1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, enter pingpong mode. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_enter_pingpong_mode(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 181 u32 rcv_nxt) 182 { 183 struct tcp_sock *tp = tcp_sk(sk); 184 185 if (unlikely(tp->compressed_ack)) { 186 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 187 tp->compressed_ack); 188 tp->compressed_ack = 0; 189 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 190 __sock_put(sk); 191 } 192 193 if (unlikely(rcv_nxt != tp->rcv_nxt)) 194 return; /* Special ACK sent by DCTCP to reflect ECN */ 195 tcp_dec_quickack_mode(sk, pkts); 196 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 213 /* If no clamp set the clamp to the max possible scaled window */ 214 if (*window_clamp == 0) 215 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 216 space = min(*window_clamp, space); 217 218 /* Quantize space offering to a multiple of mss if possible. */ 219 if (space > mss) 220 space = rounddown(space, mss); 221 222 /* NOTE: offering an initial window larger than 32767 223 * will break some buggy TCP stacks. If the admin tells us 224 * it is likely we could be speaking with such a buggy stack 225 * we will truncate our initial window offering to 32K-1 226 * unless the remote has sent us a window scaling option, 227 * which we interpret as a sign the remote TCP is not 228 * misinterpreting the window field as a signed quantity. 229 */ 230 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 232 else 233 (*rcv_wnd) = min_t(u32, space, U16_MAX); 234 235 if (init_rcv_wnd) 236 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 237 238 *rcv_wscale = 0; 239 if (wscale_ok) { 240 /* Set window scaling on max possible window */ 241 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 242 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 243 space = min_t(u32, space, *window_clamp); 244 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 245 0, TCP_MAX_WSCALE); 246 } 247 /* Set the clamp no higher than max representable value */ 248 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 249 } 250 EXPORT_SYMBOL(tcp_select_initial_window); 251 252 /* Chose a new window to advertise, update state in tcp_sock for the 253 * socket, and return result with RFC1323 scaling applied. The return 254 * value can be stuffed directly into th->window for an outgoing 255 * frame. 256 */ 257 static u16 tcp_select_window(struct sock *sk) 258 { 259 struct tcp_sock *tp = tcp_sk(sk); 260 u32 old_win = tp->rcv_wnd; 261 u32 cur_win = tcp_receive_window(tp); 262 u32 new_win = __tcp_select_window(sk); 263 struct net *net = sock_net(sk); 264 265 if (new_win < cur_win) { 266 /* Danger Will Robinson! 267 * Don't update rcv_wup/rcv_wnd here or else 268 * we will not be able to advertise a zero 269 * window in time. --DaveM 270 * 271 * Relax Will Robinson. 272 */ 273 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 274 /* Never shrink the offered window */ 275 if (new_win == 0) 276 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 277 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 278 } 279 } 280 281 tp->rcv_wnd = new_win; 282 tp->rcv_wup = tp->rcv_nxt; 283 284 /* Make sure we do not exceed the maximum possible 285 * scaled window. 286 */ 287 if (!tp->rx_opt.rcv_wscale && 288 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 289 new_win = min(new_win, MAX_TCP_WINDOW); 290 else 291 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 292 293 /* RFC1323 scaling applied */ 294 new_win >>= tp->rx_opt.rcv_wscale; 295 296 /* If we advertise zero window, disable fast path. */ 297 if (new_win == 0) { 298 tp->pred_flags = 0; 299 if (old_win) 300 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 398 tcp_skb_pcount_set(skb, 1); 399 400 TCP_SKB_CB(skb)->seq = seq; 401 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 402 seq++; 403 TCP_SKB_CB(skb)->end_seq = seq; 404 } 405 406 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 407 { 408 return tp->snd_una != tp->snd_up; 409 } 410 411 #define OPTION_SACK_ADVERTISE BIT(0) 412 #define OPTION_TS BIT(1) 413 #define OPTION_MD5 BIT(2) 414 #define OPTION_WSCALE BIT(3) 415 #define OPTION_FAST_OPEN_COOKIE BIT(8) 416 #define OPTION_SMC BIT(9) 417 #define OPTION_MPTCP BIT(10) 418 419 static void smc_options_write(__be32 *ptr, u16 *options) 420 { 421 #if IS_ENABLED(CONFIG_SMC) 422 if (static_branch_unlikely(&tcp_have_smc)) { 423 if (unlikely(OPTION_SMC & *options)) { 424 *ptr++ = htonl((TCPOPT_NOP << 24) | 425 (TCPOPT_NOP << 16) | 426 (TCPOPT_EXP << 8) | 427 (TCPOLEN_EXP_SMC_BASE)); 428 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 429 } 430 } 431 #endif 432 } 433 434 struct tcp_out_options { 435 u16 options; /* bit field of OPTION_* */ 436 u16 mss; /* 0 to disable */ 437 u8 ws; /* window scale, 0 to disable */ 438 u8 num_sack_blocks; /* number of SACK blocks to include */ 439 u8 hash_size; /* bytes in hash_location */ 440 u8 bpf_opt_len; /* length of BPF hdr option */ 441 __u8 *hash_location; /* temporary pointer, overloaded */ 442 __u32 tsval, tsecr; /* need to include OPTION_TS */ 443 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 444 struct mptcp_out_options mptcp; 445 }; 446 447 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 448 struct tcp_sock *tp, 449 struct tcp_out_options *opts) 450 { 451 #if IS_ENABLED(CONFIG_MPTCP) 452 if (unlikely(OPTION_MPTCP & opts->options)) 453 mptcp_write_options(th, ptr, tp, &opts->mptcp); 454 #endif 455 } 456 457 #ifdef CONFIG_CGROUP_BPF 458 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 459 enum tcp_synack_type synack_type) 460 { 461 if (unlikely(!skb)) 462 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 463 464 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 465 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 466 467 return 0; 468 } 469 470 /* req, syn_skb and synack_type are used when writing synack */ 471 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 472 struct request_sock *req, 473 struct sk_buff *syn_skb, 474 enum tcp_synack_type synack_type, 475 struct tcp_out_options *opts, 476 unsigned int *remaining) 477 { 478 struct bpf_sock_ops_kern sock_ops; 479 int err; 480 481 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 482 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 483 !*remaining) 484 return; 485 486 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 487 488 /* init sock_ops */ 489 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 490 491 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 492 493 if (req) { 494 /* The listen "sk" cannot be passed here because 495 * it is not locked. It would not make too much 496 * sense to do bpf_setsockopt(listen_sk) based 497 * on individual connection request also. 498 * 499 * Thus, "req" is passed here and the cgroup-bpf-progs 500 * of the listen "sk" will be run. 501 * 502 * "req" is also used here for fastopen even the "sk" here is 503 * a fullsock "child" sk. It is to keep the behavior 504 * consistent between fastopen and non-fastopen on 505 * the bpf programming side. 506 */ 507 sock_ops.sk = (struct sock *)req; 508 sock_ops.syn_skb = syn_skb; 509 } else { 510 sock_owned_by_me(sk); 511 512 sock_ops.is_fullsock = 1; 513 sock_ops.sk = sk; 514 } 515 516 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 517 sock_ops.remaining_opt_len = *remaining; 518 /* tcp_current_mss() does not pass a skb */ 519 if (skb) 520 bpf_skops_init_skb(&sock_ops, skb, 0); 521 522 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 523 524 if (err || sock_ops.remaining_opt_len == *remaining) 525 return; 526 527 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 528 /* round up to 4 bytes */ 529 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 530 531 *remaining -= opts->bpf_opt_len; 532 } 533 534 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 535 struct request_sock *req, 536 struct sk_buff *syn_skb, 537 enum tcp_synack_type synack_type, 538 struct tcp_out_options *opts) 539 { 540 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 541 struct bpf_sock_ops_kern sock_ops; 542 int err; 543 544 if (likely(!max_opt_len)) 545 return; 546 547 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 548 549 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 550 551 if (req) { 552 sock_ops.sk = (struct sock *)req; 553 sock_ops.syn_skb = syn_skb; 554 } else { 555 sock_owned_by_me(sk); 556 557 sock_ops.is_fullsock = 1; 558 sock_ops.sk = sk; 559 } 560 561 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 562 sock_ops.remaining_opt_len = max_opt_len; 563 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 564 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 565 566 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 567 568 if (err) 569 nr_written = 0; 570 else 571 nr_written = max_opt_len - sock_ops.remaining_opt_len; 572 573 if (nr_written < max_opt_len) 574 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 575 max_opt_len - nr_written); 576 } 577 #else 578 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 579 struct request_sock *req, 580 struct sk_buff *syn_skb, 581 enum tcp_synack_type synack_type, 582 struct tcp_out_options *opts, 583 unsigned int *remaining) 584 { 585 } 586 587 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 588 struct request_sock *req, 589 struct sk_buff *syn_skb, 590 enum tcp_synack_type synack_type, 591 struct tcp_out_options *opts) 592 { 593 } 594 #endif 595 596 /* Write previously computed TCP options to the packet. 597 * 598 * Beware: Something in the Internet is very sensitive to the ordering of 599 * TCP options, we learned this through the hard way, so be careful here. 600 * Luckily we can at least blame others for their non-compliance but from 601 * inter-operability perspective it seems that we're somewhat stuck with 602 * the ordering which we have been using if we want to keep working with 603 * those broken things (not that it currently hurts anybody as there isn't 604 * particular reason why the ordering would need to be changed). 605 * 606 * At least SACK_PERM as the first option is known to lead to a disaster 607 * (but it may well be that other scenarios fail similarly). 608 */ 609 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 610 struct tcp_out_options *opts) 611 { 612 __be32 *ptr = (__be32 *)(th + 1); 613 u16 options = opts->options; /* mungable copy */ 614 615 if (unlikely(OPTION_MD5 & options)) { 616 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 617 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 618 /* overload cookie hash location */ 619 opts->hash_location = (__u8 *)ptr; 620 ptr += 4; 621 } 622 623 if (unlikely(opts->mss)) { 624 *ptr++ = htonl((TCPOPT_MSS << 24) | 625 (TCPOLEN_MSS << 16) | 626 opts->mss); 627 } 628 629 if (likely(OPTION_TS & options)) { 630 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 631 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 632 (TCPOLEN_SACK_PERM << 16) | 633 (TCPOPT_TIMESTAMP << 8) | 634 TCPOLEN_TIMESTAMP); 635 options &= ~OPTION_SACK_ADVERTISE; 636 } else { 637 *ptr++ = htonl((TCPOPT_NOP << 24) | 638 (TCPOPT_NOP << 16) | 639 (TCPOPT_TIMESTAMP << 8) | 640 TCPOLEN_TIMESTAMP); 641 } 642 *ptr++ = htonl(opts->tsval); 643 *ptr++ = htonl(opts->tsecr); 644 } 645 646 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 647 *ptr++ = htonl((TCPOPT_NOP << 24) | 648 (TCPOPT_NOP << 16) | 649 (TCPOPT_SACK_PERM << 8) | 650 TCPOLEN_SACK_PERM); 651 } 652 653 if (unlikely(OPTION_WSCALE & options)) { 654 *ptr++ = htonl((TCPOPT_NOP << 24) | 655 (TCPOPT_WINDOW << 16) | 656 (TCPOLEN_WINDOW << 8) | 657 opts->ws); 658 } 659 660 if (unlikely(opts->num_sack_blocks)) { 661 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 662 tp->duplicate_sack : tp->selective_acks; 663 int this_sack; 664 665 *ptr++ = htonl((TCPOPT_NOP << 24) | 666 (TCPOPT_NOP << 16) | 667 (TCPOPT_SACK << 8) | 668 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 669 TCPOLEN_SACK_PERBLOCK))); 670 671 for (this_sack = 0; this_sack < opts->num_sack_blocks; 672 ++this_sack) { 673 *ptr++ = htonl(sp[this_sack].start_seq); 674 *ptr++ = htonl(sp[this_sack].end_seq); 675 } 676 677 tp->rx_opt.dsack = 0; 678 } 679 680 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 681 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 682 u8 *p = (u8 *)ptr; 683 u32 len; /* Fast Open option length */ 684 685 if (foc->exp) { 686 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 687 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 688 TCPOPT_FASTOPEN_MAGIC); 689 p += TCPOLEN_EXP_FASTOPEN_BASE; 690 } else { 691 len = TCPOLEN_FASTOPEN_BASE + foc->len; 692 *p++ = TCPOPT_FASTOPEN; 693 *p++ = len; 694 } 695 696 memcpy(p, foc->val, foc->len); 697 if ((len & 3) == 2) { 698 p[foc->len] = TCPOPT_NOP; 699 p[foc->len + 1] = TCPOPT_NOP; 700 } 701 ptr += (len + 3) >> 2; 702 } 703 704 smc_options_write(ptr, &options); 705 706 mptcp_options_write(th, ptr, tp, opts); 707 } 708 709 static void smc_set_option(const struct tcp_sock *tp, 710 struct tcp_out_options *opts, 711 unsigned int *remaining) 712 { 713 #if IS_ENABLED(CONFIG_SMC) 714 if (static_branch_unlikely(&tcp_have_smc)) { 715 if (tp->syn_smc) { 716 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 717 opts->options |= OPTION_SMC; 718 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 719 } 720 } 721 } 722 #endif 723 } 724 725 static void smc_set_option_cond(const struct tcp_sock *tp, 726 const struct inet_request_sock *ireq, 727 struct tcp_out_options *opts, 728 unsigned int *remaining) 729 { 730 #if IS_ENABLED(CONFIG_SMC) 731 if (static_branch_unlikely(&tcp_have_smc)) { 732 if (tp->syn_smc && ireq->smc_ok) { 733 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 734 opts->options |= OPTION_SMC; 735 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 736 } 737 } 738 } 739 #endif 740 } 741 742 static void mptcp_set_option_cond(const struct request_sock *req, 743 struct tcp_out_options *opts, 744 unsigned int *remaining) 745 { 746 if (rsk_is_mptcp(req)) { 747 unsigned int size; 748 749 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 750 if (*remaining >= size) { 751 opts->options |= OPTION_MPTCP; 752 *remaining -= size; 753 } 754 } 755 } 756 } 757 758 /* Compute TCP options for SYN packets. This is not the final 759 * network wire format yet. 760 */ 761 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 762 struct tcp_out_options *opts, 763 struct tcp_md5sig_key **md5) 764 { 765 struct tcp_sock *tp = tcp_sk(sk); 766 unsigned int remaining = MAX_TCP_OPTION_SPACE; 767 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 768 769 *md5 = NULL; 770 #ifdef CONFIG_TCP_MD5SIG 771 if (static_branch_unlikely(&tcp_md5_needed.key) && 772 rcu_access_pointer(tp->md5sig_info)) { 773 *md5 = tp->af_specific->md5_lookup(sk, sk); 774 if (*md5) { 775 opts->options |= OPTION_MD5; 776 remaining -= TCPOLEN_MD5SIG_ALIGNED; 777 } 778 } 779 #endif 780 781 /* We always get an MSS option. The option bytes which will be seen in 782 * normal data packets should timestamps be used, must be in the MSS 783 * advertised. But we subtract them from tp->mss_cache so that 784 * calculations in tcp_sendmsg are simpler etc. So account for this 785 * fact here if necessary. If we don't do this correctly, as a 786 * receiver we won't recognize data packets as being full sized when we 787 * should, and thus we won't abide by the delayed ACK rules correctly. 788 * SACKs don't matter, we never delay an ACK when we have any of those 789 * going out. */ 790 opts->mss = tcp_advertise_mss(sk); 791 remaining -= TCPOLEN_MSS_ALIGNED; 792 793 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) { 794 opts->options |= OPTION_TS; 795 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 796 opts->tsecr = tp->rx_opt.ts_recent; 797 remaining -= TCPOLEN_TSTAMP_ALIGNED; 798 } 799 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 800 opts->ws = tp->rx_opt.rcv_wscale; 801 opts->options |= OPTION_WSCALE; 802 remaining -= TCPOLEN_WSCALE_ALIGNED; 803 } 804 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 805 opts->options |= OPTION_SACK_ADVERTISE; 806 if (unlikely(!