small packets are ACKed. 1995 */ 1996 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1997 int nonagle) 1998 { 1999 return partial && 2000 ((nonagle & TCP_NAGLE_CORK) || 2001 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 2002 } 2003 2004 /* Return how many segs we'd like on a TSO packet, 2005 * depending on current pacing rate, and how close the peer is. 2006 * 2007 * Rationale is: 2008 * - For close peers, we rather send bigger packets to reduce 2009 * cpu costs, because occasional losses will be repaired fast. 2010 * - For long distance/rtt flows, we would like to get ACK clocking 2011 * with 1 ACK per ms. 2012 * 2013 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2014 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2015 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2016 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2017 */ 2018 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2019 int min_tso_segs) 2020 { 2021 unsigned long bytes; 2022 u32 r; 2023 2024 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2025 2026 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2027 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2028 bytes += sk->sk_gso_max_size >> r; 2029 2030 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2031 2032 return max_t(u32, bytes / mss_now, min_tso_segs); 2033 } 2034 2035 /* Return the number of segments we want in the skb we are transmitting. 2036 * See if congestion control module wants to decide; otherwise, autosize. 2037 */ 2038 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2039 { 2040 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2041 u32 min_tso, tso_segs; 2042 2043 min_tso = ca_ops->min_tso_segs ? 2044 ca_ops->min_tso_segs(sk) : 2045 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2046 2047 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2048 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2049 } 2050 2051 /* Returns the portion of skb which can be sent right away */ 2052 static unsigned int tcp_mss_split_point(const struct sock *sk, 2053 const struct sk_buff *skb, 2054 unsigned int mss_now, 2055 unsigned int max_segs, 2056 int nonagle) 2057 { 2058 const struct tcp_sock *tp = tcp_sk(sk); 2059 u32 partial, needed, window, max_len; 2060 2061 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2062 max_len = mss_now * max_segs; 2063 2064 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2065 return max_len; 2066 2067 needed = min(skb->len, window); 2068 2069 if (max_len <= needed) 2070 return max_len; 2071 2072 partial = needed % mss_now; 2073 /* If last segment is not a full MSS, check if Nagle rules allow us 2074 * to include this last segment in this skb. 2075 * Otherwise, we'll split the skb at last MSS boundary 2076 */ 2077 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2078 return needed - partial; 2079 2080 return needed; 2081 } 2082 2083 /* Can at least one segment of SKB be sent right now, according to the 2084 * congestion window rules? If so, return how many segments are allowed. 2085 */ 2086 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2087 { 2088 u32 in_flight, cwnd, halfcwnd; 2089 2090 in_flight = tcp_packets_in_flight(tp); 2091 cwnd = tcp_snd_cwnd(tp); 2092 if (in_flight >= cwnd) 2093 return 0; 2094 2095 /* For better scheduling, ensure we have at least 2096 * 2 GSO packets in flight. 2097 */ 2098 halfcwnd = max(cwnd >> 1, 1U); 2099 return min(halfcwnd, cwnd - in_flight); 2100 } 2101 2102 /* Initialize TSO state of a skb. 2103 * This must be invoked the first time we consider transmitting 2104 * SKB onto the wire. 2105 */ 2106 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2107 { 2108 int tso_segs = tcp_skb_pcount(skb); 2109 2110 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2111 return tcp_set_skb_tso_segs(skb, mss_now); 2112 2113 return tso_segs; 2114 } 2115 2116 2117 /* Return true if the Nagle test allows this packet to be 2118 * sent now. 2119 */ 2120 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2121 unsigned int cur_mss, int nonagle) 2122 { 2123 /* Nagle rule does not apply to frames, which sit in the middle of the 2124 * write_queue (they have no chances to get new data). 2125 * 2126 * This is implemented in the callers, where they modify the 'nonagle' 2127 * argument based upon the location of SKB in the send queue. 2128 */ 2129 if (nonagle & TCP_NAGLE_PUSH) 2130 return true; 2131 2132 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2133 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2134 return true; 2135 2136 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2137 return true; 2138 2139 return false; 2140 } 2141 2142 /* Does at least the first segment of SKB fit into the send window? */ 2143 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2144 const struct sk_buff *skb, 2145 unsigned int cur_mss) 2146 { 2147 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2148 2149 if (skb->len > cur_mss) 2150 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2151 2152 return !after(end_seq, tcp_wnd_end(tp)); 2153 } 2154 2155 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2156 * which is put after SKB on the list. It is very much like 2157 * tcp_fragment() except that it may make several kinds of assumptions 2158 * in order to speed up the splitting operation. In particular, we 2159 * know that all the data is in scatter-gather pages, and that the 2160 * packet has never been sent out before (and thus is not cloned). 2161 */ 2162 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2163 unsigned int mss_now, gfp_t gfp) 2164 { 2165 int nlen = skb->len - len; 2166 struct sk_buff *buff; 2167 u8 flags; 2168 2169 /* All of a TSO frame must be composed of paged data. */ 2170 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2171 2172 buff = tcp_stream_alloc_skb(sk, gfp, true); 2173 if (unlikely(!buff)) 2174 return -ENOMEM; 2175 skb_copy_decrypted(buff, skb); 2176 mptcp_skb_ext_copy(buff, skb); 2177 2178 sk_wmem_queued_add(sk, buff->truesize); 2179 sk_mem_charge(sk, buff->truesize); 2180 buff->truesize += nlen; 2181 skb->truesize -= nlen; 2182 2183 /* Correct the sequence numbers. */ 2184 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2185 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2186 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2187 2188 /* PSH and FIN should only be set in the second packet. */ 2189 flags = TCP_SKB_CB(skb)->tcp_flags; 2190 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2191 TCP_SKB_CB(buff)->tcp_flags = flags; 2192 2193 tcp_skb_fragment_eor(skb, buff); 2194 2195 skb_split(skb, buff, len); 2196 tcp_fragment_tstamp(skb, buff); 2197 2198 /* Fix up tso_factor for both original and new SKB. */ 2199 tcp_set_skb_tso_segs(skb, mss_now); 2200 tcp_set_skb_tso_segs(buff, mss_now); 2201 2202 /* Link BUFF into the send queue. */ 2203 __skb_header_release(buff); 2204 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2205 2206 return 0; 2207 } 2208 2209 /* Try to defer sending, if possible, in order to minimize the amount 2210 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2211 * 2212 * This algorithm is from John Heffner. 2213 */ 2214 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2215 bool *is_cwnd_limited, 2216 bool *is_rwnd_limited, 2217 u32 max_segs) 2218 { 2219 const struct inet_connection_sock *icsk = inet_csk(sk); 2220 u32 send_win, cong_win, limit, in_flight; 2221 struct tcp_sock *tp = tcp_sk(sk); 2222 struct sk_buff *head; 2223 int win_divisor; 2224 s64 delta; 2225 2226 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2227 goto send_now; 2228 2229 /* Avoid bursty behavior by allowing defer 2230 * only if the last write was recent (1 ms). 2231 * Note that tp->tcp_wstamp_ns can be in the future if we have 2232 * packets waiting in a qdisc or device for EDT delivery. 2233 */ 2234 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2235 if (delta > 0) 2236 goto send_now; 2237 2238 in_flight = tcp_packets_in_flight(tp); 2239 2240 BUG_ON(tcp_skb_pcount(skb) <= 1); 2241 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2242 2243 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2244 2245 /* From in_flight test above, we know that cwnd > in_flight. */ 2246 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2247 2248 limit = min(send_win, cong_win); 2249 2250 /* If a full-sized TSO skb can be sent, do it. */ 2251 if (limit >= max_segs * tp->mss_cache) 2252 goto send_now; 2253 2254 /* Middle in queue won't get any more data, full sendable already? */ 2255 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2256 goto send_now; 2257 2258 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2259 if (win_divisor) { 2260 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2261 2262 /* If at least some fraction of a window is available, 2263 * just use it. 2264 */ 2265 chunk /= win_divisor; 2266 if (limit >= chunk) 2267 goto send_now; 2268 } else { 2269 /* Different approach, try not to defer past a single 2270 * ACK. Receiver should ACK every other full sized 2271 * frame, so if we have space for more than 3 frames 2272 * then send now. 2273 */ 2274 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2275 goto send_now; 2276 } 2277 2278 /* TODO : use tsorted_sent_queue ? */ 2279 head = tcp_rtx_queue_head(sk); 2280 if (!head) 2281 goto send_now; 2282 delta = tp->tcp_clock_cache - head->tstamp; 2283 /* If next ACK is likely to come too late (half srtt), do not defer */ 2284 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2285 goto send_now; 2286 2287 /* Ok, it looks like it is advisable to defer. 2288 * Three cases are tracked : 2289 * 1) We are cwnd-limited 2290 * 2) We are rwnd-limited 2291 * 3) We are application limited. 