1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: Pedro Roque : Retransmit queue handled by TCP. 25 * : Fragmentation on mtu decrease 26 * : Segment collapse on retransmit 27 * : AF independence 28 * 29 * Linus Torvalds : send_delayed_ack 30 * David S. Miller : Charge memory using the right skb 31 * during syn/ack processing. 32 * David S. Miller : Output engine completely rewritten. 33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 34 * Cacophonix Gaul : draft-minshall-nagle-01 35 * J Hadi Salim : ECN support 36 * 37 */ 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/module.h> 43 #include <linux/smp_lock.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse = 1; 47 48 /* This limits the percentage of the congestion window which we 49 * will allow a single TSO frame to consume. Building TSO frames 50 * which are too large can cause TCP streams to be bursty. 51 */ 52 int sysctl_tcp_tso_win_divisor = 3; 53 54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, 55 struct sk_buff *skb) 56 { 57 sk->sk_send_head = skb->next; 58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) 59 sk->sk_send_head = NULL; 60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 61 tcp_packets_out_inc(sk, tp, skb); 62 } 63 64 /* SND.NXT, if window was not shrunk. 65 * If window has been shrunk, what should we make? It is not clear at all. 66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 68 * invalid. OK, let's make this for now: 69 */ 70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) 71 { 72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) 73 return tp->snd_nxt; 74 else 75 return tp->snd_una+tp->snd_wnd; 76 } 77 78 /* Calculate mss to advertise in SYN segment. 79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 80 * 81 * 1. It is independent of path mtu. 82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 84 * attached devices, because some buggy hosts are confused by 85 * large MSS. 86 * 4. We do not make 3, we advertise MSS, calculated from first 87 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 88 * This may be overridden via information stored in routing table. 89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 90 * probably even Jumbo". 91 */ 92 static __u16 tcp_advertise_mss(struct sock *sk) 93 { 94 struct tcp_sock *tp = tcp_sk(sk); 95 struct dst_entry *dst = __sk_dst_get(sk); 96 int mss = tp->advmss; 97 98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { 99 mss = dst_metric(dst, RTAX_ADVMSS); 100 tp->advmss = mss; 101 } 102 103 return (__u16)mss; 104 } 105 106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 107 * This is the first part of cwnd validation mechanism. */ 108 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) 109 { 110 struct tcp_sock *tp = tcp_sk(sk); 111 s32 delta = tcp_time_stamp - tp->lsndtime; 112 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 113 u32 cwnd = tp->snd_cwnd; 114 115 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 116 117 tp->snd_ssthresh = tcp_current_ssthresh(sk); 118 restart_cwnd = min(restart_cwnd, cwnd); 119 120 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 121 cwnd >>= 1; 122 tp->snd_cwnd = max(cwnd, restart_cwnd); 123 tp->snd_cwnd_stamp = tcp_time_stamp; 124 tp->snd_cwnd_used = 0; 125 } 126 127 static inline void tcp_event_data_sent(struct tcp_sock *tp, 128 struct sk_buff *skb, struct sock *sk) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const u32 now = tcp_time_stamp; 132 133 if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto) 134 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 135 136 tp->lsndtime = now; 137 138 /* If it is a reply for ato after last received 139 * packet, enter pingpong mode. 140 */ 141 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 142 icsk->icsk_ack.pingpong = 1; 143 } 144 145 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 146 { 147 tcp_dec_quickack_mode(sk, pkts); 148 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 149 } 150 151 /* Determine a window scaling and initial window to offer. 152 * Based on the assumption that the given amount of space 153 * will be offered. Store the results in the tp structure. 154 * NOTE: for smooth operation initial space offering should 155 * be a multiple of mss if possible. We assume here that mss >= 1. 156 * This MUST be enforced by all callers. 157 */ 158 void tcp_select_initial_window(int __space, __u32 mss, 159 __u32 *rcv_wnd, __u32 *window_clamp, 160 int wscale_ok, __u8 *rcv_wscale) 161 { 162 unsigned int space = (__space < 0 ? 0 : __space); 163 164 /* If no clamp set the clamp to the max possible scaled window */ 165 if (*window_clamp == 0) 166 (*window_clamp) = (65535 << 14); 167 space = min(*window_clamp, space); 168 169 /* Quantize space offering to a multiple of mss if possible. */ 170 if (space > mss) 171 space = (space / mss) * mss; 172 173 /* NOTE: offering an initial window larger than 32767 174 * will break some buggy TCP stacks. We try to be nice. 175 * If we are not window scaling, then this truncates 176 * our initial window offering to 32k. There should also 177 * be a sysctl option to stop being nice. 178 */ 179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 180 (*rcv_wscale) = 0; 181 if (wscale_ok) { 182 /* Set window scaling on max possible window 183 * See RFC1323 for an explanation of the limit to 14 184 */ 185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 186 while (space > 65535 && (*rcv_wscale) < 14) { 187 space >>= 1; 188 (*rcv_wscale)++; 189 } 190 } 191 192 /* Set initial window to value enough for senders, 193 * following RFC2414. Senders, not following this RFC, 194 * will be satisfied with 2. 195 */ 196 if (mss > (1<<*rcv_wscale)) { 197 int init_cwnd = 4; 198 if (mss > 1460*3) 199 init_cwnd = 2; 200 else if (mss > 1460) 201 init_cwnd = 3; 202 if (*rcv_wnd > init_cwnd*mss) 203 *rcv_wnd = init_cwnd*mss; 204 } 205 206 /* Set the clamp no higher than max representable value */ 207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 208 } 209 210 /* Chose a new window to advertise, update state in tcp_sock for the 211 * socket, and return result with RFC1323 scaling applied. The return 212 * value can be stuffed directly into th->window for an outgoing 213 * frame. 214 */ 215 static __inline__ u16 tcp_select_window(struct sock *sk) 216 { 217 struct tcp_sock *tp = tcp_sk(sk); 218 u32 cur_win = tcp_receive_window(tp); 219 u32 new_win = __tcp_select_window(sk); 220 221 /* Never shrink the offered window */ 222 if(new_win < cur_win) { 223 /* Danger Will Robinson! 224 * Don't update rcv_wup/rcv_wnd here or else 225 * we will not be able to advertise a zero 226 * window in time. --DaveM 227 * 228 * Relax Will Robinson. 229 */ 230 new_win = cur_win; 231 } 232 tp->rcv_wnd = new_win; 233 tp->rcv_wup = tp->rcv_nxt; 234 235 /* Make sure we do not exceed the maximum possible 236 * scaled window. 237 */ 238 if (!tp->rx_opt.rcv_wscale) 239 new_win = min(new_win, MAX_TCP_WINDOW); 240 else 241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 242 243 /* RFC1323 scaling applied */ 244 new_win >>= tp->rx_opt.rcv_wscale; 245 246 /* If we advertise zero window, disable fast path. */ 247 if (new_win == 0) 248 tp->pred_flags = 0; 249 250 return new_win; 251 } 252 253 254 /* This routine actually transmits TCP packets queued in by 255 * tcp_do_sendmsg(). This is used by both the initial 256 * transmission and possible later retransmissions. 257 * All SKB's seen here are completely headerless. It is our 258 * job to build the TCP header, and pass the packet down to 259 * IP so it can do the same plus pass the packet off to the 260 * device. 261 * 262 * We are working here with either a clone of the original 263 * SKB, or a fresh unique copy made by the retransmit engine. 