xref: /linux/net/ipv4/tcp_output.c (revision 6ca80638b90cec66547011ee1ef79e534589989a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, increase pingpong count.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = rounddown(space, mss);
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
233 
234 	if (init_rcv_wnd)
235 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 
237 	*rcv_wscale = 0;
238 	if (wscale_ok) {
239 		/* Set window scaling on max possible window */
240 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 		space = min_t(u32, space, *window_clamp);
243 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 				      0, TCP_MAX_WSCALE);
245 	}
246 	/* Set the clamp no higher than max representable value */
247 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250 
251 /* Chose a new window to advertise, update state in tcp_sock for the
252  * socket, and return result with RFC1323 scaling applied.  The return
253  * value can be stuffed directly into th->window for an outgoing
254  * frame.
255  */
256 static u16 tcp_select_window(struct sock *sk)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 	struct net *net = sock_net(sk);
260 	u32 old_win = tp->rcv_wnd;
261 	u32 cur_win, new_win;
262 
263 	/* Make the window 0 if we failed to queue the data because we
264 	 * are out of memory. The window is temporary, so we don't store
265 	 * it on the socket.
266 	 */
267 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
268 		return 0;
269 
270 	cur_win = tcp_receive_window(tp);
271 	new_win = __tcp_select_window(sk);
272 	if (new_win < cur_win) {
273 		/* Danger Will Robinson!
274 		 * Don't update rcv_wup/rcv_wnd here or else
275 		 * we will not be able to advertise a zero
276 		 * window in time.  --DaveM
277 		 *
278 		 * Relax Will Robinson.
279 		 */
280 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
281 			/* Never shrink the offered window */
282 			if (new_win == 0)
283 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
284 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 		}
286 	}
287 
288 	tp->rcv_wnd = new_win;
289 	tp->rcv_wup = tp->rcv_nxt;
290 
291 	/* Make sure we do not exceed the maximum possible
292 	 * scaled window.
293 	 */
294 	if (!tp->rx_opt.rcv_wscale &&
295 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
296 		new_win = min(new_win, MAX_TCP_WINDOW);
297 	else
298 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
299 
300 	/* RFC1323 scaling applied */
301 	new_win >>= tp->rx_opt.rcv_wscale;
302 
303 	/* If we advertise zero window, disable fast path. */
304 	if (new_win == 0) {
305 		tp->pred_flags = 0;
306 		if (old_win)
307 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
308 	} else if (old_win == 0) {
309 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
310 	}
311 
312 	return new_win;
313 }
314 
315 /* Packet ECN state for a SYN-ACK */
316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317 {
318 	const struct tcp_sock *tp = tcp_sk(sk);
319 
320 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321 	if (!(tp->ecn_flags & TCP_ECN_OK))
322 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323 	else if (tcp_ca_needs_ecn(sk) ||
324 		 tcp_bpf_ca_needs_ecn(sk))
325 		INET_ECN_xmit(sk);
326 }
327 
328 /* Packet ECN state for a SYN.  */
329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
333 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
334 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
335 
336 	if (!use_ecn) {
337 		const struct dst_entry *dst = __sk_dst_get(sk);
338 
339 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 			use_ecn = true;
341 	}
342 
343 	tp->ecn_flags = 0;
344 
345 	if (use_ecn) {
346 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 		tp->ecn_flags = TCP_ECN_OK;
348 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
349 			INET_ECN_xmit(sk);
350 	}
351 }
352 
353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354 {
355 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
356 		/* tp->ecn_flags are cleared at a later point in time when
357 		 * SYN ACK is ultimatively being received.
358 		 */
359 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360 }
361 
362 static void
363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
364 {
365 	if (inet_rsk(req)->ecn_ok)
366 		th->ece = 1;
367 }
368 
369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
370  * be sent.
371  */
372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
373 			 struct tcphdr *th, int tcp_header_len)
374 {
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	if (tp->ecn_flags & TCP_ECN_OK) {
378 		/* Not-retransmitted data segment: set ECT and inject CWR. */
379 		if (skb->len != tcp_header_len &&
380 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
381 			INET_ECN_xmit(sk);
382 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
383 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
384 				th->cwr = 1;
385 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
386 			}
387 		} else if (!tcp_ca_needs_ecn(sk)) {
388 			/* ACK or retransmitted segment: clear ECT|CE */
389 			INET_ECN_dontxmit(sk);
390 		}
391 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
392 			th->ece = 1;
393 	}
394 }
395 
396 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
397  * auto increment end seqno.
398  */
399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
400 {
401 	skb->ip_summed = CHECKSUM_PARTIAL;
402 
403 	TCP_SKB_CB(skb)->tcp_flags = flags;
404 
405 	tcp_skb_pcount_set(skb, 1);
406 
407 	TCP_SKB_CB(skb)->seq = seq;
408 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
409 		seq++;
410 	TCP_SKB_CB(skb)->end_seq = seq;
411 }
412 
413 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
414 {
415 	return tp->snd_una != tp->snd_up;
416 }
417 
418 #define OPTION_SACK_ADVERTISE	BIT(0)
419 #define OPTION_TS		BIT(1)
420 #define OPTION_MD5		BIT(2)
421 #define OPTION_WSCALE		BIT(3)
422 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
423 #define OPTION_SMC		BIT(9)
424 #define OPTION_MPTCP		BIT(10)
425 
426 static void smc_options_write(__be32 *ptr, u16 *options)
427 {
428 #if IS_ENABLED(CONFIG_SMC)
429 	if (static_branch_unlikely(&tcp_have_smc)) {
430 		if (unlikely(OPTION_SMC & *options)) {
431 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
432 				       (TCPOPT_NOP  << 16) |
433 				       (TCPOPT_EXP <<  8) |
434 				       (TCPOLEN_EXP_SMC_BASE));
435 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
436 		}
437 	}
438 #endif
439 }
440 
441 struct tcp_out_options {
442 	u16 options;		/* bit field of OPTION_* */
443 	u16 mss;		/* 0 to disable */
444 	u8 ws;			/* window scale, 0 to disable */
445 	u8 num_sack_blocks;	/* number of SACK blocks to include */
446 	u8 hash_size;		/* bytes in hash_location */
447 	u8 bpf_opt_len;		/* length of BPF hdr option */
448 	__u8 *hash_location;	/* temporary pointer, overloaded */
449 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
450 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
451 	struct mptcp_out_options mptcp;
452 };
453 
454 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
455 				struct tcp_sock *tp,
456 				struct tcp_out_options *opts)
457 {
458 #if IS_ENABLED(CONFIG_MPTCP)
459 	if (unlikely(OPTION_MPTCP & opts->options))
460 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
461 #endif
462 }
463 
464 #ifdef CONFIG_CGROUP_BPF
465 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
466 					enum tcp_synack_type synack_type)
467 {
468 	if (unlikely(!skb))
469 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
470 
471 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
472 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
473 
474 	return 0;
475 }
476 
477 /* req, syn_skb and synack_type are used when writing synack */
478 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
479 				  struct request_sock *req,
480 				  struct sk_buff *syn_skb,
481 				  enum tcp_synack_type synack_type,
482 				  struct tcp_out_options *opts,
483 				  unsigned int *remaining)
484 {
485 	struct bpf_sock_ops_kern sock_ops;
486 	int err;
487 
488 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
489 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
490 	    !*remaining)
491 		return;
492 
493 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
494 
495 	/* init sock_ops */
496 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
497 
498 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
499 
500 	if (req) {
501 		/* The listen "sk" cannot be passed here because
502 		 * it is not locked.  It would not make too much
503 		 * sense to do bpf_setsockopt(listen_sk) based
504 		 * on individual connection request also.
505 		 *
506 		 * Thus, "req" is passed here and the cgroup-bpf-progs
507 		 * of the listen "sk" will be run.
508 		 *
509 		 * "req" is also used here for fastopen even the "sk" here is
510 		 * a fullsock "child" sk.  It is to keep the behavior
511 		 * consistent between fastopen and non-fastopen on
512 		 * the bpf programming side.
513 		 */
514 		sock_ops.sk = (struct sock *)req;
515 		sock_ops.syn_skb = syn_skb;
516 	} else {
517 		sock_owned_by_me(sk);
518 
519 		sock_ops.is_fullsock = 1;
520 		sock_ops.sk = sk;
521 	}
522 
523 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
524 	sock_ops.remaining_opt_len = *remaining;
525 	/* tcp_current_mss() does not pass a skb */
526 	if (skb)
527 		bpf_skops_init_skb(&sock_ops, skb, 0);
528 
529 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
530 
531 	if (err || sock_ops.remaining_opt_len == *remaining)
532 		return;
533 
534 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
535 	/* round up to 4 bytes */
536 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
537 
538 	*remaining -= opts->bpf_opt_len;
539 }
540 
541 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
542 				    struct request_sock *req,
543 				    struct sk_buff *syn_skb,
544 				    enum tcp_synack_type synack_type,
545 				    struct tcp_out_options *opts)
546 {
547 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
548 	struct bpf_sock_ops_kern sock_ops;
549 	int err;
550 
551 	if (likely(!max_opt_len))
552 		return;
553 
554 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
555 
556 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
557 
558 	if (req) {
559 		sock_ops.sk = (struct sock *)req;
560 		sock_ops.syn_skb = syn_skb;
561 	} else {
562 		sock_owned_by_me(sk);
563 
564 		sock_ops.is_fullsock = 1;
565 		sock_ops.sk = sk;
566 	}
567 
568 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
569 	sock_ops.remaining_opt_len = max_opt_len;
570 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
571 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
572 
573 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
574 
575 	if (err)
576 		nr_written = 0;
577 	else
578 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
579 
580 	if (nr_written < max_opt_len)
581 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
582 		       max_opt_len - nr_written);
583 }
584 #else
585 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
586 				  struct request_sock *req,
587 				  struct sk_buff *syn_skb,
588 				  enum tcp_synack_type synack_type,
589 				  struct tcp_out_options *opts,
590 				  unsigned int *remaining)
591 {
592 }
593 
594 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
595 				    struct request_sock *req,
596 				    struct sk_buff *syn_skb,
597 				    enum tcp_synack_type synack_type,
598 				    struct tcp_out_options *opts)
599 {
600 }
601 #endif
602 
603 /* Write previously computed TCP options to the packet.
604  *
605  * Beware: Something in the Internet is very sensitive to the ordering of
606  * TCP options, we learned this through the hard way, so be careful here.
607  * Luckily we can at least blame others for their non-compliance but from
608  * inter-operability perspective it seems that we're somewhat stuck with
609  * the ordering which we have been using if we want to keep working with
610  * those broken things (not that it currently hurts anybody as there isn't
611  * particular reason why the ordering would need to be changed).
612  *
613  * At least SACK_PERM as the first option is known to lead to a disaster
614  * (but it may well be that other scenarios fail similarly).
615  */
616 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
617 			      struct tcp_out_options *opts)
618 {
619 	__be32 *ptr = (__be32 *)(th + 1);
620 	u16 options = opts->options;	/* mungable copy */
621 
622 	if (unlikely(OPTION_MD5 & options)) {
623 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
624 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
625 		/* overload cookie hash location */
626 		opts->hash_location = (__u8 *)ptr;
627 		ptr += 4;
628 	}
629 
630 	if (unlikely(opts->mss)) {
631 		*ptr++ = htonl((TCPOPT_MSS << 24) |
632 			       (TCPOLEN_MSS << 16) |
633 			       opts->mss);
634 	}
635 
636 	if (likely(OPTION_TS & options)) {
637 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
638 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
639 				       (TCPOLEN_SACK_PERM << 16) |
640 				       (TCPOPT_TIMESTAMP << 8) |
641 				       TCPOLEN_TIMESTAMP);
642 			options &= ~OPTION_SACK_ADVERTISE;
643 		} else {
644 			*ptr++ = htonl((TCPOPT_NOP << 24) |
645 				       (TCPOPT_NOP << 16) |
646 				       (TCPOPT_TIMESTAMP << 8) |
647 				       TCPOLEN_TIMESTAMP);
648 		}
649 		*ptr++ = htonl(opts->tsval);
650 		*ptr++ = htonl(opts->tsecr);
651 	}
652 
653 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
654 		*ptr++ = htonl((TCPOPT_NOP << 24) |
655 			       (TCPOPT_NOP << 16) |
656 			       (TCPOPT_SACK_PERM << 8) |
657 			       TCPOLEN_SACK_PERM);
658 	}
659 
660 	if (unlikely(OPTION_WSCALE & options)) {
661 		*ptr++ = htonl((TCPOPT_NOP << 24) |
662 			       (TCPOPT_WINDOW << 16) |
663 			       (TCPOLEN_WINDOW << 8) |
664 			       opts->ws);
665 	}
666 
667 	if (unlikely(opts->num_sack_blocks)) {
668 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
669 			tp->duplicate_sack : tp->selective_acks;
670 		int this_sack;
671 
672 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
673 			       (TCPOPT_NOP  << 16) |
674 			       (TCPOPT_SACK <<  8) |
675 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
676 						     TCPOLEN_SACK_PERBLOCK)));
677 
678 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
679 		     ++this_sack) {
680 			*ptr++ = htonl(sp[this_sack].start_seq);
681 			*ptr++ = htonl(sp[this_sack].end_seq);
682 		}
683 
684 		tp->rx_opt.dsack = 0;
685 	}
686 
687 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
688 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
689 		u8 *p = (u8 *)ptr;
690 		u32 len; /* Fast Open option length */
691 
692 		if (foc->exp) {
693 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
694 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
695 				     TCPOPT_FASTOPEN_MAGIC);
696 			p += TCPOLEN_EXP_FASTOPEN_BASE;
697 		} else {
698 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
699 			*p++ = TCPOPT_FASTOPEN;
700 			*p++ = len;
701 		}
702 
703 		memcpy(p, foc->val, foc->len);
704 		if ((len & 3) == 2) {
705 			p[foc->len] = TCPOPT_NOP;
706 			p[foc->len + 1] = TCPOPT_NOP;
707 		}
708 		ptr += (len + 3) >> 2;
709 	}
710 
711 	smc_options_write(ptr, &options);
712 
713 	mptcp_options_write(th, ptr, tp, opts);
714 }
715 
716 static void smc_set_option(const struct tcp_sock *tp,
717 			   struct tcp_out_options *opts,
718 			   unsigned int *remaining)
719 {
720 #if IS_ENABLED(CONFIG_SMC)
721 	if (static_branch_unlikely(&tcp_have_smc)) {
722 		if (tp->syn_smc) {
723 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
724 				opts->options |= OPTION_SMC;
725 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
726 			}
727 		}
728 	}
729 #endif
730 }
731 
732 static void smc_set_option_cond(const struct tcp_sock *tp,
733 				const struct inet_request_sock *ireq,
734 				struct tcp_out_options *opts,
735 				unsigned int *remaining)
736 {
737 #if IS_ENABLED(CONFIG_SMC)
738 	if (static_branch_unlikely(&tcp_have_smc)) {
739 		if (tp->syn_smc && ireq->smc_ok) {
740 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
741 				opts->options |= OPTION_SMC;
742 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
743 			}
744 		}
745 	}
746 #endif
747 }
748 
749 static void mptcp_set_option_cond(const struct request_sock *req,
750 				  struct tcp_out_options *opts,
751 				  unsigned int *remaining)
752 {
753 	if (rsk_is_mptcp(req)) {
754 		unsigned int size;
755 
756 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
757 			if (*remaining >= size) {
758 				opts->options |= OPTION_MPTCP;
759 				*remaining -= size;
760 			}
761 		}
762 	}
763 }
764 
765 /* Compute TCP options for SYN packets. This is not the final
766  * network wire format yet.
