1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 49 int push_one, gfp_t gfp); 50 51 /* Account for new data that has been sent to the network. */ 52 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 53 { 54 struct inet_connection_sock *icsk = inet_csk(sk); 55 struct tcp_sock *tp = tcp_sk(sk); 56 unsigned int prior_packets = tp->packets_out; 57 58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 59 60 __skb_unlink(skb, &sk->sk_write_queue); 61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 62 63 tp->packets_out += tcp_skb_pcount(skb); 64 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 65 tcp_rearm_rto(sk); 66 67 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 68 tcp_skb_pcount(skb)); 69 } 70 71 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 72 * window scaling factor due to loss of precision. 73 * If window has been shrunk, what should we make? It is not clear at all. 74 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 75 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 76 * invalid. OK, let's make this for now: 77 */ 78 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 79 { 80 const struct tcp_sock *tp = tcp_sk(sk); 81 82 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 83 (tp->rx_opt.wscale_ok && 84 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 85 return tp->snd_nxt; 86 else 87 return tcp_wnd_end(tp); 88 } 89 90 /* Calculate mss to advertise in SYN segment. 91 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 92 * 93 * 1. It is independent of path mtu. 94 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 95 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 96 * attached devices, because some buggy hosts are confused by 97 * large MSS. 98 * 4. We do not make 3, we advertise MSS, calculated from first 99 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 100 * This may be overridden via information stored in routing table. 101 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 102 * probably even Jumbo". 103 */ 104 static __u16 tcp_advertise_mss(struct sock *sk) 105 { 106 struct tcp_sock *tp = tcp_sk(sk); 107 const struct dst_entry *dst = __sk_dst_get(sk); 108 int mss = tp->advmss; 109 110 if (dst) { 111 unsigned int metric = dst_metric_advmss(dst); 112 113 if (metric < mss) { 114 mss = metric; 115 tp->advmss = mss; 116 } 117 } 118 119 return (__u16)mss; 120 } 121 122 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 123 * This is the first part of cwnd validation mechanism. 124 */ 125 void tcp_cwnd_restart(struct sock *sk, s32 delta) 126 { 127 struct tcp_sock *tp = tcp_sk(sk); 128 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 129 u32 cwnd = tp->snd_cwnd; 130 131 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 132 133 tp->snd_ssthresh = tcp_current_ssthresh(sk); 134 restart_cwnd = min(restart_cwnd, cwnd); 135 136 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 137 cwnd >>= 1; 138 tp->snd_cwnd = max(cwnd, restart_cwnd); 139 tp->snd_cwnd_stamp = tcp_jiffies32; 140 tp->snd_cwnd_used = 0; 141 } 142 143 /* Congestion state accounting after a packet has been sent. */ 144 static void tcp_event_data_sent(struct tcp_sock *tp, 145 struct sock *sk) 146 { 147 struct inet_connection_sock *icsk = inet_csk(sk); 148 const u32 now = tcp_jiffies32; 149 150 if (tcp_packets_in_flight(tp) == 0) 151 tcp_ca_event(sk, CA_EVENT_TX_START); 152 153 tp->lsndtime = now; 154 155 /* If it is a reply for ato after last received 156 * packet, enter pingpong mode. 157 */ 158 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 159 icsk->icsk_ack.pingpong = 1; 160 } 161 162 /* Account for an ACK we sent. */ 163 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 164 { 165 struct tcp_sock *tp = tcp_sk(sk); 166 167 if (unlikely(tp->compressed_ack)) { 168 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 169 tp->compressed_ack); 170 tp->compressed_ack = 0; 171 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 172 __sock_put(sk); 173 } 174 tcp_dec_quickack_mode(sk, pkts); 175 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 176 } 177 178 179 u32 tcp_default_init_rwnd(u32 mss) 180 { 181 /* Initial receive window should be twice of TCP_INIT_CWND to 182 * enable proper sending of new unsent data during fast recovery 183 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 184 * limit when mss is larger than 1460. 185 */ 186 u32 init_rwnd = TCP_INIT_CWND * 2; 187 188 if (mss > 1460) 189 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 190 return init_rwnd; 191 } 192 193 /* Determine a window scaling and initial window to offer. 194 * Based on the assumption that the given amount of space 195 * will be offered. Store the results in the tp structure. 196 * NOTE: for smooth operation initial space offering should 197 * be a multiple of mss if possible. We assume here that mss >= 1. 198 * This MUST be enforced by all callers. 199 */ 200 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 201 __u32 *rcv_wnd, __u32 *window_clamp, 202 int wscale_ok, __u8 *rcv_wscale, 203 __u32 init_rcv_wnd) 204 { 205 unsigned int space = (__space < 0 ? 0 : __space); 206 207 /* If no clamp set the clamp to the max possible scaled window */ 208 if (*window_clamp == 0) 209 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 210 space = min(*window_clamp, space); 211 212 /* Quantize space offering to a multiple of mss if possible. */ 213 if (space > mss) 214 space = rounddown(space, mss); 215 216 /* NOTE: offering an initial window larger than 32767 217 * will break some buggy TCP stacks. If the admin tells us 218 * it is likely we could be speaking with such a buggy stack 219 * we will truncate our initial window offering to 32K-1 220 * unless the remote has sent us a window scaling option, 221 * which we interpret as a sign the remote TCP is not 222 * misinterpreting the window field as a signed quantity. 223 */ 224 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 225 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 226 else 227 (*rcv_wnd) = space; 228 229 (*rcv_wscale) = 0; 230 if (wscale_ok) { 231 /* Set window scaling on max possible window */ 232 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 233 space = max_t(u32, space, sysctl_rmem_max); 234 space = min_t(u32, space, *window_clamp); 235 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) { 236 space >>= 1; 237 (*rcv_wscale)++; 238 } 239 } 240 241 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 242 init_rcv_wnd = tcp_default_init_rwnd(mss); 243 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 244 245 /* Set the clamp no higher than max representable value */ 246 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 247 } 248 EXPORT_SYMBOL(tcp_select_initial_window); 249 250 /* Chose a new window to advertise, update state in tcp_sock for the 251 * socket, and return result with RFC1323 scaling applied. The return 252 * value can be stuffed directly into th->window for an outgoing 253 * frame. 254 */ 255 static u16 tcp_select_window(struct sock *sk) 256 { 257 struct tcp_sock *tp = tcp_sk(sk); 258 u32 old_win = tp->rcv_wnd; 259 u32 cur_win = tcp_receive_window(tp); 260 u32 new_win = __tcp_select_window(sk); 261 262 /* Never shrink the offered window */ 263 if (new_win < cur_win) { 264 /* Danger Will Robinson! 265 * Don't update rcv_wup/rcv_wnd here or else 266 * we will not be able to advertise a zero 267 * window in time. --DaveM 268 * 269 * Relax Will Robinson. 270 */ 271 if (new_win == 0) 272 NET_INC_STATS(sock_net(sk), 273 LINUX_MIB_TCPWANTZEROWINDOWADV); 274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 275 } 276 tp->rcv_wnd = new_win; 277 tp->rcv_wup = tp->rcv_nxt; 278 279 /* Make sure we do not exceed the maximum possible 280 * scaled window. 281 */ 282 if (!tp->rx_opt.rcv_wscale && 283 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 284 new_win = min(new_win, MAX_TCP_WINDOW); 285 else 286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 287 288 /* RFC1323 scaling applied */ 289 new_win >>= tp->rx_opt.rcv_wscale; 290 291 /* If we advertise zero window, disable fast path. */ 292 if (new_win == 0) { 293 tp->pred_flags = 0; 294 if (old_win) 295 NET_INC_STATS(sock_net(sk), 296 LINUX_MIB_TCPTOZEROWINDOWADV); 297 } else if (old_win == 0) { 298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 299 } 300 301 return new_win; 302 } 303 304 /* Packet ECN state for a SYN-ACK */ 305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 306 { 307 const struct tcp_sock *tp = tcp_sk(sk); 308 309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 310 if (!(tp->ecn_flags & TCP_ECN_OK)) 311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 312 else if (tcp_ca_needs_ecn(sk) || 313 tcp_bpf_ca_needs_ecn(sk)) 314 INET_ECN_xmit(sk); 315 } 316 317 /* Packet ECN state for a SYN. */ 318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 319 { 320 struct tcp_sock *tp = tcp_sk(sk); 321 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 322 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 323 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 324 325 if (!use_ecn) { 326 const struct dst_entry *dst = __sk_dst_get(sk); 327 328 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 329 use_ecn = true; 330 } 331 332 tp->ecn_flags = 0; 333 334 if (use_ecn) { 335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 336 tp->ecn_flags = TCP_ECN_OK; 337 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 338 INET_ECN_xmit(sk); 339 } 340 } 341 342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 343 { 344 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 345 /* tp->ecn_flags are cleared at a later point in time when 346 * SYN ACK is ultimatively being received. 347 */ 348 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 349 } 350 351 static void 352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 353 { 354 if (inet_rsk(req)->ecn_ok) 355 th->ece = 1; 356 } 357 358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 359 * be sent. 360 */ 361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 362 struct tcphdr *th, int tcp_header_len) 363 { 364 struct tcp_sock *tp = tcp_sk(sk); 365 366 if (tp->ecn_flags & TCP_ECN_OK) { 367 /* Not-retransmitted data segment: set ECT and inject CWR. */ 368 if (skb->len != tcp_header_len && 369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 370 INET_ECN_xmit(sk); 371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 373 th->cwr = 1; 374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 375 } 376 } else if (!tcp_ca_needs_ecn(sk)) { 377 /* ACK or retransmitted segment: clear ECT|CE */ 378 INET_ECN_dontxmit(sk); 379 } 380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 381 th->ece = 1; 382 } 383 } 384 385 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 386 * auto increment end seqno. 387 */ 388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 389 { 390 skb->ip_summed = CHECKSUM_PARTIAL; 391 392 TCP_SKB_CB(skb)->tcp_flags = flags; 393 TCP_SKB_CB(skb)->sacked = 0; 394 395 tcp_skb_pcount_set(skb, 1); 396 397 TCP_SKB_CB(skb)->seq = seq; 398 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 399 seq++; 400 TCP_SKB_CB(skb)->end_seq = seq; 401 } 402 403 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 404 { 405 return tp->snd_una != tp->snd_up; 406 } 407 408 #define OPTION_SACK_ADVERTISE (1 << 0) 409 #define OPTION_TS (1 << 1) 410 #define OPTION_MD5 (1 << 2) 411 #define OPTION_WSCALE (1 << 3) 412 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 413 #define OPTION_SMC (1 << 9) 414 415 static void smc_options_write(__be32 *ptr, u16 *options) 416 { 417 #if IS_ENABLED(CONFIG_SMC) 418 if (static_branch_unlikely(&tcp_have_smc)) { 419 if (unlikely(OPTION_SMC & *options)) { 420 *ptr++ = htonl((TCPOPT_NOP << 24) | 421 (TCPOPT_NOP << 16) | 422 (TCPOPT_EXP << 8) | 423 (TCPOLEN_EXP_SMC_BASE)); 424 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 425 } 426 } 427 #endif 428 } 429 430 struct tcp_out_options { 431 u16 options; /* bit field of OPTION_* */ 432 u16 mss; /* 0 to disable */ 433 u8 ws; /* window scale, 0 to disable */ 434 u8 num_sack_blocks; /* number of SACK blocks to include */ 435 u8 hash_size; /* bytes in hash_location */ 436 __u8 *hash_location; /* temporary pointer, overloaded */ 437 __u32 tsval, tsecr; /* need to include OPTION_TS */ 438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 439 }; 440 441 /* Write previously computed TCP options to the packet. 442 * 443 * Beware: Something in the Internet is very sensitive to the ordering of 444 * TCP options, we learned this through the hard way, so be careful here. 445 * Luckily we can at least blame others for their non-compliance but from 446 * inter-operability perspective it seems that we're somewhat stuck with 447 * the ordering which we have been using if we want to keep working with 448 * those broken things (not that it currently hurts anybody as there isn't 449 * particular reason why the ordering would need to be changed). 450 * 451 * At least SACK_PERM as the first option is known to lead to a disaster 452 * (but it may well be that other scenarios fail similarly). 