264 */ 265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb) 266 { 267 if (skb != NULL) { 268 const struct inet_connection_sock *icsk = inet_csk(sk); 269 struct inet_sock *inet = inet_sk(sk); 270 struct tcp_sock *tp = tcp_sk(sk); 271 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 272 int tcp_header_size = tp->tcp_header_len; 273 struct tcphdr *th; 274 int sysctl_flags; 275 int err; 276 277 BUG_ON(!tcp_skb_pcount(skb)); 278 279 #define SYSCTL_FLAG_TSTAMPS 0x1 280 #define SYSCTL_FLAG_WSCALE 0x2 281 #define SYSCTL_FLAG_SACK 0x4 282 283 /* If congestion control is doing timestamping */ 284 if (icsk->icsk_ca_ops->rtt_sample) 285 __net_timestamp(skb); 286 287 sysctl_flags = 0; 288 if (tcb->flags & TCPCB_FLAG_SYN) { 289 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; 290 if(sysctl_tcp_timestamps) { 291 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; 292 sysctl_flags |= SYSCTL_FLAG_TSTAMPS; 293 } 294 if(sysctl_tcp_window_scaling) { 295 tcp_header_size += TCPOLEN_WSCALE_ALIGNED; 296 sysctl_flags |= SYSCTL_FLAG_WSCALE; 297 } 298 if(sysctl_tcp_sack) { 299 sysctl_flags |= SYSCTL_FLAG_SACK; 300 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) 301 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; 302 } 303 } else if (tp->rx_opt.eff_sacks) { 304 /* A SACK is 2 pad bytes, a 2 byte header, plus 305 * 2 32-bit sequence numbers for each SACK block. 306 */ 307 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + 308 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 309 } 310 311 if (tcp_packets_in_flight(tp) == 0) 312 tcp_ca_event(sk, CA_EVENT_TX_START); 313 314 th = (struct tcphdr *) skb_push(skb, tcp_header_size); 315 skb->h.th = th; 316 skb_set_owner_w(skb, sk); 317 318 /* Build TCP header and checksum it. */ 319 th->source = inet->sport; 320 th->dest = inet->dport; 321 th->seq = htonl(tcb->seq); 322 th->ack_seq = htonl(tp->rcv_nxt); 323 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags); 324 if (tcb->flags & TCPCB_FLAG_SYN) { 325 /* RFC1323: The window in SYN & SYN/ACK segments 326 * is never scaled. 327 */ 328 th->window = htons(tp->rcv_wnd); 329 } else { 330 th->window = htons(tcp_select_window(sk)); 331 } 332 th->check = 0; 333 th->urg_ptr = 0; 334 335 if (tp->urg_mode && 336 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) { 337 th->urg_ptr = htons(tp->snd_up-tcb->seq); 338 th->urg = 1; 339 } 340 341 if (tcb->flags & TCPCB_FLAG_SYN) { 342 tcp_syn_build_options((__u32 *)(th + 1), 343 tcp_advertise_mss(sk), 344 (sysctl_flags & SYSCTL_FLAG_TSTAMPS), 345 (sysctl_flags & SYSCTL_FLAG_SACK), 346 (sysctl_flags & SYSCTL_FLAG_WSCALE), 347 tp->rx_opt.rcv_wscale, 348 tcb->when, 349 tp->rx_opt.ts_recent); 350 } else { 351 tcp_build_and_update_options((__u32 *)(th + 1), 352 tp, tcb->when); 353 354 TCP_ECN_send(sk, tp, skb, tcp_header_size); 355 } 356 tp->af_specific->send_check(sk, th, skb->len, skb); 357 358 if (tcb->flags & TCPCB_FLAG_ACK) 359 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 360 361 if (skb->len != tcp_header_size) 362 tcp_event_data_sent(tp, skb, sk); 363 364 TCP_INC_STATS(TCP_MIB_OUTSEGS); 365 366 err = tp->af_specific->queue_xmit(skb, 0); 367 if (err <= 0) 368 return err; 369 370 tcp_enter_cwr(sk); 371 372 /* NET_XMIT_CN is special. It does not guarantee, 373 * that this packet is lost. It tells that device 374 * is about to start to drop packets or already 375 * drops some packets of the same priority and 376 * invokes us to send less aggressively. 377 */ 378 return err == NET_XMIT_CN ? 0 : err; 379 } 380 return -ENOBUFS; 381 #undef SYSCTL_FLAG_TSTAMPS 382 #undef SYSCTL_FLAG_WSCALE 383 #undef SYSCTL_FLAG_SACK 384 } 385 386 387 /* This routine just queue's the buffer 388 * 389 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 390 * otherwise socket can stall. 391 */ 392 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 393 { 394 struct tcp_sock *tp = tcp_sk(sk); 395 396 /* Advance write_seq and place onto the write_queue. */ 397 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 398 skb_header_release(skb); 399 __skb_queue_tail(&sk->sk_write_queue, skb); 400 sk_charge_skb(sk, skb); 401 402 /* Queue it, remembering where we must start sending. */ 403 if (sk->sk_send_head == NULL) 404 sk->sk_send_head = skb; 405 } 406 407 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 408 { 409 if (skb->len <= mss_now || 410 !(sk->sk_route_caps & NETIF_F_TSO)) { 411 /* Avoid the costly divide in the normal 412 * non-TSO case. 413 */ 414 skb_shinfo(skb)->tso_segs = 1; 415 skb_shinfo(skb)->tso_size = 0; 416 } else { 417 unsigned int factor; 418 419 factor = skb->len + (mss_now - 1); 420 factor /= mss_now; 421 skb_shinfo(skb)->tso_segs = factor; 422 skb_shinfo(skb)->tso_size = mss_now; 423 } 424 } 425 426 /* Function to create two new TCP segments. Shrinks the given segment 427 * to the specified size and appends a new segment with the rest of the 428 * packet to the list. This won't be called frequently, I hope. 429 * Remember, these are still headerless SKBs at this point. 430 */ 431 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now) 432 { 433 struct tcp_sock *tp = tcp_sk(sk); 434 struct sk_buff *buff; 435 int nsize, old_factor; 436 u16 flags; 437 438 BUG_ON(len >= skb->len); 439 440 nsize = skb_headlen(skb) - len; 441 if (nsize < 0) 442 nsize = 0; 443 444 if (skb_cloned(skb) && 445 skb_is_nonlinear(skb) && 446 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 447 return -ENOMEM; 448 449 /* Get a new skb... force flag on. */ 450 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 451 if (buff == NULL) 452 return -ENOMEM; /* We'll just try again later. */ 453 sk_charge_skb(sk, buff); 454 455 /* Correct the sequence numbers. */ 456 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 457 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 458 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 459 460 /* PSH and FIN should only be set in the second packet. */ 461 flags = TCP_SKB_CB(skb)->flags; 462 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 463 TCP_SKB_CB(buff)->flags = flags; 464 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 465 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; 466 467 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { 468 /* Copy and checksum data tail into the new buffer. */ 469 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), 470 nsize, 0); 471 472 skb_trim(skb, len); 473 474 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 475 } else { 476 skb->ip_summed = CHECKSUM_HW; 477 skb_split(skb, buff, len); 478 } 479 480 buff->ip_summed = skb->ip_summed; 481 482 /* Looks stupid, but our code really uses when of 483 * skbs, which it never sent before. --ANK 484 */ 485 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 486 buff->tstamp = skb->tstamp; 487 488 old_factor = tcp_skb_pcount(skb); 489 490 /* Fix up tso_factor for both original and new SKB. */ 491 tcp_set_skb_tso_segs(sk, skb, mss_now); 492 tcp_set_skb_tso_segs(sk, buff, mss_now); 493 494 /* If this packet has been sent out already, we must 495 * adjust the various packet counters. 496 */ 497 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 498 int diff = old_factor - tcp_skb_pcount(skb) - 499 tcp_skb_pcount(buff); 500 501 tp->packets_out -= diff; 502 503 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 504 tp->sacked_out -= diff; 505 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 506 tp->retrans_out -= diff; 507 508 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { 509 tp->lost_out -= diff; 510 tp->left_out -= diff; 511 } 512 513 if (diff > 0) { 514 /* Adjust Reno SACK estimate. */ 515 if (!tp->rx_opt.sack_ok) { 516 tp->sacked_out -= diff; 517 if ((int)tp->sacked_out < 0) 518 tp->sacked_out = 0; 519 tcp_sync_left_out(tp); 520 } 521 522 tp->fackets_out -= diff; 523 if ((int)tp->fackets_out < 0) 524 tp->fackets_out = 0; 525 } 526 } 527 528 /* Link BUFF into the send queue. */ 529 skb_header_release(buff); 530 __skb_append(skb, buff, &sk->sk_write_queue); 531 532 return 0; 533 } 534 535 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 536 * eventually). The difference is that pulled data not copied, but 537 * immediately discarded. 