xref: /linux/net/ipv4/tcp_output.c (revision 515c0ead788f4118a91b3ae55fe51f95543553ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/tcp_ecn.h>
42 #include <net/mptcp.h>
43 #include <net/proto_memory.h>
44 
45 #include <linux/compiler.h>
46 #include <linux/gfp.h>
47 #include <linux/module.h>
48 #include <linux/static_key.h>
49 #include <linux/skbuff_ref.h>
50 
51 #include <trace/events/tcp.h>
52 
53 /* Refresh clocks of a TCP socket,
54  * ensuring monotically increasing values.
55  */
56 void tcp_mstamp_refresh(struct tcp_sock *tp)
57 {
58 	u64 val = tcp_clock_ns();
59 
60 	tp->tcp_clock_cache = val;
61 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
62 }
63 
64 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
65 			   int push_one, gfp_t gfp);
66 
67 /* Account for new data that has been sent to the network. */
68 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
69 {
70 	struct inet_connection_sock *icsk = inet_csk(sk);
71 	struct tcp_sock *tp = tcp_sk(sk);
72 	unsigned int prior_packets = tp->packets_out;
73 
74 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
75 
76 	__skb_unlink(skb, &sk->sk_write_queue);
77 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
78 
79 	if (tp->highest_sack == NULL)
80 		tp->highest_sack = skb;
81 
82 	tp->packets_out += tcp_skb_pcount(skb);
83 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
84 		tcp_rearm_rto(sk);
85 
86 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
87 		      tcp_skb_pcount(skb));
88 	tcp_check_space(sk);
89 }
90 
91 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
92  * window scaling factor due to loss of precision.
93  * If window has been shrunk, what should we make? It is not clear at all.
94  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
95  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
96  * invalid. OK, let's make this for now:
97  */
98 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 {
100 	const struct tcp_sock *tp = tcp_sk(sk);
101 
102 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
103 	    (tp->rx_opt.wscale_ok &&
104 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
105 		return tp->snd_nxt;
106 	else
107 		return tcp_wnd_end(tp);
108 }
109 
110 /* Calculate mss to advertise in SYN segment.
111  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112  *
113  * 1. It is independent of path mtu.
114  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116  *    attached devices, because some buggy hosts are confused by
117  *    large MSS.
118  * 4. We do not make 3, we advertise MSS, calculated from first
119  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
120  *    This may be overridden via information stored in routing table.
121  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122  *    probably even Jumbo".
123  */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 	struct tcp_sock *tp = tcp_sk(sk);
127 	const struct dst_entry *dst = __sk_dst_get(sk);
128 	int mss = tp->advmss;
129 
130 	if (dst) {
131 		unsigned int metric = dst_metric_advmss(dst);
132 
133 		if (metric < mss) {
134 			mss = metric;
135 			tp->advmss = mss;
136 		}
137 	}
138 
139 	return (__u16)mss;
140 }
141 
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143  * This is the first part of cwnd validation mechanism.
144  */
145 void tcp_cwnd_restart(struct sock *sk, s32 delta)
146 {
147 	struct tcp_sock *tp = tcp_sk(sk);
148 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
149 	u32 cwnd = tcp_snd_cwnd(tp);
150 
151 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152 
153 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 	restart_cwnd = min(restart_cwnd, cwnd);
155 
156 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 		cwnd >>= 1;
158 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
159 	tp->snd_cwnd_stamp = tcp_jiffies32;
160 	tp->snd_cwnd_used = 0;
161 }
162 
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 				struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	const u32 now = tcp_jiffies32;
169 
170 	if (tcp_packets_in_flight(tp) == 0)
171 		tcp_ca_event(sk, CA_EVENT_TX_START);
172 
173 	tp->lsndtime = now;
174 
175 	/* If it is a reply for ato after last received
176 	 * packet, increase pingpong count.
177 	 */
178 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
179 		inet_csk_inc_pingpong_cnt(sk);
180 }
181 
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
184 {
185 	struct tcp_sock *tp = tcp_sk(sk);
186 
187 	if (unlikely(tp->compressed_ack)) {
188 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 			      tp->compressed_ack);
190 		tp->compressed_ack = 0;
191 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 			__sock_put(sk);
193 	}
194 
195 	if (unlikely(rcv_nxt != tp->rcv_nxt))
196 		return;  /* Special ACK sent by DCTCP to reflect ECN */
197 	tcp_dec_quickack_mode(sk);
198 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200 
201 /* Determine a window scaling and initial window to offer.
202  * Based on the assumption that the given amount of space
203  * will be offered. Store the results in the tp structure.
204  * NOTE: for smooth operation initial space offering should
205  * be a multiple of mss if possible. We assume here that mss >= 1.
206  * This MUST be enforced by all callers.
207  */
208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 			       __u32 *rcv_wnd, __u32 *__window_clamp,
210 			       int wscale_ok, __u8 *rcv_wscale,
211 			       __u32 init_rcv_wnd)
212 {
213 	unsigned int space = (__space < 0 ? 0 : __space);
214 	u32 window_clamp = READ_ONCE(*__window_clamp);
215 
216 	/* If no clamp set the clamp to the max possible scaled window */
217 	if (window_clamp == 0)
218 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
219 	space = min(window_clamp, space);
220 
221 	/* Quantize space offering to a multiple of mss if possible. */
222 	if (space > mss)
223 		space = rounddown(space, mss);
224 
225 	/* NOTE: offering an initial window larger than 32767
226 	 * will break some buggy TCP stacks. If the admin tells us
227 	 * it is likely we could be speaking with such a buggy stack
228 	 * we will truncate our initial window offering to 32K-1
229 	 * unless the remote has sent us a window scaling option,
230 	 * which we interpret as a sign the remote TCP is not
231 	 * misinterpreting the window field as a signed quantity.
232 	 */
233 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
234 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
235 	else
236 		(*rcv_wnd) = space;
237 
238 	if (init_rcv_wnd)
239 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
240 
241 	*rcv_wscale = 0;
242 	if (wscale_ok) {
243 		/* Set window scaling on max possible window */
244 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
245 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
246 		space = min_t(u32, space, window_clamp);
247 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
248 				      0, TCP_MAX_WSCALE);
249 	}
250 	/* Set the clamp no higher than max representable value */
251 	WRITE_ONCE(*__window_clamp,
252 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
253 }
254 EXPORT_IPV6_MOD(tcp_select_initial_window);
255 
256 /* Chose a new window to advertise, update state in tcp_sock for the
257  * socket, and return result with RFC1323 scaling applied.  The return
258  * value can be stuffed directly into th->window for an outgoing
259  * frame.
260  */
261 static u16 tcp_select_window(struct sock *sk)
262 {
263 	struct tcp_sock *tp = tcp_sk(sk);
264 	struct net *net = sock_net(sk);
265 	u32 old_win = tp->rcv_wnd;
266 	u32 cur_win, new_win;
267 
268 	/* Make the window 0 if we failed to queue the data because we
269 	 * are out of memory.
270 	 */
271 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
272 		tp->pred_flags = 0;
273 		tp->rcv_wnd = 0;
274 		tp->rcv_wup = tp->rcv_nxt;
275 		return 0;
276 	}
277 
278 	cur_win = tcp_receive_window(tp);
279 	new_win = __tcp_select_window(sk);
280 	if (new_win < cur_win) {
281 		/* Danger Will Robinson!
282 		 * Don't update rcv_wup/rcv_wnd here or else
283 		 * we will not be able to advertise a zero
284 		 * window in time.  --DaveM
285 		 *
286 		 * Relax Will Robinson.
287 		 */
288 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
289 			/* Never shrink the offered window */
290 			if (new_win == 0)
291 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
292 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
293 		}
294 	}
295 
296 	tp->rcv_wnd = new_win;
297 	tp->rcv_wup = tp->rcv_nxt;
298 
299 	/* Make sure we do not exceed the maximum possible
300 	 * scaled window.
301 	 */
302 	if (!tp->rx_opt.rcv_wscale &&
303 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
304 		new_win = min(new_win, MAX_TCP_WINDOW);
305 	else
306 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
307 
308 	/* RFC1323 scaling applied */
309 	new_win >>= tp->rx_opt.rcv_wscale;
310 
311 	/* If we advertise zero window, disable fast path. */
312 	if (new_win == 0) {
313 		tp->pred_flags = 0;
314 		if (old_win)
315 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
316 	} else if (old_win == 0) {
317 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
318 	}
319 
320 	return new_win;
321 }
322 
323 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
324  * be sent.
325  */
326 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
327 			 struct tcphdr *th, int tcp_header_len)
328 {
329 	struct tcp_sock *tp = tcp_sk(sk);
330 
331 	if (tcp_ecn_mode_rfc3168(tp)) {
332 		/* Not-retransmitted data segment: set ECT and inject CWR. */
333 		if (skb->len != tcp_header_len &&
334 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
335 			INET_ECN_xmit(sk);
336 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
337 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
338 				th->cwr = 1;
339 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
340 			}
341 		} else if (!tcp_ca_needs_ecn(sk)) {
342 			/* ACK or retransmitted segment: clear ECT|CE */
343 			INET_ECN_dontxmit(sk);
344 		}
345 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
346 			th->ece = 1;
347 	}
348 }
349 
350 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
351  * auto increment end seqno.