453 */ 454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 455 struct tcp_out_options *opts) 456 { 457 u16 options = opts->options; /* mungable copy */ 458 459 if (unlikely(OPTION_MD5 & options)) { 460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 462 /* overload cookie hash location */ 463 opts->hash_location = (__u8 *)ptr; 464 ptr += 4; 465 } 466 467 if (unlikely(opts->mss)) { 468 *ptr++ = htonl((TCPOPT_MSS << 24) | 469 (TCPOLEN_MSS << 16) | 470 opts->mss); 471 } 472 473 if (likely(OPTION_TS & options)) { 474 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 476 (TCPOLEN_SACK_PERM << 16) | 477 (TCPOPT_TIMESTAMP << 8) | 478 TCPOLEN_TIMESTAMP); 479 options &= ~OPTION_SACK_ADVERTISE; 480 } else { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_TIMESTAMP << 8) | 484 TCPOLEN_TIMESTAMP); 485 } 486 *ptr++ = htonl(opts->tsval); 487 *ptr++ = htonl(opts->tsecr); 488 } 489 490 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_NOP << 16) | 493 (TCPOPT_SACK_PERM << 8) | 494 TCPOLEN_SACK_PERM); 495 } 496 497 if (unlikely(OPTION_WSCALE & options)) { 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_WINDOW << 16) | 500 (TCPOLEN_WINDOW << 8) | 501 opts->ws); 502 } 503 504 if (unlikely(opts->num_sack_blocks)) { 505 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 506 tp->duplicate_sack : tp->selective_acks; 507 int this_sack; 508 509 *ptr++ = htonl((TCPOPT_NOP << 24) | 510 (TCPOPT_NOP << 16) | 511 (TCPOPT_SACK << 8) | 512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 513 TCPOLEN_SACK_PERBLOCK))); 514 515 for (this_sack = 0; this_sack < opts->num_sack_blocks; 516 ++this_sack) { 517 *ptr++ = htonl(sp[this_sack].start_seq); 518 *ptr++ = htonl(sp[this_sack].end_seq); 519 } 520 521 tp->rx_opt.dsack = 0; 522 } 523 524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 526 u8 *p = (u8 *)ptr; 527 u32 len; /* Fast Open option length */ 528 529 if (foc->exp) { 530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 532 TCPOPT_FASTOPEN_MAGIC); 533 p += TCPOLEN_EXP_FASTOPEN_BASE; 534 } else { 535 len = TCPOLEN_FASTOPEN_BASE + foc->len; 536 *p++ = TCPOPT_FASTOPEN; 537 *p++ = len; 538 } 539 540 memcpy(p, foc->val, foc->len); 541 if ((len & 3) == 2) { 542 p[foc->len] = TCPOPT_NOP; 543 p[foc->len + 1] = TCPOPT_NOP; 544 } 545 ptr += (len + 3) >> 2; 546 } 547 548 smc_options_write(ptr, &options); 549 } 550 551 static void smc_set_option(const struct tcp_sock *tp, 552 struct tcp_out_options *opts, 553 unsigned int *remaining) 554 { 555 #if IS_ENABLED(CONFIG_SMC) 556 if (static_branch_unlikely(&tcp_have_smc)) { 557 if (tp->syn_smc) { 558 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 559 opts->options |= OPTION_SMC; 560 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 561 } 562 } 563 } 564 #endif 565 } 566 567 static void smc_set_option_cond(const struct tcp_sock *tp, 568 const struct inet_request_sock *ireq, 569 struct tcp_out_options *opts, 570 unsigned int *remaining) 571 { 572 #if IS_ENABLED(CONFIG_SMC) 573 if (static_branch_unlikely(&tcp_have_smc)) { 574 if (tp->syn_smc && ireq->smc_ok) { 575 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 576 opts->options |= OPTION_SMC; 577 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 578 } 579 } 580 } 581 #endif 582 } 583 584 /* Compute TCP options for SYN packets. This is not the final 585 * network wire format yet. 586 */ 587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 588 struct tcp_out_options *opts, 589 struct tcp_md5sig_key **md5) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 unsigned int remaining = MAX_TCP_OPTION_SPACE; 593 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 594 595 *md5 = NULL; 596 #ifdef CONFIG_TCP_MD5SIG 597 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 598 *md5 = tp->af_specific->md5_lookup(sk, sk); 599 if (*md5) { 600 opts->options |= OPTION_MD5; 601 remaining -= TCPOLEN_MD5SIG_ALIGNED; 602 } 603 } 604 #endif 605 606 /* We always get an MSS option. The option bytes which will be seen in 607 * normal data packets should timestamps be used, must be in the MSS 608 * advertised. But we subtract them from tp->mss_cache so that 609 * calculations in tcp_sendmsg are simpler etc. So account for this 610 * fact here if necessary. If we don't do this correctly, as a 611 * receiver we won't recognize data packets as being full sized when we 612 * should, and thus we won't abide by the delayed ACK rules correctly. 613 * SACKs don't matter, we never delay an ACK when we have any of those 614 * going out. */ 615 opts->mss = tcp_advertise_mss(sk); 616 remaining -= TCPOLEN_MSS_ALIGNED; 617 618 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 619 opts->options |= OPTION_TS; 620 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 621 opts->tsecr = tp->rx_opt.ts_recent; 622 remaining -= TCPOLEN_TSTAMP_ALIGNED; 623 } 624 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 625 opts->ws = tp->rx_opt.rcv_wscale; 626 opts->options |= OPTION_WSCALE; 627 remaining -= TCPOLEN_WSCALE_ALIGNED; 628 } 629 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 630 opts->options |= OPTION_SACK_ADVERTISE; 631 if (unlikely(!(OPTION_TS & opts->options))) 632 remaining -= TCPOLEN_SACKPERM_ALIGNED; 633 } 634 635 if (fastopen && fastopen->cookie.len >= 0) { 636 u32 need = fastopen->cookie.len; 637 638 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 639 TCPOLEN_FASTOPEN_BASE; 640 need = (need + 3) & ~3U; /* Align to 32 bits */ 641 if (remaining >= need) { 642 opts->options |= OPTION_FAST_OPEN_COOKIE; 643 opts->fastopen_cookie = &fastopen->cookie; 644 remaining -= need; 645 tp->syn_fastopen = 1; 646 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 647 } 648 } 649 650 smc_set_option(tp, opts, &remaining); 651 652 return MAX_TCP_OPTION_SPACE - remaining; 653 } 654 655 /* Set up TCP options for SYN-ACKs. */ 656 static unsigned int tcp_synack_options(const struct sock *sk, 657 struct request_sock *req, 658 unsigned int mss, struct sk_buff *skb, 659 struct tcp_out_options *opts, 660 const struct tcp_md5sig_key *md5, 661 struct tcp_fastopen_cookie *foc) 662 { 663 struct inet_request_sock *ireq = inet_rsk(req); 664 unsigned int remaining = MAX_TCP_OPTION_SPACE; 665 666 #ifdef CONFIG_TCP_MD5SIG 667 if (md5) { 668 opts->options |= OPTION_MD5; 669 remaining -= TCPOLEN_MD5SIG_ALIGNED; 670 671 /* We can't fit any SACK blocks in a packet with MD5 + TS 672 * options. There was discussion about disabling SACK 673 * rather than TS in order to fit in better with old, 674 * buggy kernels, but that was deemed to be unnecessary. 675 */ 676 ireq->tstamp_ok &= !ireq->sack_ok; 677 } 678 #endif 679 680 /* We always send an MSS option. */ 681 opts->mss = mss; 682 remaining -= TCPOLEN_MSS_ALIGNED; 683 684 if (likely(ireq->wscale_ok)) { 685 opts->ws = ireq->rcv_wscale; 686 opts->options |= OPTION_WSCALE; 687 remaining -= TCPOLEN_WSCALE_ALIGNED; 688 } 689 if (likely(ireq->tstamp_ok)) { 690 opts->options |= OPTION_TS; 691 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 692 opts->tsecr = req->ts_recent; 693 remaining -= TCPOLEN_TSTAMP_ALIGNED; 694 } 695 if (likely(ireq->sack_ok)) { 696 opts->options |= OPTION_SACK_ADVERTISE; 697 if (unlikely(!ireq->tstamp_ok)) 698 remaining -= TCPOLEN_SACKPERM_ALIGNED; 699 } 700 if (foc != NULL && foc->len >= 0) { 701 u32 need = foc->len; 702 703 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 704 TCPOLEN_FASTOPEN_BASE; 705 need = (need + 3) & ~3U; /* Align to 32 bits */ 706 if (remaining >= need) { 707 opts->options |= OPTION_FAST_OPEN_COOKIE; 708 opts->fastopen_cookie = foc; 709 remaining -= need; 710 } 711 } 712 713 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 714 715 return MAX_TCP_OPTION_SPACE - remaining; 716 } 717 718 /* Compute TCP options for ESTABLISHED sockets. This is not the 719 * final wire format yet. 720 */ 721 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 722 struct tcp_out_options *opts, 723 struct tcp_md5sig_key **md5) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 unsigned int size = 0; 727 unsigned int eff_sacks; 728 729 opts->options = 0; 730 731 *md5 = NULL; 732 #ifdef CONFIG_TCP_MD5SIG 733 if (unlikely(rcu_access_pointer(tp->md5sig_info))) { 734 *md5 = tp->af_specific->md5_lookup(sk, sk); 735 if (*md5) { 736 opts->options |= OPTION_MD5; 737 size += TCPOLEN_MD5SIG_ALIGNED; 738 } 739 } 740 #endif 741 742 if (likely(tp->rx_opt.tstamp_ok)) { 743 opts->options |= OPTION_TS; 744 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 745 opts->tsecr = tp->rx_opt.ts_recent; 746 size += TCPOLEN_TSTAMP_ALIGNED; 747 } 748 749 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 750 if (unlikely(eff_sacks)) { 751 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 752 opts->num_sack_blocks = 753 min_t(unsigned int, eff_sacks, 754 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 755 TCPOLEN_SACK_PERBLOCK); 756 size += TCPOLEN_SACK_BASE_ALIGNED + 757 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 758 } 759 760 return size; 761 } 762 763 764 /* TCP SMALL QUEUES (TSQ) 765 * 766 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 767 * to reduce RTT and bufferbloat. 768 * We do this using a special skb destructor (tcp_wfree). 769 * 770 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 771 * needs to be reallocated in a driver. 772 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 773 * 774 * Since transmit from skb destructor is forbidden, we use a tasklet 775 * to process all sockets that eventually need to send more skbs. 776 * We use one tasklet per cpu, with its own queue of sockets. 777 */ 778 struct tsq_tasklet { 779 struct tasklet_struct tasklet; 780 struct list_head head; /* queue of tcp sockets */ 781 }; 782 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 783 784 static void tcp_tsq_write(struct sock *sk) 785 { 786 if ((1 << sk->sk_state) & 787 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 788 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 789 struct tcp_sock *tp = tcp_sk(sk); 790 791 if (tp->lost_out > tp->retrans_out && 792 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 793 tcp_mstamp_refresh(tp); 794 tcp_xmit_retransmit_queue(sk); 795 } 796 797 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 798 0, GFP_ATOMIC); 799 } 800 } 801 802 static void tcp_tsq_handler(struct sock *sk) 803 { 804 bh_lock_sock(sk); 805 if (!sock_owned_by_user(sk)) 806 tcp_tsq_write(sk); 807 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 808 sock_hold(sk); 809 bh_unlock_sock(sk); 810 } 811 /* 812 * One tasklet per cpu tries to send more skbs. 813 * We run in tasklet context but need to disable irqs when 814 * transferring tsq->head because tcp_wfree() might 815 * interrupt us (non NAPI drivers) 816 */ 817 static void tcp_tasklet_func(unsigned long data) 818 { 819 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 820 LIST_HEAD(list); 821 unsigned long flags; 822 struct list_head *q, *n; 823 struct tcp_sock *tp; 824 struct sock *sk; 825 826 local_irq_save(flags); 827 list_splice_init(&tsq->head, &list); 828 local_irq_restore(flags); 829 830 list_for_each_safe(q, n, &list) { 831 tp = list_entry(q, struct tcp_sock, tsq_node); 832 list_del(&tp->tsq_node); 833 834 sk = (struct sock *)tp; 835 smp_mb__before_atomic(); 836 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 837 838 tcp_tsq_handler(sk); 839 sk_free(sk); 840 } 841 } 842 843 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 844 TCPF_WRITE_TIMER_DEFERRED | \ 845 TCPF_DELACK_TIMER_DEFERRED | \ 846 TCPF_MTU_REDUCED_DEFERRED) 847 /** 848 * tcp_release_cb - tcp release_sock() callback 849 * @sk: socket 850 * 851 * called from release_sock() to perform protocol dependent 852 * actions before socket release. 853 */ 854 void tcp_release_cb(struct sock *sk) 855 { 856 unsigned long flags, nflags; 857 858 /* perform an atomic operation only if at least one flag is set */ 859 do { 860 flags = sk->sk_tsq_flags; 861 if (!(flags & TCP_DEFERRED_ALL)) 862 return; 863 nflags = flags & ~TCP_DEFERRED_ALL; 864 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 865 866 if (flags & TCPF_TSQ_DEFERRED) { 867 tcp_tsq_write(sk); 868 __sock_put(sk); 869 } 870 /* Here begins the tricky part : 871 * We are called from release_sock() with : 872 * 1) BH disabled 873 * 2) sk_lock.slock spinlock held 874 * 3) socket owned by us (sk->sk_lock.owned == 1) 875 * 876 * But following code is meant to be called from BH handlers, 877 * so we should keep BH disabled, but early release socket ownership 878 */ 879 sock_release_ownership(sk); 880 881 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 882 tcp_write_timer_handler(sk); 883 __sock_put(sk); 884 } 885 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 886 tcp_delack_timer_handler(sk); 887 __sock_put(sk); 888 } 889 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 890 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 891 __sock_put(sk); 892 } 893 } 894 EXPORT_SYMBOL(tcp_release_cb); 895 896 void __init tcp_tasklet_init(void) 897 { 898 int i; 899 900 for_each_possible_cpu(i) { 901 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 902 903 INIT_LIST_HEAD(&tsq->head); 904 tasklet_init(&tsq->tasklet, 905 tcp_tasklet_func, 906 (unsigned long)tsq); 907 } 908 } 909 910 /* 911 * Write buffer destructor automatically called from kfree_skb. 912 * We can't xmit new skbs from this context, as we might already 913 * hold qdisc lock. 914 */ 915 void tcp_wfree(struct sk_buff *skb) 916 { 917 struct sock *sk = skb->sk; 918 struct tcp_sock *tp = tcp_sk(sk); 919 unsigned long flags, nval, oval; 920 921 /* Keep one reference on sk_wmem_alloc. 922 * Will be released by sk_free() from here or tcp_tasklet_func() 923 */ 924 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 925 926 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 927 * Wait until our queues (qdisc + devices) are drained. 928 * This gives : 929 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 930 * - chance for incoming ACK (processed by another cpu maybe) 931 * to migrate this flow (skb->ooo_okay will be eventually set) 932 */ 933 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 934 goto out; 935 936 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 937 struct tsq_tasklet *tsq; 938 bool empty; 939 940 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 941 goto out; 942 943 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 944 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 945 if (nval != oval) 946 continue; 947 948 /* queue this socket to tasklet queue */ 949 local_irq_save(flags); 950 tsq = this_cpu_ptr(&tsq_tasklet); 951 empty = list_empty(&tsq->head); 952 list_add(&tp->tsq_node, &tsq->head); 953 if (empty) 954 tasklet_schedule(&tsq->tasklet); 955 local_irq_restore(flags); 956 return; 957 } 958 out: 959 sk_free(sk); 960 } 961 962 /* Note: Called under soft irq. 963 * We can call TCP stack right away, unless socket is owned by user. 964 */ 965 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 966 { 967 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 968 struct sock *sk = (struct sock *)tp; 969 970 tcp_tsq_handler(sk); 971 sock_put(sk); 972 973 return HRTIMER_NORESTART; 974 } 975 976 /* BBR congestion control needs pacing. 977 * Same remark for SO_MAX_PACING_RATE. 978 * sch_fq packet scheduler is efficiently handling pacing, 979 * but is not always installed/used. 980 * Return true if TCP stack should pace packets itself. 981 */ 982 static bool tcp_needs_internal_pacing(const struct sock *sk) 983 { 984 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 985 } 986 987 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb) 988 { 989 u64 len_ns; 990 u32 rate; 991 992 if (!tcp_needs_internal_pacing(sk)) 993 return; 994 rate = sk->sk_pacing_rate; 995 if (!rate || rate == ~0U) 996 return; 997 998 /* Should account for header sizes as sch_fq does, 999 * but lets make things simple. 1000 */ 1001 len_ns = (u64)skb->len * NSEC_PER_SEC; 1002 do_div(len_ns, rate); 1003 hrtimer_start(&tcp_sk(sk)->pacing_timer, 1004 ktime_add_ns(ktime_get(), len_ns), 1005 HRTIMER_MODE_ABS_PINNED_SOFT); 1006 sock_hold(sk); 1007 } 1008 1009 static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb) 1010 { 1011 skb->skb_mstamp = tp->tcp_mstamp; 1012 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1013 } 1014 1015 /* This routine actually transmits TCP packets queued in by 1016 * tcp_do_sendmsg(). This is used by both the initial 1017 * transmission and possible later retransmissions. 