767  */
768 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
769 				struct tcp_out_options *opts,
770 				struct tcp_md5sig_key **md5)
771 {
772 	struct tcp_sock *tp = tcp_sk(sk);
773 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
774 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
775 
776 	*md5 = NULL;
777 #ifdef CONFIG_TCP_MD5SIG
778 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
779 	    rcu_access_pointer(tp->md5sig_info)) {
780 		*md5 = tp->af_specific->md5_lookup(sk, sk);
781 		if (*md5) {
782 			opts->options |= OPTION_MD5;
783 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
784 		}
785 	}
786 #endif
787 
788 	/* We always get an MSS option.  The option bytes which will be seen in
789 	 * normal data packets should timestamps be used, must be in the MSS
790 	 * advertised.  But we subtract them from tp->mss_cache so that
791 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
792 	 * fact here if necessary.  If we don't do this correctly, as a
793 	 * receiver we won't recognize data packets as being full sized when we
794 	 * should, and thus we won't abide by the delayed ACK rules correctly.
795 	 * SACKs don't matter, we never delay an ACK when we have any of those
796 	 * going out.  */
797 	opts->mss = tcp_advertise_mss(sk);
798 	remaining -= TCPOLEN_MSS_ALIGNED;
799 
800 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
801 		opts->options |= OPTION_TS;
802 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
803 		opts->tsecr = tp->rx_opt.ts_recent;
804 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
805 	}
806 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
807 		opts->ws = tp->rx_opt.rcv_wscale;
808 		opts->options |= OPTION_WSCALE;
809 		remaining -= TCPOLEN_WSCALE_ALIGNED;
810 	}
811 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
812 		opts->options |= OPTION_SACK_ADVERTISE;
813 		if (unlikely(!(OPTION_TS & opts->options)))
814 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
815 	}
816 
817 	if (fastopen && fastopen->cookie.len >= 0) {
818 		u32 need = fastopen->cookie.len;
819 
820 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
821 					       TCPOLEN_FASTOPEN_BASE;
822 		need = (need + 3) & ~3U;  /* Align to 32 bits */
823 		if (remaining >= need) {
824 			opts->options |= OPTION_FAST_OPEN_COOKIE;
825 			opts->fastopen_cookie = &fastopen->cookie;
826 			remaining -= need;
827 			tp->syn_fastopen = 1;
828 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
829 		}
830 	}
831 
832 	smc_set_option(tp, opts, &remaining);
833 
834 	if (sk_is_mptcp(sk)) {
835 		unsigned int size;
836 
837 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
838 			opts->options |= OPTION_MPTCP;
839 			remaining -= size;
840 		}
841 	}
842 
843 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
844 
845 	return MAX_TCP_OPTION_SPACE - remaining;
846 }
847 
848 /* Set up TCP options for SYN-ACKs. */
849 static unsigned int tcp_synack_options(const struct sock *sk,
850 				       struct request_sock *req,
851 				       unsigned int mss, struct sk_buff *skb,
852 				       struct tcp_out_options *opts,
853 				       const struct tcp_md5sig_key *md5,
854 				       struct tcp_fastopen_cookie *foc,
855 				       enum tcp_synack_type synack_type,
856 				       struct sk_buff *syn_skb)
857 {
858 	struct inet_request_sock *ireq = inet_rsk(req);
859 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
860 
861 #ifdef CONFIG_TCP_MD5SIG
862 	if (md5) {
863 		opts->options |= OPTION_MD5;
864 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
865 
866 		/* We can't fit any SACK blocks in a packet with MD5 + TS
867 		 * options. There was discussion about disabling SACK
868 		 * rather than TS in order to fit in better with old,
869 		 * buggy kernels, but that was deemed to be unnecessary.
870 		 */
871 		if (synack_type != TCP_SYNACK_COOKIE)
872 			ireq->tstamp_ok &= !ireq->sack_ok;
873 	}
874 #endif
875 
876 	/* We always send an MSS option. */
877 	opts->mss = mss;
878 	remaining -= TCPOLEN_MSS_ALIGNED;
879 
880 	if (likely(ireq->wscale_ok)) {
881 		opts->ws = ireq->rcv_wscale;
882 		opts->options |= OPTION_WSCALE;
883 		remaining -= TCPOLEN_WSCALE_ALIGNED;
884 	}
885 	if (likely(ireq->tstamp_ok)) {
886 		opts->options |= OPTION_TS;
887 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
888 			      tcp_rsk(req)->ts_off;
889 		opts->tsecr = READ_ONCE(req->ts_recent);
890 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
891 	}
892 	if (likely(ireq->sack_ok)) {
893 		opts->options |= OPTION_SACK_ADVERTISE;
894 		if (unlikely(!ireq->tstamp_ok))
895 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
896 	}
897 	if (foc != NULL && foc->len >= 0) {
898 		u32 need = foc->len;
899 
900 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
901 				   TCPOLEN_FASTOPEN_BASE;
902 		need = (need + 3) & ~3U;  /* Align to 32 bits */
903 		if (remaining >= need) {
904 			opts->options |= OPTION_FAST_OPEN_COOKIE;
905 			opts->fastopen_cookie = foc;
906 			remaining -= need;
907 		}
908 	}
909 
910 	mptcp_set_option_cond(req, opts, &remaining);
911 
912 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
913 
914 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
915 			      synack_type, opts, &remaining);
916 
917 	return MAX_TCP_OPTION_SPACE - remaining;
918 }
919 
920 /* Compute TCP options for ESTABLISHED sockets. This is not the
921  * final wire format yet.
922  */
923 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
924 					struct tcp_out_options *opts,
925 					struct tcp_md5sig_key **md5)
926 {
927 	struct tcp_sock *tp = tcp_sk(sk);
928 	unsigned int size = 0;
929 	unsigned int eff_sacks;
930 
931 	opts->options = 0;
932 
933 	*md5 = NULL;
934 #ifdef CONFIG_TCP_MD5SIG
935 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
936 	    rcu_access_pointer(tp->md5sig_info)) {
937 		*md5 = tp->af_specific->md5_lookup(sk, sk);
938 		if (*md5) {
939 			opts->options |= OPTION_MD5;
940 			size += TCPOLEN_MD5SIG_ALIGNED;
941 		}
942 	}
943 #endif
944 
945 	if (likely(tp->rx_opt.tstamp_ok)) {
946 		opts->options |= OPTION_TS;
947 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
948 				tp->tsoffset : 0;
949 		opts->tsecr = tp->rx_opt.ts_recent;
950 		size += TCPOLEN_TSTAMP_ALIGNED;
951 	}
952 
953 	/* MPTCP options have precedence over SACK for the limited TCP
954 	 * option space because a MPTCP connection would be forced to
955 	 * fall back to regular TCP if a required multipath option is
956 	 * missing. SACK still gets a chance to use whatever space is
957 	 * left.
958 	 */
959 	if (sk_is_mptcp(sk)) {
960 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
961 		unsigned int opt_size = 0;
962 
963 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
964 					      &opts->mptcp)) {
965 			opts->options |= OPTION_MPTCP;
966 			size += opt_size;
967 		}
968 	}
969 
970 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
971 	if (unlikely(eff_sacks)) {
972 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
973 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
974 					 TCPOLEN_SACK_PERBLOCK))
975 			return size;
976 
977 		opts->num_sack_blocks =
978 			min_t(unsigned int, eff_sacks,
979 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
980 			      TCPOLEN_SACK_PERBLOCK);
981 
982 		size += TCPOLEN_SACK_BASE_ALIGNED +
983 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
984 	}
985 
986 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
987 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
988 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
989 
990 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
991 
992 		size = MAX_TCP_OPTION_SPACE - remaining;
993 	}
994 
995 	return size;
996 }
997 
998 
999 /* TCP SMALL QUEUES (TSQ)
1000  *
1001  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1002  * to reduce RTT and bufferbloat.
1003  * We do this using a special skb destructor (tcp_wfree).
1004  *
1005  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1006  * needs to be reallocated in a driver.
1007  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1008  *
1009  * Since transmit from skb destructor is forbidden, we use a tasklet
1010  * to process all sockets that eventually need to send more skbs.
1011  * We use one tasklet per cpu, with its own queue of sockets.
1012  */
1013 struct tsq_tasklet {
1014 	struct tasklet_struct	tasklet;
1015 	struct list_head	head; /* queue of tcp sockets */
1016 };
1017 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1018 
1019 static void tcp_tsq_write(struct sock *sk)
1020 {
1021 	if ((1 << sk->sk_state) &
1022 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1023 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1024 		struct tcp_sock *tp = tcp_sk(sk);
1025 
1026 		if (tp->lost_out > tp->retrans_out &&
1027 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1028 			tcp_mstamp_refresh(tp);
1029 			tcp_xmit_retransmit_queue(sk);
1030 		}
1031 
1032 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1033 			       0, GFP_ATOMIC);
1034 	}
1035 }
1036 
1037 static void tcp_tsq_handler(struct sock *sk)
1038 {
1039 	bh_lock_sock(sk);
1040 	if (!sock_owned_by_user(sk))
1041 		tcp_tsq_write(sk);
1042 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1043 		sock_hold(sk);
1044 	bh_unlock_sock(sk);
1045 }
1046 /*
1047  * One tasklet per cpu tries to send more skbs.
1048  * We run in tasklet context but need to disable irqs when
1049  * transferring tsq->head because tcp_wfree() might
1050  * interrupt us (non NAPI drivers)
1051  */
1052 static void tcp_tasklet_func(struct tasklet_struct *t)
1053 {
1054 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1055 	LIST_HEAD(list);
1056 	unsigned long flags;
1057 	struct list_head *q, *n;
1058 	struct tcp_sock *tp;
1059 	struct sock *sk;
1060 
1061 	local_irq_save(flags);
1062 	list_splice_init(&tsq->head, &list);
1063 	local_irq_restore(flags);
1064 
1065 	list_for_each_safe(q, n, &list) {
1066 		tp = list_entry(q, struct tcp_sock, tsq_node);
1067 		list_del(&tp->tsq_node);
1068 
1069 		sk = (struct sock *)tp;
1070 		smp_mb__before_atomic();
1071 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1072 
1073 		tcp_tsq_handler(sk);
1074 		sk_free(sk);
1075 	}
1076 }
1077 
1078 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1079 			  TCPF_WRITE_TIMER_DEFERRED |	\
1080 			  TCPF_DELACK_TIMER_DEFERRED |	\
1081 			  TCPF_MTU_REDUCED_DEFERRED |	\
1082 			  TCPF_ACK_DEFERRED)
1083 /**
1084  * tcp_release_cb - tcp release_sock() callback
1085  * @sk: socket
1086  *
1087  * called from release_sock() to perform protocol dependent
1088  * actions before socket release.
1089  */
1090 void tcp_release_cb(struct sock *sk)
1091 {
1092 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1093 	unsigned long nflags;
1094 
1095 	/* perform an atomic operation only if at least one flag is set */
1096 	do {
1097 		if (!(flags & TCP_DEFERRED_ALL))
1098 			return;
1099 		nflags = flags & ~TCP_DEFERRED_ALL;
1100 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1101 
1102 	if (flags & TCPF_TSQ_DEFERRED) {
1103 		tcp_tsq_write(sk);
1104 		__sock_put(sk);
1105 	}
1106 
1107 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1108 		tcp_write_timer_handler(sk);
1109 		__sock_put(sk);
1110 	}
1111 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1112 		tcp_delack_timer_handler(sk);
1113 		__sock_put(sk);
1114 	}
1115 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1116 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1117 		__sock_put(sk);
1118 	}
1119 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1120 		tcp_send_ack(sk);
1121 }
1122 EXPORT_SYMBOL(tcp_release_cb);
1123 
1124 void __init tcp_tasklet_init(void)
1125 {
1126 	int i;
1127 
1128 	for_each_possible_cpu(i) {
1129 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1130 
1131 		INIT_LIST_HEAD(&tsq->head);
1132 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1133 	}
1134 }
1135 
1136 /*
1137  * Write buffer destructor automatically called from kfree_skb.
1138  * We can't xmit new skbs from this context, as we might already
1139  * hold qdisc lock.
1140  */
1141 void tcp_wfree(struct sk_buff *skb)
1142 {
1143 	struct sock *sk = skb->sk;
1144 	struct tcp_sock *tp = tcp_sk(sk);
1145 	unsigned long flags, nval, oval;
1146 	struct tsq_tasklet *tsq;
1147 	bool empty;
1148 
1149 	/* Keep one reference on sk_wmem_alloc.
1150 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1151 	 */
1152 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1153 
1154 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1155 	 * Wait until our queues (qdisc + devices) are drained.
1156 	 * This gives :
1157 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1158 	 * - chance for incoming ACK (processed by another cpu maybe)
1159 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1160 	 */
1161 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1162 		goto out;
1163 
1164 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1165 	do {
1166 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1167 			goto out;
1168 
1169 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1170 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1171 
1172 	/* queue this socket to tasklet queue */
1173 	local_irq_save(flags);
1174 	tsq = this_cpu_ptr(&tsq_tasklet);
1175 	empty = list_empty(&tsq->head);
1176 	list_add(&tp->tsq_node, &tsq->head);
1177 	if (empty)
1178 		tasklet_schedule(&tsq->tasklet);
1179 	local_irq_restore(flags);
1180 	return;
1181 out:
1182 	sk_free(sk);
1183 }
1184 
1185 /* Note: Called under soft irq.
1186  * We can call TCP stack right away, unless socket is owned by user.
1187  */
1188 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1189 {
1190 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1191 	struct sock *sk = (struct sock *)tp;
1192 
1193 	tcp_tsq_handler(sk);
1194 	sock_put(sk);
1195 
1196 	return HRTIMER_NORESTART;
1197 }
1198 
1199 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1200 				      u64 prior_wstamp)
1201 {
1202 	struct tcp_sock *tp = tcp_sk(sk);
1203 
1204 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1205 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1206 
1207 		/* Original sch_fq does not pace first 10 MSS
1208 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1209 		 * this is a minor annoyance.
1210 		 */
1211 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1212 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1213 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1214 
1215 			/* take into account OS jitter */
1216 			len_ns -= min_t(u64, len_ns / 2, credit);
1217 			tp->tcp_wstamp_ns += len_ns;
1218 		}
1219 	}
1220 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1221 }
1222 
1223 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1226 
1227 /* This routine actually transmits TCP packets queued in by
1228  * tcp_do_sendmsg().  This is used by both the initial
1229  * transmission and possible later retransmissions.
1230  * All SKB's seen here are completely headerless.  It is our
1231  * job to build the TCP header, and pass the packet down to
1232  * IP so it can do the same plus pass the packet off to the
1233  * device.
1234  *
1235  * We are working here with either a clone of the original
1236  * SKB, or a fresh unique copy made by the retransmit engine.
1237  */
1238 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1239 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1240 {
1241 	const struct inet_connection_sock *icsk = inet_csk(sk);
1242 	struct inet_sock *inet;
1243 	struct tcp_sock *tp;
1244 	struct tcp_skb_cb *tcb;
1245 	struct tcp_out_options opts;
1246 	unsigned int tcp_options_size, tcp_header_size;
1247 	struct sk_buff *oskb = NULL;
1248 	struct tcp_md5sig_key *md5;
1249 	struct tcphdr *th;
1250 	u64 prior_wstamp;
1251 	int err;
1252 
1253 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1254 	tp = tcp_sk(sk);
1255 	prior_wstamp = tp->tcp_wstamp_ns;
1256 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1257 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1258 	if (clone_it) {
1259 		oskb = skb;
1260 
1261 		tcp_skb_tsorted_save(oskb) {
1262 			if (unlikely(skb_cloned(oskb)))
1263 				skb = pskb_copy(oskb, gfp_mask);
1264 			else
1265 				skb = skb_clone(oskb, gfp_mask);
1266 		} tcp_skb_tsorted_restore(oskb);
1267 
1268 		if (unlikely(!skb))
1269 			return -ENOBUFS;
1270 		/* retransmit skbs might have a non zero value in skb->dev
1271 		 * because skb->dev is aliased with skb->rbnode.rb_left
1272 		 */
1273 		skb->dev = NULL;
1274 	}
1275 
1276 	inet = inet_sk(sk);
1277 	tcb = TCP_SKB_CB(skb);
1278 	memset(&opts, 0, sizeof(opts));
1279 
1280 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1281 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1282 	} else {
1283 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1284 							   &md5);
1285 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1286 		 * at receiver : This slightly improve GRO performance.
