1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, increase pingpong count. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 181 { 182 struct tcp_sock *tp = tcp_sk(sk); 183 184 if (unlikely(tp->compressed_ack)) { 185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 186 tp->compressed_ack); 187 tp->compressed_ack = 0; 188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 189 __sock_put(sk); 190 } 191 192 if (unlikely(rcv_nxt != tp->rcv_nxt)) 193 return; /* Special ACK sent by DCTCP to reflect ECN */ 194 tcp_dec_quickack_mode(sk); 195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = rounddown(space, mss); 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = min_t(u32, space, U16_MAX); 233 234 if (init_rcv_wnd) 235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 236 237 *rcv_wscale = 0; 238 if (wscale_ok) { 239 /* Set window scaling on max possible window */ 240 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 241 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 242 space = min_t(u32, space, *window_clamp); 243 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 244 0, TCP_MAX_WSCALE); 245 } 246 /* Set the clamp no higher than max representable value */ 247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 248 } 249 EXPORT_SYMBOL(tcp_select_initial_window); 250 251 /* Chose a new window to advertise, update state in tcp_sock for the 252 * socket, and return result with RFC1323 scaling applied. The return 253 * value can be stuffed directly into th->window for an outgoing 254 * frame. 255 */ 256 static u16 tcp_select_window(struct sock *sk) 257 { 258 struct tcp_sock *tp = tcp_sk(sk); 259 struct net *net = sock_net(sk); 260 u32 old_win = tp->rcv_wnd; 261 u32 cur_win, new_win; 262 263 /* Make the window 0 if we failed to queue the data because we 264 * are out of memory. The window is temporary, so we don't store 265 * it on the socket. 266 */ 267 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 268 return 0; 269 270 cur_win = tcp_receive_window(tp); 271 new_win = __tcp_select_window(sk); 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 281 /* Never shrink the offered window */ 282 if (new_win == 0) 283 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 285 } 286 } 287 288 tp->rcv_wnd = new_win; 289 tp->rcv_wup = tp->rcv_nxt; 290 291 /* Make sure we do not exceed the maximum possible 292 * scaled window. 293 */ 294 if (!tp->rx_opt.rcv_wscale && 295 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 296 new_win = min(new_win, MAX_TCP_WINDOW); 297 else 298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 299 300 /* RFC1323 scaling applied */ 301 new_win >>= tp->rx_opt.rcv_wscale; 302 303 /* If we advertise zero window, disable fast path. */ 304 if (new_win == 0) { 305 tp->pred_flags = 0; 306 if (old_win) 307 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 308 } else if (old_win == 0) { 309 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 310 } 311 312 return new_win; 313 } 314 315 /* Packet ECN state for a SYN-ACK */ 316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 317 { 318 const struct tcp_sock *tp = tcp_sk(sk); 319 320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 321 if (!(tp->ecn_flags & TCP_ECN_OK)) 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 323 else if (tcp_ca_needs_ecn(sk) || 324 tcp_bpf_ca_needs_ecn(sk)) 325 INET_ECN_xmit(sk); 326 } 327 328 /* Packet ECN state for a SYN. */ 329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 333 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 334 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 354 { 355 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 356 /* tp->ecn_flags are cleared at a later point in time when 357 * SYN ACK is ultimatively being received. 358 */ 359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 360 } 361 362 static void 363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 364 { 365 if (inet_rsk(req)->ecn_ok) 366 th->ece = 1; 367 } 368 369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 370 * be sent. 371 */ 372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 373 struct tcphdr *th, int tcp_header_len) 374 { 375 struct tcp_sock *tp = tcp_sk(sk); 376 377 if (tp->ecn_flags & TCP_ECN_OK) { 378 /* Not-retransmitted data segment: set ECT and inject CWR. */ 379 if (skb->len != tcp_header_len && 380 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 381 INET_ECN_xmit(sk); 382 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 383 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 384 th->cwr = 1; 385 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 386 } 387 } else if (!tcp_ca_needs_ecn(sk)) { 388 /* ACK or retransmitted segment: clear ECT|CE */ 389 INET_ECN_dontxmit(sk); 390 } 391 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 392 th->ece = 1; 393 } 394 } 395 396 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 397 * auto increment end seqno. 398 */ 399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 400 { 401 skb->ip_summed = CHECKSUM_PARTIAL; 402 403 TCP_SKB_CB(skb)->tcp_flags = flags; 404 405 tcp_skb_pcount_set(skb, 1); 406 407 TCP_SKB_CB(skb)->seq = seq; 408 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 409 seq++; 410 TCP_SKB_CB(skb)->end_seq = seq; 411 } 412 413 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 414 { 415 return tp->snd_una != tp->snd_up; 416 } 417 418 #define OPTION_SACK_ADVERTISE BIT(0) 419 #define OPTION_TS BIT(1) 420 #define OPTION_MD5 BIT(2) 421 #define OPTION_WSCALE BIT(3) 422 #define OPTION_FAST_OPEN_COOKIE BIT(8) 423 #define OPTION_SMC BIT(9) 424 #define OPTION_MPTCP BIT(10) 425 426 static void smc_options_write(__be32 *ptr, u16 *options) 427 { 428 #if IS_ENABLED(CONFIG_SMC) 429 if (static_branch_unlikely(&tcp_have_smc)) { 430 if (unlikely(OPTION_SMC & *options)) { 431 *ptr++ = htonl((TCPOPT_NOP << 24) | 432 (TCPOPT_NOP << 16) | 433 (TCPOPT_EXP << 8) | 434 (TCPOLEN_EXP_SMC_BASE)); 435 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 436 } 437 } 438 #endif 439 } 440 441 struct tcp_out_options { 442 u16 options; /* bit field of OPTION_* */ 443 u16 mss; /* 0 to disable */ 444 u8 ws; /* window scale, 0 to disable */ 445 u8 num_sack_blocks; /* number of SACK blocks to include */ 446 u8 hash_size; /* bytes in hash_location */ 447 u8 bpf_opt_len; /* length of BPF hdr option */ 448 __u8 *hash_location; /* temporary pointer, overloaded */ 449 __u32 tsval, tsecr; /* need to include OPTION_TS */ 450 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 451 struct mptcp_out_options mptcp; 452 }; 453 454 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 455 struct tcp_sock *tp, 456 struct tcp_out_options *opts) 457 { 458 #if IS_ENABLED(CONFIG_MPTCP) 459 if (unlikely(OPTION_MPTCP & opts->options)) 460 mptcp_write_options(th, ptr, tp, &opts->mptcp); 461 #endif 462 } 463 464 #ifdef CONFIG_CGROUP_BPF 465 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 466 enum tcp_synack_type synack_type) 467 { 468 if (unlikely(!skb)) 469 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 470 471 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 472 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 473 474 return 0; 475 } 476 477 /* req, syn_skb and synack_type are used when writing synack */ 478 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 479 struct request_sock *req, 480 struct sk_buff *syn_skb, 481 enum tcp_synack_type synack_type, 482 struct tcp_out_options *opts, 483 unsigned int *remaining) 484 { 485 struct bpf_sock_ops_kern sock_ops; 486 int err; 487 488 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 489 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 490 !*remaining) 491 return; 492 493 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 494 495 /* init sock_ops */ 496 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 497 498 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 499 500 if (req) { 501 /* The listen "sk" cannot be passed here because 502 * it is not locked. It would not make too much 503 * sense to do bpf_setsockopt(listen_sk) based 504 * on individual connection request also. 505 * 506 * Thus, "req" is passed here and the cgroup-bpf-progs 507 * of the listen "sk" will be run. 508 * 509 * "req" is also used here for fastopen even the "sk" here is 510 * a fullsock "child" sk. It is to keep the behavior 511 * consistent between fastopen and non-fastopen on 512 * the bpf programming side. 513 */ 514 sock_ops.sk = (struct sock *)req; 515 sock_ops.syn_skb = syn_skb; 516 } else { 517 sock_owned_by_me(sk); 518 519 sock_ops.is_fullsock = 1; 520 sock_ops.sk = sk; 521 } 522 523 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 524 sock_ops.remaining_opt_len = *remaining; 525 /* tcp_current_mss() does not pass a skb */ 526 if (skb) 527 bpf_skops_init_skb(&sock_ops, skb, 0); 528 529 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 530 531 if (err || sock_ops.remaining_opt_len == *remaining) 532 return; 533 534 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 535 /* round up to 4 bytes */ 536 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 537 538 *remaining -= opts->bpf_opt_len; 539 } 540 541 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 542 struct request_sock *req, 543 struct sk_buff *syn_skb, 544 enum tcp_synack_type synack_type, 545 struct tcp_out_options *opts) 546 { 547 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 548 struct bpf_sock_ops_kern sock_ops; 549 int err; 550 551 if (likely(!max_opt_len)) 552 return; 553 554 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 555 556 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 557 558 if (req) { 559 sock_ops.sk = (struct sock *)req; 560 sock_ops.syn_skb = syn_skb; 561 } else { 562 sock_owned_by_me(sk); 563 564 sock_ops.is_fullsock = 1; 565 sock_ops.sk = sk; 566 } 567 568 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 569 sock_ops.remaining_opt_len = max_opt_len; 570 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 571 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 572 573 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 574 575 if (err) 576 nr_written = 0; 577 else 578 nr_written = max_opt_len - sock_ops.remaining_opt_len; 579 580 if (nr_written < max_opt_len) 581 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 582 max_opt_len - nr_written); 583 } 584 #else 585 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 586 struct request_sock *req, 587 struct sk_buff *syn_skb, 588 enum tcp_synack_type synack_type, 589 struct tcp_out_options *opts, 590 unsigned int *remaining) 591 { 592 } 593 594 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 595 struct request_sock *req, 596 struct sk_buff *syn_skb, 597 enum tcp_synack_type synack_type, 598 struct tcp_out_options *opts) 599 { 600 } 601 #endif 602 603 /* Write previously computed TCP options to the packet. 604 * 605 * Beware: Something in the Internet is very sensitive to the ordering of 606 * TCP options, we learned this through the hard way, so be careful here. 607 * Luckily we can at least blame others for their non-compliance but from 608 * inter-operability perspective it seems that we're somewhat stuck with 609 * the ordering which we have been using if we want to keep working with 610 * those broken things (not that it currently hurts anybody as there isn't 611 * particular reason why the ordering would need to be changed). 612 * 613 * At least SACK_PERM as the first option is known to lead to a disaster 614 * (but it may well be that other scenarios fail similarly). 615 */ 616 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 617 struct tcp_out_options *opts) 618 { 619 __be32 *ptr = (__be32 *)(th + 1); 620 u16 options = opts->options; /* mungable copy */ 621 622 if (unlikely(OPTION_MD5 & options)) { 623 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 624 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 625 /* overload cookie hash location */ 626 opts->hash_location = (__u8 *)ptr; 627 ptr += 4; 628 } 629 630 if (unlikely(opts->mss)) { 631 *ptr++ = htonl((TCPOPT_MSS << 24) | 632 (TCPOLEN_MSS << 16) | 633 opts->mss); 634 } 635 636 if (likely(OPTION_TS & options)) { 637 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 638 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 639 (TCPOLEN_SACK_PERM << 16) | 640 (TCPOPT_TIMESTAMP << 8) | 641 TCPOLEN_TIMESTAMP); 642 options &= ~OPTION_SACK_ADVERTISE; 643 } else { 644 *ptr++ = htonl((TCPOPT_NOP << 24) | 645 (TCPOPT_NOP << 16) | 646 (TCPOPT_TIMESTAMP << 8) | 647 TCPOLEN_TIMESTAMP); 648 } 649 *ptr++ = htonl(opts->tsval); 650 *ptr++ = htonl(opts->tsecr); 651 } 652 653 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 654 *ptr++ = htonl((TCPOPT_NOP << 24) | 655 (TCPOPT_NOP << 16) | 656 (TCPOPT_SACK_PERM << 8) | 657 TCPOLEN_SACK_PERM); 658 } 659 660 if (unlikely(OPTION_WSCALE & options)) { 661 *ptr++ = htonl((TCPOPT_NOP << 24) | 662 (TCPOPT_WINDOW << 16) | 663 (TCPOLEN_WINDOW << 8) | 664 opts->ws); 665 } 666 667 if (unlikely(opts->num_sack_blocks)) { 668 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 669 tp->duplicate_sack : tp->selective_acks; 670 int this_sack; 671 672 *ptr++ = htonl((TCPOPT_NOP << 24) | 673 (TCPOPT_NOP << 16) | 674 (TCPOPT_SACK << 8) | 675 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 676 TCPOLEN_SACK_PERBLOCK))); 677 678 for (this_sack = 0; this_sack < opts->num_sack_blocks; 679 ++this_sack) { 680 *ptr++ = htonl(sp[this_sack].start_seq); 681 *ptr++ = htonl(sp[this_sack].end_seq); 682 } 683 684 tp->rx_opt.dsack = 0; 685 } 686 687 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 688 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 689 u8 *p = (u8 *)ptr; 690 u32 len; /* Fast Open option length */ 691 692 if (foc->exp) { 693 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 694 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 695 TCPOPT_FASTOPEN_MAGIC); 696 p += TCPOLEN_EXP_FASTOPEN_BASE; 697 } else { 698 len = TCPOLEN_FASTOPEN_BASE + foc->len; 699 *p++ = TCPOPT_FASTOPEN; 700 *p++ = len; 701 } 702 703 memcpy(p, foc->val, foc->len); 704 if ((len & 3) == 2) { 705 p[foc->len] = TCPOPT_NOP; 706 p[foc->len + 1] = TCPOPT_NOP; 707 } 708 ptr += (len + 3) >> 2; 709 } 710 711 smc_options_write(ptr, &options); 712 713 mptcp_options_write(th, ptr, tp, opts); 714 } 715 716 static void smc_set_option(const struct tcp_sock *tp, 717 struct tcp_out_options *opts, 718 unsigned int *remaining) 719 { 720 #if IS_ENABLED(CONFIG_SMC) 721 if (static_branch_unlikely(&tcp_have_smc)) { 722 if (tp->syn_smc) { 723 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 724 opts->options |= OPTION_SMC; 725 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 726 } 727 } 728 } 729 #endif 730 } 731 732 static void smc_set_option_cond(const struct tcp_sock *tp, 733 const struct inet_request_sock *ireq, 734 struct tcp_out_options *opts, 735 unsigned int *remaining) 736 { 737 #if IS_ENABLED(CONFIG_SMC) 738 if (static_branch_unlikely(&tcp_have_smc)) { 739 if (tp->syn_smc && ireq->smc_ok) { 740 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 741 opts->options |= OPTION_SMC; 742 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 743 } 744 } 745 } 746 #endif 747 } 748 749 static void mptcp_set_option_cond(const struct request_sock *req, 750 struct tcp_out_options *opts, 751 unsigned int *remaining) 752 { 753 if (rsk_is_mptcp(req)) { 754 unsigned int size; 755 756 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 757 if (*remaining >= size) { 758 opts->options |= OPTION_MPTCP; 759 *remaining -= size; 760 } 761 } 762 } 763 } 764 765 /* Compute TCP options for SYN packets. This is not the final 766 * network wire format yet. 767 */ 768 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 769 struct tcp_out_options *opts, 770 struct tcp_md5sig_key **md5) 771 { 772 struct tcp_sock *tp = tcp_sk(sk); 773 unsigned int remaining = MAX_TCP_OPTION_SPACE; 774 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 775 776 *md5 = NULL; 777 #ifdef CONFIG_TCP_MD5SIG 778 if (static_branch_unlikely(&tcp_md5_needed.key) && 779 rcu_access_pointer(tp->md5sig_info)) { 780 *md5 = tp->af_specific->md5_lookup(sk, sk); 781 if (*md5) { 782 opts->options |= OPTION_MD5; 783 remaining -= TCPOLEN_MD5SIG_ALIGNED; 784 } 785 } 786 #endif 787 788 /* We always get an MSS option. The option bytes which will be seen in 789 * normal data packets should timestamps be used, must be in the MSS 790 * advertised. But we subtract them from tp->mss_cache so that 791 * calculations in tcp_sendmsg are simpler etc. So account for this 792 * fact here if necessary. If we don't do this correctly, as a 793 * receiver we won't recognize data packets as being full sized when we 794 * should, and thus we won't abide by the delayed ACK rules correctly. 