538 */ 539 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) 540 { 541 int i, k, eat; 542 543 eat = len; 544 k = 0; 545 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { 546 if (skb_shinfo(skb)->frags[i].size <= eat) { 547 put_page(skb_shinfo(skb)->frags[i].page); 548 eat -= skb_shinfo(skb)->frags[i].size; 549 } else { 550 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 551 if (eat) { 552 skb_shinfo(skb)->frags[k].page_offset += eat; 553 skb_shinfo(skb)->frags[k].size -= eat; 554 eat = 0; 555 } 556 k++; 557 } 558 } 559 skb_shinfo(skb)->nr_frags = k; 560 561 skb->tail = skb->data; 562 skb->data_len -= len; 563 skb->len = skb->data_len; 564 return skb->tail; 565 } 566 567 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 568 { 569 if (skb_cloned(skb) && 570 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 571 return -ENOMEM; 572 573 if (len <= skb_headlen(skb)) { 574 __skb_pull(skb, len); 575 } else { 576 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) 577 return -ENOMEM; 578 } 579 580 TCP_SKB_CB(skb)->seq += len; 581 skb->ip_summed = CHECKSUM_HW; 582 583 skb->truesize -= len; 584 sk->sk_wmem_queued -= len; 585 sk->sk_forward_alloc += len; 586 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 587 588 /* Any change of skb->len requires recalculation of tso 589 * factor and mss. 590 */ 591 if (tcp_skb_pcount(skb) > 1) 592 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1)); 593 594 return 0; 595 } 596 597 /* This function synchronize snd mss to current pmtu/exthdr set. 598 599 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 600 for TCP options, but includes only bare TCP header. 601 602 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 603 It is minumum of user_mss and mss received with SYN. 604 It also does not include TCP options. 605 606 tp->pmtu_cookie is last pmtu, seen by this function. 607 608 tp->mss_cache is current effective sending mss, including 609 all tcp options except for SACKs. It is evaluated, 610 taking into account current pmtu, but never exceeds 611 tp->rx_opt.mss_clamp. 612 613 NOTE1. rfc1122 clearly states that advertised MSS 614 DOES NOT include either tcp or ip options. 615 616 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside 617 this function. --ANK (980731) 618 */ 619 620 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 621 { 622 struct tcp_sock *tp = tcp_sk(sk); 623 int mss_now; 624 625 /* Calculate base mss without TCP options: 626 It is MMS_S - sizeof(tcphdr) of rfc1122 627 */ 628 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); 629 630 /* Clamp it (mss_clamp does not include tcp options) */ 631 if (mss_now > tp->rx_opt.mss_clamp) 632 mss_now = tp->rx_opt.mss_clamp; 633 634 /* Now subtract optional transport overhead */ 635 mss_now -= tp->ext_header_len; 636 637 /* Then reserve room for full set of TCP options and 8 bytes of data */ 638 if (mss_now < 48) 639 mss_now = 48; 640 641 /* Now subtract TCP options size, not including SACKs */ 642 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 643 644 /* Bound mss with half of window */ 645 if (tp->max_window && mss_now > (tp->max_window>>1)) 646 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); 647 648 /* And store cached results */ 649 tp->pmtu_cookie = pmtu; 650 tp->mss_cache = mss_now; 651 652 return mss_now; 653 } 654 655 /* Compute the current effective MSS, taking SACKs and IP options, 656 * and even PMTU discovery events into account. 657 * 658 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up 659 * cannot be large. However, taking into account rare use of URG, this 660 * is not a big flaw. 661 */ 662 unsigned int tcp_current_mss(struct sock *sk, int large_allowed) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct dst_entry *dst = __sk_dst_get(sk); 666 u32 mss_now; 667 u16 xmit_size_goal; 668 int doing_tso = 0; 669 670 mss_now = tp->mss_cache; 671 672 if (large_allowed && 673 (sk->sk_route_caps & NETIF_F_TSO) && 674 !tp->urg_mode) 675 doing_tso = 1; 676 677 if (dst) { 678 u32 mtu = dst_mtu(dst); 679 if (mtu != tp->pmtu_cookie) 680 mss_now = tcp_sync_mss(sk, mtu); 681 } 682 683 if (tp->rx_opt.eff_sacks) 684 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + 685 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 686 687 xmit_size_goal = mss_now; 688 689 if (doing_tso) { 690 xmit_size_goal = 65535 - 691 tp->af_specific->net_header_len - 692 tp->ext_header_len - tp->tcp_header_len; 693 694 if (tp->max_window && 695 (xmit_size_goal > (tp->max_window >> 1))) 696 xmit_size_goal = max((tp->max_window >> 1), 697 68U - tp->tcp_header_len); 698 699 xmit_size_goal -= (xmit_size_goal % mss_now); 700 } 701 tp->xmit_size_goal = xmit_size_goal; 702 703 return mss_now; 704 } 705 706 /* Congestion window validation. (RFC2861) */ 707 708 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp) 709 { 710 __u32 packets_out = tp->packets_out; 711 712 if (packets_out >= tp->snd_cwnd) { 713 /* Network is feed fully. */ 714 tp->snd_cwnd_used = 0; 715 tp->snd_cwnd_stamp = tcp_time_stamp; 716 } else { 717 /* Network starves. */ 718 if (tp->packets_out > tp->snd_cwnd_used) 719 tp->snd_cwnd_used = tp->packets_out; 720 721 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 722 tcp_cwnd_application_limited(sk); 723 } 724 } 725 726 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd) 727 { 728 u32 window, cwnd_len; 729 730 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq); 731 cwnd_len = mss_now * cwnd; 732 return min(window, cwnd_len); 733 } 734 735 /* Can at least one segment of SKB be sent right now, according to the 736 * congestion window rules? If so, return how many segments are allowed. 737 */ 738 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb) 739 { 740 u32 in_flight, cwnd; 741 742 /* Don't be strict about the congestion window for the final FIN. */ 743 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 744 return 1; 745 746 in_flight = tcp_packets_in_flight(tp); 747 cwnd = tp->snd_cwnd; 748 if (in_flight < cwnd) 749 return (cwnd - in_flight); 750 751 return 0; 752 } 753 754 /* This must be invoked the first time we consider transmitting 755 * SKB onto the wire. 756 */ 757 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 758 { 759 int tso_segs = tcp_skb_pcount(skb); 760 761 if (!tso_segs || 762 (tso_segs > 1 && 763 skb_shinfo(skb)->tso_size != mss_now)) { 764 tcp_set_skb_tso_segs(sk, skb, mss_now); 765 tso_segs = tcp_skb_pcount(skb); 766 } 767 return tso_segs; 768 } 769 770 static inline int tcp_minshall_check(const struct tcp_sock *tp) 771 { 772 return after(tp->snd_sml,tp->snd_una) && 773 !after(tp->snd_sml, tp->snd_nxt); 774 } 775 776 /* Return 0, if packet can be sent now without violation Nagle's rules: 777 * 1. It is full sized. 778 * 2. Or it contains FIN. (already checked by caller) 779 * 3. Or TCP_NODELAY was set. 780 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 781 * With Minshall's modification: all sent small packets are ACKed. 782 */ 783 784 static inline int tcp_nagle_check(const struct tcp_sock *tp, 785 const struct sk_buff *skb, 786 unsigned mss_now, int nonagle) 787 { 788 return (skb->len < mss_now && 789 ((nonagle&TCP_NAGLE_CORK) || 790 (!nonagle && 791 tp->packets_out && 792 tcp_minshall_check(tp)))); 793 } 794 795 /* Return non-zero if the Nagle test allows this packet to be 796 * sent now. 797 */ 798 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 799 unsigned int cur_mss, int nonagle) 800 { 801 /* Nagle rule does not apply to frames, which sit in the middle of the 802 * write_queue (they have no chances to get new data). 803 * 804 * This is implemented in the callers, where they modify the 'nonagle' 805 * argument based upon the location of SKB in the send queue. 806 */ 807 if (nonagle & TCP_NAGLE_PUSH) 808 return 1; 809 810 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 811 if (tp->urg_mode || 812 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) 813 return 1; 814 815 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 816 return 1; 817 818 return 0; 819 } 820 821 /* Does at least the first segment of SKB fit into the send window? */ 822 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss) 823 { 824 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 825 826 if (skb->len > cur_mss) 827 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 828 829 return !after(end_seq, tp->snd_una + tp->snd_wnd); 830 } 831 832 /* This checks if the data bearing packet SKB (usually sk->sk_send_head) 833 * should be put on the wire right now. If so, it returns the number of 834 * packets allowed by the congestion window. 