1018 * All SKB's seen here are completely headerless. It is our 1019 * job to build the TCP header, and pass the packet down to 1020 * IP so it can do the same plus pass the packet off to the 1021 * device. 1022 * 1023 * We are working here with either a clone of the original 1024 * SKB, or a fresh unique copy made by the retransmit engine. 1025 */ 1026 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1027 gfp_t gfp_mask) 1028 { 1029 const struct inet_connection_sock *icsk = inet_csk(sk); 1030 struct inet_sock *inet; 1031 struct tcp_sock *tp; 1032 struct tcp_skb_cb *tcb; 1033 struct tcp_out_options opts; 1034 unsigned int tcp_options_size, tcp_header_size; 1035 struct sk_buff *oskb = NULL; 1036 struct tcp_md5sig_key *md5; 1037 struct tcphdr *th; 1038 int err; 1039 1040 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1041 tp = tcp_sk(sk); 1042 1043 if (clone_it) { 1044 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1045 - tp->snd_una; 1046 oskb = skb; 1047 1048 tcp_skb_tsorted_save(oskb) { 1049 if (unlikely(skb_cloned(oskb))) 1050 skb = pskb_copy(oskb, gfp_mask); 1051 else 1052 skb = skb_clone(oskb, gfp_mask); 1053 } tcp_skb_tsorted_restore(oskb); 1054 1055 if (unlikely(!skb)) 1056 return -ENOBUFS; 1057 } 1058 skb->skb_mstamp = tp->tcp_mstamp; 1059 1060 inet = inet_sk(sk); 1061 tcb = TCP_SKB_CB(skb); 1062 memset(&opts, 0, sizeof(opts)); 1063 1064 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1065 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1066 else 1067 tcp_options_size = tcp_established_options(sk, skb, &opts, 1068 &md5); 1069 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1070 1071 /* if no packet is in qdisc/device queue, then allow XPS to select 1072 * another queue. We can be called from tcp_tsq_handler() 1073 * which holds one reference to sk. 1074 * 1075 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1076 * One way to get this would be to set skb->truesize = 2 on them. 1077 */ 1078 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1079 1080 /* If we had to use memory reserve to allocate this skb, 1081 * this might cause drops if packet is looped back : 1082 * Other socket might not have SOCK_MEMALLOC. 1083 * Packets not looped back do not care about pfmemalloc. 1084 */ 1085 skb->pfmemalloc = 0; 1086 1087 skb_push(skb, tcp_header_size); 1088 skb_reset_transport_header(skb); 1089 1090 skb_orphan(skb); 1091 skb->sk = sk; 1092 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1093 skb_set_hash_from_sk(skb, sk); 1094 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1095 1096 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1097 1098 /* Build TCP header and checksum it. */ 1099 th = (struct tcphdr *)skb->data; 1100 th->source = inet->inet_sport; 1101 th->dest = inet->inet_dport; 1102 th->seq = htonl(tcb->seq); 1103 th->ack_seq = htonl(tp->rcv_nxt); 1104 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1105 tcb->tcp_flags); 1106 1107 th->check = 0; 1108 th->urg_ptr = 0; 1109 1110 /* The urg_mode check is necessary during a below snd_una win probe */ 1111 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1112 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1113 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1114 th->urg = 1; 1115 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1116 th->urg_ptr = htons(0xFFFF); 1117 th->urg = 1; 1118 } 1119 } 1120 1121 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1122 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1123 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1124 th->window = htons(tcp_select_window(sk)); 1125 tcp_ecn_send(sk, skb, th, tcp_header_size); 1126 } else { 1127 /* RFC1323: The window in SYN & SYN/ACK segments 1128 * is never scaled. 1129 */ 1130 th->window = htons(min(tp->rcv_wnd, 65535U)); 1131 } 1132 #ifdef CONFIG_TCP_MD5SIG 1133 /* Calculate the MD5 hash, as we have all we need now */ 1134 if (md5) { 1135 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1136 tp->af_specific->calc_md5_hash(opts.hash_location, 1137 md5, sk, skb); 1138 } 1139 #endif 1140 1141 icsk->icsk_af_ops->send_check(sk, skb); 1142 1143 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1144 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1145 1146 if (skb->len != tcp_header_size) { 1147 tcp_event_data_sent(tp, sk); 1148 tp->data_segs_out += tcp_skb_pcount(skb); 1149 tcp_internal_pacing(sk, skb); 1150 } 1151 1152 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1153 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1154 tcp_skb_pcount(skb)); 1155 1156 tp->segs_out += tcp_skb_pcount(skb); 1157 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1158 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1159 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1160 1161 /* Our usage of tstamp should remain private */ 1162 skb->tstamp = 0; 1163 1164 /* Cleanup our debris for IP stacks */ 1165 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1166 sizeof(struct inet6_skb_parm))); 1167 1168 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1169 1170 if (unlikely(err > 0)) { 1171 tcp_enter_cwr(sk); 1172 err = net_xmit_eval(err); 1173 } 1174 if (!err && oskb) { 1175 tcp_update_skb_after_send(tp, oskb); 1176 tcp_rate_skb_sent(sk, oskb); 1177 } 1178 return err; 1179 } 1180 1181 /* This routine just queues the buffer for sending. 1182 * 1183 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1184 * otherwise socket can stall. 1185 */ 1186 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1187 { 1188 struct tcp_sock *tp = tcp_sk(sk); 1189 1190 /* Advance write_seq and place onto the write_queue. */ 1191 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1192 __skb_header_release(skb); 1193 tcp_add_write_queue_tail(sk, skb); 1194 sk->sk_wmem_queued += skb->truesize; 1195 sk_mem_charge(sk, skb->truesize); 1196 } 1197 1198 /* Initialize TSO segments for a packet. */ 1199 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1200 { 1201 if (skb->len <= mss_now) { 1202 /* Avoid the costly divide in the normal 1203 * non-TSO case. 1204 */ 1205 tcp_skb_pcount_set(skb, 1); 1206 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1207 } else { 1208 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1209 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1210 } 1211 } 1212 1213 /* Pcount in the middle of the write queue got changed, we need to do various 1214 * tweaks to fix counters 1215 */ 1216 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1217 { 1218 struct tcp_sock *tp = tcp_sk(sk); 1219 1220 tp->packets_out -= decr; 1221 1222 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1223 tp->sacked_out -= decr; 1224 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1225 tp->retrans_out -= decr; 1226 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1227 tp->lost_out -= decr; 1228 1229 /* Reno case is special. Sigh... */ 1230 if (tcp_is_reno(tp) && decr > 0) 1231 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1232 1233 if (tp->lost_skb_hint && 1234 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1235 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1236 tp->lost_cnt_hint -= decr; 1237 1238 tcp_verify_left_out(tp); 1239 } 1240 1241 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1242 { 1243 return TCP_SKB_CB(skb)->txstamp_ack || 1244 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1245 } 1246 1247 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1248 { 1249 struct skb_shared_info *shinfo = skb_shinfo(skb); 1250 1251 if (unlikely(tcp_has_tx_tstamp(skb)) && 1252 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1253 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1254 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1255 1256 shinfo->tx_flags &= ~tsflags; 1257 shinfo2->tx_flags |= tsflags; 1258 swap(shinfo->tskey, shinfo2->tskey); 1259 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1260 TCP_SKB_CB(skb)->txstamp_ack = 0; 1261 } 1262 } 1263 1264 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1265 { 1266 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1267 TCP_SKB_CB(skb)->eor = 0; 1268 } 1269 1270 /* Insert buff after skb on the write or rtx queue of sk. */ 1271 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1272 struct sk_buff *buff, 1273 struct sock *sk, 1274 enum tcp_queue tcp_queue) 1275 { 1276 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1277 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1278 else 1279 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1280 } 1281 1282 /* Function to create two new TCP segments. Shrinks the given segment 1283 * to the specified size and appends a new segment with the rest of the 1284 * packet to the list. This won't be called frequently, I hope. 1285 * Remember, these are still headerless SKBs at this point. 1286 */ 1287 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1288 struct sk_buff *skb, u32 len, 1289 unsigned int mss_now, gfp_t gfp) 1290 { 1291 struct tcp_sock *tp = tcp_sk(sk); 1292 struct sk_buff *buff; 1293 int nsize, old_factor; 1294 int nlen; 1295 u8 flags; 1296 1297 if (WARN_ON(len > skb->len)) 1298 return -EINVAL; 1299 1300 nsize = skb_headlen(skb) - len; 1301 if (nsize < 0) 1302 nsize = 0; 1303 1304 if (skb_unclone(skb, gfp)) 1305 return -ENOMEM; 1306 1307 /* Get a new skb... force flag on. */ 1308 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1309 if (!buff) 1310 return -ENOMEM; /* We'll just try again later. */ 1311 1312 sk->sk_wmem_queued += buff->truesize; 1313 sk_mem_charge(sk, buff->truesize); 1314 nlen = skb->len - len - nsize; 1315 buff->truesize += nlen; 1316 skb->truesize -= nlen; 1317 1318 /* Correct the sequence numbers. */ 1319 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1320 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1321 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1322 1323 /* PSH and FIN should only be set in the second packet. */ 1324 flags = TCP_SKB_CB(skb)->tcp_flags; 1325 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1326 TCP_SKB_CB(buff)->tcp_flags = flags; 1327 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1328 tcp_skb_fragment_eor(skb, buff); 1329 1330 skb_split(skb, buff, len); 1331 1332 buff->ip_summed = CHECKSUM_PARTIAL; 1333 1334 buff->tstamp = skb->tstamp; 1335 tcp_fragment_tstamp(skb, buff); 1336 1337 old_factor = tcp_skb_pcount(skb); 1338 1339 /* Fix up tso_factor for both original and new SKB. */ 1340 tcp_set_skb_tso_segs(skb, mss_now); 1341 tcp_set_skb_tso_segs(buff, mss_now); 1342 1343 /* Update delivered info for the new segment */ 1344 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1345 1346 /* If this packet has been sent out already, we must 1347 * adjust the various packet counters. 1348 */ 1349 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1350 int diff = old_factor - tcp_skb_pcount(skb) - 1351 tcp_skb_pcount(buff); 1352 1353 if (diff) 1354 tcp_adjust_pcount(sk, skb, diff); 1355 } 1356 1357 /* Link BUFF into the send queue. */ 1358 __skb_header_release(buff); 1359 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1360 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1361 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1362 1363 return 0; 1364 } 1365 1366 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1367 * data is not copied, but immediately discarded. 1368 */ 1369 static int __pskb_trim_head(struct sk_buff *skb, int len) 1370 { 1371 struct skb_shared_info *shinfo; 1372 int i, k, eat; 1373 1374 eat = min_t(int, len, skb_headlen(skb)); 1375 if (eat) { 1376 __skb_pull(skb, eat); 1377 len -= eat; 1378 if (!len) 1379 return 0; 1380 } 1381 eat = len; 1382 k = 0; 1383 shinfo = skb_shinfo(skb); 1384 for (i = 0; i < shinfo->nr_frags; i++) { 1385 int size = skb_frag_size(&shinfo->frags[i]); 1386 1387 if (size <= eat) { 1388 skb_frag_unref(skb, i); 1389 eat -= size; 1390 } else { 1391 shinfo->frags[k] = shinfo->frags[i]; 1392 if (eat) { 1393 shinfo->frags[k].page_offset += eat; 1394 skb_frag_size_sub(&shinfo->frags[k], eat); 1395 eat = 0; 1396 } 1397 k++; 1398 } 1399 } 1400 shinfo->nr_frags = k; 1401 1402 skb->data_len -= len; 1403 skb->len = skb->data_len; 1404 return len; 1405 } 1406 1407 /* Remove acked data from a packet in the transmit queue. */ 1408 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1409 { 1410 u32 delta_truesize; 1411 1412 if (skb_unclone(skb, GFP_ATOMIC)) 1413 return -ENOMEM; 1414 1415 delta_truesize = __pskb_trim_head(skb, len); 1416 1417 TCP_SKB_CB(skb)->seq += len; 1418 skb->ip_summed = CHECKSUM_PARTIAL; 1419 1420 if (delta_truesize) { 1421 skb->truesize -= delta_truesize; 1422 sk->sk_wmem_queued -= delta_truesize; 1423 sk_mem_uncharge(sk, delta_truesize); 1424 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1425 } 1426 1427 /* Any change of skb->len requires recalculation of tso factor. */ 1428 if (tcp_skb_pcount(skb) > 1) 1429 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1430 1431 return 0; 1432 } 1433 1434 /* Calculate MSS not accounting any TCP options. */ 1435 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1436 { 1437 const struct tcp_sock *tp = tcp_sk(sk); 1438 const struct inet_connection_sock *icsk = inet_csk(sk); 1439 int mss_now; 1440 1441 /* Calculate base mss without TCP options: 1442 It is MMS_S - sizeof(tcphdr) of rfc1122 1443 */ 1444 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1445 1446 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1447 if (icsk->icsk_af_ops->net_frag_header_len) { 1448 const struct dst_entry *dst = __sk_dst_get(sk); 1449 1450 if (dst && dst_allfrag(dst)) 1451 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1452 } 1453 1454 /* Clamp it (mss_clamp does not include tcp options) */ 1455 if (mss_now > tp->rx_opt.mss_clamp) 1456 mss_now = tp->rx_opt.mss_clamp; 1457 1458 /* Now subtract optional transport overhead */ 1459 mss_now -= icsk->icsk_ext_hdr_len; 1460 1461 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1462 if (mss_now < 48) 1463 mss_now = 48; 1464 return mss_now; 1465 } 1466 1467 /* Calculate MSS. Not accounting for SACKs here. */ 1468 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1469 { 1470 /* Subtract TCP options size, not including SACKs */ 1471 return __tcp_mtu_to_mss(sk, pmtu) - 1472 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1473 } 1474 1475 /* Inverse of above */ 1476 int tcp_mss_to_mtu(struct sock *sk, int mss) 1477 { 1478 const struct tcp_sock *tp = tcp_sk(sk); 1479 const struct inet_connection_sock *icsk = inet_csk(sk); 1480 int mtu; 1481 1482 mtu = mss + 1483 tp->tcp_header_len + 1484 icsk->icsk_ext_hdr_len + 1485 icsk->icsk_af_ops->net_header_len; 1486 1487 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1488 if (icsk->icsk_af_ops->net_frag_header_len) { 1489 const struct dst_entry *dst = __sk_dst_get(sk); 1490 1491 if (dst && dst_allfrag(dst)) 1492 mtu += icsk->icsk_af_ops->net_frag_header_len; 1493 } 1494 return mtu; 1495 } 1496 EXPORT_SYMBOL(tcp_mss_to_mtu); 1497 1498 /* MTU probing init per socket */ 1499 void tcp_mtup_init(struct sock *sk) 1500 { 1501 struct tcp_sock *tp = tcp_sk(sk); 1502 struct inet_connection_sock *icsk = inet_csk(sk); 1503 struct net *net = sock_net(sk); 1504 1505 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1506 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1507 icsk->icsk_af_ops->net_header_len; 1508 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1509 icsk->icsk_mtup.probe_size = 0; 1510 if (icsk->icsk_mtup.enabled) 1511 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1512 } 1513 EXPORT_SYMBOL(tcp_mtup_init); 1514 1515 /* This function synchronize snd mss to current pmtu/exthdr set. 1516 1517 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1518 for TCP options, but includes only bare TCP header. 