2292 */ 2293 if (cong_win < send_win) { 2294 if (cong_win <= skb->len) { 2295 *is_cwnd_limited = true; 2296 return true; 2297 } 2298 } else { 2299 if (send_win <= skb->len) { 2300 *is_rwnd_limited = true; 2301 return true; 2302 } 2303 } 2304 2305 /* If this packet won't get more data, do not wait. */ 2306 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2307 TCP_SKB_CB(skb)->eor) 2308 goto send_now; 2309 2310 return true; 2311 2312 send_now: 2313 return false; 2314 } 2315 2316 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2317 { 2318 struct inet_connection_sock *icsk = inet_csk(sk); 2319 struct tcp_sock *tp = tcp_sk(sk); 2320 struct net *net = sock_net(sk); 2321 u32 interval; 2322 s32 delta; 2323 2324 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2325 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2326 if (unlikely(delta >= interval * HZ)) { 2327 int mss = tcp_current_mss(sk); 2328 2329 /* Update current search range */ 2330 icsk->icsk_mtup.probe_size = 0; 2331 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2332 sizeof(struct tcphdr) + 2333 icsk->icsk_af_ops->net_header_len; 2334 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2335 2336 /* Update probe time stamp */ 2337 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2338 } 2339 } 2340 2341 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2342 { 2343 struct sk_buff *skb, *next; 2344 2345 skb = tcp_send_head(sk); 2346 tcp_for_write_queue_from_safe(skb, next, sk) { 2347 if (len <= skb->len) 2348 break; 2349 2350 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next)) 2351 return false; 2352 2353 len -= skb->len; 2354 } 2355 2356 return true; 2357 } 2358 2359 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2360 int probe_size) 2361 { 2362 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2363 int i, todo, len = 0, nr_frags = 0; 2364 const struct sk_buff *skb; 2365 2366 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2367 return -ENOMEM; 2368 2369 skb_queue_walk(&sk->sk_write_queue, skb) { 2370 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2371 2372 if (skb_headlen(skb)) 2373 return -EINVAL; 2374 2375 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2376 if (len >= probe_size) 2377 goto commit; 2378 todo = min_t(int, skb_frag_size(fragfrom), 2379 probe_size - len); 2380 len += todo; 2381 if (lastfrag && 2382 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2383 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2384 skb_frag_size(lastfrag)) { 2385 skb_frag_size_add(lastfrag, todo); 2386 continue; 2387 } 2388 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2389 return -E2BIG; 2390 skb_frag_page_copy(fragto, fragfrom); 2391 skb_frag_off_copy(fragto, fragfrom); 2392 skb_frag_size_set(fragto, todo); 2393 nr_frags++; 2394 lastfrag = fragto++; 2395 } 2396 } 2397 commit: 2398 WARN_ON_ONCE(len != probe_size); 2399 for (i = 0; i < nr_frags; i++) 2400 skb_frag_ref(to, i); 2401 2402 skb_shinfo(to)->nr_frags = nr_frags; 2403 to->truesize += probe_size; 2404 to->len += probe_size; 2405 to->data_len += probe_size; 2406 __skb_header_release(to); 2407 return 0; 2408 } 2409 2410 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if 2411 * all its payload was moved to another one (dst). 2412 * Make sure to transfer tcp_flags, eor, and tstamp. 2413 */ 2414 static void tcp_eat_one_skb(struct sock *sk, 2415 struct sk_buff *dst, 2416 struct sk_buff *src) 2417 { 2418 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags; 2419 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor; 2420 tcp_skb_collapse_tstamp(dst, src); 2421 tcp_unlink_write_queue(src, sk); 2422 tcp_wmem_free_skb(sk, src); 2423 } 2424 2425 /* Create a new MTU probe if we are ready. 2426 * MTU probe is regularly attempting to increase the path MTU by 2427 * deliberately sending larger packets. This discovers routing 2428 * changes resulting in larger path MTUs. 2429 * 2430 * Returns 0 if we should wait to probe (no cwnd available), 2431 * 1 if a probe was sent, 2432 * -1 otherwise 2433 */ 2434 static int tcp_mtu_probe(struct sock *sk) 2435 { 2436 struct inet_connection_sock *icsk = inet_csk(sk); 2437 struct tcp_sock *tp = tcp_sk(sk); 2438 struct sk_buff *skb, *nskb, *next; 2439 struct net *net = sock_net(sk); 2440 int probe_size; 2441 int size_needed; 2442 int copy, len; 2443 int mss_now; 2444 int interval; 2445 2446 /* Not currently probing/verifying, 2447 * not in recovery, 2448 * have enough cwnd, and 2449 * not SACKing (the variable headers throw things off) 2450 */ 2451 if (likely(!icsk->icsk_mtup.enabled || 2452 icsk->icsk_mtup.probe_size || 2453 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2454 tcp_snd_cwnd(tp) < 11 || 2455 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2456 return -1; 2457 2458 /* Use binary search for probe_size between tcp_mss_base, 2459 * and current mss_clamp. if (search_high - search_low) 2460 * smaller than a threshold, backoff from probing. 2461 */ 2462 mss_now = tcp_current_mss(sk); 2463 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2464 icsk->icsk_mtup.search_low) >> 1); 2465 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2466 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2467 /* When misfortune happens, we are reprobing actively, 2468 * and then reprobe timer has expired. We stick with current 2469 * probing process by not resetting search range to its orignal. 2470 */ 2471 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2472 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2473 /* Check whether enough time has elaplased for 2474 * another round of probing. 2475 */ 2476 tcp_mtu_check_reprobe(sk); 2477 return -1; 2478 } 2479 2480 /* Have enough data in the send queue to probe? */ 2481 if (tp->write_seq - tp->snd_nxt < size_needed) 2482 return -1; 2483 2484 if (tp->snd_wnd < size_needed) 2485 return -1; 2486 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2487 return 0; 2488 2489 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2490 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2491 if (!tcp_packets_in_flight(tp)) 2492 return -1; 2493 else 2494 return 0; 2495 } 2496 2497 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2498 return -1; 2499 2500 /* We're allowed to probe. Build it now. */ 2501 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2502 if (!nskb) 2503 return -1; 2504 2505 /* build the payload, and be prepared to abort if this fails. */ 2506 if (tcp_clone_payload(sk, nskb, probe_size)) { 2507 tcp_skb_tsorted_anchor_cleanup(nskb); 2508 consume_skb(nskb); 2509 return -1; 2510 } 2511 sk_wmem_queued_add(sk, nskb->truesize); 2512 sk_mem_charge(sk, nskb->truesize); 2513 2514 skb = tcp_send_head(sk); 2515 skb_copy_decrypted(nskb, skb); 2516 mptcp_skb_ext_copy(nskb, skb); 2517 2518 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2519 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2520 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2521 2522 tcp_insert_write_queue_before(nskb, skb, sk); 2523 tcp_highest_sack_replace(sk, skb, nskb); 2524 2525 len = 0; 2526 tcp_for_write_queue_from_safe(skb, next, sk) { 2527 copy = min_t(int, skb->len, probe_size - len); 2528 2529 if (skb->len <= copy) { 2530 tcp_eat_one_skb(sk, nskb, skb); 2531 } else { 2532 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2533 ~(TCPHDR_FIN|TCPHDR_PSH); 2534 __pskb_trim_head(skb, copy); 2535 tcp_set_skb_tso_segs(skb, mss_now); 2536 TCP_SKB_CB(skb)->seq += copy; 2537 } 2538 2539 len += copy; 2540 2541 if (len >= probe_size) 2542 break; 2543 } 2544 tcp_init_tso_segs(nskb, nskb->len); 2545 2546 /* We're ready to send. If this fails, the probe will 2547 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2548 */ 2549 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2550 /* Decrement cwnd here because we are sending 2551 * effectively two packets. */ 2552 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2553 tcp_event_new_data_sent(sk, nskb); 2554 2555 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2556 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2557 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2558 2559 return 1; 2560 } 2561 2562 return -1; 2563 } 2564 2565 static bool tcp_pacing_check(struct sock *sk) 2566 { 2567 struct tcp_sock *tp = tcp_sk(sk); 2568 2569 if (!tcp_needs_internal_pacing(sk)) 2570 return false; 2571 2572 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2573 return false; 2574 2575 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2576 hrtimer_start(&tp->pacing_timer, 2577 ns_to_ktime(tp->tcp_wstamp_ns), 2578 HRTIMER_MODE_ABS_PINNED_SOFT); 2579 sock_hold(sk); 2580 } 2581 return true; 2582 } 2583 2584 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2585 { 2586 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2587 2588 /* No skb in the rtx queue. */ 2589 if (!node) 2590 return true; 2591 2592 /* Only one skb in rtx queue. */ 2593 return !node->rb_left && !node->rb_right; 2594 } 2595 2596 /* TCP Small Queues : 2597 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2598 * (These limits are doubled for retransmits) 2599 * This allows for : 2600 * - better RTT estimation and ACK scheduling 2601 * - faster recovery 2602 * - high rates 2603 * Alas, some drivers / subsystems require a fair amount 2604 * of queued bytes to ensure line rate. 2605 * One example is wifi aggregation (802.11 AMPDU) 2606 */ 2607 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2608 unsigned int factor) 2609 { 2610 unsigned long limit; 2611 2612 limit = max_t(unsigned long, 2613 2 * skb->truesize, 2614 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2615 if (sk->sk_pacing_status == SK_PACING_NONE) 2616 limit = min_t(unsigned long, limit, 2617 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2618 limit <<= factor; 2619 2620 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2621 tcp_sk(sk)->tcp_tx_delay) { 2622 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2623 tcp_sk(sk)->tcp_tx_delay; 2624 2625 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2626 * approximate our needs assuming an ~100% skb->truesize overhead. 