xref: /linux/net/ipv4/tcp_output.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro, <bir7@leland.Stanford.Edu>
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
25  *				:	Fragmentation on mtu decrease
26  *				:	Segment collapse on retransmit
27  *				:	AF independence
28  *
29  *		Linus Torvalds	:	send_delayed_ack
30  *		David S. Miller	:	Charge memory using the right skb
31  *					during syn/ack processing.
32  *		David S. Miller :	Output engine completely rewritten.
33  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
34  *		Cacophonix Gaul :	draft-minshall-nagle-01
35  *		J Hadi Salim	:	ECN support
36  *
37  */
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse = 1;
47 
48 /* This limits the percentage of the congestion window which we
49  * will allow a single TSO frame to consume.  Building TSO frames
50  * which are too large can cause TCP streams to be bursty.
51  */
52 int sysctl_tcp_tso_win_divisor = 8;
53 
54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 				    struct sk_buff *skb)
56 {
57 	sk->sk_send_head = skb->next;
58 	if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 		sk->sk_send_head = NULL;
60 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 	tcp_packets_out_inc(sk, tp, skb);
62 }
63 
64 /* SND.NXT, if window was not shrunk.
65  * If window has been shrunk, what should we make? It is not clear at all.
66  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68  * invalid. OK, let's make this for now:
69  */
70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71 {
72 	if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 		return tp->snd_nxt;
74 	else
75 		return tp->snd_una+tp->snd_wnd;
76 }
77 
78 /* Calculate mss to advertise in SYN segment.
79  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80  *
81  * 1. It is independent of path mtu.
82  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84  *    attached devices, because some buggy hosts are confused by
85  *    large MSS.
86  * 4. We do not make 3, we advertise MSS, calculated from first
87  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
88  *    This may be overridden via information stored in routing table.
89  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90  *    probably even Jumbo".
91  */
92 static __u16 tcp_advertise_mss(struct sock *sk)
93 {
94 	struct tcp_sock *tp = tcp_sk(sk);
95 	struct dst_entry *dst = __sk_dst_get(sk);
96 	int mss = tp->advmss;
97 
98 	if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 		mss = dst_metric(dst, RTAX_ADVMSS);
100 		tp->advmss = mss;
101 	}
102 
103 	return (__u16)mss;
104 }
105 
106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107  * This is the first part of cwnd validation mechanism. */
108 static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
109 {
110 	s32 delta = tcp_time_stamp - tp->lsndtime;
111 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
112 	u32 cwnd = tp->snd_cwnd;
113 
114 	if (tcp_is_vegas(tp))
115 		tcp_vegas_enable(tp);
116 
117 	tp->snd_ssthresh = tcp_current_ssthresh(tp);
118 	restart_cwnd = min(restart_cwnd, cwnd);
119 
120 	while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd)
121 		cwnd >>= 1;
122 	tp->snd_cwnd = max(cwnd, restart_cwnd);
123 	tp->snd_cwnd_stamp = tcp_time_stamp;
124 	tp->snd_cwnd_used = 0;
125 }
126 
127 static inline void tcp_event_data_sent(struct tcp_sock *tp,
128 				       struct sk_buff *skb, struct sock *sk)
129 {
130 	u32 now = tcp_time_stamp;
131 
132 	if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto)
133 		tcp_cwnd_restart(tp, __sk_dst_get(sk));
134 
135 	tp->lsndtime = now;
136 
137 	/* If it is a reply for ato after last received
138 	 * packet, enter pingpong mode.
139 	 */
140 	if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato)
141 		tp->ack.pingpong = 1;
142 }
143 
144 static __inline__ void tcp_event_ack_sent(struct sock *sk)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 
148 	tcp_dec_quickack_mode(tp);
149 	tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
150 }
151 
152 /* Determine a window scaling and initial window to offer.
153  * Based on the assumption that the given amount of space
154  * will be offered. Store the results in the tp structure.
155  * NOTE: for smooth operation initial space offering should
156  * be a multiple of mss if possible. We assume here that mss >= 1.
157  * This MUST be enforced by all callers.
158  */
159 void tcp_select_initial_window(int __space, __u32 mss,
160 			       __u32 *rcv_wnd, __u32 *window_clamp,
161 			       int wscale_ok, __u8 *rcv_wscale)
162 {
163 	unsigned int space = (__space < 0 ? 0 : __space);
164 
165 	/* If no clamp set the clamp to the max possible scaled window */
166 	if (*window_clamp == 0)
167 		(*window_clamp) = (65535 << 14);
168 	space = min(*window_clamp, space);
169 
170 	/* Quantize space offering to a multiple of mss if possible. */
171 	if (space > mss)
172 		space = (space / mss) * mss;
173 
174 	/* NOTE: offering an initial window larger than 32767
175 	 * will break some buggy TCP stacks. We try to be nice.
176 	 * If we are not window scaling, then this truncates
177 	 * our initial window offering to 32k. There should also
178 	 * be a sysctl option to stop being nice.
179 	 */
180 	(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
181 	(*rcv_wscale) = 0;
182 	if (wscale_ok) {
183 		/* Set window scaling on max possible window
184 		 * See RFC1323 for an explanation of the limit to 14
185 		 */
186 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
187 		while (space > 65535 && (*rcv_wscale) < 14) {
188 			space >>= 1;
189 			(*rcv_wscale)++;
190 		}
191 	}
192 
193 	/* Set initial window to value enough for senders,
194 	 * following RFC1414. Senders, not following this RFC,
195 	 * will be satisfied with 2.
196 	 */
197 	if (mss > (1<<*rcv_wscale)) {
198 		int init_cwnd = 4;
199 		if (mss > 1460*3)
200 			init_cwnd = 2;
201 		else if (mss > 1460)
202 			init_cwnd = 3;
203 		if (*rcv_wnd > init_cwnd*mss)
204 			*rcv_wnd = init_cwnd*mss;
205 	}
206 
207 	/* Set the clamp no higher than max representable value */
208 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
209 }
210 
211 /* Chose a new window to advertise, update state in tcp_sock for the
212  * socket, and return result with RFC1323 scaling applied.  The return
213  * value can be stuffed directly into th->window for an outgoing
214  * frame.
215  */
216 static __inline__ u16 tcp_select_window(struct sock *sk)
217 {
218 	struct tcp_sock *tp = tcp_sk(sk);
219 	u32 cur_win = tcp_receive_window(tp);
220 	u32 new_win = __tcp_select_window(sk);
221 
222 	/* Never shrink the offered window */
223 	if(new_win < cur_win) {
224 		/* Danger Will Robinson!
225 		 * Don't update rcv_wup/rcv_wnd here or else
226 		 * we will not be able to advertise a zero
227 		 * window in time.  --DaveM
228 		 *
229 		 * Relax Will Robinson.
230 		 */
231 		new_win = cur_win;
232 	}
233 	tp->rcv_wnd = new_win;
234 	tp->rcv_wup = tp->rcv_nxt;
235 
236 	/* Make sure we do not exceed the maximum possible
237 	 * scaled window.
238 	 */
239 	if (!tp->rx_opt.rcv_wscale)
240 		new_win = min(new_win, MAX_TCP_WINDOW);
241 	else
242 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
243 
244 	/* RFC1323 scaling applied */
245 	new_win >>= tp->rx_opt.rcv_wscale;
246 
247 	/* If we advertise zero window, disable fast path. */
248 	if (new_win == 0)
249 		tp->pred_flags = 0;
250 
251 	return new_win;
252 }
253 
254 
255 /* This routine actually transmits TCP packets queued in by
256  * tcp_do_sendmsg().  This is used by both the initial
257  * transmission and possible later retransmissions.