1287 		 * Note that we do not force the PSH flag for non GSO packets,
1288 		 * because they might be sent under high congestion events,
1289 		 * and in this case it is better to delay the delivery of 1-MSS
1290 		 * packets and thus the corresponding ACK packet that would
1291 		 * release the following packet.
1292 		 */
1293 		if (tcp_skb_pcount(skb) > 1)
1294 			tcb->tcp_flags |= TCPHDR_PSH;
1295 	}
1296 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1297 
1298 	/* We set skb->ooo_okay to one if this packet can select
1299 	 * a different TX queue than prior packets of this flow,
1300 	 * to avoid self inflicted reorders.
1301 	 * The 'other' queue decision is based on current cpu number
1302 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1303 	 * We can switch to another (and better) queue if:
1304 	 * 1) No packet with payload is in qdisc/device queues.
1305 	 *    Delays in TX completion can defeat the test
1306 	 *    even if packets were already sent.
1307 	 * 2) Or rtx queue is empty.
1308 	 *    This mitigates above case if ACK packets for
1309 	 *    all prior packets were already processed.
1310 	 */
1311 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1312 			tcp_rtx_queue_empty(sk);
1313 
1314 	/* If we had to use memory reserve to allocate this skb,
1315 	 * this might cause drops if packet is looped back :
1316 	 * Other socket might not have SOCK_MEMALLOC.
1317 	 * Packets not looped back do not care about pfmemalloc.
1318 	 */
1319 	skb->pfmemalloc = 0;
1320 
1321 	skb_push(skb, tcp_header_size);
1322 	skb_reset_transport_header(skb);
1323 
1324 	skb_orphan(skb);
1325 	skb->sk = sk;
1326 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1327 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1328 
1329 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1330 
1331 	/* Build TCP header and checksum it. */
1332 	th = (struct tcphdr *)skb->data;
1333 	th->source		= inet->inet_sport;
1334 	th->dest		= inet->inet_dport;
1335 	th->seq			= htonl(tcb->seq);
1336 	th->ack_seq		= htonl(rcv_nxt);
1337 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1338 					tcb->tcp_flags);
1339 
1340 	th->check		= 0;
1341 	th->urg_ptr		= 0;
1342 
1343 	/* The urg_mode check is necessary during a below snd_una win probe */
1344 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1345 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1346 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1347 			th->urg = 1;
1348 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1349 			th->urg_ptr = htons(0xFFFF);
1350 			th->urg = 1;
1351 		}
1352 	}
1353 
1354 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1355 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1356 		th->window      = htons(tcp_select_window(sk));
1357 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1358 	} else {
1359 		/* RFC1323: The window in SYN & SYN/ACK segments
1360 		 * is never scaled.
1361 		 */
1362 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1363 	}
1364 
1365 	tcp_options_write(th, tp, &opts);
1366 
1367 #ifdef CONFIG_TCP_MD5SIG
1368 	/* Calculate the MD5 hash, as we have all we need now */
1369 	if (md5) {
1370 		sk_gso_disable(sk);
1371 		tp->af_specific->calc_md5_hash(opts.hash_location,
1372 					       md5, sk, skb);
1373 	}
1374 #endif
1375 
1376 	/* BPF prog is the last one writing header option */
1377 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1378 
1379 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1380 			   tcp_v6_send_check, tcp_v4_send_check,
1381 			   sk, skb);
1382 
1383 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1384 		tcp_event_ack_sent(sk, rcv_nxt);
1385 
1386 	if (skb->len != tcp_header_size) {
1387 		tcp_event_data_sent(tp, sk);
1388 		tp->data_segs_out += tcp_skb_pcount(skb);
1389 		tp->bytes_sent += skb->len - tcp_header_size;
1390 	}
1391 
1392 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1393 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1394 			      tcp_skb_pcount(skb));
1395 
1396 	tp->segs_out += tcp_skb_pcount(skb);
1397 	skb_set_hash_from_sk(skb, sk);
1398 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1399 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1400 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1401 
1402 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1403 
1404 	/* Cleanup our debris for IP stacks */
1405 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1406 			       sizeof(struct inet6_skb_parm)));
1407 
1408 	tcp_add_tx_delay(skb, tp);
1409 
1410 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1411 				 inet6_csk_xmit, ip_queue_xmit,
1412 				 sk, skb, &inet->cork.fl);
1413 
1414 	if (unlikely(err > 0)) {
1415 		tcp_enter_cwr(sk);
1416 		err = net_xmit_eval(err);
1417 	}
1418 	if (!err && oskb) {
1419 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1420 		tcp_rate_skb_sent(sk, oskb);
1421 	}
1422 	return err;
1423 }
1424 
1425 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1426 			    gfp_t gfp_mask)
1427 {
1428 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1429 				  tcp_sk(sk)->rcv_nxt);
1430 }
1431 
1432 /* This routine just queues the buffer for sending.
1433  *
1434  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1435  * otherwise socket can stall.
1436  */
1437 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1438 {
1439 	struct tcp_sock *tp = tcp_sk(sk);
1440 
1441 	/* Advance write_seq and place onto the write_queue. */
1442 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1443 	__skb_header_release(skb);
1444 	tcp_add_write_queue_tail(sk, skb);
1445 	sk_wmem_queued_add(sk, skb->truesize);
1446 	sk_mem_charge(sk, skb->truesize);
1447 }
1448 
1449 /* Initialize TSO segments for a packet. */
1450 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1451 {
1452 	if (skb->len <= mss_now) {
1453 		/* Avoid the costly divide in the normal
1454 		 * non-TSO case.
1455 		 */
1456 		tcp_skb_pcount_set(skb, 1);
1457 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1458 	} else {
1459 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1460 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1461 	}
1462 }
1463 
1464 /* Pcount in the middle of the write queue got changed, we need to do various
1465  * tweaks to fix counters
1466  */
1467 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1468 {
1469 	struct tcp_sock *tp = tcp_sk(sk);
1470 
1471 	tp->packets_out -= decr;
1472 
1473 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1474 		tp->sacked_out -= decr;
1475 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1476 		tp->retrans_out -= decr;
1477 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1478 		tp->lost_out -= decr;
1479 
1480 	/* Reno case is special. Sigh... */
1481 	if (tcp_is_reno(tp) && decr > 0)
1482 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1483 
1484 	if (tp->lost_skb_hint &&
1485 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1486 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1487 		tp->lost_cnt_hint -= decr;
1488 
1489 	tcp_verify_left_out(tp);
1490 }
1491 
1492 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1493 {
1494 	return TCP_SKB_CB(skb)->txstamp_ack ||
1495 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1496 }
1497 
1498 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1499 {
1500 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1501 
1502 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1503 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1504 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1505 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1506 
1507 		shinfo->tx_flags &= ~tsflags;
1508 		shinfo2->tx_flags |= tsflags;
1509 		swap(shinfo->tskey, shinfo2->tskey);
1510 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1511 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1512 	}
1513 }
1514 
1515 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1516 {
1517 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1518 	TCP_SKB_CB(skb)->eor = 0;
1519 }
1520 
1521 /* Insert buff after skb on the write or rtx queue of sk.  */
1522 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1523 					 struct sk_buff *buff,
1524 					 struct sock *sk,
1525 					 enum tcp_queue tcp_queue)
1526 {
1527 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1528 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1529 	else
1530 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1531 }
1532 
1533 /* Function to create two new TCP segments.  Shrinks the given segment
1534  * to the specified size and appends a new segment with the rest of the
1535  * packet to the list.  This won't be called frequently, I hope.
1536  * Remember, these are still headerless SKBs at this point.
1537  */
1538 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1539 		 struct sk_buff *skb, u32 len,
1540 		 unsigned int mss_now, gfp_t gfp)
1541 {
1542 	struct tcp_sock *tp = tcp_sk(sk);
1543 	struct sk_buff *buff;
1544 	int old_factor;
1545 	long limit;
1546 	int nlen;
1547 	u8 flags;
1548 
1549 	if (WARN_ON(len > skb->len))
1550 		return -EINVAL;
1551 
1552 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1553 
1554 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1555 	 * We need some allowance to not penalize applications setting small
1556 	 * SO_SNDBUF values.
1557 	 * Also allow first and last skb in retransmit queue to be split.
1558 	 */
1559 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1560 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1561 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1562 		     skb != tcp_rtx_queue_head(sk) &&
1563 		     skb != tcp_rtx_queue_tail(sk))) {
1564 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1565 		return -ENOMEM;
1566 	}
1567 
1568 	if (skb_unclone_keeptruesize(skb, gfp))
1569 		return -ENOMEM;
1570 
1571 	/* Get a new skb... force flag on. */
1572 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1573 	if (!buff)
1574 		return -ENOMEM; /* We'll just try again later. */
1575 	skb_copy_decrypted(buff, skb);
1576 	mptcp_skb_ext_copy(buff, skb);
1577 
1578 	sk_wmem_queued_add(sk, buff->truesize);
1579 	sk_mem_charge(sk, buff->truesize);
1580 	nlen = skb->len - len;
1581 	buff->truesize += nlen;
1582 	skb->truesize -= nlen;
1583 
1584 	/* Correct the sequence numbers. */
1585 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1586 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1587 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1588 
1589 	/* PSH and FIN should only be set in the second packet. */
1590 	flags = TCP_SKB_CB(skb)->tcp_flags;
1591 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1592 	TCP_SKB_CB(buff)->tcp_flags = flags;
1593 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1594 	tcp_skb_fragment_eor(skb, buff);
1595 
1596 	skb_split(skb, buff, len);
1597 
1598 	skb_set_delivery_time(buff, skb->tstamp, true);
1599 	tcp_fragment_tstamp(skb, buff);
1600 
1601 	old_factor = tcp_skb_pcount(skb);
1602 
1603 	/* Fix up tso_factor for both original and new SKB.  */
1604 	tcp_set_skb_tso_segs(skb, mss_now);
1605 	tcp_set_skb_tso_segs(buff, mss_now);
1606 
1607 	/* Update delivered info for the new segment */
1608 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1609 
1610 	/* If this packet has been sent out already, we must
1611 	 * adjust the various packet counters.
1612 	 */
1613 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1614 		int diff = old_factor - tcp_skb_pcount(skb) -
1615 			tcp_skb_pcount(buff);
1616 
1617 		if (diff)
1618 			tcp_adjust_pcount(sk, skb, diff);
1619 	}
1620 
1621 	/* Link BUFF into the send queue. */
1622 	__skb_header_release(buff);
1623 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1624 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1625 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1626 
1627 	return 0;
1628 }
1629 
1630 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1631  * data is not copied, but immediately discarded.
1632  */
1633 static int __pskb_trim_head(struct sk_buff *skb, int len)
1634 {
1635 	struct skb_shared_info *shinfo;
1636 	int i, k, eat;
1637 
1638 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1639 	eat = len;
1640 	k = 0;
1641 	shinfo = skb_shinfo(skb);
1642 	for (i = 0; i < shinfo->nr_frags; i++) {
1643 		int size = skb_frag_size(&shinfo->frags[i]);
1644 
1645 		if (size <= eat) {
1646 			skb_frag_unref(skb, i);
1647 			eat -= size;
1648 		} else {
1649 			shinfo->frags[k] = shinfo->frags[i];
1650 			if (eat) {
1651 				skb_frag_off_add(&shinfo->frags[k], eat);
1652 				skb_frag_size_sub(&shinfo->frags[k], eat);
1653 				eat = 0;
1654 			}
1655 			k++;
1656 		}
1657 	}
1658 	shinfo->nr_frags = k;
1659 
1660 	skb->data_len -= len;
1661 	skb->len = skb->data_len;
1662 	return len;
1663 }
1664 
1665 /* Remove acked data from a packet in the transmit queue. */
1666 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1667 {
1668 	u32 delta_truesize;
1669 
1670 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1671 		return -ENOMEM;
1672 
1673 	delta_truesize = __pskb_trim_head(skb, len);
1674 
1675 	TCP_SKB_CB(skb)->seq += len;
1676 
1677 	skb->truesize	   -= delta_truesize;
1678 	sk_wmem_queued_add(sk, -delta_truesize);
1679 	if (!skb_zcopy_pure(skb))
1680 		sk_mem_uncharge(sk, delta_truesize);
1681 
1682 	/* Any change of skb->len requires recalculation of tso factor. */
1683 	if (tcp_skb_pcount(skb) > 1)
1684 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1685 
1686 	return 0;
1687 }
1688 
1689 /* Calculate MSS not accounting any TCP options.  */
1690 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1691 {
1692 	const struct tcp_sock *tp = tcp_sk(sk);
1693 	const struct inet_connection_sock *icsk = inet_csk(sk);
1694 	int mss_now;
1695 
1696 	/* Calculate base mss without TCP options:
1697 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1698 	 */
1699 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1700 
1701 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1702 	if (icsk->icsk_af_ops->net_frag_header_len) {
1703 		const struct dst_entry *dst = __sk_dst_get(sk);
1704 
1705 		if (dst && dst_allfrag(dst))
1706 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1707 	}
1708 
1709 	/* Clamp it (mss_clamp does not include tcp options) */
1710 	if (mss_now > tp->rx_opt.mss_clamp)
1711 		mss_now = tp->rx_opt.mss_clamp;
1712 
1713 	/* Now subtract optional transport overhead */
1714 	mss_now -= icsk->icsk_ext_hdr_len;
1715 
1716 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1717 	mss_now = max(mss_now,
1718 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1719 	return mss_now;
1720 }
1721 
1722 /* Calculate MSS. Not accounting for SACKs here.  */
1723 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1724 {
1725 	/* Subtract TCP options size, not including SACKs */
1726 	return __tcp_mtu_to_mss(sk, pmtu) -
1727 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1728 }
1729 EXPORT_SYMBOL(tcp_mtu_to_mss);
1730 
1731 /* Inverse of above */
1732 int tcp_mss_to_mtu(struct sock *sk, int mss)
1733 {
1734 	const struct tcp_sock *tp = tcp_sk(sk);
1735 	const struct inet_connection_sock *icsk = inet_csk(sk);
1736 	int mtu;
1737 
1738 	mtu = mss +
1739 	      tp->tcp_header_len +
1740 	      icsk->icsk_ext_hdr_len +
1741 	      icsk->icsk_af_ops->net_header_len;
1742 
1743 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1744 	if (icsk->icsk_af_ops->net_frag_header_len) {
1745 		const struct dst_entry *dst = __sk_dst_get(sk);
1746 
1747 		if (dst && dst_allfrag(dst))
1748 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1749 	}
1750 	return mtu;
1751 }
1752 EXPORT_SYMBOL(tcp_mss_to_mtu);
1753 
1754 /* MTU probing init per socket */
1755 void tcp_mtup_init(struct sock *sk)
1756 {
1757 	struct tcp_sock *tp = tcp_sk(sk);
1758 	struct inet_connection_sock *icsk = inet_csk(sk);
1759 	struct net *net = sock_net(sk);
1760 
1761 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1762 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1763 			       icsk->icsk_af_ops->net_header_len;
1764 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1765 	icsk->icsk_mtup.probe_size = 0;
1766 	if (icsk->icsk_mtup.enabled)
1767 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1768 }
1769 EXPORT_SYMBOL(tcp_mtup_init);
1770 
1771 /* This function synchronize snd mss to current pmtu/exthdr set.