2627 * USEC_PER_SEC is approximated by 2^20. 2628 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2629 */ 2630 extra_bytes >>= (20 - 1); 2631 limit += extra_bytes; 2632 } 2633 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2634 /* Always send skb if rtx queue is empty or has one skb. 2635 * No need to wait for TX completion to call us back, 2636 * after softirq/tasklet schedule. 2637 * This helps when TX completions are delayed too much. 2638 */ 2639 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2640 return false; 2641 2642 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2643 /* It is possible TX completion already happened 2644 * before we set TSQ_THROTTLED, so we must 2645 * test again the condition. 2646 */ 2647 smp_mb__after_atomic(); 2648 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2649 return true; 2650 } 2651 return false; 2652 } 2653 2654 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2655 { 2656 const u32 now = tcp_jiffies32; 2657 enum tcp_chrono old = tp->chrono_type; 2658 2659 if (old > TCP_CHRONO_UNSPEC) 2660 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2661 tp->chrono_start = now; 2662 tp->chrono_type = new; 2663 } 2664 2665 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2666 { 2667 struct tcp_sock *tp = tcp_sk(sk); 2668 2669 /* If there are multiple conditions worthy of tracking in a 2670 * chronograph then the highest priority enum takes precedence 2671 * over the other conditions. So that if something "more interesting" 2672 * starts happening, stop the previous chrono and start a new one. 2673 */ 2674 if (type > tp->chrono_type) 2675 tcp_chrono_set(tp, type); 2676 } 2677 2678 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2679 { 2680 struct tcp_sock *tp = tcp_sk(sk); 2681 2682 2683 /* There are multiple conditions worthy of tracking in a 2684 * chronograph, so that the highest priority enum takes 2685 * precedence over the other conditions (see tcp_chrono_start). 2686 * If a condition stops, we only stop chrono tracking if 2687 * it's the "most interesting" or current chrono we are 2688 * tracking and starts busy chrono if we have pending data. 2689 */ 2690 if (tcp_rtx_and_write_queues_empty(sk)) 2691 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2692 else if (type == tp->chrono_type) 2693 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2694 } 2695 2696 /* First skb in the write queue is smaller than ideal packet size. 2697 * Check if we can move payload from the second skb in the queue. 2698 */ 2699 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2700 { 2701 struct sk_buff *next_skb = skb->next; 2702 unsigned int nlen; 2703 2704 if (tcp_skb_is_last(sk, skb)) 2705 return; 2706 2707 if (!tcp_skb_can_collapse(skb, next_skb)) 2708 return; 2709 2710 nlen = min_t(u32, amount, next_skb->len); 2711 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2712 return; 2713 2714 TCP_SKB_CB(skb)->end_seq += nlen; 2715 TCP_SKB_CB(next_skb)->seq += nlen; 2716 2717 if (!next_skb->len) { 2718 /* In case FIN is set, we need to update end_seq */ 2719 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2720 2721 tcp_eat_one_skb(sk, skb, next_skb); 2722 } 2723 } 2724 2725 /* This routine writes packets to the network. It advances the 2726 * send_head. This happens as incoming acks open up the remote 2727 * window for us. 2728 * 2729 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2730 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2731 * account rare use of URG, this is not a big flaw. 2732 * 2733 * Send at most one packet when push_one > 0. Temporarily ignore 2734 * cwnd limit to force at most one packet out when push_one == 2. 2735 2736 * Returns true, if no segments are in flight and we have queued segments, 2737 * but cannot send anything now because of SWS or another problem. 2738 */ 2739 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2740 int push_one, gfp_t gfp) 2741 { 2742 struct tcp_sock *tp = tcp_sk(sk); 2743 struct sk_buff *skb; 2744 unsigned int tso_segs, sent_pkts; 2745 u32 cwnd_quota, max_segs; 2746 int result; 2747 bool is_cwnd_limited = false, is_rwnd_limited = false; 2748 2749 sent_pkts = 0; 2750 2751 tcp_mstamp_refresh(tp); 2752 if (!push_one) { 2753 /* Do MTU probing. */ 2754 result = tcp_mtu_probe(sk); 2755 if (!result) { 2756 return false; 2757 } else if (result > 0) { 2758 sent_pkts = 1; 2759 } 2760 } 2761 2762 max_segs = tcp_tso_segs(sk, mss_now); 2763 while ((skb = tcp_send_head(sk))) { 2764 unsigned int limit; 2765 int missing_bytes; 2766 2767 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2768 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2769 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2770 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 2771 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2772 tcp_init_tso_segs(skb, mss_now); 2773 goto repair; /* Skip network transmission */ 2774 } 2775 2776 if (tcp_pacing_check(sk)) 2777 break; 2778 2779 cwnd_quota = tcp_cwnd_test(tp); 2780 if (!cwnd_quota) { 2781 if (push_one == 2) 2782 /* Force out a loss probe pkt. */ 2783 cwnd_quota = 1; 2784 else 2785 break; 2786 } 2787 cwnd_quota = min(cwnd_quota, max_segs); 2788 missing_bytes = cwnd_quota * mss_now - skb->len; 2789 if (missing_bytes > 0) 2790 tcp_grow_skb(sk, skb, missing_bytes); 2791 2792 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 2793 2794 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2795 is_rwnd_limited = true; 2796 break; 2797 } 2798 2799 if (tso_segs == 1) { 2800 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2801 (tcp_skb_is_last(sk, skb) ? 2802 nonagle : TCP_NAGLE_PUSH)))) 2803 break; 2804 } else { 2805 if (!push_one && 2806 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2807 &is_rwnd_limited, max_segs)) 2808 break; 2809 } 2810 2811 limit = mss_now; 2812 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2813 limit = tcp_mss_split_point(sk, skb, mss_now, 2814 cwnd_quota, 2815 nonagle); 2816 2817 if (skb->len > limit && 2818 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2819 break; 2820 2821 if (tcp_small_queue_check(sk, skb, 0)) 2822 break; 2823 2824 /* Argh, we hit an empty skb(), presumably a thread 2825 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2826 * We do not want to send a pure-ack packet and have 2827 * a strange looking rtx queue with empty packet(s). 2828 */ 2829 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2830 break; 2831 2832 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2833 break; 2834 2835 repair: 2836 /* Advance the send_head. This one is sent out. 2837 * This call will increment packets_out. 2838 */ 2839 tcp_event_new_data_sent(sk, skb); 2840 2841 tcp_minshall_update(tp, mss_now, skb); 2842 sent_pkts += tcp_skb_pcount(skb); 2843 2844 if (push_one) 2845 break; 2846 } 2847 2848 if (is_rwnd_limited) 2849 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2850 else 2851 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2852 2853 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2854 if (likely(sent_pkts || is_cwnd_limited)) 2855 tcp_cwnd_validate(sk, is_cwnd_limited); 2856 2857 if (likely(sent_pkts)) { 2858 if (tcp_in_cwnd_reduction(sk)) 2859 tp->prr_out += sent_pkts; 2860 2861 /* Send one loss probe per tail loss episode. */ 2862 if (push_one != 2) 2863 tcp_schedule_loss_probe(sk, false); 2864 return false; 2865 } 2866 return !tp->packets_out && !tcp_write_queue_empty(sk); 2867 } 2868 2869 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2870 { 2871 struct inet_connection_sock *icsk = inet_csk(sk); 2872 struct tcp_sock *tp = tcp_sk(sk); 2873 u32 timeout, timeout_us, rto_delta_us; 2874 int early_retrans; 2875 2876 /* Don't do any loss probe on a Fast Open connection before 3WHS 2877 * finishes. 2878 */ 2879 if (rcu_access_pointer(tp->fastopen_rsk)) 2880 return false; 2881 2882 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2883 /* Schedule a loss probe in 2*RTT for SACK capable connections 2884 * not in loss recovery, that are either limited by cwnd or application. 2885 */ 2886 if ((early_retrans != 3 && early_retrans != 4) || 2887 !tp->packets_out || !tcp_is_sack(tp) || 2888 (icsk->icsk_ca_state != TCP_CA_Open && 2889 icsk->icsk_ca_state != TCP_CA_CWR)) 2890 return false; 2891 2892 /* Probe timeout is 2*rtt. Add minimum RTO to account 2893 * for delayed ack when there's one outstanding packet. If no RTT 2894 * sample is available then probe after TCP_TIMEOUT_INIT. 2895 */ 2896 if (tp->srtt_us) { 2897 timeout_us = tp->srtt_us >> 2; 2898 if (tp->packets_out == 1) 2899 timeout_us += tcp_rto_min_us(sk); 2900 else 2901 timeout_us += TCP_TIMEOUT_MIN_US; 2902 timeout = usecs_to_jiffies(timeout_us); 2903 } else { 2904 timeout = TCP_TIMEOUT_INIT; 2905 } 2906 2907 /* If the RTO formula yields an earlier time, then use that time. */ 2908 rto_delta_us = advancing_rto ? 2909 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2910 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2911 if (rto_delta_us > 0) 2912 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2913 2914 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2915 return true; 2916 } 2917 2918 /* Thanks to skb fast clones, we can detect if a prior transmit of 2919 * a packet is still in a qdisc or driver queue. 2920 * In this case, there is very little point doing a retransmit ! 2921 */ 2922 static bool skb_still_in_host_queue(struct sock *sk, 2923 const struct sk_buff *skb) 2924 { 2925 if (unlikely(skb_fclone_busy(sk, skb))) { 2926 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2927 smp_mb__after_atomic(); 2928 if (skb_fclone_busy(sk, skb)) { 2929 NET_INC_STATS(sock_net(sk), 2930 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2931 return true; 2932 } 2933 } 2934 return false; 2935 } 2936 2937 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2938 * retransmit the last segment. 