258  * All SKB's seen here are completely headerless.  It is our
259  * job to build the TCP header, and pass the packet down to
260  * IP so it can do the same plus pass the packet off to the
261  * device.
262  *
263  * We are working here with either a clone of the original
264  * SKB, or a fresh unique copy made by the retransmit engine.
265  */
266 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
267 {
268 	if (skb != NULL) {
269 		struct inet_sock *inet = inet_sk(sk);
270 		struct tcp_sock *tp = tcp_sk(sk);
271 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
272 		int tcp_header_size = tp->tcp_header_len;
273 		struct tcphdr *th;
274 		int sysctl_flags;
275 		int err;
276 
277 		BUG_ON(!tcp_skb_pcount(skb));
278 
279 #define SYSCTL_FLAG_TSTAMPS	0x1
280 #define SYSCTL_FLAG_WSCALE	0x2
281 #define SYSCTL_FLAG_SACK	0x4
282 
283 		sysctl_flags = 0;
284 		if (tcb->flags & TCPCB_FLAG_SYN) {
285 			tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
286 			if(sysctl_tcp_timestamps) {
287 				tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
288 				sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
289 			}
290 			if(sysctl_tcp_window_scaling) {
291 				tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
292 				sysctl_flags |= SYSCTL_FLAG_WSCALE;
293 			}
294 			if(sysctl_tcp_sack) {
295 				sysctl_flags |= SYSCTL_FLAG_SACK;
296 				if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
297 					tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
298 			}
299 		} else if (tp->rx_opt.eff_sacks) {
300 			/* A SACK is 2 pad bytes, a 2 byte header, plus
301 			 * 2 32-bit sequence numbers for each SACK block.
302 			 */
303 			tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
304 					    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
305 		}
306 
307 		/*
308 		 * If the connection is idle and we are restarting,
309 		 * then we don't want to do any Vegas calculations
310 		 * until we get fresh RTT samples.  So when we
311 		 * restart, we reset our Vegas state to a clean
312 		 * slate. After we get acks for this flight of
313 		 * packets, _then_ we can make Vegas calculations
314 		 * again.
315 		 */
316 		if (tcp_is_vegas(tp) && tcp_packets_in_flight(tp) == 0)
317 			tcp_vegas_enable(tp);
318 
319 		th = (struct tcphdr *) skb_push(skb, tcp_header_size);
320 		skb->h.th = th;
321 		skb_set_owner_w(skb, sk);
322 
323 		/* Build TCP header and checksum it. */
324 		th->source		= inet->sport;
325 		th->dest		= inet->dport;
326 		th->seq			= htonl(tcb->seq);
327 		th->ack_seq		= htonl(tp->rcv_nxt);
328 		*(((__u16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) | tcb->flags);
329 		if (tcb->flags & TCPCB_FLAG_SYN) {
330 			/* RFC1323: The window in SYN & SYN/ACK segments
331 			 * is never scaled.
332 			 */
333 			th->window	= htons(tp->rcv_wnd);
334 		} else {
335 			th->window	= htons(tcp_select_window(sk));
336 		}
337 		th->check		= 0;
338 		th->urg_ptr		= 0;
339 
340 		if (tp->urg_mode &&
341 		    between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
342 			th->urg_ptr		= htons(tp->snd_up-tcb->seq);
343 			th->urg			= 1;
344 		}
345 
346 		if (tcb->flags & TCPCB_FLAG_SYN) {
347 			tcp_syn_build_options((__u32 *)(th + 1),
348 					      tcp_advertise_mss(sk),
349 					      (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
350 					      (sysctl_flags & SYSCTL_FLAG_SACK),
351 					      (sysctl_flags & SYSCTL_FLAG_WSCALE),
352 					      tp->rx_opt.rcv_wscale,
353 					      tcb->when,
354 		      			      tp->rx_opt.ts_recent);
355 		} else {
356 			tcp_build_and_update_options((__u32 *)(th + 1),
357 						     tp, tcb->when);
358 
359 			TCP_ECN_send(sk, tp, skb, tcp_header_size);
360 		}
361 		tp->af_specific->send_check(sk, th, skb->len, skb);
362 
363 		if (tcb->flags & TCPCB_FLAG_ACK)
364 			tcp_event_ack_sent(sk);
365 
366 		if (skb->len != tcp_header_size)
367 			tcp_event_data_sent(tp, skb, sk);
368 
369 		TCP_INC_STATS(TCP_MIB_OUTSEGS);
370 
371 		err = tp->af_specific->queue_xmit(skb, 0);
372 		if (err <= 0)
373 			return err;
374 
375 		tcp_enter_cwr(tp);
376 
377 		/* NET_XMIT_CN is special. It does not guarantee,
378 		 * that this packet is lost. It tells that device
379 		 * is about to start to drop packets or already
380 		 * drops some packets of the same priority and
381 		 * invokes us to send less aggressively.
382 		 */
383 		return err == NET_XMIT_CN ? 0 : err;
384 	}
385 	return -ENOBUFS;
386 #undef SYSCTL_FLAG_TSTAMPS
387 #undef SYSCTL_FLAG_WSCALE
388 #undef SYSCTL_FLAG_SACK
389 }
390 
391 
392 /* This routine just queue's the buffer
393  *
394  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
395  * otherwise socket can stall.
396  */
397 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
398 {
399 	struct tcp_sock *tp = tcp_sk(sk);
400 
401 	/* Advance write_seq and place onto the write_queue. */
402 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
403 	skb_header_release(skb);
404 	__skb_queue_tail(&sk->sk_write_queue, skb);
405 	sk_charge_skb(sk, skb);
406 
407 	/* Queue it, remembering where we must start sending. */
408 	if (sk->sk_send_head == NULL)
409 		sk->sk_send_head = skb;
410 }
411 
412 static inline void tcp_tso_set_push(struct sk_buff *skb)
413 {
414 	/* Force push to be on for any TSO frames to workaround
415 	 * problems with busted implementations like Mac OS-X that
416 	 * hold off socket receive wakeups until push is seen.
417 	 */
418 	if (tcp_skb_pcount(skb) > 1)
419 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
420 }
421 
422 /* Send _single_ skb sitting at the send head. This function requires
423  * true push pending frames to setup probe timer etc.
424  */
425 void tcp_push_one(struct sock *sk, unsigned cur_mss)
426 {
427 	struct tcp_sock *tp = tcp_sk(sk);
428 	struct sk_buff *skb = sk->sk_send_head;
429 
430 	if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) {
431 		/* Send it out now. */
432 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
433 		tcp_tso_set_push(skb);
434 		if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) {
435 			sk->sk_send_head = NULL;
436 			tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
437 			tcp_packets_out_inc(sk, tp, skb);
438 			return;
439 		}
440 	}
441 }
442 
443 void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
444 {
445 	struct tcp_sock *tp = tcp_sk(sk);
446 
447 	if (skb->len <= tp->mss_cache_std ||
448 	    !(sk->sk_route_caps & NETIF_F_TSO)) {
449 		/* Avoid the costly divide in the normal
450 		 * non-TSO case.