1519 1520 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1521 It is minimum of user_mss and mss received with SYN. 1522 It also does not include TCP options. 1523 1524 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1525 1526 tp->mss_cache is current effective sending mss, including 1527 all tcp options except for SACKs. It is evaluated, 1528 taking into account current pmtu, but never exceeds 1529 tp->rx_opt.mss_clamp. 1530 1531 NOTE1. rfc1122 clearly states that advertised MSS 1532 DOES NOT include either tcp or ip options. 1533 1534 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1535 are READ ONLY outside this function. --ANK (980731) 1536 */ 1537 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1538 { 1539 struct tcp_sock *tp = tcp_sk(sk); 1540 struct inet_connection_sock *icsk = inet_csk(sk); 1541 int mss_now; 1542 1543 if (icsk->icsk_mtup.search_high > pmtu) 1544 icsk->icsk_mtup.search_high = pmtu; 1545 1546 mss_now = tcp_mtu_to_mss(sk, pmtu); 1547 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1548 1549 /* And store cached results */ 1550 icsk->icsk_pmtu_cookie = pmtu; 1551 if (icsk->icsk_mtup.enabled) 1552 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1553 tp->mss_cache = mss_now; 1554 1555 return mss_now; 1556 } 1557 EXPORT_SYMBOL(tcp_sync_mss); 1558 1559 /* Compute the current effective MSS, taking SACKs and IP options, 1560 * and even PMTU discovery events into account. 1561 */ 1562 unsigned int tcp_current_mss(struct sock *sk) 1563 { 1564 const struct tcp_sock *tp = tcp_sk(sk); 1565 const struct dst_entry *dst = __sk_dst_get(sk); 1566 u32 mss_now; 1567 unsigned int header_len; 1568 struct tcp_out_options opts; 1569 struct tcp_md5sig_key *md5; 1570 1571 mss_now = tp->mss_cache; 1572 1573 if (dst) { 1574 u32 mtu = dst_mtu(dst); 1575 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1576 mss_now = tcp_sync_mss(sk, mtu); 1577 } 1578 1579 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1580 sizeof(struct tcphdr); 1581 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1582 * some common options. If this is an odd packet (because we have SACK 1583 * blocks etc) then our calculated header_len will be different, and 1584 * we have to adjust mss_now correspondingly */ 1585 if (header_len != tp->tcp_header_len) { 1586 int delta = (int) header_len - tp->tcp_header_len; 1587 mss_now -= delta; 1588 } 1589 1590 return mss_now; 1591 } 1592 1593 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1594 * As additional protections, we do not touch cwnd in retransmission phases, 1595 * and if application hit its sndbuf limit recently. 1596 */ 1597 static void tcp_cwnd_application_limited(struct sock *sk) 1598 { 1599 struct tcp_sock *tp = tcp_sk(sk); 1600 1601 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1602 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1603 /* Limited by application or receiver window. */ 1604 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1605 u32 win_used = max(tp->snd_cwnd_used, init_win); 1606 if (win_used < tp->snd_cwnd) { 1607 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1608 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1609 } 1610 tp->snd_cwnd_used = 0; 1611 } 1612 tp->snd_cwnd_stamp = tcp_jiffies32; 1613 } 1614 1615 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1616 { 1617 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1618 struct tcp_sock *tp = tcp_sk(sk); 1619 1620 /* Track the maximum number of outstanding packets in each 1621 * window, and remember whether we were cwnd-limited then. 1622 */ 1623 if (!before(tp->snd_una, tp->max_packets_seq) || 1624 tp->packets_out > tp->max_packets_out) { 1625 tp->max_packets_out = tp->packets_out; 1626 tp->max_packets_seq = tp->snd_nxt; 1627 tp->is_cwnd_limited = is_cwnd_limited; 1628 } 1629 1630 if (tcp_is_cwnd_limited(sk)) { 1631 /* Network is feed fully. */ 1632 tp->snd_cwnd_used = 0; 1633 tp->snd_cwnd_stamp = tcp_jiffies32; 1634 } else { 1635 /* Network starves. */ 1636 if (tp->packets_out > tp->snd_cwnd_used) 1637 tp->snd_cwnd_used = tp->packets_out; 1638 1639 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1640 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1641 !ca_ops->cong_control) 1642 tcp_cwnd_application_limited(sk); 1643 1644 /* The following conditions together indicate the starvation 1645 * is caused by insufficient sender buffer: 1646 * 1) just sent some data (see tcp_write_xmit) 1647 * 2) not cwnd limited (this else condition) 1648 * 3) no more data to send (tcp_write_queue_empty()) 1649 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1650 */ 1651 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1652 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1653 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1654 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1655 } 1656 } 1657 1658 /* Minshall's variant of the Nagle send check. */ 1659 static bool tcp_minshall_check(const struct tcp_sock *tp) 1660 { 1661 return after(tp->snd_sml, tp->snd_una) && 1662 !after(tp->snd_sml, tp->snd_nxt); 1663 } 1664 1665 /* Update snd_sml if this skb is under mss 1666 * Note that a TSO packet might end with a sub-mss segment 1667 * The test is really : 1668 * if ((skb->len % mss) != 0) 1669 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1670 * But we can avoid doing the divide again given we already have 1671 * skb_pcount = skb->len / mss_now 1672 */ 1673 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1674 const struct sk_buff *skb) 1675 { 1676 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1677 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1678 } 1679 1680 /* Return false, if packet can be sent now without violation Nagle's rules: 1681 * 1. It is full sized. (provided by caller in %partial bool) 1682 * 2. Or it contains FIN. (already checked by caller) 1683 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1684 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1685 * With Minshall's modification: all sent small packets are ACKed. 1686 */ 1687 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1688 int nonagle) 1689 { 1690 return partial && 1691 ((nonagle & TCP_NAGLE_CORK) || 1692 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1693 } 1694 1695 /* Return how many segs we'd like on a TSO packet, 1696 * to send one TSO packet per ms 1697 */ 1698 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1699 int min_tso_segs) 1700 { 1701 u32 bytes, segs; 1702 1703 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift, 1704 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1705 1706 /* Goal is to send at least one packet per ms, 1707 * not one big TSO packet every 100 ms. 1708 * This preserves ACK clocking and is consistent 1709 * with tcp_tso_should_defer() heuristic. 1710 */ 1711 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1712 1713 return segs; 1714 } 1715 1716 /* Return the number of segments we want in the skb we are transmitting. 1717 * See if congestion control module wants to decide; otherwise, autosize. 1718 */ 1719 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1720 { 1721 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1722 u32 min_tso, tso_segs; 1723 1724 min_tso = ca_ops->min_tso_segs ? 1725 ca_ops->min_tso_segs(sk) : 1726 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1727 1728 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1729 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1730 } 1731 1732 /* Returns the portion of skb which can be sent right away */ 1733 static unsigned int tcp_mss_split_point(const struct sock *sk, 1734 const struct sk_buff *skb, 1735 unsigned int mss_now, 1736 unsigned int max_segs, 1737 int nonagle) 1738 { 1739 const struct tcp_sock *tp = tcp_sk(sk); 1740 u32 partial, needed, window, max_len; 1741 1742 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1743 max_len = mss_now * max_segs; 1744 1745 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1746 return max_len; 1747 1748 needed = min(skb->len, window); 1749 1750 if (max_len <= needed) 1751 return max_len; 1752 1753 partial = needed % mss_now; 1754 /* If last segment is not a full MSS, check if Nagle rules allow us 1755 * to include this last segment in this skb. 1756 * Otherwise, we'll split the skb at last MSS boundary 1757 */ 1758 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1759 return needed - partial; 1760 1761 return needed; 1762 } 1763 1764 /* Can at least one segment of SKB be sent right now, according to the 1765 * congestion window rules? If so, return how many segments are allowed. 1766 */ 1767 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1768 const struct sk_buff *skb) 1769 { 1770 u32 in_flight, cwnd, halfcwnd; 1771 1772 /* Don't be strict about the congestion window for the final FIN. */ 1773 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1774 tcp_skb_pcount(skb) == 1) 1775 return 1; 1776 1777 in_flight = tcp_packets_in_flight(tp); 1778 cwnd = tp->snd_cwnd; 1779 if (in_flight >= cwnd) 1780 return 0; 1781 1782 /* For better scheduling, ensure we have at least 1783 * 2 GSO packets in flight. 1784 */ 1785 halfcwnd = max(cwnd >> 1, 1U); 1786 return min(halfcwnd, cwnd - in_flight); 1787 } 1788 1789 /* Initialize TSO state of a skb. 1790 * This must be invoked the first time we consider transmitting 1791 * SKB onto the wire. 1792 */ 1793 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1794 { 1795 int tso_segs = tcp_skb_pcount(skb); 1796 1797 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1798 tcp_set_skb_tso_segs(skb, mss_now); 1799 tso_segs = tcp_skb_pcount(skb); 1800 } 1801 return tso_segs; 1802 } 1803 1804 1805 /* Return true if the Nagle test allows this packet to be 1806 * sent now. 1807 */ 1808 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1809 unsigned int cur_mss, int nonagle) 1810 { 1811 /* Nagle rule does not apply to frames, which sit in the middle of the 1812 * write_queue (they have no chances to get new data). 1813 * 1814 * This is implemented in the callers, where they modify the 'nonagle' 1815 * argument based upon the location of SKB in the send queue. 1816 */ 1817 if (nonagle & TCP_NAGLE_PUSH) 1818 return true; 1819 1820 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1821 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1822 return true; 1823 1824 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1825 return true; 1826 1827 return false; 1828 } 1829 1830 /* Does at least the first segment of SKB fit into the send window? */ 1831 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1832 const struct sk_buff *skb, 1833 unsigned int cur_mss) 1834 { 1835 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1836 1837 if (skb->len > cur_mss) 1838 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1839 1840 return !after(end_seq, tcp_wnd_end(tp)); 1841 } 1842 1843 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1844 * which is put after SKB on the list. It is very much like 1845 * tcp_fragment() except that it may make several kinds of assumptions 1846 * in order to speed up the splitting operation. In particular, we 1847 * know that all the data is in scatter-gather pages, and that the 1848 * packet has never been sent out before (and thus is not cloned). 1849 */ 1850 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1851 struct sk_buff *skb, unsigned int len, 1852 unsigned int mss_now, gfp_t gfp) 1853 { 1854 struct sk_buff *buff; 1855 int nlen = skb->len - len; 1856 u8 flags; 1857 1858 /* All of a TSO frame must be composed of paged data. */ 1859 if (skb->len != skb->data_len) 1860 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp); 1861 1862 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1863 if (unlikely(!buff)) 1864 return -ENOMEM; 1865 1866 sk->sk_wmem_queued += buff->truesize; 1867 sk_mem_charge(sk, buff->truesize); 1868 buff->truesize += nlen; 1869 skb->truesize -= nlen; 1870 1871 /* Correct the sequence numbers. */ 1872 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1873 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1874 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1875 1876 /* PSH and FIN should only be set in the second packet. */ 1877 flags = TCP_SKB_CB(skb)->tcp_flags; 1878 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1879 TCP_SKB_CB(buff)->tcp_flags = flags; 1880 1881 /* This packet was never sent out yet, so no SACK bits. */ 1882 TCP_SKB_CB(buff)->sacked = 0; 1883 1884 tcp_skb_fragment_eor(skb, buff); 1885 1886 buff->ip_summed = CHECKSUM_PARTIAL; 1887 skb_split(skb, buff, len); 1888 tcp_fragment_tstamp(skb, buff); 1889 1890 /* Fix up tso_factor for both original and new SKB. */ 1891 tcp_set_skb_tso_segs(skb, mss_now); 1892 tcp_set_skb_tso_segs(buff, mss_now); 1893 1894 /* Link BUFF into the send queue. */ 1895 __skb_header_release(buff); 1896 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1897 1898 return 0; 1899 } 1900 1901 /* Try to defer sending, if possible, in order to minimize the amount 1902 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1903 * 1904 * This algorithm is from John Heffner. 1905 */ 1906 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1907 bool *is_cwnd_limited, u32 max_segs) 1908 { 1909 const struct inet_connection_sock *icsk = inet_csk(sk); 1910 u32 age, send_win, cong_win, limit, in_flight; 1911 struct tcp_sock *tp = tcp_sk(sk); 1912 struct sk_buff *head; 1913 int win_divisor; 1914 1915 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1916 goto send_now; 1917 1918 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1919 goto send_now; 1920 1921 /* Avoid bursty behavior by allowing defer 1922 * only if the last write was recent. 