795 * SACKs don't matter, we never delay an ACK when we have any of those 796 * going out. */ 797 opts->mss = tcp_advertise_mss(sk); 798 remaining -= TCPOLEN_MSS_ALIGNED; 799 800 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) { 801 opts->options |= OPTION_TS; 802 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 803 opts->tsecr = tp->rx_opt.ts_recent; 804 remaining -= TCPOLEN_TSTAMP_ALIGNED; 805 } 806 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 807 opts->ws = tp->rx_opt.rcv_wscale; 808 opts->options |= OPTION_WSCALE; 809 remaining -= TCPOLEN_WSCALE_ALIGNED; 810 } 811 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 812 opts->options |= OPTION_SACK_ADVERTISE; 813 if (unlikely(!(OPTION_TS & opts->options))) 814 remaining -= TCPOLEN_SACKPERM_ALIGNED; 815 } 816 817 if (fastopen && fastopen->cookie.len >= 0) { 818 u32 need = fastopen->cookie.len; 819 820 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 821 TCPOLEN_FASTOPEN_BASE; 822 need = (need + 3) & ~3U; /* Align to 32 bits */ 823 if (remaining >= need) { 824 opts->options |= OPTION_FAST_OPEN_COOKIE; 825 opts->fastopen_cookie = &fastopen->cookie; 826 remaining -= need; 827 tp->syn_fastopen = 1; 828 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 829 } 830 } 831 832 smc_set_option(tp, opts, &remaining); 833 834 if (sk_is_mptcp(sk)) { 835 unsigned int size; 836 837 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 838 opts->options |= OPTION_MPTCP; 839 remaining -= size; 840 } 841 } 842 843 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 844 845 return MAX_TCP_OPTION_SPACE - remaining; 846 } 847 848 /* Set up TCP options for SYN-ACKs. */ 849 static unsigned int tcp_synack_options(const struct sock *sk, 850 struct request_sock *req, 851 unsigned int mss, struct sk_buff *skb, 852 struct tcp_out_options *opts, 853 const struct tcp_md5sig_key *md5, 854 struct tcp_fastopen_cookie *foc, 855 enum tcp_synack_type synack_type, 856 struct sk_buff *syn_skb) 857 { 858 struct inet_request_sock *ireq = inet_rsk(req); 859 unsigned int remaining = MAX_TCP_OPTION_SPACE; 860 861 #ifdef CONFIG_TCP_MD5SIG 862 if (md5) { 863 opts->options |= OPTION_MD5; 864 remaining -= TCPOLEN_MD5SIG_ALIGNED; 865 866 /* We can't fit any SACK blocks in a packet with MD5 + TS 867 * options. There was discussion about disabling SACK 868 * rather than TS in order to fit in better with old, 869 * buggy kernels, but that was deemed to be unnecessary. 870 */ 871 if (synack_type != TCP_SYNACK_COOKIE) 872 ireq->tstamp_ok &= !ireq->sack_ok; 873 } 874 #endif 875 876 /* We always send an MSS option. */ 877 opts->mss = mss; 878 remaining -= TCPOLEN_MSS_ALIGNED; 879 880 if (likely(ireq->wscale_ok)) { 881 opts->ws = ireq->rcv_wscale; 882 opts->options |= OPTION_WSCALE; 883 remaining -= TCPOLEN_WSCALE_ALIGNED; 884 } 885 if (likely(ireq->tstamp_ok)) { 886 opts->options |= OPTION_TS; 887 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 888 tcp_rsk(req)->ts_off; 889 opts->tsecr = READ_ONCE(req->ts_recent); 890 remaining -= TCPOLEN_TSTAMP_ALIGNED; 891 } 892 if (likely(ireq->sack_ok)) { 893 opts->options |= OPTION_SACK_ADVERTISE; 894 if (unlikely(!ireq->tstamp_ok)) 895 remaining -= TCPOLEN_SACKPERM_ALIGNED; 896 } 897 if (foc != NULL && foc->len >= 0) { 898 u32 need = foc->len; 899 900 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 901 TCPOLEN_FASTOPEN_BASE; 902 need = (need + 3) & ~3U; /* Align to 32 bits */ 903 if (remaining >= need) { 904 opts->options |= OPTION_FAST_OPEN_COOKIE; 905 opts->fastopen_cookie = foc; 906 remaining -= need; 907 } 908 } 909 910 mptcp_set_option_cond(req, opts, &remaining); 911 912 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 913 914 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 915 synack_type, opts, &remaining); 916 917 return MAX_TCP_OPTION_SPACE - remaining; 918 } 919 920 /* Compute TCP options for ESTABLISHED sockets. This is not the 921 * final wire format yet. 922 */ 923 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 924 struct tcp_out_options *opts, 925 struct tcp_md5sig_key **md5) 926 { 927 struct tcp_sock *tp = tcp_sk(sk); 928 unsigned int size = 0; 929 unsigned int eff_sacks; 930 931 opts->options = 0; 932 933 *md5 = NULL; 934 #ifdef CONFIG_TCP_MD5SIG 935 if (static_branch_unlikely(&tcp_md5_needed.key) && 936 rcu_access_pointer(tp->md5sig_info)) { 937 *md5 = tp->af_specific->md5_lookup(sk, sk); 938 if (*md5) { 939 opts->options |= OPTION_MD5; 940 size += TCPOLEN_MD5SIG_ALIGNED; 941 } 942 } 943 #endif 944 945 if (likely(tp->rx_opt.tstamp_ok)) { 946 opts->options |= OPTION_TS; 947 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 948 tp->tsoffset : 0; 949 opts->tsecr = tp->rx_opt.ts_recent; 950 size += TCPOLEN_TSTAMP_ALIGNED; 951 } 952 953 /* MPTCP options have precedence over SACK for the limited TCP 954 * option space because a MPTCP connection would be forced to 955 * fall back to regular TCP if a required multipath option is 956 * missing. SACK still gets a chance to use whatever space is 957 * left. 958 */ 959 if (sk_is_mptcp(sk)) { 960 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 961 unsigned int opt_size = 0; 962 963 if (mptcp_established_options(sk, skb, &opt_size, remaining, 964 &opts->mptcp)) { 965 opts->options |= OPTION_MPTCP; 966 size += opt_size; 967 } 968 } 969 970 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 971 if (unlikely(eff_sacks)) { 972 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 973 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 974 TCPOLEN_SACK_PERBLOCK)) 975 return size; 976 977 opts->num_sack_blocks = 978 min_t(unsigned int, eff_sacks, 979 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 980 TCPOLEN_SACK_PERBLOCK); 981 982 size += TCPOLEN_SACK_BASE_ALIGNED + 983 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 984 } 985 986 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 987 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 988 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 989 990 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 991 992 size = MAX_TCP_OPTION_SPACE - remaining; 993 } 994 995 return size; 996 } 997 998 999 /* TCP SMALL QUEUES (TSQ) 1000 * 1001 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1002 * to reduce RTT and bufferbloat. 1003 * We do this using a special skb destructor (tcp_wfree). 1004 * 1005 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1006 * needs to be reallocated in a driver. 1007 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1008 * 1009 * Since transmit from skb destructor is forbidden, we use a tasklet 1010 * to process all sockets that eventually need to send more skbs. 1011 * We use one tasklet per cpu, with its own queue of sockets. 1012 */ 1013 struct tsq_tasklet { 1014 struct tasklet_struct tasklet; 1015 struct list_head head; /* queue of tcp sockets */ 1016 }; 1017 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1018 1019 static void tcp_tsq_write(struct sock *sk) 1020 { 1021 if ((1 << sk->sk_state) & 1022 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1023 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1024 struct tcp_sock *tp = tcp_sk(sk); 1025 1026 if (tp->lost_out > tp->retrans_out && 1027 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1028 tcp_mstamp_refresh(tp); 1029 tcp_xmit_retransmit_queue(sk); 1030 } 1031 1032 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1033 0, GFP_ATOMIC); 1034 } 1035 } 1036 1037 static void tcp_tsq_handler(struct sock *sk) 1038 { 1039 bh_lock_sock(sk); 1040 if (!sock_owned_by_user(sk)) 1041 tcp_tsq_write(sk); 1042 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1043 sock_hold(sk); 1044 bh_unlock_sock(sk); 1045 } 1046 /* 1047 * One tasklet per cpu tries to send more skbs. 1048 * We run in tasklet context but need to disable irqs when 1049 * transferring tsq->head because tcp_wfree() might 1050 * interrupt us (non NAPI drivers) 1051 */ 1052 static void tcp_tasklet_func(struct tasklet_struct *t) 1053 { 1054 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1055 LIST_HEAD(list); 1056 unsigned long flags; 1057 struct list_head *q, *n; 1058 struct tcp_sock *tp; 1059 struct sock *sk; 1060 1061 local_irq_save(flags); 1062 list_splice_init(&tsq->head, &list); 1063 local_irq_restore(flags); 1064 1065 list_for_each_safe(q, n, &list) { 1066 tp = list_entry(q, struct tcp_sock, tsq_node); 1067 list_del(&tp->tsq_node); 1068 1069 sk = (struct sock *)tp; 1070 smp_mb__before_atomic(); 1071 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1072 1073 tcp_tsq_handler(sk); 1074 sk_free(sk); 1075 } 1076 } 1077 1078 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1079 TCPF_WRITE_TIMER_DEFERRED | \ 1080 TCPF_DELACK_TIMER_DEFERRED | \ 1081 TCPF_MTU_REDUCED_DEFERRED | \ 1082 TCPF_ACK_DEFERRED) 1083 /** 1084 * tcp_release_cb - tcp release_sock() callback 1085 * @sk: socket 1086 * 1087 * called from release_sock() to perform protocol dependent 1088 * actions before socket release. 1089 */ 1090 void tcp_release_cb(struct sock *sk) 1091 { 1092 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1093 unsigned long nflags; 1094 1095 /* perform an atomic operation only if at least one flag is set */ 1096 do { 1097 if (!(flags & TCP_DEFERRED_ALL)) 1098 return; 1099 nflags = flags & ~TCP_DEFERRED_ALL; 1100 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1101 1102 if (flags & TCPF_TSQ_DEFERRED) { 1103 tcp_tsq_write(sk); 1104 __sock_put(sk); 1105 } 1106 1107 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1108 tcp_write_timer_handler(sk); 1109 __sock_put(sk); 1110 } 1111 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1112 tcp_delack_timer_handler(sk); 1113 __sock_put(sk); 1114 } 1115 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1116 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1117 __sock_put(sk); 1118 } 1119 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1120 tcp_send_ack(sk); 1121 } 1122 EXPORT_SYMBOL(tcp_release_cb); 1123 1124 void __init tcp_tasklet_init(void) 1125 { 1126 int i; 1127 1128 for_each_possible_cpu(i) { 1129 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1130 1131 INIT_LIST_HEAD(&tsq->head); 1132 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1133 } 1134 } 1135 1136 /* 1137 * Write buffer destructor automatically called from kfree_skb. 1138 * We can't xmit new skbs from this context, as we might already 1139 * hold qdisc lock. 1140 */ 1141 void tcp_wfree(struct sk_buff *skb) 1142 { 1143 struct sock *sk = skb->sk; 1144 struct tcp_sock *tp = tcp_sk(sk); 1145 unsigned long flags, nval, oval; 1146 struct tsq_tasklet *tsq; 1147 bool empty; 1148 1149 /* Keep one reference on sk_wmem_alloc. 1150 * Will be released by sk_free() from here or tcp_tasklet_func() 1151 */ 1152 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1153 1154 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1155 * Wait until our queues (qdisc + devices) are drained. 1156 * This gives : 1157 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1158 * - chance for incoming ACK (processed by another cpu maybe) 1159 * to migrate this flow (skb->ooo_okay will be eventually set) 1160 */ 1161 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1162 goto out; 1163 1164 oval = smp_load_acquire(&sk->sk_tsq_flags); 1165 do { 1166 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1167 goto out; 1168 1169 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1170 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1171 1172 /* queue this socket to tasklet queue */ 1173 local_irq_save(flags); 1174 tsq = this_cpu_ptr(&tsq_tasklet); 1175 empty = list_empty(&tsq->head); 1176 list_add(&tp->tsq_node, &tsq->head); 1177 if (empty) 1178 tasklet_schedule(&tsq->tasklet); 1179 local_irq_restore(flags); 1180 return; 1181 out: 1182 sk_free(sk); 1183 } 1184 1185 /* Note: Called under soft irq. 1186 * We can call TCP stack right away, unless socket is owned by user. 1187 */ 1188 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1189 { 1190 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1191 struct sock *sk = (struct sock *)tp; 1192 1193 tcp_tsq_handler(sk); 1194 sock_put(sk); 1195 1196 return HRTIMER_NORESTART; 1197 } 1198 1199 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1200 u64 prior_wstamp) 1201 { 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 1204 if (sk->sk_pacing_status != SK_PACING_NONE) { 1205 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1206 1207 /* Original sch_fq does not pace first 10 MSS 1208 * Note that tp->data_segs_out overflows after 2^32 packets, 1209 * this is a minor annoyance. 1210 */ 1211 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1212 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1213 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1214 1215 /* take into account OS jitter */ 1216 len_ns -= min_t(u64, len_ns / 2, credit); 1217 tp->tcp_wstamp_ns += len_ns; 1218 } 1219 } 1220 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1221 } 1222 1223 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1224 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1225 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1226 1227 /* This routine actually transmits TCP packets queued in by 1228 * tcp_do_sendmsg(). This is used by both the initial 1229 * transmission and possible later retransmissions. 1230 * All SKB's seen here are completely headerless. It is our 1231 * job to build the TCP header, and pass the packet down to 1232 * IP so it can do the same plus pass the packet off to the 1233 * device. 1234 * 1235 * We are working here with either a clone of the original 1236 * SKB, or a fresh unique copy made by the retransmit engine. 1237 */ 1238 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1239 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1240 { 1241 const struct inet_connection_sock *icsk = inet_csk(sk); 1242 struct inet_sock *inet; 1243 struct tcp_sock *tp; 1244 struct tcp_skb_cb *tcb; 1245 struct tcp_out_options opts; 1246 unsigned int tcp_options_size, tcp_header_size; 1247 struct sk_buff *oskb = NULL; 1248 struct tcp_md5sig_key *md5; 1249 struct tcphdr *th; 1250 u64 prior_wstamp; 1251 int err; 1252 1253 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1254 tp = tcp_sk(sk); 1255 prior_wstamp = tp->tcp_wstamp_ns; 1256 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1257 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1258 if (clone_it) { 1259 oskb = skb; 1260 1261 tcp_skb_tsorted_save(oskb) { 1262 if (unlikely(skb_cloned(oskb))) 1263 skb = pskb_copy(oskb, gfp_mask); 1264 else 1265 skb = skb_clone(oskb, gfp_mask); 1266 } tcp_skb_tsorted_restore(oskb); 1267 1268 if (unlikely(!skb)) 1269 return -ENOBUFS; 1270 /* retransmit skbs might have a non zero value in skb->dev 1271 * because skb->dev is aliased with skb->rbnode.rb_left 1272 */ 1273 skb->dev = NULL; 1274 } 1275 1276 inet = inet_sk(sk); 1277 tcb = TCP_SKB_CB(skb); 1278 memset(&opts, 0, sizeof(opts)); 1279 1280 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1281 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1282 } else { 1283 tcp_options_size = tcp_established_options(sk, skb, &opts, 1284 &md5); 1285 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1286 * at receiver : This slightly improve GRO performance. 1287 * Note that we do not force the PSH flag for non GSO packets, 1288 * because they might be sent under high congestion events, 1289 * and in this case it is better to delay the delivery of 1-MSS 1290 * packets and thus the corresponding ACK packet that would 1291 * release the following packet. 