451 		 */
452 		skb_shinfo(skb)->tso_segs = 1;
453 		skb_shinfo(skb)->tso_size = 0;
454 	} else {
455 		unsigned int factor;
456 
457 		factor = skb->len + (tp->mss_cache_std - 1);
458 		factor /= tp->mss_cache_std;
459 		skb_shinfo(skb)->tso_segs = factor;
460 		skb_shinfo(skb)->tso_size = tp->mss_cache_std;
461 	}
462 }
463 
464 /* Function to create two new TCP segments.  Shrinks the given segment
465  * to the specified size and appends a new segment with the rest of the
466  * packet to the list.  This won't be called frequently, I hope.
467  * Remember, these are still headerless SKBs at this point.
468  */
469 static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
470 {
471 	struct tcp_sock *tp = tcp_sk(sk);
472 	struct sk_buff *buff;
473 	int nsize;
474 	u16 flags;
475 
476 	nsize = skb_headlen(skb) - len;
477 	if (nsize < 0)
478 		nsize = 0;
479 
480 	if (skb_cloned(skb) &&
481 	    skb_is_nonlinear(skb) &&
482 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
483 		return -ENOMEM;
484 
485 	/* Get a new skb... force flag on. */
486 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
487 	if (buff == NULL)
488 		return -ENOMEM; /* We'll just try again later. */
489 	sk_charge_skb(sk, buff);
490 
491 	/* Correct the sequence numbers. */
492 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
493 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
494 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
495 
496 	/* PSH and FIN should only be set in the second packet. */
497 	flags = TCP_SKB_CB(skb)->flags;
498 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
499 	TCP_SKB_CB(buff)->flags = flags;
500 	TCP_SKB_CB(buff)->sacked =
501 		(TCP_SKB_CB(skb)->sacked &
502 		 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
503 	TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
504 
505 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
506 		/* Copy and checksum data tail into the new buffer. */
507 		buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
508 						       nsize, 0);
509 
510 		skb_trim(skb, len);
511 
512 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
513 	} else {
514 		skb->ip_summed = CHECKSUM_HW;
515 		skb_split(skb, buff, len);
516 	}
517 
518 	buff->ip_summed = skb->ip_summed;
519 
520 	/* Looks stupid, but our code really uses when of
521 	 * skbs, which it never sent before. --ANK
522 	 */
523 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
524 
525 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
526 		tp->lost_out -= tcp_skb_pcount(skb);
527 		tp->left_out -= tcp_skb_pcount(skb);
528 	}
529 
530 	/* Fix up tso_factor for both original and new SKB.  */
531 	tcp_set_skb_tso_segs(sk, skb);
532 	tcp_set_skb_tso_segs(sk, buff);
533 
534 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
535 		tp->lost_out += tcp_skb_pcount(skb);
536 		tp->left_out += tcp_skb_pcount(skb);
537 	}
538 
539 	if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) {
540 		tp->lost_out += tcp_skb_pcount(buff);
541 		tp->left_out += tcp_skb_pcount(buff);
542 	}
543 
544 	/* Link BUFF into the send queue. */
545 	__skb_append(skb, buff);
546 
547 	return 0;
548 }
549 
550 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
551  * eventually). The difference is that pulled data not copied, but
552  * immediately discarded.
553  */
554 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
555 {
556 	int i, k, eat;
557 
558 	eat = len;
559 	k = 0;
560 	for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
561 		if (skb_shinfo(skb)->frags[i].size <= eat) {
562 			put_page(skb_shinfo(skb)->frags[i].page);
563 			eat -= skb_shinfo(skb)->frags[i].size;
564 		} else {
565 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
566 			if (eat) {
567 				skb_shinfo(skb)->frags[k].page_offset += eat;
568 				skb_shinfo(skb)->frags[k].size -= eat;
569 				eat = 0;
570 			}
571 			k++;
572 		}
573 	}
574 	skb_shinfo(skb)->nr_frags = k;
575 
576 	skb->tail = skb->data;
577 	skb->data_len -= len;
578 	skb->len = skb->data_len;
579 	return skb->tail;
580 }
581 
582 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
583 {
584 	if (skb_cloned(skb) &&
585 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
586 		return -ENOMEM;
587 
588 	if (len <= skb_headlen(skb)) {
589 		__skb_pull(skb, len);
590 	} else {
591 		if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
592 			return -ENOMEM;
593 	}
594 
595 	TCP_SKB_CB(skb)->seq += len;
596 	skb->ip_summed = CHECKSUM_HW;
597 
598 	skb->truesize	     -= len;
599 	sk->sk_wmem_queued   -= len;
600 	sk->sk_forward_alloc += len;
601 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
602 
603 	/* Any change of skb->len requires recalculation of tso
604 	 * factor and mss.
605 	 */
606 	if (tcp_skb_pcount(skb) > 1)
607 		tcp_set_skb_tso_segs(sk, skb);
608 
609 	return 0;
610 }
611 
612 /* This function synchronize snd mss to current pmtu/exthdr set.
613 
614    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
615    for TCP options, but includes only bare TCP header.
616 
617    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
618    It is minumum of user_mss and mss received with SYN.
619    It also does not include TCP options.
620 
621    tp->pmtu_cookie is last pmtu, seen by this function.
622 
623    tp->mss_cache is current effective sending mss, including
624    all tcp options except for SACKs. It is evaluated,
625    taking into account current pmtu, but never exceeds
626    tp->rx_opt.mss_clamp.
627 
628    NOTE1. rfc1122 clearly states that advertised MSS
629    DOES NOT include either tcp or ip options.
630 
631    NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
632    this function.			--ANK (980731)
633  */
634 
635 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
636 {
637 	struct tcp_sock *tp = tcp_sk(sk);
638 	int mss_now;
639 
640 	/* Calculate base mss without TCP options:
641 	   It is MMS_S - sizeof(tcphdr) of rfc1122
642 	 */
643 	mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
644 
645 	/* Clamp it (mss_clamp does not include tcp options) */
646 	if (mss_now > tp->rx_opt.mss_clamp)
647 		mss_now = tp->rx_opt.mss_clamp;
648 
649 	/* Now subtract optional transport overhead */
650 	mss_now -= tp->ext_header_len;
651 
652 	/* Then reserve room for full set of TCP options and 8 bytes of data */
653 	if (mss_now < 48)
654 		mss_now = 48;
655 
656 	/* Now subtract TCP options size, not including SACKs */
657 	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
658 
659 	/* Bound mss with half of window */
660 	if (tp->max_window && mss_now > (tp->max_window>>1))
661 		mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
662 
663 	/* And store cached results */
664 	tp->pmtu_cookie = pmtu;
665 	tp->mss_cache = tp->mss_cache_std = mss_now;
666 
667 	return mss_now;
668 }
669 
670 /* Compute the current effective MSS, taking SACKs and IP options,
671  * and even PMTU discovery events into account.
672  *
673  * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
674  * cannot be large. However, taking into account rare use of URG, this
675  * is not a big flaw.
676  */
677 
678 unsigned int tcp_current_mss(struct sock *sk, int large)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct dst_entry *dst = __sk_dst_get(sk);
682 	unsigned int do_large, mss_now;
683 
684 	mss_now = tp->mss_cache_std;
685 	if (dst) {
686 		u32 mtu = dst_mtu(dst);
687 		if (mtu != tp->pmtu_cookie)
688 			mss_now = tcp_sync_mss(sk, mtu);
689 	}
690 
691 	do_large = (large &&
692 		    (sk->sk_route_caps & NETIF_F_TSO) &&
693 		    !tp->urg_mode);
694 
695 	if (do_large) {
696 		unsigned int large_mss, factor, limit;
697 
698 		large_mss = 65535 - tp->af_specific->net_header_len -
699 			tp->ext_header_len - tp->tcp_header_len;
700 
701 		if (tp->max_window && large_mss > (tp->max_window>>1))
702 			large_mss = max((tp->max_window>>1),
703 					68U - tp->tcp_header_len);
704 
705 		factor = large_mss / mss_now;
706 
707 		/* Always keep large mss multiple of real mss, but
708 		 * do not exceed 1/tso_win_divisor of the congestion window
709 		 * so we can keep the ACK clock ticking and minimize
710 		 * bursting.