1923 */ 1924 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0) 1925 goto send_now; 1926 1927 in_flight = tcp_packets_in_flight(tp); 1928 1929 BUG_ON(tcp_skb_pcount(skb) <= 1); 1930 BUG_ON(tp->snd_cwnd <= in_flight); 1931 1932 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1933 1934 /* From in_flight test above, we know that cwnd > in_flight. */ 1935 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1936 1937 limit = min(send_win, cong_win); 1938 1939 /* If a full-sized TSO skb can be sent, do it. */ 1940 if (limit >= max_segs * tp->mss_cache) 1941 goto send_now; 1942 1943 /* Middle in queue won't get any more data, full sendable already? */ 1944 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1945 goto send_now; 1946 1947 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1948 if (win_divisor) { 1949 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1950 1951 /* If at least some fraction of a window is available, 1952 * just use it. 1953 */ 1954 chunk /= win_divisor; 1955 if (limit >= chunk) 1956 goto send_now; 1957 } else { 1958 /* Different approach, try not to defer past a single 1959 * ACK. Receiver should ACK every other full sized 1960 * frame, so if we have space for more than 3 frames 1961 * then send now. 1962 */ 1963 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1964 goto send_now; 1965 } 1966 1967 /* TODO : use tsorted_sent_queue ? */ 1968 head = tcp_rtx_queue_head(sk); 1969 if (!head) 1970 goto send_now; 1971 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp); 1972 /* If next ACK is likely to come too late (half srtt), do not defer */ 1973 if (age < (tp->srtt_us >> 4)) 1974 goto send_now; 1975 1976 /* Ok, it looks like it is advisable to defer. */ 1977 1978 if (cong_win < send_win && cong_win <= skb->len) 1979 *is_cwnd_limited = true; 1980 1981 return true; 1982 1983 send_now: 1984 return false; 1985 } 1986 1987 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1988 { 1989 struct inet_connection_sock *icsk = inet_csk(sk); 1990 struct tcp_sock *tp = tcp_sk(sk); 1991 struct net *net = sock_net(sk); 1992 u32 interval; 1993 s32 delta; 1994 1995 interval = net->ipv4.sysctl_tcp_probe_interval; 1996 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 1997 if (unlikely(delta >= interval * HZ)) { 1998 int mss = tcp_current_mss(sk); 1999 2000 /* Update current search range */ 2001 icsk->icsk_mtup.probe_size = 0; 2002 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2003 sizeof(struct tcphdr) + 2004 icsk->icsk_af_ops->net_header_len; 2005 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2006 2007 /* Update probe time stamp */ 2008 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2009 } 2010 } 2011 2012 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2013 { 2014 struct sk_buff *skb, *next; 2015 2016 skb = tcp_send_head(sk); 2017 tcp_for_write_queue_from_safe(skb, next, sk) { 2018 if (len <= skb->len) 2019 break; 2020 2021 if (unlikely(TCP_SKB_CB(skb)->eor)) 2022 return false; 2023 2024 len -= skb->len; 2025 } 2026 2027 return true; 2028 } 2029 2030 /* Create a new MTU probe if we are ready. 2031 * MTU probe is regularly attempting to increase the path MTU by 2032 * deliberately sending larger packets. This discovers routing 2033 * changes resulting in larger path MTUs. 2034 * 2035 * Returns 0 if we should wait to probe (no cwnd available), 2036 * 1 if a probe was sent, 2037 * -1 otherwise 2038 */ 2039 static int tcp_mtu_probe(struct sock *sk) 2040 { 2041 struct inet_connection_sock *icsk = inet_csk(sk); 2042 struct tcp_sock *tp = tcp_sk(sk); 2043 struct sk_buff *skb, *nskb, *next; 2044 struct net *net = sock_net(sk); 2045 int probe_size; 2046 int size_needed; 2047 int copy, len; 2048 int mss_now; 2049 int interval; 2050 2051 /* Not currently probing/verifying, 2052 * not in recovery, 2053 * have enough cwnd, and 2054 * not SACKing (the variable headers throw things off) 2055 */ 2056 if (likely(!icsk->icsk_mtup.enabled || 2057 icsk->icsk_mtup.probe_size || 2058 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2059 tp->snd_cwnd < 11 || 2060 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2061 return -1; 2062 2063 /* Use binary search for probe_size between tcp_mss_base, 2064 * and current mss_clamp. if (search_high - search_low) 2065 * smaller than a threshold, backoff from probing. 2066 */ 2067 mss_now = tcp_current_mss(sk); 2068 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2069 icsk->icsk_mtup.search_low) >> 1); 2070 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2071 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2072 /* When misfortune happens, we are reprobing actively, 2073 * and then reprobe timer has expired. We stick with current 2074 * probing process by not resetting search range to its orignal. 2075 */ 2076 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2077 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2078 /* Check whether enough time has elaplased for 2079 * another round of probing. 2080 */ 2081 tcp_mtu_check_reprobe(sk); 2082 return -1; 2083 } 2084 2085 /* Have enough data in the send queue to probe? */ 2086 if (tp->write_seq - tp->snd_nxt < size_needed) 2087 return -1; 2088 2089 if (tp->snd_wnd < size_needed) 2090 return -1; 2091 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2092 return 0; 2093 2094 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2095 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2096 if (!tcp_packets_in_flight(tp)) 2097 return -1; 2098 else 2099 return 0; 2100 } 2101 2102 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2103 return -1; 2104 2105 /* We're allowed to probe. Build it now. */ 2106 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2107 if (!nskb) 2108 return -1; 2109 sk->sk_wmem_queued += nskb->truesize; 2110 sk_mem_charge(sk, nskb->truesize); 2111 2112 skb = tcp_send_head(sk); 2113 2114 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2115 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2116 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2117 TCP_SKB_CB(nskb)->sacked = 0; 2118 nskb->csum = 0; 2119 nskb->ip_summed = CHECKSUM_PARTIAL; 2120 2121 tcp_insert_write_queue_before(nskb, skb, sk); 2122 tcp_highest_sack_replace(sk, skb, nskb); 2123 2124 len = 0; 2125 tcp_for_write_queue_from_safe(skb, next, sk) { 2126 copy = min_t(int, skb->len, probe_size - len); 2127 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2128 2129 if (skb->len <= copy) { 2130 /* We've eaten all the data from this skb. 2131 * Throw it away. */ 2132 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2133 /* If this is the last SKB we copy and eor is set 2134 * we need to propagate it to the new skb. 2135 */ 2136 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2137 tcp_unlink_write_queue(skb, sk); 2138 sk_wmem_free_skb(sk, skb); 2139 } else { 2140 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2141 ~(TCPHDR_FIN|TCPHDR_PSH); 2142 if (!skb_shinfo(skb)->nr_frags) { 2143 skb_pull(skb, copy); 2144 } else { 2145 __pskb_trim_head(skb, copy); 2146 tcp_set_skb_tso_segs(skb, mss_now); 2147 } 2148 TCP_SKB_CB(skb)->seq += copy; 2149 } 2150 2151 len += copy; 2152 2153 if (len >= probe_size) 2154 break; 2155 } 2156 tcp_init_tso_segs(nskb, nskb->len); 2157 2158 /* We're ready to send. If this fails, the probe will 2159 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2160 */ 2161 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2162 /* Decrement cwnd here because we are sending 2163 * effectively two packets. */ 2164 tp->snd_cwnd--; 2165 tcp_event_new_data_sent(sk, nskb); 2166 2167 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2168 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2169 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2170 2171 return 1; 2172 } 2173 2174 return -1; 2175 } 2176 2177 static bool tcp_pacing_check(const struct sock *sk) 2178 { 2179 return tcp_needs_internal_pacing(sk) && 2180 hrtimer_is_queued(&tcp_sk(sk)->pacing_timer); 2181 } 2182 2183 /* TCP Small Queues : 2184 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2185 * (These limits are doubled for retransmits) 2186 * This allows for : 2187 * - better RTT estimation and ACK scheduling 2188 * - faster recovery 2189 * - high rates 2190 * Alas, some drivers / subsystems require a fair amount 2191 * of queued bytes to ensure line rate. 2192 * One example is wifi aggregation (802.11 AMPDU) 2193 */ 2194 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2195 unsigned int factor) 2196 { 2197 unsigned int limit; 2198 2199 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift); 2200 limit = min_t(u32, limit, 2201 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2202 limit <<= factor; 2203 2204 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2205 /* Always send skb if rtx queue is empty. 2206 * No need to wait for TX completion to call us back, 2207 * after softirq/tasklet schedule. 2208 * This helps when TX completions are delayed too much. 2209 */ 2210 if (tcp_rtx_queue_empty(sk)) 2211 return false; 2212 2213 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2214 /* It is possible TX completion already happened 2215 * before we set TSQ_THROTTLED, so we must 2216 * test again the condition. 2217 */ 2218 smp_mb__after_atomic(); 2219 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2220 return true; 2221 } 2222 return false; 2223 } 2224 2225 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2226 { 2227 const u32 now = tcp_jiffies32; 2228 enum tcp_chrono old = tp->chrono_type; 2229 2230 if (old > TCP_CHRONO_UNSPEC) 2231 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2232 tp->chrono_start = now; 2233 tp->chrono_type = new; 2234 } 2235 2236 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2237 { 2238 struct tcp_sock *tp = tcp_sk(sk); 2239 2240 /* If there are multiple conditions worthy of tracking in a 2241 * chronograph then the highest priority enum takes precedence 2242 * over the other conditions. So that if something "more interesting" 2243 * starts happening, stop the previous chrono and start a new one. 2244 */ 2245 if (type > tp->chrono_type) 2246 tcp_chrono_set(tp, type); 2247 } 2248 2249 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2250 { 2251 struct tcp_sock *tp = tcp_sk(sk); 2252 2253 2254 /* There are multiple conditions worthy of tracking in a 2255 * chronograph, so that the highest priority enum takes 2256 * precedence over the other conditions (see tcp_chrono_start). 2257 * If a condition stops, we only stop chrono tracking if 2258 * it's the "most interesting" or current chrono we are 2259 * tracking and starts busy chrono if we have pending data. 2260 */ 2261 if (tcp_rtx_and_write_queues_empty(sk)) 2262 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2263 else if (type == tp->chrono_type) 2264 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2265 } 2266 2267 /* This routine writes packets to the network. It advances the 2268 * send_head. This happens as incoming acks open up the remote 2269 * window for us. 2270 * 2271 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2272 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2273 * account rare use of URG, this is not a big flaw. 2274 * 2275 * Send at most one packet when push_one > 0. Temporarily ignore 2276 * cwnd limit to force at most one packet out when push_one == 2. 2277 2278 * Returns true, if no segments are in flight and we have queued segments, 2279 * but cannot send anything now because of SWS or another problem. 2280 */ 2281 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2282 int push_one, gfp_t gfp) 2283 { 2284 struct tcp_sock *tp = tcp_sk(sk); 2285 struct sk_buff *skb; 2286 unsigned int tso_segs, sent_pkts; 2287 int cwnd_quota; 2288 int result; 2289 bool is_cwnd_limited = false, is_rwnd_limited = false; 2290 u32 max_segs; 2291 2292 sent_pkts = 0; 2293 2294 tcp_mstamp_refresh(tp); 2295 if (!push_one) { 2296 /* Do MTU probing. */ 2297 result = tcp_mtu_probe(sk); 2298 if (!result) { 2299 return false; 2300 } else if (result > 0) { 2301 sent_pkts = 1; 2302 } 2303 } 2304 2305 max_segs = tcp_tso_segs(sk, mss_now); 2306 while ((skb = tcp_send_head(sk))) { 2307 unsigned int limit; 2308 2309 if (tcp_pacing_check(sk)) 2310 break; 2311 2312 tso_segs = tcp_init_tso_segs(skb, mss_now); 2313 BUG_ON(!tso_segs); 2314 2315 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2316 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2317 tcp_update_skb_after_send(tp, skb); 2318 goto repair; /* Skip network transmission */ 2319 } 2320 2321 cwnd_quota = tcp_cwnd_test(tp, skb); 2322 if (!cwnd_quota) { 2323 if (push_one == 2) 2324 /* Force out a loss probe pkt. */ 2325 cwnd_quota = 1; 2326 else 2327 break; 2328 } 2329 2330 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2331 is_rwnd_limited = true; 2332 break; 2333 } 2334 2335 if (tso_segs == 1) { 2336 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2337 (tcp_skb_is_last(sk, skb) ? 2338 nonagle : TCP_NAGLE_PUSH)))) 2339 break; 2340 } else { 2341 if (!push_one && 2342 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2343 max_segs)) 2344 break; 2345 } 2346 2347 limit = mss_now; 2348 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2349 limit = tcp_mss_split_point(sk, skb, mss_now, 2350 min_t(unsigned int, 2351 cwnd_quota, 2352 max_segs), 2353 nonagle); 2354 2355 if (skb->len > limit && 2356 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2357 skb, limit, mss_now, gfp))) 2358 break; 2359 2360 if (tcp_small_queue_check(sk, skb, 0)) 2361 break; 2362 2363 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2364 break; 2365 2366 repair: 2367 /* Advance the send_head. This one is sent out. 2368 * This call will increment packets_out. 2369 */ 2370 tcp_event_new_data_sent(sk, skb); 2371 2372 tcp_minshall_update(tp, mss_now, skb); 2373 sent_pkts += tcp_skb_pcount(skb); 2374 2375 if (push_one) 2376 break; 2377 } 2378 2379 if (is_rwnd_limited) 2380 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2381 else 2382 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2383 2384 if (likely(sent_pkts)) { 2385 if (tcp_in_cwnd_reduction(sk)) 2386 tp->prr_out += sent_pkts; 2387 2388 /* Send one loss probe per tail loss episode. */ 2389 if (push_one != 2) 2390 tcp_schedule_loss_probe(sk, false); 2391 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2392 tcp_cwnd_validate(sk, is_cwnd_limited); 2393 return false; 2394 } 2395 return !tp->packets_out && !tcp_write_queue_empty(sk); 2396 } 2397 2398 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2399 { 2400 struct inet_connection_sock *icsk = inet_csk(sk); 2401 struct tcp_sock *tp = tcp_sk(sk); 2402 u32 timeout, rto_delta_us; 2403 int early_retrans; 2404 2405 /* Don't do any loss probe on a Fast Open connection before 3WHS 2406 * finishes. 