835 */ 836 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 837 unsigned int cur_mss, int nonagle) 838 { 839 struct tcp_sock *tp = tcp_sk(sk); 840 unsigned int cwnd_quota; 841 842 tcp_init_tso_segs(sk, skb, cur_mss); 843 844 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 845 return 0; 846 847 cwnd_quota = tcp_cwnd_test(tp, skb); 848 if (cwnd_quota && 849 !tcp_snd_wnd_test(tp, skb, cur_mss)) 850 cwnd_quota = 0; 851 852 return cwnd_quota; 853 } 854 855 static inline int tcp_skb_is_last(const struct sock *sk, 856 const struct sk_buff *skb) 857 { 858 return skb->next == (struct sk_buff *)&sk->sk_write_queue; 859 } 860 861 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp) 862 { 863 struct sk_buff *skb = sk->sk_send_head; 864 865 return (skb && 866 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), 867 (tcp_skb_is_last(sk, skb) ? 868 TCP_NAGLE_PUSH : 869 tp->nonagle))); 870 } 871 872 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 873 * which is put after SKB on the list. It is very much like 874 * tcp_fragment() except that it may make several kinds of assumptions 875 * in order to speed up the splitting operation. In particular, we 876 * know that all the data is in scatter-gather pages, and that the 877 * packet has never been sent out before (and thus is not cloned). 878 */ 879 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now) 880 { 881 struct sk_buff *buff; 882 int nlen = skb->len - len; 883 u16 flags; 884 885 /* All of a TSO frame must be composed of paged data. */ 886 if (skb->len != skb->data_len) 887 return tcp_fragment(sk, skb, len, mss_now); 888 889 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC); 890 if (unlikely(buff == NULL)) 891 return -ENOMEM; 892 893 buff->truesize = nlen; 894 skb->truesize -= nlen; 895 896 /* Correct the sequence numbers. */ 897 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 898 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 899 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 900 901 /* PSH and FIN should only be set in the second packet. */ 902 flags = TCP_SKB_CB(skb)->flags; 903 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 904 TCP_SKB_CB(buff)->flags = flags; 905 906 /* This packet was never sent out yet, so no SACK bits. */ 907 TCP_SKB_CB(buff)->sacked = 0; 908 909 buff->ip_summed = skb->ip_summed = CHECKSUM_HW; 910 skb_split(skb, buff, len); 911 912 /* Fix up tso_factor for both original and new SKB. */ 913 tcp_set_skb_tso_segs(sk, skb, mss_now); 914 tcp_set_skb_tso_segs(sk, buff, mss_now); 915 916 /* Link BUFF into the send queue. */ 917 skb_header_release(buff); 918 __skb_append(skb, buff, &sk->sk_write_queue); 919 920 return 0; 921 } 922 923 /* Try to defer sending, if possible, in order to minimize the amount 924 * of TSO splitting we do. View it as a kind of TSO Nagle test. 925 * 926 * This algorithm is from John Heffner. 927 */ 928 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 929 { 930 const struct inet_connection_sock *icsk = inet_csk(sk); 931 u32 send_win, cong_win, limit, in_flight; 932 933 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 934 return 0; 935 936 if (icsk->icsk_ca_state != TCP_CA_Open) 937 return 0; 938 939 in_flight = tcp_packets_in_flight(tp); 940 941 BUG_ON(tcp_skb_pcount(skb) <= 1 || 942 (tp->snd_cwnd <= in_flight)); 943 944 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq; 945 946 /* From in_flight test above, we know that cwnd > in_flight. */ 947 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 948 949 limit = min(send_win, cong_win); 950 951 if (sysctl_tcp_tso_win_divisor) { 952 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 953 954 /* If at least some fraction of a window is available, 955 * just use it. 956 */ 957 chunk /= sysctl_tcp_tso_win_divisor; 958 if (limit >= chunk) 959 return 0; 960 } else { 961 /* Different approach, try not to defer past a single 962 * ACK. Receiver should ACK every other full sized 963 * frame, so if we have space for more than 3 frames 964 * then send now. 965 */ 966 if (limit > tcp_max_burst(tp) * tp->mss_cache) 967 return 0; 968 } 969 970 /* Ok, it looks like it is advisable to defer. */ 971 return 1; 972 } 973 974 /* This routine writes packets to the network. It advances the 975 * send_head. This happens as incoming acks open up the remote 976 * window for us. 977 * 978 * Returns 1, if no segments are in flight and we have queued segments, but 979 * cannot send anything now because of SWS or another problem. 980 */ 981 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) 982 { 983 struct tcp_sock *tp = tcp_sk(sk); 984 struct sk_buff *skb; 985 unsigned int tso_segs, sent_pkts; 986 int cwnd_quota; 987 988 /* If we are closed, the bytes will have to remain here. 989 * In time closedown will finish, we empty the write queue and all 990 * will be happy. 991 */ 992 if (unlikely(sk->sk_state == TCP_CLOSE)) 993 return 0; 994 995 sent_pkts = 0; 996 while ((skb = sk->sk_send_head)) { 997 unsigned int limit; 998 999 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1000 BUG_ON(!tso_segs); 1001 1002 cwnd_quota = tcp_cwnd_test(tp, skb); 1003 if (!cwnd_quota) 1004 break; 1005 1006 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1007 break; 1008 1009 if (tso_segs == 1) { 1010 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1011 (tcp_skb_is_last(sk, skb) ? 1012 nonagle : TCP_NAGLE_PUSH)))) 1013 break; 1014 } else { 1015 if (tcp_tso_should_defer(sk, tp, skb)) 1016 break; 1017 } 1018 1019 limit = mss_now; 1020 if (tso_segs > 1) { 1021 limit = tcp_window_allows(tp, skb, 1022 mss_now, cwnd_quota); 1023 1024 if (skb->len < limit) { 1025 unsigned int trim = skb->len % mss_now; 1026 1027 if (trim) 1028 limit = skb->len - trim; 1029 } 1030 } 1031 1032 if (skb->len > limit && 1033 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1034 break; 1035 1036 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1037 1038 if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))) 1039 break; 1040 1041 /* Advance the send_head. This one is sent out. 1042 * This call will increment packets_out. 1043 */ 1044 update_send_head(sk, tp, skb); 1045 1046 tcp_minshall_update(tp, mss_now, skb); 1047 sent_pkts++; 1048 } 1049 1050 if (likely(sent_pkts)) { 1051 tcp_cwnd_validate(sk, tp); 1052 return 0; 1053 } 1054 return !tp->packets_out && sk->sk_send_head; 1055 } 1056 1057 /* Push out any pending frames which were held back due to 1058 * TCP_CORK or attempt at coalescing tiny packets. 1059 * The socket must be locked by the caller. 1060 */ 1061 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp, 1062 unsigned int cur_mss, int nonagle) 1063 { 1064 struct sk_buff *skb = sk->sk_send_head; 1065 1066 if (skb) { 1067 if (tcp_write_xmit(sk, cur_mss, nonagle)) 1068 tcp_check_probe_timer(sk, tp); 1069 } 1070 } 1071 1072 /* Send _single_ skb sitting at the send head. This function requires 1073 * true push pending frames to setup probe timer etc. 1074 */ 1075 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1076 { 1077 struct tcp_sock *tp = tcp_sk(sk); 1078 struct sk_buff *skb = sk->sk_send_head; 1079 unsigned int tso_segs, cwnd_quota; 1080 1081 BUG_ON(!skb || skb->len < mss_now); 1082 1083 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1084 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); 1085 1086 if (likely(cwnd_quota)) { 1087 unsigned int limit; 1088 1089 BUG_ON(!tso_segs); 1090 1091 limit = mss_now; 1092 if (tso_segs > 1) { 1093 limit = tcp_window_allows(tp, skb, 1094 mss_now, cwnd_quota); 1095 1096 if (skb->len < limit) { 1097 unsigned int trim = skb->len % mss_now; 1098 1099 if (trim) 1100 limit = skb->len - trim; 1101 } 1102 } 1103 1104 if (skb->len > limit && 1105 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1106 return; 1107 1108 /* Send it out now. */ 1109 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1110 1111 if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) { 1112 update_send_head(sk, tp, skb); 1113 tcp_cwnd_validate(sk, tp); 1114 return; 1115 } 1116 } 1117 } 1118 1119 /* This function returns the amount that we can raise the 1120 * usable window based on the following constraints 1121 * 1122 * 1. The window can never be shrunk once it is offered (RFC 793) 1123 * 2. We limit memory per socket 1124 * 1125 * RFC 1122: 1126 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1127 * RECV.NEXT + RCV.WIN fixed until: 1128 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1129 * 1130 * i.e. don't raise the right edge of the window until you can raise 1131 * it at least MSS bytes. 