352  */
353 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u16 flags)
354 {
355 	skb->ip_summed = CHECKSUM_PARTIAL;
356 
357 	TCP_SKB_CB(skb)->tcp_flags = flags;
358 
359 	tcp_skb_pcount_set(skb, 1);
360 
361 	TCP_SKB_CB(skb)->seq = seq;
362 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
363 		seq++;
364 	TCP_SKB_CB(skb)->end_seq = seq;
365 }
366 
367 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
368 {
369 	return tp->snd_una != tp->snd_up;
370 }
371 
372 #define OPTION_SACK_ADVERTISE	BIT(0)
373 #define OPTION_TS		BIT(1)
374 #define OPTION_MD5		BIT(2)
375 #define OPTION_WSCALE		BIT(3)
376 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
377 #define OPTION_SMC		BIT(9)
378 #define OPTION_MPTCP		BIT(10)
379 #define OPTION_AO		BIT(11)
380 
381 static void smc_options_write(__be32 *ptr, u16 *options)
382 {
383 #if IS_ENABLED(CONFIG_SMC)
384 	if (static_branch_unlikely(&tcp_have_smc)) {
385 		if (unlikely(OPTION_SMC & *options)) {
386 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
387 				       (TCPOPT_NOP  << 16) |
388 				       (TCPOPT_EXP <<  8) |
389 				       (TCPOLEN_EXP_SMC_BASE));
390 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
391 		}
392 	}
393 #endif
394 }
395 
396 struct tcp_out_options {
397 	u16 options;		/* bit field of OPTION_* */
398 	u16 mss;		/* 0 to disable */
399 	u8 ws;			/* window scale, 0 to disable */
400 	u8 num_sack_blocks;	/* number of SACK blocks to include */
401 	u8 hash_size;		/* bytes in hash_location */
402 	u8 bpf_opt_len;		/* length of BPF hdr option */
403 	__u8 *hash_location;	/* temporary pointer, overloaded */
404 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
405 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
406 	struct mptcp_out_options mptcp;
407 };
408 
409 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
410 				struct tcp_sock *tp,
411 				struct tcp_out_options *opts)
412 {
413 #if IS_ENABLED(CONFIG_MPTCP)
414 	if (unlikely(OPTION_MPTCP & opts->options))
415 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
416 #endif
417 }
418 
419 #ifdef CONFIG_CGROUP_BPF
420 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
421 					enum tcp_synack_type synack_type)
422 {
423 	if (unlikely(!skb))
424 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
425 
426 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
427 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
428 
429 	return 0;
430 }
431 
432 /* req, syn_skb and synack_type are used when writing synack */
433 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
434 				  struct request_sock *req,
435 				  struct sk_buff *syn_skb,
436 				  enum tcp_synack_type synack_type,
437 				  struct tcp_out_options *opts,
438 				  unsigned int *remaining)
439 {
440 	struct bpf_sock_ops_kern sock_ops;
441 	int err;
442 
443 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
444 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
445 	    !*remaining)
446 		return;
447 
448 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
449 
450 	/* init sock_ops */
451 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
452 
453 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
454 
455 	if (req) {
456 		/* The listen "sk" cannot be passed here because
457 		 * it is not locked.  It would not make too much
458 		 * sense to do bpf_setsockopt(listen_sk) based
459 		 * on individual connection request also.
460 		 *
461 		 * Thus, "req" is passed here and the cgroup-bpf-progs
462 		 * of the listen "sk" will be run.
463 		 *
464 		 * "req" is also used here for fastopen even the "sk" here is
465 		 * a fullsock "child" sk.  It is to keep the behavior
466 		 * consistent between fastopen and non-fastopen on
467 		 * the bpf programming side.
468 		 */
469 		sock_ops.sk = (struct sock *)req;
470 		sock_ops.syn_skb = syn_skb;
471 	} else {
472 		sock_owned_by_me(sk);
473 
474 		sock_ops.is_fullsock = 1;
475 		sock_ops.is_locked_tcp_sock = 1;
476 		sock_ops.sk = sk;
477 	}
478 
479 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
480 	sock_ops.remaining_opt_len = *remaining;
481 	/* tcp_current_mss() does not pass a skb */
482 	if (skb)
483 		bpf_skops_init_skb(&sock_ops, skb, 0);
484 
485 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
486 
487 	if (err || sock_ops.remaining_opt_len == *remaining)
488 		return;
489 
490 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
491 	/* round up to 4 bytes */
492 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
493 
494 	*remaining -= opts->bpf_opt_len;
495 }
496 
497 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
498 				    struct request_sock *req,
499 				    struct sk_buff *syn_skb,
500 				    enum tcp_synack_type synack_type,
501 				    struct tcp_out_options *opts)
502 {
503 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
504 	struct bpf_sock_ops_kern sock_ops;
505 	int err;
506 
507 	if (likely(!max_opt_len))
508 		return;
509 
510 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
511 
512 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
513 
514 	if (req) {
515 		sock_ops.sk = (struct sock *)req;
516 		sock_ops.syn_skb = syn_skb;
517 	} else {
518 		sock_owned_by_me(sk);
519 
520 		sock_ops.is_fullsock = 1;
521 		sock_ops.is_locked_tcp_sock = 1;
522 		sock_ops.sk = sk;
523 	}
524 
525 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
526 	sock_ops.remaining_opt_len = max_opt_len;
527 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
528 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
529 
530 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
531 
532 	if (err)
533 		nr_written = 0;
534 	else
535 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
536 
537 	if (nr_written < max_opt_len)
538 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
539 		       max_opt_len - nr_written);
540 }
541 #else
542 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
543 				  struct request_sock *req,
544 				  struct sk_buff *syn_skb,
545 				  enum tcp_synack_type synack_type,
546 				  struct tcp_out_options *opts,
547 				  unsigned int *remaining)
548 {
549 }
550 
551 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
552 				    struct request_sock *req,
553 				    struct sk_buff *syn_skb,
554 				    enum tcp_synack_type synack_type,
555 				    struct tcp_out_options *opts)
556 {
557 }
558 #endif
559 
560 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
561 				      const struct tcp_request_sock *tcprsk,
562 				      struct tcp_out_options *opts,
563 				      struct tcp_key *key, __be32 *ptr)
564 {
565 #ifdef CONFIG_TCP_AO
566 	u8 maclen = tcp_ao_maclen(key->ao_key);
567 
568 	if (tcprsk) {
569 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
570 
571 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
572 			       (tcprsk->ao_keyid << 8) |
573 			       (tcprsk->ao_rcv_next));
574 	} else {
575 		struct tcp_ao_key *rnext_key;
576 		struct tcp_ao_info *ao_info;
577 
578 		ao_info = rcu_dereference_check(tp->ao_info,
579 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
580 		rnext_key = READ_ONCE(ao_info->rnext_key);
581 		if (WARN_ON_ONCE(!rnext_key))
582 			return ptr;
583 		*ptr++ = htonl((TCPOPT_AO << 24) |
584 			       (tcp_ao_len(key->ao_key) << 16) |
585 			       (key->ao_key->sndid << 8) |
586 			       (rnext_key->rcvid));
587 	}
588 	opts->hash_location = (__u8 *)ptr;
589 	ptr += maclen / sizeof(*ptr);
590 	if (unlikely(maclen % sizeof(*ptr))) {
591 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
592 		ptr++;
593 	}
594 #endif
595 	return ptr;
596 }
597 
598 /* Write previously computed TCP options to the packet.
599  *
600  * Beware: Something in the Internet is very sensitive to the ordering of
601  * TCP options, we learned this through the hard way, so be careful here.
602  * Luckily we can at least blame others for their non-compliance but from
603  * inter-operability perspective it seems that we're somewhat stuck with
604  * the ordering which we have been using if we want to keep working with
605  * those broken things (not that it currently hurts anybody as there isn't
606  * particular reason why the ordering would need to be changed).
607  *
608  * At least SACK_PERM as the first option is known to lead to a disaster
609  * (but it may well be that other scenarios fail similarly).
610  */
611 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
612 			      const struct tcp_request_sock *tcprsk,
613 			      struct tcp_out_options *opts,
614 			      struct tcp_key *key)
615 {
616 	__be32 *ptr = (__be32 *)(th + 1);
617 	u16 options = opts->options;	/* mungable copy */
618 
619 	if (tcp_key_is_md5(key)) {
620 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
621 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
622 		/* overload cookie hash location */
623 		opts->hash_location = (__u8 *)ptr;
624 		ptr += 4;
625 	} else if (tcp_key_is_ao(key)) {
626 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
627 	}
628 	if (unlikely(opts->mss)) {
629 		*ptr++ = htonl((TCPOPT_MSS << 24) |
630 			       (TCPOLEN_MSS << 16) |
631 			       opts->mss);
632 	}
633 
634 	if (likely(OPTION_TS & options)) {
635 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
636 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
637 				       (TCPOLEN_SACK_PERM << 16) |
638 				       (TCPOPT_TIMESTAMP << 8) |
639 				       TCPOLEN_TIMESTAMP);
640 			options &= ~OPTION_SACK_ADVERTISE;
641 		} else {
642 			*ptr++ = htonl((TCPOPT_NOP << 24) |
643 				       (TCPOPT_NOP << 16) |
644 				       (TCPOPT_TIMESTAMP << 8) |
645 				       TCPOLEN_TIMESTAMP);
646 		}
647 		*ptr++ = htonl(opts->tsval);
648 		*ptr++ = htonl(opts->tsecr);
649 	}
650 
651 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
652 		*ptr++ = htonl((TCPOPT_NOP << 24) |
653 			       (TCPOPT_NOP << 16) |
654 			       (TCPOPT_SACK_PERM << 8) |
655 			       TCPOLEN_SACK_PERM);
656 	}
657 
658 	if (unlikely(OPTION_WSCALE & options)) {
659 		*ptr++ = htonl((TCPOPT_NOP << 24) |
660 			       (TCPOPT_WINDOW << 16) |
661 			       (TCPOLEN_WINDOW << 8) |
662 			       opts->ws);
663 	}
664 
665 	if (unlikely(opts->num_sack_blocks)) {
666 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
667 			tp->duplicate_sack : tp->selective_acks;
668 		int this_sack;
669 
670 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
671 			       (TCPOPT_NOP  << 16) |
672 			       (TCPOPT_SACK <<  8) |
673 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
674 						     TCPOLEN_SACK_PERBLOCK)));
675 
676 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
677 		     ++this_sack) {
678 			*ptr++ = htonl(sp[this_sack].start_seq);
679 			*ptr++ = htonl(sp[this_sack].end_seq);
680 		}
681 
682 		tp->rx_opt.dsack = 0;
683 	}
684 
685 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
686 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
687 		u8 *p = (u8 *)ptr;
688 		u32 len; /* Fast Open option length */
689 
690 		if (foc->exp) {
691 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
692 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
693 				     TCPOPT_FASTOPEN_MAGIC);
694 			p += TCPOLEN_EXP_FASTOPEN_BASE;
695 		} else {
696 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
697 			*p++ = TCPOPT_FASTOPEN;
698 			*p++ = len;
699 		}
700 
701 		memcpy(p, foc->val, foc->len);
702 		if ((len & 3) == 2) {
703 			p[foc->len] = TCPOPT_NOP;
704 			p[foc->len + 1] = TCPOPT_NOP;
705 		}
706 		ptr += (len + 3) >> 2;
707 	}
708 
709 	smc_options_write(ptr, &options);
710 
711 	mptcp_options_write(th, ptr, tp, opts);
712 }
713 
714 static void smc_set_option(const struct tcp_sock *tp,
715 			   struct tcp_out_options *opts,
716 			   unsigned int *remaining)
717 {
718 #if IS_ENABLED(CONFIG_SMC)
719 	if (static_branch_unlikely(&tcp_have_smc)) {
720 		if (tp->syn_smc) {
721 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
722 				opts->options |= OPTION_SMC;
723 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
724 			}
725 		}
726 	}
727 #endif
728 }
729 
730 static void smc_set_option_cond(const struct tcp_sock *tp,
731 				const struct inet_request_sock *ireq,
732 				struct tcp_out_options *opts,
733 				unsigned int *remaining)
734 {
735 #if IS_ENABLED(CONFIG_SMC)
736 	if (static_branch_unlikely(&tcp_have_smc)) {
737 		if (tp->syn_smc && ireq->smc_ok) {
738 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
739 				opts->options |= OPTION_SMC;
740 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
741 			}
742 		}
743 	}
744 #endif
745 }
746 
747 static void mptcp_set_option_cond(const struct request_sock *req,
748 				  struct tcp_out_options *opts,
749 				  unsigned int *remaining)
750 {
751 	if (rsk_is_mptcp(req)) {
752 		unsigned int size;
753 
754 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
755 			if (*remaining >= size) {
756 				opts->options |= OPTION_MPTCP;
757 				*remaining -= size;
758 			}
759 		}
760 	}
761 }
762 
763 /* Compute TCP options for SYN packets. This is not the final
764  * network wire format yet.