2407 */ 2408 if (tp->fastopen_rsk) 2409 return false; 2410 2411 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2412 /* Schedule a loss probe in 2*RTT for SACK capable connections 2413 * not in loss recovery, that are either limited by cwnd or application. 2414 */ 2415 if ((early_retrans != 3 && early_retrans != 4) || 2416 !tp->packets_out || !tcp_is_sack(tp) || 2417 (icsk->icsk_ca_state != TCP_CA_Open && 2418 icsk->icsk_ca_state != TCP_CA_CWR)) 2419 return false; 2420 2421 /* Probe timeout is 2*rtt. Add minimum RTO to account 2422 * for delayed ack when there's one outstanding packet. If no RTT 2423 * sample is available then probe after TCP_TIMEOUT_INIT. 2424 */ 2425 if (tp->srtt_us) { 2426 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2427 if (tp->packets_out == 1) 2428 timeout += TCP_RTO_MIN; 2429 else 2430 timeout += TCP_TIMEOUT_MIN; 2431 } else { 2432 timeout = TCP_TIMEOUT_INIT; 2433 } 2434 2435 /* If the RTO formula yields an earlier time, then use that time. */ 2436 rto_delta_us = advancing_rto ? 2437 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2438 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2439 if (rto_delta_us > 0) 2440 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2441 2442 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2443 TCP_RTO_MAX); 2444 return true; 2445 } 2446 2447 /* Thanks to skb fast clones, we can detect if a prior transmit of 2448 * a packet is still in a qdisc or driver queue. 2449 * In this case, there is very little point doing a retransmit ! 2450 */ 2451 static bool skb_still_in_host_queue(const struct sock *sk, 2452 const struct sk_buff *skb) 2453 { 2454 if (unlikely(skb_fclone_busy(sk, skb))) { 2455 NET_INC_STATS(sock_net(sk), 2456 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2457 return true; 2458 } 2459 return false; 2460 } 2461 2462 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2463 * retransmit the last segment. 2464 */ 2465 void tcp_send_loss_probe(struct sock *sk) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 struct sk_buff *skb; 2469 int pcount; 2470 int mss = tcp_current_mss(sk); 2471 2472 skb = tcp_send_head(sk); 2473 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2474 pcount = tp->packets_out; 2475 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2476 if (tp->packets_out > pcount) 2477 goto probe_sent; 2478 goto rearm_timer; 2479 } 2480 skb = skb_rb_last(&sk->tcp_rtx_queue); 2481 2482 /* At most one outstanding TLP retransmission. */ 2483 if (tp->tlp_high_seq) 2484 goto rearm_timer; 2485 2486 /* Retransmit last segment. */ 2487 if (WARN_ON(!skb)) 2488 goto rearm_timer; 2489 2490 if (skb_still_in_host_queue(sk, skb)) 2491 goto rearm_timer; 2492 2493 pcount = tcp_skb_pcount(skb); 2494 if (WARN_ON(!pcount)) 2495 goto rearm_timer; 2496 2497 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2498 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2499 (pcount - 1) * mss, mss, 2500 GFP_ATOMIC))) 2501 goto rearm_timer; 2502 skb = skb_rb_next(skb); 2503 } 2504 2505 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2506 goto rearm_timer; 2507 2508 if (__tcp_retransmit_skb(sk, skb, 1)) 2509 goto rearm_timer; 2510 2511 /* Record snd_nxt for loss detection. */ 2512 tp->tlp_high_seq = tp->snd_nxt; 2513 2514 probe_sent: 2515 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2516 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2517 inet_csk(sk)->icsk_pending = 0; 2518 rearm_timer: 2519 tcp_rearm_rto(sk); 2520 } 2521 2522 /* Push out any pending frames which were held back due to 2523 * TCP_CORK or attempt at coalescing tiny packets. 2524 * The socket must be locked by the caller. 2525 */ 2526 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2527 int nonagle) 2528 { 2529 /* If we are closed, the bytes will have to remain here. 2530 * In time closedown will finish, we empty the write queue and 2531 * all will be happy. 2532 */ 2533 if (unlikely(sk->sk_state == TCP_CLOSE)) 2534 return; 2535 2536 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2537 sk_gfp_mask(sk, GFP_ATOMIC))) 2538 tcp_check_probe_timer(sk); 2539 } 2540 2541 /* Send _single_ skb sitting at the send head. This function requires 2542 * true push pending frames to setup probe timer etc. 2543 */ 2544 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2545 { 2546 struct sk_buff *skb = tcp_send_head(sk); 2547 2548 BUG_ON(!skb || skb->len < mss_now); 2549 2550 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2551 } 2552 2553 /* This function returns the amount that we can raise the 2554 * usable window based on the following constraints 2555 * 2556 * 1. The window can never be shrunk once it is offered (RFC 793) 2557 * 2. We limit memory per socket 2558 * 2559 * RFC 1122: 2560 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2561 * RECV.NEXT + RCV.WIN fixed until: 2562 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2563 * 2564 * i.e. don't raise the right edge of the window until you can raise 2565 * it at least MSS bytes. 2566 * 2567 * Unfortunately, the recommended algorithm breaks header prediction, 2568 * since header prediction assumes th->window stays fixed. 2569 * 2570 * Strictly speaking, keeping th->window fixed violates the receiver 2571 * side SWS prevention criteria. The problem is that under this rule 2572 * a stream of single byte packets will cause the right side of the 2573 * window to always advance by a single byte. 2574 * 2575 * Of course, if the sender implements sender side SWS prevention 2576 * then this will not be a problem. 2577 * 2578 * BSD seems to make the following compromise: 2579 * 2580 * If the free space is less than the 1/4 of the maximum 2581 * space available and the free space is less than 1/2 mss, 2582 * then set the window to 0. 2583 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2584 * Otherwise, just prevent the window from shrinking 2585 * and from being larger than the largest representable value. 2586 * 2587 * This prevents incremental opening of the window in the regime 2588 * where TCP is limited by the speed of the reader side taking 2589 * data out of the TCP receive queue. It does nothing about 2590 * those cases where the window is constrained on the sender side 2591 * because the pipeline is full. 2592 * 2593 * BSD also seems to "accidentally" limit itself to windows that are a 2594 * multiple of MSS, at least until the free space gets quite small. 2595 * This would appear to be a side effect of the mbuf implementation. 2596 * Combining these two algorithms results in the observed behavior 2597 * of having a fixed window size at almost all times. 2598 * 2599 * Below we obtain similar behavior by forcing the offered window to 2600 * a multiple of the mss when it is feasible to do so. 2601 * 2602 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2603 * Regular options like TIMESTAMP are taken into account. 2604 */ 2605 u32 __tcp_select_window(struct sock *sk) 2606 { 2607 struct inet_connection_sock *icsk = inet_csk(sk); 2608 struct tcp_sock *tp = tcp_sk(sk); 2609 /* MSS for the peer's data. Previous versions used mss_clamp 2610 * here. I don't know if the value based on our guesses 2611 * of peer's MSS is better for the performance. It's more correct 2612 * but may be worse for the performance because of rcv_mss 2613 * fluctuations. --SAW 1998/11/1 2614 */ 2615 int mss = icsk->icsk_ack.rcv_mss; 2616 int free_space = tcp_space(sk); 2617 int allowed_space = tcp_full_space(sk); 2618 int full_space = min_t(int, tp->window_clamp, allowed_space); 2619 int window; 2620 2621 if (unlikely(mss > full_space)) { 2622 mss = full_space; 2623 if (mss <= 0) 2624 return 0; 2625 } 2626 if (free_space < (full_space >> 1)) { 2627 icsk->icsk_ack.quick = 0; 2628 2629 if (tcp_under_memory_pressure(sk)) 2630 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2631 4U * tp->advmss); 2632 2633 /* free_space might become our new window, make sure we don't 2634 * increase it due to wscale. 2635 */ 2636 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2637 2638 /* if free space is less than mss estimate, or is below 1/16th 2639 * of the maximum allowed, try to move to zero-window, else 2640 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2641 * new incoming data is dropped due to memory limits. 2642 * With large window, mss test triggers way too late in order 2643 * to announce zero window in time before rmem limit kicks in. 2644 */ 2645 if (free_space < (allowed_space >> 4) || free_space < mss) 2646 return 0; 2647 } 2648 2649 if (free_space > tp->rcv_ssthresh) 2650 free_space = tp->rcv_ssthresh; 2651 2652 /* Don't do rounding if we are using window scaling, since the 2653 * scaled window will not line up with the MSS boundary anyway. 2654 */ 2655 if (tp->rx_opt.rcv_wscale) { 2656 window = free_space; 2657 2658 /* Advertise enough space so that it won't get scaled away. 2659 * Import case: prevent zero window announcement if 2660 * 1<<rcv_wscale > mss. 2661 */ 2662 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2663 } else { 2664 window = tp->rcv_wnd; 2665 /* Get the largest window that is a nice multiple of mss. 2666 * Window clamp already applied above. 2667 * If our current window offering is within 1 mss of the 2668 * free space we just keep it. This prevents the divide 2669 * and multiply from happening most of the time. 2670 * We also don't do any window rounding when the free space 2671 * is too small. 2672 */ 2673 if (window <= free_space - mss || window > free_space) 2674 window = rounddown(free_space, mss); 2675 else if (mss == full_space && 2676 free_space > window + (full_space >> 1)) 2677 window = free_space; 2678 } 2679 2680 return window; 2681 } 2682 2683 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2684 const struct sk_buff *next_skb) 2685 { 2686 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2687 const struct skb_shared_info *next_shinfo = 2688 skb_shinfo(next_skb); 2689 struct skb_shared_info *shinfo = skb_shinfo(skb); 2690 2691 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2692 shinfo->tskey = next_shinfo->tskey; 2693 TCP_SKB_CB(skb)->txstamp_ack |= 2694 TCP_SKB_CB(next_skb)->txstamp_ack; 2695 } 2696 } 2697 2698 /* Collapses two adjacent SKB's during retransmission. */ 2699 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2700 { 2701 struct tcp_sock *tp = tcp_sk(sk); 2702 struct sk_buff *next_skb = skb_rb_next(skb); 2703 int skb_size, next_skb_size; 2704 2705 skb_size = skb->len; 2706 next_skb_size = next_skb->len; 2707 2708 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2709 2710 if (next_skb_size) { 2711 if (next_skb_size <= skb_availroom(skb)) 2712 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2713 next_skb_size); 2714 else if (!skb_shift(skb, next_skb, next_skb_size)) 2715 return false; 2716 } 2717 tcp_highest_sack_replace(sk, next_skb, skb); 2718 2719 /* Update sequence range on original skb. */ 2720 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2721 2722 /* Merge over control information. This moves PSH/FIN etc. over */ 2723 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2724 2725 /* All done, get rid of second SKB and account for it so 2726 * packet counting does not break. 2727 */ 2728 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2729 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2730 2731 /* changed transmit queue under us so clear hints */ 2732 tcp_clear_retrans_hints_partial(tp); 2733 if (next_skb == tp->retransmit_skb_hint) 2734 tp->retransmit_skb_hint = skb; 2735 2736 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2737 2738 tcp_skb_collapse_tstamp(skb, next_skb); 2739 2740 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2741 return true; 2742 } 2743 2744 /* Check if coalescing SKBs is legal. */ 2745 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2746 { 2747 if (tcp_skb_pcount(skb) > 1) 2748 return false; 2749 if (skb_cloned(skb)) 2750 return false; 2751 /* Some heuristics for collapsing over SACK'd could be invented */ 2752 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2753 return false; 2754 2755 return true; 2756 } 2757 2758 /* Collapse packets in the retransmit queue to make to create 2759 * less packets on the wire. This is only done on retransmission. 2760 */ 2761 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2762 int space) 2763 { 2764 struct tcp_sock *tp = tcp_sk(sk); 2765 struct sk_buff *skb = to, *tmp; 2766 bool first = true; 2767 2768 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2769 return; 2770 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2771 return; 2772 2773 skb_rbtree_walk_from_safe(skb, tmp) { 2774 if (!tcp_can_collapse(sk, skb)) 2775 break; 2776 2777 if (!tcp_skb_can_collapse_to(to)) 2778 break; 2779 2780 space -= skb->len; 2781 2782 if (first) { 2783 first = false; 2784 continue; 2785 } 2786 2787 if (space < 0) 2788 break; 2789 2790 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2791 break; 2792 2793 if (!tcp_collapse_retrans(sk, to)) 2794 break; 2795 } 2796 } 2797 2798 /* This retransmits one SKB. Policy decisions and retransmit queue 2799 * state updates are done by the caller. Returns non-zero if an 2800 * error occurred which prevented the send. 2801 */ 2802 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2803 { 2804 struct inet_connection_sock *icsk = inet_csk(sk); 2805 struct tcp_sock *tp = tcp_sk(sk); 2806 unsigned int cur_mss; 2807 int diff, len, err; 2808 2809 2810 /* Inconclusive MTU probe */ 2811 if (icsk->icsk_mtup.probe_size) 2812 icsk->icsk_mtup.probe_size = 0; 2813 2814 /* Do not sent more than we queued. 1/4 is reserved for possible 2815 * copying overhead: fragmentation, tunneling, mangling etc. 2816 */ 2817 if (refcount_read(&sk->sk_wmem_alloc) > 2818 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2819 sk->sk_sndbuf)) 2820 return -EAGAIN; 2821 2822 if (skb_still_in_host_queue(sk, skb)) 2823 return -EBUSY; 2824 2825 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2826 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2827 WARN_ON_ONCE(1); 2828 return -EINVAL; 2829 } 2830 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2831 return -ENOMEM; 2832 } 2833 2834 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2835 return -EHOSTUNREACH; /* Routing failure or similar. */ 2836 2837 cur_mss = tcp_current_mss(sk); 2838 2839 /* If receiver has shrunk his window, and skb is out of 2840 * new window, do not retransmit it. The exception is the 2841 * case, when window is shrunk to zero. In this case 2842 * our retransmit serves as a zero window probe. 