1132 * 1133 * Unfortunately, the recommended algorithm breaks header prediction, 1134 * since header prediction assumes th->window stays fixed. 1135 * 1136 * Strictly speaking, keeping th->window fixed violates the receiver 1137 * side SWS prevention criteria. The problem is that under this rule 1138 * a stream of single byte packets will cause the right side of the 1139 * window to always advance by a single byte. 1140 * 1141 * Of course, if the sender implements sender side SWS prevention 1142 * then this will not be a problem. 1143 * 1144 * BSD seems to make the following compromise: 1145 * 1146 * If the free space is less than the 1/4 of the maximum 1147 * space available and the free space is less than 1/2 mss, 1148 * then set the window to 0. 1149 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1150 * Otherwise, just prevent the window from shrinking 1151 * and from being larger than the largest representable value. 1152 * 1153 * This prevents incremental opening of the window in the regime 1154 * where TCP is limited by the speed of the reader side taking 1155 * data out of the TCP receive queue. It does nothing about 1156 * those cases where the window is constrained on the sender side 1157 * because the pipeline is full. 1158 * 1159 * BSD also seems to "accidentally" limit itself to windows that are a 1160 * multiple of MSS, at least until the free space gets quite small. 1161 * This would appear to be a side effect of the mbuf implementation. 1162 * Combining these two algorithms results in the observed behavior 1163 * of having a fixed window size at almost all times. 1164 * 1165 * Below we obtain similar behavior by forcing the offered window to 1166 * a multiple of the mss when it is feasible to do so. 1167 * 1168 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1169 * Regular options like TIMESTAMP are taken into account. 1170 */ 1171 u32 __tcp_select_window(struct sock *sk) 1172 { 1173 struct inet_connection_sock *icsk = inet_csk(sk); 1174 struct tcp_sock *tp = tcp_sk(sk); 1175 /* MSS for the peer's data. Previous verions used mss_clamp 1176 * here. I don't know if the value based on our guesses 1177 * of peer's MSS is better for the performance. It's more correct 1178 * but may be worse for the performance because of rcv_mss 1179 * fluctuations. --SAW 1998/11/1 1180 */ 1181 int mss = icsk->icsk_ack.rcv_mss; 1182 int free_space = tcp_space(sk); 1183 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1184 int window; 1185 1186 if (mss > full_space) 1187 mss = full_space; 1188 1189 if (free_space < full_space/2) { 1190 icsk->icsk_ack.quick = 0; 1191 1192 if (tcp_memory_pressure) 1193 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); 1194 1195 if (free_space < mss) 1196 return 0; 1197 } 1198 1199 if (free_space > tp->rcv_ssthresh) 1200 free_space = tp->rcv_ssthresh; 1201 1202 /* Don't do rounding if we are using window scaling, since the 1203 * scaled window will not line up with the MSS boundary anyway. 1204 */ 1205 window = tp->rcv_wnd; 1206 if (tp->rx_opt.rcv_wscale) { 1207 window = free_space; 1208 1209 /* Advertise enough space so that it won't get scaled away. 1210 * Import case: prevent zero window announcement if 1211 * 1<<rcv_wscale > mss. 1212 */ 1213 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1214 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1215 << tp->rx_opt.rcv_wscale); 1216 } else { 1217 /* Get the largest window that is a nice multiple of mss. 1218 * Window clamp already applied above. 1219 * If our current window offering is within 1 mss of the 1220 * free space we just keep it. This prevents the divide 1221 * and multiply from happening most of the time. 1222 * We also don't do any window rounding when the free space 1223 * is too small. 1224 */ 1225 if (window <= free_space - mss || window > free_space) 1226 window = (free_space/mss)*mss; 1227 } 1228 1229 return window; 1230 } 1231 1232 /* Attempt to collapse two adjacent SKB's during retransmission. */ 1233 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) 1234 { 1235 struct tcp_sock *tp = tcp_sk(sk); 1236 struct sk_buff *next_skb = skb->next; 1237 1238 /* The first test we must make is that neither of these two 1239 * SKB's are still referenced by someone else. 1240 */ 1241 if (!skb_cloned(skb) && !skb_cloned(next_skb)) { 1242 int skb_size = skb->len, next_skb_size = next_skb->len; 1243 u16 flags = TCP_SKB_CB(skb)->flags; 1244 1245 /* Also punt if next skb has been SACK'd. */ 1246 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) 1247 return; 1248 1249 /* Next skb is out of window. */ 1250 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) 1251 return; 1252 1253 /* Punt if not enough space exists in the first SKB for 1254 * the data in the second, or the total combined payload 1255 * would exceed the MSS. 1256 */ 1257 if ((next_skb_size > skb_tailroom(skb)) || 1258 ((skb_size + next_skb_size) > mss_now)) 1259 return; 1260 1261 BUG_ON(tcp_skb_pcount(skb) != 1 || 1262 tcp_skb_pcount(next_skb) != 1); 1263 1264 /* Ok. We will be able to collapse the packet. */ 1265 __skb_unlink(next_skb, &sk->sk_write_queue); 1266 1267 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); 1268 1269 if (next_skb->ip_summed == CHECKSUM_HW) 1270 skb->ip_summed = CHECKSUM_HW; 1271 1272 if (skb->ip_summed != CHECKSUM_HW) 1273 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1274 1275 /* Update sequence range on original skb. */ 1276 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1277 1278 /* Merge over control information. */ 1279 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ 1280 TCP_SKB_CB(skb)->flags = flags; 1281 1282 /* All done, get rid of second SKB and account for it so 1283 * packet counting does not break. 1284 */ 1285 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); 1286 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) 1287 tp->retrans_out -= tcp_skb_pcount(next_skb); 1288 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { 1289 tp->lost_out -= tcp_skb_pcount(next_skb); 1290 tp->left_out -= tcp_skb_pcount(next_skb); 1291 } 1292 /* Reno case is special. Sigh... */ 1293 if (!tp->rx_opt.sack_ok && tp->sacked_out) { 1294 tcp_dec_pcount_approx(&tp->sacked_out, next_skb); 1295 tp->left_out -= tcp_skb_pcount(next_skb); 1296 } 1297 1298 /* Not quite right: it can be > snd.fack, but 1299 * it is better to underestimate fackets. 1300 */ 1301 tcp_dec_pcount_approx(&tp->fackets_out, next_skb); 1302 tcp_packets_out_dec(tp, next_skb); 1303 sk_stream_free_skb(sk, next_skb); 1304 } 1305 } 1306 1307 /* Do a simple retransmit without using the backoff mechanisms in 1308 * tcp_timer. This is used for path mtu discovery. 