(OPTION_TS & opts->options))) 807 remaining -= TCPOLEN_SACKPERM_ALIGNED; 808 } 809 810 if (fastopen && fastopen->cookie.len >= 0) { 811 u32 need = fastopen->cookie.len; 812 813 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 814 TCPOLEN_FASTOPEN_BASE; 815 need = (need + 3) & ~3U; /* Align to 32 bits */ 816 if (remaining >= need) { 817 opts->options |= OPTION_FAST_OPEN_COOKIE; 818 opts->fastopen_cookie = &fastopen->cookie; 819 remaining -= need; 820 tp->syn_fastopen = 1; 821 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 822 } 823 } 824 825 smc_set_option(tp, opts, &remaining); 826 827 if (sk_is_mptcp(sk)) { 828 unsigned int size; 829 830 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 831 opts->options |= OPTION_MPTCP; 832 remaining -= size; 833 } 834 } 835 836 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 837 838 return MAX_TCP_OPTION_SPACE - remaining; 839 } 840 841 /* Set up TCP options for SYN-ACKs. */ 842 static unsigned int tcp_synack_options(const struct sock *sk, 843 struct request_sock *req, 844 unsigned int mss, struct sk_buff *skb, 845 struct tcp_out_options *opts, 846 const struct tcp_md5sig_key *md5, 847 struct tcp_fastopen_cookie *foc, 848 enum tcp_synack_type synack_type, 849 struct sk_buff *syn_skb) 850 { 851 struct inet_request_sock *ireq = inet_rsk(req); 852 unsigned int remaining = MAX_TCP_OPTION_SPACE; 853 854 #ifdef CONFIG_TCP_MD5SIG 855 if (md5) { 856 opts->options |= OPTION_MD5; 857 remaining -= TCPOLEN_MD5SIG_ALIGNED; 858 859 /* We can't fit any SACK blocks in a packet with MD5 + TS 860 * options. There was discussion about disabling SACK 861 * rather than TS in order to fit in better with old, 862 * buggy kernels, but that was deemed to be unnecessary. 863 */ 864 if (synack_type != TCP_SYNACK_COOKIE) 865 ireq->tstamp_ok &= !ireq->sack_ok; 866 } 867 #endif 868 869 /* We always send an MSS option. */ 870 opts->mss = mss; 871 remaining -= TCPOLEN_MSS_ALIGNED; 872 873 if (likely(ireq->wscale_ok)) { 874 opts->ws = ireq->rcv_wscale; 875 opts->options |= OPTION_WSCALE; 876 remaining -= TCPOLEN_WSCALE_ALIGNED; 877 } 878 if (likely(ireq->tstamp_ok)) { 879 opts->options |= OPTION_TS; 880 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 881 opts->tsecr = READ_ONCE(req->ts_recent); 882 remaining -= TCPOLEN_TSTAMP_ALIGNED; 883 } 884 if (likely(ireq->sack_ok)) { 885 opts->options |= OPTION_SACK_ADVERTISE; 886 if (unlikely(!ireq->tstamp_ok)) 887 remaining -= TCPOLEN_SACKPERM_ALIGNED; 888 } 889 if (foc != NULL && foc->len >= 0) { 890 u32 need = foc->len; 891 892 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 893 TCPOLEN_FASTOPEN_BASE; 894 need = (need + 3) & ~3U; /* Align to 32 bits */ 895 if (remaining >= need) { 896 opts->options |= OPTION_FAST_OPEN_COOKIE; 897 opts->fastopen_cookie = foc; 898 remaining -= need; 899 } 900 } 901 902 mptcp_set_option_cond(req, opts, &remaining); 903 904 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 905 906 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 907 synack_type, opts, &remaining); 908 909 return MAX_TCP_OPTION_SPACE - remaining; 910 } 911 912 /* Compute TCP options for ESTABLISHED sockets. This is not the 913 * final wire format yet. 914 */ 915 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 916 struct tcp_out_options *opts, 917 struct tcp_md5sig_key **md5) 918 { 919 struct tcp_sock *tp = tcp_sk(sk); 920 unsigned int size = 0; 921 unsigned int eff_sacks; 922 923 opts->options = 0; 924 925 *md5 = NULL; 926 #ifdef CONFIG_TCP_MD5SIG 927 if (static_branch_unlikely(&tcp_md5_needed.key) && 928 rcu_access_pointer(tp->md5sig_info)) { 929 *md5 = tp->af_specific->md5_lookup(sk, sk); 930 if (*md5) { 931 opts->options |= OPTION_MD5; 932 size += TCPOLEN_MD5SIG_ALIGNED; 933 } 934 } 935 #endif 936 937 if (likely(tp->rx_opt.tstamp_ok)) { 938 opts->options |= OPTION_TS; 939 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 940 opts->tsecr = tp->rx_opt.ts_recent; 941 size += TCPOLEN_TSTAMP_ALIGNED; 942 } 943 944 /* MPTCP options have precedence over SACK for the limited TCP 945 * option space because a MPTCP connection would be forced to 946 * fall back to regular TCP if a required multipath option is 947 * missing. SACK still gets a chance to use whatever space is 948 * left. 949 */ 950 if (sk_is_mptcp(sk)) { 951 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 952 unsigned int opt_size = 0; 953 954 if (mptcp_established_options(sk, skb, &opt_size, remaining, 955 &opts->mptcp)) { 956 opts->options |= OPTION_MPTCP; 957 size += opt_size; 958 } 959 } 960 961 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 962 if (unlikely(eff_sacks)) { 963 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 964 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 965 TCPOLEN_SACK_PERBLOCK)) 966 return size; 967 968 opts->num_sack_blocks = 969 min_t(unsigned int, eff_sacks, 970 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 971 TCPOLEN_SACK_PERBLOCK); 972 973 size += TCPOLEN_SACK_BASE_ALIGNED + 974 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 975 } 976 977 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 978 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 979 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 980 981 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 982 983 size = MAX_TCP_OPTION_SPACE - remaining; 984 } 985 986 return size; 987 } 988 989 990 /* TCP SMALL QUEUES (TSQ) 991 * 992 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 993 * to reduce RTT and bufferbloat. 994 * We do this using a special skb destructor (tcp_wfree). 995 * 996 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 997 * needs to be reallocated in a driver. 998 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 999 * 1000 * Since transmit from skb destructor is forbidden, we use a tasklet 1001 * to process all sockets that eventually need to send more skbs. 1002 * We use one tasklet per cpu, with its own queue of sockets. 1003 */ 1004 struct tsq_tasklet { 1005 struct tasklet_struct tasklet; 1006 struct list_head head; /* queue of tcp sockets */ 1007 }; 1008 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1009 1010 static void tcp_tsq_write(struct sock *sk) 1011 { 1012 if ((1 << sk->sk_state) & 1013 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1014 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1015 struct tcp_sock *tp = tcp_sk(sk); 1016 1017 if (tp->lost_out > tp->retrans_out && 1018 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1019 tcp_mstamp_refresh(tp); 1020 tcp_xmit_retransmit_queue(sk); 1021 } 1022 1023 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1024 0, GFP_ATOMIC); 1025 } 1026 } 1027 1028 static void tcp_tsq_handler(struct sock *sk) 1029 { 1030 bh_lock_sock(sk); 1031 if (!sock_owned_by_user(sk)) 1032 tcp_tsq_write(sk); 1033 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1034 sock_hold(sk); 1035 bh_unlock_sock(sk); 1036 } 1037 /* 1038 * One tasklet per cpu tries to send more skbs. 1039 * We run in tasklet context but need to disable irqs when 1040 * transferring tsq->head because tcp_wfree() might 1041 * interrupt us (non NAPI drivers) 1042 */ 1043 static void tcp_tasklet_func(struct tasklet_struct *t) 1044 { 1045 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1046 LIST_HEAD(list); 1047 unsigned long flags; 1048 struct list_head *q, *n; 1049 struct tcp_sock *tp; 1050 struct sock *sk; 1051 1052 local_irq_save(flags); 1053 list_splice_init(&tsq->head, &list); 1054 local_irq_restore(flags); 1055 1056 list_for_each_safe(q, n, &list) { 1057 tp = list_entry(q, struct tcp_sock, tsq_node); 1058 list_del(&tp->tsq_node); 1059 1060 sk = (struct sock *)tp; 1061 smp_mb__before_atomic(); 1062 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1063 1064 tcp_tsq_handler(sk); 1065 sk_free(sk); 1066 } 1067 } 1068 1069 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1070 TCPF_WRITE_TIMER_DEFERRED | \ 1071 TCPF_DELACK_TIMER_DEFERRED | \ 1072 TCPF_MTU_REDUCED_DEFERRED) 1073 /** 1074 * tcp_release_cb - tcp release_sock() callback 1075 * @sk: socket 1076 * 1077 * called from release_sock() to perform protocol dependent 1078 * actions before socket release. 1079 */ 1080 void tcp_release_cb(struct sock *sk) 1081 { 1082 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1083 unsigned long nflags; 1084 1085 /* perform an atomic operation only if at least one flag is set */ 1086 do { 1087 if (!(flags & TCP_DEFERRED_ALL)) 1088 return; 1089 nflags = flags & ~TCP_DEFERRED_ALL; 1090 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1091 1092 if (flags & TCPF_TSQ_DEFERRED) { 1093 tcp_tsq_write(sk); 1094 __sock_put(sk); 1095 } 1096 /* Here begins the tricky part : 1097 * We are called from release_sock() with : 1098 * 1) BH disabled 1099 * 2) sk_lock.slock spinlock held 1100 * 3) socket owned by us (sk->sk_lock.owned == 1) 1101 * 1102 * But following code is meant to be called from BH handlers, 1103 * so we should keep BH disabled, but early release socket ownership 1104 */ 1105 sock_release_ownership(sk); 1106 1107 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1108 tcp_write_timer_handler(sk); 1109 __sock_put(sk); 1110 } 1111 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1112 tcp_delack_timer_handler(sk); 1113 __sock_put(sk); 1114 } 1115 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1116 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1117 __sock_put(sk); 1118 } 1119 } 1120 EXPORT_SYMBOL(tcp_release_cb); 1121 1122 void __init tcp_tasklet_init(void) 1123 { 1124 int i; 1125 1126 for_each_possible_cpu(i) { 1127 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1128 1129 INIT_LIST_HEAD(&tsq->head); 1130 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1131 } 1132 } 1133 1134 /* 1135 * Write buffer destructor automatically called from kfree_skb. 1136 * We can't xmit new skbs from this context, as we might already 1137 * hold qdisc lock. 1138 */ 1139 void tcp_wfree(struct sk_buff *skb) 1140 { 1141 struct sock *sk = skb->sk; 1142 struct tcp_sock *tp = tcp_sk(sk); 1143 unsigned long flags, nval, oval; 1144 struct tsq_tasklet *tsq; 1145 bool empty; 1146 1147 /* Keep one reference on sk_wmem_alloc. 1148 * Will be released by sk_free() from here or tcp_tasklet_func() 1149 */ 1150 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1151 1152 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1153 * Wait until our queues (qdisc + devices) are drained. 1154 * This gives : 1155 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1156 * - chance for incoming ACK (processed by another cpu maybe) 1157 * to migrate this flow (skb->ooo_okay will be eventually set) 1158 */ 1159 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1160 goto out; 1161 1162 oval = smp_load_acquire(&sk->sk_tsq_flags); 1163 do { 1164 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1165 goto out; 1166 1167 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1168 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1169 1170 /* queue this socket to tasklet queue */ 1171 local_irq_save(flags); 1172 tsq = this_cpu_ptr(&tsq_tasklet); 1173 empty = list_empty(&tsq->head); 1174 list_add(&tp->tsq_node, &tsq->head); 1175 if (empty) 1176 tasklet_schedule(&tsq->tasklet); 1177 local_irq_restore(flags); 1178 return; 1179 out: 1180 sk_free(sk); 1181 } 1182 1183 /* Note: Called under soft irq. 1184 * We can call TCP stack right away, unless socket is owned by user. 1185 */ 1186 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1187 { 1188 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1189 struct sock *sk = (struct sock *)tp; 1190 1191 tcp_tsq_handler(sk); 1192 sock_put(sk); 1193 1194 return HRTIMER_NORESTART; 1195 } 1196 1197 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1198 u64 prior_wstamp) 1199 { 1200 struct tcp_sock *tp = tcp_sk(sk); 1201 1202 if (sk->sk_pacing_status != SK_PACING_NONE) { 1203 unsigned long rate = sk->sk_pacing_rate; 1204 1205 /* Original sch_fq does not pace first 10 MSS 1206 * Note that tp->data_segs_out overflows after 2^32 packets, 1207 * this is a minor annoyance. 1208 */ 1209 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1210 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1211 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1212 1213 /* take into account OS jitter */ 1214 len_ns -= min_t(u64, len_ns / 2, credit); 1215 tp->tcp_wstamp_ns += len_ns; 1216 } 1217 } 1218 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1219 } 1220 1221 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1222 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1223 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1224 1225 /* This routine actually transmits TCP packets queued in by 1226 * tcp_do_sendmsg(). This is used by both the initial 1227 * transmission and possible later retransmissions. 1228 * All SKB's seen here are completely headerless. It is our 1229 * job to build the TCP header, and pass the packet down to 1230 * IP so it can do the same plus pass the packet off to the 1231 * device. 1232 * 1233 * We are working here with either a clone of the original 1234 * SKB, or a fresh unique copy made by the retransmit engine. 1235 */ 1236 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1237 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1238 { 1239 const struct inet_connection_sock *icsk = inet_csk(sk); 1240 struct inet_sock *inet; 1241 struct tcp_sock *tp; 1242 struct tcp_skb_cb *tcb; 1243 struct tcp_out_options opts; 1244 unsigned int tcp_options_size, tcp_header_size; 1245 struct sk_buff *oskb = NULL; 1246 struct tcp_md5sig_key *md5; 1247 struct tcphdr *th; 1248 u64 prior_wstamp; 1249 int err; 1250 1251 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1252 tp = tcp_sk(sk); 1253 prior_wstamp = tp->tcp_wstamp_ns; 1254 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1255 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1256 if (clone_it) { 1257 oskb = skb; 1258 1259 tcp_skb_tsorted_save(oskb) { 1260 if (unlikely(skb_cloned(oskb))) 1261 skb = pskb_copy(oskb, gfp_mask); 1262 else 1263 skb = skb_clone(oskb, gfp_mask); 1264 } tcp_skb_tsorted_restore(oskb); 1265 1266 if (unlikely(!skb)) 1267 return -ENOBUFS; 1268 /* retransmit skbs might have a non zero value in skb->dev 1269 * because skb->dev is aliased with skb->rbnode.rb_left 1270 */ 1271 skb->dev = NULL; 1272 } 1273 1274 inet = inet_sk(sk); 1275 tcb = TCP_SKB_CB(skb); 1276 memset(&opts, 0, sizeof(opts)); 1277 1278 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1279 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1280 } else { 1281 tcp_options_size = tcp_established_options(sk, skb, &opts, 1282 &md5); 1283 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1284 * at receiver : This slightly improve GRO performance. 1285 * Note that we do not force the PSH flag for non GSO packets, 1286 * because they might be sent under high congestion events, 1287 * and in this case it is better to delay the delivery of 1-MSS 1288 * packets and thus the corresponding ACK packet that would 1289 * release the following packet. 1290 */ 1291 if (tcp_skb_pcount(skb) > 1) 1292 tcb->tcp_flags |= TCPHDR_PSH; 1293 } 1294 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1295 1296 /* if no packet is in qdisc/device queue, then allow XPS to select 1297 * another queue. We can be called from tcp_tsq_handler() 1298 * which holds one reference to sk. 1299 * 1300 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1301 * One way to get this would be to set skb->truesize = 2 on them. 1302 */ 1303 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1304 1305 /* If we had to use memory reserve to allocate this skb, 1306 * this might cause drops if packet is looped back : 1307 * Other socket might not have SOCK_MEMALLOC. 