2843 */ 2844 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2845 TCP_SKB_CB(skb)->seq != tp->snd_una) 2846 return -EAGAIN; 2847 2848 len = cur_mss * segs; 2849 if (skb->len > len) { 2850 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2851 cur_mss, GFP_ATOMIC)) 2852 return -ENOMEM; /* We'll try again later. */ 2853 } else { 2854 if (skb_unclone(skb, GFP_ATOMIC)) 2855 return -ENOMEM; 2856 2857 diff = tcp_skb_pcount(skb); 2858 tcp_set_skb_tso_segs(skb, cur_mss); 2859 diff -= tcp_skb_pcount(skb); 2860 if (diff) 2861 tcp_adjust_pcount(sk, skb, diff); 2862 if (skb->len < cur_mss) 2863 tcp_retrans_try_collapse(sk, skb, cur_mss); 2864 } 2865 2866 /* RFC3168, section 6.1.1.1. ECN fallback */ 2867 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2868 tcp_ecn_clear_syn(sk, skb); 2869 2870 /* Update global and local TCP statistics. */ 2871 segs = tcp_skb_pcount(skb); 2872 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2873 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2874 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2875 tp->total_retrans += segs; 2876 2877 /* make sure skb->data is aligned on arches that require it 2878 * and check if ack-trimming & collapsing extended the headroom 2879 * beyond what csum_start can cover. 2880 */ 2881 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2882 skb_headroom(skb) >= 0xFFFF)) { 2883 struct sk_buff *nskb; 2884 2885 tcp_skb_tsorted_save(skb) { 2886 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2887 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2888 -ENOBUFS; 2889 } tcp_skb_tsorted_restore(skb); 2890 2891 if (!err) { 2892 tcp_update_skb_after_send(tp, skb); 2893 tcp_rate_skb_sent(sk, skb); 2894 } 2895 } else { 2896 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2897 } 2898 2899 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2900 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2901 TCP_SKB_CB(skb)->seq, segs, err); 2902 2903 if (likely(!err)) { 2904 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2905 trace_tcp_retransmit_skb(sk, skb); 2906 } else if (err != -EBUSY) { 2907 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2908 } 2909 return err; 2910 } 2911 2912 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2913 { 2914 struct tcp_sock *tp = tcp_sk(sk); 2915 int err = __tcp_retransmit_skb(sk, skb, segs); 2916 2917 if (err == 0) { 2918 #if FASTRETRANS_DEBUG > 0 2919 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2920 net_dbg_ratelimited("retrans_out leaked\n"); 2921 } 2922 #endif 2923 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2924 tp->retrans_out += tcp_skb_pcount(skb); 2925 2926 /* Save stamp of the first retransmit. */ 2927 if (!tp->retrans_stamp) 2928 tp->retrans_stamp = tcp_skb_timestamp(skb); 2929 2930 } 2931 2932 if (tp->undo_retrans < 0) 2933 tp->undo_retrans = 0; 2934 tp->undo_retrans += tcp_skb_pcount(skb); 2935 return err; 2936 } 2937 2938 /* This gets called after a retransmit timeout, and the initially 2939 * retransmitted data is acknowledged. It tries to continue 2940 * resending the rest of the retransmit queue, until either 2941 * we've sent it all or the congestion window limit is reached. 2942 */ 2943 void tcp_xmit_retransmit_queue(struct sock *sk) 2944 { 2945 const struct inet_connection_sock *icsk = inet_csk(sk); 2946 struct sk_buff *skb, *rtx_head, *hole = NULL; 2947 struct tcp_sock *tp = tcp_sk(sk); 2948 u32 max_segs; 2949 int mib_idx; 2950 2951 if (!tp->packets_out) 2952 return; 2953 2954 rtx_head = tcp_rtx_queue_head(sk); 2955 skb = tp->retransmit_skb_hint ?: rtx_head; 2956 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2957 skb_rbtree_walk_from(skb) { 2958 __u8 sacked; 2959 int segs; 2960 2961 if (tcp_pacing_check(sk)) 2962 break; 2963 2964 /* we could do better than to assign each time */ 2965 if (!hole) 2966 tp->retransmit_skb_hint = skb; 2967 2968 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2969 if (segs <= 0) 2970 return; 2971 sacked = TCP_SKB_CB(skb)->sacked; 2972 /* In case tcp_shift_skb_data() have aggregated large skbs, 2973 * we need to make sure not sending too bigs TSO packets 2974 */ 2975 segs = min_t(int, segs, max_segs); 2976 2977 if (tp->retrans_out >= tp->lost_out) { 2978 break; 2979 } else if (!(sacked & TCPCB_LOST)) { 2980 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2981 hole = skb; 2982 continue; 2983 2984 } else { 2985 if (icsk->icsk_ca_state != TCP_CA_Loss) 2986 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2987 else 2988 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2989 } 2990 2991 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2992 continue; 2993 2994 if (tcp_small_queue_check(sk, skb, 1)) 2995 return; 2996 2997 if (tcp_retransmit_skb(sk, skb, segs)) 2998 return; 2999 3000 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3001 3002 if (tcp_in_cwnd_reduction(sk)) 3003 tp->prr_out += tcp_skb_pcount(skb); 3004 3005 if (skb == rtx_head && 3006 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3007 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3008 inet_csk(sk)->icsk_rto, 3009 TCP_RTO_MAX); 3010 } 3011 } 3012 3013 /* We allow to exceed memory limits for FIN packets to expedite 3014 * connection tear down and (memory) recovery. 3015 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3016 * or even be forced to close flow without any FIN. 3017 * In general, we want to allow one skb per socket to avoid hangs 3018 * with edge trigger epoll() 3019 */ 3020 void sk_forced_mem_schedule(struct sock *sk, int size) 3021 { 3022 int amt; 3023 3024 if (size <= sk->sk_forward_alloc) 3025 return; 3026 amt = sk_mem_pages(size); 3027 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3028 sk_memory_allocated_add(sk, amt); 3029 3030 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3031 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3032 } 3033 3034 /* Send a FIN. The caller locks the socket for us. 3035 * We should try to send a FIN packet really hard, but eventually give up. 3036 */ 3037 void tcp_send_fin(struct sock *sk) 3038 { 3039 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3040 struct tcp_sock *tp = tcp_sk(sk); 3041 3042 /* Optimization, tack on the FIN if we have one skb in write queue and 3043 * this skb was not yet sent, or we are under memory pressure. 3044 * Note: in the latter case, FIN packet will be sent after a timeout, 3045 * as TCP stack thinks it has already been transmitted. 3046 */ 3047 if (!tskb && tcp_under_memory_pressure(sk)) 3048 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3049 3050 if (tskb) { 3051 coalesce: 3052 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3053 TCP_SKB_CB(tskb)->end_seq++; 3054 tp->write_seq++; 3055 if (tcp_write_queue_empty(sk)) { 3056 /* This means tskb was already sent. 3057 * Pretend we included the FIN on previous transmit. 3058 * We need to set tp->snd_nxt to the value it would have 3059 * if FIN had been sent. This is because retransmit path 3060 * does not change tp->snd_nxt. 3061 */ 3062 tp->snd_nxt++; 3063 return; 3064 } 3065 } else { 3066 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3067 if (unlikely(!skb)) { 3068 if (tskb) 3069 goto coalesce; 3070 return; 3071 } 3072 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3073 skb_reserve(skb, MAX_TCP_HEADER); 3074 sk_forced_mem_schedule(sk, skb->truesize); 3075 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3076 tcp_init_nondata_skb(skb, tp->write_seq, 3077 TCPHDR_ACK | TCPHDR_FIN); 3078 tcp_queue_skb(sk, skb); 3079 } 3080 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3081 } 3082 3083 /* We get here when a process closes a file descriptor (either due to 3084 * an explicit close() or as a byproduct of exit()'ing) and there 3085 * was unread data in the receive queue. This behavior is recommended 3086 * by RFC 2525, section 2.17. -DaveM 3087 */ 3088 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3089 { 3090 struct sk_buff *skb; 3091 3092 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3093 3094 /* NOTE: No TCP options attached and we never retransmit this. */ 3095 skb = alloc_skb(MAX_TCP_HEADER, priority); 3096 if (!skb) { 3097 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3098 return; 3099 } 3100 3101 /* Reserve space for headers and prepare control bits. */ 3102 skb_reserve(skb, MAX_TCP_HEADER); 3103 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3104 TCPHDR_ACK | TCPHDR_RST); 3105 tcp_mstamp_refresh(tcp_sk(sk)); 3106 /* Send it off. */ 3107 if (tcp_transmit_skb(sk, skb, 0, priority)) 3108 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3109 3110 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3111 * skb here is different to the troublesome skb, so use NULL 3112 */ 3113 trace_tcp_send_reset(sk, NULL); 3114 } 3115 3116 /* Send a crossed SYN-ACK during socket establishment. 3117 * WARNING: This routine must only be called when we have already sent 3118 * a SYN packet that crossed the incoming SYN that caused this routine 3119 * to get called. If this assumption fails then the initial rcv_wnd 3120 * and rcv_wscale values will not be correct. 3121 */ 3122 int tcp_send_synack(struct sock *sk) 3123 { 3124 struct sk_buff *skb; 3125 3126 skb = tcp_rtx_queue_head(sk); 3127 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3128 pr_err("%s: wrong queue state\n", __func__); 3129 return -EFAULT; 3130 } 3131 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3132 if (skb_cloned(skb)) { 3133 struct sk_buff *nskb; 3134 3135 tcp_skb_tsorted_save(skb) { 3136 nskb = skb_copy(skb, GFP_ATOMIC); 3137 } tcp_skb_tsorted_restore(skb); 3138 if (!nskb) 3139 return -ENOMEM; 3140 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3141 tcp_rtx_queue_unlink_and_free(skb, sk); 3142 __skb_header_release(nskb); 3143 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3144 sk->sk_wmem_queued += nskb->truesize; 3145 sk_mem_charge(sk, nskb->truesize); 3146 skb = nskb; 3147 } 3148 3149 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3150 tcp_ecn_send_synack(sk, skb); 3151 } 3152 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3153 } 3154 3155 /** 3156 * tcp_make_synack - Prepare a SYN-ACK. 3157 * sk: listener socket 3158 * dst: dst entry attached to the SYNACK 3159 * req: request_sock pointer 3160 * 3161 * Allocate one skb and build a SYNACK packet. 3162 * @dst is consumed : Caller should not use it again. 3163 */ 3164 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3165 struct request_sock *req, 3166 struct tcp_fastopen_cookie *foc, 3167 enum tcp_synack_type synack_type) 3168 { 3169 struct inet_request_sock *ireq = inet_rsk(req); 3170 const struct tcp_sock *tp = tcp_sk(sk); 3171 struct tcp_md5sig_key *md5 = NULL; 3172 struct tcp_out_options opts; 3173 struct sk_buff *skb; 3174 int tcp_header_size; 3175 struct tcphdr *th; 3176 int mss; 3177 3178 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3179 if (unlikely(!skb)) { 3180 dst_release(dst); 3181 return NULL; 3182 } 3183 /* Reserve space for headers. */ 3184 skb_reserve(skb, MAX_TCP_HEADER); 3185 3186 switch (synack_type) { 3187 case TCP_SYNACK_NORMAL: 3188 skb_set_owner_w(skb, req_to_sk(req)); 3189 break; 3190 case TCP_SYNACK_COOKIE: 3191 /* Under synflood, we do not attach skb to a socket, 3192 * to avoid false sharing. 3193 */ 3194 break; 3195 case TCP_SYNACK_FASTOPEN: 3196 /* sk is a const pointer, because we want to express multiple 3197 * cpu might call us concurrently. 3198 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3199 */ 3200 skb_set_owner_w(skb, (struct sock *)sk); 3201 break; 3202 } 3203 skb_dst_set(skb, dst); 3204 3205 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3206 3207 memset(&opts, 0, sizeof(opts)); 3208 #ifdef CONFIG_SYN_COOKIES 3209 if (unlikely(req->cookie_ts)) 3210 skb->skb_mstamp = cookie_init_timestamp(req); 3211 else 3212 #endif 3213 skb->skb_mstamp = tcp_clock_us(); 3214 3215 #ifdef CONFIG_TCP_MD5SIG 3216 rcu_read_lock(); 3217 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3218 #endif 3219 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3220 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3221 foc) + sizeof(*th); 3222 3223 skb_push(skb, tcp_header_size); 3224 skb_reset_transport_header(skb); 3225 3226 th = (struct tcphdr *)skb->data; 3227 memset(th, 0, sizeof(struct tcphdr)); 3228 th->syn = 1; 3229 th->ack = 1; 3230 tcp_ecn_make_synack(req, th); 3231 th->source = htons(ireq->ir_num); 3232 th->dest = ireq->ir_rmt_port; 3233 skb->mark = ireq->ir_mark; 3234 skb->ip_summed = CHECKSUM_PARTIAL; 3235 th->seq = htonl(tcp_rsk(req)->snt_isn); 3236 /* XXX data is queued and acked as is. No buffer/window check */ 3237 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3238 3239 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3240 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3241 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3242 th->doff = (tcp_header_size >> 2); 3243 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3244 3245 #ifdef CONFIG_TCP_MD5SIG 3246 /* Okay, we have all we need - do the md5 hash if needed */ 3247 if (md5) 3248 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3249 md5, req_to_sk(req), skb); 3250 rcu_read_unlock(); 3251 #endif 3252 3253 /* Do not fool tcpdump (if any), clean our debris */ 3254 skb->tstamp = 0; 3255 return skb; 3256 } 3257 EXPORT_SYMBOL(tcp_make_synack); 3258 3259 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3260 { 3261 struct inet_connection_sock *icsk = inet_csk(sk); 3262 const struct tcp_congestion_ops *ca; 3263 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3264 3265 if (ca_key == TCP_CA_UNSPEC) 3266 return; 3267 3268 rcu_read_lock(); 3269 ca = tcp_ca_find_key(ca_key); 3270 if (likely(ca && try_module_get(ca->owner))) { 3271 module_put(icsk->icsk_ca_ops->owner); 3272 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3273 icsk->icsk_ca_ops = ca; 3274 } 3275 rcu_read_unlock(); 3276 } 3277 3278 /* Do all connect socket setups that can be done AF independent. */ 3279 static void tcp_connect_init(struct sock *sk) 3280 { 3281 const struct dst_entry *dst = __sk_dst_get(sk); 3282 struct tcp_sock *tp = tcp_sk(sk); 3283 __u8 rcv_wscale; 3284 u32 rcv_wnd; 3285 3286 /* We'll fix this up when we get a response from the other end. 3287 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3288 */ 3289 tp->tcp_header_len = sizeof(struct tcphdr); 3290 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3291 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3292 3293 #ifdef CONFIG_TCP_MD5SIG 3294 if (tp->af_specific->md5_lookup(sk, sk)) 3295 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3296 #endif 3297 3298 /* If user gave his TCP_MAXSEG, record it to clamp */ 3299 if (tp->rx_opt.user_mss) 3300 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3301 tp->max_window = 0; 3302 tcp_mtup_init(sk); 3303 tcp_sync_mss(sk, dst_mtu(dst)); 3304 3305 tcp_ca_dst_init(sk, dst); 3306 3307 if (!tp->window_clamp) 3308 