1309 * The socket is already locked here. 1310 */ 1311 void tcp_simple_retransmit(struct sock *sk) 1312 { 1313 const struct inet_connection_sock *icsk = inet_csk(sk); 1314 struct tcp_sock *tp = tcp_sk(sk); 1315 struct sk_buff *skb; 1316 unsigned int mss = tcp_current_mss(sk, 0); 1317 int lost = 0; 1318 1319 sk_stream_for_retrans_queue(skb, sk) { 1320 if (skb->len > mss && 1321 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1322 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1323 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1324 tp->retrans_out -= tcp_skb_pcount(skb); 1325 } 1326 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { 1327 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1328 tp->lost_out += tcp_skb_pcount(skb); 1329 lost = 1; 1330 } 1331 } 1332 } 1333 1334 if (!lost) 1335 return; 1336 1337 tcp_sync_left_out(tp); 1338 1339 /* Don't muck with the congestion window here. 1340 * Reason is that we do not increase amount of _data_ 1341 * in network, but units changed and effective 1342 * cwnd/ssthresh really reduced now. 1343 */ 1344 if (icsk->icsk_ca_state != TCP_CA_Loss) { 1345 tp->high_seq = tp->snd_nxt; 1346 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1347 tp->prior_ssthresh = 0; 1348 tp->undo_marker = 0; 1349 tcp_set_ca_state(sk, TCP_CA_Loss); 1350 } 1351 tcp_xmit_retransmit_queue(sk); 1352 } 1353 1354 /* This retransmits one SKB. Policy decisions and retransmit queue 1355 * state updates are done by the caller. Returns non-zero if an 1356 * error occurred which prevented the send. 1357 */ 1358 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 1359 { 1360 struct tcp_sock *tp = tcp_sk(sk); 1361 unsigned int cur_mss = tcp_current_mss(sk, 0); 1362 int err; 1363 1364 /* Do not sent more than we queued. 1/4 is reserved for possible 1365 * copying overhead: frgagmentation, tunneling, mangling etc. 1366 */ 1367 if (atomic_read(&sk->sk_wmem_alloc) > 1368 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 1369 return -EAGAIN; 1370 1371 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 1372 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1373 BUG(); 1374 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 1375 return -ENOMEM; 1376 } 1377 1378 /* If receiver has shrunk his window, and skb is out of 1379 * new window, do not retransmit it. The exception is the 1380 * case, when window is shrunk to zero. In this case 1381 * our retransmit serves as a zero window probe. 1382 */ 1383 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) 1384 && TCP_SKB_CB(skb)->seq != tp->snd_una) 1385 return -EAGAIN; 1386 1387 if (skb->len > cur_mss) { 1388 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 1389 return -ENOMEM; /* We'll try again later. */ 1390 } 1391 1392 /* Collapse two adjacent packets if worthwhile and we can. */ 1393 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && 1394 (skb->len < (cur_mss >> 1)) && 1395 (skb->next != sk->sk_send_head) && 1396 (skb->next != (struct sk_buff *)&sk->sk_write_queue) && 1397 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && 1398 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && 1399 (sysctl_tcp_retrans_collapse != 0)) 1400 tcp_retrans_try_collapse(sk, skb, cur_mss); 1401 1402 if(tp->af_specific->rebuild_header(sk)) 1403 return -EHOSTUNREACH; /* Routing failure or similar. */ 1404 1405 /* Some Solaris stacks overoptimize and ignore the FIN on a 1406 * retransmit when old data is attached. So strip it off 1407 * since it is cheap to do so and saves bytes on the network. 1408 */ 1409 if(skb->len > 0 && 1410 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1411 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 1412 if (!pskb_trim(skb, 0)) { 1413 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; 1414 skb_shinfo(skb)->tso_segs = 1; 1415 skb_shinfo(skb)->tso_size = 0; 1416 skb->ip_summed = CHECKSUM_NONE; 1417 skb->csum = 0; 1418 } 1419 } 1420 1421 /* Make a copy, if the first transmission SKB clone we made 1422 * is still in somebody's hands, else make a clone. 1423 */ 1424 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1425 1426 err = tcp_transmit_skb(sk, (skb_cloned(skb) ? 1427 pskb_copy(skb, GFP_ATOMIC): 1428 skb_clone(skb, GFP_ATOMIC))); 1429 1430 if (err == 0) { 1431 /* Update global TCP statistics. */ 1432 TCP_INC_STATS(TCP_MIB_RETRANSSEGS); 1433 1434 tp->total_retrans++; 1435 1436 #if FASTRETRANS_DEBUG > 0 1437 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1438 if (net_ratelimit()) 1439 printk(KERN_DEBUG "retrans_out leaked.\n"); 1440 } 1441 #endif 1442 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 1443 tp->retrans_out += tcp_skb_pcount(skb); 1444 1445 /* Save stamp of the first retransmit. */ 1446 if (!tp->retrans_stamp) 1447 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 1448 1449 tp->undo_retrans++; 1450 1451 /* snd_nxt is stored to detect loss of retransmitted segment, 1452 * see tcp_input.c tcp_sacktag_write_queue(). 1453 */ 1454 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 1455 } 1456 return err; 1457 } 1458 1459 /* This gets called after a retransmit timeout, and the initially 1460 * retransmitted data is acknowledged. It tries to continue 1461 * resending the rest of the retransmit queue, until either 1462 * we've sent it all or the congestion window limit is reached. 1463 * If doing SACK, the first ACK which comes back for a timeout 1464 * based retransmit packet might feed us FACK information again. 1465 * If so, we use it to avoid unnecessarily retransmissions. 1466 */ 1467 void tcp_xmit_retransmit_queue(struct sock *sk) 1468 { 1469 const struct inet_connection_sock *icsk = inet_csk(sk); 1470 struct tcp_sock *tp = tcp_sk(sk); 1471 struct sk_buff *skb; 1472 int packet_cnt = tp->lost_out; 1473 1474 /* First pass: retransmit lost packets. */ 1475 if (packet_cnt) { 1476 sk_stream_for_retrans_queue(skb, sk) { 1477 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1478 1479 /* Assume this retransmit will generate 1480 * only one packet for congestion window 1481 * calculation purposes. This works because 1482 * tcp_retransmit_skb() will chop up the 1483 * packet to be MSS sized and all the 1484 * packet counting works out. 1485 */ 1486 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1487 return; 1488 1489 if (sacked&TCPCB_LOST) { 1490 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { 1491 if (tcp_retransmit_skb(sk, skb)) 1492 return; 1493 if (icsk->icsk_ca_state != TCP_CA_Loss) 1494 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); 1495 else 1496 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); 1497 1498 if (skb == 1499 skb_peek(&sk->sk_write_queue)) 1500 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1501 inet_csk(sk)->icsk_rto, 1502 TCP_RTO_MAX); 1503 } 1504 1505 packet_cnt -= tcp_skb_pcount(skb); 1506 if (packet_cnt <= 0) 1507 break; 1508 } 1509 } 1510 } 1511 1512 /* OK, demanded retransmission is finished. */ 1513 1514 /* Forward retransmissions are possible only during Recovery. */ 1515 if (icsk->icsk_ca_state != TCP_CA_Recovery) 1516 return; 1517 1518 /* No forward retransmissions in Reno are possible. */ 1519 if (!tp->rx_opt.sack_ok) 1520 return; 1521 1522 /* Yeah, we have to make difficult choice between forward transmission 1523 * and retransmission... Both ways have their merits... 1524 * 1525 * For now we do not retransmit anything, while we have some new 1526 * segments to send. 1527 */ 1528 1529 if (tcp_may_send_now(sk, tp)) 1530 return; 1531 1532 packet_cnt = 0; 1533 1534 sk_stream_for_retrans_queue(skb, sk) { 1535 /* Similar to the retransmit loop above we 1536 * can pretend that the retransmitted SKB 1537 * we send out here will be composed of one 1538 * real MSS sized packet because tcp_retransmit_skb() 1539 * will fragment it if necessary. 1540 */ 1541 if (++packet_cnt > tp->fackets_out) 1542 break; 1543 1544 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1545 break; 1546 1547 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) 1548 continue; 1549 1550 /* Ok, retransmit it. */ 1551 if (tcp_retransmit_skb(sk, skb)) 1552 break; 1553 1554 if (skb == skb_peek(&sk->sk_write_queue)) 1555 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1556 inet_csk(sk)->icsk_rto, 1557 TCP_RTO_MAX); 1558 1559 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); 1560 } 1561 } 1562 1563 1564 /* Send a fin. The caller locks the socket for us. This cannot be 1565 * allowed to fail queueing a FIN frame under any circumstances. 1566 */ 1567 void tcp_send_fin(struct sock *sk) 1568 { 1569 struct tcp_sock *tp = tcp_sk(sk); 1570 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); 1571 int mss_now; 1572 1573 /* Optimization, tack on the FIN if we have a queue of 1574 * unsent frames. But be careful about outgoing SACKS 1575 * and IP options. 