1308 * Packets not looped back do not care about pfmemalloc. 1309 */ 1310 skb->pfmemalloc = 0; 1311 1312 skb_push(skb, tcp_header_size); 1313 skb_reset_transport_header(skb); 1314 1315 skb_orphan(skb); 1316 skb->sk = sk; 1317 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1318 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1319 1320 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1321 1322 /* Build TCP header and checksum it. */ 1323 th = (struct tcphdr *)skb->data; 1324 th->source = inet->inet_sport; 1325 th->dest = inet->inet_dport; 1326 th->seq = htonl(tcb->seq); 1327 th->ack_seq = htonl(rcv_nxt); 1328 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1329 tcb->tcp_flags); 1330 1331 th->check = 0; 1332 th->urg_ptr = 0; 1333 1334 /* The urg_mode check is necessary during a below snd_una win probe */ 1335 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1336 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1337 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1338 th->urg = 1; 1339 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1340 th->urg_ptr = htons(0xFFFF); 1341 th->urg = 1; 1342 } 1343 } 1344 1345 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1346 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1347 th->window = htons(tcp_select_window(sk)); 1348 tcp_ecn_send(sk, skb, th, tcp_header_size); 1349 } else { 1350 /* RFC1323: The window in SYN & SYN/ACK segments 1351 * is never scaled. 1352 */ 1353 th->window = htons(min(tp->rcv_wnd, 65535U)); 1354 } 1355 1356 tcp_options_write(th, tp, &opts); 1357 1358 #ifdef CONFIG_TCP_MD5SIG 1359 /* Calculate the MD5 hash, as we have all we need now */ 1360 if (md5) { 1361 sk_gso_disable(sk); 1362 tp->af_specific->calc_md5_hash(opts.hash_location, 1363 md5, sk, skb); 1364 } 1365 #endif 1366 1367 /* BPF prog is the last one writing header option */ 1368 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1369 1370 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1371 tcp_v6_send_check, tcp_v4_send_check, 1372 sk, skb); 1373 1374 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1375 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1376 1377 if (skb->len != tcp_header_size) { 1378 tcp_event_data_sent(tp, sk); 1379 tp->data_segs_out += tcp_skb_pcount(skb); 1380 tp->bytes_sent += skb->len - tcp_header_size; 1381 } 1382 1383 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1384 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1385 tcp_skb_pcount(skb)); 1386 1387 tp->segs_out += tcp_skb_pcount(skb); 1388 skb_set_hash_from_sk(skb, sk); 1389 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1390 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1391 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1392 1393 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1394 1395 /* Cleanup our debris for IP stacks */ 1396 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1397 sizeof(struct inet6_skb_parm))); 1398 1399 tcp_add_tx_delay(skb, tp); 1400 1401 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1402 inet6_csk_xmit, ip_queue_xmit, 1403 sk, skb, &inet->cork.fl); 1404 1405 if (unlikely(err > 0)) { 1406 tcp_enter_cwr(sk); 1407 err = net_xmit_eval(err); 1408 } 1409 if (!err && oskb) { 1410 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1411 tcp_rate_skb_sent(sk, oskb); 1412 } 1413 return err; 1414 } 1415 1416 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1417 gfp_t gfp_mask) 1418 { 1419 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1420 tcp_sk(sk)->rcv_nxt); 1421 } 1422 1423 /* This routine just queues the buffer for sending. 1424 * 1425 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1426 * otherwise socket can stall. 1427 */ 1428 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1429 { 1430 struct tcp_sock *tp = tcp_sk(sk); 1431 1432 /* Advance write_seq and place onto the write_queue. */ 1433 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1434 __skb_header_release(skb); 1435 tcp_add_write_queue_tail(sk, skb); 1436 sk_wmem_queued_add(sk, skb->truesize); 1437 sk_mem_charge(sk, skb->truesize); 1438 } 1439 1440 /* Initialize TSO segments for a packet. */ 1441 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1442 { 1443 if (skb->len <= mss_now) { 1444 /* Avoid the costly divide in the normal 1445 * non-TSO case. 1446 */ 1447 tcp_skb_pcount_set(skb, 1); 1448 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1449 } else { 1450 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1451 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1452 } 1453 } 1454 1455 /* Pcount in the middle of the write queue got changed, we need to do various 1456 * tweaks to fix counters 1457 */ 1458 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1459 { 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 1462 tp->packets_out -= decr; 1463 1464 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1465 tp->sacked_out -= decr; 1466 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1467 tp->retrans_out -= decr; 1468 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1469 tp->lost_out -= decr; 1470 1471 /* Reno case is special. Sigh... */ 1472 if (tcp_is_reno(tp) && decr > 0) 1473 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1474 1475 if (tp->lost_skb_hint && 1476 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1477 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1478 tp->lost_cnt_hint -= decr; 1479 1480 tcp_verify_left_out(tp); 1481 } 1482 1483 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1484 { 1485 return TCP_SKB_CB(skb)->txstamp_ack || 1486 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1487 } 1488 1489 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1490 { 1491 struct skb_shared_info *shinfo = skb_shinfo(skb); 1492 1493 if (unlikely(tcp_has_tx_tstamp(skb)) && 1494 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1495 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1496 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1497 1498 shinfo->tx_flags &= ~tsflags; 1499 shinfo2->tx_flags |= tsflags; 1500 swap(shinfo->tskey, shinfo2->tskey); 1501 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1502 TCP_SKB_CB(skb)->txstamp_ack = 0; 1503 } 1504 } 1505 1506 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1507 { 1508 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1509 TCP_SKB_CB(skb)->eor = 0; 1510 } 1511 1512 /* Insert buff after skb on the write or rtx queue of sk. */ 1513 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1514 struct sk_buff *buff, 1515 struct sock *sk, 1516 enum tcp_queue tcp_queue) 1517 { 1518 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1519 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1520 else 1521 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1522 } 1523 1524 /* Function to create two new TCP segments. Shrinks the given segment 1525 * to the specified size and appends a new segment with the rest of the 1526 * packet to the list. This won't be called frequently, I hope. 1527 * Remember, these are still headerless SKBs at this point. 1528 */ 1529 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1530 struct sk_buff *skb, u32 len, 1531 unsigned int mss_now, gfp_t gfp) 1532 { 1533 struct tcp_sock *tp = tcp_sk(sk); 1534 struct sk_buff *buff; 1535 int old_factor; 1536 long limit; 1537 int nlen; 1538 u8 flags; 1539 1540 if (WARN_ON(len > skb->len)) 1541 return -EINVAL; 1542 1543 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1544 1545 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1546 * We need some allowance to not penalize applications setting small 1547 * SO_SNDBUF values. 1548 * Also allow first and last skb in retransmit queue to be split. 1549 */ 1550 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1551 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1552 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1553 skb != tcp_rtx_queue_head(sk) && 1554 skb != tcp_rtx_queue_tail(sk))) { 1555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1556 return -ENOMEM; 1557 } 1558 1559 if (skb_unclone_keeptruesize(skb, gfp)) 1560 return -ENOMEM; 1561 1562 /* Get a new skb... force flag on. */ 1563 buff = tcp_stream_alloc_skb(sk, gfp, true); 1564 if (!buff) 1565 return -ENOMEM; /* We'll just try again later. */ 1566 skb_copy_decrypted(buff, skb); 1567 mptcp_skb_ext_copy(buff, skb); 1568 1569 sk_wmem_queued_add(sk, buff->truesize); 1570 sk_mem_charge(sk, buff->truesize); 1571 nlen = skb->len - len; 1572 buff->truesize += nlen; 1573 skb->truesize -= nlen; 1574 1575 /* Correct the sequence numbers. */ 1576 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1577 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1578 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1579 1580 /* PSH and FIN should only be set in the second packet. */ 1581 flags = TCP_SKB_CB(skb)->tcp_flags; 1582 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1583 TCP_SKB_CB(buff)->tcp_flags = flags; 1584 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1585 tcp_skb_fragment_eor(skb, buff); 1586 1587 skb_split(skb, buff, len); 1588 1589 skb_set_delivery_time(buff, skb->tstamp, true); 1590 tcp_fragment_tstamp(skb, buff); 1591 1592 old_factor = tcp_skb_pcount(skb); 1593 1594 /* Fix up tso_factor for both original and new SKB. */ 1595 tcp_set_skb_tso_segs(skb, mss_now); 1596 tcp_set_skb_tso_segs(buff, mss_now); 1597 1598 /* Update delivered info for the new segment */ 1599 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1600 1601 /* If this packet has been sent out already, we must 1602 * adjust the various packet counters. 1603 */ 1604 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1605 int diff = old_factor - tcp_skb_pcount(skb) - 1606 tcp_skb_pcount(buff); 1607 1608 if (diff) 1609 tcp_adjust_pcount(sk, skb, diff); 1610 } 1611 1612 /* Link BUFF into the send queue. */ 1613 __skb_header_release(buff); 1614 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1615 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1616 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1617 1618 return 0; 1619 } 1620 1621 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1622 * data is not copied, but immediately discarded. 1623 */ 1624 static int __pskb_trim_head(struct sk_buff *skb, int len) 1625 { 1626 struct skb_shared_info *shinfo; 1627 int i, k, eat; 1628 1629 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1630 eat = len; 1631 k = 0; 1632 shinfo = skb_shinfo(skb); 1633 for (i = 0; i < shinfo->nr_frags; i++) { 1634 int size = skb_frag_size(&shinfo->frags[i]); 1635 1636 if (size <= eat) { 1637 skb_frag_unref(skb, i); 1638 eat -= size; 1639 } else { 1640 shinfo->frags[k] = shinfo->frags[i]; 1641 if (eat) { 1642 skb_frag_off_add(&shinfo->frags[k], eat); 1643 skb_frag_size_sub(&shinfo->frags[k], eat); 1644 eat = 0; 1645 } 1646 k++; 1647 } 1648 } 1649 shinfo->nr_frags = k; 1650 1651 skb->data_len -= len; 1652 skb->len = skb->data_len; 1653 return len; 1654 } 1655 1656 /* Remove acked data from a packet in the transmit queue. */ 1657 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1658 { 1659 u32 delta_truesize; 1660 1661 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1662 return -ENOMEM; 1663 1664 delta_truesize = __pskb_trim_head(skb, len); 1665 1666 TCP_SKB_CB(skb)->seq += len; 1667 1668 skb->truesize -= delta_truesize; 1669 sk_wmem_queued_add(sk, -delta_truesize); 1670 if (!skb_zcopy_pure(skb)) 1671 sk_mem_uncharge(sk, delta_truesize); 1672 1673 /* Any change of skb->len requires recalculation of tso factor. */ 1674 if (tcp_skb_pcount(skb) > 1) 1675 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1676 1677 return 0; 1678 } 1679 1680 /* Calculate MSS not accounting any TCP options. */ 1681 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1682 { 1683 const struct tcp_sock *tp = tcp_sk(sk); 1684 const struct inet_connection_sock *icsk = inet_csk(sk); 1685 int mss_now; 1686 1687 /* Calculate base mss without TCP options: 1688 It is MMS_S - sizeof(tcphdr) of rfc1122 1689 */ 1690 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1691 1692 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1693 if (icsk->icsk_af_ops->net_frag_header_len) { 1694 const struct dst_entry *dst = __sk_dst_get(sk); 1695 1696 if (dst && dst_allfrag(dst)) 1697 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1698 } 1699 1700 /* Clamp it (mss_clamp does not include tcp options) */ 1701 if (mss_now > tp->rx_opt.mss_clamp) 1702 mss_now = tp->rx_opt.mss_clamp; 1703 1704 /* Now subtract optional transport overhead */ 1705 mss_now -= icsk->icsk_ext_hdr_len; 1706 1707 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1708 mss_now = max(mss_now, 1709 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1710 return mss_now; 1711 } 1712 1713 /* Calculate MSS. Not accounting for SACKs here. */ 1714 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1715 { 1716 /* Subtract TCP options size, not including SACKs */ 1717 return __tcp_mtu_to_mss(sk, pmtu) - 1718 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1719 } 1720 EXPORT_SYMBOL(tcp_mtu_to_mss); 1721 1722 /* Inverse of above */ 1723 int tcp_mss_to_mtu(struct sock *sk, int mss) 1724 { 1725 const struct tcp_sock *tp = tcp_sk(sk); 1726 const struct inet_connection_sock *icsk = inet_csk(sk); 1727 int mtu; 1728 1729 mtu = mss + 1730 tp->tcp_header_len + 1731 icsk->icsk_ext_hdr_len + 1732 icsk->icsk_af_ops->net_header_len; 1733 1734 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1735 if (icsk->icsk_af_ops->net_frag_header_len) { 1736 const struct dst_entry *dst = __sk_dst_get(sk); 1737 1738 if (dst && dst_allfrag(dst)) 1739 mtu += icsk->icsk_af_ops->net_frag_header_len; 1740 } 1741 return mtu; 1742 } 1743 EXPORT_SYMBOL(tcp_mss_to_mtu); 1744 1745 /* MTU probing init per socket */ 1746 void tcp_mtup_init(struct sock *sk) 1747 { 1748 struct tcp_sock *tp = tcp_sk(sk); 1749 struct inet_connection_sock *icsk = inet_csk(sk); 1750 struct net *net = sock_net(sk); 1751 1752 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1753 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1754 icsk->icsk_af_ops->net_header_len; 1755 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1756 icsk->icsk_mtup.probe_size = 0; 1757 if (icsk->icsk_mtup.enabled) 1758 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1759 } 1760 EXPORT_SYMBOL(tcp_mtup_init); 1761 1762 /* This function synchronize snd mss to current pmtu/exthdr set. 1763 1764 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1765 for TCP options, but includes only bare TCP header. 1766 1767 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1768 It is minimum of user_mss and mss received with SYN. 1769 It also does not include TCP options. 1770 1771 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1772 1773 tp->mss_cache is current effective sending mss, including 1774 all tcp options except for SACKs. It is evaluated, 1775 taking into account current pmtu, but never exceeds 1776 tp->rx_opt.mss_clamp. 1777 1778 NOTE1. rfc1122 clearly states that advertised MSS 1779 DOES NOT include either tcp or ip options. 1780 1781 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1782 are READ ONLY outside this function. --ANK (980731) 1783 */ 1784 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1785 { 1786 struct tcp_sock *tp = tcp_sk(sk); 1787 struct inet_connection_sock *icsk = inet_csk(sk); 1788 int mss_now; 1789 1790 if (icsk->icsk_mtup.search_high > pmtu) 1791 icsk->icsk_mtup.search_high = pmtu; 1792 1793 mss_now = tcp_mtu_to_mss(sk, pmtu); 1794 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1795 1796 /* And store cached results */ 1797 icsk->icsk_pmtu_cookie = pmtu; 1798 if (icsk->icsk_mtup.enabled) 1799 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1800 tp->mss_cache = mss_now; 1801 1802 return mss_now; 1803 } 1804 EXPORT_SYMBOL(tcp_sync_mss); 1805 1806 /* Compute the current effective MSS, taking SACKs and IP options, 1807 * and even PMTU discovery events into account. 