711 		 */
712 		limit = tp->snd_cwnd;
713 		if (sysctl_tcp_tso_win_divisor)
714 			limit /= sysctl_tcp_tso_win_divisor;
715 		limit = max(1U, limit);
716 		if (factor > limit)
717 			factor = limit;
718 
719 		tp->mss_cache = mss_now * factor;
720 
721 		mss_now = tp->mss_cache;
722 	}
723 
724 	if (tp->rx_opt.eff_sacks)
725 		mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
726 			    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
727 	return mss_now;
728 }
729 
730 /* This routine writes packets to the network.  It advances the
731  * send_head.  This happens as incoming acks open up the remote
732  * window for us.
733  *
734  * Returns 1, if no segments are in flight and we have queued segments, but
735  * cannot send anything now because of SWS or another problem.
736  */
737 int tcp_write_xmit(struct sock *sk, int nonagle)
738 {
739 	struct tcp_sock *tp = tcp_sk(sk);
740 	unsigned int mss_now;
741 
742 	/* If we are closed, the bytes will have to remain here.
743 	 * In time closedown will finish, we empty the write queue and all
744 	 * will be happy.
745 	 */
746 	if (sk->sk_state != TCP_CLOSE) {
747 		struct sk_buff *skb;
748 		int sent_pkts = 0;
749 
750 		/* Account for SACKS, we may need to fragment due to this.
751 		 * It is just like the real MSS changing on us midstream.
752 		 * We also handle things correctly when the user adds some
753 		 * IP options mid-stream.  Silly to do, but cover it.
754 		 */
755 		mss_now = tcp_current_mss(sk, 1);
756 
757 		while ((skb = sk->sk_send_head) &&
758 		       tcp_snd_test(sk, skb, mss_now,
759 			       	    tcp_skb_is_last(sk, skb) ? nonagle :
760 				    			       TCP_NAGLE_PUSH)) {
761 			if (skb->len > mss_now) {
762 				if (tcp_fragment(sk, skb, mss_now))
763 					break;
764 			}
765 
766 			TCP_SKB_CB(skb)->when = tcp_time_stamp;
767 			tcp_tso_set_push(skb);
768 			if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))
769 				break;
770 
771 			/* Advance the send_head.  This one is sent out.
772 			 * This call will increment packets_out.
773 			 */
774 			update_send_head(sk, tp, skb);
775 
776 			tcp_minshall_update(tp, mss_now, skb);
777 			sent_pkts = 1;
778 		}
779 
780 		if (sent_pkts) {
781 			tcp_cwnd_validate(sk, tp);
782 			return 0;
783 		}
784 
785 		return !tp->packets_out && sk->sk_send_head;
786 	}
787 	return 0;
788 }
789 
790 /* This function returns the amount that we can raise the
791  * usable window based on the following constraints
792  *
793  * 1. The window can never be shrunk once it is offered (RFC 793)
794  * 2. We limit memory per socket
795  *
796  * RFC 1122:
797  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
798  *  RECV.NEXT + RCV.WIN fixed until:
799  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
800  *
801  * i.e. don't raise the right edge of the window until you can raise
802  * it at least MSS bytes.
803  *
804  * Unfortunately, the recommended algorithm breaks header prediction,
805  * since header prediction assumes th->window stays fixed.
806  *
807  * Strictly speaking, keeping th->window fixed violates the receiver
808  * side SWS prevention criteria. The problem is that under this rule
809  * a stream of single byte packets will cause the right side of the
810  * window to always advance by a single byte.
811  *
812  * Of course, if the sender implements sender side SWS prevention
813  * then this will not be a problem.
814  *
815  * BSD seems to make the following compromise:
816  *
817  *	If the free space is less than the 1/4 of the maximum
818  *	space available and the free space is less than 1/2 mss,
819  *	then set the window to 0.
820  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
821  *	Otherwise, just prevent the window from shrinking
822  *	and from being larger than the largest representable value.
823  *
824  * This prevents incremental opening of the window in the regime
825  * where TCP is limited by the speed of the reader side taking
826  * data out of the TCP receive queue. It does nothing about
827  * those cases where the window is constrained on the sender side
828  * because the pipeline is full.
829  *
830  * BSD also seems to "accidentally" limit itself to windows that are a
831  * multiple of MSS, at least until the free space gets quite small.
832  * This would appear to be a side effect of the mbuf implementation.
833  * Combining these two algorithms results in the observed behavior
834  * of having a fixed window size at almost all times.
835  *
836  * Below we obtain similar behavior by forcing the offered window to
837  * a multiple of the mss when it is feasible to do so.
838  *
839  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
840  * Regular options like TIMESTAMP are taken into account.
841  */
842 u32 __tcp_select_window(struct sock *sk)
843 {
844 	struct tcp_sock *tp = tcp_sk(sk);
845 	/* MSS for the peer's data.  Previous verions used mss_clamp
846 	 * here.  I don't know if the value based on our guesses
847 	 * of peer's MSS is better for the performance.  It's more correct
848 	 * but may be worse for the performance because of rcv_mss
849 	 * fluctuations.  --SAW  1998/11/1
850 	 */
851 	int mss = tp->ack.rcv_mss;
852 	int free_space = tcp_space(sk);
853 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
854 	int window;
855 
856 	if (mss > full_space)
857 		mss = full_space;
858 
859 	if (free_space < full_space/2) {
860 		tp->ack.quick = 0;
861 
862 		if (tcp_memory_pressure)
863 			tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
864 
865 		if (free_space < mss)
866 			return 0;
867 	}
868 
869 	if (free_space > tp->rcv_ssthresh)
870 		free_space = tp->rcv_ssthresh;
871 
872 	/* Don't do rounding if we are using window scaling, since the
873 	 * scaled window will not line up with the MSS boundary anyway.
874 	 */
875 	window = tp->rcv_wnd;
876 	if (tp->rx_opt.rcv_wscale) {
877 		window = free_space;
878 
879 		/* Advertise enough space so that it won't get scaled away.
880 		 * Import case: prevent zero window announcement if
881 		 * 1<<rcv_wscale > mss.
882 		 */
883 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
884 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
885 				  << tp->rx_opt.rcv_wscale);
886 	} else {
887 		/* Get the largest window that is a nice multiple of mss.
888 		 * Window clamp already applied above.
889 		 * If our current window offering is within 1 mss of the
890 		 * free space we just keep it. This prevents the divide
891 		 * and multiply from happening most of the time.
892 		 * We also don't do any window rounding when the free space
893 		 * is too small.
894 		 */
895 		if (window <= free_space - mss || window > free_space)
896 			window = (free_space/mss)*mss;
897 	}
898 
899 	return window;
900 }
901 
902 /* Attempt to collapse two adjacent SKB's during retransmission. */
903 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
904 {
905 	struct tcp_sock *tp = tcp_sk(sk);
906 	struct sk_buff *next_skb = skb->next;
907 
908 	/* The first test we must make is that neither of these two
909 	 * SKB's are still referenced by someone else.