1576 */ 1577 mss_now = tcp_current_mss(sk, 1); 1578 1579 if (sk->sk_send_head != NULL) { 1580 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; 1581 TCP_SKB_CB(skb)->end_seq++; 1582 tp->write_seq++; 1583 } else { 1584 /* Socket is locked, keep trying until memory is available. */ 1585 for (;;) { 1586 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL); 1587 if (skb) 1588 break; 1589 yield(); 1590 } 1591 1592 /* Reserve space for headers and prepare control bits. */ 1593 skb_reserve(skb, MAX_TCP_HEADER); 1594 skb->csum = 0; 1595 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); 1596 TCP_SKB_CB(skb)->sacked = 0; 1597 skb_shinfo(skb)->tso_segs = 1; 1598 skb_shinfo(skb)->tso_size = 0; 1599 1600 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 1601 TCP_SKB_CB(skb)->seq = tp->write_seq; 1602 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1603 tcp_queue_skb(sk, skb); 1604 } 1605 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); 1606 } 1607 1608 /* We get here when a process closes a file descriptor (either due to 1609 * an explicit close() or as a byproduct of exit()'ing) and there 1610 * was unread data in the receive queue. This behavior is recommended 1611 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM 1612 */ 1613 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 1614 { 1615 struct tcp_sock *tp = tcp_sk(sk); 1616 struct sk_buff *skb; 1617 1618 /* NOTE: No TCP options attached and we never retransmit this. */ 1619 skb = alloc_skb(MAX_TCP_HEADER, priority); 1620 if (!skb) { 1621 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1622 return; 1623 } 1624 1625 /* Reserve space for headers and prepare control bits. */ 1626 skb_reserve(skb, MAX_TCP_HEADER); 1627 skb->csum = 0; 1628 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); 1629 TCP_SKB_CB(skb)->sacked = 0; 1630 skb_shinfo(skb)->tso_segs = 1; 1631 skb_shinfo(skb)->tso_size = 0; 1632 1633 /* Send it off. */ 1634 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); 1635 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1636 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1637 if (tcp_transmit_skb(sk, skb)) 1638 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1639 } 1640 1641 /* WARNING: This routine must only be called when we have already sent 1642 * a SYN packet that crossed the incoming SYN that caused this routine 1643 * to get called. If this assumption fails then the initial rcv_wnd 1644 * and rcv_wscale values will not be correct. 1645 */ 1646 int tcp_send_synack(struct sock *sk) 1647 { 1648 struct sk_buff* skb; 1649 1650 skb = skb_peek(&sk->sk_write_queue); 1651 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { 1652 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 1653 return -EFAULT; 1654 } 1655 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { 1656 if (skb_cloned(skb)) { 1657 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 1658 if (nskb == NULL) 1659 return -ENOMEM; 1660 __skb_unlink(skb, &sk->sk_write_queue); 1661 skb_header_release(nskb); 1662 __skb_queue_head(&sk->sk_write_queue, nskb); 1663 sk_stream_free_skb(sk, skb); 1664 sk_charge_skb(sk, nskb); 1665 skb = nskb; 1666 } 1667 1668 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; 1669 TCP_ECN_send_synack(tcp_sk(sk), skb); 1670 } 1671 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1672 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); 1673 } 1674 1675 /* 1676 * Prepare a SYN-ACK. 1677 */ 1678 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, 1679 struct request_sock *req) 1680 { 1681 struct inet_request_sock *ireq = inet_rsk(req); 1682 struct tcp_sock *tp = tcp_sk(sk); 1683 struct tcphdr *th; 1684 int tcp_header_size; 1685 struct sk_buff *skb; 1686 1687 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 1688 if (skb == NULL) 1689 return NULL; 1690 1691 /* Reserve space for headers. */ 1692 skb_reserve(skb, MAX_TCP_HEADER); 1693 1694 skb->dst = dst_clone(dst); 1695 1696 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + 1697 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + 1698 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + 1699 /* SACK_PERM is in the place of NOP NOP of TS */ 1700 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); 1701 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); 1702 1703 memset(th, 0, sizeof(struct tcphdr)); 1704 th->syn = 1; 1705 th->ack = 1; 1706 if (dst->dev->features&NETIF_F_TSO) 1707 ireq->ecn_ok = 0; 1708 TCP_ECN_make_synack(req, th); 1709 th->source = inet_sk(sk)->sport; 1710 th->dest = ireq->rmt_port; 1711 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn; 1712 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1713 TCP_SKB_CB(skb)->sacked = 0; 1714 skb_shinfo(skb)->tso_segs = 1; 1715 skb_shinfo(skb)->tso_size = 0; 1716 th->seq = htonl(TCP_SKB_CB(skb)->seq); 1717 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 1718 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 1719 __u8 rcv_wscale; 1720 /* Set this up on the first call only */ 1721 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 1722 /* tcp_full_space because it is guaranteed to be the first packet */ 1723 tcp_select_initial_window(tcp_full_space(sk), 1724 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 1725 &req->rcv_wnd, 1726 &req->window_clamp, 1727 ireq->wscale_ok, 1728 &rcv_wscale); 1729 ireq->rcv_wscale = rcv_wscale; 1730 } 1731 1732 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 1733 th->window = htons(req->rcv_wnd); 1734 1735 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1736 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok, 1737 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale, 1738 TCP_SKB_CB(skb)->when, 1739 req->ts_recent); 1740 1741 skb->csum = 0; 1742 th->doff = (tcp_header_size >> 2); 1743 TCP_INC_STATS(TCP_MIB_OUTSEGS); 1744 return skb; 1745 } 1746 1747 /* 1748 * Do all connect socket setups that can be done AF independent. 1749 */ 1750 static inline void tcp_connect_init(struct sock *sk) 1751 { 1752 struct dst_entry *dst = __sk_dst_get(sk); 1753 struct tcp_sock *tp = tcp_sk(sk); 1754 __u8 rcv_wscale; 1755 1756 /* We'll fix this up when we get a response from the other end. 1757 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 1758 */ 1759 tp->tcp_header_len = sizeof(struct tcphdr) + 1760 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 1761 1762 /* If user gave his TCP_MAXSEG, record it to clamp */ 1763 if (tp->rx_opt.user_mss) 1764 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 1765 tp->max_window = 0; 1766 tcp_sync_mss(sk, dst_mtu(dst)); 1767 1768 if (!tp->window_clamp) 1769 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 1770 tp->advmss = dst_metric(dst, RTAX_ADVMSS); 1771 tcp_initialize_rcv_mss(sk); 1772 1773 tcp_select_initial_window(tcp_full_space(sk), 1774 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 1775 &tp->rcv_wnd, 1776 &tp->window_clamp, 1777 sysctl_tcp_window_scaling, 1778 &rcv_wscale); 1779 1780 tp->rx_opt.rcv_wscale = rcv_wscale; 1781 tp->rcv_ssthresh = tp->rcv_wnd; 1782 1783 sk->sk_err = 0; 1784 sock_reset_flag(sk, SOCK_DONE); 1785 tp->snd_wnd = 0; 1786 tcp_init_wl(tp, tp->write_seq, 0); 1787 tp->snd_una = tp->write_seq; 1788 tp->snd_sml = tp->write_seq; 1789 tp->rcv_nxt = 0; 1790 tp->rcv_wup = 0; 1791 tp->copied_seq = 0; 1792 1793 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 1794 inet_csk(sk)->icsk_retransmits = 0; 1795 tcp_clear_retrans(tp); 1796 } 1797 1798 /* 1799 * Build a SYN and send it off. 1800 */ 1801 int tcp_connect(struct sock *sk) 1802 { 1803 struct tcp_sock *tp = tcp_sk(sk); 1804 struct sk_buff *buff; 1805 1806 tcp_connect_init(sk); 1807 1808 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 1809 if (unlikely(buff == NULL)) 1810 return -ENOBUFS; 1811 1812 /* Reserve space for headers. */ 1813 skb_reserve(buff, MAX_TCP_HEADER); 1814 1815 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; 1816 TCP_ECN_send_syn(sk, tp, buff); 1817 TCP_SKB_CB(buff)->sacked = 0; 1818 skb_shinfo(buff)->tso_segs = 1; 1819 skb_shinfo(buff)->tso_size = 0; 1820 buff->csum = 0; 1821 TCP_SKB_CB(buff)->seq = tp->write_seq++; 1822 TCP_SKB_CB(buff)->end_seq = tp->write_seq; 1823 tp->snd_nxt = tp->write_seq; 1824 tp->pushed_seq = tp->write_seq; 1825 1826 /* Send it off. */ 1827 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1828 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 1829 skb_header_release(buff); 1830 __skb_queue_tail(&sk->sk_write_queue, buff); 1831 sk_charge_skb(sk, buff); 1832 tp->packets_out += tcp_skb_pcount(buff); 1833 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL)); 1834 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); 1835 1836 /* Timer for repeating the SYN until an answer. */ 1837 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1838 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 1839 return 0; 1840 } 1841 1842 /* Send out a delayed ack, the caller does the policy checking 1843 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 1844 * for details. 