1292 */ 1293 if (tcp_skb_pcount(skb) > 1) 1294 tcb->tcp_flags |= TCPHDR_PSH; 1295 } 1296 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1297 1298 /* We set skb->ooo_okay to one if this packet can select 1299 * a different TX queue than prior packets of this flow, 1300 * to avoid self inflicted reorders. 1301 * The 'other' queue decision is based on current cpu number 1302 * if XPS is enabled, or sk->sk_txhash otherwise. 1303 * We can switch to another (and better) queue if: 1304 * 1) No packet with payload is in qdisc/device queues. 1305 * Delays in TX completion can defeat the test 1306 * even if packets were already sent. 1307 * 2) Or rtx queue is empty. 1308 * This mitigates above case if ACK packets for 1309 * all prior packets were already processed. 1310 */ 1311 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1312 tcp_rtx_queue_empty(sk); 1313 1314 /* If we had to use memory reserve to allocate this skb, 1315 * this might cause drops if packet is looped back : 1316 * Other socket might not have SOCK_MEMALLOC. 1317 * Packets not looped back do not care about pfmemalloc. 1318 */ 1319 skb->pfmemalloc = 0; 1320 1321 skb_push(skb, tcp_header_size); 1322 skb_reset_transport_header(skb); 1323 1324 skb_orphan(skb); 1325 skb->sk = sk; 1326 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1327 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1328 1329 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1330 1331 /* Build TCP header and checksum it. */ 1332 th = (struct tcphdr *)skb->data; 1333 th->source = inet->inet_sport; 1334 th->dest = inet->inet_dport; 1335 th->seq = htonl(tcb->seq); 1336 th->ack_seq = htonl(rcv_nxt); 1337 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1338 tcb->tcp_flags); 1339 1340 th->check = 0; 1341 th->urg_ptr = 0; 1342 1343 /* The urg_mode check is necessary during a below snd_una win probe */ 1344 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1345 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1346 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1347 th->urg = 1; 1348 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1349 th->urg_ptr = htons(0xFFFF); 1350 th->urg = 1; 1351 } 1352 } 1353 1354 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1355 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1356 th->window = htons(tcp_select_window(sk)); 1357 tcp_ecn_send(sk, skb, th, tcp_header_size); 1358 } else { 1359 /* RFC1323: The window in SYN & SYN/ACK segments 1360 * is never scaled. 1361 */ 1362 th->window = htons(min(tp->rcv_wnd, 65535U)); 1363 } 1364 1365 tcp_options_write(th, tp, &opts); 1366 1367 #ifdef CONFIG_TCP_MD5SIG 1368 /* Calculate the MD5 hash, as we have all we need now */ 1369 if (md5) { 1370 sk_gso_disable(sk); 1371 tp->af_specific->calc_md5_hash(opts.hash_location, 1372 md5, sk, skb); 1373 } 1374 #endif 1375 1376 /* BPF prog is the last one writing header option */ 1377 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1378 1379 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1380 tcp_v6_send_check, tcp_v4_send_check, 1381 sk, skb); 1382 1383 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1384 tcp_event_ack_sent(sk, rcv_nxt); 1385 1386 if (skb->len != tcp_header_size) { 1387 tcp_event_data_sent(tp, sk); 1388 tp->data_segs_out += tcp_skb_pcount(skb); 1389 tp->bytes_sent += skb->len - tcp_header_size; 1390 } 1391 1392 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1393 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1394 tcp_skb_pcount(skb)); 1395 1396 tp->segs_out += tcp_skb_pcount(skb); 1397 skb_set_hash_from_sk(skb, sk); 1398 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1399 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1400 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1401 1402 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1403 1404 /* Cleanup our debris for IP stacks */ 1405 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1406 sizeof(struct inet6_skb_parm))); 1407 1408 tcp_add_tx_delay(skb, tp); 1409 1410 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1411 inet6_csk_xmit, ip_queue_xmit, 1412 sk, skb, &inet->cork.fl); 1413 1414 if (unlikely(err > 0)) { 1415 tcp_enter_cwr(sk); 1416 err = net_xmit_eval(err); 1417 } 1418 if (!err && oskb) { 1419 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1420 tcp_rate_skb_sent(sk, oskb); 1421 } 1422 return err; 1423 } 1424 1425 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1426 gfp_t gfp_mask) 1427 { 1428 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1429 tcp_sk(sk)->rcv_nxt); 1430 } 1431 1432 /* This routine just queues the buffer for sending. 1433 * 1434 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1435 * otherwise socket can stall. 1436 */ 1437 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1438 { 1439 struct tcp_sock *tp = tcp_sk(sk); 1440 1441 /* Advance write_seq and place onto the write_queue. */ 1442 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1443 __skb_header_release(skb); 1444 tcp_add_write_queue_tail(sk, skb); 1445 sk_wmem_queued_add(sk, skb->truesize); 1446 sk_mem_charge(sk, skb->truesize); 1447 } 1448 1449 /* Initialize TSO segments for a packet. */ 1450 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1451 { 1452 if (skb->len <= mss_now) { 1453 /* Avoid the costly divide in the normal 1454 * non-TSO case. 1455 */ 1456 tcp_skb_pcount_set(skb, 1); 1457 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1458 } else { 1459 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1460 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1461 } 1462 } 1463 1464 /* Pcount in the middle of the write queue got changed, we need to do various 1465 * tweaks to fix counters 1466 */ 1467 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1468 { 1469 struct tcp_sock *tp = tcp_sk(sk); 1470 1471 tp->packets_out -= decr; 1472 1473 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1474 tp->sacked_out -= decr; 1475 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1476 tp->retrans_out -= decr; 1477 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1478 tp->lost_out -= decr; 1479 1480 /* Reno case is special. Sigh... */ 1481 if (tcp_is_reno(tp) && decr > 0) 1482 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1483 1484 if (tp->lost_skb_hint && 1485 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1486 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1487 tp->lost_cnt_hint -= decr; 1488 1489 tcp_verify_left_out(tp); 1490 } 1491 1492 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1493 { 1494 return TCP_SKB_CB(skb)->txstamp_ack || 1495 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1496 } 1497 1498 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1499 { 1500 struct skb_shared_info *shinfo = skb_shinfo(skb); 1501 1502 if (unlikely(tcp_has_tx_tstamp(skb)) && 1503 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1504 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1505 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1506 1507 shinfo->tx_flags &= ~tsflags; 1508 shinfo2->tx_flags |= tsflags; 1509 swap(shinfo->tskey, shinfo2->tskey); 1510 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1511 TCP_SKB_CB(skb)->txstamp_ack = 0; 1512 } 1513 } 1514 1515 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1516 { 1517 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1518 TCP_SKB_CB(skb)->eor = 0; 1519 } 1520 1521 /* Insert buff after skb on the write or rtx queue of sk. */ 1522 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1523 struct sk_buff *buff, 1524 struct sock *sk, 1525 enum tcp_queue tcp_queue) 1526 { 1527 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1528 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1529 else 1530 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1531 } 1532 1533 /* Function to create two new TCP segments. Shrinks the given segment 1534 * to the specified size and appends a new segment with the rest of the 1535 * packet to the list. This won't be called frequently, I hope. 1536 * Remember, these are still headerless SKBs at this point. 1537 */ 1538 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1539 struct sk_buff *skb, u32 len, 1540 unsigned int mss_now, gfp_t gfp) 1541 { 1542 struct tcp_sock *tp = tcp_sk(sk); 1543 struct sk_buff *buff; 1544 int old_factor; 1545 long limit; 1546 int nlen; 1547 u8 flags; 1548 1549 if (WARN_ON(len > skb->len)) 1550 return -EINVAL; 1551 1552 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1553 1554 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1555 * We need some allowance to not penalize applications setting small 1556 * SO_SNDBUF values. 1557 * Also allow first and last skb in retransmit queue to be split. 1558 */ 1559 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1560 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1561 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1562 skb != tcp_rtx_queue_head(sk) && 1563 skb != tcp_rtx_queue_tail(sk))) { 1564 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1565 return -ENOMEM; 1566 } 1567 1568 if (skb_unclone_keeptruesize(skb, gfp)) 1569 return -ENOMEM; 1570 1571 /* Get a new skb... force flag on. */ 1572 buff = tcp_stream_alloc_skb(sk, gfp, true); 1573 if (!buff) 1574 return -ENOMEM; /* We'll just try again later. */ 1575 skb_copy_decrypted(buff, skb); 1576 mptcp_skb_ext_copy(buff, skb); 1577 1578 sk_wmem_queued_add(sk, buff->truesize); 1579 sk_mem_charge(sk, buff->truesize); 1580 nlen = skb->len - len; 1581 buff->truesize += nlen; 1582 skb->truesize -= nlen; 1583 1584 /* Correct the sequence numbers. */ 1585 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1586 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1587 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1588 1589 /* PSH and FIN should only be set in the second packet. */ 1590 flags = TCP_SKB_CB(skb)->tcp_flags; 1591 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1592 TCP_SKB_CB(buff)->tcp_flags = flags; 1593 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1594 tcp_skb_fragment_eor(skb, buff); 1595 1596 skb_split(skb, buff, len); 1597 1598 skb_set_delivery_time(buff, skb->tstamp, true); 1599 tcp_fragment_tstamp(skb, buff); 1600 1601 old_factor = tcp_skb_pcount(skb); 1602 1603 /* Fix up tso_factor for both original and new SKB. */ 1604 tcp_set_skb_tso_segs(skb, mss_now); 1605 tcp_set_skb_tso_segs(buff, mss_now); 1606 1607 /* Update delivered info for the new segment */ 1608 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1609 1610 /* If this packet has been sent out already, we must 1611 * adjust the various packet counters. 1612 */ 1613 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1614 int diff = old_factor - tcp_skb_pcount(skb) - 1615 tcp_skb_pcount(buff); 1616 1617 if (diff) 1618 tcp_adjust_pcount(sk, skb, diff); 1619 } 1620 1621 /* Link BUFF into the send queue. */ 1622 __skb_header_release(buff); 1623 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1624 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1625 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1626 1627 return 0; 1628 } 1629 1630 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1631 * data is not copied, but immediately discarded. 1632 */ 1633 static int __pskb_trim_head(struct sk_buff *skb, int len) 1634 { 1635 struct skb_shared_info *shinfo; 1636 int i, k, eat; 1637 1638 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1639 eat = len; 1640 k = 0; 1641 shinfo = skb_shinfo(skb); 1642 for (i = 0; i < shinfo->nr_frags; i++) { 1643 int size = skb_frag_size(&shinfo->frags[i]); 1644 1645 if (size <= eat) { 1646 skb_frag_unref(skb, i); 1647 eat -= size; 1648 } else { 1649 shinfo->frags[k] = shinfo->frags[i]; 1650 if (eat) { 1651 skb_frag_off_add(&shinfo->frags[k], eat); 1652 skb_frag_size_sub(&shinfo->frags[k], eat); 1653 eat = 0; 1654 } 1655 k++; 1656 } 1657 } 1658 shinfo->nr_frags = k; 1659 1660 skb->data_len -= len; 1661 skb->len = skb->data_len; 1662 return len; 1663 } 1664 1665 /* Remove acked data from a packet in the transmit queue. */ 1666 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1667 { 1668 u32 delta_truesize; 1669 1670 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1671 return -ENOMEM; 1672 1673 delta_truesize = __pskb_trim_head(skb, len); 1674 1675 TCP_SKB_CB(skb)->seq += len; 1676 1677 skb->truesize -= delta_truesize; 1678 sk_wmem_queued_add(sk, -delta_truesize); 1679 if (!skb_zcopy_pure(skb)) 1680 sk_mem_uncharge(sk, delta_truesize); 1681 1682 /* Any change of skb->len requires recalculation of tso factor. */ 1683 if (tcp_skb_pcount(skb) > 1) 1684 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1685 1686 return 0; 1687 } 1688 1689 /* Calculate MSS not accounting any TCP options. */ 1690 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1691 { 1692 const struct tcp_sock *tp = tcp_sk(sk); 1693 const struct inet_connection_sock *icsk = inet_csk(sk); 1694 int mss_now; 1695 1696 /* Calculate base mss without TCP options: 1697 It is MMS_S - sizeof(tcphdr) of rfc1122 1698 */ 1699 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1700 1701 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1702 if (icsk->icsk_af_ops->net_frag_header_len) { 1703 const struct dst_entry *dst = __sk_dst_get(sk); 1704 1705 if (dst && dst_allfrag(dst)) 1706 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1707 } 1708 1709 /* Clamp it (mss_clamp does not include tcp options) */ 1710 if (mss_now > tp->rx_opt.mss_clamp) 1711 mss_now = tp->rx_opt.mss_clamp; 1712 1713 /* Now subtract optional transport overhead */ 1714 mss_now -= icsk->icsk_ext_hdr_len; 1715 1716 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1717 mss_now = max(mss_now, 1718 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1719 return mss_now; 1720 } 1721 1722 /* Calculate MSS. Not accounting for SACKs here. */ 1723 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1724 { 1725 /* Subtract TCP options size, not including SACKs */ 1726 return __tcp_mtu_to_mss(sk, pmtu) - 1727 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1728 } 1729 EXPORT_SYMBOL(tcp_mtu_to_mss); 1730 1731 /* Inverse of above */ 1732 int tcp_mss_to_mtu(struct sock *sk, int mss) 1733 { 1734 const struct tcp_sock *tp = tcp_sk(sk); 1735 const struct inet_connection_sock *icsk = inet_csk(sk); 1736 int mtu; 1737 1738 mtu = mss + 1739 tp->tcp_header_len + 1740 icsk->icsk_ext_hdr_len + 1741 icsk->icsk_af_ops->net_header_len; 1742 1743 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1744 if (icsk->icsk_af_ops->net_frag_header_len) { 1745 const struct dst_entry *dst = __sk_dst_get(sk); 1746 1747 if (dst && dst_allfrag(dst)) 1748 mtu += icsk->icsk_af_ops->net_frag_header_len; 1749 } 1750 return mtu; 1751 } 1752 EXPORT_SYMBOL(tcp_mss_to_mtu); 1753 1754 /* MTU probing init per socket */ 1755 void tcp_mtup_init(struct sock *sk) 1756 { 1757 struct tcp_sock *tp = tcp_sk(sk); 1758 struct inet_connection_sock *icsk = inet_csk(sk); 1759 struct net *net = sock_net(sk); 1760 1761 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1762 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1763 icsk->icsk_af_ops->net_header_len; 1764 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1765 icsk->icsk_mtup.probe_size = 0; 1766 if (icsk->icsk_mtup.enabled) 1767 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1768 } 1769 EXPORT_SYMBOL(tcp_mtup_init); 1770 1771 /* This function synchronize snd mss to current pmtu/exthdr set. 1772 1773 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1774 for TCP options, but includes only bare TCP header. 1775 1776 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1777 It is minimum of user_mss and mss received with SYN. 1778 It also does not include TCP options. 1779 1780 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1781 1782 tp->mss_cache is current effective sending mss, including 1783 all tcp options except for SACKs. It is evaluated, 1784 taking into account current pmtu, but never exceeds 1785 tp->rx_opt.mss_clamp. 1786 1787 NOTE1. rfc1122 clearly states that advertised MSS 1788 DOES NOT include either tcp or ip options. 