2939 */ 2940 void tcp_send_loss_probe(struct sock *sk) 2941 { 2942 struct tcp_sock *tp = tcp_sk(sk); 2943 struct sk_buff *skb; 2944 int pcount; 2945 int mss = tcp_current_mss(sk); 2946 2947 /* At most one outstanding TLP */ 2948 if (tp->tlp_high_seq) 2949 goto rearm_timer; 2950 2951 tp->tlp_retrans = 0; 2952 skb = tcp_send_head(sk); 2953 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2954 pcount = tp->packets_out; 2955 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2956 if (tp->packets_out > pcount) 2957 goto probe_sent; 2958 goto rearm_timer; 2959 } 2960 skb = skb_rb_last(&sk->tcp_rtx_queue); 2961 if (unlikely(!skb)) { 2962 tcp_warn_once(sk, tp->packets_out, "invalid inflight: "); 2963 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 2964 return; 2965 } 2966 2967 if (skb_still_in_host_queue(sk, skb)) 2968 goto rearm_timer; 2969 2970 pcount = tcp_skb_pcount(skb); 2971 if (WARN_ON(!pcount)) 2972 goto rearm_timer; 2973 2974 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2975 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2976 (pcount - 1) * mss, mss, 2977 GFP_ATOMIC))) 2978 goto rearm_timer; 2979 skb = skb_rb_next(skb); 2980 } 2981 2982 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2983 goto rearm_timer; 2984 2985 if (__tcp_retransmit_skb(sk, skb, 1)) 2986 goto rearm_timer; 2987 2988 tp->tlp_retrans = 1; 2989 2990 probe_sent: 2991 /* Record snd_nxt for loss detection. */ 2992 tp->tlp_high_seq = tp->snd_nxt; 2993 2994 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2995 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2996 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 2997 rearm_timer: 2998 tcp_rearm_rto(sk); 2999 } 3000 3001 /* Push out any pending frames which were held back due to 3002 * TCP_CORK or attempt at coalescing tiny packets. 3003 * The socket must be locked by the caller. 3004 */ 3005 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 3006 int nonagle) 3007 { 3008 /* If we are closed, the bytes will have to remain here. 3009 * In time closedown will finish, we empty the write queue and 3010 * all will be happy. 3011 */ 3012 if (unlikely(sk->sk_state == TCP_CLOSE)) 3013 return; 3014 3015 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3016 sk_gfp_mask(sk, GFP_ATOMIC))) 3017 tcp_check_probe_timer(sk); 3018 } 3019 3020 /* Send _single_ skb sitting at the send head. This function requires 3021 * true push pending frames to setup probe timer etc. 3022 */ 3023 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3024 { 3025 struct sk_buff *skb = tcp_send_head(sk); 3026 3027 BUG_ON(!skb || skb->len < mss_now); 3028 3029 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3030 } 3031 3032 /* This function returns the amount that we can raise the 3033 * usable window based on the following constraints 3034 * 3035 * 1. The window can never be shrunk once it is offered (RFC 793) 3036 * 2. We limit memory per socket 3037 * 3038 * RFC 1122: 3039 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3040 * RECV.NEXT + RCV.WIN fixed until: 3041 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3042 * 3043 * i.e. don't raise the right edge of the window until you can raise 3044 * it at least MSS bytes. 3045 * 3046 * Unfortunately, the recommended algorithm breaks header prediction, 3047 * since header prediction assumes th->window stays fixed. 3048 * 3049 * Strictly speaking, keeping th->window fixed violates the receiver 3050 * side SWS prevention criteria. The problem is that under this rule 3051 * a stream of single byte packets will cause the right side of the 3052 * window to always advance by a single byte. 3053 * 3054 * Of course, if the sender implements sender side SWS prevention 3055 * then this will not be a problem. 3056 * 3057 * BSD seems to make the following compromise: 3058 * 3059 * If the free space is less than the 1/4 of the maximum 3060 * space available and the free space is less than 1/2 mss, 3061 * then set the window to 0. 3062 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3063 * Otherwise, just prevent the window from shrinking 3064 * and from being larger than the largest representable value. 3065 * 3066 * This prevents incremental opening of the window in the regime 3067 * where TCP is limited by the speed of the reader side taking 3068 * data out of the TCP receive queue. It does nothing about 3069 * those cases where the window is constrained on the sender side 3070 * because the pipeline is full. 3071 * 3072 * BSD also seems to "accidentally" limit itself to windows that are a 3073 * multiple of MSS, at least until the free space gets quite small. 3074 * This would appear to be a side effect of the mbuf implementation. 3075 * Combining these two algorithms results in the observed behavior 3076 * of having a fixed window size at almost all times. 3077 * 3078 * Below we obtain similar behavior by forcing the offered window to 3079 * a multiple of the mss when it is feasible to do so. 3080 * 3081 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3082 * Regular options like TIMESTAMP are taken into account. 3083 */ 3084 u32 __tcp_select_window(struct sock *sk) 3085 { 3086 struct inet_connection_sock *icsk = inet_csk(sk); 3087 struct tcp_sock *tp = tcp_sk(sk); 3088 struct net *net = sock_net(sk); 3089 /* MSS for the peer's data. Previous versions used mss_clamp 3090 * here. I don't know if the value based on our guesses 3091 * of peer's MSS is better for the performance. It's more correct 3092 * but may be worse for the performance because of rcv_mss 3093 * fluctuations. --SAW 1998/11/1 3094 */ 3095 int mss = icsk->icsk_ack.rcv_mss; 3096 int free_space = tcp_space(sk); 3097 int allowed_space = tcp_full_space(sk); 3098 int full_space, window; 3099 3100 if (sk_is_mptcp(sk)) 3101 mptcp_space(sk, &free_space, &allowed_space); 3102 3103 full_space = min_t(int, tp->window_clamp, allowed_space); 3104 3105 if (unlikely(mss > full_space)) { 3106 mss = full_space; 3107 if (mss <= 0) 3108 return 0; 3109 } 3110 3111 /* Only allow window shrink if the sysctl is enabled and we have 3112 * a non-zero scaling factor in effect. 3113 */ 3114 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3115 goto shrink_window_allowed; 3116 3117 /* do not allow window to shrink */ 3118 3119 if (free_space < (full_space >> 1)) { 3120 icsk->icsk_ack.quick = 0; 3121 3122 if (tcp_under_memory_pressure(sk)) 3123 tcp_adjust_rcv_ssthresh(sk); 3124 3125 /* free_space might become our new window, make sure we don't 3126 * increase it due to wscale. 3127 */ 3128 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3129 3130 /* if free space is less than mss estimate, or is below 1/16th 3131 * of the maximum allowed, try to move to zero-window, else 3132 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3133 * new incoming data is dropped due to memory limits. 3134 * With large window, mss test triggers way too late in order 3135 * to announce zero window in time before rmem limit kicks in. 3136 */ 3137 if (free_space < (allowed_space >> 4) || free_space < mss) 3138 return 0; 3139 } 3140 3141 if (free_space > tp->rcv_ssthresh) 3142 free_space = tp->rcv_ssthresh; 3143 3144 /* Don't do rounding if we are using window scaling, since the 3145 * scaled window will not line up with the MSS boundary anyway. 3146 */ 3147 if (tp->rx_opt.rcv_wscale) { 3148 window = free_space; 3149 3150 /* Advertise enough space so that it won't get scaled away. 3151 * Import case: prevent zero window announcement if 3152 * 1<<rcv_wscale > mss. 3153 */ 3154 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3155 } else { 3156 window = tp->rcv_wnd; 3157 /* Get the largest window that is a nice multiple of mss. 3158 * Window clamp already applied above. 3159 * If our current window offering is within 1 mss of the 3160 * free space we just keep it. This prevents the divide 3161 * and multiply from happening most of the time. 3162 * We also don't do any window rounding when the free space 3163 * is too small. 3164 */ 3165 if (window <= free_space - mss || window > free_space) 3166 window = rounddown(free_space, mss); 3167 else if (mss == full_space && 3168 free_space > window + (full_space >> 1)) 3169 window = free_space; 3170 } 3171 3172 return window; 3173 3174 shrink_window_allowed: 3175 /* new window should always be an exact multiple of scaling factor */ 3176 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3177 3178 if (free_space < (full_space >> 1)) { 3179 icsk->icsk_ack.quick = 0; 3180 3181 if (tcp_under_memory_pressure(sk)) 3182 tcp_adjust_rcv_ssthresh(sk); 3183 3184 /* if free space is too low, return a zero window */ 3185 if (free_space < (allowed_space >> 4) || free_space < mss || 3186 free_space < (1 << tp->rx_opt.rcv_wscale)) 3187 return 0; 3188 } 3189 3190 if (free_space > tp->rcv_ssthresh) { 3191 free_space = tp->rcv_ssthresh; 3192 /* new window should always be an exact multiple of scaling factor 3193 * 3194 * For this case, we ALIGN "up" (increase free_space) because 3195 * we know free_space is not zero here, it has been reduced from 3196 * the memory-based limit, and rcv_ssthresh is not a hard limit 3197 * (unlike sk_rcvbuf). 