1845 */ 1846 void tcp_send_delayed_ack(struct sock *sk) 1847 { 1848 struct inet_connection_sock *icsk = inet_csk(sk); 1849 int ato = icsk->icsk_ack.ato; 1850 unsigned long timeout; 1851 1852 if (ato > TCP_DELACK_MIN) { 1853 const struct tcp_sock *tp = tcp_sk(sk); 1854 int max_ato = HZ/2; 1855 1856 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 1857 max_ato = TCP_DELACK_MAX; 1858 1859 /* Slow path, intersegment interval is "high". */ 1860 1861 /* If some rtt estimate is known, use it to bound delayed ack. 1862 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 1863 * directly. 1864 */ 1865 if (tp->srtt) { 1866 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); 1867 1868 if (rtt < max_ato) 1869 max_ato = rtt; 1870 } 1871 1872 ato = min(ato, max_ato); 1873 } 1874 1875 /* Stay within the limit we were given */ 1876 timeout = jiffies + ato; 1877 1878 /* Use new timeout only if there wasn't a older one earlier. */ 1879 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 1880 /* If delack timer was blocked or is about to expire, 1881 * send ACK now. 1882 */ 1883 if (icsk->icsk_ack.blocked || 1884 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 1885 tcp_send_ack(sk); 1886 return; 1887 } 1888 1889 if (!time_before(timeout, icsk->icsk_ack.timeout)) 1890 timeout = icsk->icsk_ack.timeout; 1891 } 1892 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 1893 icsk->icsk_ack.timeout = timeout; 1894 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 1895 } 1896 1897 /* This routine sends an ack and also updates the window. */ 1898 void tcp_send_ack(struct sock *sk) 1899 { 1900 /* If we have been reset, we may not send again. */ 1901 if (sk->sk_state != TCP_CLOSE) { 1902 struct tcp_sock *tp = tcp_sk(sk); 1903 struct sk_buff *buff; 1904 1905 /* We are not putting this on the write queue, so 1906 * tcp_transmit_skb() will set the ownership to this 1907 * sock. 1908 */ 1909 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1910 if (buff == NULL) { 1911 inet_csk_schedule_ack(sk); 1912 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 1913 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1914 TCP_DELACK_MAX, TCP_RTO_MAX); 1915 return; 1916 } 1917 1918 /* Reserve space for headers and prepare control bits. */ 1919 skb_reserve(buff, MAX_TCP_HEADER); 1920 buff->csum = 0; 1921 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; 1922 TCP_SKB_CB(buff)->sacked = 0; 1923 skb_shinfo(buff)->tso_segs = 1; 1924 skb_shinfo(buff)->tso_size = 0; 1925 1926 /* Send it off, this clears delayed acks for us. */ 1927 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); 1928 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1929 tcp_transmit_skb(sk, buff); 1930 } 1931 } 1932 1933 /* This routine sends a packet with an out of date sequence 1934 * number. It assumes the other end will try to ack it. 1935 * 1936 * Question: what should we make while urgent mode? 1937 * 4.4BSD forces sending single byte of data. We cannot send 1938 * out of window data, because we have SND.NXT==SND.MAX... 1939 * 1940 * Current solution: to send TWO zero-length segments in urgent mode: 1941 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 1942 * out-of-date with SND.UNA-1 to probe window. 1943 */ 1944 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 1945 { 1946 struct tcp_sock *tp = tcp_sk(sk); 1947 struct sk_buff *skb; 1948 1949 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 1950 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1951 if (skb == NULL) 1952 return -1; 1953 1954 /* Reserve space for headers and set control bits. */ 1955 skb_reserve(skb, MAX_TCP_HEADER); 1956 skb->csum = 0; 1957 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; 1958 TCP_SKB_CB(skb)->sacked = urgent; 1959 skb_shinfo(skb)->tso_segs = 1; 1960 skb_shinfo(skb)->tso_size = 0; 1961 1962 /* Use a previous sequence. This should cause the other 1963 * end to send an ack. Don't queue or clone SKB, just 1964 * send it. 1965 */ 1966 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; 1967 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1968 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1969 return tcp_transmit_skb(sk, skb); 1970 } 1971 1972 int tcp_write_wakeup(struct sock *sk) 1973 { 1974 if (sk->sk_state != TCP_CLOSE) { 1975 struct tcp_sock *tp = tcp_sk(sk); 1976 struct sk_buff *skb; 1977 1978 if ((skb = sk->sk_send_head) != NULL && 1979 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { 1980 int err; 1981 unsigned int mss = tcp_current_mss(sk, 0); 1982 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; 1983 1984 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 1985 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 1986 1987 /* We are probing the opening of a window 1988 * but the window size is != 0 1989 * must have been a result SWS avoidance ( sender ) 1990 */ 1991 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 1992 skb->len > mss) { 1993 seg_size = min(seg_size, mss); 1994 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 1995 if (tcp_fragment(sk, skb, seg_size, mss)) 1996 return -1; 1997 } else if (!tcp_skb_pcount(skb)) 1998 tcp_set_skb_tso_segs(sk, skb, mss); 1999 2000 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2001 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2002 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); 2003 if (!err) { 2004 update_send_head(sk, tp, skb); 2005 } 2006 return err; 2007 } else { 2008 if (tp->urg_mode && 2009 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) 2010 tcp_xmit_probe_skb(sk, TCPCB_URG); 2011 return tcp_xmit_probe_skb(sk, 0); 2012 } 2013 } 2014 return -1; 2015 } 2016 2017 /* A window probe timeout has occurred. If window is not closed send 2018 * a partial packet else a zero probe. 2019 */ 2020 void tcp_send_probe0(struct sock *sk) 2021 { 2022 struct inet_connection_sock *icsk = inet_csk(sk); 2023 struct tcp_sock *tp = tcp_sk(sk); 2024 int err; 2025 2026 err = tcp_write_wakeup(sk); 2027 2028 if (tp->packets_out || !sk->sk_send_head) { 2029 /* Cancel probe timer, if it is not required. */ 2030 icsk->icsk_probes_out = 0; 2031 icsk->icsk_backoff = 0; 2032 return; 2033 } 2034 2035 if (err <= 0) { 2036 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2037 icsk->icsk_backoff++; 2038 icsk->icsk_probes_out++; 2039 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2040 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2041 TCP_RTO_MAX); 2042 } else { 2043 /* If packet was not sent due to local congestion, 2044 * do not backoff and do not remember icsk_probes_out. 2045 * Let local senders to fight for local resources. 2046 * 2047 * Use accumulated backoff yet. 2048 */ 2049 if (!icsk->icsk_probes_out) 2050 icsk->icsk_probes_out = 1; 2051 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2052 min(icsk->icsk_rto << icsk->icsk_backoff, 2053 TCP_RESOURCE_PROBE_INTERVAL), 2054 TCP_RTO_MAX); 2055 } 2056 } 2057 2058 EXPORT_SYMBOL(tcp_connect); 2059 EXPORT_SYMBOL(tcp_make_synack); 2060 EXPORT_SYMBOL(tcp_simple_retransmit); 2061 EXPORT_SYMBOL(tcp_sync_mss); 2062