910 	 */
911 	if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
912 		int skb_size = skb->len, next_skb_size = next_skb->len;
913 		u16 flags = TCP_SKB_CB(skb)->flags;
914 
915 		/* Also punt if next skb has been SACK'd. */
916 		if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
917 			return;
918 
919 		/* Next skb is out of window. */
920 		if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
921 			return;
922 
923 		/* Punt if not enough space exists in the first SKB for
924 		 * the data in the second, or the total combined payload
925 		 * would exceed the MSS.
926 		 */
927 		if ((next_skb_size > skb_tailroom(skb)) ||
928 		    ((skb_size + next_skb_size) > mss_now))
929 			return;
930 
931 		BUG_ON(tcp_skb_pcount(skb) != 1 ||
932 		       tcp_skb_pcount(next_skb) != 1);
933 
934 		/* Ok.  We will be able to collapse the packet. */
935 		__skb_unlink(next_skb, next_skb->list);
936 
937 		memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
938 
939 		if (next_skb->ip_summed == CHECKSUM_HW)
940 			skb->ip_summed = CHECKSUM_HW;
941 
942 		if (skb->ip_summed != CHECKSUM_HW)
943 			skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
944 
945 		/* Update sequence range on original skb. */
946 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
947 
948 		/* Merge over control information. */
949 		flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
950 		TCP_SKB_CB(skb)->flags = flags;
951 
952 		/* All done, get rid of second SKB and account for it so
953 		 * packet counting does not break.
954 		 */
955 		TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
956 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
957 			tp->retrans_out -= tcp_skb_pcount(next_skb);
958 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
959 			tp->lost_out -= tcp_skb_pcount(next_skb);
960 			tp->left_out -= tcp_skb_pcount(next_skb);
961 		}
962 		/* Reno case is special. Sigh... */
963 		if (!tp->rx_opt.sack_ok && tp->sacked_out) {
964 			tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
965 			tp->left_out -= tcp_skb_pcount(next_skb);
966 		}
967 
968 		/* Not quite right: it can be > snd.fack, but
969 		 * it is better to underestimate fackets.
970 		 */
971 		tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
972 		tcp_packets_out_dec(tp, next_skb);
973 		sk_stream_free_skb(sk, next_skb);
974 	}
975 }
976 
977 /* Do a simple retransmit without using the backoff mechanisms in
978  * tcp_timer. This is used for path mtu discovery.
979  * The socket is already locked here.
980  */
981 void tcp_simple_retransmit(struct sock *sk)
982 {
983 	struct tcp_sock *tp = tcp_sk(sk);
984 	struct sk_buff *skb;
985 	unsigned int mss = tcp_current_mss(sk, 0);
986 	int lost = 0;
987 
988 	sk_stream_for_retrans_queue(skb, sk) {
989 		if (skb->len > mss &&
990 		    !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
991 			if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
992 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
993 				tp->retrans_out -= tcp_skb_pcount(skb);
994 			}
995 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
996 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
997 				tp->lost_out += tcp_skb_pcount(skb);
998 				lost = 1;
999 			}
1000 		}
1001 	}
1002 
1003 	if (!lost)
1004 		return;
1005 
1006 	tcp_sync_left_out(tp);
1007 
1008  	/* Don't muck with the congestion window here.
1009 	 * Reason is that we do not increase amount of _data_
1010 	 * in network, but units changed and effective
1011 	 * cwnd/ssthresh really reduced now.
1012 	 */
1013 	if (tp->ca_state != TCP_CA_Loss) {
1014 		tp->high_seq = tp->snd_nxt;
1015 		tp->snd_ssthresh = tcp_current_ssthresh(tp);
1016 		tp->prior_ssthresh = 0;
1017 		tp->undo_marker = 0;
1018 		tcp_set_ca_state(tp, TCP_CA_Loss);
1019 	}
1020 	tcp_xmit_retransmit_queue(sk);
1021 }
1022 
1023 /* This retransmits one SKB.  Policy decisions and retransmit queue
1024  * state updates are done by the caller.  Returns non-zero if an
1025  * error occurred which prevented the send.
1026  */
1027 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1028 {
1029 	struct tcp_sock *tp = tcp_sk(sk);
1030  	unsigned int cur_mss = tcp_current_mss(sk, 0);
1031 	int err;
1032 
1033 	/* Do not sent more than we queued. 1/4 is reserved for possible
1034 	 * copying overhead: frgagmentation, tunneling, mangling etc.
1035 	 */
1036 	if (atomic_read(&sk->sk_wmem_alloc) >
1037 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1038 		return -EAGAIN;
1039 
1040 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1041 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1042 			BUG();
1043 
1044 		if (sk->sk_route_caps & NETIF_F_TSO) {
1045 			sk->sk_route_caps &= ~NETIF_F_TSO;
1046 			sock_set_flag(sk, SOCK_NO_LARGESEND);
1047 			tp->mss_cache = tp->mss_cache_std;
1048 		}
1049 
1050 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1051 			return -ENOMEM;
1052 	}
1053 
1054 	/* If receiver has shrunk his window, and skb is out of
1055 	 * new window, do not retransmit it. The exception is the
1056 	 * case, when window is shrunk to zero. In this case
1057 	 * our retransmit serves as a zero window probe.
1058 	 */
1059 	if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1060 	    && TCP_SKB_CB(skb)->seq != tp->snd_una)
1061 		return -EAGAIN;
1062 
1063 	if (skb->len > cur_mss) {
1064 		int old_factor = tcp_skb_pcount(skb);
1065 		int new_factor;
1066 
1067 		if (tcp_fragment(sk, skb, cur_mss))
1068 			return -ENOMEM; /* We'll try again later. */
1069 
1070 		/* New SKB created, account for it. */
1071 		new_factor = tcp_skb_pcount(skb);
1072 		tp->packets_out -= old_factor - new_factor;
1073 		tp->packets_out += tcp_skb_pcount(skb->next);
1074 	}
1075 
1076 	/* Collapse two adjacent packets if worthwhile and we can. */
1077 	if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1078 	   (skb->len < (cur_mss >> 1)) &&
1079 	   (skb->next != sk->sk_send_head) &&
1080 	   (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1081 	   (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1082 	   (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1083 	   (sysctl_tcp_retrans_collapse != 0))
1084 		tcp_retrans_try_collapse(sk, skb, cur_mss);
1085 
1086 	if(tp->af_specific->rebuild_header(sk))
1087 		return -EHOSTUNREACH; /* Routing failure or similar. */
1088 
1089 	/* Some Solaris stacks overoptimize and ignore the FIN on a
1090 	 * retransmit when old data is attached.  So strip it off
1091 	 * since it is cheap to do so and saves bytes on the network.
1092 	 */
1093 	if(skb->len > 0 &&
1094 	   (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1095 	   tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1096 		if (!pskb_trim(skb, 0)) {
1097 			TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1098 			skb_shinfo(skb)->tso_segs = 1;
1099 			skb_shinfo(skb)->tso_size = 0;
1100 			skb->ip_summed = CHECKSUM_NONE;
1101 			skb->csum = 0;
1102 		}
1103 	}
1104 
1105 	/* Make a copy, if the first transmission SKB clone we made
1106 	 * is still in somebody's hands, else make a clone.