3198 */ 3199 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3200 } 3201 3202 return free_space; 3203 } 3204 3205 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3206 const struct sk_buff *next_skb) 3207 { 3208 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3209 const struct skb_shared_info *next_shinfo = 3210 skb_shinfo(next_skb); 3211 struct skb_shared_info *shinfo = skb_shinfo(skb); 3212 3213 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3214 shinfo->tskey = next_shinfo->tskey; 3215 TCP_SKB_CB(skb)->txstamp_ack |= 3216 TCP_SKB_CB(next_skb)->txstamp_ack; 3217 } 3218 } 3219 3220 /* Collapses two adjacent SKB's during retransmission. */ 3221 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3222 { 3223 struct tcp_sock *tp = tcp_sk(sk); 3224 struct sk_buff *next_skb = skb_rb_next(skb); 3225 int next_skb_size; 3226 3227 next_skb_size = next_skb->len; 3228 3229 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3230 3231 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3232 return false; 3233 3234 tcp_highest_sack_replace(sk, next_skb, skb); 3235 3236 /* Update sequence range on original skb. */ 3237 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3238 3239 /* Merge over control information. This moves PSH/FIN etc. over */ 3240 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3241 3242 /* All done, get rid of second SKB and account for it so 3243 * packet counting does not break. 3244 */ 3245 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3246 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3247 3248 /* changed transmit queue under us so clear hints */ 3249 tcp_clear_retrans_hints_partial(tp); 3250 if (next_skb == tp->retransmit_skb_hint) 3251 tp->retransmit_skb_hint = skb; 3252 3253 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3254 3255 tcp_skb_collapse_tstamp(skb, next_skb); 3256 3257 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3258 return true; 3259 } 3260 3261 /* Check if coalescing SKBs is legal. */ 3262 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3263 { 3264 if (tcp_skb_pcount(skb) > 1) 3265 return false; 3266 if (skb_cloned(skb)) 3267 return false; 3268 if (!skb_frags_readable(skb)) 3269 return false; 3270 /* Some heuristics for collapsing over SACK'd could be invented */ 3271 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3272 return false; 3273 3274 return true; 3275 } 3276 3277 /* Collapse packets in the retransmit queue to make to create 3278 * less packets on the wire. This is only done on retransmission. 3279 */ 3280 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3281 int space) 3282 { 3283 struct tcp_sock *tp = tcp_sk(sk); 3284 struct sk_buff *skb = to, *tmp; 3285 bool first = true; 3286 3287 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3288 return; 3289 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3290 return; 3291 3292 skb_rbtree_walk_from_safe(skb, tmp) { 3293 if (!tcp_can_collapse(sk, skb)) 3294 break; 3295 3296 if (!tcp_skb_can_collapse(to, skb)) 3297 break; 3298 3299 space -= skb->len; 3300 3301 if (first) { 3302 first = false; 3303 continue; 3304 } 3305 3306 if (space < 0) 3307 break; 3308 3309 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3310 break; 3311 3312 if (!tcp_collapse_retrans(sk, to)) 3313 break; 3314 } 3315 } 3316 3317 /* This retransmits one SKB. Policy decisions and retransmit queue 3318 * state updates are done by the caller. Returns non-zero if an 3319 * error occurred which prevented the send. 3320 */ 3321 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3322 { 3323 struct inet_connection_sock *icsk = inet_csk(sk); 3324 struct tcp_sock *tp = tcp_sk(sk); 3325 unsigned int cur_mss; 3326 int diff, len, err; 3327 int avail_wnd; 3328 3329 /* Inconclusive MTU probe */ 3330 if (icsk->icsk_mtup.probe_size) 3331 icsk->icsk_mtup.probe_size = 0; 3332 3333 if (skb_still_in_host_queue(sk, skb)) 3334 return -EBUSY; 3335 3336 start: 3337 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3338 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3339 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3340 TCP_SKB_CB(skb)->seq++; 3341 goto start; 3342 } 3343 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3344 WARN_ON_ONCE(1); 3345 return -EINVAL; 3346 } 3347 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3348 return -ENOMEM; 3349 } 3350 3351 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3352 return -EHOSTUNREACH; /* Routing failure or similar. */ 3353 3354 cur_mss = tcp_current_mss(sk); 3355 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3356 3357 /* If receiver has shrunk his window, and skb is out of 3358 * new window, do not retransmit it. The exception is the 3359 * case, when window is shrunk to zero. In this case 3360 * our retransmit of one segment serves as a zero window probe. 3361 */ 3362 if (avail_wnd <= 0) { 3363 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3364 return -EAGAIN; 3365 avail_wnd = cur_mss; 3366 } 3367 3368 len = cur_mss * segs; 3369 if (len > avail_wnd) { 3370 len = rounddown(avail_wnd, cur_mss); 3371 if (!len) 3372 len = avail_wnd; 3373 } 3374 if (skb->len > len) { 3375 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3376 cur_mss, GFP_ATOMIC)) 3377 return -ENOMEM; /* We'll try again later. */ 3378 } else { 3379 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3380 return -ENOMEM; 3381 3382 diff = tcp_skb_pcount(skb); 3383 tcp_set_skb_tso_segs(skb, cur_mss); 3384 diff -= tcp_skb_pcount(skb); 3385 if (diff) 3386 tcp_adjust_pcount(sk, skb, diff); 3387 avail_wnd = min_t(int, avail_wnd, cur_mss); 3388 if (skb->len < avail_wnd) 3389 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3390 } 3391 3392 /* RFC3168, section 6.1.1.1. ECN fallback */ 3393 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3394 tcp_ecn_clear_syn(sk, skb); 3395 3396 /* Update global and local TCP statistics. */ 3397 segs = tcp_skb_pcount(skb); 3398 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3399 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3400 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3401 tp->total_retrans += segs; 3402 tp->bytes_retrans += skb->len; 3403 3404 /* make sure skb->data is aligned on arches that require it 3405 * and check if ack-trimming & collapsing extended the headroom 3406 * beyond what csum_start can cover. 3407 */ 3408 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3409 skb_headroom(skb) >= 0xFFFF)) { 3410 struct sk_buff *nskb; 3411 3412 tcp_skb_tsorted_save(skb) { 3413 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3414 if (nskb) { 3415 nskb->dev = NULL; 3416 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3417 } else { 3418 err = -ENOBUFS; 3419 } 3420 } tcp_skb_tsorted_restore(skb); 3421 3422 if (!err) { 3423 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3424 tcp_rate_skb_sent(sk, skb); 3425 } 3426 } else { 3427 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3428 } 3429 3430 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3431 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3432 TCP_SKB_CB(skb)->seq, segs, err); 3433 3434 if (likely(!err)) { 3435 trace_tcp_retransmit_skb(sk, skb); 3436 } else if (err != -EBUSY) { 3437 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3438 } 3439 3440 /* To avoid taking spuriously low RTT samples based on a timestamp 3441 * for a transmit that never happened, always mark EVER_RETRANS 3442 */ 3443 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3444 3445 return err; 3446 } 3447 3448 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3449 { 3450 struct tcp_sock *tp = tcp_sk(sk); 3451 int err = __tcp_retransmit_skb(sk, skb, segs); 3452 3453 if (err == 0) { 3454 #if FASTRETRANS_DEBUG > 0 3455 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3456 net_dbg_ratelimited("retrans_out leaked\n"); 3457 } 3458 #endif 3459 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3460 tp->retrans_out += tcp_skb_pcount(skb); 3461 } 3462 3463 /* Save stamp of the first (attempted) retransmit. */ 3464 if (!tp->retrans_stamp) 3465 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3466 3467 if (tp->undo_retrans < 0) 3468 tp->undo_retrans = 0; 3469 tp->undo_retrans += tcp_skb_pcount(skb); 3470 return err; 3471 } 3472 3473 /* This gets called after a retransmit timeout, and the initially 3474 * retransmitted data is acknowledged. It tries to continue 3475 * resending the rest of the retransmit queue, until either 3476 * we've sent it all or the congestion window limit is reached. 3477 */ 3478 void tcp_xmit_retransmit_queue(struct sock *sk) 3479 { 3480 const struct inet_connection_sock *icsk = inet_csk(sk); 3481 struct sk_buff *skb, *rtx_head, *hole = NULL; 3482 struct tcp_sock *tp = tcp_sk(sk); 3483 bool rearm_timer = false; 3484 u32 max_segs; 3485 int mib_idx; 3486 3487 if (!tp->packets_out) 3488 return; 3489 3490 rtx_head = tcp_rtx_queue_head(sk); 3491 skb = tp->retransmit_skb_hint ?: rtx_head; 3492 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3493 skb_rbtree_walk_from(skb) { 3494 __u8 sacked; 3495 int segs; 3496 3497 if (tcp_pacing_check(sk)) 3498 break; 3499 3500 /* we could do better than to assign each time */ 3501 if (!hole) 3502 tp->retransmit_skb_hint = skb; 3503 3504 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3505 if (segs <= 0) 3506 break; 3507 sacked = TCP_SKB_CB(skb)->sacked; 3508 /* In case tcp_shift_skb_data() have aggregated large skbs, 3509 * we need to make sure not sending too bigs TSO packets 3510 */ 3511 segs = min_t(int, segs, max_segs); 3512 3513 if (tp->retrans_out >= tp->lost_out) { 3514 break; 3515 } else if (!(sacked & TCPCB_LOST)) { 3516 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3517 hole = skb; 3518 continue; 3519 3520 } else { 3521 if (icsk->icsk_ca_state != TCP_CA_Loss) 3522 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3523 else 3524 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3525 } 3526 3527 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3528 continue; 3529 3530 if (tcp_small_queue_check(sk, skb, 1)) 3531 break; 3532 3533 if (tcp_retransmit_skb(sk, skb, segs)) 3534 break; 3535 3536 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3537 3538 if (tcp_in_cwnd_reduction(sk)) 3539 tp->prr_out += tcp_skb_pcount(skb); 3540 3541 if (skb == rtx_head && 3542 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3543 rearm_timer = true; 3544 3545 } 3546 if (rearm_timer) 3547 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3548 inet_csk(sk)->icsk_rto, 3549 TCP_RTO_MAX); 3550 } 3551 3552 /* We allow to exceed memory limits for FIN packets to expedite 3553 * connection tear down and (memory) recovery. 