1808 */ 1809 unsigned int tcp_current_mss(struct sock *sk) 1810 { 1811 const struct tcp_sock *tp = tcp_sk(sk); 1812 const struct dst_entry *dst = __sk_dst_get(sk); 1813 u32 mss_now; 1814 unsigned int header_len; 1815 struct tcp_out_options opts; 1816 struct tcp_md5sig_key *md5; 1817 1818 mss_now = tp->mss_cache; 1819 1820 if (dst) { 1821 u32 mtu = dst_mtu(dst); 1822 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1823 mss_now = tcp_sync_mss(sk, mtu); 1824 } 1825 1826 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1827 sizeof(struct tcphdr); 1828 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1829 * some common options. If this is an odd packet (because we have SACK 1830 * blocks etc) then our calculated header_len will be different, and 1831 * we have to adjust mss_now correspondingly */ 1832 if (header_len != tp->tcp_header_len) { 1833 int delta = (int) header_len - tp->tcp_header_len; 1834 mss_now -= delta; 1835 } 1836 1837 return mss_now; 1838 } 1839 1840 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1841 * As additional protections, we do not touch cwnd in retransmission phases, 1842 * and if application hit its sndbuf limit recently. 1843 */ 1844 static void tcp_cwnd_application_limited(struct sock *sk) 1845 { 1846 struct tcp_sock *tp = tcp_sk(sk); 1847 1848 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1849 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1850 /* Limited by application or receiver window. */ 1851 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1852 u32 win_used = max(tp->snd_cwnd_used, init_win); 1853 if (win_used < tcp_snd_cwnd(tp)) { 1854 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1855 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1856 } 1857 tp->snd_cwnd_used = 0; 1858 } 1859 tp->snd_cwnd_stamp = tcp_jiffies32; 1860 } 1861 1862 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1863 { 1864 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1865 struct tcp_sock *tp = tcp_sk(sk); 1866 1867 /* Track the strongest available signal of the degree to which the cwnd 1868 * is fully utilized. If cwnd-limited then remember that fact for the 1869 * current window. If not cwnd-limited then track the maximum number of 1870 * outstanding packets in the current window. (If cwnd-limited then we 1871 * chose to not update tp->max_packets_out to avoid an extra else 1872 * clause with no functional impact.) 1873 */ 1874 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1875 is_cwnd_limited || 1876 (!tp->is_cwnd_limited && 1877 tp->packets_out > tp->max_packets_out)) { 1878 tp->is_cwnd_limited = is_cwnd_limited; 1879 tp->max_packets_out = tp->packets_out; 1880 tp->cwnd_usage_seq = tp->snd_nxt; 1881 } 1882 1883 if (tcp_is_cwnd_limited(sk)) { 1884 /* Network is feed fully. */ 1885 tp->snd_cwnd_used = 0; 1886 tp->snd_cwnd_stamp = tcp_jiffies32; 1887 } else { 1888 /* Network starves. */ 1889 if (tp->packets_out > tp->snd_cwnd_used) 1890 tp->snd_cwnd_used = tp->packets_out; 1891 1892 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1893 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1894 !ca_ops->cong_control) 1895 tcp_cwnd_application_limited(sk); 1896 1897 /* The following conditions together indicate the starvation 1898 * is caused by insufficient sender buffer: 1899 * 1) just sent some data (see tcp_write_xmit) 1900 * 2) not cwnd limited (this else condition) 1901 * 3) no more data to send (tcp_write_queue_empty()) 1902 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1903 */ 1904 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1905 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1906 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1907 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1908 } 1909 } 1910 1911 /* Minshall's variant of the Nagle send check. */ 1912 static bool tcp_minshall_check(const struct tcp_sock *tp) 1913 { 1914 return after(tp->snd_sml, tp->snd_una) && 1915 !after(tp->snd_sml, tp->snd_nxt); 1916 } 1917 1918 /* Update snd_sml if this skb is under mss 1919 * Note that a TSO packet might end with a sub-mss segment 1920 * The test is really : 1921 * if ((skb->len % mss) != 0) 1922 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1923 * But we can avoid doing the divide again given we already have 1924 * skb_pcount = skb->len / mss_now 1925 */ 1926 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1927 const struct sk_buff *skb) 1928 { 1929 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1930 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1931 } 1932 1933 /* Return false, if packet can be sent now without violation Nagle's rules: 1934 * 1. It is full sized. (provided by caller in %partial bool) 1935 * 2. Or it contains FIN. (already checked by caller) 1936 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1937 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1938 * With Minshall's modification: all sent small packets are ACKed. 1939 */ 1940 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1941 int nonagle) 1942 { 1943 return partial && 1944 ((nonagle & TCP_NAGLE_CORK) || 1945 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1946 } 1947 1948 /* Return how many segs we'd like on a TSO packet, 1949 * depending on current pacing rate, and how close the peer is. 1950 * 1951 * Rationale is: 1952 * - For close peers, we rather send bigger packets to reduce 1953 * cpu costs, because occasional losses will be repaired fast. 1954 * - For long distance/rtt flows, we would like to get ACK clocking 1955 * with 1 ACK per ms. 1956 * 1957 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 1958 * in bigger TSO bursts. We we cut the RTT-based allowance in half 1959 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 1960 * is below 1500 bytes after 6 * ~500 usec = 3ms. 1961 */ 1962 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1963 int min_tso_segs) 1964 { 1965 unsigned long bytes; 1966 u32 r; 1967 1968 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift); 1969 1970 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 1971 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 1972 bytes += sk->sk_gso_max_size >> r; 1973 1974 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 1975 1976 return max_t(u32, bytes / mss_now, min_tso_segs); 1977 } 1978 1979 /* Return the number of segments we want in the skb we are transmitting. 1980 * See if congestion control module wants to decide; otherwise, autosize. 1981 */ 1982 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1983 { 1984 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1985 u32 min_tso, tso_segs; 1986 1987 min_tso = ca_ops->min_tso_segs ? 1988 ca_ops->min_tso_segs(sk) : 1989 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 1990 1991 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1992 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1993 } 1994 1995 /* Returns the portion of skb which can be sent right away */ 1996 static unsigned int tcp_mss_split_point(const struct sock *sk, 1997 const struct sk_buff *skb, 1998 unsigned int mss_now, 1999 unsigned int max_segs, 2000 int nonagle) 2001 { 2002 const struct tcp_sock *tp = tcp_sk(sk); 2003 u32 partial, needed, window, max_len; 2004 2005 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2006 max_len = mss_now * max_segs; 2007 2008 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2009 return max_len; 2010 2011 needed = min(skb->len, window); 2012 2013 if (max_len <= needed) 2014 return max_len; 2015 2016 partial = needed % mss_now; 2017 /* If last segment is not a full MSS, check if Nagle rules allow us 2018 * to include this last segment in this skb. 2019 * Otherwise, we'll split the skb at last MSS boundary 2020 */ 2021 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2022 return needed - partial; 2023 2024 return needed; 2025 } 2026 2027 /* Can at least one segment of SKB be sent right now, according to the 2028 * congestion window rules? If so, return how many segments are allowed. 2029 */ 2030 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2031 const struct sk_buff *skb) 2032 { 2033 u32 in_flight, cwnd, halfcwnd; 2034 2035 /* Don't be strict about the congestion window for the final FIN. */ 2036 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2037 tcp_skb_pcount(skb) == 1) 2038 return 1; 2039 2040 in_flight = tcp_packets_in_flight(tp); 2041 cwnd = tcp_snd_cwnd(tp); 2042 if (in_flight >= cwnd) 2043 return 0; 2044 2045 /* For better scheduling, ensure we have at least 2046 * 2 GSO packets in flight. 2047 */ 2048 halfcwnd = max(cwnd >> 1, 1U); 2049 return min(halfcwnd, cwnd - in_flight); 2050 } 2051 2052 /* Initialize TSO state of a skb. 2053 * This must be invoked the first time we consider transmitting 2054 * SKB onto the wire. 2055 */ 2056 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2057 { 2058 int tso_segs = tcp_skb_pcount(skb); 2059 2060 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2061 tcp_set_skb_tso_segs(skb, mss_now); 2062 tso_segs = tcp_skb_pcount(skb); 2063 } 2064 return tso_segs; 2065 } 2066 2067 2068 /* Return true if the Nagle test allows this packet to be 2069 * sent now. 2070 */ 2071 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2072 unsigned int cur_mss, int nonagle) 2073 { 2074 /* Nagle rule does not apply to frames, which sit in the middle of the 2075 * write_queue (they have no chances to get new data). 2076 * 2077 * This is implemented in the callers, where they modify the 'nonagle' 2078 * argument based upon the location of SKB in the send queue. 2079 */ 2080 if (nonagle & TCP_NAGLE_PUSH) 2081 return true; 2082 2083 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2084 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2085 return true; 2086 2087 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2088 return true; 2089 2090 return false; 2091 } 2092 2093 /* Does at least the first segment of SKB fit into the send window? */ 2094 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2095 const struct sk_buff *skb, 2096 unsigned int cur_mss) 2097 { 2098 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2099 2100 if (skb->len > cur_mss) 2101 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2102 2103 return !after(end_seq, tcp_wnd_end(tp)); 2104 } 2105 2106 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2107 * which is put after SKB on the list. It is very much like 2108 * tcp_fragment() except that it may make several kinds of assumptions 2109 * in order to speed up the splitting operation. In particular, we 2110 * know that all the data is in scatter-gather pages, and that the 2111 * packet has never been sent out before (and thus is not cloned). 2112 */ 2113 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2114 unsigned int mss_now, gfp_t gfp) 2115 { 2116 int nlen = skb->len - len; 2117 struct sk_buff *buff; 2118 u8 flags; 2119 2120 /* All of a TSO frame must be composed of paged data. */ 2121 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2122 2123 buff = tcp_stream_alloc_skb(sk, gfp, true); 2124 if (unlikely(!buff)) 2125 return -ENOMEM; 2126 skb_copy_decrypted(buff, skb); 2127 mptcp_skb_ext_copy(buff, skb); 2128 2129 sk_wmem_queued_add(sk, buff->truesize); 2130 sk_mem_charge(sk, buff->truesize); 2131 buff->truesize += nlen; 2132 skb->truesize -= nlen; 2133 2134 /* Correct the sequence numbers. */ 2135 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2136 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2137 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2138 2139 /* PSH and FIN should only be set in the second packet. */ 2140 flags = TCP_SKB_CB(skb)->tcp_flags; 2141 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2142 TCP_SKB_CB(buff)->tcp_flags = flags; 2143 2144 tcp_skb_fragment_eor(skb, buff); 2145 2146 skb_split(skb, buff, len); 2147 tcp_fragment_tstamp(skb, buff); 2148 2149 /* Fix up tso_factor for both original and new SKB. */ 2150 tcp_set_skb_tso_segs(skb, mss_now); 2151 tcp_set_skb_tso_segs(buff, mss_now); 2152 2153 /* Link BUFF into the send queue. */ 2154 __skb_header_release(buff); 2155 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2156 2157 return 0; 2158 } 2159 2160 /* Try to defer sending, if possible, in order to minimize the amount 2161 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2162 * 2163 * This algorithm is from John Heffner. 2164 */ 2165 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2166 bool *is_cwnd_limited, 2167 bool *is_rwnd_limited, 2168 u32 max_segs) 2169 { 2170 const struct inet_connection_sock *icsk = inet_csk(sk); 2171 u32 send_win, cong_win, limit, in_flight; 2172 struct tcp_sock *tp = tcp_sk(sk); 2173 struct sk_buff *head; 2174 int win_divisor; 2175 s64 delta; 2176 2177 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2178 goto send_now; 2179 2180 /* Avoid bursty behavior by allowing defer 2181 * only if the last write was recent (1 ms). 2182 * Note that tp->tcp_wstamp_ns can be in the future if we have 2183 * packets waiting in a qdisc or device for EDT delivery. 2184 */ 2185 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2186 if (delta > 0) 2187 goto send_now; 2188 2189 in_flight = tcp_packets_in_flight(tp); 2190 2191 BUG_ON(tcp_skb_pcount(skb) <= 1); 2192 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2193 2194 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2195 2196 /* From in_flight test above, we know that cwnd > in_flight. */ 2197 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2198 2199 limit = min(send_win, cong_win); 2200 2201 /* If a full-sized TSO skb can be sent, do it. */ 2202 if (limit >= max_segs * tp->mss_cache) 2203 goto send_now; 2204 2205 /* Middle in queue won't get any more data, full sendable already? */ 2206 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2207 goto send_now; 2208 2209 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2210 if (win_divisor) { 2211 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2212 2213 /* If at least some fraction of a window is available, 2214 * just use it. 2215 */ 2216 chunk /= win_divisor; 2217 if (limit >= chunk) 2218 goto send_now; 2219 } else { 2220 /* Different approach, try not to defer past a single 2221 * ACK. Receiver should ACK every other full sized 2222 * frame, so if we have space for more than 3 frames 2223 * then send now. 2224 */ 2225 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2226 goto send_now; 2227 } 2228 2229 /* TODO : use tsorted_sent_queue ? */ 2230 head = tcp_rtx_queue_head(sk); 2231 if (!head) 2232 goto send_now; 2233 delta = tp->tcp_clock_cache - head->tstamp; 2234 /* If next ACK is likely to come too late (half srtt), do not defer */ 2235 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2236 goto send_now; 2237 2238 /* Ok, it looks like it is advisable to defer. 2239 * Three cases are tracked : 2240 * 1) We are cwnd-limited 2241 * 2) We are rwnd-limited 2242 * 3) We are application limited. 