765  */
766 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
767 				struct tcp_out_options *opts,
768 				struct tcp_key *key)
769 {
770 	struct tcp_sock *tp = tcp_sk(sk);
771 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
772 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
773 	bool timestamps;
774 
775 	/* Better than switch (key.type) as it has static branches */
776 	if (tcp_key_is_md5(key)) {
777 		timestamps = false;
778 		opts->options |= OPTION_MD5;
779 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
780 	} else {
781 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
782 		if (tcp_key_is_ao(key)) {
783 			opts->options |= OPTION_AO;
784 			remaining -= tcp_ao_len_aligned(key->ao_key);
785 		}
786 	}
787 
788 	/* We always get an MSS option.  The option bytes which will be seen in
789 	 * normal data packets should timestamps be used, must be in the MSS
790 	 * advertised.  But we subtract them from tp->mss_cache so that
791 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
792 	 * fact here if necessary.  If we don't do this correctly, as a
793 	 * receiver we won't recognize data packets as being full sized when we
794 	 * should, and thus we won't abide by the delayed ACK rules correctly.
795 	 * SACKs don't matter, we never delay an ACK when we have any of those
796 	 * going out.  */
797 	opts->mss = tcp_advertise_mss(sk);
798 	remaining -= TCPOLEN_MSS_ALIGNED;
799 
800 	if (likely(timestamps)) {
801 		opts->options |= OPTION_TS;
802 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
803 		opts->tsecr = tp->rx_opt.ts_recent;
804 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
805 	}
806 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
807 		opts->ws = tp->rx_opt.rcv_wscale;
808 		opts->options |= OPTION_WSCALE;
809 		remaining -= TCPOLEN_WSCALE_ALIGNED;
810 	}
811 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
812 		opts->options |= OPTION_SACK_ADVERTISE;
813 		if (unlikely(!(OPTION_TS & opts->options)))
814 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
815 	}
816 
817 	if (fastopen && fastopen->cookie.len >= 0) {
818 		u32 need = fastopen->cookie.len;
819 
820 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
821 					       TCPOLEN_FASTOPEN_BASE;
822 		need = (need + 3) & ~3U;  /* Align to 32 bits */
823 		if (remaining >= need) {
824 			opts->options |= OPTION_FAST_OPEN_COOKIE;
825 			opts->fastopen_cookie = &fastopen->cookie;
826 			remaining -= need;
827 			tp->syn_fastopen = 1;
828 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
829 		}
830 	}
831 
832 	smc_set_option(tp, opts, &remaining);
833 
834 	if (sk_is_mptcp(sk)) {
835 		unsigned int size;
836 
837 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
838 			if (remaining >= size) {
839 				opts->options |= OPTION_MPTCP;
840 				remaining -= size;
841 			}
842 		}
843 	}
844 
845 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
846 
847 	return MAX_TCP_OPTION_SPACE - remaining;
848 }
849 
850 /* Set up TCP options for SYN-ACKs. */
851 static unsigned int tcp_synack_options(const struct sock *sk,
852 				       struct request_sock *req,
853 				       unsigned int mss, struct sk_buff *skb,
854 				       struct tcp_out_options *opts,
855 				       const struct tcp_key *key,
856 				       struct tcp_fastopen_cookie *foc,
857 				       enum tcp_synack_type synack_type,
858 				       struct sk_buff *syn_skb)
859 {
860 	struct inet_request_sock *ireq = inet_rsk(req);
861 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
862 
863 	if (tcp_key_is_md5(key)) {
864 		opts->options |= OPTION_MD5;
865 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
866 
867 		/* We can't fit any SACK blocks in a packet with MD5 + TS
868 		 * options. There was discussion about disabling SACK
869 		 * rather than TS in order to fit in better with old,
870 		 * buggy kernels, but that was deemed to be unnecessary.
871 		 */
872 		if (synack_type != TCP_SYNACK_COOKIE)
873 			ireq->tstamp_ok &= !ireq->sack_ok;
874 	} else if (tcp_key_is_ao(key)) {
875 		opts->options |= OPTION_AO;
876 		remaining -= tcp_ao_len_aligned(key->ao_key);
877 		ireq->tstamp_ok &= !ireq->sack_ok;
878 	}
879 
880 	/* We always send an MSS option. */
881 	opts->mss = mss;
882 	remaining -= TCPOLEN_MSS_ALIGNED;
883 
884 	if (likely(ireq->wscale_ok)) {
885 		opts->ws = ireq->rcv_wscale;
886 		opts->options |= OPTION_WSCALE;
887 		remaining -= TCPOLEN_WSCALE_ALIGNED;
888 	}
889 	if (likely(ireq->tstamp_ok)) {
890 		opts->options |= OPTION_TS;
891 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
892 			      tcp_rsk(req)->ts_off;
893 		if (!tcp_rsk(req)->snt_tsval_first) {
894 			if (!opts->tsval)
895 				opts->tsval = ~0U;
896 			tcp_rsk(req)->snt_tsval_first = opts->tsval;
897 		}
898 		WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval);
899 		opts->tsecr = req->ts_recent;
900 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
901 	}
902 	if (likely(ireq->sack_ok)) {
903 		opts->options |= OPTION_SACK_ADVERTISE;
904 		if (unlikely(!ireq->tstamp_ok))
905 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
906 	}
907 	if (foc != NULL && foc->len >= 0) {
908 		u32 need = foc->len;
909 
910 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
911 				   TCPOLEN_FASTOPEN_BASE;
912 		need = (need + 3) & ~3U;  /* Align to 32 bits */
913 		if (remaining >= need) {
914 			opts->options |= OPTION_FAST_OPEN_COOKIE;
915 			opts->fastopen_cookie = foc;
916 			remaining -= need;
917 		}
918 	}
919 
920 	mptcp_set_option_cond(req, opts, &remaining);
921 
922 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
923 
924 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
925 			      synack_type, opts, &remaining);
926 
927 	return MAX_TCP_OPTION_SPACE - remaining;
928 }
929 
930 /* Compute TCP options for ESTABLISHED sockets. This is not the
931  * final wire format yet.
932  */
933 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
934 					struct tcp_out_options *opts,
935 					struct tcp_key *key)
936 {
937 	struct tcp_sock *tp = tcp_sk(sk);
938 	unsigned int size = 0;
939 	unsigned int eff_sacks;
940 
941 	opts->options = 0;
942 
943 	/* Better than switch (key.type) as it has static branches */
944 	if (tcp_key_is_md5(key)) {
945 		opts->options |= OPTION_MD5;
946 		size += TCPOLEN_MD5SIG_ALIGNED;
947 	} else if (tcp_key_is_ao(key)) {
948 		opts->options |= OPTION_AO;
949 		size += tcp_ao_len_aligned(key->ao_key);
950 	}
951 
952 	if (likely(tp->rx_opt.tstamp_ok)) {
953 		opts->options |= OPTION_TS;
954 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
955 				tp->tsoffset : 0;
956 		opts->tsecr = tp->rx_opt.ts_recent;
957 		size += TCPOLEN_TSTAMP_ALIGNED;
958 	}
959 
960 	/* MPTCP options have precedence over SACK for the limited TCP
961 	 * option space because a MPTCP connection would be forced to
962 	 * fall back to regular TCP if a required multipath option is
963 	 * missing. SACK still gets a chance to use whatever space is
964 	 * left.
965 	 */
966 	if (sk_is_mptcp(sk)) {
967 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
968 		unsigned int opt_size = 0;
969 
970 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
971 					      &opts->mptcp)) {
972 			opts->options |= OPTION_MPTCP;
973 			size += opt_size;
974 		}
975 	}
976 
977 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
978 	if (unlikely(eff_sacks)) {
979 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
980 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
981 					 TCPOLEN_SACK_PERBLOCK))
982 			return size;
983 
984 		opts->num_sack_blocks =
985 			min_t(unsigned int, eff_sacks,
986 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
987 			      TCPOLEN_SACK_PERBLOCK);
988 
989 		size += TCPOLEN_SACK_BASE_ALIGNED +
990 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
991 	}
992 
993 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
994 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
995 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
996 
997 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
998 
999 		size = MAX_TCP_OPTION_SPACE - remaining;
1000 	}
1001 
1002 	return size;
1003 }
1004 
1005 
1006 /* TCP SMALL QUEUES (TSQ)
1007  *
1008  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1009  * to reduce RTT and bufferbloat.
1010  * We do this using a special skb destructor (tcp_wfree).
1011  *
1012  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1013  * needs to be reallocated in a driver.
1014  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1015  *
1016  * Since transmit from skb destructor is forbidden, we use a BH work item
1017  * to process all sockets that eventually need to send more skbs.
1018  * We use one work item per cpu, with its own queue of sockets.
1019  */
1020 struct tsq_work {
1021 	struct work_struct	work;
1022 	struct list_head	head; /* queue of tcp sockets */
1023 };
1024 static DEFINE_PER_CPU(struct tsq_work, tsq_work);
1025 
1026 static void tcp_tsq_write(struct sock *sk)
1027 {
1028 	if ((1 << sk->sk_state) &
1029 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1030 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1031 		struct tcp_sock *tp = tcp_sk(sk);
1032 
1033 		if (tp->lost_out > tp->retrans_out &&
1034 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1035 			tcp_mstamp_refresh(tp);
1036 			tcp_xmit_retransmit_queue(sk);
1037 		}
1038 
1039 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1040 			       0, GFP_ATOMIC);
1041 	}
1042 }
1043 
1044 static void tcp_tsq_handler(struct sock *sk)
1045 {
1046 	bh_lock_sock(sk);
1047 	if (!sock_owned_by_user(sk))
1048 		tcp_tsq_write(sk);
1049 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1050 		sock_hold(sk);
1051 	bh_unlock_sock(sk);
1052 }
1053 /*
1054  * One work item per cpu tries to send more skbs.