1107 	 */
1108 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1109 	tcp_tso_set_push(skb);
1110 
1111 	err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1112 				    pskb_copy(skb, GFP_ATOMIC):
1113 				    skb_clone(skb, GFP_ATOMIC)));
1114 
1115 	if (err == 0) {
1116 		/* Update global TCP statistics. */
1117 		TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1118 
1119 		tp->total_retrans++;
1120 
1121 #if FASTRETRANS_DEBUG > 0
1122 		if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1123 			if (net_ratelimit())
1124 				printk(KERN_DEBUG "retrans_out leaked.\n");
1125 		}
1126 #endif
1127 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1128 		tp->retrans_out += tcp_skb_pcount(skb);
1129 
1130 		/* Save stamp of the first retransmit. */
1131 		if (!tp->retrans_stamp)
1132 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1133 
1134 		tp->undo_retrans++;
1135 
1136 		/* snd_nxt is stored to detect loss of retransmitted segment,
1137 		 * see tcp_input.c tcp_sacktag_write_queue().
1138 		 */
1139 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1140 	}
1141 	return err;
1142 }
1143 
1144 /* This gets called after a retransmit timeout, and the initially
1145  * retransmitted data is acknowledged.  It tries to continue
1146  * resending the rest of the retransmit queue, until either
1147  * we've sent it all or the congestion window limit is reached.
1148  * If doing SACK, the first ACK which comes back for a timeout
1149  * based retransmit packet might feed us FACK information again.
1150  * If so, we use it to avoid unnecessarily retransmissions.
1151  */
1152 void tcp_xmit_retransmit_queue(struct sock *sk)
1153 {
1154 	struct tcp_sock *tp = tcp_sk(sk);
1155 	struct sk_buff *skb;
1156 	int packet_cnt = tp->lost_out;
1157 
1158 	/* First pass: retransmit lost packets. */
1159 	if (packet_cnt) {
1160 		sk_stream_for_retrans_queue(skb, sk) {
1161 			__u8 sacked = TCP_SKB_CB(skb)->sacked;
1162 
1163 			/* Assume this retransmit will generate
1164 			 * only one packet for congestion window
1165 			 * calculation purposes.  This works because
1166 			 * tcp_retransmit_skb() will chop up the
1167 			 * packet to be MSS sized and all the
1168 			 * packet counting works out.
1169 			 */
1170 			if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1171 				return;
1172 
1173 			if (sacked&TCPCB_LOST) {
1174 				if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1175 					if (tcp_retransmit_skb(sk, skb))
1176 						return;
1177 					if (tp->ca_state != TCP_CA_Loss)
1178 						NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1179 					else
1180 						NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1181 
1182 					if (skb ==
1183 					    skb_peek(&sk->sk_write_queue))
1184 						tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1185 				}
1186 
1187 				packet_cnt -= tcp_skb_pcount(skb);
1188 				if (packet_cnt <= 0)
1189 					break;
1190 			}
1191 		}
1192 	}
1193 
1194 	/* OK, demanded retransmission is finished. */
1195 
1196 	/* Forward retransmissions are possible only during Recovery. */
1197 	if (tp->ca_state != TCP_CA_Recovery)
1198 		return;
1199 
1200 	/* No forward retransmissions in Reno are possible. */
1201 	if (!tp->rx_opt.sack_ok)
1202 		return;
1203 
1204 	/* Yeah, we have to make difficult choice between forward transmission
1205 	 * and retransmission... Both ways have their merits...
1206 	 *
1207 	 * For now we do not retransmit anything, while we have some new
1208 	 * segments to send.
1209 	 */
1210 
1211 	if (tcp_may_send_now(sk, tp))
1212 		return;
1213 
1214 	packet_cnt = 0;
1215 
1216 	sk_stream_for_retrans_queue(skb, sk) {
1217 		/* Similar to the retransmit loop above we
1218 		 * can pretend that the retransmitted SKB
1219 		 * we send out here will be composed of one
1220 		 * real MSS sized packet because tcp_retransmit_skb()
1221 		 * will fragment it if necessary.
1222 		 */
1223 		if (++packet_cnt > tp->fackets_out)
1224 			break;
1225 
1226 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1227 			break;
1228 
1229 		if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1230 			continue;
1231 
1232 		/* Ok, retransmit it. */
1233 		if (tcp_retransmit_skb(sk, skb))
1234 			break;
1235 
1236 		if (skb == skb_peek(&sk->sk_write_queue))
1237 			tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1238 
1239 		NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1240 	}
1241 }
1242 
1243 
1244 /* Send a fin.  The caller locks the socket for us.  This cannot be
1245  * allowed to fail queueing a FIN frame under any circumstances.
1246  */
1247 void tcp_send_fin(struct sock *sk)
1248 {
1249 	struct tcp_sock *tp = tcp_sk(sk);
1250 	struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1251 	int mss_now;
1252 
1253 	/* Optimization, tack on the FIN if we have a queue of
1254 	 * unsent frames.  But be careful about outgoing SACKS
1255 	 * and IP options.
1256 	 */
1257 	mss_now = tcp_current_mss(sk, 1);
1258 
1259 	if (sk->sk_send_head != NULL) {
1260 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1261 		TCP_SKB_CB(skb)->end_seq++;
1262 		tp->write_seq++;
1263 	} else {
1264 		/* Socket is locked, keep trying until memory is available. */
1265 		for (;;) {
1266 			skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL);
1267 			if (skb)
1268 				break;
1269 			yield();
1270 		}
1271 
1272 		/* Reserve space for headers and prepare control bits. */
1273 		skb_reserve(skb, MAX_TCP_HEADER);
1274 		skb->csum = 0;
1275 		TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1276 		TCP_SKB_CB(skb)->sacked = 0;
1277 		skb_shinfo(skb)->tso_segs = 1;
1278 		skb_shinfo(skb)->tso_size = 0;
1279 
1280 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1281 		TCP_SKB_CB(skb)->seq = tp->write_seq;
1282 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1283 		tcp_queue_skb(sk, skb);
1284 	}
1285 	__tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1286 }
1287 
1288 /* We get here when a process closes a file descriptor (either due to
1289  * an explicit close() or as a byproduct of exit()'ing) and there
1290  * was unread data in the receive queue.  This behavior is recommended
1291  * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM
1292  */
1293 void tcp_send_active_reset(struct sock *sk, int priority)
1294 {
1295 	struct tcp_sock *tp = tcp_sk(sk);
1296 	struct sk_buff *skb;
1297 
1298 	/* NOTE: No TCP options attached and we never retransmit this. */
1299 	skb = alloc_skb(MAX_TCP_HEADER, priority);
1300 	if (!skb) {
1301 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1302 		return;
1303 	}
1304 
1305 	/* Reserve space for headers and prepare control bits. */
1306 	skb_reserve(skb, MAX_TCP_HEADER);
1307 	skb->csum = 0;
1308 	TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1309 	TCP_SKB_CB(skb)->sacked = 0;
1310 	skb_shinfo(skb)->tso_segs = 1;
1311 	skb_shinfo(skb)->tso_size = 0;
1312 
1313 	/* Send it off. */
1314 	TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1315 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1316 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1317 	if (tcp_transmit_skb(sk, skb))
1318 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1319 }
1320 
1321 /* WARNING: This routine must only be called when we have already sent
1322  * a SYN packet that crossed the incoming SYN that caused this routine
1323  * to get called. If this assumption fails then the initial rcv_wnd
1324  * and rcv_wscale values will not be correct.