1772 
1773    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1774    for TCP options, but includes only bare TCP header.
1775 
1776    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1777    It is minimum of user_mss and mss received with SYN.
1778    It also does not include TCP options.
1779 
1780    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1781 
1782    tp->mss_cache is current effective sending mss, including
1783    all tcp options except for SACKs. It is evaluated,
1784    taking into account current pmtu, but never exceeds
1785    tp->rx_opt.mss_clamp.
1786 
1787    NOTE1. rfc1122 clearly states that advertised MSS
1788    DOES NOT include either tcp or ip options.
1789 
1790    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1791    are READ ONLY outside this function.		--ANK (980731)
1792  */
1793 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1794 {
1795 	struct tcp_sock *tp = tcp_sk(sk);
1796 	struct inet_connection_sock *icsk = inet_csk(sk);
1797 	int mss_now;
1798 
1799 	if (icsk->icsk_mtup.search_high > pmtu)
1800 		icsk->icsk_mtup.search_high = pmtu;
1801 
1802 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1803 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1804 
1805 	/* And store cached results */
1806 	icsk->icsk_pmtu_cookie = pmtu;
1807 	if (icsk->icsk_mtup.enabled)
1808 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1809 	tp->mss_cache = mss_now;
1810 
1811 	return mss_now;
1812 }
1813 EXPORT_SYMBOL(tcp_sync_mss);
1814 
1815 /* Compute the current effective MSS, taking SACKs and IP options,
1816  * and even PMTU discovery events into account.
1817  */
1818 unsigned int tcp_current_mss(struct sock *sk)
1819 {
1820 	const struct tcp_sock *tp = tcp_sk(sk);
1821 	const struct dst_entry *dst = __sk_dst_get(sk);
1822 	u32 mss_now;
1823 	unsigned int header_len;
1824 	struct tcp_out_options opts;
1825 	struct tcp_md5sig_key *md5;
1826 
1827 	mss_now = tp->mss_cache;
1828 
1829 	if (dst) {
1830 		u32 mtu = dst_mtu(dst);
1831 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1832 			mss_now = tcp_sync_mss(sk, mtu);
1833 	}
1834 
1835 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1836 		     sizeof(struct tcphdr);
1837 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1838 	 * some common options. If this is an odd packet (because we have SACK
1839 	 * blocks etc) then our calculated header_len will be different, and
1840 	 * we have to adjust mss_now correspondingly */
1841 	if (header_len != tp->tcp_header_len) {
1842 		int delta = (int) header_len - tp->tcp_header_len;
1843 		mss_now -= delta;
1844 	}
1845 
1846 	return mss_now;
1847 }
1848 
1849 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1850  * As additional protections, we do not touch cwnd in retransmission phases,
1851  * and if application hit its sndbuf limit recently.
1852  */
1853 static void tcp_cwnd_application_limited(struct sock *sk)
1854 {
1855 	struct tcp_sock *tp = tcp_sk(sk);
1856 
1857 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1858 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1859 		/* Limited by application or receiver window. */
1860 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1861 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1862 		if (win_used < tcp_snd_cwnd(tp)) {
1863 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1864 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1865 		}
1866 		tp->snd_cwnd_used = 0;
1867 	}
1868 	tp->snd_cwnd_stamp = tcp_jiffies32;
1869 }
1870 
1871 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1872 {
1873 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1874 	struct tcp_sock *tp = tcp_sk(sk);
1875 
1876 	/* Track the strongest available signal of the degree to which the cwnd
1877 	 * is fully utilized. If cwnd-limited then remember that fact for the
1878 	 * current window. If not cwnd-limited then track the maximum number of
1879 	 * outstanding packets in the current window. (If cwnd-limited then we
1880 	 * chose to not update tp->max_packets_out to avoid an extra else
1881 	 * clause with no functional impact.)
1882 	 */
1883 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1884 	    is_cwnd_limited ||
1885 	    (!tp->is_cwnd_limited &&
1886 	     tp->packets_out > tp->max_packets_out)) {
1887 		tp->is_cwnd_limited = is_cwnd_limited;
1888 		tp->max_packets_out = tp->packets_out;
1889 		tp->cwnd_usage_seq = tp->snd_nxt;
1890 	}
1891 
1892 	if (tcp_is_cwnd_limited(sk)) {
1893 		/* Network is feed fully. */
1894 		tp->snd_cwnd_used = 0;
1895 		tp->snd_cwnd_stamp = tcp_jiffies32;
1896 	} else {
1897 		/* Network starves. */
1898 		if (tp->packets_out > tp->snd_cwnd_used)
1899 			tp->snd_cwnd_used = tp->packets_out;
1900 
1901 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1902 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1903 		    !ca_ops->cong_control)
1904 			tcp_cwnd_application_limited(sk);
1905 
1906 		/* The following conditions together indicate the starvation
1907 		 * is caused by insufficient sender buffer:
1908 		 * 1) just sent some data (see tcp_write_xmit)
1909 		 * 2) not cwnd limited (this else condition)
1910 		 * 3) no more data to send (tcp_write_queue_empty())
1911 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1912 		 */
1913 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1914 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1915 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1916 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1917 	}
1918 }
1919 
1920 /* Minshall's variant of the Nagle send check. */
1921 static bool tcp_minshall_check(const struct tcp_sock *tp)
1922 {
1923 	return after(tp->snd_sml, tp->snd_una) &&
1924 		!after(tp->snd_sml, tp->snd_nxt);
1925 }
1926 
1927 /* Update snd_sml if this skb is under mss
1928  * Note that a TSO packet might end with a sub-mss segment
1929  * The test is really :
1930  * if ((skb->len % mss) != 0)
1931  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1932  * But we can avoid doing the divide again given we already have
1933  *  skb_pcount = skb->len / mss_now
1934  */
1935 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1936 				const struct sk_buff *skb)
1937 {
1938 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1939 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1940 }
1941 
1942 /* Return false, if packet can be sent now without violation Nagle's rules:
1943  * 1. It is full sized. (provided by caller in %partial bool)
1944  * 2. Or it contains FIN. (already checked by caller)
1945  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1946  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1947  *    With Minshall's modification: all sent small packets are ACKed.
1948  */
1949 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1950 			    int nonagle)
1951 {
1952 	return partial &&
1953 		((nonagle & TCP_NAGLE_CORK) ||
1954 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1955 }
1956 
1957 /* Return how many segs we'd like on a TSO packet,
1958  * depending on current pacing rate, and how close the peer is.
1959  *
1960  * Rationale is:
1961  * - For close peers, we rather send bigger packets to reduce
1962  *   cpu costs, because occasional losses will be repaired fast.
1963  * - For long distance/rtt flows, we would like to get ACK clocking
1964  *   with 1 ACK per ms.
1965  *
1966  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1967  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1968  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1969  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1970  */
1971 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1972 			    int min_tso_segs)
1973 {
1974 	unsigned long bytes;
1975 	u32 r;
1976 
1977 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
1978 
1979 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1980 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1981 		bytes += sk->sk_gso_max_size >> r;
1982 
1983 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1984 
1985 	return max_t(u32, bytes / mss_now, min_tso_segs);
1986 }
1987 
1988 /* Return the number of segments we want in the skb we are transmitting.
1989  * See if congestion control module wants to decide; otherwise, autosize.
1990  */
1991 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1992 {
1993 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1994 	u32 min_tso, tso_segs;
1995 
1996 	min_tso = ca_ops->min_tso_segs ?
1997 			ca_ops->min_tso_segs(sk) :
1998 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1999 
2000 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2001 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2002 }
2003 
2004 /* Returns the portion of skb which can be sent right away */
2005 static unsigned int tcp_mss_split_point(const struct sock *sk,
2006 					const struct sk_buff *skb,
2007 					unsigned int mss_now,
2008 					unsigned int max_segs,
2009 					int nonagle)
2010 {
2011 	const struct tcp_sock *tp = tcp_sk(sk);
2012 	u32 partial, needed, window, max_len;
2013 
2014 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2015 	max_len = mss_now * max_segs;
2016 
2017 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2018 		return max_len;
2019 
2020 	needed = min(skb->len, window);
2021 
2022 	if (max_len <= needed)
2023 		return max_len;
2024 
2025 	partial = needed % mss_now;
2026 	/* If last segment is not a full MSS, check if Nagle rules allow us
2027 	 * to include this last segment in this skb.
2028 	 * Otherwise, we'll split the skb at last MSS boundary
2029 	 */
2030 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2031 		return needed - partial;
2032 
2033 	return needed;
2034 }
2035 
2036 /* Can at least one segment of SKB be sent right now, according to the
2037  * congestion window rules?  If so, return how many segments are allowed.
2038  */
2039 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2040 					 const struct sk_buff *skb)
2041 {
2042 	u32 in_flight, cwnd, halfcwnd;
2043 
2044 	/* Don't be strict about the congestion window for the final FIN.  */
2045 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2046 	    tcp_skb_pcount(skb) == 1)
2047 		return 1;
2048 
2049 	in_flight = tcp_packets_in_flight(tp);
2050 	cwnd = tcp_snd_cwnd(tp);
2051 	if (in_flight >= cwnd)
2052 		return 0;
2053 
2054 	/* For better scheduling, ensure we have at least
2055 	 * 2 GSO packets in flight.
2056 	 */
2057 	halfcwnd = max(cwnd >> 1, 1U);
2058 	return min(halfcwnd, cwnd - in_flight);
2059 }
2060 
2061 /* Initialize TSO state of a skb.
2062  * This must be invoked the first time we consider transmitting
2063  * SKB onto the wire.
2064  */
2065 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2066 {
2067 	int tso_segs = tcp_skb_pcount(skb);
2068 
2069 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2070 		tcp_set_skb_tso_segs(skb, mss_now);
2071 		tso_segs = tcp_skb_pcount(skb);
2072 	}
2073 	return tso_segs;
2074 }
2075 
2076 
2077 /* Return true if the Nagle test allows this packet to be
2078  * sent now.
2079  */
2080 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2081 				  unsigned int cur_mss, int nonagle)
2082 {
2083 	/* Nagle rule does not apply to frames, which sit in the middle of the
2084 	 * write_queue (they have no chances to get new data).
2085 	 *
2086 	 * This is implemented in the callers, where they modify the 'nonagle'
2087 	 * argument based upon the location of SKB in the send queue.
2088 	 */
2089 	if (nonagle & TCP_NAGLE_PUSH)
2090 		return true;
2091 
2092 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2093 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2094 		return true;
2095 
2096 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2097 		return true;
2098 
2099 	return false;
2100 }
2101 
2102 /* Does at least the first segment of SKB fit into the send window? */
2103 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2104 			     const struct sk_buff *skb,
2105 			     unsigned int cur_mss)
2106 {
2107 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2108 
2109 	if (skb->len > cur_mss)
2110 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2111 
2112 	return !after(end_seq, tcp_wnd_end(tp));
2113 }
2114 
2115 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2116  * which is put after SKB on the list.  It is very much like
2117  * tcp_fragment() except that it may make several kinds of assumptions
2118  * in order to speed up the splitting operation.  In particular, we
2119  * know that all the data is in scatter-gather pages, and that the
2120  * packet has never been sent out before (and thus is not cloned).
2121  */
2122 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2123 			unsigned int mss_now, gfp_t gfp)
2124 {
2125 	int nlen = skb->len - len;
2126 	struct sk_buff *buff;
2127 	u8 flags;
2128 
2129 	/* All of a TSO frame must be composed of paged data.  */
2130 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2131 
2132 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2133 	if (unlikely(!buff))
2134 		return -ENOMEM;
2135 	skb_copy_decrypted(buff, skb);
2136 	mptcp_skb_ext_copy(buff, skb);
2137 
2138 	sk_wmem_queued_add(sk, buff->truesize);
2139 	sk_mem_charge(sk, buff->truesize);
2140 	buff->truesize += nlen;
2141 	skb->truesize -= nlen;
2142 
2143 	/* Correct the sequence numbers. */
2144 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2145 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2146 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2147 
2148 	/* PSH and FIN should only be set in the second packet. */
2149 	flags = TCP_SKB_CB(skb)->tcp_flags;
2150 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2151 	TCP_SKB_CB(buff)->tcp_flags = flags;
2152 
2153 	tcp_skb_fragment_eor(skb, buff);
2154 
2155 	skb_split(skb, buff, len);
2156 	tcp_fragment_tstamp(skb, buff);
2157 
2158 	/* Fix up tso_factor for both original and new SKB.  */
2159 	tcp_set_skb_tso_segs(skb, mss_now);
2160 	tcp_set_skb_tso_segs(buff, mss_now);
2161 
2162 	/* Link BUFF into the send queue. */
2163 	__skb_header_release(buff);
2164 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2165 
2166 	return 0;
2167 }
2168 
2169 /* Try to defer sending, if possible, in order to minimize the amount
2170  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2171  *
2172  * This algorithm is from John Heffner.
2173  */
2174 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2175 				 bool *is_cwnd_limited,
2176 				 bool *is_rwnd_limited,
2177 				 u32 max_segs)
2178 {
2179 	const struct inet_connection_sock *icsk = inet_csk(sk);
2180 	u32 send_win, cong_win, limit, in_flight;
2181 	struct tcp_sock *tp = tcp_sk(sk);
2182 	struct sk_buff *head;
2183 	int win_divisor;
2184 	s64 delta;
2185 
2186 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2187 		goto send_now;
2188 
2189 	/* Avoid bursty behavior by allowing defer
2190 	 * only if the last write was recent (1 ms).
2191 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2192 	 * packets waiting in a qdisc or device for EDT delivery.
2193 	 */
2194 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2195 	if (delta > 0)
2196 		goto send_now;
2197 
2198 	in_flight = tcp_packets_in_flight(tp);
2199 
2200 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2201 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2202 
2203 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2204 
2205 	/* From in_flight test above, we know that cwnd > in_flight.  */
2206 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2207 
2208 	limit = min(send_win, cong_win);
2209 
2210 	/* If a full-sized TSO skb can be sent, do it. */
2211 	if (limit >= max_segs * tp->mss_cache)
2212 		goto send_now;
2213 
2214 	/* Middle in queue won't get any more data, full sendable already? */
2215 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2216 		goto send_now;
2217 
2218 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2219 	if (win_divisor) {
2220 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2221 
2222 		/* If at least some fraction of a window is available,
2223 		 * just use it.
2224 		 */
2225 		chunk /= win_divisor;
2226 		if (limit >= chunk)
2227 			goto send_now;
2228 	} else {
2229 		/* Different approach, try not to defer past a single
2230 		 * ACK.  Receiver should ACK every other full sized
2231 		 * frame, so if we have space for more than 3 frames
2232 		 * then send now.
2233 		 */
2234 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2235 			goto send_now;
2236 	}
2237 
2238 	/* TODO : use tsorted_sent_queue ? */
2239 	head = tcp_rtx_queue_head(sk);
2240 	if (!head)
2241 		goto send_now;
2242 	delta = tp->tcp_clock_cache - head->tstamp;
2243 	/* If next ACK is likely to come too late (half srtt), do not defer */
2244 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2245 		goto send_now;
2246 
2247 	/* Ok, it looks like it is advisable to defer.
2248 	 * Three cases are tracked :
2249 	 * 1) We are cwnd-limited
2250 	 * 2) We are rwnd-limited
2251 	 * 3) We are application limited.