1055  * We run in BH context but need to disable irqs when
1056  * transferring tsq->head because tcp_wfree() might
1057  * interrupt us (non NAPI drivers)
1058  */
1059 static void tcp_tsq_workfn(struct work_struct *work)
1060 {
1061 	struct tsq_work *tsq = container_of(work, struct tsq_work, work);
1062 	LIST_HEAD(list);
1063 	unsigned long flags;
1064 	struct list_head *q, *n;
1065 	struct tcp_sock *tp;
1066 	struct sock *sk;
1067 
1068 	local_irq_save(flags);
1069 	list_splice_init(&tsq->head, &list);
1070 	local_irq_restore(flags);
1071 
1072 	list_for_each_safe(q, n, &list) {
1073 		tp = list_entry(q, struct tcp_sock, tsq_node);
1074 		list_del(&tp->tsq_node);
1075 
1076 		sk = (struct sock *)tp;
1077 		smp_mb__before_atomic();
1078 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1079 
1080 		tcp_tsq_handler(sk);
1081 		sk_free(sk);
1082 	}
1083 }
1084 
1085 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1086 			  TCPF_WRITE_TIMER_DEFERRED |	\
1087 			  TCPF_DELACK_TIMER_DEFERRED |	\
1088 			  TCPF_MTU_REDUCED_DEFERRED |	\
1089 			  TCPF_ACK_DEFERRED)
1090 /**
1091  * tcp_release_cb - tcp release_sock() callback
1092  * @sk: socket
1093  *
1094  * called from release_sock() to perform protocol dependent
1095  * actions before socket release.
1096  */
1097 void tcp_release_cb(struct sock *sk)
1098 {
1099 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1100 	unsigned long nflags;
1101 
1102 	/* perform an atomic operation only if at least one flag is set */
1103 	do {
1104 		if (!(flags & TCP_DEFERRED_ALL))
1105 			return;
1106 		nflags = flags & ~TCP_DEFERRED_ALL;
1107 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1108 
1109 	if (flags & TCPF_TSQ_DEFERRED) {
1110 		tcp_tsq_write(sk);
1111 		__sock_put(sk);
1112 	}
1113 
1114 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1115 		tcp_write_timer_handler(sk);
1116 		__sock_put(sk);
1117 	}
1118 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1119 		tcp_delack_timer_handler(sk);
1120 		__sock_put(sk);
1121 	}
1122 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1123 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1124 		__sock_put(sk);
1125 	}
1126 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1127 		tcp_send_ack(sk);
1128 }
1129 EXPORT_IPV6_MOD(tcp_release_cb);
1130 
1131 void __init tcp_tsq_work_init(void)
1132 {
1133 	int i;
1134 
1135 	for_each_possible_cpu(i) {
1136 		struct tsq_work *tsq = &per_cpu(tsq_work, i);
1137 
1138 		INIT_LIST_HEAD(&tsq->head);
1139 		INIT_WORK(&tsq->work, tcp_tsq_workfn);
1140 	}
1141 }
1142 
1143 /*
1144  * Write buffer destructor automatically called from kfree_skb.
1145  * We can't xmit new skbs from this context, as we might already
1146  * hold qdisc lock.
1147  */
1148 void tcp_wfree(struct sk_buff *skb)
1149 {
1150 	struct sock *sk = skb->sk;
1151 	struct tcp_sock *tp = tcp_sk(sk);
1152 	unsigned long flags, nval, oval;
1153 	struct tsq_work *tsq;
1154 	bool empty;
1155 
1156 	/* Keep one reference on sk_wmem_alloc.
1157 	 * Will be released by sk_free() from here or tcp_tsq_workfn()
1158 	 */
1159 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1160 
1161 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1162 	 * Wait until our queues (qdisc + devices) are drained.
1163 	 * This gives :
1164 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1165 	 * - chance for incoming ACK (processed by another cpu maybe)
1166 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1167 	 */
1168 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1169 		goto out;
1170 
1171 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1172 	do {
1173 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1174 			goto out;
1175 
1176 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1177 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1178 
1179 	/* queue this socket to BH workqueue */
1180 	local_irq_save(flags);
1181 	tsq = this_cpu_ptr(&tsq_work);
1182 	empty = list_empty(&tsq->head);
1183 	list_add(&tp->tsq_node, &tsq->head);
1184 	if (empty)
1185 		queue_work(system_bh_wq, &tsq->work);
1186 	local_irq_restore(flags);
1187 	return;
1188 out:
1189 	sk_free(sk);
1190 }
1191 
1192 /* Note: Called under soft irq.
1193  * We can call TCP stack right away, unless socket is owned by user.
1194  */
1195 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1196 {
1197 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1198 	struct sock *sk = (struct sock *)tp;
1199 
1200 	tcp_tsq_handler(sk);
1201 	sock_put(sk);
1202 
1203 	return HRTIMER_NORESTART;
1204 }
1205 
1206 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1207 				      u64 prior_wstamp)
1208 {
1209 	struct tcp_sock *tp = tcp_sk(sk);
1210 
1211 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1212 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1213 
1214 		/* Original sch_fq does not pace first 10 MSS
1215 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1216 		 * this is a minor annoyance.
1217 		 */
1218 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1219 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1220 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1221 
1222 			/* take into account OS jitter */
1223 			len_ns -= min_t(u64, len_ns / 2, credit);
1224 			tp->tcp_wstamp_ns += len_ns;
1225 		}
1226 	}
1227 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1228 }
1229 
1230 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1231 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1232 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1233 
1234 /* This routine actually transmits TCP packets queued in by
1235  * tcp_do_sendmsg().  This is used by both the initial
1236  * transmission and possible later retransmissions.
1237  * All SKB's seen here are completely headerless.  It is our
1238  * job to build the TCP header, and pass the packet down to
1239  * IP so it can do the same plus pass the packet off to the
1240  * device.
1241  *
1242  * We are working here with either a clone of the original
1243  * SKB, or a fresh unique copy made by the retransmit engine.
1244  */
1245 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1246 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1247 {
1248 	const struct inet_connection_sock *icsk = inet_csk(sk);
1249 	struct inet_sock *inet;
1250 	struct tcp_sock *tp;
1251 	struct tcp_skb_cb *tcb;
1252 	struct tcp_out_options opts;
1253 	unsigned int tcp_options_size, tcp_header_size;
1254 	struct sk_buff *oskb = NULL;
1255 	struct tcp_key key;
1256 	struct tcphdr *th;
1257 	u64 prior_wstamp;
1258 	int err;
1259 
1260 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1261 	tp = tcp_sk(sk);
1262 	prior_wstamp = tp->tcp_wstamp_ns;
1263 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1264 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1265 	if (clone_it) {
1266 		oskb = skb;
1267 
1268 		tcp_skb_tsorted_save(oskb) {
1269 			if (unlikely(skb_cloned(oskb)))
1270 				skb = pskb_copy(oskb, gfp_mask);
1271 			else
1272 				skb = skb_clone(oskb, gfp_mask);
1273 		} tcp_skb_tsorted_restore(oskb);
1274 
1275 		if (unlikely(!skb))
1276 			return -ENOBUFS;
1277 		/* retransmit skbs might have a non zero value in skb->dev
1278 		 * because skb->dev is aliased with skb->rbnode.rb_left
1279 		 */
1280 		skb->dev = NULL;
1281 	}
1282 
1283 	inet = inet_sk(sk);
1284 	tcb = TCP_SKB_CB(skb);
1285 	memset(&opts, 0, sizeof(opts));
1286 
1287 	tcp_get_current_key(sk, &key);
1288 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1289 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1290 	} else {
1291 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1292 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1293 		 * at receiver : This slightly improve GRO performance.
1294 		 * Note that we do not force the PSH flag for non GSO packets,
1295 		 * because they might be sent under high congestion events,
1296 		 * and in this case it is better to delay the delivery of 1-MSS
1297 		 * packets and thus the corresponding ACK packet that would
1298 		 * release the following packet.
1299 		 */
1300 		if (tcp_skb_pcount(skb) > 1)
1301 			tcb->tcp_flags |= TCPHDR_PSH;
1302 	}
1303 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1304 
1305 	/* We set skb->ooo_okay to one if this packet can select
1306 	 * a different TX queue than prior packets of this flow,
1307 	 * to avoid self inflicted reorders.
1308 	 * The 'other' queue decision is based on current cpu number
1309 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1310 	 * We can switch to another (and better) queue if:
1311 	 * 1) No packet with payload is in qdisc/device queues.
1312 	 *    Delays in TX completion can defeat the test
1313 	 *    even if packets were already sent.
1314 	 * 2) Or rtx queue is empty.
1315 	 *    This mitigates above case if ACK packets for
1316 	 *    all prior packets were already processed.
1317 	 */
1318 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1319 			tcp_rtx_queue_empty(sk);
1320 
1321 	/* If we had to use memory reserve to allocate this skb,
1322 	 * this might cause drops if packet is looped back :
1323 	 * Other socket might not have SOCK_MEMALLOC.
1324 	 * Packets not looped back do not care about pfmemalloc.
1325 	 */
1326 	skb->pfmemalloc = 0;
1327 
1328 	skb_push(skb, tcp_header_size);
1329 	skb_reset_transport_header(skb);
1330 
1331 	skb_orphan(skb);
1332 	skb->sk = sk;
1333 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1334 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1335 
1336 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1337 
1338 	/* Build TCP header and checksum it. */
1339 	th = (struct tcphdr *)skb->data;
1340 	th->source		= inet->inet_sport;
1341 	th->dest		= inet->inet_dport;
1342 	th->seq			= htonl(tcb->seq);
1343 	th->ack_seq		= htonl(rcv_nxt);
1344 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1345 					(tcb->tcp_flags & TCPHDR_FLAGS_MASK));
1346 
1347 	th->check		= 0;
1348 	th->urg_ptr		= 0;
1349 
1350 	/* The urg_mode check is necessary during a below snd_una win probe */
1351 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1352 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1353 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1354 			th->urg = 1;
1355 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1356 			th->urg_ptr = htons(0xFFFF);
1357 			th->urg = 1;
1358 		}
1359 	}
1360 
1361 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1362 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1363 		th->window      = htons(tcp_select_window(sk));
1364 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1365 	} else {
1366 		/* RFC1323: The window in SYN & SYN/ACK segments
1367 		 * is never scaled.