1325  */
1326 int tcp_send_synack(struct sock *sk)
1327 {
1328 	struct sk_buff* skb;
1329 
1330 	skb = skb_peek(&sk->sk_write_queue);
1331 	if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1332 		printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1333 		return -EFAULT;
1334 	}
1335 	if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1336 		if (skb_cloned(skb)) {
1337 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1338 			if (nskb == NULL)
1339 				return -ENOMEM;
1340 			__skb_unlink(skb, &sk->sk_write_queue);
1341 			skb_header_release(nskb);
1342 			__skb_queue_head(&sk->sk_write_queue, nskb);
1343 			sk_stream_free_skb(sk, skb);
1344 			sk_charge_skb(sk, nskb);
1345 			skb = nskb;
1346 		}
1347 
1348 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1349 		TCP_ECN_send_synack(tcp_sk(sk), skb);
1350 	}
1351 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1352 	return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1353 }
1354 
1355 /*
1356  * Prepare a SYN-ACK.
1357  */
1358 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
1359 				 struct open_request *req)
1360 {
1361 	struct tcp_sock *tp = tcp_sk(sk);
1362 	struct tcphdr *th;
1363 	int tcp_header_size;
1364 	struct sk_buff *skb;
1365 
1366 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1367 	if (skb == NULL)
1368 		return NULL;
1369 
1370 	/* Reserve space for headers. */
1371 	skb_reserve(skb, MAX_TCP_HEADER);
1372 
1373 	skb->dst = dst_clone(dst);
1374 
1375 	tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
1376 			   (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1377 			   (req->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1378 			   /* SACK_PERM is in the place of NOP NOP of TS */
1379 			   ((req->sack_ok && !req->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1380 	skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1381 
1382 	memset(th, 0, sizeof(struct tcphdr));
1383 	th->syn = 1;
1384 	th->ack = 1;
1385 	if (dst->dev->features&NETIF_F_TSO)
1386 		req->ecn_ok = 0;
1387 	TCP_ECN_make_synack(req, th);
1388 	th->source = inet_sk(sk)->sport;
1389 	th->dest = req->rmt_port;
1390 	TCP_SKB_CB(skb)->seq = req->snt_isn;
1391 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1392 	TCP_SKB_CB(skb)->sacked = 0;
1393 	skb_shinfo(skb)->tso_segs = 1;
1394 	skb_shinfo(skb)->tso_size = 0;
1395 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
1396 	th->ack_seq = htonl(req->rcv_isn + 1);
1397 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1398 		__u8 rcv_wscale;
1399 		/* Set this up on the first call only */
1400 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1401 		/* tcp_full_space because it is guaranteed to be the first packet */
1402 		tcp_select_initial_window(tcp_full_space(sk),
1403 			dst_metric(dst, RTAX_ADVMSS) - (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1404 			&req->rcv_wnd,
1405 			&req->window_clamp,
1406 			req->wscale_ok,
1407 			&rcv_wscale);
1408 		req->rcv_wscale = rcv_wscale;
1409 	}
1410 
1411 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1412 	th->window = htons(req->rcv_wnd);
1413 
1414 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1415 	tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), req->tstamp_ok,
1416 			      req->sack_ok, req->wscale_ok, req->rcv_wscale,
1417 			      TCP_SKB_CB(skb)->when,
1418 			      req->ts_recent);
1419 
1420 	skb->csum = 0;
1421 	th->doff = (tcp_header_size >> 2);
1422 	TCP_INC_STATS(TCP_MIB_OUTSEGS);
1423 	return skb;
1424 }
1425 
1426 /*
1427  * Do all connect socket setups that can be done AF independent.
1428  */
1429 static inline void tcp_connect_init(struct sock *sk)
1430 {
1431 	struct dst_entry *dst = __sk_dst_get(sk);
1432 	struct tcp_sock *tp = tcp_sk(sk);
1433 	__u8 rcv_wscale;
1434 
1435 	/* We'll fix this up when we get a response from the other end.
1436 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1437 	 */
1438 	tp->tcp_header_len = sizeof(struct tcphdr) +
1439 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1440 
1441 	/* If user gave his TCP_MAXSEG, record it to clamp */
1442 	if (tp->rx_opt.user_mss)
1443 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1444 	tp->max_window = 0;
1445 	tcp_sync_mss(sk, dst_mtu(dst));
1446 
1447 	if (!tp->window_clamp)
1448 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1449 	tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1450 	tcp_initialize_rcv_mss(sk);
1451 	tcp_ca_init(tp);
1452 
1453 	tcp_select_initial_window(tcp_full_space(sk),
1454 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1455 				  &tp->rcv_wnd,
1456 				  &tp->window_clamp,
1457 				  sysctl_tcp_window_scaling,
1458 				  &rcv_wscale);
1459 
1460 	tp->rx_opt.rcv_wscale = rcv_wscale;
1461 	tp->rcv_ssthresh = tp->rcv_wnd;
1462 
1463 	sk->sk_err = 0;
1464 	sock_reset_flag(sk, SOCK_DONE);
1465 	tp->snd_wnd = 0;
1466 	tcp_init_wl(tp, tp->write_seq, 0);
1467 	tp->snd_una = tp->write_seq;
1468 	tp->snd_sml = tp->write_seq;
1469 	tp->rcv_nxt = 0;
1470 	tp->rcv_wup = 0;
1471 	tp->copied_seq = 0;
1472 
1473 	tp->rto = TCP_TIMEOUT_INIT;
1474 	tp->retransmits = 0;
1475 	tcp_clear_retrans(tp);
1476 }
1477 
1478 /*
1479  * Build a SYN and send it off.
1480  */
1481 int tcp_connect(struct sock *sk)
1482 {
1483 	struct tcp_sock *tp = tcp_sk(sk);
1484 	struct sk_buff *buff;
1485 
1486 	tcp_connect_init(sk);
1487 
1488 	buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation);
1489 	if (unlikely(buff == NULL))
1490 		return -ENOBUFS;
1491 
1492 	/* Reserve space for headers. */
1493 	skb_reserve(buff, MAX_TCP_HEADER);
1494 
1495 	TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1496 	TCP_ECN_send_syn(sk, tp, buff);
1497 	TCP_SKB_CB(buff)->sacked = 0;
1498 	skb_shinfo(buff)->tso_segs = 1;
1499 	skb_shinfo(buff)->tso_size = 0;
1500 	buff->csum = 0;
1501 	TCP_SKB_CB(buff)->seq = tp->write_seq++;
1502 	TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1503 	tp->snd_nxt = tp->write_seq;
1504 	tp->pushed_seq = tp->write_seq;
1505 	tcp_ca_init(tp);
1506 
1507 	/* Send it off. */
1508 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
1509 	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1510 	skb_header_release(buff);
1511 	__skb_queue_tail(&sk->sk_write_queue, buff);
1512 	sk_charge_skb(sk, buff);
1513 	tp->packets_out += tcp_skb_pcount(buff);
1514 	tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1515 	TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1516 
1517 	/* Timer for repeating the SYN until an answer. */
1518 	tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1519 	return 0;
1520 }
1521 
1522 /* Send out a delayed ack, the caller does the policy checking
1523  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
1524  * for details.
1525  */
1526 void tcp_send_delayed_ack(struct sock *sk)
1527 {
1528 	struct tcp_sock *tp = tcp_sk(sk);
1529 	int ato = tp->ack.ato;
1530 	unsigned long timeout;
1531 
1532 	if (ato > TCP_DELACK_MIN) {
1533 		int max_ato = HZ/2;
1534 
1535 		if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED))
1536 			max_ato = TCP_DELACK_MAX;
1537 
1538 		/* Slow path, intersegment interval is "high". */
1539 
1540 		/* If some rtt estimate is known, use it to bound delayed ack.