2243 */ 2244 if (cong_win < send_win) { 2245 if (cong_win <= skb->len) { 2246 *is_cwnd_limited = true; 2247 return true; 2248 } 2249 } else { 2250 if (send_win <= skb->len) { 2251 *is_rwnd_limited = true; 2252 return true; 2253 } 2254 } 2255 2256 /* If this packet won't get more data, do not wait. */ 2257 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2258 TCP_SKB_CB(skb)->eor) 2259 goto send_now; 2260 2261 return true; 2262 2263 send_now: 2264 return false; 2265 } 2266 2267 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2268 { 2269 struct inet_connection_sock *icsk = inet_csk(sk); 2270 struct tcp_sock *tp = tcp_sk(sk); 2271 struct net *net = sock_net(sk); 2272 u32 interval; 2273 s32 delta; 2274 2275 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2276 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2277 if (unlikely(delta >= interval * HZ)) { 2278 int mss = tcp_current_mss(sk); 2279 2280 /* Update current search range */ 2281 icsk->icsk_mtup.probe_size = 0; 2282 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2283 sizeof(struct tcphdr) + 2284 icsk->icsk_af_ops->net_header_len; 2285 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2286 2287 /* Update probe time stamp */ 2288 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2289 } 2290 } 2291 2292 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2293 { 2294 struct sk_buff *skb, *next; 2295 2296 skb = tcp_send_head(sk); 2297 tcp_for_write_queue_from_safe(skb, next, sk) { 2298 if (len <= skb->len) 2299 break; 2300 2301 if (unlikely(TCP_SKB_CB(skb)->eor) || 2302 tcp_has_tx_tstamp(skb) || 2303 !skb_pure_zcopy_same(skb, next)) 2304 return false; 2305 2306 len -= skb->len; 2307 } 2308 2309 return true; 2310 } 2311 2312 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2313 int probe_size) 2314 { 2315 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2316 int i, todo, len = 0, nr_frags = 0; 2317 const struct sk_buff *skb; 2318 2319 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2320 return -ENOMEM; 2321 2322 skb_queue_walk(&sk->sk_write_queue, skb) { 2323 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2324 2325 if (skb_headlen(skb)) 2326 return -EINVAL; 2327 2328 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2329 if (len >= probe_size) 2330 goto commit; 2331 todo = min_t(int, skb_frag_size(fragfrom), 2332 probe_size - len); 2333 len += todo; 2334 if (lastfrag && 2335 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2336 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2337 skb_frag_size(lastfrag)) { 2338 skb_frag_size_add(lastfrag, todo); 2339 continue; 2340 } 2341 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2342 return -E2BIG; 2343 skb_frag_page_copy(fragto, fragfrom); 2344 skb_frag_off_copy(fragto, fragfrom); 2345 skb_frag_size_set(fragto, todo); 2346 nr_frags++; 2347 lastfrag = fragto++; 2348 } 2349 } 2350 commit: 2351 WARN_ON_ONCE(len != probe_size); 2352 for (i = 0; i < nr_frags; i++) 2353 skb_frag_ref(to, i); 2354 2355 skb_shinfo(to)->nr_frags = nr_frags; 2356 to->truesize += probe_size; 2357 to->len += probe_size; 2358 to->data_len += probe_size; 2359 __skb_header_release(to); 2360 return 0; 2361 } 2362 2363 /* Create a new MTU probe if we are ready. 2364 * MTU probe is regularly attempting to increase the path MTU by 2365 * deliberately sending larger packets. This discovers routing 2366 * changes resulting in larger path MTUs. 2367 * 2368 * Returns 0 if we should wait to probe (no cwnd available), 2369 * 1 if a probe was sent, 2370 * -1 otherwise 2371 */ 2372 static int tcp_mtu_probe(struct sock *sk) 2373 { 2374 struct inet_connection_sock *icsk = inet_csk(sk); 2375 struct tcp_sock *tp = tcp_sk(sk); 2376 struct sk_buff *skb, *nskb, *next; 2377 struct net *net = sock_net(sk); 2378 int probe_size; 2379 int size_needed; 2380 int copy, len; 2381 int mss_now; 2382 int interval; 2383 2384 /* Not currently probing/verifying, 2385 * not in recovery, 2386 * have enough cwnd, and 2387 * not SACKing (the variable headers throw things off) 2388 */ 2389 if (likely(!icsk->icsk_mtup.enabled || 2390 icsk->icsk_mtup.probe_size || 2391 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2392 tcp_snd_cwnd(tp) < 11 || 2393 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2394 return -1; 2395 2396 /* Use binary search for probe_size between tcp_mss_base, 2397 * and current mss_clamp. if (search_high - search_low) 2398 * smaller than a threshold, backoff from probing. 2399 */ 2400 mss_now = tcp_current_mss(sk); 2401 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2402 icsk->icsk_mtup.search_low) >> 1); 2403 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2404 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2405 /* When misfortune happens, we are reprobing actively, 2406 * and then reprobe timer has expired. We stick with current 2407 * probing process by not resetting search range to its orignal. 2408 */ 2409 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2410 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2411 /* Check whether enough time has elaplased for 2412 * another round of probing. 2413 */ 2414 tcp_mtu_check_reprobe(sk); 2415 return -1; 2416 } 2417 2418 /* Have enough data in the send queue to probe? */ 2419 if (tp->write_seq - tp->snd_nxt < size_needed) 2420 return -1; 2421 2422 if (tp->snd_wnd < size_needed) 2423 return -1; 2424 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2425 return 0; 2426 2427 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2428 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2429 if (!tcp_packets_in_flight(tp)) 2430 return -1; 2431 else 2432 return 0; 2433 } 2434 2435 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2436 return -1; 2437 2438 /* We're allowed to probe. Build it now. */ 2439 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2440 if (!nskb) 2441 return -1; 2442 2443 /* build the payload, and be prepared to abort if this fails. */ 2444 if (tcp_clone_payload(sk, nskb, probe_size)) { 2445 consume_skb(nskb); 2446 return -1; 2447 } 2448 sk_wmem_queued_add(sk, nskb->truesize); 2449 sk_mem_charge(sk, nskb->truesize); 2450 2451 skb = tcp_send_head(sk); 2452 skb_copy_decrypted(nskb, skb); 2453 mptcp_skb_ext_copy(nskb, skb); 2454 2455 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2456 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2457 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2458 2459 tcp_insert_write_queue_before(nskb, skb, sk); 2460 tcp_highest_sack_replace(sk, skb, nskb); 2461 2462 len = 0; 2463 tcp_for_write_queue_from_safe(skb, next, sk) { 2464 copy = min_t(int, skb->len, probe_size - len); 2465 2466 if (skb->len <= copy) { 2467 /* We've eaten all the data from this skb. 2468 * Throw it away. */ 2469 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2470 /* If this is the last SKB we copy and eor is set 2471 * we need to propagate it to the new skb. 2472 */ 2473 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2474 tcp_skb_collapse_tstamp(nskb, skb); 2475 tcp_unlink_write_queue(skb, sk); 2476 tcp_wmem_free_skb(sk, skb); 2477 } else { 2478 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2479 ~(TCPHDR_FIN|TCPHDR_PSH); 2480 __pskb_trim_head(skb, copy); 2481 tcp_set_skb_tso_segs(skb, mss_now); 2482 TCP_SKB_CB(skb)->seq += copy; 2483 } 2484 2485 len += copy; 2486 2487 if (len >= probe_size) 2488 break; 2489 } 2490 tcp_init_tso_segs(nskb, nskb->len); 2491 2492 /* We're ready to send. If this fails, the probe will 2493 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2494 */ 2495 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2496 /* Decrement cwnd here because we are sending 2497 * effectively two packets. */ 2498 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2499 tcp_event_new_data_sent(sk, nskb); 2500 2501 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2502 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2503 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2504 2505 return 1; 2506 } 2507 2508 return -1; 2509 } 2510 2511 static bool tcp_pacing_check(struct sock *sk) 2512 { 2513 struct tcp_sock *tp = tcp_sk(sk); 2514 2515 if (!tcp_needs_internal_pacing(sk)) 2516 return false; 2517 2518 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2519 return false; 2520 2521 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2522 hrtimer_start(&tp->pacing_timer, 2523 ns_to_ktime(tp->tcp_wstamp_ns), 2524 HRTIMER_MODE_ABS_PINNED_SOFT); 2525 sock_hold(sk); 2526 } 2527 return true; 2528 } 2529 2530 /* TCP Small Queues : 2531 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2532 * (These limits are doubled for retransmits) 2533 * This allows for : 2534 * - better RTT estimation and ACK scheduling 2535 * - faster recovery 2536 * - high rates 2537 * Alas, some drivers / subsystems require a fair amount 2538 * of queued bytes to ensure line rate. 2539 * One example is wifi aggregation (802.11 AMPDU) 2540 */ 2541 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2542 unsigned int factor) 2543 { 2544 unsigned long limit; 2545 2546 limit = max_t(unsigned long, 2547 2 * skb->truesize, 2548 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2549 if (sk->sk_pacing_status == SK_PACING_NONE) 2550 limit = min_t(unsigned long, limit, 2551 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2552 limit <<= factor; 2553 2554 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2555 tcp_sk(sk)->tcp_tx_delay) { 2556 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2557 2558 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2559 * approximate our needs assuming an ~100% skb->truesize overhead. 2560 * USEC_PER_SEC is approximated by 2^20. 2561 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2562 */ 2563 extra_bytes >>= (20 - 1); 2564 limit += extra_bytes; 2565 } 2566 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2567 /* Always send skb if rtx queue is empty. 2568 * No need to wait for TX completion to call us back, 2569 * after softirq/tasklet schedule. 2570 * This helps when TX completions are delayed too much. 2571 */ 2572 if (tcp_rtx_queue_empty(sk)) 2573 return false; 2574 2575 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2576 /* It is possible TX completion already happened 2577 * before we set TSQ_THROTTLED, so we must 2578 * test again the condition. 2579 */ 2580 smp_mb__after_atomic(); 2581 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2582 return true; 2583 } 2584 return false; 2585 } 2586 2587 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2588 { 2589 const u32 now = tcp_jiffies32; 2590 enum tcp_chrono old = tp->chrono_type; 2591 2592 if (old > TCP_CHRONO_UNSPEC) 2593 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2594 tp->chrono_start = now; 2595 tp->chrono_type = new; 2596 } 2597 2598 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2599 { 2600 struct tcp_sock *tp = tcp_sk(sk); 2601 2602 /* If there are multiple conditions worthy of tracking in a 2603 * chronograph then the highest priority enum takes precedence 2604 * over the other conditions. So that if something "more interesting" 2605 * starts happening, stop the previous chrono and start a new one. 2606 */ 2607 if (type > tp->chrono_type) 2608 tcp_chrono_set(tp, type); 2609 } 2610 2611 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2612 { 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 2615 2616 /* There are multiple conditions worthy of tracking in a 2617 * chronograph, so that the highest priority enum takes 2618 * precedence over the other conditions (see tcp_chrono_start). 2619 * If a condition stops, we only stop chrono tracking if 2620 * it's the "most interesting" or current chrono we are 2621 * tracking and starts busy chrono if we have pending data. 2622 */ 2623 if (tcp_rtx_and_write_queues_empty(sk)) 2624 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2625 else if (type == tp->chrono_type) 2626 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2627 } 2628 2629 /* This routine writes packets to the network. It advances the 2630 * send_head. This happens as incoming acks open up the remote 2631 * window for us. 2632 * 2633 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2634 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2635 * account rare use of URG, this is not a big flaw. 2636 * 2637 * Send at most one packet when push_one > 0. Temporarily ignore 2638 * cwnd limit to force at most one packet out when push_one == 2. 2639 2640 * Returns true, if no segments are in flight and we have queued segments, 2641 * but cannot send anything now because of SWS or another problem. 2642 */ 2643 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2644 int push_one, gfp_t gfp) 2645 { 2646 struct tcp_sock *tp = tcp_sk(sk); 2647 struct sk_buff *skb; 2648 unsigned int tso_segs, sent_pkts; 2649 int cwnd_quota; 2650 int result; 2651 bool is_cwnd_limited = false, is_rwnd_limited = false; 2652 u32 max_segs; 2653 2654 sent_pkts = 0; 2655 2656 tcp_mstamp_refresh(tp); 2657 if (!push_one) { 2658 /* Do MTU probing. */ 2659 result = tcp_mtu_probe(sk); 2660 if (!result) { 2661 return false; 2662 } else if (result > 0) { 2663 sent_pkts = 1; 2664 } 2665 } 2666 2667 max_segs = tcp_tso_segs(sk, mss_now); 2668 while ((skb = tcp_send_head(sk))) { 2669 unsigned int limit; 2670 2671 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2672 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2673 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2674 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2675 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2676 tcp_init_tso_segs(skb, mss_now); 2677 goto repair; /* Skip network transmission */ 2678 } 2679 2680 if (tcp_pacing_check(sk)) 2681 break; 2682 2683 tso_segs = tcp_init_tso_segs(skb, mss_now); 2684 BUG_ON(!tso_segs); 2685 2686 cwnd_quota = tcp_cwnd_test(tp, skb); 2687 if (!cwnd_quota) { 2688 if (push_one == 2) 2689 /* Force out a loss probe pkt. */ 2690 cwnd_quota = 1; 2691 else 2692 break; 2693 } 2694 2695 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2696 is_rwnd_limited = true; 2697 break; 2698 } 2699 2700 if (tso_segs == 1) { 2701 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2702 (tcp_skb_is_last(sk, skb) ? 2703 nonagle : TCP_NAGLE_PUSH)))) 2704 break; 2705 } else { 2706 if (!push_one && 2707 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2708 &is_rwnd_limited, max_segs)) 2709 break; 2710 } 2711 2712 limit = mss_now; 2713 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2714 limit = tcp_mss_split_point(sk, skb, mss_now, 2715 min_t(unsigned int, 2716 cwnd_quota, 2717 max_segs), 2718 nonagle); 2719 2720 if (skb->len > limit && 2721 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2722 break; 2723 2724 if (tcp_small_queue_check(sk, skb, 0)) 2725 break; 2726 2727 /* Argh, we hit an empty skb(), presumably a thread 2728 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2729 * We do not want to send a pure-ack packet and have 2730 * a strange looking rtx queue with empty packet(s). 2731 */ 2732 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2733 break; 2734 2735 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2736 break; 2737 2738 repair: 2739 /* Advance the send_head. This one is sent out. 2740 * This call will increment packets_out. 2741 */ 2742 tcp_event_new_data_sent(sk, skb); 2743 2744 tcp_minshall_update(tp, mss_now, skb); 2745 sent_pkts += tcp_skb_pcount(skb); 2746 2747 if (push_one) 2748 break; 2749 } 2750 2751 if (is_rwnd_limited) 2752 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2753 else 2754 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2755 2756 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2757 if (likely(sent_pkts || is_cwnd_limited)) 2758 tcp_cwnd_validate(sk, is_cwnd_limited); 2759 2760 if (likely(sent_pkts)) { 2761 if (tcp_in_cwnd_reduction(sk)) 2762 tp->prr_out += sent_pkts; 2763 2764 /* Send one loss probe per tail loss episode. */ 2765 if (push_one != 2) 2766 tcp_schedule_loss_probe(sk, false); 2767 return false; 2768 } 2769 return !tp->packets_out && !tcp_write_queue_empty(sk); 2770 } 2771 2772 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2773 { 2774 struct inet_connection_sock *icsk = inet_csk(sk); 2775 struct tcp_sock *tp = tcp_sk(sk); 2776 u32 timeout, rto_delta_us; 2777 int early_retrans; 2778 2779 /* Don't do any loss probe on a Fast Open connection before 3WHS 2780 * finishes. 2781 */ 2782 if (rcu_access_pointer(tp->fastopen_rsk)) 2783 return false; 2784 2785 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2786 /* Schedule a loss probe in 2*RTT for SACK capable connections 2787 * not in loss recovery, that are either limited by cwnd or application. 