1789 1790 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1791 are READ ONLY outside this function. --ANK (980731) 1792 */ 1793 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1794 { 1795 struct tcp_sock *tp = tcp_sk(sk); 1796 struct inet_connection_sock *icsk = inet_csk(sk); 1797 int mss_now; 1798 1799 if (icsk->icsk_mtup.search_high > pmtu) 1800 icsk->icsk_mtup.search_high = pmtu; 1801 1802 mss_now = tcp_mtu_to_mss(sk, pmtu); 1803 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1804 1805 /* And store cached results */ 1806 icsk->icsk_pmtu_cookie = pmtu; 1807 if (icsk->icsk_mtup.enabled) 1808 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1809 tp->mss_cache = mss_now; 1810 1811 return mss_now; 1812 } 1813 EXPORT_SYMBOL(tcp_sync_mss); 1814 1815 /* Compute the current effective MSS, taking SACKs and IP options, 1816 * and even PMTU discovery events into account. 1817 */ 1818 unsigned int tcp_current_mss(struct sock *sk) 1819 { 1820 const struct tcp_sock *tp = tcp_sk(sk); 1821 const struct dst_entry *dst = __sk_dst_get(sk); 1822 u32 mss_now; 1823 unsigned int header_len; 1824 struct tcp_out_options opts; 1825 struct tcp_md5sig_key *md5; 1826 1827 mss_now = tp->mss_cache; 1828 1829 if (dst) { 1830 u32 mtu = dst_mtu(dst); 1831 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1832 mss_now = tcp_sync_mss(sk, mtu); 1833 } 1834 1835 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1836 sizeof(struct tcphdr); 1837 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1838 * some common options. If this is an odd packet (because we have SACK 1839 * blocks etc) then our calculated header_len will be different, and 1840 * we have to adjust mss_now correspondingly */ 1841 if (header_len != tp->tcp_header_len) { 1842 int delta = (int) header_len - tp->tcp_header_len; 1843 mss_now -= delta; 1844 } 1845 1846 return mss_now; 1847 } 1848 1849 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1850 * As additional protections, we do not touch cwnd in retransmission phases, 1851 * and if application hit its sndbuf limit recently. 1852 */ 1853 static void tcp_cwnd_application_limited(struct sock *sk) 1854 { 1855 struct tcp_sock *tp = tcp_sk(sk); 1856 1857 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1858 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1859 /* Limited by application or receiver window. */ 1860 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1861 u32 win_used = max(tp->snd_cwnd_used, init_win); 1862 if (win_used < tcp_snd_cwnd(tp)) { 1863 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1864 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1865 } 1866 tp->snd_cwnd_used = 0; 1867 } 1868 tp->snd_cwnd_stamp = tcp_jiffies32; 1869 } 1870 1871 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1872 { 1873 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1874 struct tcp_sock *tp = tcp_sk(sk); 1875 1876 /* Track the strongest available signal of the degree to which the cwnd 1877 * is fully utilized. If cwnd-limited then remember that fact for the 1878 * current window. If not cwnd-limited then track the maximum number of 1879 * outstanding packets in the current window. (If cwnd-limited then we 1880 * chose to not update tp->max_packets_out to avoid an extra else 1881 * clause with no functional impact.) 1882 */ 1883 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1884 is_cwnd_limited || 1885 (!tp->is_cwnd_limited && 1886 tp->packets_out > tp->max_packets_out)) { 1887 tp->is_cwnd_limited = is_cwnd_limited; 1888 tp->max_packets_out = tp->packets_out; 1889 tp->cwnd_usage_seq = tp->snd_nxt; 1890 } 1891 1892 if (tcp_is_cwnd_limited(sk)) { 1893 /* Network is feed fully. */ 1894 tp->snd_cwnd_used = 0; 1895 tp->snd_cwnd_stamp = tcp_jiffies32; 1896 } else { 1897 /* Network starves. */ 1898 if (tp->packets_out > tp->snd_cwnd_used) 1899 tp->snd_cwnd_used = tp->packets_out; 1900 1901 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1902 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1903 !ca_ops->cong_control) 1904 tcp_cwnd_application_limited(sk); 1905 1906 /* The following conditions together indicate the starvation 1907 * is caused by insufficient sender buffer: 1908 * 1) just sent some data (see tcp_write_xmit) 1909 * 2) not cwnd limited (this else condition) 1910 * 3) no more data to send (tcp_write_queue_empty()) 1911 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1912 */ 1913 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1914 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1915 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1916 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1917 } 1918 } 1919 1920 /* Minshall's variant of the Nagle send check. */ 1921 static bool tcp_minshall_check(const struct tcp_sock *tp) 1922 { 1923 return after(tp->snd_sml, tp->snd_una) && 1924 !after(tp->snd_sml, tp->snd_nxt); 1925 } 1926 1927 /* Update snd_sml if this skb is under mss 1928 * Note that a TSO packet might end with a sub-mss segment 1929 * The test is really : 1930 * if ((skb->len % mss) != 0) 1931 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1932 * But we can avoid doing the divide again given we already have 1933 * skb_pcount = skb->len / mss_now 1934 */ 1935 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1936 const struct sk_buff *skb) 1937 { 1938 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1939 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1940 } 1941 1942 /* Return false, if packet can be sent now without violation Nagle's rules: 1943 * 1. It is full sized. (provided by caller in %partial bool) 1944 * 2. Or it contains FIN. (already checked by caller) 1945 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1946 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1947 * With Minshall's modification: all sent small packets are ACKed. 1948 */ 1949 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1950 int nonagle) 1951 { 1952 return partial && 1953 ((nonagle & TCP_NAGLE_CORK) || 1954 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1955 } 1956 1957 /* Return how many segs we'd like on a TSO packet, 1958 * depending on current pacing rate, and how close the peer is. 1959 * 1960 * Rationale is: 1961 * - For close peers, we rather send bigger packets to reduce 1962 * cpu costs, because occasional losses will be repaired fast. 1963 * - For long distance/rtt flows, we would like to get ACK clocking 1964 * with 1 ACK per ms. 1965 * 1966 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 1967 * in bigger TSO bursts. We we cut the RTT-based allowance in half 1968 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 1969 * is below 1500 bytes after 6 * ~500 usec = 3ms. 1970 */ 1971 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1972 int min_tso_segs) 1973 { 1974 unsigned long bytes; 1975 u32 r; 1976 1977 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 1978 1979 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 1980 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 1981 bytes += sk->sk_gso_max_size >> r; 1982 1983 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 1984 1985 return max_t(u32, bytes / mss_now, min_tso_segs); 1986 } 1987 1988 /* Return the number of segments we want in the skb we are transmitting. 1989 * See if congestion control module wants to decide; otherwise, autosize. 1990 */ 1991 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1992 { 1993 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1994 u32 min_tso, tso_segs; 1995 1996 min_tso = ca_ops->min_tso_segs ? 1997 ca_ops->min_tso_segs(sk) : 1998 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 1999 2000 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2001 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2002 } 2003 2004 /* Returns the portion of skb which can be sent right away */ 2005 static unsigned int tcp_mss_split_point(const struct sock *sk, 2006 const struct sk_buff *skb, 2007 unsigned int mss_now, 2008 unsigned int max_segs, 2009 int nonagle) 2010 { 2011 const struct tcp_sock *tp = tcp_sk(sk); 2012 u32 partial, needed, window, max_len; 2013 2014 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2015 max_len = mss_now * max_segs; 2016 2017 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2018 return max_len; 2019 2020 needed = min(skb->len, window); 2021 2022 if (max_len <= needed) 2023 return max_len; 2024 2025 partial = needed % mss_now; 2026 /* If last segment is not a full MSS, check if Nagle rules allow us 2027 * to include this last segment in this skb. 2028 * Otherwise, we'll split the skb at last MSS boundary 2029 */ 2030 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2031 return needed - partial; 2032 2033 return needed; 2034 } 2035 2036 /* Can at least one segment of SKB be sent right now, according to the 2037 * congestion window rules? If so, return how many segments are allowed. 2038 */ 2039 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2040 const struct sk_buff *skb) 2041 { 2042 u32 in_flight, cwnd, halfcwnd; 2043 2044 /* Don't be strict about the congestion window for the final FIN. */ 2045 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2046 tcp_skb_pcount(skb) == 1) 2047 return 1; 2048 2049 in_flight = tcp_packets_in_flight(tp); 2050 cwnd = tcp_snd_cwnd(tp); 2051 if (in_flight >= cwnd) 2052 return 0; 2053 2054 /* For better scheduling, ensure we have at least 2055 * 2 GSO packets in flight. 2056 */ 2057 halfcwnd = max(cwnd >> 1, 1U); 2058 return min(halfcwnd, cwnd - in_flight); 2059 } 2060 2061 /* Initialize TSO state of a skb. 2062 * This must be invoked the first time we consider transmitting 2063 * SKB onto the wire. 2064 */ 2065 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2066 { 2067 int tso_segs = tcp_skb_pcount(skb); 2068 2069 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2070 tcp_set_skb_tso_segs(skb, mss_now); 2071 tso_segs = tcp_skb_pcount(skb); 2072 } 2073 return tso_segs; 2074 } 2075 2076 2077 /* Return true if the Nagle test allows this packet to be 2078 * sent now. 2079 */ 2080 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2081 unsigned int cur_mss, int nonagle) 2082 { 2083 /* Nagle rule does not apply to frames, which sit in the middle of the 2084 * write_queue (they have no chances to get new data). 2085 * 2086 * This is implemented in the callers, where they modify the 'nonagle' 2087 * argument based upon the location of SKB in the send queue. 2088 */ 2089 if (nonagle & TCP_NAGLE_PUSH) 2090 return true; 2091 2092 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2093 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2094 return true; 2095 2096 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2097 return true; 2098 2099 return false; 2100 } 2101 2102 /* Does at least the first segment of SKB fit into the send window? */ 2103 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2104 const struct sk_buff *skb, 2105 unsigned int cur_mss) 2106 { 2107 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2108 2109 if (skb->len > cur_mss) 2110 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2111 2112 return !after(end_seq, tcp_wnd_end(tp)); 2113 } 2114 2115 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2116 * which is put after SKB on the list. It is very much like 2117 * tcp_fragment() except that it may make several kinds of assumptions 2118 * in order to speed up the splitting operation. In particular, we 2119 * know that all the data is in scatter-gather pages, and that the 2120 * packet has never been sent out before (and thus is not cloned). 2121 */ 2122 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2123 unsigned int mss_now, gfp_t gfp) 2124 { 2125 int nlen = skb->len - len; 2126 struct sk_buff *buff; 2127 u8 flags; 2128 2129 /* All of a TSO frame must be composed of paged data. */ 2130 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2131 2132 buff = tcp_stream_alloc_skb(sk, gfp, true); 2133 if (unlikely(!buff)) 2134 return -ENOMEM; 2135 skb_copy_decrypted(buff, skb); 2136 mptcp_skb_ext_copy(buff, skb); 2137 2138 sk_wmem_queued_add(sk, buff->truesize); 2139 sk_mem_charge(sk, buff->truesize); 2140 buff->truesize += nlen; 2141 skb->truesize -= nlen; 2142 2143 /* Correct the sequence numbers. */ 2144 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2145 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2146 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2147 2148 /* PSH and FIN should only be set in the second packet. */ 2149 flags = TCP_SKB_CB(skb)->tcp_flags; 2150 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2151 TCP_SKB_CB(buff)->tcp_flags = flags; 2152 2153 tcp_skb_fragment_eor(skb, buff); 2154 2155 skb_split(skb, buff, len); 2156 tcp_fragment_tstamp(skb, buff); 2157 2158 /* Fix up tso_factor for both original and new SKB. */ 2159 tcp_set_skb_tso_segs(skb, mss_now); 2160 tcp_set_skb_tso_segs(buff, mss_now); 2161 2162 /* Link BUFF into the send queue. */ 2163 __skb_header_release(buff); 2164 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2165 2166 return 0; 2167 } 2168 2169 /* Try to defer sending, if possible, in order to minimize the amount 2170 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2171 * 2172 * This algorithm is from John Heffner. 2173 */ 2174 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2175 bool *is_cwnd_limited, 2176 bool *is_rwnd_limited, 2177 u32 max_segs) 2178 { 2179 const struct inet_connection_sock *icsk = inet_csk(sk); 2180 u32 send_win, cong_win, limit, in_flight; 2181 struct tcp_sock *tp = tcp_sk(sk); 2182 struct sk_buff *head; 2183 int win_divisor; 2184 s64 delta; 2185 2186 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2187 goto send_now; 2188 2189 /* Avoid bursty behavior by allowing defer 2190 * only if the last write was recent (1 ms). 2191 * Note that tp->tcp_wstamp_ns can be in the future if we have 2192 * packets waiting in a qdisc or device for EDT delivery. 2193 */ 2194 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2195 if (delta > 0) 2196 goto send_now; 2197 2198 in_flight = tcp_packets_in_flight(tp); 2199 2200 BUG_ON(tcp_skb_pcount(skb) <= 1); 2201 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2202 2203 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2204 2205 /* From in_flight test above, we know that cwnd > in_flight. */ 2206 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2207 2208 limit = min(send_win, cong_win); 2209 2210 /* If a full-sized TSO skb can be sent, do it. */ 2211 if (limit >= max_segs * tp->mss_cache) 2212 goto send_now; 2213 2214 /* Middle in queue won't get any more data, full sendable already? */ 2215 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2216 goto send_now; 2217 2218 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2219 if (win_divisor) { 2220 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2221 2222 /* If at least some fraction of a window is available, 2223 * just use it. 2224 */ 2225 chunk /= win_divisor; 2226 if (limit >= chunk) 2227 goto send_now; 2228 } else { 2229 /* Different approach, try not to defer past a single 2230 * ACK. Receiver should ACK every other full sized 2231 * frame, so if we have space for more than 3 frames 2232 * then send now. 2233 */ 2234 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2235 goto send_now; 2236 } 2237 2238 /* TODO : use tsorted_sent_queue ? */ 2239 head = tcp_rtx_queue_head(sk); 2240 if (!head) 2241 goto send_now; 2242 delta = tp->tcp_clock_cache - head->tstamp; 2243 /* If next ACK is likely to come too late (half srtt), do not defer */ 2244 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2245 goto send_now; 2246 2247 /* Ok, it looks like it is advisable to defer. 2248 * Three cases are tracked : 2249 * 1) We are cwnd-limited 2250 * 2) We are rwnd-limited 2251 * 3) We are application limited. 