2252 	 */
2253 	if (cong_win < send_win) {
2254 		if (cong_win <= skb->len) {
2255 			*is_cwnd_limited = true;
2256 			return true;
2257 		}
2258 	} else {
2259 		if (send_win <= skb->len) {
2260 			*is_rwnd_limited = true;
2261 			return true;
2262 		}
2263 	}
2264 
2265 	/* If this packet won't get more data, do not wait. */
2266 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2267 	    TCP_SKB_CB(skb)->eor)
2268 		goto send_now;
2269 
2270 	return true;
2271 
2272 send_now:
2273 	return false;
2274 }
2275 
2276 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2277 {
2278 	struct inet_connection_sock *icsk = inet_csk(sk);
2279 	struct tcp_sock *tp = tcp_sk(sk);
2280 	struct net *net = sock_net(sk);
2281 	u32 interval;
2282 	s32 delta;
2283 
2284 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2285 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2286 	if (unlikely(delta >= interval * HZ)) {
2287 		int mss = tcp_current_mss(sk);
2288 
2289 		/* Update current search range */
2290 		icsk->icsk_mtup.probe_size = 0;
2291 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2292 			sizeof(struct tcphdr) +
2293 			icsk->icsk_af_ops->net_header_len;
2294 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2295 
2296 		/* Update probe time stamp */
2297 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2298 	}
2299 }
2300 
2301 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2302 {
2303 	struct sk_buff *skb, *next;
2304 
2305 	skb = tcp_send_head(sk);
2306 	tcp_for_write_queue_from_safe(skb, next, sk) {
2307 		if (len <= skb->len)
2308 			break;
2309 
2310 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2311 		    tcp_has_tx_tstamp(skb) ||
2312 		    !skb_pure_zcopy_same(skb, next))
2313 			return false;
2314 
2315 		len -= skb->len;
2316 	}
2317 
2318 	return true;
2319 }
2320 
2321 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2322 			     int probe_size)
2323 {
2324 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2325 	int i, todo, len = 0, nr_frags = 0;
2326 	const struct sk_buff *skb;
2327 
2328 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2329 		return -ENOMEM;
2330 
2331 	skb_queue_walk(&sk->sk_write_queue, skb) {
2332 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2333 
2334 		if (skb_headlen(skb))
2335 			return -EINVAL;
2336 
2337 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2338 			if (len >= probe_size)
2339 				goto commit;
2340 			todo = min_t(int, skb_frag_size(fragfrom),
2341 				     probe_size - len);
2342 			len += todo;
2343 			if (lastfrag &&
2344 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2345 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2346 						      skb_frag_size(lastfrag)) {
2347 				skb_frag_size_add(lastfrag, todo);
2348 				continue;
2349 			}
2350 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2351 				return -E2BIG;
2352 			skb_frag_page_copy(fragto, fragfrom);
2353 			skb_frag_off_copy(fragto, fragfrom);
2354 			skb_frag_size_set(fragto, todo);
2355 			nr_frags++;
2356 			lastfrag = fragto++;
2357 		}
2358 	}
2359 commit:
2360 	WARN_ON_ONCE(len != probe_size);
2361 	for (i = 0; i < nr_frags; i++)
2362 		skb_frag_ref(to, i);
2363 
2364 	skb_shinfo(to)->nr_frags = nr_frags;
2365 	to->truesize += probe_size;
2366 	to->len += probe_size;
2367 	to->data_len += probe_size;
2368 	__skb_header_release(to);
2369 	return 0;
2370 }
2371 
2372 /* Create a new MTU probe if we are ready.
2373  * MTU probe is regularly attempting to increase the path MTU by
2374  * deliberately sending larger packets.  This discovers routing
2375  * changes resulting in larger path MTUs.
2376  *
2377  * Returns 0 if we should wait to probe (no cwnd available),
2378  *         1 if a probe was sent,
2379  *         -1 otherwise
2380  */
2381 static int tcp_mtu_probe(struct sock *sk)
2382 {
2383 	struct inet_connection_sock *icsk = inet_csk(sk);
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 	struct sk_buff *skb, *nskb, *next;
2386 	struct net *net = sock_net(sk);
2387 	int probe_size;
2388 	int size_needed;
2389 	int copy, len;
2390 	int mss_now;
2391 	int interval;
2392 
2393 	/* Not currently probing/verifying,
2394 	 * not in recovery,
2395 	 * have enough cwnd, and
2396 	 * not SACKing (the variable headers throw things off)
2397 	 */
2398 	if (likely(!icsk->icsk_mtup.enabled ||
2399 		   icsk->icsk_mtup.probe_size ||
2400 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2401 		   tcp_snd_cwnd(tp) < 11 ||
2402 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2403 		return -1;
2404 
2405 	/* Use binary search for probe_size between tcp_mss_base,
2406 	 * and current mss_clamp. if (search_high - search_low)
2407 	 * smaller than a threshold, backoff from probing.
2408 	 */
2409 	mss_now = tcp_current_mss(sk);
2410 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2411 				    icsk->icsk_mtup.search_low) >> 1);
2412 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2413 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2414 	/* When misfortune happens, we are reprobing actively,
2415 	 * and then reprobe timer has expired. We stick with current
2416 	 * probing process by not resetting search range to its orignal.
2417 	 */
2418 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2419 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2420 		/* Check whether enough time has elaplased for
2421 		 * another round of probing.
2422 		 */
2423 		tcp_mtu_check_reprobe(sk);
2424 		return -1;
2425 	}
2426 
2427 	/* Have enough data in the send queue to probe? */
2428 	if (tp->write_seq - tp->snd_nxt < size_needed)
2429 		return -1;
2430 
2431 	if (tp->snd_wnd < size_needed)
2432 		return -1;
2433 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2434 		return 0;
2435 
2436 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2437 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2438 		if (!tcp_packets_in_flight(tp))
2439 			return -1;
2440 		else
2441 			return 0;
2442 	}
2443 
2444 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2445 		return -1;
2446 
2447 	/* We're allowed to probe.  Build it now. */
2448 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2449 	if (!nskb)
2450 		return -1;
2451 
2452 	/* build the payload, and be prepared to abort if this fails. */
2453 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2454 		tcp_skb_tsorted_anchor_cleanup(nskb);
2455 		consume_skb(nskb);
2456 		return -1;
2457 	}
2458 	sk_wmem_queued_add(sk, nskb->truesize);
2459 	sk_mem_charge(sk, nskb->truesize);
2460 
2461 	skb = tcp_send_head(sk);
2462 	skb_copy_decrypted(nskb, skb);
2463 	mptcp_skb_ext_copy(nskb, skb);
2464 
2465 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2466 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2467 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2468 
2469 	tcp_insert_write_queue_before(nskb, skb, sk);
2470 	tcp_highest_sack_replace(sk, skb, nskb);
2471 
2472 	len = 0;
2473 	tcp_for_write_queue_from_safe(skb, next, sk) {
2474 		copy = min_t(int, skb->len, probe_size - len);
2475 
2476 		if (skb->len <= copy) {
2477 			/* We've eaten all the data from this skb.
2478 			 * Throw it away. */
2479 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2480 			/* If this is the last SKB we copy and eor is set
2481 			 * we need to propagate it to the new skb.
2482 			 */
2483 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2484 			tcp_skb_collapse_tstamp(nskb, skb);
2485 			tcp_unlink_write_queue(skb, sk);
2486 			tcp_wmem_free_skb(sk, skb);
2487 		} else {
2488 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2489 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2490 			__pskb_trim_head(skb, copy);
2491 			tcp_set_skb_tso_segs(skb, mss_now);
2492 			TCP_SKB_CB(skb)->seq += copy;
2493 		}
2494 
2495 		len += copy;
2496 
2497 		if (len >= probe_size)
2498 			break;
2499 	}
2500 	tcp_init_tso_segs(nskb, nskb->len);
2501 
2502 	/* We're ready to send.  If this fails, the probe will
2503 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2504 	 */
2505 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2506 		/* Decrement cwnd here because we are sending
2507 		 * effectively two packets. */
2508 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2509 		tcp_event_new_data_sent(sk, nskb);
2510 
2511 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2512 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2513 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2514 
2515 		return 1;
2516 	}
2517 
2518 	return -1;
2519 }
2520 
2521 static bool tcp_pacing_check(struct sock *sk)
2522 {
2523 	struct tcp_sock *tp = tcp_sk(sk);
2524 
2525 	if (!tcp_needs_internal_pacing(sk))
2526 		return false;
2527 
2528 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2529 		return false;
2530 
2531 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2532 		hrtimer_start(&tp->pacing_timer,
2533 			      ns_to_ktime(tp->tcp_wstamp_ns),
2534 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2535 		sock_hold(sk);
2536 	}
2537 	return true;
2538 }
2539 
2540 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2541 {
2542 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2543 
2544 	/* No skb in the rtx queue. */
2545 	if (!node)
2546 		return true;
2547 
2548 	/* Only one skb in rtx queue. */
2549 	return !node->rb_left && !node->rb_right;
2550 }
2551 
2552 /* TCP Small Queues :
2553  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2554  * (These limits are doubled for retransmits)
2555  * This allows for :
2556  *  - better RTT estimation and ACK scheduling
2557  *  - faster recovery
2558  *  - high rates
2559  * Alas, some drivers / subsystems require a fair amount
2560  * of queued bytes to ensure line rate.
2561  * One example is wifi aggregation (802.11 AMPDU)
2562  */
2563 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2564 				  unsigned int factor)
2565 {
2566 	unsigned long limit;
2567 
2568 	limit = max_t(unsigned long,
2569 		      2 * skb->truesize,
2570 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2571 	if (sk->sk_pacing_status == SK_PACING_NONE)
2572 		limit = min_t(unsigned long, limit,
2573 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2574 	limit <<= factor;
2575 
2576 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2577 	    tcp_sk(sk)->tcp_tx_delay) {
2578 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2579 				  tcp_sk(sk)->tcp_tx_delay;
2580 
2581 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2582 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2583 		 * USEC_PER_SEC is approximated by 2^20.
2584 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2585 		 */
2586 		extra_bytes >>= (20 - 1);
2587 		limit += extra_bytes;
2588 	}
2589 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2590 		/* Always send skb if rtx queue is empty or has one skb.
2591 		 * No need to wait for TX completion to call us back,
2592 		 * after softirq/tasklet schedule.
2593 		 * This helps when TX completions are delayed too much.
2594 		 */
2595 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2596 			return false;
2597 
2598 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2599 		/* It is possible TX completion already happened
2600 		 * before we set TSQ_THROTTLED, so we must
2601 		 * test again the condition.
2602 		 */
2603 		smp_mb__after_atomic();
2604 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2605 			return true;
2606 	}
2607 	return false;
2608 }
2609 
2610 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2611 {
2612 	const u32 now = tcp_jiffies32;
2613 	enum tcp_chrono old = tp->chrono_type;
2614 
2615 	if (old > TCP_CHRONO_UNSPEC)
2616 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2617 	tp->chrono_start = now;
2618 	tp->chrono_type = new;
2619 }
2620 
2621 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2622 {
2623 	struct tcp_sock *tp = tcp_sk(sk);
2624 
2625 	/* If there are multiple conditions worthy of tracking in a
2626 	 * chronograph then the highest priority enum takes precedence
2627 	 * over the other conditions. So that if something "more interesting"
2628 	 * starts happening, stop the previous chrono and start a new one.
2629 	 */
2630 	if (type > tp->chrono_type)
2631 		tcp_chrono_set(tp, type);
2632 }
2633 
2634 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2635 {
2636 	struct tcp_sock *tp = tcp_sk(sk);
2637 
2638 
2639 	/* There are multiple conditions worthy of tracking in a
2640 	 * chronograph, so that the highest priority enum takes
2641 	 * precedence over the other conditions (see tcp_chrono_start).
2642 	 * If a condition stops, we only stop chrono tracking if
2643 	 * it's the "most interesting" or current chrono we are
2644 	 * tracking and starts busy chrono if we have pending data.
2645 	 */
2646 	if (tcp_rtx_and_write_queues_empty(sk))
2647 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2648 	else if (type == tp->chrono_type)
2649 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2650 }
2651 
2652 /* This routine writes packets to the network.  It advances the
2653  * send_head.  This happens as incoming acks open up the remote
2654  * window for us.
2655  *
2656  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2657  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2658  * account rare use of URG, this is not a big flaw.
2659  *
2660  * Send at most one packet when push_one > 0. Temporarily ignore
2661  * cwnd limit to force at most one packet out when push_one == 2.
2662 
2663  * Returns true, if no segments are in flight and we have queued segments,
2664  * but cannot send anything now because of SWS or another problem.
2665  */
2666 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2667 			   int push_one, gfp_t gfp)
2668 {
2669 	struct tcp_sock *tp = tcp_sk(sk);
2670 	struct sk_buff *skb;
2671 	unsigned int tso_segs, sent_pkts;
2672 	int cwnd_quota;
2673 	int result;
2674 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2675 	u32 max_segs;
2676 
2677 	sent_pkts = 0;
2678 
2679 	tcp_mstamp_refresh(tp);
2680 	if (!push_one) {
2681 		/* Do MTU probing. */
2682 		result = tcp_mtu_probe(sk);
2683 		if (!result) {
2684 			return false;
2685 		} else if (result > 0) {
2686 			sent_pkts = 1;
2687 		}
2688 	}
2689 
2690 	max_segs = tcp_tso_segs(sk, mss_now);
2691 	while ((skb = tcp_send_head(sk))) {
2692 		unsigned int limit;
2693 
2694 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2695 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2696 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2697 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2698 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2699 			tcp_init_tso_segs(skb, mss_now);
2700 			goto repair; /* Skip network transmission */
2701 		}
2702 
2703 		if (tcp_pacing_check(sk))
2704 			break;
2705 
2706 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2707 		BUG_ON(!tso_segs);
2708 
2709 		cwnd_quota = tcp_cwnd_test(tp, skb);
2710 		if (!cwnd_quota) {
2711 			if (push_one == 2)
2712 				/* Force out a loss probe pkt. */
2713 				cwnd_quota = 1;
2714 			else
2715 				break;
2716 		}
2717 
2718 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2719 			is_rwnd_limited = true;
2720 			break;
2721 		}
2722 
2723 		if (tso_segs == 1) {
2724 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2725 						     (tcp_skb_is_last(sk, skb) ?
2726 						      nonagle : TCP_NAGLE_PUSH))))
2727 				break;
2728 		} else {
2729 			if (!push_one &&
2730 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2731 						 &is_rwnd_limited, max_segs))
2732 				break;
2733 		}
2734 
2735 		limit = mss_now;
2736 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2737 			limit = tcp_mss_split_point(sk, skb, mss_now,
2738 						    min_t(unsigned int,
2739 							  cwnd_quota,
2740 							  max_segs),
2741 						    nonagle);
2742 
2743 		if (skb->len > limit &&
2744 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2745 			break;
2746 
2747 		if (tcp_small_queue_check(sk, skb, 0))
2748 			break;
2749 
2750 		/* Argh, we hit an empty skb(), presumably a thread
2751 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2752 		 * We do not want to send a pure-ack packet and have
2753 		 * a strange looking rtx queue with empty packet(s).
2754 		 */
2755 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2756 			break;
2757 
2758 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2759 			break;
2760 
2761 repair:
2762 		/* Advance the send_head.  This one is sent out.
2763 		 * This call will increment packets_out.