1368 		 */
1369 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1370 	}
1371 
1372 	tcp_options_write(th, tp, NULL, &opts, &key);
1373 
1374 	if (tcp_key_is_md5(&key)) {
1375 #ifdef CONFIG_TCP_MD5SIG
1376 		/* Calculate the MD5 hash, as we have all we need now */
1377 		sk_gso_disable(sk);
1378 		tp->af_specific->calc_md5_hash(opts.hash_location,
1379 					       key.md5_key, sk, skb);
1380 #endif
1381 	} else if (tcp_key_is_ao(&key)) {
1382 		int err;
1383 
1384 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1385 					  opts.hash_location);
1386 		if (err) {
1387 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1388 			return -ENOMEM;
1389 		}
1390 	}
1391 
1392 	/* BPF prog is the last one writing header option */
1393 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1394 
1395 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1396 			   tcp_v6_send_check, tcp_v4_send_check,
1397 			   sk, skb);
1398 
1399 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1400 		tcp_event_ack_sent(sk, rcv_nxt);
1401 
1402 	if (skb->len != tcp_header_size) {
1403 		tcp_event_data_sent(tp, sk);
1404 		tp->data_segs_out += tcp_skb_pcount(skb);
1405 		tp->bytes_sent += skb->len - tcp_header_size;
1406 	}
1407 
1408 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1409 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1410 			      tcp_skb_pcount(skb));
1411 
1412 	tp->segs_out += tcp_skb_pcount(skb);
1413 	skb_set_hash_from_sk(skb, sk);
1414 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1415 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1416 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1417 
1418 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1419 
1420 	/* Cleanup our debris for IP stacks */
1421 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1422 			       sizeof(struct inet6_skb_parm)));
1423 
1424 	tcp_add_tx_delay(skb, tp);
1425 
1426 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1427 				 inet6_csk_xmit, ip_queue_xmit,
1428 				 sk, skb, &inet->cork.fl);
1429 
1430 	if (unlikely(err > 0)) {
1431 		tcp_enter_cwr(sk);
1432 		err = net_xmit_eval(err);
1433 	}
1434 	if (!err && oskb) {
1435 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1436 		tcp_rate_skb_sent(sk, oskb);
1437 	}
1438 	return err;
1439 }
1440 
1441 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1442 			    gfp_t gfp_mask)
1443 {
1444 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1445 				  tcp_sk(sk)->rcv_nxt);
1446 }
1447 
1448 /* This routine just queues the buffer for sending.
1449  *
1450  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1451  * otherwise socket can stall.
1452  */
1453 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1454 {
1455 	struct tcp_sock *tp = tcp_sk(sk);
1456 
1457 	/* Advance write_seq and place onto the write_queue. */
1458 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1459 	__skb_header_release(skb);
1460 	tcp_add_write_queue_tail(sk, skb);
1461 	sk_wmem_queued_add(sk, skb->truesize);
1462 	sk_mem_charge(sk, skb->truesize);
1463 }
1464 
1465 /* Initialize TSO segments for a packet. */
1466 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1467 {
1468 	int tso_segs;
1469 
1470 	if (skb->len <= mss_now) {
1471 		/* Avoid the costly divide in the normal
1472 		 * non-TSO case.
1473 		 */
1474 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1475 		tcp_skb_pcount_set(skb, 1);
1476 		return 1;
1477 	}
1478 	TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1479 	tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1480 	tcp_skb_pcount_set(skb, tso_segs);
1481 	return tso_segs;
1482 }
1483 
1484 /* Pcount in the middle of the write queue got changed, we need to do various
1485  * tweaks to fix counters
1486  */
1487 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1488 {
1489 	struct tcp_sock *tp = tcp_sk(sk);
1490 
1491 	tp->packets_out -= decr;
1492 
1493 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1494 		tp->sacked_out -= decr;
1495 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1496 		tp->retrans_out -= decr;
1497 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1498 		tp->lost_out -= decr;
1499 
1500 	/* Reno case is special. Sigh... */
1501 	if (tcp_is_reno(tp) && decr > 0)
1502 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1503 
1504 	tcp_verify_left_out(tp);
1505 }
1506 
1507 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1508 {
1509 	return TCP_SKB_CB(skb)->txstamp_ack ||
1510 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1511 }
1512 
1513 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1514 {
1515 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1516 
1517 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1518 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1519 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1520 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1521 
1522 		shinfo->tx_flags &= ~tsflags;
1523 		shinfo2->tx_flags |= tsflags;
1524 		swap(shinfo->tskey, shinfo2->tskey);
1525 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1526 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1527 	}
1528 }
1529 
1530 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1531 {
1532 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1533 	TCP_SKB_CB(skb)->eor = 0;
1534 }
1535 
1536 /* Insert buff after skb on the write or rtx queue of sk.  */
1537 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1538 					 struct sk_buff *buff,
1539 					 struct sock *sk,
1540 					 enum tcp_queue tcp_queue)
1541 {
1542 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1543 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1544 	else
1545 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1546 }
1547 
1548 /* Function to create two new TCP segments.  Shrinks the given segment
1549  * to the specified size and appends a new segment with the rest of the
1550  * packet to the list.  This won't be called frequently, I hope.
1551  * Remember, these are still headerless SKBs at this point.
1552  */
1553 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1554 		 struct sk_buff *skb, u32 len,
1555 		 unsigned int mss_now, gfp_t gfp)
1556 {
1557 	struct tcp_sock *tp = tcp_sk(sk);
1558 	struct sk_buff *buff;
1559 	int old_factor;
1560 	long limit;
1561 	u16 flags;
1562 	int nlen;
1563 
1564 	if (WARN_ON(len > skb->len))
1565 		return -EINVAL;
1566 
1567 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1568 
1569 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1570 	 * We need some allowance to not penalize applications setting small
1571 	 * SO_SNDBUF values.
1572 	 * Also allow first and last skb in retransmit queue to be split.
1573 	 */
1574 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1575 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1576 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1577 		     skb != tcp_rtx_queue_head(sk) &&
1578 		     skb != tcp_rtx_queue_tail(sk))) {
1579 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1580 		return -ENOMEM;
1581 	}
1582 
1583 	if (skb_unclone_keeptruesize(skb, gfp))
1584 		return -ENOMEM;
1585 
1586 	/* Get a new skb... force flag on. */
1587 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1588 	if (!buff)
1589 		return -ENOMEM; /* We'll just try again later. */
1590 	skb_copy_decrypted(buff, skb);
1591 	mptcp_skb_ext_copy(buff, skb);
1592 
1593 	sk_wmem_queued_add(sk, buff->truesize);
1594 	sk_mem_charge(sk, buff->truesize);
1595 	nlen = skb->len - len;
1596 	buff->truesize += nlen;
1597 	skb->truesize -= nlen;
1598 
1599 	/* Correct the sequence numbers. */
1600 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1601 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1602 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1603 
1604 	/* PSH and FIN should only be set in the second packet. */
1605 	flags = TCP_SKB_CB(skb)->tcp_flags;
1606 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1607 	TCP_SKB_CB(buff)->tcp_flags = flags;
1608 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1609 	tcp_skb_fragment_eor(skb, buff);
1610 
1611 	skb_split(skb, buff, len);
1612 
1613 	skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1614 	tcp_fragment_tstamp(skb, buff);
1615 
1616 	old_factor = tcp_skb_pcount(skb);
1617 
1618 	/* Fix up tso_factor for both original and new SKB.  */
1619 	tcp_set_skb_tso_segs(skb, mss_now);
1620 	tcp_set_skb_tso_segs(buff, mss_now);
1621 
1622 	/* Update delivered info for the new segment */
1623 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1624 
1625 	/* If this packet has been sent out already, we must
1626 	 * adjust the various packet counters.
1627 	 */
1628 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1629 		int diff = old_factor - tcp_skb_pcount(skb) -
1630 			tcp_skb_pcount(buff);
1631 
1632 		if (diff)
1633 			tcp_adjust_pcount(sk, skb, diff);
1634 	}
1635 
1636 	/* Link BUFF into the send queue. */
1637 	__skb_header_release(buff);
1638 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1639 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1640 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1641 
1642 	return 0;
1643 }
1644 
1645 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1646  * data is not copied, but immediately discarded.
1647  */
1648 static int __pskb_trim_head(struct sk_buff *skb, int len)
1649 {
1650 	struct skb_shared_info *shinfo;
1651 	int i, k, eat;
1652 
1653 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1654 	eat = len;
1655 	k = 0;
1656 	shinfo = skb_shinfo(skb);
1657 	for (i = 0; i < shinfo->nr_frags; i++) {
1658 		int size = skb_frag_size(&shinfo->frags[i]);
1659 
1660 		if (size <= eat) {
1661 			skb_frag_unref(skb, i);
1662 			eat -= size;
1663 		} else {
1664 			shinfo->frags[k] = shinfo->frags[i];
1665 			if (eat) {
1666 				skb_frag_off_add(&shinfo->frags[k], eat);
1667 				skb_frag_size_sub(&shinfo->frags[k], eat);
1668 				eat = 0;
1669 			}
1670 			k++;
1671 		}
1672 	}
1673 	shinfo->nr_frags = k;
1674 
1675 	skb->data_len -= len;
1676 	skb->len = skb->data_len;
1677 	return len;
1678 }
1679 
1680 /* Remove acked data from a packet in the transmit queue. */
1681 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1682 {
1683 	u32 delta_truesize;
1684 
1685 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1686 		return -ENOMEM;
1687 
1688 	delta_truesize = __pskb_trim_head(skb, len);
1689 
1690 	TCP_SKB_CB(skb)->seq += len;
1691 
1692 	skb->truesize	   -= delta_truesize;
1693 	sk_wmem_queued_add(sk, -delta_truesize);
1694 	if (!skb_zcopy_pure(skb))
1695 		sk_mem_uncharge(sk, delta_truesize);
1696 
1697 	/* Any change of skb->len requires recalculation of tso factor. */
1698 	if (tcp_skb_pcount(skb) > 1)
1699 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1700 
1701 	return 0;
1702 }
1703 
1704 /* Calculate MSS not accounting any TCP options.  */
1705 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1706 {
1707 	const struct tcp_sock *tp = tcp_sk(sk);
1708 	const struct inet_connection_sock *icsk = inet_csk(sk);
1709 	int mss_now;
1710 
1711 	/* Calculate base mss without TCP options:
1712 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1713 	 */
1714 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1715 
1716 	/* Clamp it (mss_clamp does not include tcp options) */
1717 	if (mss_now > tp->rx_opt.mss_clamp)
1718 		mss_now = tp->rx_opt.mss_clamp;
1719 
1720 	/* Now subtract optional transport overhead */
1721 	mss_now -= icsk->icsk_ext_hdr_len;
1722 
1723 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1724 	mss_now = max(mss_now,
1725 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1726 	return mss_now;
1727 }
1728 
1729 /* Calculate MSS. Not accounting for SACKs here.  */
1730 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1731 {
1732 	/* Subtract TCP options size, not including SACKs */
1733 	return __tcp_mtu_to_mss(sk, pmtu) -
1734 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1735 }
1736 EXPORT_IPV6_MOD(tcp_mtu_to_mss);
1737 
1738 /* Inverse of above */
1739 int tcp_mss_to_mtu(struct sock *sk, int mss)
1740 {
1741 	const struct tcp_sock *tp = tcp_sk(sk);
1742 	const struct inet_connection_sock *icsk = inet_csk(sk);
1743 
1744 	return mss +
1745 	      tp->tcp_header_len +
1746 	      icsk->icsk_ext_hdr_len +
1747 	      icsk->icsk_af_ops->net_header_len;
1748 }
1749 EXPORT_SYMBOL(tcp_mss_to_mtu);
1750 
1751 /* MTU probing init per socket */
1752 void tcp_mtup_init(struct sock *sk)
1753 {
1754 	struct tcp_sock *tp = tcp_sk(sk);
1755 	struct inet_connection_sock *icsk = inet_csk(sk);
1756 	struct net *net = sock_net(sk);
1757 
1758 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1759 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1760 			       icsk->icsk_af_ops->net_header_len;
1761 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1762 	icsk->icsk_mtup.probe_size = 0;
1763 	if (icsk->icsk_mtup.enabled)
1764 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1765 }
1766 
1767 /* This function synchronize snd mss to current pmtu/exthdr set.