2252 */ 2253 if (cong_win < send_win) { 2254 if (cong_win <= skb->len) { 2255 *is_cwnd_limited = true; 2256 return true; 2257 } 2258 } else { 2259 if (send_win <= skb->len) { 2260 *is_rwnd_limited = true; 2261 return true; 2262 } 2263 } 2264 2265 /* If this packet won't get more data, do not wait. */ 2266 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2267 TCP_SKB_CB(skb)->eor) 2268 goto send_now; 2269 2270 return true; 2271 2272 send_now: 2273 return false; 2274 } 2275 2276 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2277 { 2278 struct inet_connection_sock *icsk = inet_csk(sk); 2279 struct tcp_sock *tp = tcp_sk(sk); 2280 struct net *net = sock_net(sk); 2281 u32 interval; 2282 s32 delta; 2283 2284 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2285 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2286 if (unlikely(delta >= interval * HZ)) { 2287 int mss = tcp_current_mss(sk); 2288 2289 /* Update current search range */ 2290 icsk->icsk_mtup.probe_size = 0; 2291 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2292 sizeof(struct tcphdr) + 2293 icsk->icsk_af_ops->net_header_len; 2294 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2295 2296 /* Update probe time stamp */ 2297 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2298 } 2299 } 2300 2301 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2302 { 2303 struct sk_buff *skb, *next; 2304 2305 skb = tcp_send_head(sk); 2306 tcp_for_write_queue_from_safe(skb, next, sk) { 2307 if (len <= skb->len) 2308 break; 2309 2310 if (unlikely(TCP_SKB_CB(skb)->eor) || 2311 tcp_has_tx_tstamp(skb) || 2312 !skb_pure_zcopy_same(skb, next)) 2313 return false; 2314 2315 len -= skb->len; 2316 } 2317 2318 return true; 2319 } 2320 2321 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2322 int probe_size) 2323 { 2324 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2325 int i, todo, len = 0, nr_frags = 0; 2326 const struct sk_buff *skb; 2327 2328 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2329 return -ENOMEM; 2330 2331 skb_queue_walk(&sk->sk_write_queue, skb) { 2332 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2333 2334 if (skb_headlen(skb)) 2335 return -EINVAL; 2336 2337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2338 if (len >= probe_size) 2339 goto commit; 2340 todo = min_t(int, skb_frag_size(fragfrom), 2341 probe_size - len); 2342 len += todo; 2343 if (lastfrag && 2344 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2345 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2346 skb_frag_size(lastfrag)) { 2347 skb_frag_size_add(lastfrag, todo); 2348 continue; 2349 } 2350 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2351 return -E2BIG; 2352 skb_frag_page_copy(fragto, fragfrom); 2353 skb_frag_off_copy(fragto, fragfrom); 2354 skb_frag_size_set(fragto, todo); 2355 nr_frags++; 2356 lastfrag = fragto++; 2357 } 2358 } 2359 commit: 2360 WARN_ON_ONCE(len != probe_size); 2361 for (i = 0; i < nr_frags; i++) 2362 skb_frag_ref(to, i); 2363 2364 skb_shinfo(to)->nr_frags = nr_frags; 2365 to->truesize += probe_size; 2366 to->len += probe_size; 2367 to->data_len += probe_size; 2368 __skb_header_release(to); 2369 return 0; 2370 } 2371 2372 /* Create a new MTU probe if we are ready. 2373 * MTU probe is regularly attempting to increase the path MTU by 2374 * deliberately sending larger packets. This discovers routing 2375 * changes resulting in larger path MTUs. 2376 * 2377 * Returns 0 if we should wait to probe (no cwnd available), 2378 * 1 if a probe was sent, 2379 * -1 otherwise 2380 */ 2381 static int tcp_mtu_probe(struct sock *sk) 2382 { 2383 struct inet_connection_sock *icsk = inet_csk(sk); 2384 struct tcp_sock *tp = tcp_sk(sk); 2385 struct sk_buff *skb, *nskb, *next; 2386 struct net *net = sock_net(sk); 2387 int probe_size; 2388 int size_needed; 2389 int copy, len; 2390 int mss_now; 2391 int interval; 2392 2393 /* Not currently probing/verifying, 2394 * not in recovery, 2395 * have enough cwnd, and 2396 * not SACKing (the variable headers throw things off) 2397 */ 2398 if (likely(!icsk->icsk_mtup.enabled || 2399 icsk->icsk_mtup.probe_size || 2400 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2401 tcp_snd_cwnd(tp) < 11 || 2402 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2403 return -1; 2404 2405 /* Use binary search for probe_size between tcp_mss_base, 2406 * and current mss_clamp. if (search_high - search_low) 2407 * smaller than a threshold, backoff from probing. 2408 */ 2409 mss_now = tcp_current_mss(sk); 2410 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2411 icsk->icsk_mtup.search_low) >> 1); 2412 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2413 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2414 /* When misfortune happens, we are reprobing actively, 2415 * and then reprobe timer has expired. We stick with current 2416 * probing process by not resetting search range to its orignal. 2417 */ 2418 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2419 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2420 /* Check whether enough time has elaplased for 2421 * another round of probing. 2422 */ 2423 tcp_mtu_check_reprobe(sk); 2424 return -1; 2425 } 2426 2427 /* Have enough data in the send queue to probe? */ 2428 if (tp->write_seq - tp->snd_nxt < size_needed) 2429 return -1; 2430 2431 if (tp->snd_wnd < size_needed) 2432 return -1; 2433 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2434 return 0; 2435 2436 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2437 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2438 if (!tcp_packets_in_flight(tp)) 2439 return -1; 2440 else 2441 return 0; 2442 } 2443 2444 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2445 return -1; 2446 2447 /* We're allowed to probe. Build it now. */ 2448 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2449 if (!nskb) 2450 return -1; 2451 2452 /* build the payload, and be prepared to abort if this fails. */ 2453 if (tcp_clone_payload(sk, nskb, probe_size)) { 2454 tcp_skb_tsorted_anchor_cleanup(nskb); 2455 consume_skb(nskb); 2456 return -1; 2457 } 2458 sk_wmem_queued_add(sk, nskb->truesize); 2459 sk_mem_charge(sk, nskb->truesize); 2460 2461 skb = tcp_send_head(sk); 2462 skb_copy_decrypted(nskb, skb); 2463 mptcp_skb_ext_copy(nskb, skb); 2464 2465 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2466 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2467 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2468 2469 tcp_insert_write_queue_before(nskb, skb, sk); 2470 tcp_highest_sack_replace(sk, skb, nskb); 2471 2472 len = 0; 2473 tcp_for_write_queue_from_safe(skb, next, sk) { 2474 copy = min_t(int, skb->len, probe_size - len); 2475 2476 if (skb->len <= copy) { 2477 /* We've eaten all the data from this skb. 2478 * Throw it away. */ 2479 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2480 /* If this is the last SKB we copy and eor is set 2481 * we need to propagate it to the new skb. 2482 */ 2483 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2484 tcp_skb_collapse_tstamp(nskb, skb); 2485 tcp_unlink_write_queue(skb, sk); 2486 tcp_wmem_free_skb(sk, skb); 2487 } else { 2488 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2489 ~(TCPHDR_FIN|TCPHDR_PSH); 2490 __pskb_trim_head(skb, copy); 2491 tcp_set_skb_tso_segs(skb, mss_now); 2492 TCP_SKB_CB(skb)->seq += copy; 2493 } 2494 2495 len += copy; 2496 2497 if (len >= probe_size) 2498 break; 2499 } 2500 tcp_init_tso_segs(nskb, nskb->len); 2501 2502 /* We're ready to send. If this fails, the probe will 2503 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2504 */ 2505 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2506 /* Decrement cwnd here because we are sending 2507 * effectively two packets. */ 2508 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2509 tcp_event_new_data_sent(sk, nskb); 2510 2511 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2512 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2513 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2514 2515 return 1; 2516 } 2517 2518 return -1; 2519 } 2520 2521 static bool tcp_pacing_check(struct sock *sk) 2522 { 2523 struct tcp_sock *tp = tcp_sk(sk); 2524 2525 if (!tcp_needs_internal_pacing(sk)) 2526 return false; 2527 2528 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2529 return false; 2530 2531 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2532 hrtimer_start(&tp->pacing_timer, 2533 ns_to_ktime(tp->tcp_wstamp_ns), 2534 HRTIMER_MODE_ABS_PINNED_SOFT); 2535 sock_hold(sk); 2536 } 2537 return true; 2538 } 2539 2540 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2541 { 2542 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2543 2544 /* No skb in the rtx queue. */ 2545 if (!node) 2546 return true; 2547 2548 /* Only one skb in rtx queue. */ 2549 return !node->rb_left && !node->rb_right; 2550 } 2551 2552 /* TCP Small Queues : 2553 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2554 * (These limits are doubled for retransmits) 2555 * This allows for : 2556 * - better RTT estimation and ACK scheduling 2557 * - faster recovery 2558 * - high rates 2559 * Alas, some drivers / subsystems require a fair amount 2560 * of queued bytes to ensure line rate. 2561 * One example is wifi aggregation (802.11 AMPDU) 2562 */ 2563 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2564 unsigned int factor) 2565 { 2566 unsigned long limit; 2567 2568 limit = max_t(unsigned long, 2569 2 * skb->truesize, 2570 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2571 if (sk->sk_pacing_status == SK_PACING_NONE) 2572 limit = min_t(unsigned long, limit, 2573 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2574 limit <<= factor; 2575 2576 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2577 tcp_sk(sk)->tcp_tx_delay) { 2578 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2579 tcp_sk(sk)->tcp_tx_delay; 2580 2581 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2582 * approximate our needs assuming an ~100% skb->truesize overhead. 2583 * USEC_PER_SEC is approximated by 2^20. 2584 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2585 */ 2586 extra_bytes >>= (20 - 1); 2587 limit += extra_bytes; 2588 } 2589 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2590 /* Always send skb if rtx queue is empty or has one skb. 2591 * No need to wait for TX completion to call us back, 2592 * after softirq/tasklet schedule. 2593 * This helps when TX completions are delayed too much. 2594 */ 2595 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2596 return false; 2597 2598 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2599 /* It is possible TX completion already happened 2600 * before we set TSQ_THROTTLED, so we must 2601 * test again the condition. 2602 */ 2603 smp_mb__after_atomic(); 2604 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2605 return true; 2606 } 2607 return false; 2608 } 2609 2610 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2611 { 2612 const u32 now = tcp_jiffies32; 2613 enum tcp_chrono old = tp->chrono_type; 2614 2615 if (old > TCP_CHRONO_UNSPEC) 2616 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2617 tp->chrono_start = now; 2618 tp->chrono_type = new; 2619 } 2620 2621 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2622 { 2623 struct tcp_sock *tp = tcp_sk(sk); 2624 2625 /* If there are multiple conditions worthy of tracking in a 2626 * chronograph then the highest priority enum takes precedence 2627 * over the other conditions. So that if something "more interesting" 2628 * starts happening, stop the previous chrono and start a new one. 2629 */ 2630 if (type > tp->chrono_type) 2631 tcp_chrono_set(tp, type); 2632 } 2633 2634 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2635 { 2636 struct tcp_sock *tp = tcp_sk(sk); 2637 2638 2639 /* There are multiple conditions worthy of tracking in a 2640 * chronograph, so that the highest priority enum takes 2641 * precedence over the other conditions (see tcp_chrono_start). 2642 * If a condition stops, we only stop chrono tracking if 2643 * it's the "most interesting" or current chrono we are 2644 * tracking and starts busy chrono if we have pending data. 2645 */ 2646 if (tcp_rtx_and_write_queues_empty(sk)) 2647 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2648 else if (type == tp->chrono_type) 2649 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2650 } 2651 2652 /* This routine writes packets to the network. It advances the 2653 * send_head. This happens as incoming acks open up the remote 2654 * window for us. 2655 * 2656 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2657 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2658 * account rare use of URG, this is not a big flaw. 2659 * 2660 * Send at most one packet when push_one > 0. Temporarily ignore 2661 * cwnd limit to force at most one packet out when push_one == 2. 2662 2663 * Returns true, if no segments are in flight and we have queued segments, 2664 * but cannot send anything now because of SWS or another problem. 2665 */ 2666 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2667 int push_one, gfp_t gfp) 2668 { 2669 struct tcp_sock *tp = tcp_sk(sk); 2670 struct sk_buff *skb; 2671 unsigned int tso_segs, sent_pkts; 2672 int cwnd_quota; 2673 int result; 2674 bool is_cwnd_limited = false, is_rwnd_limited = false; 2675 u32 max_segs; 2676 2677 sent_pkts = 0; 2678 2679 tcp_mstamp_refresh(tp); 2680 if (!push_one) { 2681 /* Do MTU probing. */ 2682 result = tcp_mtu_probe(sk); 2683 if (!result) { 2684 return false; 2685 } else if (result > 0) { 2686 sent_pkts = 1; 2687 } 2688 } 2689 2690 max_segs = tcp_tso_segs(sk, mss_now); 2691 while ((skb = tcp_send_head(sk))) { 2692 unsigned int limit; 2693 2694 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2695 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2696 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2697 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2698 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2699 tcp_init_tso_segs(skb, mss_now); 2700 goto repair; /* Skip network transmission */ 2701 } 2702 2703 if (tcp_pacing_check(sk)) 2704 break; 2705 2706 tso_segs = tcp_init_tso_segs(skb, mss_now); 2707 BUG_ON(!tso_segs); 2708 2709 cwnd_quota = tcp_cwnd_test(tp, skb); 2710 if (!cwnd_quota) { 2711 if (push_one == 2) 2712 /* Force out a loss probe pkt. */ 2713 cwnd_quota = 1; 2714 else 2715 break; 2716 } 2717 2718 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2719 is_rwnd_limited = true; 2720 break; 2721 } 2722 2723 if (tso_segs == 1) { 2724 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2725 (tcp_skb_is_last(sk, skb) ? 2726 nonagle : TCP_NAGLE_PUSH)))) 2727 break; 2728 } else { 2729 if (!push_one && 2730 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2731 &is_rwnd_limited, max_segs)) 2732 break; 2733 } 2734 2735 limit = mss_now; 2736 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2737 limit = tcp_mss_split_point(sk, skb, mss_now, 2738 min_t(unsigned int, 2739 cwnd_quota, 2740 max_segs), 2741 nonagle); 2742 2743 if (skb->len > limit && 2744 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2745 break; 2746 2747 if (tcp_small_queue_check(sk, skb, 0)) 2748 break; 2749 2750 /* Argh, we hit an empty skb(), presumably a thread 2751 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2752 * We do not want to send a pure-ack packet and have 2753 * a strange looking rtx queue with empty packet(s). 2754 */ 2755 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2756 break; 2757 2758 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2759 break; 2760 2761 repair: 2762 /* Advance the send_head. This one is sent out. 2763 * This call will increment packets_out. 2764 */ 2765 tcp_event_new_data_sent(sk, skb); 2766 2767 tcp_minshall_update(tp, mss_now, skb); 2768 sent_pkts += tcp_skb_pcount(skb); 2769 2770 if (push_one) 2771 break; 2772 } 2773 2774 if (is_rwnd_limited) 2775 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2776 else 2777 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2778 2779 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2780 if (likely(sent_pkts || is_cwnd_limited)) 2781 tcp_cwnd_validate(sk, is_cwnd_limited); 2782 2783 if (likely(sent_pkts)) { 2784 if (tcp_in_cwnd_reduction(sk)) 2785 tp->prr_out += sent_pkts; 2786 2787 /* Send one loss probe per tail loss episode. */ 2788 if (push_one != 2) 2789 tcp_schedule_loss_probe(sk, false); 2790 return false; 2791 } 2792 return !tp->packets_out && !tcp_write_queue_empty(sk); 2793 } 2794 2795 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2796 { 2797 struct inet_connection_sock *icsk = inet_csk(sk); 2798 struct tcp_sock *tp = tcp_sk(sk); 2799 u32 timeout, timeout_us, rto_delta_us; 2800 int early_retrans; 2801 2802 /* Don't do any loss probe on a Fast Open connection before 3WHS 2803 * finishes. 