1541 		 * Do not use tp->rto here, use results of rtt measurements
1542 		 * directly.
1543 		 */
1544 		if (tp->srtt) {
1545 			int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1546 
1547 			if (rtt < max_ato)
1548 				max_ato = rtt;
1549 		}
1550 
1551 		ato = min(ato, max_ato);
1552 	}
1553 
1554 	/* Stay within the limit we were given */
1555 	timeout = jiffies + ato;
1556 
1557 	/* Use new timeout only if there wasn't a older one earlier. */
1558 	if (tp->ack.pending&TCP_ACK_TIMER) {
1559 		/* If delack timer was blocked or is about to expire,
1560 		 * send ACK now.
1561 		 */
1562 		if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) {
1563 			tcp_send_ack(sk);
1564 			return;
1565 		}
1566 
1567 		if (!time_before(timeout, tp->ack.timeout))
1568 			timeout = tp->ack.timeout;
1569 	}
1570 	tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER;
1571 	tp->ack.timeout = timeout;
1572 	sk_reset_timer(sk, &tp->delack_timer, timeout);
1573 }
1574 
1575 /* This routine sends an ack and also updates the window. */
1576 void tcp_send_ack(struct sock *sk)
1577 {
1578 	/* If we have been reset, we may not send again. */
1579 	if (sk->sk_state != TCP_CLOSE) {
1580 		struct tcp_sock *tp = tcp_sk(sk);
1581 		struct sk_buff *buff;
1582 
1583 		/* We are not putting this on the write queue, so
1584 		 * tcp_transmit_skb() will set the ownership to this
1585 		 * sock.
1586 		 */
1587 		buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1588 		if (buff == NULL) {
1589 			tcp_schedule_ack(tp);
1590 			tp->ack.ato = TCP_ATO_MIN;
1591 			tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
1592 			return;
1593 		}
1594 
1595 		/* Reserve space for headers and prepare control bits. */
1596 		skb_reserve(buff, MAX_TCP_HEADER);
1597 		buff->csum = 0;
1598 		TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1599 		TCP_SKB_CB(buff)->sacked = 0;
1600 		skb_shinfo(buff)->tso_segs = 1;
1601 		skb_shinfo(buff)->tso_size = 0;
1602 
1603 		/* Send it off, this clears delayed acks for us. */
1604 		TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1605 		TCP_SKB_CB(buff)->when = tcp_time_stamp;
1606 		tcp_transmit_skb(sk, buff);
1607 	}
1608 }
1609 
1610 /* This routine sends a packet with an out of date sequence
1611  * number. It assumes the other end will try to ack it.
1612  *
1613  * Question: what should we make while urgent mode?
1614  * 4.4BSD forces sending single byte of data. We cannot send
1615  * out of window data, because we have SND.NXT==SND.MAX...
1616  *
1617  * Current solution: to send TWO zero-length segments in urgent mode:
1618  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1619  * out-of-date with SND.UNA-1 to probe window.
1620  */
1621 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1622 {
1623 	struct tcp_sock *tp = tcp_sk(sk);
1624 	struct sk_buff *skb;
1625 
1626 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
1627 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1628 	if (skb == NULL)
1629 		return -1;
1630 
1631 	/* Reserve space for headers and set control bits. */
1632 	skb_reserve(skb, MAX_TCP_HEADER);
1633 	skb->csum = 0;
1634 	TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1635 	TCP_SKB_CB(skb)->sacked = urgent;
1636 	skb_shinfo(skb)->tso_segs = 1;
1637 	skb_shinfo(skb)->tso_size = 0;
1638 
1639 	/* Use a previous sequence.  This should cause the other
1640 	 * end to send an ack.  Don't queue or clone SKB, just
1641 	 * send it.
1642 	 */
1643 	TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1644 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1645 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1646 	return tcp_transmit_skb(sk, skb);
1647 }
1648 
1649 int tcp_write_wakeup(struct sock *sk)
1650 {
1651 	if (sk->sk_state != TCP_CLOSE) {
1652 		struct tcp_sock *tp = tcp_sk(sk);
1653 		struct sk_buff *skb;
1654 
1655 		if ((skb = sk->sk_send_head) != NULL &&
1656 		    before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1657 			int err;
1658 			unsigned int mss = tcp_current_mss(sk, 0);
1659 			unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1660 
1661 			if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1662 				tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1663 
1664 			/* We are probing the opening of a window
1665 			 * but the window size is != 0
1666 			 * must have been a result SWS avoidance ( sender )
1667 			 */
1668 			if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
1669 			    skb->len > mss) {
1670 				seg_size = min(seg_size, mss);
1671 				TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1672 				if (tcp_fragment(sk, skb, seg_size))
1673 					return -1;
1674 				/* SWS override triggered forced fragmentation.
1675 				 * Disable TSO, the connection is too sick. */
1676 				if (sk->sk_route_caps & NETIF_F_TSO) {
1677 					sock_set_flag(sk, SOCK_NO_LARGESEND);
1678 					sk->sk_route_caps &= ~NETIF_F_TSO;
1679 					tp->mss_cache = tp->mss_cache_std;
1680 				}
1681 			} else if (!tcp_skb_pcount(skb))
1682 				tcp_set_skb_tso_segs(sk, skb);
1683 
1684 			TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1685 			TCP_SKB_CB(skb)->when = tcp_time_stamp;
1686 			tcp_tso_set_push(skb);
1687 			err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1688 			if (!err) {
1689 				update_send_head(sk, tp, skb);
1690 			}
1691 			return err;
1692 		} else {
1693 			if (tp->urg_mode &&
1694 			    between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
1695 				tcp_xmit_probe_skb(sk, TCPCB_URG);
1696 			return tcp_xmit_probe_skb(sk, 0);
1697 		}
1698 	}
1699 	return -1;
1700 }
1701 
1702 /* A window probe timeout has occurred.  If window is not closed send
1703  * a partial packet else a zero probe.
1704  */
1705 void tcp_send_probe0(struct sock *sk)
1706 {
1707 	struct tcp_sock *tp = tcp_sk(sk);
1708 	int err;
1709 
1710 	err = tcp_write_wakeup(sk);
1711 
1712 	if (tp->packets_out || !sk->sk_send_head) {
1713 		/* Cancel probe timer, if it is not required. */
1714 		tp->probes_out = 0;
1715 		tp->backoff = 0;
1716 		return;
1717 	}
1718 
1719 	if (err <= 0) {
1720 		if (tp->backoff < sysctl_tcp_retries2)
1721 			tp->backoff++;
1722 		tp->probes_out++;
1723 		tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1724 				      min(tp->rto << tp->backoff, TCP_RTO_MAX));
1725 	} else {
1726 		/* If packet was not sent due to local congestion,
1727 		 * do not backoff and do not remember probes_out.
1728 		 * Let local senders to fight for local resources.
1729 		 *
1730 		 * Use accumulated backoff yet.
1731 		 */
1732 		if (!tp->probes_out)
1733 			tp->probes_out=1;
1734 		tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
1735 				      min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL));
1736 	}
1737 }
1738 
1739 EXPORT_SYMBOL(tcp_connect);
1740 EXPORT_SYMBOL(tcp_make_synack);
1741 EXPORT_SYMBOL(tcp_simple_retransmit);
1742 EXPORT_SYMBOL(tcp_sync_mss);
1743