2764 		 */
2765 		tcp_event_new_data_sent(sk, skb);
2766 
2767 		tcp_minshall_update(tp, mss_now, skb);
2768 		sent_pkts += tcp_skb_pcount(skb);
2769 
2770 		if (push_one)
2771 			break;
2772 	}
2773 
2774 	if (is_rwnd_limited)
2775 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2776 	else
2777 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2778 
2779 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2780 	if (likely(sent_pkts || is_cwnd_limited))
2781 		tcp_cwnd_validate(sk, is_cwnd_limited);
2782 
2783 	if (likely(sent_pkts)) {
2784 		if (tcp_in_cwnd_reduction(sk))
2785 			tp->prr_out += sent_pkts;
2786 
2787 		/* Send one loss probe per tail loss episode. */
2788 		if (push_one != 2)
2789 			tcp_schedule_loss_probe(sk, false);
2790 		return false;
2791 	}
2792 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2793 }
2794 
2795 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2796 {
2797 	struct inet_connection_sock *icsk = inet_csk(sk);
2798 	struct tcp_sock *tp = tcp_sk(sk);
2799 	u32 timeout, timeout_us, rto_delta_us;
2800 	int early_retrans;
2801 
2802 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2803 	 * finishes.
2804 	 */
2805 	if (rcu_access_pointer(tp->fastopen_rsk))
2806 		return false;
2807 
2808 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2809 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2810 	 * not in loss recovery, that are either limited by cwnd or application.
2811 	 */
2812 	if ((early_retrans != 3 && early_retrans != 4) ||
2813 	    !tp->packets_out || !tcp_is_sack(tp) ||
2814 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2815 	     icsk->icsk_ca_state != TCP_CA_CWR))
2816 		return false;
2817 
2818 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2819 	 * for delayed ack when there's one outstanding packet. If no RTT
2820 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2821 	 */
2822 	if (tp->srtt_us) {
2823 		timeout_us = tp->srtt_us >> 2;
2824 		if (tp->packets_out == 1)
2825 			timeout_us += tcp_rto_min_us(sk);
2826 		else
2827 			timeout_us += TCP_TIMEOUT_MIN_US;
2828 		timeout = usecs_to_jiffies(timeout_us);
2829 	} else {
2830 		timeout = TCP_TIMEOUT_INIT;
2831 	}
2832 
2833 	/* If the RTO formula yields an earlier time, then use that time. */
2834 	rto_delta_us = advancing_rto ?
2835 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2836 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2837 	if (rto_delta_us > 0)
2838 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2839 
2840 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2841 	return true;
2842 }
2843 
2844 /* Thanks to skb fast clones, we can detect if a prior transmit of
2845  * a packet is still in a qdisc or driver queue.
2846  * In this case, there is very little point doing a retransmit !
2847  */
2848 static bool skb_still_in_host_queue(struct sock *sk,
2849 				    const struct sk_buff *skb)
2850 {
2851 	if (unlikely(skb_fclone_busy(sk, skb))) {
2852 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2853 		smp_mb__after_atomic();
2854 		if (skb_fclone_busy(sk, skb)) {
2855 			NET_INC_STATS(sock_net(sk),
2856 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2857 			return true;
2858 		}
2859 	}
2860 	return false;
2861 }
2862 
2863 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2864  * retransmit the last segment.
2865  */
2866 void tcp_send_loss_probe(struct sock *sk)
2867 {
2868 	struct tcp_sock *tp = tcp_sk(sk);
2869 	struct sk_buff *skb;
2870 	int pcount;
2871 	int mss = tcp_current_mss(sk);
2872 
2873 	/* At most one outstanding TLP */
2874 	if (tp->tlp_high_seq)
2875 		goto rearm_timer;
2876 
2877 	tp->tlp_retrans = 0;
2878 	skb = tcp_send_head(sk);
2879 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2880 		pcount = tp->packets_out;
2881 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2882 		if (tp->packets_out > pcount)
2883 			goto probe_sent;
2884 		goto rearm_timer;
2885 	}
2886 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2887 	if (unlikely(!skb)) {
2888 		WARN_ONCE(tp->packets_out,
2889 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2890 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2891 		inet_csk(sk)->icsk_pending = 0;
2892 		return;
2893 	}
2894 
2895 	if (skb_still_in_host_queue(sk, skb))
2896 		goto rearm_timer;
2897 
2898 	pcount = tcp_skb_pcount(skb);
2899 	if (WARN_ON(!pcount))
2900 		goto rearm_timer;
2901 
2902 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2903 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2904 					  (pcount - 1) * mss, mss,
2905 					  GFP_ATOMIC)))
2906 			goto rearm_timer;
2907 		skb = skb_rb_next(skb);
2908 	}
2909 
2910 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2911 		goto rearm_timer;
2912 
2913 	if (__tcp_retransmit_skb(sk, skb, 1))
2914 		goto rearm_timer;
2915 
2916 	tp->tlp_retrans = 1;
2917 
2918 probe_sent:
2919 	/* Record snd_nxt for loss detection. */
2920 	tp->tlp_high_seq = tp->snd_nxt;
2921 
2922 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2923 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2924 	inet_csk(sk)->icsk_pending = 0;
2925 rearm_timer:
2926 	tcp_rearm_rto(sk);
2927 }
2928 
2929 /* Push out any pending frames which were held back due to
2930  * TCP_CORK or attempt at coalescing tiny packets.
2931  * The socket must be locked by the caller.
2932  */
2933 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2934 			       int nonagle)
2935 {
2936 	/* If we are closed, the bytes will have to remain here.
2937 	 * In time closedown will finish, we empty the write queue and
2938 	 * all will be happy.
2939 	 */
2940 	if (unlikely(sk->sk_state == TCP_CLOSE))
2941 		return;
2942 
2943 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2944 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2945 		tcp_check_probe_timer(sk);
2946 }
2947 
2948 /* Send _single_ skb sitting at the send head. This function requires
2949  * true push pending frames to setup probe timer etc.
2950  */
2951 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2952 {
2953 	struct sk_buff *skb = tcp_send_head(sk);
2954 
2955 	BUG_ON(!skb || skb->len < mss_now);
2956 
2957 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2958 }
2959 
2960 /* This function returns the amount that we can raise the
2961  * usable window based on the following constraints
2962  *
2963  * 1. The window can never be shrunk once it is offered (RFC 793)
2964  * 2. We limit memory per socket
2965  *
2966  * RFC 1122:
2967  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2968  *  RECV.NEXT + RCV.WIN fixed until:
2969  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2970  *
2971  * i.e. don't raise the right edge of the window until you can raise
2972  * it at least MSS bytes.
2973  *
2974  * Unfortunately, the recommended algorithm breaks header prediction,
2975  * since header prediction assumes th->window stays fixed.
2976  *
2977  * Strictly speaking, keeping th->window fixed violates the receiver
2978  * side SWS prevention criteria. The problem is that under this rule
2979  * a stream of single byte packets will cause the right side of the
2980  * window to always advance by a single byte.
2981  *
2982  * Of course, if the sender implements sender side SWS prevention
2983  * then this will not be a problem.
2984  *
2985  * BSD seems to make the following compromise:
2986  *
2987  *	If the free space is less than the 1/4 of the maximum
2988  *	space available and the free space is less than 1/2 mss,
2989  *	then set the window to 0.
2990  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2991  *	Otherwise, just prevent the window from shrinking
2992  *	and from being larger than the largest representable value.
2993  *
2994  * This prevents incremental opening of the window in the regime
2995  * where TCP is limited by the speed of the reader side taking
2996  * data out of the TCP receive queue. It does nothing about
2997  * those cases where the window is constrained on the sender side
2998  * because the pipeline is full.
2999  *
3000  * BSD also seems to "accidentally" limit itself to windows that are a
3001  * multiple of MSS, at least until the free space gets quite small.
3002  * This would appear to be a side effect of the mbuf implementation.
3003  * Combining these two algorithms results in the observed behavior
3004  * of having a fixed window size at almost all times.
3005  *
3006  * Below we obtain similar behavior by forcing the offered window to
3007  * a multiple of the mss when it is feasible to do so.
3008  *
3009  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3010  * Regular options like TIMESTAMP are taken into account.
3011  */
3012 u32 __tcp_select_window(struct sock *sk)
3013 {
3014 	struct inet_connection_sock *icsk = inet_csk(sk);
3015 	struct tcp_sock *tp = tcp_sk(sk);
3016 	struct net *net = sock_net(sk);
3017 	/* MSS for the peer's data.  Previous versions used mss_clamp
3018 	 * here.  I don't know if the value based on our guesses
3019 	 * of peer's MSS is better for the performance.  It's more correct
3020 	 * but may be worse for the performance because of rcv_mss
3021 	 * fluctuations.  --SAW  1998/11/1
3022 	 */
3023 	int mss = icsk->icsk_ack.rcv_mss;
3024 	int free_space = tcp_space(sk);
3025 	int allowed_space = tcp_full_space(sk);
3026 	int full_space, window;
3027 
3028 	if (sk_is_mptcp(sk))
3029 		mptcp_space(sk, &free_space, &allowed_space);
3030 
3031 	full_space = min_t(int, tp->window_clamp, allowed_space);
3032 
3033 	if (unlikely(mss > full_space)) {
3034 		mss = full_space;
3035 		if (mss <= 0)
3036 			return 0;
3037 	}
3038 
3039 	/* Only allow window shrink if the sysctl is enabled and we have
3040 	 * a non-zero scaling factor in effect.
3041 	 */
3042 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3043 		goto shrink_window_allowed;
3044 
3045 	/* do not allow window to shrink */
3046 
3047 	if (free_space < (full_space >> 1)) {
3048 		icsk->icsk_ack.quick = 0;
3049 
3050 		if (tcp_under_memory_pressure(sk))
3051 			tcp_adjust_rcv_ssthresh(sk);
3052 
3053 		/* free_space might become our new window, make sure we don't
3054 		 * increase it due to wscale.
3055 		 */
3056 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3057 
3058 		/* if free space is less than mss estimate, or is below 1/16th
3059 		 * of the maximum allowed, try to move to zero-window, else
3060 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3061 		 * new incoming data is dropped due to memory limits.
3062 		 * With large window, mss test triggers way too late in order
3063 		 * to announce zero window in time before rmem limit kicks in.
3064 		 */
3065 		if (free_space < (allowed_space >> 4) || free_space < mss)
3066 			return 0;
3067 	}
3068 
3069 	if (free_space > tp->rcv_ssthresh)
3070 		free_space = tp->rcv_ssthresh;
3071 
3072 	/* Don't do rounding if we are using window scaling, since the
3073 	 * scaled window will not line up with the MSS boundary anyway.
3074 	 */
3075 	if (tp->rx_opt.rcv_wscale) {
3076 		window = free_space;
3077 
3078 		/* Advertise enough space so that it won't get scaled away.
3079 		 * Import case: prevent zero window announcement if
3080 		 * 1<<rcv_wscale > mss.
3081 		 */
3082 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3083 	} else {
3084 		window = tp->rcv_wnd;
3085 		/* Get the largest window that is a nice multiple of mss.
3086 		 * Window clamp already applied above.
3087 		 * If our current window offering is within 1 mss of the
3088 		 * free space we just keep it. This prevents the divide
3089 		 * and multiply from happening most of the time.
3090 		 * We also don't do any window rounding when the free space
3091 		 * is too small.
3092 		 */
3093 		if (window <= free_space - mss || window > free_space)
3094 			window = rounddown(free_space, mss);
3095 		else if (mss == full_space &&
3096 			 free_space > window + (full_space >> 1))
3097 			window = free_space;
3098 	}
3099 
3100 	return window;
3101 
3102 shrink_window_allowed:
3103 	/* new window should always be an exact multiple of scaling factor */
3104 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3105 
3106 	if (free_space < (full_space >> 1)) {
3107 		icsk->icsk_ack.quick = 0;
3108 
3109 		if (tcp_under_memory_pressure(sk))
3110 			tcp_adjust_rcv_ssthresh(sk);
3111 
3112 		/* if free space is too low, return a zero window */
3113 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3114 			free_space < (1 << tp->rx_opt.rcv_wscale))
3115 			return 0;
3116 	}
3117 
3118 	if (free_space > tp->rcv_ssthresh) {
3119 		free_space = tp->rcv_ssthresh;
3120 		/* new window should always be an exact multiple of scaling factor
3121 		 *
3122 		 * For this case, we ALIGN "up" (increase free_space) because
3123 		 * we know free_space is not zero here, it has been reduced from
3124 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3125 		 * (unlike sk_rcvbuf).
3126 		 */
3127 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3128 	}
3129 
3130 	return free_space;
3131 }
3132 
3133 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3134 			     const struct sk_buff *next_skb)
3135 {
3136 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3137 		const struct skb_shared_info *next_shinfo =
3138 			skb_shinfo(next_skb);
3139 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3140 
3141 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3142 		shinfo->tskey = next_shinfo->tskey;
3143 		TCP_SKB_CB(skb)->txstamp_ack |=
3144 			TCP_SKB_CB(next_skb)->txstamp_ack;
3145 	}
3146 }
3147 
3148 /* Collapses two adjacent SKB's during retransmission. */
3149 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3150 {
3151 	struct tcp_sock *tp = tcp_sk(sk);
3152 	struct sk_buff *next_skb = skb_rb_next(skb);
3153 	int next_skb_size;
3154 
3155 	next_skb_size = next_skb->len;
3156 
3157 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3158 
3159 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3160 		return false;
3161 
3162 	tcp_highest_sack_replace(sk, next_skb, skb);
3163 
3164 	/* Update sequence range on original skb. */
3165 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3166 
3167 	/* Merge over control information. This moves PSH/FIN etc. over */
3168 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3169 
3170 	/* All done, get rid of second SKB and account for it so
3171 	 * packet counting does not break.
3172 	 */
3173 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3174 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3175 
3176 	/* changed transmit queue under us so clear hints */
3177 	tcp_clear_retrans_hints_partial(tp);
3178 	if (next_skb == tp->retransmit_skb_hint)
3179 		tp->retransmit_skb_hint = skb;
3180 
3181 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3182 
3183 	tcp_skb_collapse_tstamp(skb, next_skb);
3184 
3185 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3186 	return true;
3187 }
3188 
3189 /* Check if coalescing SKBs is legal. */
3190 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3191 {
3192 	if (tcp_skb_pcount(skb) > 1)
3193 		return false;
3194 	if (skb_cloned(skb))
3195 		return false;
3196 	/* Some heuristics for collapsing over SACK'd could be invented */
3197 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3198 		return false;
3199 
3200 	return true;
3201 }
3202 
3203 /* Collapse packets in the retransmit queue to make to create
3204  * less packets on the wire. This is only done on retransmission.
3205  */
3206 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3207 				     int space)
3208 {
3209 	struct tcp_sock *tp = tcp_sk(sk);
3210 	struct sk_buff *skb = to, *tmp;
3211 	bool first = true;
3212 
3213 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3214 		return;
3215 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3216 		return;
3217 
3218 	skb_rbtree_walk_from_safe(skb, tmp) {
3219 		if (!tcp_can_collapse(sk, skb))
3220 			break;
3221 
3222 		if (!tcp_skb_can_collapse(to, skb))
3223 			break;
3224 
3225 		space -= skb->len;
3226 
3227 		if (first) {
3228 			first = false;
3229 			continue;
3230 		}
3231 
3232 		if (space < 0)
3233 			break;
3234 
3235 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3236 			break;
3237 
3238 		if (!tcp_collapse_retrans(sk, to))
3239 			break;
3240 	}
3241 }
3242 
3243 /* This retransmits one SKB.  Policy decisions and retransmit queue
3244  * state updates are done by the caller.  Returns non-zero if an
3245  * error occurred which prevented the send.