2788 */ 2789 if ((early_retrans != 3 && early_retrans != 4) || 2790 !tp->packets_out || !tcp_is_sack(tp) || 2791 (icsk->icsk_ca_state != TCP_CA_Open && 2792 icsk->icsk_ca_state != TCP_CA_CWR)) 2793 return false; 2794 2795 /* Probe timeout is 2*rtt. Add minimum RTO to account 2796 * for delayed ack when there's one outstanding packet. If no RTT 2797 * sample is available then probe after TCP_TIMEOUT_INIT. 2798 */ 2799 if (tp->srtt_us) { 2800 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2801 if (tp->packets_out == 1) 2802 timeout += TCP_RTO_MIN; 2803 else 2804 timeout += TCP_TIMEOUT_MIN; 2805 } else { 2806 timeout = TCP_TIMEOUT_INIT; 2807 } 2808 2809 /* If the RTO formula yields an earlier time, then use that time. */ 2810 rto_delta_us = advancing_rto ? 2811 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2812 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2813 if (rto_delta_us > 0) 2814 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2815 2816 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2817 return true; 2818 } 2819 2820 /* Thanks to skb fast clones, we can detect if a prior transmit of 2821 * a packet is still in a qdisc or driver queue. 2822 * In this case, there is very little point doing a retransmit ! 2823 */ 2824 static bool skb_still_in_host_queue(struct sock *sk, 2825 const struct sk_buff *skb) 2826 { 2827 if (unlikely(skb_fclone_busy(sk, skb))) { 2828 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2829 smp_mb__after_atomic(); 2830 if (skb_fclone_busy(sk, skb)) { 2831 NET_INC_STATS(sock_net(sk), 2832 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2833 return true; 2834 } 2835 } 2836 return false; 2837 } 2838 2839 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2840 * retransmit the last segment. 2841 */ 2842 void tcp_send_loss_probe(struct sock *sk) 2843 { 2844 struct tcp_sock *tp = tcp_sk(sk); 2845 struct sk_buff *skb; 2846 int pcount; 2847 int mss = tcp_current_mss(sk); 2848 2849 /* At most one outstanding TLP */ 2850 if (tp->tlp_high_seq) 2851 goto rearm_timer; 2852 2853 tp->tlp_retrans = 0; 2854 skb = tcp_send_head(sk); 2855 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2856 pcount = tp->packets_out; 2857 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2858 if (tp->packets_out > pcount) 2859 goto probe_sent; 2860 goto rearm_timer; 2861 } 2862 skb = skb_rb_last(&sk->tcp_rtx_queue); 2863 if (unlikely(!skb)) { 2864 WARN_ONCE(tp->packets_out, 2865 "invalid inflight: %u state %u cwnd %u mss %d\n", 2866 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2867 inet_csk(sk)->icsk_pending = 0; 2868 return; 2869 } 2870 2871 if (skb_still_in_host_queue(sk, skb)) 2872 goto rearm_timer; 2873 2874 pcount = tcp_skb_pcount(skb); 2875 if (WARN_ON(!pcount)) 2876 goto rearm_timer; 2877 2878 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2879 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2880 (pcount - 1) * mss, mss, 2881 GFP_ATOMIC))) 2882 goto rearm_timer; 2883 skb = skb_rb_next(skb); 2884 } 2885 2886 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2887 goto rearm_timer; 2888 2889 if (__tcp_retransmit_skb(sk, skb, 1)) 2890 goto rearm_timer; 2891 2892 tp->tlp_retrans = 1; 2893 2894 probe_sent: 2895 /* Record snd_nxt for loss detection. */ 2896 tp->tlp_high_seq = tp->snd_nxt; 2897 2898 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2899 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2900 inet_csk(sk)->icsk_pending = 0; 2901 rearm_timer: 2902 tcp_rearm_rto(sk); 2903 } 2904 2905 /* Push out any pending frames which were held back due to 2906 * TCP_CORK or attempt at coalescing tiny packets. 2907 * The socket must be locked by the caller. 2908 */ 2909 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2910 int nonagle) 2911 { 2912 /* If we are closed, the bytes will have to remain here. 2913 * In time closedown will finish, we empty the write queue and 2914 * all will be happy. 2915 */ 2916 if (unlikely(sk->sk_state == TCP_CLOSE)) 2917 return; 2918 2919 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2920 sk_gfp_mask(sk, GFP_ATOMIC))) 2921 tcp_check_probe_timer(sk); 2922 } 2923 2924 /* Send _single_ skb sitting at the send head. This function requires 2925 * true push pending frames to setup probe timer etc. 2926 */ 2927 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2928 { 2929 struct sk_buff *skb = tcp_send_head(sk); 2930 2931 BUG_ON(!skb || skb->len < mss_now); 2932 2933 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2934 } 2935 2936 /* This function returns the amount that we can raise the 2937 * usable window based on the following constraints 2938 * 2939 * 1. The window can never be shrunk once it is offered (RFC 793) 2940 * 2. We limit memory per socket 2941 * 2942 * RFC 1122: 2943 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2944 * RECV.NEXT + RCV.WIN fixed until: 2945 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2946 * 2947 * i.e. don't raise the right edge of the window until you can raise 2948 * it at least MSS bytes. 2949 * 2950 * Unfortunately, the recommended algorithm breaks header prediction, 2951 * since header prediction assumes th->window stays fixed. 2952 * 2953 * Strictly speaking, keeping th->window fixed violates the receiver 2954 * side SWS prevention criteria. The problem is that under this rule 2955 * a stream of single byte packets will cause the right side of the 2956 * window to always advance by a single byte. 2957 * 2958 * Of course, if the sender implements sender side SWS prevention 2959 * then this will not be a problem. 2960 * 2961 * BSD seems to make the following compromise: 2962 * 2963 * If the free space is less than the 1/4 of the maximum 2964 * space available and the free space is less than 1/2 mss, 2965 * then set the window to 0. 2966 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2967 * Otherwise, just prevent the window from shrinking 2968 * and from being larger than the largest representable value. 2969 * 2970 * This prevents incremental opening of the window in the regime 2971 * where TCP is limited by the speed of the reader side taking 2972 * data out of the TCP receive queue. It does nothing about 2973 * those cases where the window is constrained on the sender side 2974 * because the pipeline is full. 2975 * 2976 * BSD also seems to "accidentally" limit itself to windows that are a 2977 * multiple of MSS, at least until the free space gets quite small. 2978 * This would appear to be a side effect of the mbuf implementation. 2979 * Combining these two algorithms results in the observed behavior 2980 * of having a fixed window size at almost all times. 2981 * 2982 * Below we obtain similar behavior by forcing the offered window to 2983 * a multiple of the mss when it is feasible to do so. 2984 * 2985 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2986 * Regular options like TIMESTAMP are taken into account. 2987 */ 2988 u32 __tcp_select_window(struct sock *sk) 2989 { 2990 struct inet_connection_sock *icsk = inet_csk(sk); 2991 struct tcp_sock *tp = tcp_sk(sk); 2992 struct net *net = sock_net(sk); 2993 /* MSS for the peer's data. Previous versions used mss_clamp 2994 * here. I don't know if the value based on our guesses 2995 * of peer's MSS is better for the performance. It's more correct 2996 * but may be worse for the performance because of rcv_mss 2997 * fluctuations. --SAW 1998/11/1 2998 */ 2999 int mss = icsk->icsk_ack.rcv_mss; 3000 int free_space = tcp_space(sk); 3001 int allowed_space = tcp_full_space(sk); 3002 int full_space, window; 3003 3004 if (sk_is_mptcp(sk)) 3005 mptcp_space(sk, &free_space, &allowed_space); 3006 3007 full_space = min_t(int, tp->window_clamp, allowed_space); 3008 3009 if (unlikely(mss > full_space)) { 3010 mss = full_space; 3011 if (mss <= 0) 3012 return 0; 3013 } 3014 3015 /* Only allow window shrink if the sysctl is enabled and we have 3016 * a non-zero scaling factor in effect. 3017 */ 3018 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3019 goto shrink_window_allowed; 3020 3021 /* do not allow window to shrink */ 3022 3023 if (free_space < (full_space >> 1)) { 3024 icsk->icsk_ack.quick = 0; 3025 3026 if (tcp_under_memory_pressure(sk)) 3027 tcp_adjust_rcv_ssthresh(sk); 3028 3029 /* free_space might become our new window, make sure we don't 3030 * increase it due to wscale. 3031 */ 3032 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3033 3034 /* if free space is less than mss estimate, or is below 1/16th 3035 * of the maximum allowed, try to move to zero-window, else 3036 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3037 * new incoming data is dropped due to memory limits. 3038 * With large window, mss test triggers way too late in order 3039 * to announce zero window in time before rmem limit kicks in. 3040 */ 3041 if (free_space < (allowed_space >> 4) || free_space < mss) 3042 return 0; 3043 } 3044 3045 if (free_space > tp->rcv_ssthresh) 3046 free_space = tp->rcv_ssthresh; 3047 3048 /* Don't do rounding if we are using window scaling, since the 3049 * scaled window will not line up with the MSS boundary anyway. 3050 */ 3051 if (tp->rx_opt.rcv_wscale) { 3052 window = free_space; 3053 3054 /* Advertise enough space so that it won't get scaled away. 3055 * Import case: prevent zero window announcement if 3056 * 1<<rcv_wscale > mss. 3057 */ 3058 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3059 } else { 3060 window = tp->rcv_wnd; 3061 /* Get the largest window that is a nice multiple of mss. 3062 * Window clamp already applied above. 3063 * If our current window offering is within 1 mss of the 3064 * free space we just keep it. This prevents the divide 3065 * and multiply from happening most of the time. 3066 * We also don't do any window rounding when the free space 3067 * is too small. 3068 */ 3069 if (window <= free_space - mss || window > free_space) 3070 window = rounddown(free_space, mss); 3071 else if (mss == full_space && 3072 free_space > window + (full_space >> 1)) 3073 window = free_space; 3074 } 3075 3076 return window; 3077 3078 shrink_window_allowed: 3079 /* new window should always be an exact multiple of scaling factor */ 3080 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3081 3082 if (free_space < (full_space >> 1)) { 3083 icsk->icsk_ack.quick = 0; 3084 3085 if (tcp_under_memory_pressure(sk)) 3086 tcp_adjust_rcv_ssthresh(sk); 3087 3088 /* if free space is too low, return a zero window */ 3089 if (free_space < (allowed_space >> 4) || free_space < mss || 3090 free_space < (1 << tp->rx_opt.rcv_wscale)) 3091 return 0; 3092 } 3093 3094 if (free_space > tp->rcv_ssthresh) { 3095 free_space = tp->rcv_ssthresh; 3096 /* new window should always be an exact multiple of scaling factor 3097 * 3098 * For this case, we ALIGN "up" (increase free_space) because 3099 * we know free_space is not zero here, it has been reduced from 3100 * the memory-based limit, and rcv_ssthresh is not a hard limit 3101 * (unlike sk_rcvbuf). 3102 */ 3103 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3104 } 3105 3106 return free_space; 3107 } 3108 3109 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3110 const struct sk_buff *next_skb) 3111 { 3112 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3113 const struct skb_shared_info *next_shinfo = 3114 skb_shinfo(next_skb); 3115 struct skb_shared_info *shinfo = skb_shinfo(skb); 3116 3117 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3118 shinfo->tskey = next_shinfo->tskey; 3119 TCP_SKB_CB(skb)->txstamp_ack |= 3120 TCP_SKB_CB(next_skb)->txstamp_ack; 3121 } 3122 } 3123 3124 /* Collapses two adjacent SKB's during retransmission. */ 3125 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3126 { 3127 struct tcp_sock *tp = tcp_sk(sk); 3128 struct sk_buff *next_skb = skb_rb_next(skb); 3129 int next_skb_size; 3130 3131 next_skb_size = next_skb->len; 3132 3133 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3134 3135 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3136 return false; 3137 3138 tcp_highest_sack_replace(sk, next_skb, skb); 3139 3140 /* Update sequence range on original skb. */ 3141 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3142 3143 /* Merge over control information. This moves PSH/FIN etc. over */ 3144 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3145 3146 /* All done, get rid of second SKB and account for it so 3147 * packet counting does not break. 3148 */ 3149 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3150 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3151 3152 /* changed transmit queue under us so clear hints */ 3153 tcp_clear_retrans_hints_partial(tp); 3154 if (next_skb == tp->retransmit_skb_hint) 3155 tp->retransmit_skb_hint = skb; 3156 3157 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3158 3159 tcp_skb_collapse_tstamp(skb, next_skb); 3160 3161 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3162 return true; 3163 } 3164 3165 /* Check if coalescing SKBs is legal. */ 3166 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3167 { 3168 if (tcp_skb_pcount(skb) > 1) 3169 return false; 3170 if (skb_cloned(skb)) 3171 return false; 3172 /* Some heuristics for collapsing over SACK'd could be invented */ 3173 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3174 return false; 3175 3176 return true; 3177 } 3178 3179 /* Collapse packets in the retransmit queue to make to create 3180 * less packets on the wire. This is only done on retransmission. 3181 */ 3182 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3183 int space) 3184 { 3185 struct tcp_sock *tp = tcp_sk(sk); 3186 struct sk_buff *skb = to, *tmp; 3187 bool first = true; 3188 3189 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3190 return; 3191 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3192 return; 3193 3194 skb_rbtree_walk_from_safe(skb, tmp) { 3195 if (!tcp_can_collapse(sk, skb)) 3196 break; 3197 3198 if (!tcp_skb_can_collapse(to, skb)) 3199 break; 3200 3201 space -= skb->len; 3202 3203 if (first) { 3204 first = false; 3205 continue; 3206 } 3207 3208 if (space < 0) 3209 break; 3210 3211 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3212 break; 3213 3214 if (!tcp_collapse_retrans(sk, to)) 3215 break; 3216 } 3217 } 3218 3219 /* This retransmits one SKB. Policy decisions and retransmit queue 3220 * state updates are done by the caller. Returns non-zero if an 3221 * error occurred which prevented the send. 3222 */ 3223 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3224 { 3225 struct inet_connection_sock *icsk = inet_csk(sk); 3226 struct tcp_sock *tp = tcp_sk(sk); 3227 unsigned int cur_mss; 3228 int diff, len, err; 3229 int avail_wnd; 3230 3231 /* Inconclusive MTU probe */ 3232 if (icsk->icsk_mtup.probe_size) 3233 icsk->icsk_mtup.probe_size = 0; 3234 3235 if (skb_still_in_host_queue(sk, skb)) 3236 return -EBUSY; 3237 3238 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3239 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3240 WARN_ON_ONCE(1); 3241 return -EINVAL; 3242 } 3243 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3244 return -ENOMEM; 3245 } 3246 3247 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3248 return -EHOSTUNREACH; /* Routing failure or similar. */ 3249 3250 cur_mss = tcp_current_mss(sk); 3251 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3252 3253 /* If receiver has shrunk his window, and skb is out of 3254 * new window, do not retransmit it. The exception is the 3255 * case, when window is shrunk to zero. In this case 3256 * our retransmit of one segment serves as a zero window probe. 