3554 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3555 * or even be forced to close flow without any FIN. 3556 * In general, we want to allow one skb per socket to avoid hangs 3557 * with edge trigger epoll() 3558 */ 3559 void sk_forced_mem_schedule(struct sock *sk, int size) 3560 { 3561 int delta, amt; 3562 3563 delta = size - sk->sk_forward_alloc; 3564 if (delta <= 0) 3565 return; 3566 amt = sk_mem_pages(delta); 3567 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3568 sk_memory_allocated_add(sk, amt); 3569 3570 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3571 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3572 gfp_memcg_charge() | __GFP_NOFAIL); 3573 } 3574 3575 /* Send a FIN. The caller locks the socket for us. 3576 * We should try to send a FIN packet really hard, but eventually give up. 3577 */ 3578 void tcp_send_fin(struct sock *sk) 3579 { 3580 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3581 struct tcp_sock *tp = tcp_sk(sk); 3582 3583 /* Optimization, tack on the FIN if we have one skb in write queue and 3584 * this skb was not yet sent, or we are under memory pressure. 3585 * Note: in the latter case, FIN packet will be sent after a timeout, 3586 * as TCP stack thinks it has already been transmitted. 3587 */ 3588 tskb = tail; 3589 if (!tskb && tcp_under_memory_pressure(sk)) 3590 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3591 3592 if (tskb) { 3593 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3594 TCP_SKB_CB(tskb)->end_seq++; 3595 tp->write_seq++; 3596 if (!tail) { 3597 /* This means tskb was already sent. 3598 * Pretend we included the FIN on previous transmit. 3599 * We need to set tp->snd_nxt to the value it would have 3600 * if FIN had been sent. This is because retransmit path 3601 * does not change tp->snd_nxt. 3602 */ 3603 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3604 return; 3605 } 3606 } else { 3607 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3608 sk_gfp_mask(sk, GFP_ATOMIC | 3609 __GFP_NOWARN)); 3610 if (unlikely(!skb)) 3611 return; 3612 3613 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3614 skb_reserve(skb, MAX_TCP_HEADER); 3615 sk_forced_mem_schedule(sk, skb->truesize); 3616 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3617 tcp_init_nondata_skb(skb, tp->write_seq, 3618 TCPHDR_ACK | TCPHDR_FIN); 3619 tcp_queue_skb(sk, skb); 3620 } 3621 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3622 } 3623 3624 /* We get here when a process closes a file descriptor (either due to 3625 * an explicit close() or as a byproduct of exit()'ing) and there 3626 * was unread data in the receive queue. This behavior is recommended 3627 * by RFC 2525, section 2.17. -DaveM 3628 */ 3629 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 3630 enum sk_rst_reason reason) 3631 { 3632 struct sk_buff *skb; 3633 3634 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3635 3636 /* NOTE: No TCP options attached and we never retransmit this. */ 3637 skb = alloc_skb(MAX_TCP_HEADER, priority); 3638 if (!skb) { 3639 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3640 return; 3641 } 3642 3643 /* Reserve space for headers and prepare control bits. */ 3644 skb_reserve(skb, MAX_TCP_HEADER); 3645 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3646 TCPHDR_ACK | TCPHDR_RST); 3647 tcp_mstamp_refresh(tcp_sk(sk)); 3648 /* Send it off. */ 3649 if (tcp_transmit_skb(sk, skb, 0, priority)) 3650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3651 3652 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3653 * skb here is different to the troublesome skb, so use NULL 3654 */ 3655 trace_tcp_send_reset(sk, NULL, reason); 3656 } 3657 3658 /* Send a crossed SYN-ACK during socket establishment. 3659 * WARNING: This routine must only be called when we have already sent 3660 * a SYN packet that crossed the incoming SYN that caused this routine 3661 * to get called. If this assumption fails then the initial rcv_wnd 3662 * and rcv_wscale values will not be correct. 3663 */ 3664 int tcp_send_synack(struct sock *sk) 3665 { 3666 struct sk_buff *skb; 3667 3668 skb = tcp_rtx_queue_head(sk); 3669 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3670 pr_err("%s: wrong queue state\n", __func__); 3671 return -EFAULT; 3672 } 3673 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3674 if (skb_cloned(skb)) { 3675 struct sk_buff *nskb; 3676 3677 tcp_skb_tsorted_save(skb) { 3678 nskb = skb_copy(skb, GFP_ATOMIC); 3679 } tcp_skb_tsorted_restore(skb); 3680 if (!nskb) 3681 return -ENOMEM; 3682 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3683 tcp_highest_sack_replace(sk, skb, nskb); 3684 tcp_rtx_queue_unlink_and_free(skb, sk); 3685 __skb_header_release(nskb); 3686 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3687 sk_wmem_queued_add(sk, nskb->truesize); 3688 sk_mem_charge(sk, nskb->truesize); 3689 skb = nskb; 3690 } 3691 3692 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3693 tcp_ecn_send_synack(sk, skb); 3694 } 3695 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3696 } 3697 3698 /** 3699 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3700 * @sk: listener socket 3701 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3702 * should not use it again. 3703 * @req: request_sock pointer 3704 * @foc: cookie for tcp fast open 3705 * @synack_type: Type of synack to prepare 3706 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3707 */ 3708 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3709 struct request_sock *req, 3710 struct tcp_fastopen_cookie *foc, 3711 enum tcp_synack_type synack_type, 3712 struct sk_buff *syn_skb) 3713 { 3714 struct inet_request_sock *ireq = inet_rsk(req); 3715 const struct tcp_sock *tp = tcp_sk(sk); 3716 struct tcp_out_options opts; 3717 struct tcp_key key = {}; 3718 struct sk_buff *skb; 3719 int tcp_header_size; 3720 struct tcphdr *th; 3721 int mss; 3722 u64 now; 3723 3724 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3725 if (unlikely(!skb)) { 3726 dst_release(dst); 3727 return NULL; 3728 } 3729 /* Reserve space for headers. */ 3730 skb_reserve(skb, MAX_TCP_HEADER); 3731 3732 switch (synack_type) { 3733 case TCP_SYNACK_NORMAL: 3734 skb_set_owner_edemux(skb, req_to_sk(req)); 3735 break; 3736 case TCP_SYNACK_COOKIE: 3737 /* Under synflood, we do not attach skb to a socket, 3738 * to avoid false sharing. 3739 */ 3740 break; 3741 case TCP_SYNACK_FASTOPEN: 3742 /* sk is a const pointer, because we want to express multiple 3743 * cpu might call us concurrently. 3744 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3745 */ 3746 skb_set_owner_w(skb, (struct sock *)sk); 3747 break; 3748 } 3749 skb_dst_set(skb, dst); 3750 3751 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3752 3753 memset(&opts, 0, sizeof(opts)); 3754 now = tcp_clock_ns(); 3755 #ifdef CONFIG_SYN_COOKIES 3756 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3757 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3758 SKB_CLOCK_MONOTONIC); 3759 else 3760 #endif 3761 { 3762 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3763 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3764 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3765 } 3766 3767 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3768 rcu_read_lock(); 3769 #endif 3770 if (tcp_rsk_used_ao(req)) { 3771 #ifdef CONFIG_TCP_AO 3772 struct tcp_ao_key *ao_key = NULL; 3773 u8 keyid = tcp_rsk(req)->ao_keyid; 3774 u8 rnext = tcp_rsk(req)->ao_rcv_next; 3775 3776 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3777 keyid, -1); 3778 /* If there is no matching key - avoid sending anything, 3779 * especially usigned segments. It could try harder and lookup 3780 * for another peer-matching key, but the peer has requested 3781 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3782 */ 3783 if (unlikely(!ao_key)) { 3784 trace_tcp_ao_synack_no_key(sk, keyid, rnext); 3785 rcu_read_unlock(); 3786 kfree_skb(skb); 3787 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 3788 keyid); 3789 return NULL; 3790 } 3791 key.ao_key = ao_key; 3792 key.type = TCP_KEY_AO; 3793 #endif 3794 } else { 3795 #ifdef CONFIG_TCP_MD5SIG 3796 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3797 req_to_sk(req)); 3798 if (key.md5_key) 3799 key.type = TCP_KEY_MD5; 3800 #endif 3801 } 3802 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3803 /* bpf program will be interested in the tcp_flags */ 3804 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3805 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3806 &key, foc, synack_type, syn_skb) 3807 + sizeof(*th); 3808 3809 skb_push(skb, tcp_header_size); 3810 skb_reset_transport_header(skb); 3811 3812 th = (struct tcphdr *)skb->data; 3813 memset(th, 0, sizeof(struct tcphdr)); 3814 th->syn = 1; 3815 th->ack = 1; 3816 tcp_ecn_make_synack(req, th); 3817 th->source = htons(ireq->ir_num); 3818 th->dest = ireq->ir_rmt_port; 3819 skb->mark = ireq->ir_mark; 3820 skb->ip_summed = CHECKSUM_PARTIAL; 3821 th->seq = htonl(tcp_rsk(req)->snt_isn); 3822 /* XXX data is queued and acked as is. No buffer/window check */ 3823 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3824 3825 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3826 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3827 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 3828 th->doff = (tcp_header_size >> 2); 3829 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3830 3831 /* Okay, we have all we need - do the md5 hash if needed */ 3832 if (tcp_key_is_md5(&key)) { 3833 #ifdef CONFIG_TCP_MD5SIG 3834 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3835 key.md5_key, req_to_sk(req), skb); 3836 #endif 3837 } else if (tcp_key_is_ao(&key)) { 3838 #ifdef