3246  */
3247 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3248 {
3249 	struct inet_connection_sock *icsk = inet_csk(sk);
3250 	struct tcp_sock *tp = tcp_sk(sk);
3251 	unsigned int cur_mss;
3252 	int diff, len, err;
3253 	int avail_wnd;
3254 
3255 	/* Inconclusive MTU probe */
3256 	if (icsk->icsk_mtup.probe_size)
3257 		icsk->icsk_mtup.probe_size = 0;
3258 
3259 	if (skb_still_in_host_queue(sk, skb))
3260 		return -EBUSY;
3261 
3262 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3263 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3264 			WARN_ON_ONCE(1);
3265 			return -EINVAL;
3266 		}
3267 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3268 			return -ENOMEM;
3269 	}
3270 
3271 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3272 		return -EHOSTUNREACH; /* Routing failure or similar. */
3273 
3274 	cur_mss = tcp_current_mss(sk);
3275 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3276 
3277 	/* If receiver has shrunk his window, and skb is out of
3278 	 * new window, do not retransmit it. The exception is the
3279 	 * case, when window is shrunk to zero. In this case
3280 	 * our retransmit of one segment serves as a zero window probe.
3281 	 */
3282 	if (avail_wnd <= 0) {
3283 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3284 			return -EAGAIN;
3285 		avail_wnd = cur_mss;
3286 	}
3287 
3288 	len = cur_mss * segs;
3289 	if (len > avail_wnd) {
3290 		len = rounddown(avail_wnd, cur_mss);
3291 		if (!len)
3292 			len = avail_wnd;
3293 	}
3294 	if (skb->len > len) {
3295 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3296 				 cur_mss, GFP_ATOMIC))
3297 			return -ENOMEM; /* We'll try again later. */
3298 	} else {
3299 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3300 			return -ENOMEM;
3301 
3302 		diff = tcp_skb_pcount(skb);
3303 		tcp_set_skb_tso_segs(skb, cur_mss);
3304 		diff -= tcp_skb_pcount(skb);
3305 		if (diff)
3306 			tcp_adjust_pcount(sk, skb, diff);
3307 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3308 		if (skb->len < avail_wnd)
3309 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3310 	}
3311 
3312 	/* RFC3168, section 6.1.1.1. ECN fallback */
3313 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3314 		tcp_ecn_clear_syn(sk, skb);
3315 
3316 	/* Update global and local TCP statistics. */
3317 	segs = tcp_skb_pcount(skb);
3318 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3319 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3320 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3321 	tp->total_retrans += segs;
3322 	tp->bytes_retrans += skb->len;
3323 
3324 	/* make sure skb->data is aligned on arches that require it
3325 	 * and check if ack-trimming & collapsing extended the headroom
3326 	 * beyond what csum_start can cover.
3327 	 */
3328 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3329 		     skb_headroom(skb) >= 0xFFFF)) {
3330 		struct sk_buff *nskb;
3331 
3332 		tcp_skb_tsorted_save(skb) {
3333 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3334 			if (nskb) {
3335 				nskb->dev = NULL;
3336 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3337 			} else {
3338 				err = -ENOBUFS;
3339 			}
3340 		} tcp_skb_tsorted_restore(skb);
3341 
3342 		if (!err) {
3343 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3344 			tcp_rate_skb_sent(sk, skb);
3345 		}
3346 	} else {
3347 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3348 	}
3349 
3350 	/* To avoid taking spuriously low RTT samples based on a timestamp
3351 	 * for a transmit that never happened, always mark EVER_RETRANS
3352 	 */
3353 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3354 
3355 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3356 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3357 				  TCP_SKB_CB(skb)->seq, segs, err);
3358 
3359 	if (likely(!err)) {
3360 		trace_tcp_retransmit_skb(sk, skb);
3361 	} else if (err != -EBUSY) {
3362 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3363 	}
3364 	return err;
3365 }
3366 
3367 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3368 {
3369 	struct tcp_sock *tp = tcp_sk(sk);
3370 	int err = __tcp_retransmit_skb(sk, skb, segs);
3371 
3372 	if (err == 0) {
3373 #if FASTRETRANS_DEBUG > 0
3374 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3375 			net_dbg_ratelimited("retrans_out leaked\n");
3376 		}
3377 #endif
3378 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3379 		tp->retrans_out += tcp_skb_pcount(skb);
3380 	}
3381 
3382 	/* Save stamp of the first (attempted) retransmit. */
3383 	if (!tp->retrans_stamp)
3384 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3385 
3386 	if (tp->undo_retrans < 0)
3387 		tp->undo_retrans = 0;
3388 	tp->undo_retrans += tcp_skb_pcount(skb);
3389 	return err;
3390 }
3391 
3392 /* This gets called after a retransmit timeout, and the initially
3393  * retransmitted data is acknowledged.  It tries to continue
3394  * resending the rest of the retransmit queue, until either
3395  * we've sent it all or the congestion window limit is reached.
3396  */
3397 void tcp_xmit_retransmit_queue(struct sock *sk)
3398 {
3399 	const struct inet_connection_sock *icsk = inet_csk(sk);
3400 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3401 	struct tcp_sock *tp = tcp_sk(sk);
3402 	bool rearm_timer = false;
3403 	u32 max_segs;
3404 	int mib_idx;
3405 
3406 	if (!tp->packets_out)
3407 		return;
3408 
3409 	rtx_head = tcp_rtx_queue_head(sk);
3410 	skb = tp->retransmit_skb_hint ?: rtx_head;
3411 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3412 	skb_rbtree_walk_from(skb) {
3413 		__u8 sacked;
3414 		int segs;
3415 
3416 		if (tcp_pacing_check(sk))
3417 			break;
3418 
3419 		/* we could do better than to assign each time */
3420 		if (!hole)
3421 			tp->retransmit_skb_hint = skb;
3422 
3423 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3424 		if (segs <= 0)
3425 			break;
3426 		sacked = TCP_SKB_CB(skb)->sacked;
3427 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3428 		 * we need to make sure not sending too bigs TSO packets
3429 		 */
3430 		segs = min_t(int, segs, max_segs);
3431 
3432 		if (tp->retrans_out >= tp->lost_out) {
3433 			break;
3434 		} else if (!(sacked & TCPCB_LOST)) {
3435 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3436 				hole = skb;
3437 			continue;
3438 
3439 		} else {
3440 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3441 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3442 			else
3443 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3444 		}
3445 
3446 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3447 			continue;
3448 
3449 		if (tcp_small_queue_check(sk, skb, 1))
3450 			break;
3451 
3452 		if (tcp_retransmit_skb(sk, skb, segs))
3453 			break;
3454 
3455 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3456 
3457 		if (tcp_in_cwnd_reduction(sk))
3458 			tp->prr_out += tcp_skb_pcount(skb);
3459 
3460 		if (skb == rtx_head &&
3461 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3462 			rearm_timer = true;
3463 
3464 	}
3465 	if (rearm_timer)
3466 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3467 				     inet_csk(sk)->icsk_rto,
3468 				     TCP_RTO_MAX);
3469 }
3470 
3471 /* We allow to exceed memory limits for FIN packets to expedite
3472  * connection tear down and (memory) recovery.
3473  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3474  * or even be forced to close flow without any FIN.
3475  * In general, we want to allow one skb per socket to avoid hangs
3476  * with edge trigger epoll()
3477  */
3478 void sk_forced_mem_schedule(struct sock *sk, int size)
3479 {
3480 	int delta, amt;
3481 
3482 	delta = size - sk->sk_forward_alloc;
3483 	if (delta <= 0)
3484 		return;
3485 	amt = sk_mem_pages(delta);
3486 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3487 	sk_memory_allocated_add(sk, amt);
3488 
3489 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3490 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3491 					gfp_memcg_charge() | __GFP_NOFAIL);
3492 }
3493 
3494 /* Send a FIN. The caller locks the socket for us.
3495  * We should try to send a FIN packet really hard, but eventually give up.
3496  */
3497 void tcp_send_fin(struct sock *sk)
3498 {
3499 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3500 	struct tcp_sock *tp = tcp_sk(sk);
3501 
3502 	/* Optimization, tack on the FIN if we have one skb in write queue and
3503 	 * this skb was not yet sent, or we are under memory pressure.
3504 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3505 	 * as TCP stack thinks it has already been transmitted.
3506 	 */
3507 	tskb = tail;
3508 	if (!tskb && tcp_under_memory_pressure(sk))
3509 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3510 
3511 	if (tskb) {
3512 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3513 		TCP_SKB_CB(tskb)->end_seq++;
3514 		tp->write_seq++;
3515 		if (!tail) {
3516 			/* This means tskb was already sent.
3517 			 * Pretend we included the FIN on previous transmit.
3518 			 * We need to set tp->snd_nxt to the value it would have
3519 			 * if FIN had been sent. This is because retransmit path
3520 			 * does not change tp->snd_nxt.
3521 			 */
3522 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3523 			return;
3524 		}
3525 	} else {
3526 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3527 		if (unlikely(!skb))
3528 			return;
3529 
3530 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3531 		skb_reserve(skb, MAX_TCP_HEADER);
3532 		sk_forced_mem_schedule(sk, skb->truesize);
3533 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3534 		tcp_init_nondata_skb(skb, tp->write_seq,
3535 				     TCPHDR_ACK | TCPHDR_FIN);
3536 		tcp_queue_skb(sk, skb);
3537 	}
3538 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3539 }
3540 
3541 /* We get here when a process closes a file descriptor (either due to
3542  * an explicit close() or as a byproduct of exit()'ing) and there
3543  * was unread data in the receive queue.  This behavior is recommended
3544  * by RFC 2525, section 2.17.  -DaveM
3545  */
3546 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3547 {
3548 	struct sk_buff *skb;
3549 
3550 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3551 
3552 	/* NOTE: No TCP options attached and we never retransmit this. */
3553 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3554 	if (!skb) {
3555 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3556 		return;
3557 	}
3558 
3559 	/* Reserve space for headers and prepare control bits. */
3560 	skb_reserve(skb, MAX_TCP_HEADER);
3561 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3562 			     TCPHDR_ACK | TCPHDR_RST);
3563 	tcp_mstamp_refresh(tcp_sk(sk));
3564 	/* Send it off. */
3565 	if (tcp_transmit_skb(sk, skb, 0, priority))
3566 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3567 
3568 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3569 	 * skb here is different to the troublesome skb, so use NULL
3570 	 */
3571 	trace_tcp_send_reset(sk, NULL);
3572 }
3573 
3574 /* Send a crossed SYN-ACK during socket establishment.
3575  * WARNING: This routine must only be called when we have already sent
3576  * a SYN packet that crossed the incoming SYN that caused this routine
3577  * to get called. If this assumption fails then the initial rcv_wnd
3578  * and rcv_wscale values will not be correct.
3579  */
3580 int tcp_send_synack(struct sock *sk)
3581 {
3582 	struct sk_buff *skb;
3583 
3584 	skb = tcp_rtx_queue_head(sk);
3585 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3586 		pr_err("%s: wrong queue state\n", __func__);
3587 		return -EFAULT;
3588 	}
3589 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3590 		if (skb_cloned(skb)) {
3591 			struct sk_buff *nskb;
3592 
3593 			tcp_skb_tsorted_save(skb) {
3594 				nskb = skb_copy(skb, GFP_ATOMIC);
3595 			} tcp_skb_tsorted_restore(skb);
3596 			if (!nskb)
3597 				return -ENOMEM;
3598 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3599 			tcp_highest_sack_replace(sk, skb, nskb);
3600 			tcp_rtx_queue_unlink_and_free(skb, sk);
3601 			__skb_header_release(nskb);
3602 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3603 			sk_wmem_queued_add(sk, nskb->truesize);
3604 			sk_mem_charge(sk, nskb->truesize);
3605 			skb = nskb;
3606 		}
3607 
3608 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3609 		tcp_ecn_send_synack(sk, skb);
3610 	}
3611 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3612 }
3613 
3614 /**
3615  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3616  * @sk: listener socket
3617  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3618  *       should not use it again.
3619  * @req: request_sock pointer
3620  * @foc: cookie for tcp fast open
3621  * @synack_type: Type of synack to prepare
3622  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3623  */
3624 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3625 				struct request_sock *req,
3626 				struct tcp_fastopen_cookie *foc,
3627 				enum tcp_synack_type synack_type,
3628 				struct sk_buff *syn_skb)
3629 {
3630 	struct inet_request_sock *ireq = inet_rsk(req);
3631 	const struct tcp_sock *tp = tcp_sk(sk);
3632 	struct tcp_md5sig_key *md5 = NULL;
3633 	struct tcp_out_options opts;
3634 	struct sk_buff *skb;
3635 	int tcp_header_size;
3636 	struct tcphdr *th;
3637 	int mss;
3638 	u64 now;
3639 
3640 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3641 	if (unlikely(!skb)) {
3642 		dst_release(dst);
3643 		return NULL;
3644 	}
3645 	/* Reserve space for headers. */
3646 	skb_reserve(skb, MAX_TCP_HEADER);
3647 
3648 	switch (synack_type) {
3649 	case TCP_SYNACK_NORMAL:
3650 		skb_set_owner_w(skb, req_to_sk(req));
3651 		break;
3652 	case TCP_SYNACK_COOKIE:
3653 		/* Under synflood, we do not attach skb to a socket,
3654 		 * to avoid false sharing.
3655 		 */
3656 		break;
3657 	case TCP_SYNACK_FASTOPEN:
3658 		/* sk is a const pointer, because we want to express multiple
3659 		 * cpu might call us concurrently.
3660 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3661 		 */
3662 		skb_set_owner_w(skb, (struct sock *)sk);
3663 		break;
3664 	}
3665 	skb_dst_set(skb, dst);
3666 
3667 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3668 
3669 	memset(&opts, 0, sizeof(opts));
3670 	if (tcp_rsk(req)->req_usec_ts < 0)
3671 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
3672 	now = tcp_clock_ns();
3673 #ifdef CONFIG_SYN_COOKIES
3674 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3675 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3676 				      true);
3677 	else
3678 #endif
3679 	{
3680 		skb_set_delivery_time(skb, now, true);
3681 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3682 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3683 	}
3684 
3685 #ifdef CONFIG_TCP_MD5SIG
3686 	rcu_read_lock();
3687 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3688 #endif
3689 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3690 	/* bpf program will be interested in the tcp_flags */
3691 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3692 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3693 					     foc, synack_type,
3694 					     syn_skb) + sizeof(*th);
3695 
3696 	skb_push(skb, tcp_header_size);
3697 	skb_reset_transport_header(skb);
3698 
3699 	th = (struct tcphdr *)skb->data;
3700 	memset(th, 0, sizeof(struct tcphdr));
3701 	th->syn = 1;
3702 	th->ack = 1;
3703 	tcp_ecn_make_synack(req, th);
3704 	th->source = htons(ireq->ir_num);
3705 	th->dest = ireq->ir_rmt_port;
3706 	skb->mark = ireq->ir_mark;
3707 	skb->ip_summed = CHECKSUM_PARTIAL;
3708 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3709 	/* XXX data is queued and acked as is. No buffer/window check */
3710 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3711 
3712 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3713 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3714 	tcp_options_write(th, NULL, &opts);
3715 	th->doff = (tcp_header_size >> 2);
3716 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3717 
3718 #ifdef CONFIG_TCP_MD5SIG
3719 	/* Okay, we have all we need - do the md5 hash if needed */
3720 	if (md5)
3721 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3722 					       md5, req_to_sk(req), skb);
3723 	rcu_read_unlock();
3724 #endif
3725 
3726 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3727 				synack_type, &opts);
3728 
3729 	skb_set_delivery_time(skb, now, true);
3730 	tcp_add_tx_delay(skb, tp);
3731 
3732 	return skb;
3733 }
3734 EXPORT_SYMBOL(tcp_make_synack);
3735 
3736 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3737 {
3738 	struct inet_connection_sock *icsk = inet_csk(sk);
3739 	const struct tcp_congestion_ops *ca;
3740 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3741 
3742 	if (ca_key == TCP_CA_UNSPEC)
3743 		return;
3744 
3745 	rcu_read_lock();
3746 	ca = tcp_ca_find_key(ca_key);
3747 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3748 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3749 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3750 		icsk->icsk_ca_ops = ca;
3751 	}
3752 	rcu_read_unlock();
3753 }
3754 
3755 /* Do all connect socket setups that can be done AF independent. */
3756 static void tcp_connect_init(struct sock *sk)
3757 {
3758 	const struct dst_entry *dst = __sk_dst_get(sk);
3759 	struct tcp_sock *tp = tcp_sk(sk);
3760 	__u8 rcv_wscale;
3761 	u32 rcv_wnd;
3762 
3763 	/* We'll fix this up when we get a response from the other end.