2804 */ 2805 if (rcu_access_pointer(tp->fastopen_rsk)) 2806 return false; 2807 2808 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2809 /* Schedule a loss probe in 2*RTT for SACK capable connections 2810 * not in loss recovery, that are either limited by cwnd or application. 2811 */ 2812 if ((early_retrans != 3 && early_retrans != 4) || 2813 !tp->packets_out || !tcp_is_sack(tp) || 2814 (icsk->icsk_ca_state != TCP_CA_Open && 2815 icsk->icsk_ca_state != TCP_CA_CWR)) 2816 return false; 2817 2818 /* Probe timeout is 2*rtt. Add minimum RTO to account 2819 * for delayed ack when there's one outstanding packet. If no RTT 2820 * sample is available then probe after TCP_TIMEOUT_INIT. 2821 */ 2822 if (tp->srtt_us) { 2823 timeout_us = tp->srtt_us >> 2; 2824 if (tp->packets_out == 1) 2825 timeout_us += tcp_rto_min_us(sk); 2826 else 2827 timeout_us += TCP_TIMEOUT_MIN_US; 2828 timeout = usecs_to_jiffies(timeout_us); 2829 } else { 2830 timeout = TCP_TIMEOUT_INIT; 2831 } 2832 2833 /* If the RTO formula yields an earlier time, then use that time. */ 2834 rto_delta_us = advancing_rto ? 2835 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2836 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2837 if (rto_delta_us > 0) 2838 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2839 2840 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2841 return true; 2842 } 2843 2844 /* Thanks to skb fast clones, we can detect if a prior transmit of 2845 * a packet is still in a qdisc or driver queue. 2846 * In this case, there is very little point doing a retransmit ! 2847 */ 2848 static bool skb_still_in_host_queue(struct sock *sk, 2849 const struct sk_buff *skb) 2850 { 2851 if (unlikely(skb_fclone_busy(sk, skb))) { 2852 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2853 smp_mb__after_atomic(); 2854 if (skb_fclone_busy(sk, skb)) { 2855 NET_INC_STATS(sock_net(sk), 2856 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2857 return true; 2858 } 2859 } 2860 return false; 2861 } 2862 2863 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2864 * retransmit the last segment. 2865 */ 2866 void tcp_send_loss_probe(struct sock *sk) 2867 { 2868 struct tcp_sock *tp = tcp_sk(sk); 2869 struct sk_buff *skb; 2870 int pcount; 2871 int mss = tcp_current_mss(sk); 2872 2873 /* At most one outstanding TLP */ 2874 if (tp->tlp_high_seq) 2875 goto rearm_timer; 2876 2877 tp->tlp_retrans = 0; 2878 skb = tcp_send_head(sk); 2879 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2880 pcount = tp->packets_out; 2881 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2882 if (tp->packets_out > pcount) 2883 goto probe_sent; 2884 goto rearm_timer; 2885 } 2886 skb = skb_rb_last(&sk->tcp_rtx_queue); 2887 if (unlikely(!skb)) { 2888 WARN_ONCE(tp->packets_out, 2889 "invalid inflight: %u state %u cwnd %u mss %d\n", 2890 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2891 inet_csk(sk)->icsk_pending = 0; 2892 return; 2893 } 2894 2895 if (skb_still_in_host_queue(sk, skb)) 2896 goto rearm_timer; 2897 2898 pcount = tcp_skb_pcount(skb); 2899 if (WARN_ON(!pcount)) 2900 goto rearm_timer; 2901 2902 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2903 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2904 (pcount - 1) * mss, mss, 2905 GFP_ATOMIC))) 2906 goto rearm_timer; 2907 skb = skb_rb_next(skb); 2908 } 2909 2910 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2911 goto rearm_timer; 2912 2913 if (__tcp_retransmit_skb(sk, skb, 1)) 2914 goto rearm_timer; 2915 2916 tp->tlp_retrans = 1; 2917 2918 probe_sent: 2919 /* Record snd_nxt for loss detection. */ 2920 tp->tlp_high_seq = tp->snd_nxt; 2921 2922 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2923 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2924 inet_csk(sk)->icsk_pending = 0; 2925 rearm_timer: 2926 tcp_rearm_rto(sk); 2927 } 2928 2929 /* Push out any pending frames which were held back due to 2930 * TCP_CORK or attempt at coalescing tiny packets. 2931 * The socket must be locked by the caller. 2932 */ 2933 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2934 int nonagle) 2935 { 2936 /* If we are closed, the bytes will have to remain here. 2937 * In time closedown will finish, we empty the write queue and 2938 * all will be happy. 2939 */ 2940 if (unlikely(sk->sk_state == TCP_CLOSE)) 2941 return; 2942 2943 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2944 sk_gfp_mask(sk, GFP_ATOMIC))) 2945 tcp_check_probe_timer(sk); 2946 } 2947 2948 /* Send _single_ skb sitting at the send head. This function requires 2949 * true push pending frames to setup probe timer etc. 2950 */ 2951 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2952 { 2953 struct sk_buff *skb = tcp_send_head(sk); 2954 2955 BUG_ON(!skb || skb->len < mss_now); 2956 2957 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2958 } 2959 2960 /* This function returns the amount that we can raise the 2961 * usable window based on the following constraints 2962 * 2963 * 1. The window can never be shrunk once it is offered (RFC 793) 2964 * 2. We limit memory per socket 2965 * 2966 * RFC 1122: 2967 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2968 * RECV.NEXT + RCV.WIN fixed until: 2969 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2970 * 2971 * i.e. don't raise the right edge of the window until you can raise 2972 * it at least MSS bytes. 2973 * 2974 * Unfortunately, the recommended algorithm breaks header prediction, 2975 * since header prediction assumes th->window stays fixed. 2976 * 2977 * Strictly speaking, keeping th->window fixed violates the receiver 2978 * side SWS prevention criteria. The problem is that under this rule 2979 * a stream of single byte packets will cause the right side of the 2980 * window to always advance by a single byte. 2981 * 2982 * Of course, if the sender implements sender side SWS prevention 2983 * then this will not be a problem. 2984 * 2985 * BSD seems to make the following compromise: 2986 * 2987 * If the free space is less than the 1/4 of the maximum 2988 * space available and the free space is less than 1/2 mss, 2989 * then set the window to 0. 2990 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2991 * Otherwise, just prevent the window from shrinking 2992 * and from being larger than the largest representable value. 2993 * 2994 * This prevents incremental opening of the window in the regime 2995 * where TCP is limited by the speed of the reader side taking 2996 * data out of the TCP receive queue. It does nothing about 2997 * those cases where the window is constrained on the sender side 2998 * because the pipeline is full. 2999 * 3000 * BSD also seems to "accidentally" limit itself to windows that are a 3001 * multiple of MSS, at least until the free space gets quite small. 3002 * This would appear to be a side effect of the mbuf implementation. 3003 * Combining these two algorithms results in the observed behavior 3004 * of having a fixed window size at almost all times. 3005 * 3006 * Below we obtain similar behavior by forcing the offered window to 3007 * a multiple of the mss when it is feasible to do so. 3008 * 3009 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3010 * Regular options like TIMESTAMP are taken into account. 3011 */ 3012 u32 __tcp_select_window(struct sock *sk) 3013 { 3014 struct inet_connection_sock *icsk = inet_csk(sk); 3015 struct tcp_sock *tp = tcp_sk(sk); 3016 struct net *net = sock_net(sk); 3017 /* MSS for the peer's data. Previous versions used mss_clamp 3018 * here. I don't know if the value based on our guesses 3019 * of peer's MSS is better for the performance. It's more correct 3020 * but may be worse for the performance because of rcv_mss 3021 * fluctuations. --SAW 1998/11/1 3022 */ 3023 int mss = icsk->icsk_ack.rcv_mss; 3024 int free_space = tcp_space(sk); 3025 int allowed_space = tcp_full_space(sk); 3026 int full_space, window; 3027 3028 if (sk_is_mptcp(sk)) 3029 mptcp_space(sk, &free_space, &allowed_space); 3030 3031 full_space = min_t(int, tp->window_clamp, allowed_space); 3032 3033 if (unlikely(mss > full_space)) { 3034 mss = full_space; 3035 if (mss <= 0) 3036 return 0; 3037 } 3038 3039 /* Only allow window shrink if the sysctl is enabled and we have 3040 * a non-zero scaling factor in effect. 3041 */ 3042 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3043 goto shrink_window_allowed; 3044 3045 /* do not allow window to shrink */ 3046 3047 if (free_space < (full_space >> 1)) { 3048 icsk->icsk_ack.quick = 0; 3049 3050 if (tcp_under_memory_pressure(sk)) 3051 tcp_adjust_rcv_ssthresh(sk); 3052 3053 /* free_space might become our new window, make sure we don't 3054 * increase it due to wscale. 3055 */ 3056 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3057 3058 /* if free space is less than mss estimate, or is below 1/16th 3059 * of the maximum allowed, try to move to zero-window, else 3060 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3061 * new incoming data is dropped due to memory limits. 3062 * With large window, mss test triggers way too late in order 3063 * to announce zero window in time before rmem limit kicks in. 3064 */ 3065 if (free_space < (allowed_space >> 4) || free_space < mss) 3066 return 0; 3067 } 3068 3069 if (free_space > tp->rcv_ssthresh) 3070 free_space = tp->rcv_ssthresh; 3071 3072 /* Don't do rounding if we are using window scaling, since the 3073 * scaled window will not line up with the MSS boundary anyway. 3074 */ 3075 if (tp->rx_opt.rcv_wscale) { 3076 window = free_space; 3077 3078 /* Advertise enough space so that it won't get scaled away. 3079 * Import case: prevent zero window announcement if 3080 * 1<<rcv_wscale > mss. 3081 */ 3082 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3083 } else { 3084 window = tp->rcv_wnd; 3085 /* Get the largest window that is a nice multiple of mss. 3086 * Window clamp already applied above. 3087 * If our current window offering is within 1 mss of the 3088 * free space we just keep it. This prevents the divide 3089 * and multiply from happening most of the time. 3090 * We also don't do any window rounding when the free space 3091 * is too small. 3092 */ 3093 if (window <= free_space - mss || window > free_space) 3094 window = rounddown(free_space, mss); 3095 else if (mss == full_space && 3096 free_space > window + (full_space >> 1)) 3097 window = free_space; 3098 } 3099 3100 return window; 3101 3102 shrink_window_allowed: 3103 /* new window should always be an exact multiple of scaling factor */ 3104 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3105 3106 if (free_space < (full_space >> 1)) { 3107 icsk->icsk_ack.quick = 0; 3108 3109 if (tcp_under_memory_pressure(sk)) 3110 tcp_adjust_rcv_ssthresh(sk); 3111 3112 /* if free space is too low, return a zero window */ 3113 if (free_space < (allowed_space >> 4) || free_space < mss || 3114 free_space < (1 << tp->rx_opt.rcv_wscale)) 3115 return 0; 3116 } 3117 3118 if (free_space > tp->rcv_ssthresh) { 3119 free_space = tp->rcv_ssthresh; 3120 /* new window should always be an exact multiple of scaling factor 3121 * 3122 * For this case, we ALIGN "up" (increase free_space) because 3123 * we know free_space is not zero here, it has been reduced from 3124 * the memory-based limit, and rcv_ssthresh is not a hard limit 3125 * (unlike sk_rcvbuf). 3126 */ 3127 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3128 } 3129 3130 return free_space; 3131 } 3132 3133 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3134 const struct sk_buff *next_skb) 3135 { 3136 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3137 const struct skb_shared_info *next_shinfo = 3138 skb_shinfo(next_skb); 3139 struct skb_shared_info *shinfo = skb_shinfo(skb); 3140 3141 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3142 shinfo->tskey = next_shinfo->tskey; 3143 TCP_SKB_CB(skb)->txstamp_ack |= 3144 TCP_SKB_CB(next_skb)->txstamp_ack; 3145 } 3146 } 3147 3148 /* Collapses two adjacent SKB's during retransmission. */ 3149 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3150 { 3151 struct tcp_sock *tp = tcp_sk(sk); 3152 struct sk_buff *next_skb = skb_rb_next(skb); 3153 int next_skb_size; 3154 3155 next_skb_size = next_skb->len; 3156 3157 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3158 3159 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3160 return false; 3161 3162 tcp_highest_sack_replace(sk, next_skb, skb); 3163 3164 /* Update sequence range on original skb. */ 3165 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3166 3167 /* Merge over control information. This moves PSH/FIN etc. over */ 3168 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3169 3170 /* All done, get rid of second SKB and account for it so 3171 * packet counting does not break. 3172 */ 3173 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3174 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3175 3176 /* changed transmit queue under us so clear hints */ 3177 tcp_clear_retrans_hints_partial(tp); 3178 if (next_skb == tp->retransmit_skb_hint) 3179 tp->retransmit_skb_hint = skb; 3180 3181 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3182 3183 tcp_skb_collapse_tstamp(skb, next_skb); 3184 3185 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3186 return true; 3187 } 3188 3189 /* Check if coalescing SKBs is legal. */ 3190 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3191 { 3192 if (tcp_skb_pcount(skb) > 1) 3193 return false; 3194 if (skb_cloned(skb)) 3195 return false; 3196 /* Some heuristics for collapsing over SACK'd could be invented */ 3197 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3198 return false; 3199 3200 return true; 3201 } 3202 3203 /* Collapse packets in the retransmit queue to make to create 3204 * less packets on the wire. This is only done on retransmission. 3205 */ 3206 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3207 int space) 3208 { 3209 struct tcp_sock *tp = tcp_sk(sk); 3210 struct sk_buff *skb = to, *tmp; 3211 bool first = true; 3212 3213 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3214 return; 3215 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3216 return; 3217 3218 skb_rbtree_walk_from_safe(skb, tmp) { 3219 if (!tcp_can_collapse(sk, skb)) 3220 break; 3221 3222 if (!tcp_skb_can_collapse(to, skb)) 3223 break; 3224 3225 space -= skb->len; 3226 3227 if (first) { 3228 first = false; 3229 continue; 3230 } 3231 3232 if (space < 0) 3233 break; 3234 3235 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3236 break; 3237 3238 if (!tcp_collapse_retrans(sk, to)) 3239 break; 3240 } 3241 } 3242 3243 /* This retransmits one SKB. Policy decisions and retransmit queue 3244 * state updates are done by the caller. Returns non-zero if an 3245 * error occurred which prevented the send. 3246 */ 3247 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3248 { 3249 struct inet_connection_sock *icsk = inet_csk(sk); 3250 struct tcp_sock *tp = tcp_sk(sk); 3251 unsigned int cur_mss; 3252 int diff, len, err; 3253 int avail_wnd; 3254 3255 /* Inconclusive MTU probe */ 3256 if (icsk->icsk_mtup.probe_size) 3257 icsk->icsk_mtup.probe_size = 0; 3258 3259 if (skb_still_in_host_queue(sk, skb)) 3260 return -EBUSY; 3261 3262 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3263 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3264 WARN_ON_ONCE(1); 3265 return -EINVAL; 3266 } 3267 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3268 return -ENOMEM; 3269 } 3270 3271 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3272 return -EHOSTUNREACH; /* Routing failure or similar. */ 3273 3274 cur_mss = tcp_current_mss(sk); 3275 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3276 3277 /* If receiver has shrunk his window, and skb is out of 3278 * new window, do not retransmit it. The exception is the 3279 * case, when window is shrunk to zero. In this case 3280 * our retransmit of one segment serves as a zero window probe. 