CONFIG_TCP_AO 3839 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 3840 key.ao_key, req, skb, 3841 opts.hash_location - (u8 *)th, 0); 3842 #endif 3843 } 3844 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3845 rcu_read_unlock(); 3846 #endif 3847 3848 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3849 synack_type, &opts); 3850 3851 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3852 tcp_add_tx_delay(skb, tp); 3853 3854 return skb; 3855 } 3856 EXPORT_SYMBOL(tcp_make_synack); 3857 3858 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3859 { 3860 struct inet_connection_sock *icsk = inet_csk(sk); 3861 const struct tcp_congestion_ops *ca; 3862 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3863 3864 if (ca_key == TCP_CA_UNSPEC) 3865 return; 3866 3867 rcu_read_lock(); 3868 ca = tcp_ca_find_key(ca_key); 3869 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3870 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3871 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3872 icsk->icsk_ca_ops = ca; 3873 } 3874 rcu_read_unlock(); 3875 } 3876 3877 /* Do all connect socket setups that can be done AF independent. */ 3878 static void tcp_connect_init(struct sock *sk) 3879 { 3880 const struct dst_entry *dst = __sk_dst_get(sk); 3881 struct tcp_sock *tp = tcp_sk(sk); 3882 __u8 rcv_wscale; 3883 u32 rcv_wnd; 3884 3885 /* We'll fix this up when we get a response from the other end. 3886 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3887 */ 3888 tp->tcp_header_len = sizeof(struct tcphdr); 3889 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3890 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3891 3892 tcp_ao_connect_init(sk); 3893 3894 /* If user gave his TCP_MAXSEG, record it to clamp */ 3895 if (tp->rx_opt.user_mss) 3896 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3897 tp->max_window = 0; 3898 tcp_mtup_init(sk); 3899 tcp_sync_mss(sk, dst_mtu(dst)); 3900 3901 tcp_ca_dst_init(sk, dst); 3902 3903 if (!tp->window_clamp) 3904 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 3905 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3906 3907 tcp_initialize_rcv_mss(sk); 3908 3909 /* limit the window selection if the user enforce a smaller rx buffer */ 3910 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3911 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3912 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 3913 3914 rcv_wnd = tcp_rwnd_init_bpf(sk); 3915 if (rcv_wnd == 0) 3916 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3917 3918 tcp_select_initial_window(sk, tcp_full_space(sk), 3919 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3920 &tp->rcv_wnd, 3921 &tp->window_clamp, 3922 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3923 &rcv_wscale, 3924 rcv_wnd); 3925 3926 tp->rx_opt.rcv_wscale = rcv_wscale; 3927 tp->rcv_ssthresh = tp->rcv_wnd; 3928 3929 WRITE_ONCE(sk->sk_err, 0); 3930 sock_reset_flag(sk, SOCK_DONE); 3931 tp->snd_wnd = 0; 3932 tcp_init_wl(tp, 0); 3933 tcp_write_queue_purge(sk); 3934 tp->snd_una = tp->write_seq; 3935 tp->snd_sml = tp->write_seq; 3936 tp->snd_up = tp->write_seq; 3937 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3938 3939 if (likely(!tp->repair)) 3940 tp->rcv_nxt = 0; 3941 else 3942 tp->rcv_tstamp = tcp_jiffies32; 3943 tp->rcv_wup = tp->rcv_nxt; 3944 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3945 3946 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3947 inet_csk(sk)->icsk_retransmits = 0; 3948 tcp_clear_retrans(tp); 3949 } 3950 3951 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3952 { 3953 struct tcp_sock *tp = tcp_sk(sk); 3954 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3955 3956 tcb->end_seq += skb->len; 3957 __skb_header_release(skb); 3958 sk_wmem_queued_add(sk, skb->truesize); 3959 sk_mem_charge(sk, skb->truesize); 3960 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3961 tp->packets_out += tcp_skb_pcount(skb); 3962 } 3963 3964 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3965 * queue a data-only packet after the regular SYN, such that regular SYNs 3966 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3967 * only the SYN sequence, the data are retransmitted in the first ACK. 3968 * If cookie is not cached or other error occurs, falls back to send a 3969 * regular SYN with Fast Open cookie request option. 3970 */ 3971 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3972 { 3973 struct inet_connection_sock *icsk = inet_csk(sk); 3974 struct tcp_sock *tp = tcp_sk(sk); 3975 struct tcp_fastopen_request *fo = tp->fastopen_req; 3976 struct page_frag *pfrag = sk_page_frag(sk); 3977 struct sk_buff *syn_data; 3978 int space, err = 0; 3979 3980 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3981 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3982 goto fallback; 3983 3984 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3985 * user-MSS. Reserve maximum option space for middleboxes that add 3986 * private TCP options. The cost is reduced data space in SYN :( 3987 */ 3988 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3989 /* Sync mss_cache after updating the mss_clamp */ 3990 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3991 3992 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3993 MAX_TCP_OPTION_SPACE; 3994 3995 space = min_t(size_t, space, fo->size); 3996 3997 if (space && 3998 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3999 pfrag, sk->sk_allocation)) 4000 goto fallback; 4001 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 4002 if (!syn_data) 4003 goto fallback; 4004 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 4005 if (space) { 4006 space = min_t(size_t, space, pfrag->size - pfrag->offset); 4007 space = tcp_wmem_schedule(sk, space); 4008 } 4009 if (space) { 4010 space = copy_page_from_iter(pfrag->page, pfrag->offset, 4011 space, &fo->data->msg_iter); 4012 if (unlikely(!space)) { 4013 tcp_skb_tsorted_anchor_cleanup(syn_data); 4014 kfree_skb(syn_data); 4015 goto fallback; 4016 } 4017 skb_fill_page_desc(syn_data, 0, pfrag->page, 4018 pfrag->offset, space); 4019 page_ref_inc(pfrag->page); 4020 pfrag->offset += space; 4021 skb_len_add(syn_data, space); 4022 skb_zcopy_set(syn_data, fo->uarg, NULL); 4023 } 4024 /* No more data pending in inet_wait_for_connect() */ 4025 if (space == fo->size) 4026 fo->data = NULL; 4027 fo->copied = space; 4028 4029 tcp_connect_queue_skb(sk, syn_data); 4030 if (syn_data->len) 4031 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4032 4033 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4034 4035 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC); 4036 4037 /* Now full SYN+DATA was cloned and sent (or not), 4038 * remove the SYN from the original skb (syn_data) 4039 * we keep in write queue in case of a retransmit, as we 4040 * also have the SYN packet (with no data) in the same queue. 4041 */ 4042 TCP_SKB_CB(syn_data)->seq++; 4043 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4044 if (!err) { 4045 tp->syn_data = (fo->copied > 0); 4046 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4047 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4048 goto done; 4049 } 4050 4051 /* data was not sent, put it in write_queue */ 4052 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4053 tp->packets_out -= tcp_skb_pcount(syn_data); 4054 4055 fallback: 4056 /* Send a regular SYN with Fast Open cookie request option */ 4057 if (fo->cookie.len > 0) 4058 fo->cookie.len = 0; 4059 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4060 if (err) 4061 tp->syn_fastopen = 0; 4062 done: 4063 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4064 return err; 4065 } 4066 4067 /* Build a SYN and send it off. */ 4068 int tcp_connect(struct sock *sk) 4069 { 4070 struct tcp_sock *tp = tcp_sk(sk); 4071 struct sk_buff *buff; 4072 int err; 4073 4074 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4075 4076 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4077 /* Has to be checked late, after setting daddr/saddr/ops. 4078 * Return error if the peer has both a md5 and a tcp-ao key 4079 * configured as this is ambiguous. 4080 */ 4081 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4082 lockdep_sock_is_held(sk)))) { 4083 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4084 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4085 struct tcp_ao_info *ao_info; 4086 4087 ao_info = rcu_dereference_check(tp->ao_info, 4088 lockdep_sock_is_held(sk)); 4089 if (ao_info) { 4090 /* This is an extra check: tcp_ao_required() in 4091 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4092 * md5 keys on ao_required socket. 4093 */ 4094 needs_ao |= ao_info->ao_required; 4095 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4096 } 4097 if (needs_md5 && needs_ao) 4098 return -EKEYREJECTED; 4099 4100 /* If we have a matching md5 key and no matching tcp-ao key 4101 * then free up ao_info if allocated. 4102 */ 4103 if (needs_md5) { 4104 tcp_ao_destroy_sock(sk, false); 4105 } else if (needs_ao) { 4106 tcp_clear_md5_list(sk); 4107 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4108 lockdep_sock_is_held(sk))); 4109 } 4110 } 4111 #endif 4112 #ifdef CONFIG_TCP_AO 4113 if (unlikely(rcu_dereference_protected(tp->ao_info, 4114 lockdep_sock_is_held(sk)))) { 4115 /* Don't allow connecting if ao is configured but no 4116 * matching key is found. 4117 */ 4118 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4119 return -EKEYREJECTED; 4120 } 4121 #endif 4122 4123 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4124 return -EHOSTUNREACH; /* Routing failure or similar. */ 4125 4126 tcp_connect_init(sk); 4127 4128 if (unlikely(tp->repair)) { 4129 tcp_finish_connect(sk, NULL); 4130 return 0; 4131 } 4132 4133 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4134 if (unlikely(!buff)) 4135 return -ENOBUFS; 4136 4137 /* SYN eats a sequence byte, write_seq updated by 4138 * tcp_connect_queue_skb(). 