3764 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3765 	 */
3766 	tp->tcp_header_len = sizeof(struct tcphdr);
3767 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3768 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3769 
3770 	/* If user gave his TCP_MAXSEG, record it to clamp */
3771 	if (tp->rx_opt.user_mss)
3772 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3773 	tp->max_window = 0;
3774 	tcp_mtup_init(sk);
3775 	tcp_sync_mss(sk, dst_mtu(dst));
3776 
3777 	tcp_ca_dst_init(sk, dst);
3778 
3779 	if (!tp->window_clamp)
3780 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3781 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3782 
3783 	tcp_initialize_rcv_mss(sk);
3784 
3785 	/* limit the window selection if the user enforce a smaller rx buffer */
3786 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3787 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3788 		tp->window_clamp = tcp_full_space(sk);
3789 
3790 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3791 	if (rcv_wnd == 0)
3792 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3793 
3794 	tcp_select_initial_window(sk, tcp_full_space(sk),
3795 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3796 				  &tp->rcv_wnd,
3797 				  &tp->window_clamp,
3798 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3799 				  &rcv_wscale,
3800 				  rcv_wnd);
3801 
3802 	tp->rx_opt.rcv_wscale = rcv_wscale;
3803 	tp->rcv_ssthresh = tp->rcv_wnd;
3804 
3805 	WRITE_ONCE(sk->sk_err, 0);
3806 	sock_reset_flag(sk, SOCK_DONE);
3807 	tp->snd_wnd = 0;
3808 	tcp_init_wl(tp, 0);
3809 	tcp_write_queue_purge(sk);
3810 	tp->snd_una = tp->write_seq;
3811 	tp->snd_sml = tp->write_seq;
3812 	tp->snd_up = tp->write_seq;
3813 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3814 
3815 	if (likely(!tp->repair))
3816 		tp->rcv_nxt = 0;
3817 	else
3818 		tp->rcv_tstamp = tcp_jiffies32;
3819 	tp->rcv_wup = tp->rcv_nxt;
3820 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3821 
3822 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3823 	inet_csk(sk)->icsk_retransmits = 0;
3824 	tcp_clear_retrans(tp);
3825 }
3826 
3827 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3828 {
3829 	struct tcp_sock *tp = tcp_sk(sk);
3830 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3831 
3832 	tcb->end_seq += skb->len;
3833 	__skb_header_release(skb);
3834 	sk_wmem_queued_add(sk, skb->truesize);
3835 	sk_mem_charge(sk, skb->truesize);
3836 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3837 	tp->packets_out += tcp_skb_pcount(skb);
3838 }
3839 
3840 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3841  * queue a data-only packet after the regular SYN, such that regular SYNs
3842  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3843  * only the SYN sequence, the data are retransmitted in the first ACK.
3844  * If cookie is not cached or other error occurs, falls back to send a
3845  * regular SYN with Fast Open cookie request option.
3846  */
3847 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3848 {
3849 	struct inet_connection_sock *icsk = inet_csk(sk);
3850 	struct tcp_sock *tp = tcp_sk(sk);
3851 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3852 	struct page_frag *pfrag = sk_page_frag(sk);
3853 	struct sk_buff *syn_data;
3854 	int space, err = 0;
3855 
3856 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3857 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3858 		goto fallback;
3859 
3860 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3861 	 * user-MSS. Reserve maximum option space for middleboxes that add
3862 	 * private TCP options. The cost is reduced data space in SYN :(
3863 	 */
3864 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3865 	/* Sync mss_cache after updating the mss_clamp */
3866 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3867 
3868 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3869 		MAX_TCP_OPTION_SPACE;
3870 
3871 	space = min_t(size_t, space, fo->size);
3872 
3873 	if (space &&
3874 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3875 				  pfrag, sk->sk_allocation))
3876 		goto fallback;
3877 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3878 	if (!syn_data)
3879 		goto fallback;
3880 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3881 	if (space) {
3882 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3883 		space = tcp_wmem_schedule(sk, space);
3884 	}
3885 	if (space) {
3886 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3887 					    space, &fo->data->msg_iter);
3888 		if (unlikely(!space)) {
3889 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3890 			kfree_skb(syn_data);
3891 			goto fallback;
3892 		}
3893 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3894 				   pfrag->offset, space);
3895 		page_ref_inc(pfrag->page);
3896 		pfrag->offset += space;
3897 		skb_len_add(syn_data, space);
3898 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3899 	}
3900 	/* No more data pending in inet_wait_for_connect() */
3901 	if (space == fo->size)
3902 		fo->data = NULL;
3903 	fo->copied = space;
3904 
3905 	tcp_connect_queue_skb(sk, syn_data);
3906 	if (syn_data->len)
3907 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3908 
3909 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3910 
3911 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3912 
3913 	/* Now full SYN+DATA was cloned and sent (or not),
3914 	 * remove the SYN from the original skb (syn_data)
3915 	 * we keep in write queue in case of a retransmit, as we
3916 	 * also have the SYN packet (with no data) in the same queue.
3917 	 */
3918 	TCP_SKB_CB(syn_data)->seq++;
3919 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3920 	if (!err) {
3921 		tp->syn_data = (fo->copied > 0);
3922 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3923 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3924 		goto done;
3925 	}
3926 
3927 	/* data was not sent, put it in write_queue */
3928 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3929 	tp->packets_out -= tcp_skb_pcount(syn_data);
3930 
3931 fallback:
3932 	/* Send a regular SYN with Fast Open cookie request option */
3933 	if (fo->cookie.len > 0)
3934 		fo->cookie.len = 0;
3935 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3936 	if (err)
3937 		tp->syn_fastopen = 0;
3938 done:
3939 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3940 	return err;
3941 }
3942 
3943 /* Build a SYN and send it off. */
3944 int tcp_connect(struct sock *sk)
3945 {
3946 	struct tcp_sock *tp = tcp_sk(sk);
3947 	struct sk_buff *buff;
3948 	int err;
3949 
3950 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3951 
3952 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3953 		return -EHOSTUNREACH; /* Routing failure or similar. */
3954 
3955 	tcp_connect_init(sk);
3956 
3957 	if (unlikely(tp->repair)) {
3958 		tcp_finish_connect(sk, NULL);
3959 		return 0;
3960 	}
3961 
3962 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3963 	if (unlikely(!buff))
3964 		return -ENOBUFS;
3965 
3966 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3967 	tcp_mstamp_refresh(tp);
3968 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
3969 	tcp_connect_queue_skb(sk, buff);
3970 	tcp_ecn_send_syn(sk, buff);
3971 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3972 
3973 	/* Send off SYN; include data in Fast Open. */
3974 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3975 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3976 	if (err == -ECONNREFUSED)
3977 		return err;
3978 
3979 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3980 	 * in order to make this packet get counted in tcpOutSegs.
3981 	 */
3982 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3983 	tp->pushed_seq = tp->write_seq;
3984 	buff = tcp_send_head(sk);
3985 	if (unlikely(buff)) {
3986 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3987 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3988 	}
3989 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3990 
3991 	/* Timer for repeating the SYN until an answer. */
3992 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3993 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3994 	return 0;
3995 }
3996 EXPORT_SYMBOL(tcp_connect);
3997 
3998 u32 tcp_delack_max(const struct sock *sk)
3999 {
4000 	const struct dst_entry *dst = __sk_dst_get(sk);
4001 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4002 
4003 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4004 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4005 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4006 
4007 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4008 	}
4009 	return delack_max;
4010 }
4011 
4012 /* Send out a delayed ack, the caller does the policy checking
4013  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4014  * for details.
4015  */
4016 void tcp_send_delayed_ack(struct sock *sk)
4017 {
4018 	struct inet_connection_sock *icsk = inet_csk(sk);
4019 	int ato = icsk->icsk_ack.ato;
4020 	unsigned long timeout;
4021 
4022 	if (ato > TCP_DELACK_MIN) {
4023 		const struct tcp_sock *tp = tcp_sk(sk);
4024 		int max_ato = HZ / 2;
4025 
4026 		if (inet_csk_in_pingpong_mode(sk) ||
4027 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4028 			max_ato = TCP_DELACK_MAX;
4029 
4030 		/* Slow path, intersegment interval is "high". */
4031 
4032 		/* If some rtt estimate is known, use it to bound delayed ack.
4033 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4034 		 * directly.
4035 		 */
4036 		if (tp->srtt_us) {
4037 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4038 					TCP_DELACK_MIN);
4039 
4040 			if (rtt < max_ato)
4041 				max_ato = rtt;
4042 		}
4043 
4044 		ato = min(ato, max_ato);
4045 	}
4046 
4047 	ato = min_t(u32, ato, tcp_delack_max(sk));
4048 
4049 	/* Stay within the limit we were given */
4050 	timeout = jiffies + ato;
4051 
4052 	/* Use new timeout only if there wasn't a older one earlier. */
4053 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4054 		/* If delack timer is about to expire, send ACK now. */
4055 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4056 			tcp_send_ack(sk);
4057 			return;
4058 		}
4059 
4060 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4061 			timeout = icsk->icsk_ack.timeout;
4062 	}
4063 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4064 	icsk->icsk_ack.timeout = timeout;
4065 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4066 }
4067 
4068 /* This routine sends an ack and also updates the window. */
4069 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4070 {
4071 	struct sk_buff *buff;
4072 
4073 	/* If we have been reset, we may not send again. */
4074 	if (sk->sk_state == TCP_CLOSE)
4075 		return;
4076 
4077 	/* We are not putting this on the write queue, so
4078 	 * tcp_transmit_skb() will set the ownership to this
4079 	 * sock.
4080 	 */
4081 	buff = alloc_skb(MAX_TCP_HEADER,
4082 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4083 	if (unlikely(!buff)) {
4084 		struct inet_connection_sock *icsk = inet_csk(sk);
4085 		unsigned long delay;
4086 
4087 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4088 		if (delay < TCP_RTO_MAX)
4089 			icsk->icsk_ack.retry++;
4090 		inet_csk_schedule_ack(sk);
4091 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4092 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4093 		return;
4094 	}
4095 
4096 	/* Reserve space for headers and prepare control bits. */
4097 	skb_reserve(buff, MAX_TCP_HEADER);
4098 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4099 
4100 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4101 	 * too much.
4102 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4103 	 */
4104 	skb_set_tcp_pure_ack(buff);
4105 
4106 	/* Send it off, this clears delayed acks for us. */
4107 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4108 }
4109 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4110 
4111 void tcp_send_ack(struct sock *sk)
4112 {
4113 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4114 }
4115 
4116 /* This routine sends a packet with an out of date sequence
4117  * number. It assumes the other end will try to ack it.
4118  *
4119  * Question: what should we make while urgent mode?
4120  * 4.4BSD forces sending single byte of data. We cannot send
4121  * out of window data, because we have SND.NXT==SND.MAX...
4122  *
4123  * Current solution: to send TWO zero-length segments in urgent mode:
4124  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4125  * out-of-date with SND.UNA-1 to probe window.
4126  */
4127 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4128 {
4129 	struct tcp_sock *tp = tcp_sk(sk);
4130 	struct sk_buff *skb;
4131 
4132 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4133 	skb = alloc_skb(MAX_TCP_HEADER,
4134 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4135 	if (!skb)
4136 		return -1;
4137 
4138 	/* Reserve space for headers and set control bits. */
4139 	skb_reserve(skb, MAX_TCP_HEADER);
4140 	/* Use a previous sequence.  This should cause the other
4141 	 * end to send an ack.  Don't queue or clone SKB, just
4142 	 * send it.
4143 	 */
4144 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4145 	NET_INC_STATS(sock_net(sk), mib);
4146 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4147 }
4148 
4149 /* Called from setsockopt( ... TCP_REPAIR ) */
4150 void tcp_send_window_probe(struct sock *sk)
4151 {
4152 	if (sk->sk_state == TCP_ESTABLISHED) {
4153 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4154 		tcp_mstamp_refresh(tcp_sk(sk));
4155 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4156 	}
4157 }
4158 
4159 /* Initiate keepalive or window probe from timer. */
4160 int tcp_write_wakeup(struct sock *sk, int mib)
4161 {
4162 	struct tcp_sock *tp = tcp_sk(sk);
4163 	struct sk_buff *skb;
4164 
4165 	if (sk->sk_state == TCP_CLOSE)
4166 		return -1;
4167 
4168 	skb = tcp_send_head(sk);
4169 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4170 		int err;
4171 		unsigned int mss = tcp_current_mss(sk);
4172 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4173 
4174 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4175 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4176 
4177 		/* We are probing the opening of a window
4178 		 * but the window size is != 0
4179 		 * must have been a result SWS avoidance ( sender )
4180 		 */
4181 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4182 		    skb->len > mss) {
4183 			seg_size = min(seg_size, mss);
4184 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4185 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4186 					 skb, seg_size, mss, GFP_ATOMIC))
4187 				return -1;
4188 		} else if (!tcp_skb_pcount(skb))
4189 			tcp_set_skb_tso_segs(skb, mss);
4190 
4191 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4192 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4193 		if (!err)
4194 			tcp_event_new_data_sent(sk, skb);
4195 		return err;
4196 	} else {
4197 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4198 			tcp_xmit_probe_skb(sk, 1, mib);
4199 		return tcp_xmit_probe_skb(sk, 0, mib);
4200 	}
4201 }
4202 
4203 /* A window probe timeout has occurred.  If window is not closed send
4204  * a partial packet else a zero probe.
4205  */
4206 void tcp_send_probe0(struct sock *sk)
4207 {
4208 	struct inet_connection_sock *icsk = inet_csk(sk);
4209 	struct tcp_sock *tp = tcp_sk(sk);
4210 	struct net *net = sock_net(sk);
4211 	unsigned long timeout;
4212 	int err;
4213 
4214 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4215 
4216 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4217 		/* Cancel probe timer, if it is not required. */
4218 		icsk->icsk_probes_out = 0;
4219 		icsk->icsk_backoff = 0;
4220 		icsk->icsk_probes_tstamp = 0;
4221 		return;
4222 	}
4223 
4224 	icsk->icsk_probes_out++;
4225 	if (err <= 0) {
4226 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4227 			icsk->icsk_backoff++;
4228 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4229 	} else {
4230 		/* If packet was not sent due to local congestion,
4231 		 * Let senders fight for local resources conservatively.
4232 		 */
4233 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4234 	}
4235 
4236 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4237 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4238 }
4239 
4240 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4241 {
4242 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4243 	struct flowi fl;
4244 	int res;
4245 
4246 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4247 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4248 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4249 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4250 				  NULL);
4251 	if (!res) {
4252 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4253 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4254 		if (unlikely(tcp_passive_fastopen(sk))) {
4255 			/* sk has const attribute because listeners are lockless.
4256 			 * However in this case, we are dealing with a passive fastopen
4257 			 * socket thus we can change total_retrans value.
4258 			 */
4259 			tcp_sk_rw(sk)->total_retrans++;
4260 		}
4261 		trace_tcp_retransmit_synack(sk, req);
4262 	}
4263 	return res;
4264 }
4265 EXPORT_SYMBOL(tcp_rtx_synack);
4266