1768 
1769    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1770    for TCP options, but includes only bare TCP header.
1771 
1772    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1773    It is minimum of user_mss and mss received with SYN.
1774    It also does not include TCP options.
1775 
1776    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1777 
1778    tp->mss_cache is current effective sending mss, including
1779    all tcp options except for SACKs. It is evaluated,
1780    taking into account current pmtu, but never exceeds
1781    tp->rx_opt.mss_clamp.
1782 
1783    NOTE1. rfc1122 clearly states that advertised MSS
1784    DOES NOT include either tcp or ip options.
1785 
1786    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1787    are READ ONLY outside this function.		--ANK (980731)
1788  */
1789 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1790 {
1791 	struct tcp_sock *tp = tcp_sk(sk);
1792 	struct inet_connection_sock *icsk = inet_csk(sk);
1793 	int mss_now;
1794 
1795 	if (icsk->icsk_mtup.search_high > pmtu)
1796 		icsk->icsk_mtup.search_high = pmtu;
1797 
1798 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1799 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1800 
1801 	/* And store cached results */
1802 	icsk->icsk_pmtu_cookie = pmtu;
1803 	if (icsk->icsk_mtup.enabled)
1804 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1805 	tp->mss_cache = mss_now;
1806 
1807 	return mss_now;
1808 }
1809 EXPORT_IPV6_MOD(tcp_sync_mss);
1810 
1811 /* Compute the current effective MSS, taking SACKs and IP options,
1812  * and even PMTU discovery events into account.
1813  */
1814 unsigned int tcp_current_mss(struct sock *sk)
1815 {
1816 	const struct tcp_sock *tp = tcp_sk(sk);
1817 	const struct dst_entry *dst = __sk_dst_get(sk);
1818 	u32 mss_now;
1819 	unsigned int header_len;
1820 	struct tcp_out_options opts;
1821 	struct tcp_key key;
1822 
1823 	mss_now = tp->mss_cache;
1824 
1825 	if (dst) {
1826 		u32 mtu = dst_mtu(dst);
1827 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1828 			mss_now = tcp_sync_mss(sk, mtu);
1829 	}
1830 	tcp_get_current_key(sk, &key);
1831 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1832 		     sizeof(struct tcphdr);
1833 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1834 	 * some common options. If this is an odd packet (because we have SACK
1835 	 * blocks etc) then our calculated header_len will be different, and
1836 	 * we have to adjust mss_now correspondingly */
1837 	if (header_len != tp->tcp_header_len) {
1838 		int delta = (int) header_len - tp->tcp_header_len;
1839 		mss_now -= delta;
1840 	}
1841 
1842 	return mss_now;
1843 }
1844 
1845 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1846  * As additional protections, we do not touch cwnd in retransmission phases,
1847  * and if application hit its sndbuf limit recently.
1848  */
1849 static void tcp_cwnd_application_limited(struct sock *sk)
1850 {
1851 	struct tcp_sock *tp = tcp_sk(sk);
1852 
1853 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1854 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1855 		/* Limited by application or receiver window. */
1856 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1857 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1858 		if (win_used < tcp_snd_cwnd(tp)) {
1859 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1860 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1861 		}
1862 		tp->snd_cwnd_used = 0;
1863 	}
1864 	tp->snd_cwnd_stamp = tcp_jiffies32;
1865 }
1866 
1867 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1868 {
1869 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1870 	struct tcp_sock *tp = tcp_sk(sk);
1871 
1872 	/* Track the strongest available signal of the degree to which the cwnd
1873 	 * is fully utilized. If cwnd-limited then remember that fact for the
1874 	 * current window. If not cwnd-limited then track the maximum number of
1875 	 * outstanding packets in the current window. (If cwnd-limited then we
1876 	 * chose to not update tp->max_packets_out to avoid an extra else
1877 	 * clause with no functional impact.)
1878 	 */
1879 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1880 	    is_cwnd_limited ||
1881 	    (!tp->is_cwnd_limited &&
1882 	     tp->packets_out > tp->max_packets_out)) {
1883 		tp->is_cwnd_limited = is_cwnd_limited;
1884 		tp->max_packets_out = tp->packets_out;
1885 		tp->cwnd_usage_seq = tp->snd_nxt;
1886 	}
1887 
1888 	if (tcp_is_cwnd_limited(sk)) {
1889 		/* Network is feed fully. */
1890 		tp->snd_cwnd_used = 0;
1891 		tp->snd_cwnd_stamp = tcp_jiffies32;
1892 	} else {
1893 		/* Network starves. */
1894 		if (tp->packets_out > tp->snd_cwnd_used)
1895 			tp->snd_cwnd_used = tp->packets_out;
1896 
1897 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1898 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1899 		    !ca_ops->cong_control)
1900 			tcp_cwnd_application_limited(sk);
1901 
1902 		/* The following conditions together indicate the starvation
1903 		 * is caused by insufficient sender buffer:
1904 		 * 1) just sent some data (see tcp_write_xmit)
1905 		 * 2) not cwnd limited (this else condition)
1906 		 * 3) no more data to send (tcp_write_queue_empty())
1907 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1908 		 */
1909 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1910 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1911 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1912 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1913 	}
1914 }
1915 
1916 /* Minshall's variant of the Nagle send check. */
1917 static bool tcp_minshall_check(const struct tcp_sock *tp)
1918 {
1919 	return after(tp->snd_sml, tp->snd_una) &&
1920 		!after(tp->snd_sml, tp->snd_nxt);
1921 }
1922 
1923 /* Update snd_sml if this skb is under mss
1924  * Note that a TSO packet might end with a sub-mss segment
1925  * The test is really :
1926  * if ((skb->len % mss) != 0)
1927  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1928  * But we can avoid doing the divide again given we already have
1929  *  skb_pcount = skb->len / mss_now
1930  */
1931 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1932 				const struct sk_buff *skb)
1933 {
1934 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1935 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1936 }
1937 
1938 /* Return false, if packet can be sent now without violation Nagle's rules:
1939  * 1. It is full sized. (provided by caller in %partial bool)
1940  * 2. Or it contains FIN. (already checked by caller)
1941  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1942  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1943  *    With Minshall's modification: all sent small packets are ACKed.
1944  */
1945 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1946 			    int nonagle)
1947 {
1948 	return partial &&
1949 		((nonagle & TCP_NAGLE_CORK) ||
1950 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1951 }
1952 
1953 /* Return how many segs we'd like on a TSO packet,
1954  * depending on current pacing rate, and how close the peer is.
1955  *
1956  * Rationale is:
1957  * - For close peers, we rather send bigger packets to reduce
1958  *   cpu costs, because occasional losses will be repaired fast.
1959  * - For long distance/rtt flows, we would like to get ACK clocking
1960  *   with 1 ACK per ms.
1961  *
1962  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1963  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1964  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1965  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1966  */
1967 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1968 			    int min_tso_segs)
1969 {
1970 	unsigned long bytes;
1971 	u32 r;
1972 
1973 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
1974 
1975 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1976 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1977 		bytes += sk->sk_gso_max_size >> r;
1978 
1979 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1980 
1981 	return max_t(u32, bytes / mss_now, min_tso_segs);
1982 }
1983 
1984 /* Return the number of segments we want in the skb we are transmitting.
1985  * See if congestion control module wants to decide; otherwise, autosize.
1986  */
1987 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1988 {
1989 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1990 	u32 min_tso, tso_segs;
1991 
1992 	min_tso = ca_ops->min_tso_segs ?
1993 			ca_ops->min_tso_segs(sk) :
1994 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1995 
1996 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1997 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1998 }
1999 
2000 /* Returns the portion of skb which can be sent right away */
2001 static unsigned int tcp_mss_split_point(const struct sock *sk,
2002 					const struct sk_buff *skb,
2003 					unsigned int mss_now,
2004 					unsigned int max_segs,
2005 					int nonagle)
2006 {
2007 	const struct tcp_sock *tp = tcp_sk(sk);
2008 	u32 partial, needed, window, max_len;
2009 
2010 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2011 	max_len = mss_now * max_segs;
2012 
2013 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2014 		return max_len;
2015 
2016 	needed = min(skb->len, window);
2017 
2018 	if (max_len <= needed)
2019 		return max_len;
2020 
2021 	partial = needed % mss_now;
2022 	/* If last segment is not a full MSS, check if Nagle rules allow us
2023 	 * to include this last segment in this skb.
2024 	 * Otherwise, we'll split the skb at last MSS boundary
2025 	 */
2026 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2027 		return needed - partial;
2028 
2029 	return needed;
2030 }
2031 
2032 /* Can at least one segment of SKB be sent right now, according to the
2033  * congestion window rules?  If so, return how many segments are allowed.
2034  */
2035 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2036 {
2037 	u32 in_flight, cwnd, halfcwnd;
2038 
2039 	in_flight = tcp_packets_in_flight(tp);
2040 	cwnd = tcp_snd_cwnd(tp);
2041 	if (in_flight >= cwnd)
2042 		return 0;
2043 
2044 	/* For better scheduling, ensure we have at least
2045 	 * 2 GSO packets in flight.