3257 */ 3258 if (avail_wnd <= 0) { 3259 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3260 return -EAGAIN; 3261 avail_wnd = cur_mss; 3262 } 3263 3264 len = cur_mss * segs; 3265 if (len > avail_wnd) { 3266 len = rounddown(avail_wnd, cur_mss); 3267 if (!len) 3268 len = avail_wnd; 3269 } 3270 if (skb->len > len) { 3271 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3272 cur_mss, GFP_ATOMIC)) 3273 return -ENOMEM; /* We'll try again later. */ 3274 } else { 3275 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3276 return -ENOMEM; 3277 3278 diff = tcp_skb_pcount(skb); 3279 tcp_set_skb_tso_segs(skb, cur_mss); 3280 diff -= tcp_skb_pcount(skb); 3281 if (diff) 3282 tcp_adjust_pcount(sk, skb, diff); 3283 avail_wnd = min_t(int, avail_wnd, cur_mss); 3284 if (skb->len < avail_wnd) 3285 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3286 } 3287 3288 /* RFC3168, section 6.1.1.1. ECN fallback */ 3289 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3290 tcp_ecn_clear_syn(sk, skb); 3291 3292 /* Update global and local TCP statistics. */ 3293 segs = tcp_skb_pcount(skb); 3294 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3295 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3296 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3297 tp->total_retrans += segs; 3298 tp->bytes_retrans += skb->len; 3299 3300 /* make sure skb->data is aligned on arches that require it 3301 * and check if ack-trimming & collapsing extended the headroom 3302 * beyond what csum_start can cover. 3303 */ 3304 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3305 skb_headroom(skb) >= 0xFFFF)) { 3306 struct sk_buff *nskb; 3307 3308 tcp_skb_tsorted_save(skb) { 3309 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3310 if (nskb) { 3311 nskb->dev = NULL; 3312 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3313 } else { 3314 err = -ENOBUFS; 3315 } 3316 } tcp_skb_tsorted_restore(skb); 3317 3318 if (!err) { 3319 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3320 tcp_rate_skb_sent(sk, skb); 3321 } 3322 } else { 3323 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3324 } 3325 3326 /* To avoid taking spuriously low RTT samples based on a timestamp 3327 * for a transmit that never happened, always mark EVER_RETRANS 3328 */ 3329 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3330 3331 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3332 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3333 TCP_SKB_CB(skb)->seq, segs, err); 3334 3335 if (likely(!err)) { 3336 trace_tcp_retransmit_skb(sk, skb); 3337 } else if (err != -EBUSY) { 3338 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3339 } 3340 return err; 3341 } 3342 3343 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3344 { 3345 struct tcp_sock *tp = tcp_sk(sk); 3346 int err = __tcp_retransmit_skb(sk, skb, segs); 3347 3348 if (err == 0) { 3349 #if FASTRETRANS_DEBUG > 0 3350 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3351 net_dbg_ratelimited("retrans_out leaked\n"); 3352 } 3353 #endif 3354 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3355 tp->retrans_out += tcp_skb_pcount(skb); 3356 } 3357 3358 /* Save stamp of the first (attempted) retransmit. */ 3359 if (!tp->retrans_stamp) 3360 tp->retrans_stamp = tcp_skb_timestamp(skb); 3361 3362 if (tp->undo_retrans < 0) 3363 tp->undo_retrans = 0; 3364 tp->undo_retrans += tcp_skb_pcount(skb); 3365 return err; 3366 } 3367 3368 /* This gets called after a retransmit timeout, and the initially 3369 * retransmitted data is acknowledged. It tries to continue 3370 * resending the rest of the retransmit queue, until either 3371 * we've sent it all or the congestion window limit is reached. 3372 */ 3373 void tcp_xmit_retransmit_queue(struct sock *sk) 3374 { 3375 const struct inet_connection_sock *icsk = inet_csk(sk); 3376 struct sk_buff *skb, *rtx_head, *hole = NULL; 3377 struct tcp_sock *tp = tcp_sk(sk); 3378 bool rearm_timer = false; 3379 u32 max_segs; 3380 int mib_idx; 3381 3382 if (!tp->packets_out) 3383 return; 3384 3385 rtx_head = tcp_rtx_queue_head(sk); 3386 skb = tp->retransmit_skb_hint ?: rtx_head; 3387 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3388 skb_rbtree_walk_from(skb) { 3389 __u8 sacked; 3390 int segs; 3391 3392 if (tcp_pacing_check(sk)) 3393 break; 3394 3395 /* we could do better than to assign each time */ 3396 if (!hole) 3397 tp->retransmit_skb_hint = skb; 3398 3399 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3400 if (segs <= 0) 3401 break; 3402 sacked = TCP_SKB_CB(skb)->sacked; 3403 /* In case tcp_shift_skb_data() have aggregated large skbs, 3404 * we need to make sure not sending too bigs TSO packets 3405 */ 3406 segs = min_t(int, segs, max_segs); 3407 3408 if (tp->retrans_out >= tp->lost_out) { 3409 break; 3410 } else if (!(sacked & TCPCB_LOST)) { 3411 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3412 hole = skb; 3413 continue; 3414 3415 } else { 3416 if (icsk->icsk_ca_state != TCP_CA_Loss) 3417 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3418 else 3419 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3420 } 3421 3422 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3423 continue; 3424 3425 if (tcp_small_queue_check(sk, skb, 1)) 3426 break; 3427 3428 if (tcp_retransmit_skb(sk, skb, segs)) 3429 break; 3430 3431 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3432 3433 if (tcp_in_cwnd_reduction(sk)) 3434 tp->prr_out += tcp_skb_pcount(skb); 3435 3436 if (skb == rtx_head && 3437 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3438 rearm_timer = true; 3439 3440 } 3441 if (rearm_timer) 3442 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3443 inet_csk(sk)->icsk_rto, 3444 TCP_RTO_MAX); 3445 } 3446 3447 /* We allow to exceed memory limits for FIN packets to expedite 3448 * connection tear down and (memory) recovery. 3449 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3450 * or even be forced to close flow without any FIN. 3451 * In general, we want to allow one skb per socket to avoid hangs 3452 * with edge trigger epoll() 3453 */ 3454 void sk_forced_mem_schedule(struct sock *sk, int size) 3455 { 3456 int delta, amt; 3457 3458 delta = size - sk->sk_forward_alloc; 3459 if (delta <= 0) 3460 return; 3461 amt = sk_mem_pages(delta); 3462 sk->sk_forward_alloc += amt << PAGE_SHIFT; 3463 sk_memory_allocated_add(sk, amt); 3464 3465 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3466 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3467 gfp_memcg_charge() | __GFP_NOFAIL); 3468 } 3469 3470 /* Send a FIN. The caller locks the socket for us. 3471 * We should try to send a FIN packet really hard, but eventually give up. 3472 */ 3473 void tcp_send_fin(struct sock *sk) 3474 { 3475 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3476 struct tcp_sock *tp = tcp_sk(sk); 3477 3478 /* Optimization, tack on the FIN if we have one skb in write queue and 3479 * this skb was not yet sent, or we are under memory pressure. 3480 * Note: in the latter case, FIN packet will be sent after a timeout, 3481 * as TCP stack thinks it has already been transmitted. 3482 */ 3483 tskb = tail; 3484 if (!tskb && tcp_under_memory_pressure(sk)) 3485 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3486 3487 if (tskb) { 3488 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3489 TCP_SKB_CB(tskb)->end_seq++; 3490 tp->write_seq++; 3491 if (!tail) { 3492 /* This means tskb was already sent. 3493 * Pretend we included the FIN on previous transmit. 3494 * We need to set tp->snd_nxt to the value it would have 3495 * if FIN had been sent. This is because retransmit path 3496 * does not change tp->snd_nxt. 3497 */ 3498 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3499 return; 3500 } 3501 } else { 3502 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3503 if (unlikely(!skb)) 3504 return; 3505 3506 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3507 skb_reserve(skb, MAX_TCP_HEADER); 3508 sk_forced_mem_schedule(sk, skb->truesize); 3509 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3510 tcp_init_nondata_skb(skb, tp->write_seq, 3511 TCPHDR_ACK | TCPHDR_FIN); 3512 tcp_queue_skb(sk, skb); 3513 } 3514 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3515 } 3516 3517 /* We get here when a process closes a file descriptor (either due to 3518 * an explicit close() or as a byproduct of exit()'ing) and there 3519 * was unread data in the receive queue. This behavior is recommended 3520 * by RFC 2525, section 2.17. -DaveM 3521 */ 3522 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3523 { 3524 struct sk_buff *skb; 3525 3526 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3527 3528 /* NOTE: No TCP options attached and we never retransmit this. */ 3529 skb = alloc_skb(MAX_TCP_HEADER, priority); 3530 if (!skb) { 3531 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3532 return; 3533 } 3534 3535 /* Reserve space for headers and prepare control bits. */ 3536 skb_reserve(skb, MAX_TCP_HEADER); 3537 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3538 TCPHDR_ACK | TCPHDR_RST); 3539 tcp_mstamp_refresh(tcp_sk(sk)); 3540 /* Send it off. */ 3541 if (tcp_transmit_skb(sk, skb, 0, priority)) 3542 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3543 3544 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3545 * skb here is different to the troublesome skb, so use NULL 3546 */ 3547 trace_tcp_send_reset(sk, NULL); 3548 } 3549 3550 /* Send a crossed SYN-ACK during socket establishment. 3551 * WARNING: This routine must only be called when we have already sent 3552 * a SYN packet that crossed the incoming SYN that caused this routine 3553 * to get called. If this assumption fails then the initial rcv_wnd 3554 * and rcv_wscale values will not be correct. 3555 */ 3556 int tcp_send_synack(struct sock *sk) 3557 { 3558 struct sk_buff *skb; 3559 3560 skb = tcp_rtx_queue_head(sk); 3561 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3562 pr_err("%s: wrong queue state\n", __func__); 3563 return -EFAULT; 3564 } 3565 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3566 if (skb_cloned(skb)) { 3567 struct sk_buff *nskb; 3568 3569 tcp_skb_tsorted_save(skb) { 3570 nskb = skb_copy(skb, GFP_ATOMIC); 3571 } tcp_skb_tsorted_restore(skb); 3572 if (!nskb) 3573 return -ENOMEM; 3574 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3575 tcp_highest_sack_replace(sk, skb, nskb); 3576 tcp_rtx_queue_unlink_and_free(skb, sk); 3577 __skb_header_release(nskb); 3578 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3579 sk_wmem_queued_add(sk, nskb->truesize); 3580 sk_mem_charge(sk, nskb->truesize); 3581 skb = nskb; 3582 } 3583 3584 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3585 tcp_ecn_send_synack(sk, skb); 3586 } 3587 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3588 } 3589 3590 /** 3591 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3592 * @sk: listener socket 3593 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3594 * should not use it again. 3595 * @req: request_sock pointer 3596 * @foc: cookie for tcp fast open 3597 * @synack_type: Type of synack to prepare 3598 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3599 */ 3600 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3601 struct request_sock *req, 3602 struct tcp_fastopen_cookie *foc, 3603 enum tcp_synack_type synack_type, 3604 struct sk_buff *syn_skb) 3605 { 3606 struct inet_request_sock *ireq = inet_rsk(req); 3607 const struct tcp_sock *tp = tcp_sk(sk); 3608 struct tcp_md5sig_key *md5 = NULL; 3609 struct tcp_out_options opts; 3610 struct sk_buff *skb; 3611 int tcp_header_size; 3612 struct tcphdr *th; 3613 int mss; 3614 u64 now; 3615 3616 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3617 if (unlikely(!skb)) { 3618 dst_release(dst); 3619 return NULL; 3620 } 3621 /* Reserve space for headers. */ 3622 skb_reserve(skb, MAX_TCP_HEADER); 3623 3624 switch (synack_type) { 3625 case TCP_SYNACK_NORMAL: 3626 skb_set_owner_w(skb, req_to_sk(req)); 3627 break; 3628 case TCP_SYNACK_COOKIE: 3629 /* Under synflood, we do not attach skb to a socket, 3630 * to avoid false sharing. 3631 */ 3632 break; 3633 case TCP_SYNACK_FASTOPEN: 3634 /* sk is a const pointer, because we want to express multiple 3635 * cpu might call us concurrently. 3636 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3637 */ 3638 skb_set_owner_w(skb, (struct sock *)sk); 3639 break; 3640 } 3641 skb_dst_set(skb, dst); 3642 3643 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3644 3645 memset(&opts, 0, sizeof(opts)); 3646 now = tcp_clock_ns(); 3647 #ifdef CONFIG_SYN_COOKIES 3648 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3649 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3650 true); 3651 else 3652 #endif 3653 { 3654 skb_set_delivery_time(skb, now, true); 3655 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3656 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3657 } 3658 3659 #ifdef CONFIG_TCP_MD5SIG 3660 rcu_read_lock(); 3661 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3662 #endif 3663 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3664 /* bpf program will be interested in the tcp_flags */ 3665 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3666 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3667 foc, synack_type, 3668 syn_skb) + sizeof(*th); 3669 3670 skb_push(skb, tcp_header_size); 3671 skb_reset_transport_header(skb); 3672 3673 th = (struct tcphdr *)skb->data; 3674 memset(th, 0, sizeof(struct tcphdr)); 3675 th->syn = 1; 3676 th->ack = 1; 3677 tcp_ecn_make_synack(req, th); 3678 th->source = htons(ireq->ir_num); 3679 th->dest = ireq->ir_rmt_port; 3680 skb->mark = ireq->ir_mark; 3681 skb->ip_summed = CHECKSUM_PARTIAL; 3682 th->seq = htonl(tcp_rsk(req)->snt_isn); 3683 /* XXX data is queued and acked as is. No buffer/window check */ 3684 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3685 3686 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3687 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3688 tcp_options_write(th, NULL, &opts); 3689 th->doff = (tcp_header_size >> 2); 3690 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3691 3692 #ifdef CONFIG_TCP_MD5SIG 3693 /* Okay, we have all we need - do the md5 hash if needed */ 3694 if (md5) 3695 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3696 md5, req_to_sk(req), skb); 3697 rcu_read_unlock(); 3698 #endif 3699 3700 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3701 synack_type, &opts); 3702 3703 skb_set_delivery_time(skb, now, true); 3704 tcp_add_tx_delay(skb, tp); 3705 3706 return skb; 3707 } 3708 EXPORT_SYMBOL(tcp_make_synack); 3709 3710 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3711 { 3712 struct inet_connection_sock *icsk = inet_csk(sk); 3713 const struct tcp_congestion_ops *ca; 3714 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3715 3716 if (ca_key == TCP_CA_UNSPEC) 3717 return; 3718 3719 rcu_read_lock(); 3720 ca = tcp_ca_find_key(ca_key); 3721 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3722 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3723 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3724 icsk->icsk_ca_ops = ca; 3725 } 3726 rcu_read_unlock(); 3727 } 3728 3729 /* Do all connect socket setups that can be done AF independent. */ 3730 static void tcp_connect_init(struct sock *sk) 3731 { 3732 const struct dst_entry *dst = __sk_dst_get(sk); 3733 struct tcp_sock *tp = tcp_sk(sk); 3734 __u8 rcv_wscale; 3735 u32 rcv_wnd; 3736 3737 /* We'll fix this up when we get a response from the other end. 3738 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3739 */ 3740 tp->tcp_header_len = sizeof(struct tcphdr); 3741 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3742 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3743 3744 #ifdef CONFIG_TCP_MD5SIG 3745 if (tp->af_specific->md5_lookup(sk, sk)) 3746 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3747 #endif 3748 3749 /* If user gave his TCP_MAXSEG, record it to clamp */ 3750 if (tp->rx_opt.user_mss) 3751 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3752 tp->max_window = 0; 3753 tcp_mtup_init(sk); 3754 