4139 */ 4140 tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN); 4141 tcp_mstamp_refresh(tp); 4142 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4143 tcp_connect_queue_skb(sk, buff); 4144 tcp_ecn_send_syn(sk, buff); 4145 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4146 4147 /* Send off SYN; include data in Fast Open. */ 4148 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4149 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4150 if (err == -ECONNREFUSED) 4151 return err; 4152 4153 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4154 * in order to make this packet get counted in tcpOutSegs. 4155 */ 4156 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4157 tp->pushed_seq = tp->write_seq; 4158 buff = tcp_send_head(sk); 4159 if (unlikely(buff)) { 4160 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4161 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4162 } 4163 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4164 4165 /* Timer for repeating the SYN until an answer. */ 4166 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4167 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 4168 return 0; 4169 } 4170 EXPORT_SYMBOL(tcp_connect); 4171 4172 u32 tcp_delack_max(const struct sock *sk) 4173 { 4174 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1; 4175 4176 return min(inet_csk(sk)->icsk_delack_max, delack_from_rto_min); 4177 } 4178 4179 /* Send out a delayed ack, the caller does the policy checking 4180 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4181 * for details. 4182 */ 4183 void tcp_send_delayed_ack(struct sock *sk) 4184 { 4185 struct inet_connection_sock *icsk = inet_csk(sk); 4186 int ato = icsk->icsk_ack.ato; 4187 unsigned long timeout; 4188 4189 if (ato > TCP_DELACK_MIN) { 4190 const struct tcp_sock *tp = tcp_sk(sk); 4191 int max_ato = HZ / 2; 4192 4193 if (inet_csk_in_pingpong_mode(sk) || 4194 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4195 max_ato = TCP_DELACK_MAX; 4196 4197 /* Slow path, intersegment interval is "high". */ 4198 4199 /* If some rtt estimate is known, use it to bound delayed ack. 4200 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4201 * directly. 4202 */ 4203 if (tp->srtt_us) { 4204 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4205 TCP_DELACK_MIN); 4206 4207 if (rtt < max_ato) 4208 max_ato = rtt; 4209 } 4210 4211 ato = min(ato, max_ato); 4212 } 4213 4214 ato = min_t(u32, ato, tcp_delack_max(sk)); 4215 4216 /* Stay within the limit we were given */ 4217 timeout = jiffies + ato; 4218 4219 /* Use new timeout only if there wasn't a older one earlier. */ 4220 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4221 /* If delack timer is about to expire, send ACK now. */ 4222 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4223 tcp_send_ack(sk); 4224 return; 4225 } 4226 4227 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4228 timeout = icsk->icsk_ack.timeout; 4229 } 4230 smp_store_release(&icsk->icsk_ack.pending, 4231 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 4232 icsk->icsk_ack.timeout = timeout; 4233 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4234 } 4235 4236 /* This routine sends an ack and also updates the window. */ 4237 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4238 { 4239 struct sk_buff *buff; 4240 4241 /* If we have been reset, we may not send again. */ 4242 if (sk->sk_state == TCP_CLOSE) 4243 return; 4244 4245 /* We are not putting this on the write queue, so 4246 * tcp_transmit_skb() will set the ownership to this 4247 * sock. 4248 */ 4249 buff = alloc_skb(MAX_TCP_HEADER, 4250 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4251 if (unlikely(!buff)) { 4252 struct inet_connection_sock *icsk = inet_csk(sk); 4253 unsigned long delay; 4254 4255 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4256 if (delay < TCP_RTO_MAX) 4257 icsk->icsk_ack.retry++; 4258 inet_csk_schedule_ack(sk); 4259 icsk->icsk_ack.ato = TCP_ATO_MIN; 4260 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4261 return; 4262 } 4263 4264 /* Reserve space for headers and prepare control bits. */ 4265 skb_reserve(buff, MAX_TCP_HEADER); 4266 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4267 4268 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4269 * too much. 4270 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4271 */ 4272 skb_set_tcp_pure_ack(buff); 4273 4274 /* Send it off, this clears delayed acks for us. */ 4275 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4276 } 4277 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4278 4279 void tcp_send_ack(struct sock *sk) 4280 { 4281 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4282 } 4283 4284 /* This routine sends a packet with an out of date sequence 4285 * number. It assumes the other end will try to ack it. 4286 * 4287 * Question: what should we make while urgent mode? 4288 * 4.4BSD forces sending single byte of data. We cannot send 4289 * out of window data, because we have SND.NXT==SND.MAX... 4290 * 4291 * Current solution: to send TWO zero-length segments in urgent mode: 4292 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4293 * out-of-date with SND.UNA-1 to probe window. 4294 */ 4295 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4296 { 4297 struct tcp_sock *tp = tcp_sk(sk); 4298 struct sk_buff *skb; 4299 4300 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4301 skb = alloc_skb(MAX_TCP_HEADER, 4302 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4303 if (!skb) 4304 return -1; 4305 4306 /* Reserve space for headers and set control bits. */ 4307 skb_reserve(skb, MAX_TCP_HEADER); 4308 /* Use a previous sequence. This should cause the other 4309 * end to send an ack. Don't queue or clone SKB, just 4310 * send it. 4311 */ 4312 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4313 NET_INC_STATS(sock_net(sk), mib); 4314 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4315 } 4316 4317 /* Called from setsockopt( ... TCP_REPAIR ) */ 4318 void tcp_send_window_probe(struct sock *sk) 4319 { 4320 if (sk->sk_state == TCP_ESTABLISHED) { 4321 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4322 tcp_mstamp_refresh(tcp_sk(sk)); 4323 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4324 } 4325 } 4326 4327 /* Initiate keepalive or window probe from timer. */ 4328 int tcp_write_wakeup(struct sock *sk, int mib) 4329 { 4330 struct tcp_sock *tp = tcp_sk(sk); 4331 struct sk_buff *skb; 4332 4333 if (sk->sk_state == TCP_CLOSE) 4334 return -1; 4335 4336 skb = tcp_send_head(sk); 4337 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4338 int err; 4339 unsigned int mss = tcp_current_mss(sk); 4340 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4341 4342 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4343 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4344 4345 /* We are probing the opening of a window 4346 * but the window size is != 0 4347 * must have been a result SWS avoidance ( sender ) 4348 */ 4349 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4350 skb->len > mss) { 4351 seg_size = min(seg_size, mss); 4352 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4353 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4354 skb, seg_size, mss, GFP_ATOMIC)) 4355 return -1; 4356 } else if (!tcp_skb_pcount(skb)) 4357 tcp_set_skb_tso_segs(skb, mss); 4358 4359 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4360 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4361 if (!err) 4362 tcp_event_new_data_sent(sk, skb); 4363 return err; 4364 } else { 4365 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4366 tcp_xmit_probe_skb(sk, 1, mib); 4367 return tcp_xmit_probe_skb(sk, 0, mib); 4368 } 4369 } 4370 4371 /* A window probe timeout has occurred. If window is not closed send 4372 * a partial packet else a zero probe. 4373 */ 4374 void tcp_send_probe0(struct sock *sk) 4375 { 4376 struct inet_connection_sock *icsk = inet_csk(sk); 4377 struct tcp_sock *tp = tcp_sk(sk); 4378 struct net *net = sock_net(sk); 4379 unsigned long timeout; 4380 int err; 4381 4382 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4383 4384 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4385 /* Cancel probe timer, if it is not required. */ 4386 icsk->icsk_probes_out = 0; 4387 icsk->icsk_backoff = 0; 4388 icsk->icsk_probes_tstamp = 0; 4389 return; 4390 } 4391 4392 icsk->icsk_probes_out++; 4393 if (err <= 0) { 4394 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4395 icsk->icsk_backoff++; 4396 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4397 } else { 4398 /* If packet was not sent due to local congestion, 4399 * Let senders fight for local resources conservatively. 4400 */ 4401 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4402 } 4403 4404 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4405 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4406 } 4407 4408 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4409 { 4410 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4411 struct flowi fl; 4412 int res; 4413 4414 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4415 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4416 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4417 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4418 NULL); 4419 if (!res) { 4420 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4421 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4422 if (unlikely(tcp_passive_fastopen(sk))) { 4423 /* sk has const attribute because listeners are lockless. 4424 * However in this case, we are dealing with a passive fastopen 4425 * socket thus we can change total_retrans value. 4426 */ 4427 tcp_sk_rw(sk)->total_retrans++; 4428 } 4429 trace_tcp_retransmit_synack(sk, req); 4430 } 4431 return res; 4432 } 4433 EXPORT_SYMBOL(tcp_rtx_synack); 4434