2046 	 */
2047 	halfcwnd = max(cwnd >> 1, 1U);
2048 	return min(halfcwnd, cwnd - in_flight);
2049 }
2050 
2051 /* Initialize TSO state of a skb.
2052  * This must be invoked the first time we consider transmitting
2053  * SKB onto the wire.
2054  */
2055 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2056 {
2057 	int tso_segs = tcp_skb_pcount(skb);
2058 
2059 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2060 		return tcp_set_skb_tso_segs(skb, mss_now);
2061 
2062 	return tso_segs;
2063 }
2064 
2065 
2066 /* Return true if the Nagle test allows this packet to be
2067  * sent now.
2068  */
2069 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2070 				  unsigned int cur_mss, int nonagle)
2071 {
2072 	/* Nagle rule does not apply to frames, which sit in the middle of the
2073 	 * write_queue (they have no chances to get new data).
2074 	 *
2075 	 * This is implemented in the callers, where they modify the 'nonagle'
2076 	 * argument based upon the location of SKB in the send queue.
2077 	 */
2078 	if (nonagle & TCP_NAGLE_PUSH)
2079 		return true;
2080 
2081 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2082 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2083 		return true;
2084 
2085 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2086 		return true;
2087 
2088 	return false;
2089 }
2090 
2091 /* Does at least the first segment of SKB fit into the send window? */
2092 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2093 			     const struct sk_buff *skb,
2094 			     unsigned int cur_mss)
2095 {
2096 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2097 
2098 	if (skb->len > cur_mss)
2099 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2100 
2101 	return !after(end_seq, tcp_wnd_end(tp));
2102 }
2103 
2104 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2105  * which is put after SKB on the list.  It is very much like
2106  * tcp_fragment() except that it may make several kinds of assumptions
2107  * in order to speed up the splitting operation.  In particular, we
2108  * know that all the data is in scatter-gather pages, and that the
2109  * packet has never been sent out before (and thus is not cloned).
2110  */
2111 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2112 			unsigned int mss_now, gfp_t gfp)
2113 {
2114 	int nlen = skb->len - len;
2115 	struct sk_buff *buff;
2116 	u16 flags;
2117 
2118 	/* All of a TSO frame must be composed of paged data.  */
2119 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2120 
2121 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2122 	if (unlikely(!buff))
2123 		return -ENOMEM;
2124 	skb_copy_decrypted(buff, skb);
2125 	mptcp_skb_ext_copy(buff, skb);
2126 
2127 	sk_wmem_queued_add(sk, buff->truesize);
2128 	sk_mem_charge(sk, buff->truesize);
2129 	buff->truesize += nlen;
2130 	skb->truesize -= nlen;
2131 
2132 	/* Correct the sequence numbers. */
2133 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2134 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2135 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2136 
2137 	/* PSH and FIN should only be set in the second packet. */
2138 	flags = TCP_SKB_CB(skb)->tcp_flags;
2139 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2140 	TCP_SKB_CB(buff)->tcp_flags = flags;
2141 
2142 	tcp_skb_fragment_eor(skb, buff);
2143 
2144 	skb_split(skb, buff, len);
2145 	tcp_fragment_tstamp(skb, buff);
2146 
2147 	/* Fix up tso_factor for both original and new SKB.  */
2148 	tcp_set_skb_tso_segs(skb, mss_now);
2149 	tcp_set_skb_tso_segs(buff, mss_now);
2150 
2151 	/* Link BUFF into the send queue. */
2152 	__skb_header_release(buff);
2153 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2154 
2155 	return 0;
2156 }
2157 
2158 /* Try to defer sending, if possible, in order to minimize the amount
2159  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2160  *
2161  * This algorithm is from John Heffner.
2162  */
2163 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2164 				 bool *is_cwnd_limited,
2165 				 bool *is_rwnd_limited,
2166 				 u32 max_segs)
2167 {
2168 	const struct inet_connection_sock *icsk = inet_csk(sk);
2169 	u32 send_win, cong_win, limit, in_flight;
2170 	struct tcp_sock *tp = tcp_sk(sk);
2171 	struct sk_buff *head;
2172 	int win_divisor;
2173 	s64 delta;
2174 
2175 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2176 		goto send_now;
2177 
2178 	/* Avoid bursty behavior by allowing defer
2179 	 * only if the last write was recent (1 ms).
2180 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2181 	 * packets waiting in a qdisc or device for EDT delivery.
2182 	 */
2183 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2184 	if (delta > 0)
2185 		goto send_now;
2186 
2187 	in_flight = tcp_packets_in_flight(tp);
2188 
2189 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2190 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2191 
2192 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2193 
2194 	/* From in_flight test above, we know that cwnd > in_flight.  */
2195 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2196 
2197 	limit = min(send_win, cong_win);
2198 
2199 	/* If a full-sized TSO skb can be sent, do it. */
2200 	if (limit >= max_segs * tp->mss_cache)
2201 		goto send_now;
2202 
2203 	/* Middle in queue won't get any more data, full sendable already? */
2204 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2205 		goto send_now;
2206 
2207 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2208 	if (win_divisor) {
2209 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2210 
2211 		/* If at least some fraction of a window is available,
2212 		 * just use it.
2213 		 */
2214 		chunk /= win_divisor;
2215 		if (limit >= chunk)
2216 			goto send_now;
2217 	} else {
2218 		/* Different approach, try not to defer past a single
2219 		 * ACK.  Receiver should ACK every other full sized
2220 		 * frame, so if we have space for more than 3 frames
2221 		 * then send now.
2222 		 */
2223 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2224 			goto send_now;
2225 	}
2226 
2227 	/* TODO : use tsorted_sent_queue ? */
2228 	head = tcp_rtx_queue_head(sk);
2229 	if (!head)
2230 		goto send_now;
2231 	delta = tp->tcp_clock_cache - head->tstamp;
2232 	/* If next ACK is likely to come too late (half srtt), do not defer */
2233 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2234 		goto send_now;
2235 
2236 	/* Ok, it looks like it is advisable to defer.
2237 	 * Three cases are tracked :
2238 	 * 1) We are cwnd-limited
2239 	 * 2) We are rwnd-limited
2240 	 * 3) We are application limited.
2241 	 */
2242 	if (cong_win < send_win) {
2243 		if (cong_win <= skb->len) {
2244 			*is_cwnd_limited = true;
2245 			return true;
2246 		}
2247 	} else {
2248 		if (send_win <= skb->len) {
2249 			*is_rwnd_limited = true;
2250 			return true;
2251 		}
2252 	}
2253 
2254 	/* If this packet won't get more data, do not wait. */
2255 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2256 	    TCP_SKB_CB(skb)->eor)
2257 		goto send_now;
2258 
2259 	return true;
2260 
2261 send_now:
2262 	return false;
2263 }
2264 
2265 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2266 {
2267 	struct inet_connection_sock *icsk = inet_csk(sk);
2268 	struct tcp_sock *tp = tcp_sk(sk);
2269 	struct net *net = sock_net(sk);
2270 	u32 interval;
2271 	s32 delta;
2272 
2273 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2274 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2275 	if (unlikely(delta >= interval * HZ)) {
2276 		int mss = tcp_current_mss(sk);
2277 
2278 		/* Update current search range */
2279 		icsk->icsk_mtup.probe_size = 0;
2280 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2281 			sizeof(struct tcphdr) +
2282 			icsk->icsk_af_ops->net_header_len;
2283 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2284 
2285 		/* Update probe time stamp */
2286 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2287 	}
2288 }
2289 
2290 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2291 {
2292 	struct sk_buff *skb, *next;
2293 
2294 	skb = tcp_send_head(sk);
2295 	tcp_for_write_queue_from_safe(skb, next, sk) {
2296 		if (len <= skb->len)
2297 			break;
2298 
2299 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2300 			return false;
2301 
2302 		len -= skb->len;
2303 	}
2304 
2305 	return true;
2306 }
2307 
2308 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2309 			     int probe_size)
2310 {
2311 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2312 	int i, todo, len = 0, nr_frags = 0;
2313 	const struct sk_buff *skb;
2314 
2315 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2316 		return -ENOMEM;
2317 
2318 	skb_queue_walk(&sk->sk_write_queue, skb) {
2319 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2320 
2321 		if (skb_headlen(skb))
2322 			return -EINVAL;
2323 
2324 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2325 			if (len >= probe_size)
2326 				goto commit;
2327 			todo = min_t(int, skb_frag_size(fragfrom),
2328 				     probe_size - len);
2329 			len += todo;
2330 			if (lastfrag &&
2331 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2332 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2333 						      skb_frag_size(lastfrag)) {
2334 				skb_frag_size_add(lastfrag, todo);
2335 				continue;
2336 			}
2337 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2338 				return -E2BIG;
2339 			skb_frag_page_copy(fragto, fragfrom);
2340 			skb_frag_off_copy(fragto, fragfrom);
2341 			skb_frag_size_set(fragto, todo);
2342 			nr_frags++;
2343 			lastfrag = fragto++;
2344 		}
2345 	}
2346 commit:
2347 	WARN_ON_ONCE(len != probe_size);
2348 	for (i = 0; i < nr_frags; i++)
2349 		skb_frag_ref(to, i);
2350 
2351 	skb_shinfo(to)->nr_frags = nr_frags;
2352 	to->truesize += probe_size;
2353 	to->len += probe_size;
2354 	to->data_len += probe_size;
2355 	__skb_header_release(to);
2356 	return 0;
2357 }
2358 
2359 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2360  * all its payload was moved to another one (dst).
2361  * Make sure to transfer tcp_flags, eor, and tstamp.
2362  */
2363 static void tcp_eat_one_skb(struct sock *sk,
2364 			    struct sk_buff *dst,
2365 			    struct sk_buff *src)
2366 {
2367 	TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2368 	TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2369 	tcp_skb_collapse_tstamp(dst, src);
2370 	tcp_unlink_write_queue(src, sk);
2371 	tcp_wmem_free_skb(sk, src);
2372 }
2373 
2374 /* Create a new MTU probe if we are ready.
2375  * MTU probe is regularly attempting to increase the path MTU by
2376  * deliberately sending larger packets.  This discovers routing
2377  * changes resulting in larger path MTUs.