tcp_sync_mss(sk, dst_mtu(dst)); 3755 3756 tcp_ca_dst_init(sk, dst); 3757 3758 if (!tp->window_clamp) 3759 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3760 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3761 3762 tcp_initialize_rcv_mss(sk); 3763 3764 /* limit the window selection if the user enforce a smaller rx buffer */ 3765 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3766 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3767 tp->window_clamp = tcp_full_space(sk); 3768 3769 rcv_wnd = tcp_rwnd_init_bpf(sk); 3770 if (rcv_wnd == 0) 3771 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3772 3773 tcp_select_initial_window(sk, tcp_full_space(sk), 3774 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3775 &tp->rcv_wnd, 3776 &tp->window_clamp, 3777 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3778 &rcv_wscale, 3779 rcv_wnd); 3780 3781 tp->rx_opt.rcv_wscale = rcv_wscale; 3782 tp->rcv_ssthresh = tp->rcv_wnd; 3783 3784 WRITE_ONCE(sk->sk_err, 0); 3785 sock_reset_flag(sk, SOCK_DONE); 3786 tp->snd_wnd = 0; 3787 tcp_init_wl(tp, 0); 3788 tcp_write_queue_purge(sk); 3789 tp->snd_una = tp->write_seq; 3790 tp->snd_sml = tp->write_seq; 3791 tp->snd_up = tp->write_seq; 3792 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3793 3794 if (likely(!tp->repair)) 3795 tp->rcv_nxt = 0; 3796 else 3797 tp->rcv_tstamp = tcp_jiffies32; 3798 tp->rcv_wup = tp->rcv_nxt; 3799 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3800 3801 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3802 inet_csk(sk)->icsk_retransmits = 0; 3803 tcp_clear_retrans(tp); 3804 } 3805 3806 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3807 { 3808 struct tcp_sock *tp = tcp_sk(sk); 3809 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3810 3811 tcb->end_seq += skb->len; 3812 __skb_header_release(skb); 3813 sk_wmem_queued_add(sk, skb->truesize); 3814 sk_mem_charge(sk, skb->truesize); 3815 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3816 tp->packets_out += tcp_skb_pcount(skb); 3817 } 3818 3819 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3820 * queue a data-only packet after the regular SYN, such that regular SYNs 3821 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3822 * only the SYN sequence, the data are retransmitted in the first ACK. 3823 * If cookie is not cached or other error occurs, falls back to send a 3824 * regular SYN with Fast Open cookie request option. 3825 */ 3826 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3827 { 3828 struct inet_connection_sock *icsk = inet_csk(sk); 3829 struct tcp_sock *tp = tcp_sk(sk); 3830 struct tcp_fastopen_request *fo = tp->fastopen_req; 3831 struct page_frag *pfrag = sk_page_frag(sk); 3832 struct sk_buff *syn_data; 3833 int space, err = 0; 3834 3835 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3836 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3837 goto fallback; 3838 3839 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3840 * user-MSS. Reserve maximum option space for middleboxes that add 3841 * private TCP options. The cost is reduced data space in SYN :( 3842 */ 3843 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3844 /* Sync mss_cache after updating the mss_clamp */ 3845 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3846 3847 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3848 MAX_TCP_OPTION_SPACE; 3849 3850 space = min_t(size_t, space, fo->size); 3851 3852 if (space && 3853 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3854 pfrag, sk->sk_allocation)) 3855 goto fallback; 3856 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3857 if (!syn_data) 3858 goto fallback; 3859 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3860 if (space) { 3861 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3862 space = tcp_wmem_schedule(sk, space); 3863 } 3864 if (space) { 3865 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3866 space, &fo->data->msg_iter); 3867 if (unlikely(!space)) { 3868 tcp_skb_tsorted_anchor_cleanup(syn_data); 3869 kfree_skb(syn_data); 3870 goto fallback; 3871 } 3872 skb_fill_page_desc(syn_data, 0, pfrag->page, 3873 pfrag->offset, space); 3874 page_ref_inc(pfrag->page); 3875 pfrag->offset += space; 3876 skb_len_add(syn_data, space); 3877 skb_zcopy_set(syn_data, fo->uarg, NULL); 3878 } 3879 /* No more data pending in inet_wait_for_connect() */ 3880 if (space == fo->size) 3881 fo->data = NULL; 3882 fo->copied = space; 3883 3884 tcp_connect_queue_skb(sk, syn_data); 3885 if (syn_data->len) 3886 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3887 3888 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3889 3890 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3891 3892 /* Now full SYN+DATA was cloned and sent (or not), 3893 * remove the SYN from the original skb (syn_data) 3894 * we keep in write queue in case of a retransmit, as we 3895 * also have the SYN packet (with no data) in the same queue. 3896 */ 3897 TCP_SKB_CB(syn_data)->seq++; 3898 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3899 if (!err) { 3900 tp->syn_data = (fo->copied > 0); 3901 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3902 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3903 goto done; 3904 } 3905 3906 /* data was not sent, put it in write_queue */ 3907 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3908 tp->packets_out -= tcp_skb_pcount(syn_data); 3909 3910 fallback: 3911 /* Send a regular SYN with Fast Open cookie request option */ 3912 if (fo->cookie.len > 0) 3913 fo->cookie.len = 0; 3914 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3915 if (err) 3916 tp->syn_fastopen = 0; 3917 done: 3918 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3919 return err; 3920 } 3921 3922 /* Build a SYN and send it off. */ 3923 int tcp_connect(struct sock *sk) 3924 { 3925 struct tcp_sock *tp = tcp_sk(sk); 3926 struct sk_buff *buff; 3927 int err; 3928 3929 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3930 3931 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3932 return -EHOSTUNREACH; /* Routing failure or similar. */ 3933 3934 tcp_connect_init(sk); 3935 3936 if (unlikely(tp->repair)) { 3937 tcp_finish_connect(sk, NULL); 3938 return 0; 3939 } 3940 3941 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 3942 if (unlikely(!buff)) 3943 return -ENOBUFS; 3944 3945 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3946 tcp_mstamp_refresh(tp); 3947 tp->retrans_stamp = tcp_time_stamp(tp); 3948 tcp_connect_queue_skb(sk, buff); 3949 tcp_ecn_send_syn(sk, buff); 3950 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3951 3952 /* Send off SYN; include data in Fast Open. */ 3953 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3954 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3955 if (err == -ECONNREFUSED) 3956 return err; 3957 3958 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3959 * in order to make this packet get counted in tcpOutSegs. 3960 */ 3961 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3962 tp->pushed_seq = tp->write_seq; 3963 buff = tcp_send_head(sk); 3964 if (unlikely(buff)) { 3965 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3966 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3967 } 3968 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3969 3970 /* Timer for repeating the SYN until an answer. */ 3971 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3972 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3973 return 0; 3974 } 3975 EXPORT_SYMBOL(tcp_connect); 3976 3977 /* Send out a delayed ack, the caller does the policy checking 3978 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3979 * for details. 3980 */ 3981 void tcp_send_delayed_ack(struct sock *sk) 3982 { 3983 struct inet_connection_sock *icsk = inet_csk(sk); 3984 int ato = icsk->icsk_ack.ato; 3985 unsigned long timeout; 3986 3987 if (ato > TCP_DELACK_MIN) { 3988 const struct tcp_sock *tp = tcp_sk(sk); 3989 int max_ato = HZ / 2; 3990 3991 if (inet_csk_in_pingpong_mode(sk) || 3992 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3993 max_ato = TCP_DELACK_MAX; 3994 3995 /* Slow path, intersegment interval is "high". */ 3996 3997 /* If some rtt estimate is known, use it to bound delayed ack. 3998 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3999 * directly. 4000 */ 4001 if (tp->srtt_us) { 4002 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4003 TCP_DELACK_MIN); 4004 4005 if (rtt < max_ato) 4006 max_ato = rtt; 4007 } 4008 4009 ato = min(ato, max_ato); 4010 } 4011 4012 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max); 4013 4014 /* Stay within the limit we were given */ 4015 timeout = jiffies + ato; 4016 4017 /* Use new timeout only if there wasn't a older one earlier. */ 4018 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4019 /* If delack timer is about to expire, send ACK now. */ 4020 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4021 tcp_send_ack(sk); 4022 return; 4023 } 4024 4025 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4026 timeout = icsk->icsk_ack.timeout; 4027 } 4028 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4029 icsk->icsk_ack.timeout = timeout; 4030 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4031 } 4032 4033 /* This routine sends an ack and also updates the window. */ 4034 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4035 { 4036 struct sk_buff *buff; 4037 4038 /* If we have been reset, we may not send again. */ 4039 if (sk->sk_state == TCP_CLOSE) 4040 return; 4041 4042 /* We are not putting this on the write queue, so 4043 * tcp_transmit_skb() will set the ownership to this 4044 * sock. 4045 */ 4046 buff = alloc_skb(MAX_TCP_HEADER, 4047 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4048 if (unlikely(!buff)) { 4049 struct inet_connection_sock *icsk = inet_csk(sk); 4050 unsigned long delay; 4051 4052 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4053 if (delay < TCP_RTO_MAX) 4054 icsk->icsk_ack.retry++; 4055 inet_csk_schedule_ack(sk); 4056 icsk->icsk_ack.ato = TCP_ATO_MIN; 4057 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4058 return; 4059 } 4060 4061 /* Reserve space for headers and prepare control bits. */ 4062 skb_reserve(buff, MAX_TCP_HEADER); 4063 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4064 4065 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4066 * too much. 4067 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4068 */ 4069 skb_set_tcp_pure_ack(buff); 4070 4071 /* Send it off, this clears delayed acks for us. */ 4072 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4073 } 4074 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4075 4076 void tcp_send_ack(struct sock *sk) 4077 { 4078 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4079 } 4080 4081 /* This routine sends a packet with an out of date sequence 4082 * number. It assumes the other end will try to ack it. 4083 * 4084 * Question: what should we make while urgent mode? 4085 * 4.4BSD forces sending single byte of data. We cannot send 4086 * out of window data, because we have SND.NXT==SND.MAX... 4087 * 4088 * Current solution: to send TWO zero-length segments in urgent mode: 4089 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4090 * out-of-date with SND.UNA-1 to probe window. 4091 */ 4092 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4093 { 4094 struct tcp_sock *tp = tcp_sk(sk); 4095 struct sk_buff *skb; 4096 4097 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4098 skb = alloc_skb(MAX_TCP_HEADER, 4099 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4100 if (!skb) 4101 return -1; 4102 4103 /* Reserve space for headers and set control bits. */ 4104 skb_reserve(skb, MAX_TCP_HEADER); 4105 /* Use a previous sequence. This should cause the other 4106 * end to send an ack. Don't queue or clone SKB, just 4107 * send it. 4108 */ 4109 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4110 NET_INC_STATS(sock_net(sk), mib); 4111 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4112 } 4113 4114 /* Called from setsockopt( ... TCP_REPAIR ) */ 4115 void tcp_send_window_probe(struct sock *sk) 4116 { 4117 if (sk->sk_state == TCP_ESTABLISHED) { 4118 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4119 tcp_mstamp_refresh(tcp_sk(sk)); 4120 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4121 } 4122 } 4123 4124 /* Initiate keepalive or window probe from timer. */ 4125 int tcp_write_wakeup(struct sock *sk, int mib) 4126 { 4127 struct tcp_sock *tp = tcp_sk(sk); 4128 struct sk_buff *skb; 4129 4130 if (sk->sk_state == TCP_CLOSE) 4131 return -1; 4132 4133 skb = tcp_send_head(sk); 4134 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4135 int err; 4136 unsigned int mss = tcp_current_mss(sk); 4137 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4138 4139 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4140 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4141 4142 /* We are probing the opening of a window 4143 * but the window size is != 0 4144 * must have been a result SWS avoidance ( sender ) 4145 */ 4146 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4147 skb->len > mss) { 4148 seg_size = min(seg_size, mss); 4149 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4150 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4151 skb, seg_size, mss, GFP_ATOMIC)) 4152 return -1; 4153 } else if (!tcp_skb_pcount(skb)) 4154 tcp_set_skb_tso_segs(skb, mss); 4155 4156 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4157 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4158 if (!err) 4159 tcp_event_new_data_sent(sk, skb); 4160 return err; 4161 } else { 4162 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4163 tcp_xmit_probe_skb(sk, 1, mib); 4164 return tcp_xmit_probe_skb(sk, 0, mib); 4165 } 4166 } 4167 4168 /* A window probe timeout has occurred. If window is not closed send 4169 * a partial packet else a zero probe. 4170 */ 4171 void tcp_send_probe0(struct sock *sk) 4172 { 4173 struct inet_connection_sock *icsk = inet_csk(sk); 4174 struct tcp_sock *tp = tcp_sk(sk); 4175 struct net *net = sock_net(sk); 4176 unsigned long timeout; 4177 int err; 4178 4179 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4180 4181 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4182 /* Cancel probe timer, if it is not required. */ 4183 icsk->icsk_probes_out = 0; 4184 icsk->icsk_backoff = 0; 4185 icsk->icsk_probes_tstamp = 0; 4186 return; 4187 } 4188 4189 icsk->icsk_probes_out++; 4190 if (err <= 0) { 4191 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4192 icsk->icsk_backoff++; 4193 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4194 } else { 4195 /* If packet was not sent due to local congestion, 4196 * Let senders fight for local resources conservatively. 4197 */ 4198 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4199 } 4200 4201 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4202 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4203 } 4204 4205 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4206 { 4207 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4208 struct flowi fl; 4209 int res; 4210 4211 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4212 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4213 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4214 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4215 NULL); 4216 if (!res) { 4217 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4218 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4219 if (unlikely(tcp_passive_fastopen(sk))) { 4220 /* sk has const attribute because listeners are lockless. 4221 * However in this case, we are dealing with a passive fastopen 4222 * socket thus we can change total_retrans value. 4223 */ 4224 tcp_sk_rw(sk)->total_retrans++; 4225 } 4226 trace_tcp_retransmit_synack(sk, req); 4227 } 4228 return res; 4229 } 4230 EXPORT_SYMBOL(tcp_rtx_synack); 4231