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3309 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3310 3311 tcp_initialize_rcv_mss(sk); 3312 3313 /* limit the window selection if the user enforce a smaller rx buffer */ 3314 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3315 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3316 tp->window_clamp = tcp_full_space(sk); 3317 3318 rcv_wnd = tcp_rwnd_init_bpf(sk); 3319 if (rcv_wnd == 0) 3320 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3321 3322 tcp_select_initial_window(sk, tcp_full_space(sk), 3323 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3324 &tp->rcv_wnd, 3325 &tp->window_clamp, 3326 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3327 &rcv_wscale, 3328 rcv_wnd); 3329 3330 tp->rx_opt.rcv_wscale = rcv_wscale; 3331 tp->rcv_ssthresh = tp->rcv_wnd; 3332 3333 sk->sk_err = 0; 3334 sock_reset_flag(sk, SOCK_DONE); 3335 tp->snd_wnd = 0; 3336 tcp_init_wl(tp, 0); 3337 tcp_write_queue_purge(sk); 3338 tp->snd_una = tp->write_seq; 3339 tp->snd_sml = tp->write_seq; 3340 tp->snd_up = tp->write_seq; 3341 tp->snd_nxt = tp->write_seq; 3342 3343 if (likely(!tp->repair)) 3344 tp->rcv_nxt = 0; 3345 else 3346 tp->rcv_tstamp = tcp_jiffies32; 3347 tp->rcv_wup = tp->rcv_nxt; 3348 tp->copied_seq = tp->rcv_nxt; 3349 3350 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3351 inet_csk(sk)->icsk_retransmits = 0; 3352 tcp_clear_retrans(tp); 3353 } 3354 3355 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3356 { 3357 struct tcp_sock *tp = tcp_sk(sk); 3358 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3359 3360 tcb->end_seq += skb->len; 3361 __skb_header_release(skb); 3362 sk->sk_wmem_queued += skb->truesize; 3363 sk_mem_charge(sk, skb->truesize); 3364 tp->write_seq = tcb->end_seq; 3365 tp->packets_out += tcp_skb_pcount(skb); 3366 } 3367 3368 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3369 * queue a data-only packet after the regular SYN, such that regular SYNs 3370 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3371 * only the SYN sequence, the data are retransmitted in the first ACK. 3372 * If cookie is not cached or other error occurs, falls back to send a 3373 * regular SYN with Fast Open cookie request option. 3374 */ 3375 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3376 { 3377 struct tcp_sock *tp = tcp_sk(sk); 3378 struct tcp_fastopen_request *fo = tp->fastopen_req; 3379 int space, err = 0; 3380 struct sk_buff *syn_data; 3381 3382 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3383 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3384 goto fallback; 3385 3386 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3387 * user-MSS. Reserve maximum option space for middleboxes that add 3388 * private TCP options. The cost is reduced data space in SYN :( 3389 */ 3390 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3391 3392 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3393 MAX_TCP_OPTION_SPACE; 3394 3395 space = min_t(size_t, space, fo->size); 3396 3397 /* limit to order-0 allocations */ 3398 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3399 3400 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3401 if (!syn_data) 3402 goto fallback; 3403 syn_data->ip_summed = CHECKSUM_PARTIAL; 3404 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3405 if (space) { 3406 int copied = copy_from_iter(skb_put(syn_data, space), space, 3407 &fo->data->msg_iter); 3408 if (unlikely(!copied)) { 3409 tcp_skb_tsorted_anchor_cleanup(syn_data); 3410 kfree_skb(syn_data); 3411 goto fallback; 3412 } 3413 if (copied != space) { 3414 skb_trim(syn_data, copied); 3415 space = copied; 3416 } 3417 } 3418 /* No more data pending in inet_wait_for_connect() */ 3419 if (space == fo->size) 3420 fo->data = NULL; 3421 fo->copied = space; 3422 3423 tcp_connect_queue_skb(sk, syn_data); 3424 if (syn_data->len) 3425 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3426 3427 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3428 3429 syn->skb_mstamp = syn_data->skb_mstamp; 3430 3431 /* Now full SYN+DATA was cloned and sent (or not), 3432 * remove the SYN from the original skb (syn_data) 3433 * we keep in write queue in case of a retransmit, as we 3434 * also have the SYN packet (with no data) in the same queue. 3435 */ 3436 TCP_SKB_CB(syn_data)->seq++; 3437 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3438 if (!err) { 3439 tp->syn_data = (fo->copied > 0); 3440 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3441 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3442 goto done; 3443 } 3444 3445 /* data was not sent, put it in write_queue */ 3446 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3447 tp->packets_out -= tcp_skb_pcount(syn_data); 3448 3449 fallback: 3450 /* Send a regular SYN with Fast Open cookie request option */ 3451 if (fo->cookie.len > 0) 3452 fo->cookie.len = 0; 3453 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3454 if (err) 3455 tp->syn_fastopen = 0; 3456 done: 3457 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3458 return err; 3459 } 3460 3461 /* Build a SYN and send it off. */ 3462 int tcp_connect(struct sock *sk) 3463 { 3464 struct tcp_sock *tp = tcp_sk(sk); 3465 struct sk_buff *buff; 3466 int err; 3467 3468 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3469 3470 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3471 return -EHOSTUNREACH; /* Routing failure or similar. */ 3472 3473 tcp_connect_init(sk); 3474 3475 if (unlikely(tp->repair)) { 3476 tcp_finish_connect(sk, NULL); 3477 return 0; 3478 } 3479 3480 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3481 if (unlikely(!buff)) 3482 return -ENOBUFS; 3483 3484 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3485 tcp_mstamp_refresh(tp); 3486 tp->retrans_stamp = tcp_time_stamp(tp); 3487 tcp_connect_queue_skb(sk, buff); 3488 tcp_ecn_send_syn(sk, buff); 3489 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3490 3491 /* Send off SYN; include data in Fast Open. */ 3492 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3493 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3494 if (err == -ECONNREFUSED) 3495 return err; 3496 3497 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3498 * in order to make this packet get counted in tcpOutSegs. 3499 */ 3500 tp->snd_nxt = tp->write_seq; 3501 tp->pushed_seq = tp->write_seq; 3502 buff = tcp_send_head(sk); 3503 if (unlikely(buff)) { 3504 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3505 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3506 } 3507 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3508 3509 /* Timer for repeating the SYN until an answer. */ 3510 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3511 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3512 return 0; 3513 } 3514 EXPORT_SYMBOL(tcp_connect); 3515 3516 /* Send out a delayed ack, the caller does the policy checking 3517 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3518 * for details. 3519 */ 3520 void tcp_send_delayed_ack(struct sock *sk) 3521 { 3522 struct inet_connection_sock *icsk = inet_csk(sk); 3523 int ato = icsk->icsk_ack.ato; 3524 unsigned long timeout; 3525 3526 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3527 3528 if (ato > TCP_DELACK_MIN) { 3529 const struct tcp_sock *tp = tcp_sk(sk); 3530 int max_ato = HZ / 2; 3531 3532 if (icsk->icsk_ack.pingpong || 3533 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3534 max_ato = TCP_DELACK_MAX; 3535 3536 /* Slow path, intersegment interval is "high". */ 3537 3538 /* If some rtt estimate is known, use it to bound delayed ack. 3539 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3540 * directly. 3541 */ 3542 if (tp->srtt_us) { 3543 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3544 TCP_DELACK_MIN); 3545 3546 if (rtt < max_ato) 3547 max_ato = rtt; 3548 } 3549 3550 ato = min(ato, max_ato); 3551 } 3552 3553 /* Stay within the limit we were given */ 3554 timeout = jiffies + ato; 3555 3556 /* Use new timeout only if there wasn't a older one earlier. */ 3557 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3558 /* If delack timer was blocked or is about to expire, 3559 * send ACK now. 3560 */ 3561 if (icsk->icsk_ack.blocked || 3562 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3563 tcp_send_ack(sk); 3564 return; 3565 } 3566 3567 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3568 timeout = icsk->icsk_ack.timeout; 3569 } 3570 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3571 icsk->icsk_ack.timeout = timeout; 3572 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3573 } 3574 3575 /* This routine sends an ack and also updates the window. */ 3576 void tcp_send_ack(struct sock *sk) 3577 { 3578 struct sk_buff *buff; 3579 3580 /* If we have been reset, we may not send again. */ 3581 if (sk->sk_state == TCP_CLOSE) 3582 return; 3583 3584 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3585 3586 /* We are not putting this on the write queue, so 3587 * tcp_transmit_skb() will set the ownership to this 3588 * sock. 3589 */ 3590 buff = alloc_skb(MAX_TCP_HEADER, 3591 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3592 if (unlikely(!buff)) { 3593 inet_csk_schedule_ack(sk); 3594 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3595 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3596 TCP_DELACK_MAX, TCP_RTO_MAX); 3597 return; 3598 } 3599 3600 /* Reserve space for headers and prepare control bits. */ 3601 skb_reserve(buff, MAX_TCP_HEADER); 3602 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3603 3604 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3605 * too much. 3606 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3607 */ 3608 skb_set_tcp_pure_ack(buff); 3609 3610 /* Send it off, this clears delayed acks for us. */ 3611 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3612 } 3613 EXPORT_SYMBOL_GPL(tcp_send_ack); 3614 3615 /* This routine sends a packet with an out of date sequence 3616 * number. It assumes the other end will try to ack it. 3617 * 3618 * Question: what should we make while urgent mode? 3619 * 4.4BSD forces sending single byte of data. We cannot send 3620 * out of window data, because we have SND.NXT==SND.MAX... 3621 * 3622 * Current solution: to send TWO zero-length segments in urgent mode: 3623 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3624 * out-of-date with SND.UNA-1 to probe window. 3625 */ 3626 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3627 { 3628 struct tcp_sock *tp = tcp_sk(sk); 3629 struct sk_buff *skb; 3630 3631 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3632 skb = alloc_skb(MAX_TCP_HEADER, 3633 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3634 if (!skb) 3635 return -1; 3636 3637 /* Reserve space for headers and set control bits. */ 3638 skb_reserve(skb, MAX_TCP_HEADER); 3639 /* Use a previous sequence. This should cause the other 3640 * end to send an ack. Don't queue or clone SKB, just 3641 * send it. 3642 */ 3643 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3644 NET_INC_STATS(sock_net(sk), mib); 3645 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3646 } 3647 3648 /* Called from setsockopt( ... TCP_REPAIR ) */ 3649 void tcp_send_window_probe(struct sock *sk) 3650 { 3651 if (sk->sk_state == TCP_ESTABLISHED) { 3652 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3653 tcp_mstamp_refresh(tcp_sk(sk)); 3654 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3655 } 3656 } 3657 3658 /* Initiate keepalive or window probe from timer. */ 3659 int tcp_write_wakeup(struct sock *sk, int mib) 3660 { 3661 struct tcp_sock *tp = tcp_sk(sk); 3662 struct sk_buff *skb; 3663 3664 if (sk->sk_state == TCP_CLOSE) 3665 return -1; 3666 3667 skb = tcp_send_head(sk); 3668 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3669 int err; 3670 unsigned int mss = tcp_current_mss(sk); 3671 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3672 3673 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3674 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3675 3676 /* We are probing the opening of a window 3677 * but the window size is != 0 3678 * must have been a result SWS avoidance ( sender ) 3679 */ 3680 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3681 skb->len > mss) { 3682 seg_size = min(seg_size, mss); 3683 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3684 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3685 skb, seg_size, mss, GFP_ATOMIC)) 3686 return -1; 3687 } else if (!tcp_skb_pcount(skb)) 3688 tcp_set_skb_tso_segs(skb, mss); 3689 3690 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3691 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3692 if (!err) 3693 tcp_event_new_data_sent(sk, skb); 3694 return err; 3695 } else { 3696 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3697 tcp_xmit_probe_skb(sk, 1, mib); 3698 return tcp_xmit_probe_skb(sk, 0, mib); 3699 } 3700 } 3701 3702 /* A window probe timeout has occurred. If window is not closed send 3703 * a partial packet else a zero probe. 3704 */ 3705 void tcp_send_probe0(struct sock *sk) 3706 { 3707 struct inet_connection_sock *icsk = inet_csk(sk); 3708 struct tcp_sock *tp = tcp_sk(sk); 3709 struct net *net = sock_net(sk); 3710 unsigned long probe_max; 3711 int err; 3712 3713 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3714 3715 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3716 /* Cancel probe timer, if it is not required. */ 3717 icsk->icsk_probes_out = 0; 3718 icsk->icsk_backoff = 0; 3719 return; 3720 } 3721 3722 if (err <= 0) { 3723 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3724 icsk->icsk_backoff++; 3725 icsk->icsk_probes_out++; 3726 probe_max = TCP_RTO_MAX; 3727 } else { 3728 /* If packet was not sent due to local congestion, 3729 * do not backoff and do not remember icsk_probes_out. 3730 * Let local senders to fight for local resources. 3731 * 3732 * Use accumulated backoff yet. 3733 */ 3734 if (!icsk->icsk_probes_out) 3735 icsk->icsk_probes_out = 1; 3736 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3737 } 3738 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3739 tcp_probe0_when(sk, probe_max), 3740 TCP_RTO_MAX); 3741 } 3742 3743 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3744 { 3745 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3746 struct flowi fl; 3747 int res; 3748 3749 tcp_rsk(req)->txhash = net_tx_rndhash(); 3750 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3751 if (!res) { 3752 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3753 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3754 if (unlikely(tcp_passive_fastopen(sk))) 3755 tcp_sk(sk)->total_retrans++; 3756 trace_tcp_retransmit_synack(sk, req); 3757 } 3758 return res; 3759 } 3760 EXPORT_SYMBOL(tcp_rtx_synack); 3761