3281 */ 3282 if (avail_wnd <= 0) { 3283 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3284 return -EAGAIN; 3285 avail_wnd = cur_mss; 3286 } 3287 3288 len = cur_mss * segs; 3289 if (len > avail_wnd) { 3290 len = rounddown(avail_wnd, cur_mss); 3291 if (!len) 3292 len = avail_wnd; 3293 } 3294 if (skb->len > len) { 3295 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3296 cur_mss, GFP_ATOMIC)) 3297 return -ENOMEM; /* We'll try again later. */ 3298 } else { 3299 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3300 return -ENOMEM; 3301 3302 diff = tcp_skb_pcount(skb); 3303 tcp_set_skb_tso_segs(skb, cur_mss); 3304 diff -= tcp_skb_pcount(skb); 3305 if (diff) 3306 tcp_adjust_pcount(sk, skb, diff); 3307 avail_wnd = min_t(int, avail_wnd, cur_mss); 3308 if (skb->len < avail_wnd) 3309 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3310 } 3311 3312 /* RFC3168, section 6.1.1.1. ECN fallback */ 3313 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3314 tcp_ecn_clear_syn(sk, skb); 3315 3316 /* Update global and local TCP statistics. */ 3317 segs = tcp_skb_pcount(skb); 3318 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3319 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3320 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3321 tp->total_retrans += segs; 3322 tp->bytes_retrans += skb->len; 3323 3324 /* make sure skb->data is aligned on arches that require it 3325 * and check if ack-trimming & collapsing extended the headroom 3326 * beyond what csum_start can cover. 3327 */ 3328 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3329 skb_headroom(skb) >= 0xFFFF)) { 3330 struct sk_buff *nskb; 3331 3332 tcp_skb_tsorted_save(skb) { 3333 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3334 if (nskb) { 3335 nskb->dev = NULL; 3336 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3337 } else { 3338 err = -ENOBUFS; 3339 } 3340 } tcp_skb_tsorted_restore(skb); 3341 3342 if (!err) { 3343 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3344 tcp_rate_skb_sent(sk, skb); 3345 } 3346 } else { 3347 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3348 } 3349 3350 /* To avoid taking spuriously low RTT samples based on a timestamp 3351 * for a transmit that never happened, always mark EVER_RETRANS 3352 */ 3353 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3354 3355 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3356 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3357 TCP_SKB_CB(skb)->seq, segs, err); 3358 3359 if (likely(!err)) { 3360 trace_tcp_retransmit_skb(sk, skb); 3361 } else if (err != -EBUSY) { 3362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3363 } 3364 return err; 3365 } 3366 3367 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3368 { 3369 struct tcp_sock *tp = tcp_sk(sk); 3370 int err = __tcp_retransmit_skb(sk, skb, segs); 3371 3372 if (err == 0) { 3373 #if FASTRETRANS_DEBUG > 0 3374 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3375 net_dbg_ratelimited("retrans_out leaked\n"); 3376 } 3377 #endif 3378 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3379 tp->retrans_out += tcp_skb_pcount(skb); 3380 } 3381 3382 /* Save stamp of the first (attempted) retransmit. */ 3383 if (!tp->retrans_stamp) 3384 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3385 3386 if (tp->undo_retrans < 0) 3387 tp->undo_retrans = 0; 3388 tp->undo_retrans += tcp_skb_pcount(skb); 3389 return err; 3390 } 3391 3392 /* This gets called after a retransmit timeout, and the initially 3393 * retransmitted data is acknowledged. It tries to continue 3394 * resending the rest of the retransmit queue, until either 3395 * we've sent it all or the congestion window limit is reached. 3396 */ 3397 void tcp_xmit_retransmit_queue(struct sock *sk) 3398 { 3399 const struct inet_connection_sock *icsk = inet_csk(sk); 3400 struct sk_buff *skb, *rtx_head, *hole = NULL; 3401 struct tcp_sock *tp = tcp_sk(sk); 3402 bool rearm_timer = false; 3403 u32 max_segs; 3404 int mib_idx; 3405 3406 if (!tp->packets_out) 3407 return; 3408 3409 rtx_head = tcp_rtx_queue_head(sk); 3410 skb = tp->retransmit_skb_hint ?: rtx_head; 3411 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3412 skb_rbtree_walk_from(skb) { 3413 __u8 sacked; 3414 int segs; 3415 3416 if (tcp_pacing_check(sk)) 3417 break; 3418 3419 /* we could do better than to assign each time */ 3420 if (!hole) 3421 tp->retransmit_skb_hint = skb; 3422 3423 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3424 if (segs <= 0) 3425 break; 3426 sacked = TCP_SKB_CB(skb)->sacked; 3427 /* In case tcp_shift_skb_data() have aggregated large skbs, 3428 * we need to make sure not sending too bigs TSO packets 3429 */ 3430 segs = min_t(int, segs, max_segs); 3431 3432 if (tp->retrans_out >= tp->lost_out) { 3433 break; 3434 } else if (!(sacked & TCPCB_LOST)) { 3435 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3436 hole = skb; 3437 continue; 3438 3439 } else { 3440 if (icsk->icsk_ca_state != TCP_CA_Loss) 3441 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3442 else 3443 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3444 } 3445 3446 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3447 continue; 3448 3449 if (tcp_small_queue_check(sk, skb, 1)) 3450 break; 3451 3452 if (tcp_retransmit_skb(sk, skb, segs)) 3453 break; 3454 3455 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3456 3457 if (tcp_in_cwnd_reduction(sk)) 3458 tp->prr_out += tcp_skb_pcount(skb); 3459 3460 if (skb == rtx_head && 3461 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3462 rearm_timer = true; 3463 3464 } 3465 if (rearm_timer) 3466 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3467 inet_csk(sk)->icsk_rto, 3468 TCP_RTO_MAX); 3469 } 3470 3471 /* We allow to exceed memory limits for FIN packets to expedite 3472 * connection tear down and (memory) recovery. 3473 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3474 * or even be forced to close flow without any FIN. 3475 * In general, we want to allow one skb per socket to avoid hangs 3476 * with edge trigger epoll() 3477 */ 3478 void sk_forced_mem_schedule(struct sock *sk, int size) 3479 { 3480 int delta, amt; 3481 3482 delta = size - sk->sk_forward_alloc; 3483 if (delta <= 0) 3484 return; 3485 amt = sk_mem_pages(delta); 3486 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3487 sk_memory_allocated_add(sk, amt); 3488 3489 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3490 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3491 gfp_memcg_charge() | __GFP_NOFAIL); 3492 } 3493 3494 /* Send a FIN. The caller locks the socket for us. 3495 * We should try to send a FIN packet really hard, but eventually give up. 3496 */ 3497 void tcp_send_fin(struct sock *sk) 3498 { 3499 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3500 struct tcp_sock *tp = tcp_sk(sk); 3501 3502 /* Optimization, tack on the FIN if we have one skb in write queue and 3503 * this skb was not yet sent, or we are under memory pressure. 3504 * Note: in the latter case, FIN packet will be sent after a timeout, 3505 * as TCP stack thinks it has already been transmitted. 3506 */ 3507 tskb = tail; 3508 if (!tskb && tcp_under_memory_pressure(sk)) 3509 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3510 3511 if (tskb) { 3512 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3513 TCP_SKB_CB(tskb)->end_seq++; 3514 tp->write_seq++; 3515 if (!tail) { 3516 /* This means tskb was already sent. 3517 * Pretend we included the FIN on previous transmit. 3518 * We need to set tp->snd_nxt to the value it would have 3519 * if FIN had been sent. This is because retransmit path 3520 * does not change tp->snd_nxt. 3521 */ 3522 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3523 return; 3524 } 3525 } else { 3526 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3527 if (unlikely(!skb)) 3528 return; 3529 3530 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3531 skb_reserve(skb, MAX_TCP_HEADER); 3532 sk_forced_mem_schedule(sk, skb->truesize); 3533 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3534 tcp_init_nondata_skb(skb, tp->write_seq, 3535 TCPHDR_ACK | TCPHDR_FIN); 3536 tcp_queue_skb(sk, skb); 3537 } 3538 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3539 } 3540 3541 /* We get here when a process closes a file descriptor (either due to 3542 * an explicit close() or as a byproduct of exit()'ing) and there 3543 * was unread data in the receive queue. This behavior is recommended 3544 * by RFC 2525, section 2.17. -DaveM 3545 */ 3546 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3547 { 3548 struct sk_buff *skb; 3549 3550 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3551 3552 /* NOTE: No TCP options attached and we never retransmit this. */ 3553 skb = alloc_skb(MAX_TCP_HEADER, priority); 3554 if (!skb) { 3555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3556 return; 3557 } 3558 3559 /* Reserve space for headers and prepare control bits. */ 3560 skb_reserve(skb, MAX_TCP_HEADER); 3561 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3562 TCPHDR_ACK | TCPHDR_RST); 3563 tcp_mstamp_refresh(tcp_sk(sk)); 3564 /* Send it off. */ 3565 if (tcp_transmit_skb(sk, skb, 0, priority)) 3566 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3567 3568 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3569 * skb here is different to the troublesome skb, so use NULL 3570 */ 3571 trace_tcp_send_reset(sk, NULL); 3572 } 3573 3574 /* Send a crossed SYN-ACK during socket establishment. 3575 * WARNING: This routine must only be called when we have already sent 3576 * a SYN packet that crossed the incoming SYN that caused this routine 3577 * to get called. If this assumption fails then the initial rcv_wnd 3578 * and rcv_wscale values will not be correct. 3579 */ 3580 int tcp_send_synack(struct sock *sk) 3581 { 3582 struct sk_buff *skb; 3583 3584 skb = tcp_rtx_queue_head(sk); 3585 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3586 pr_err("%s: wrong queue state\n", __func__); 3587 return -EFAULT; 3588 } 3589 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3590 if (skb_cloned(skb)) { 3591 struct sk_buff *nskb; 3592 3593 tcp_skb_tsorted_save(skb) { 3594 nskb = skb_copy(skb, GFP_ATOMIC); 3595 } tcp_skb_tsorted_restore(skb); 3596 if (!nskb) 3597 return -ENOMEM; 3598 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3599 tcp_highest_sack_replace(sk, skb, nskb); 3600 tcp_rtx_queue_unlink_and_free(skb, sk); 3601 __skb_header_release(nskb); 3602 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3603 sk_wmem_queued_add(sk, nskb->truesize); 3604 sk_mem_charge(sk, nskb->truesize); 3605 skb = nskb; 3606 } 3607 3608 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3609 tcp_ecn_send_synack(sk, skb); 3610 } 3611 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3612 } 3613 3614 /** 3615 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3616 * @sk: listener socket 3617 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3618 * should not use it again. 3619 * @req: request_sock pointer 3620 * @foc: cookie for tcp fast open 3621 * @synack_type: Type of synack to prepare 3622 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3623 */ 3624 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3625 struct request_sock *req, 3626 struct tcp_fastopen_cookie *foc, 3627 enum tcp_synack_type synack_type, 3628 struct sk_buff *syn_skb) 3629 { 3630 struct inet_request_sock *ireq = inet_rsk(req); 3631 const struct tcp_sock *tp = tcp_sk(sk); 3632 struct tcp_md5sig_key *md5 = NULL; 3633 struct tcp_out_options opts; 3634 struct sk_buff *skb; 3635 int tcp_header_size; 3636 struct tcphdr *th; 3637 int mss; 3638 u64 now; 3639 3640 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3641 if (unlikely(!skb)) { 3642 dst_release(dst); 3643 return NULL; 3644 } 3645 /* Reserve space for headers. */ 3646 skb_reserve(skb, MAX_TCP_HEADER); 3647 3648 switch (synack_type) { 3649 case TCP_SYNACK_NORMAL: 3650 skb_set_owner_w(skb, req_to_sk(req)); 3651 break; 3652 case TCP_SYNACK_COOKIE: 3653 /* Under synflood, we do not attach skb to a socket, 3654 * to avoid false sharing. 3655 */ 3656 break; 3657 case TCP_SYNACK_FASTOPEN: 3658 /* sk is a const pointer, because we want to express multiple 3659 * cpu might call us concurrently. 3660 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3661 */ 3662 skb_set_owner_w(skb, (struct sock *)sk); 3663 break; 3664 } 3665 skb_dst_set(skb, dst); 3666 3667 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3668 3669 memset(&opts, 0, sizeof(opts)); 3670 if (tcp_rsk(req)->req_usec_ts < 0) 3671 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 3672 now = tcp_clock_ns(); 3673 #ifdef CONFIG_SYN_COOKIES 3674 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3675 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3676 true); 3677 else 3678 #endif 3679 { 3680 skb_set_delivery_time(skb, now, true); 3681 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3682 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3683 } 3684 3685 #ifdef CONFIG_TCP_MD5SIG 3686 rcu_read_lock(); 3687 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3688 #endif 3689 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3690 /* bpf program will be interested in the tcp_flags */ 3691 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3692 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3693 foc, synack_type, 3694 syn_skb) + sizeof(*th); 3695 3696 skb_push(skb, tcp_header_size); 3697 skb_reset_transport_header(skb); 3698 3699 th = (struct tcphdr *)skb->data; 3700 memset(th, 0, sizeof(struct tcphdr)); 3701 th->syn = 1; 3702 th->ack = 1; 3703 tcp_ecn_make_synack(req, th); 3704 th->source = htons(ireq->ir_num); 3705 th->dest = ireq->ir_rmt_port; 3706 skb->mark = ireq->ir_mark; 3707 skb->ip_summed = CHECKSUM_PARTIAL; 3708 th->seq = htonl(tcp_rsk(req)->snt_isn); 3709 /* XXX data is queued and acked as is. No buffer/window check */ 3710 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3711 3712 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3713 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3714 tcp_options_write(th, NULL, &opts); 3715 th->doff = (tcp_header_size >> 2); 3716 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3717 3718 #ifdef CONFIG_TCP_MD5SIG 3719 /* Okay, we have all we need - do the md5 hash if needed */ 3720 if (md5) 3721 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3722 md5, req_to_sk(req), skb); 3723 rcu_read_unlock(); 3724 #endif 3725 3726 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3727 synack_type, &opts); 3728 3729 skb_set_delivery_time(skb, now, true); 3730 tcp_add_tx_delay(skb, tp); 3731 3732 return skb; 3733 } 3734 EXPORT_SYMBOL(tcp_make_synack); 3735 3736 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3737 { 3738 struct inet_connection_sock *icsk = inet_csk(sk); 3739 const struct tcp_congestion_ops *ca; 3740 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3741 3742 if (ca_key == TCP_CA_UNSPEC) 3743 return; 3744 3745 rcu_read_lock(); 3746 ca = tcp_ca_find_key(ca_key); 3747 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3748 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3749 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3750 icsk->icsk_ca_ops = ca; 3751 } 3752 rcu_read_unlock(); 3753 } 3754 3755 /* Do all connect socket setups that can be done AF independent. */ 3756 static void tcp_connect_init(struct sock *sk) 3757 { 3758 const struct dst_entry *dst = __sk_dst_get(sk); 3759 struct tcp_sock *tp = tcp_sk(sk); 3760 __u8 rcv_wscale; 3761 u32 rcv_wnd; 3762 3763 /* We'll fix this up when we get a response from the other end. 3764 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3765 */ 3766 tp->tcp_header_len = sizeof(struct tcphdr); 3767 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3768 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3769 3770 /* If user gave his TCP_MAXSEG, record it to clamp */ 3771 if (tp->rx_opt.user_mss) 3772 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3773 tp->max_window = 0; 3774 tcp_mtup_init(sk); 3775 tcp_sync_mss(sk, dst_mtu(dst)); 3776 3777 tcp_ca_dst_init(sk, dst); 3778 3779 if (!tp->window_clamp) 3780 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3781 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3782 3783 tcp_initialize_rcv_mss(sk); 3784 3785 /* limit the window selection if the user enforce a smaller rx buffer */ 3786 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3787 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3788 tp->window_clamp = tcp_full_space(sk); 3789 3790 rcv_wnd = tcp_rwnd_init_bpf(sk); 3791 if (rcv_wnd == 0) 3792 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3793 3794 tcp_select_initial_window(sk, tcp_full_space(sk), 3795 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3796 &tp->rcv_wnd, 3797 &tp->window_clamp, 3798 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3799 &rcv_wscale, 3800 rcv_wnd); 3801 3802 tp->rx_opt.rcv_wscale = rcv_wscale; 3803 tp->rcv_ssthresh = tp->rcv_wnd; 3804 3805 WRITE_ONCE(sk->sk_err, 0); 3806 sock_reset_flag(sk, SOCK_DONE); 3807 tp->snd_wnd = 0; 3808 tcp_init_wl(tp, 0); 3809 tcp_write_queue_purge(sk); 3810 tp->snd_una = tp->write_seq; 3811 tp->snd_sml = tp->write_seq; 3812 tp->snd_up = tp->write_seq; 3813 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3814 3815 if (likely(!tp->repair)) 3816 tp->rcv_nxt = 0; 3817 else 3818 tp->rcv_tstamp = tcp_jiffies32; 3819 tp->rcv_wup = tp->rcv_nxt; 3820 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3821 3822 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3823 inet_csk(sk)->icsk_retransmits = 0; 3824 tcp_clear_retrans(tp); 3825 } 3826 3827 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3828 { 3829 struct tcp_sock *tp = tcp_sk(sk); 3830 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3831 3832 tcb->end_seq += skb->len; 3833 __skb_header_release(skb); 3834 sk_wmem_queued_add(sk, skb->truesize); 3835 sk_mem_charge(sk, skb->truesize); 3836 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3837 tp->packets_out += tcp_skb_pcount(skb); 3838 } 3839 3840 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3841 * queue a data-only packet after the regular SYN, such that regular SYNs 3842 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3843 * only the SYN sequence, the data are retransmitted in the first ACK. 3844 * If cookie is not cached or other error occurs, falls back to send a 3845 * regular SYN with Fast Open cookie request option. 3846 */ 3847 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3848 { 3849 struct inet_connection_sock *icsk = inet_csk(sk); 3850 struct tcp_sock *tp = tcp_sk(sk); 3851 struct tcp_fastopen_request *fo = tp->fastopen_req; 3852 struct page_frag *pfrag = sk_page_frag(sk); 3853 struct sk_buff *syn_data; 3854 int space, err = 0; 3855 3856 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3857 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3858 goto fallback; 3859 3860 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3861 * user-MSS. Reserve maximum option space for middleboxes that add 3862 * private TCP options. The cost is reduced data space in SYN :( 3863 */ 3864 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3865 /* Sync mss_cache after updating the mss_clamp */ 3866 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3867 3868 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3869 MAX_TCP_OPTION_SPACE; 3870 3871 space = min_t(size_t, space, fo->size); 3872 3873 if (space && 3874 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3875 pfrag, sk->sk_allocation)) 3876 goto fallback; 3877 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3878 if (!syn_data) 3879 goto fallback; 3880 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3881 if (space) { 3882 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3883 space = tcp_wmem_schedule(sk, space); 3884 } 3885 if (space) { 3886 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3887 space, &fo->data->msg_iter); 3888 if (unlikely(!space)) { 3889 tcp_skb_tsorted_anchor_cleanup(syn_data); 3890 kfree_skb(syn_data); 3891 goto fallback; 3892 } 3893 skb_fill_page_desc(syn_data, 0, pfrag->page, 3894 pfrag->offset, space); 3895 page_ref_inc(pfrag->page); 3896 pfrag->offset += space; 3897 skb_len_add(syn_data, space); 3898 skb_zcopy_set(syn_data, fo->uarg, NULL); 3899 } 3900 /* No more data pending in inet_wait_for_connect() */ 3901 if (space == fo->size) 3902 fo->data = NULL; 3903 fo->copied = space; 3904 3905 tcp_connect_queue_skb(sk, syn_data); 3906 if (syn_data->len) 3907 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3908 3909 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3910 3911 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3912 3913 /* Now full SYN+DATA was cloned and sent (or not), 3914 * remove the SYN from the original skb (syn_data) 3915 * we keep in write queue in case of a retransmit, as we 3916 * also have the SYN packet (with no data) in the same queue. 3917 */ 3918 TCP_SKB_CB(syn_data)->seq++; 3919 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3920 if (!err) { 3921 tp->syn_data = (fo->copied > 0); 3922 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3923 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3924 goto done; 3925 } 3926 3927 /* data was not sent, put it in write_queue */ 3928 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3929 tp->packets_out -= tcp_skb_pcount(syn_data); 3930 3931 fallback: 3932 /* Send a regular SYN with Fast Open cookie request option */ 3933 if (fo->cookie.len > 0) 3934 fo->cookie.len = 0; 3935 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3936 if (err) 3937 tp->syn_fastopen = 0; 3938 done: 3939 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3940 return err; 3941 } 3942 3943 /* Build a SYN and send it off. */ 3944 int tcp_connect(struct sock *sk) 3945 { 3946 struct tcp_sock *tp = tcp_sk(sk); 3947 struct sk_buff *buff; 3948 int err; 3949 3950 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3951 3952 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3953 return -EHOSTUNREACH; /* Routing failure or similar. */ 3954 3955 tcp_connect_init(sk); 3956 3957 if (unlikely(tp->repair)) { 3958 tcp_finish_connect(sk, NULL); 3959 return 0; 3960 } 3961 3962 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 3963 if (unlikely(!buff)) 3964 return -ENOBUFS; 3965 3966 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3967 tcp_mstamp_refresh(tp); 3968 tp->retrans_stamp = tcp_time_stamp_ts(tp); 3969 tcp_connect_queue_skb(sk, buff); 3970 tcp_ecn_send_syn(sk, buff); 3971 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3972 3973 /* Send off SYN; include data in Fast Open. */ 3974 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3975 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3976 if (err == -ECONNREFUSED) 3977 return err; 3978 3979 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3980 * in order to make this packet get counted in tcpOutSegs. 3981 */ 3982 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3983 tp->pushed_seq = tp->write_seq; 3984 buff = tcp_send_head(sk); 3985 if (unlikely(buff)) { 3986 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3987 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3988 } 3989 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3990 3991 /* Timer for repeating the SYN until an answer. */ 3992 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3993 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3994 return 0; 3995 } 3996 EXPORT_SYMBOL(tcp_connect); 3997 3998 u32 tcp_delack_max(const struct sock *sk) 3999 { 4000 const struct dst_entry *dst = __sk_dst_get(sk); 4001 u32 delack_max = inet_csk(sk)->icsk_delack_max; 4002 4003 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) { 4004 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 4005 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1); 4006 4007 delack_max = min_t(u32, delack_max, delack_from_rto_min); 4008 } 4009 return delack_max; 4010 } 4011 4012 /* Send out a delayed ack, the caller does the policy checking 4013 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4014 * for details. 4015 */ 4016 void tcp_send_delayed_ack(struct sock *sk) 4017 { 4018 struct inet_connection_sock *icsk = inet_csk(sk); 4019 int ato = icsk->icsk_ack.ato; 4020 unsigned long timeout; 4021 4022 if (ato > TCP_DELACK_MIN) { 4023 const struct tcp_sock *tp = tcp_sk(sk); 4024 int max_ato = HZ / 2; 4025 4026 if (inet_csk_in_pingpong_mode(sk) || 4027 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4028 max_ato = TCP_DELACK_MAX; 4029 4030 /* Slow path, intersegment interval is "high". */ 4031 4032 /* If some rtt estimate is known, use it to bound delayed ack. 4033 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4034 * directly. 4035 */ 4036 if (tp->srtt_us) { 4037 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4038 TCP_DELACK_MIN); 4039 4040 if (rtt < max_ato) 4041 max_ato = rtt; 4042 } 4043 4044 ato = min(ato, max_ato); 4045 } 4046 4047 ato = min_t(u32, ato, tcp_delack_max(sk)); 4048 4049 /* Stay within the limit we were given */ 4050 timeout = jiffies + ato; 4051 4052 /* Use new timeout only if there wasn't a older one earlier. */ 4053 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4054 /* If delack timer is about to expire, send ACK now. */ 4055 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4056 tcp_send_ack(sk); 4057 return; 4058 } 4059 4060 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4061 timeout = icsk->icsk_ack.timeout; 4062 } 4063 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4064 icsk->icsk_ack.timeout = timeout; 4065 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4066 } 4067 4068 /* This routine sends an ack and also updates the window. */ 4069 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4070 { 4071 struct sk_buff *buff; 4072 4073 /* If we have been reset, we may not send again. */ 4074 if (sk->sk_state == TCP_CLOSE) 4075 return; 4076 4077 /* We are not putting this on the write queue, so 4078 * tcp_transmit_skb() will set the ownership to this 4079 * sock. 4080 */ 4081 buff = alloc_skb(MAX_TCP_HEADER, 4082 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4083 if (unlikely(!buff)) { 4084 struct inet_connection_sock *icsk = inet_csk(sk); 4085 unsigned long delay; 4086 4087 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4088 if (delay < TCP_RTO_MAX) 4089 icsk->icsk_ack.retry++; 4090 inet_csk_schedule_ack(sk); 4091 icsk->icsk_ack.ato = TCP_ATO_MIN; 4092 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4093 return; 4094 } 4095 4096 /* Reserve space for headers and prepare control bits. */ 4097 skb_reserve(buff, MAX_TCP_HEADER); 4098 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4099 4100 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4101 * too much. 4102 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4103 */ 4104 skb_set_tcp_pure_ack(buff); 4105 4106 /* Send it off, this clears delayed acks for us. */ 4107 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4108 } 4109 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4110 4111 void tcp_send_ack(struct sock *sk) 4112 { 4113 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4114 } 4115 4116 /* This routine sends a packet with an out of date sequence 4117 * number. It assumes the other end will try to ack it. 4118 * 4119 * Question: what should we make while urgent mode? 4120 * 4.4BSD forces sending single byte of data. We cannot send 4121 * out of window data, because we have SND.NXT==SND.MAX... 4122 * 4123 * Current solution: to send TWO zero-length segments in urgent mode: 4124 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4125 * out-of-date with SND.UNA-1 to probe window. 4126 */ 4127 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4128 { 4129 struct tcp_sock *tp = tcp_sk(sk); 4130 struct sk_buff *skb; 4131 4132 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4133 skb = alloc_skb(MAX_TCP_HEADER, 4134 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4135 if (!skb) 4136 return -1; 4137 4138 /* Reserve space for headers and set control bits. */ 4139 skb_reserve(skb, MAX_TCP_HEADER); 4140 /* Use a previous sequence. This should cause the other 4141 * end to send an ack. Don't queue or clone SKB, just 4142 * send it. 4143 */ 4144 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4145 NET_INC_STATS(sock_net(sk), mib); 4146 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4147 } 4148 4149 /* Called from setsockopt( ... TCP_REPAIR ) */ 4150 void tcp_send_window_probe(struct sock *sk) 4151 { 4152 if (sk->sk_state == TCP_ESTABLISHED) { 4153 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4154 tcp_mstamp_refresh(tcp_sk(sk)); 4155 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4156 } 4157 } 4158 4159 /* Initiate keepalive or window probe from timer. */ 4160 int tcp_write_wakeup(struct sock *sk, int mib) 4161 { 4162 struct tcp_sock *tp = tcp_sk(sk); 4163 struct sk_buff *skb; 4164 4165 if (sk->sk_state == TCP_CLOSE) 4166 return -1; 4167 4168 skb = tcp_send_head(sk); 4169 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4170 int err; 4171 unsigned int mss = tcp_current_mss(sk); 4172 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4173 4174 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4175 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4176 4177 /* We are probing the opening of a window 4178 * but the window size is != 0 4179 * must have been a result SWS avoidance ( sender ) 4180 */ 4181 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4182 skb->len > mss) { 4183 seg_size = min(seg_size, mss); 4184 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4185 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4186 skb, seg_size, mss, GFP_ATOMIC)) 4187 return -1; 4188 } else if (!tcp_skb_pcount(skb)) 4189 tcp_set_skb_tso_segs(skb, mss); 4190 4191 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4192 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4193 if (!err) 4194 tcp_event_new_data_sent(sk, skb); 4195 return err; 4196 } else { 4197 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4198 tcp_xmit_probe_skb(sk, 1, mib); 4199 return tcp_xmit_probe_skb(sk, 0, mib); 4200 } 4201 } 4202 4203 /* A window probe timeout has occurred. If window is not closed send 4204 * a partial packet else a zero probe. 4205 */ 4206 void tcp_send_probe0(struct sock *sk) 4207 { 4208 struct inet_connection_sock *icsk = inet_csk(sk); 4209 struct tcp_sock *tp = tcp_sk(sk); 4210 struct net *net = sock_net(sk); 4211 unsigned long timeout; 4212 int err; 4213 4214 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4215 4216 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4217 /* Cancel probe timer, if it is not required. */ 4218 icsk->icsk_probes_out = 0; 4219 icsk->icsk_backoff = 0; 4220 icsk->icsk_probes_tstamp = 0; 4221 return; 4222 } 4223 4224 icsk->icsk_probes_out++; 4225 if (err <= 0) { 4226 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4227 icsk->icsk_backoff++; 4228 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4229 } else { 4230 /* If packet was not sent due to local congestion, 4231 * Let senders fight for local resources conservatively. 4232 */ 4233 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4234 } 4235 4236 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4237 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4238 } 4239 4240 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4241 { 4242 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4243 struct flowi fl; 4244 int res; 4245 4246 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4247 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4248 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4249 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4250 NULL); 4251 if (!res) { 4252 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4253 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4254 if (unlikely(tcp_passive_fastopen(sk))) { 4255 /* sk has const attribute because listeners are lockless. 4256 * However in this case, we are dealing with a passive fastopen 4257 * socket thus we can change total_retrans value. 4258 */ 4259 tcp_sk_rw(sk)->total_retrans++; 4260 } 4261 trace_tcp_retransmit_synack(sk, req); 4262 } 4263 return res; 4264 } 4265 EXPORT_SYMBOL(tcp_rtx_synack); 4266