2378  *
2379  * Returns 0 if we should wait to probe (no cwnd available),
2380  *         1 if a probe was sent,
2381  *         -1 otherwise
2382  */
2383 static int tcp_mtu_probe(struct sock *sk)
2384 {
2385 	struct inet_connection_sock *icsk = inet_csk(sk);
2386 	struct tcp_sock *tp = tcp_sk(sk);
2387 	struct sk_buff *skb, *nskb, *next;
2388 	struct net *net = sock_net(sk);
2389 	int probe_size;
2390 	int size_needed;
2391 	int copy, len;
2392 	int mss_now;
2393 	int interval;
2394 
2395 	/* Not currently probing/verifying,
2396 	 * not in recovery,
2397 	 * have enough cwnd, and
2398 	 * not SACKing (the variable headers throw things off)
2399 	 */
2400 	if (likely(!icsk->icsk_mtup.enabled ||
2401 		   icsk->icsk_mtup.probe_size ||
2402 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2403 		   tcp_snd_cwnd(tp) < 11 ||
2404 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2405 		return -1;
2406 
2407 	/* Use binary search for probe_size between tcp_mss_base,
2408 	 * and current mss_clamp. if (search_high - search_low)
2409 	 * smaller than a threshold, backoff from probing.
2410 	 */
2411 	mss_now = tcp_current_mss(sk);
2412 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2413 				    icsk->icsk_mtup.search_low) >> 1);
2414 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2415 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2416 	/* When misfortune happens, we are reprobing actively,
2417 	 * and then reprobe timer has expired. We stick with current
2418 	 * probing process by not resetting search range to its orignal.
2419 	 */
2420 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2421 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2422 		/* Check whether enough time has elaplased for
2423 		 * another round of probing.
2424 		 */
2425 		tcp_mtu_check_reprobe(sk);
2426 		return -1;
2427 	}
2428 
2429 	/* Have enough data in the send queue to probe? */
2430 	if (tp->write_seq - tp->snd_nxt < size_needed)
2431 		return -1;
2432 
2433 	if (tp->snd_wnd < size_needed)
2434 		return -1;
2435 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2436 		return 0;
2437 
2438 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2439 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2440 		if (!tcp_packets_in_flight(tp))
2441 			return -1;
2442 		else
2443 			return 0;
2444 	}
2445 
2446 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2447 		return -1;
2448 
2449 	/* We're allowed to probe.  Build it now. */
2450 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2451 	if (!nskb)
2452 		return -1;
2453 
2454 	/* build the payload, and be prepared to abort if this fails. */
2455 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2456 		tcp_skb_tsorted_anchor_cleanup(nskb);
2457 		consume_skb(nskb);
2458 		return -1;
2459 	}
2460 	sk_wmem_queued_add(sk, nskb->truesize);
2461 	sk_mem_charge(sk, nskb->truesize);
2462 
2463 	skb = tcp_send_head(sk);
2464 	skb_copy_decrypted(nskb, skb);
2465 	mptcp_skb_ext_copy(nskb, skb);
2466 
2467 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2468 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2469 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2470 
2471 	tcp_insert_write_queue_before(nskb, skb, sk);
2472 	tcp_highest_sack_replace(sk, skb, nskb);
2473 
2474 	len = 0;
2475 	tcp_for_write_queue_from_safe(skb, next, sk) {
2476 		copy = min_t(int, skb->len, probe_size - len);
2477 
2478 		if (skb->len <= copy) {
2479 			tcp_eat_one_skb(sk, nskb, skb);
2480 		} else {
2481 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2482 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2483 			__pskb_trim_head(skb, copy);
2484 			tcp_set_skb_tso_segs(skb, mss_now);
2485 			TCP_SKB_CB(skb)->seq += copy;
2486 		}
2487 
2488 		len += copy;
2489 
2490 		if (len >= probe_size)
2491 			break;
2492 	}
2493 	tcp_init_tso_segs(nskb, nskb->len);
2494 
2495 	/* We're ready to send.  If this fails, the probe will
2496 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2497 	 */
2498 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2499 		/* Decrement cwnd here because we are sending
2500 		 * effectively two packets. */
2501 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2502 		tcp_event_new_data_sent(sk, nskb);
2503 
2504 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2505 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2506 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2507 
2508 		return 1;
2509 	}
2510 
2511 	return -1;
2512 }
2513 
2514 static bool tcp_pacing_check(struct sock *sk)
2515 {
2516 	struct tcp_sock *tp = tcp_sk(sk);
2517 
2518 	if (!tcp_needs_internal_pacing(sk))
2519 		return false;
2520 
2521 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2522 		return false;
2523 
2524 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2525 		hrtimer_start(&tp->pacing_timer,
2526 			      ns_to_ktime(tp->tcp_wstamp_ns),
2527 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2528 		sock_hold(sk);
2529 	}
2530 	return true;
2531 }
2532 
2533 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2534 {
2535 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2536 
2537 	/* No skb in the rtx queue. */
2538 	if (!node)
2539 		return true;
2540 
2541 	/* Only one skb in rtx queue. */
2542 	return !node->rb_left && !node->rb_right;
2543 }
2544 
2545 /* TCP Small Queues :
2546  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2547  * (These limits are doubled for retransmits)
2548  * This allows for :
2549  *  - better RTT estimation and ACK scheduling
2550  *  - faster recovery
2551  *  - high rates
2552  * Alas, some drivers / subsystems require a fair amount
2553  * of queued bytes to ensure line rate.
2554  * One example is wifi aggregation (802.11 AMPDU)
2555  */
2556 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2557 				  unsigned int factor)
2558 {
2559 	unsigned long limit;
2560 
2561 	limit = max_t(unsigned long,
2562 		      2 * skb->truesize,
2563 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2564 	limit = min_t(unsigned long, limit,
2565 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2566 	limit <<= factor;
2567 
2568 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2569 	    tcp_sk(sk)->tcp_tx_delay) {
2570 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2571 				  tcp_sk(sk)->tcp_tx_delay;
2572 
2573 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2574 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2575 		 * USEC_PER_SEC is approximated by 2^20.
2576 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2577 		 */
2578 		extra_bytes >>= (20 - 1);
2579 		limit += extra_bytes;
2580 	}
2581 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2582 		/* Always send skb if rtx queue is empty or has one skb.
2583 		 * No need to wait for TX completion to call us back,
2584 		 * after softirq schedule.
2585 		 * This helps when TX completions are delayed too much.
2586 		 */
2587 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2588 			return false;
2589 
2590 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2591 		/* It is possible TX completion already happened
2592 		 * before we set TSQ_THROTTLED, so we must
2593 		 * test again the condition.
2594 		 */
2595 		smp_mb__after_atomic();
2596 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2597 			return true;
2598 	}
2599 	return false;
2600 }
2601 
2602 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2603 {
2604 	const u32 now = tcp_jiffies32;
2605 	enum tcp_chrono old = tp->chrono_type;
2606 
2607 	if (old > TCP_CHRONO_UNSPEC)
2608 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2609 	tp->chrono_start = now;
2610 	tp->chrono_type = new;
2611 }
2612 
2613 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2614 {
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 
2617 	/* If there are multiple conditions worthy of tracking in a
2618 	 * chronograph then the highest priority enum takes precedence
2619 	 * over the other conditions. So that if something "more interesting"
2620 	 * starts happening, stop the previous chrono and start a new one.
2621 	 */
2622 	if (type > tp->chrono_type)
2623 		tcp_chrono_set(tp, type);
2624 }
2625 
2626 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2627 {
2628 	struct tcp_sock *tp = tcp_sk(sk);
2629 
2630 
2631 	/* There are multiple conditions worthy of tracking in a
2632 	 * chronograph, so that the highest priority enum takes
2633 	 * precedence over the other conditions (see tcp_chrono_start).
2634 	 * If a condition stops, we only stop chrono tracking if
2635 	 * it's the "most interesting" or current chrono we are
2636 	 * tracking and starts busy chrono if we have pending data.
2637 	 */
2638 	if (tcp_rtx_and_write_queues_empty(sk))
2639 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2640 	else if (type == tp->chrono_type)
2641 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2642 }
2643 
2644 /* First skb in the write queue is smaller than ideal packet size.
2645  * Check if we can move payload from the second skb in the queue.
2646  */
2647 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2648 {
2649 	struct sk_buff *next_skb = skb->next;
2650 	unsigned int nlen;
2651 
2652 	if (tcp_skb_is_last(sk, skb))
2653 		return;
2654 
2655 	if (!tcp_skb_can_collapse(skb, next_skb))
2656 		return;
2657 
2658 	nlen = min_t(u32, amount, next_skb->len);
2659 	if (!nlen || !skb_shift(skb, next_skb, nlen))
2660 		return;
2661 
2662 	TCP_SKB_CB(skb)->end_seq += nlen;
2663 	TCP_SKB_CB(next_skb)->seq += nlen;
2664 
2665 	if (!next_skb->len) {
2666 		/* In case FIN is set, we need to update end_seq */
2667 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2668 
2669 		tcp_eat_one_skb(sk, skb, next_skb);
2670 	}
2671 }
2672 
2673 /* This routine writes packets to the network.  It advances the
2674  * send_head.  This happens as incoming acks open up the remote
2675  * window for us.
2676  *
2677  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2678  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2679  * account rare use of URG, this is not a big flaw.
2680  *
2681  * Send at most one packet when push_one > 0. Temporarily ignore
2682  * cwnd limit to force at most one packet out when push_one == 2.
2683 
2684  * Returns true, if no segments are in flight and we have queued segments,
2685  * but cannot send anything now because of SWS or another problem.
2686  */
2687 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2688 			   int push_one, gfp_t gfp)
2689 {
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 	struct sk_buff *skb;
2692 	unsigned int tso_segs, sent_pkts;
2693 	u32 cwnd_quota, max_segs;
2694 	int result;
2695 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2696 
2697 	sent_pkts = 0;
2698 
2699 	tcp_mstamp_refresh(tp);
2700 	if (!push_one) {
2701 		/* Do MTU probing. */
2702 		result = tcp_mtu_probe(sk);
2703 		if (!result) {
2704 			return false;
2705 		} else if (result > 0) {
2706 			sent_pkts = 1;
2707 		}
2708 	}
2709 
2710 	max_segs = tcp_tso_segs(sk, mss_now);
2711 	while ((skb = tcp_send_head(sk))) {
2712 		unsigned int limit;
2713 		int missing_bytes;
2714 
2715 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2716 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2717 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2718 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2719 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2720 			tcp_init_tso_segs(skb, mss_now);
2721 			goto repair; /* Skip network transmission */
2722 		}
2723 
2724 		if (tcp_pacing_check(sk))
2725 			break;
2726 
2727 		cwnd_quota = tcp_cwnd_test(tp);
2728 		if (!cwnd_quota) {
2729 			if (push_one == 2)
2730 				/* Force out a loss probe pkt. */
2731 				cwnd_quota = 1;
2732 			else
2733 				break;
2734 		}
2735 		cwnd_quota = min(cwnd_quota, max_segs);
2736 		missing_bytes = cwnd_quota * mss_now - skb->len;
2737 		if (missing_bytes > 0)
2738 			tcp_grow_skb(sk, skb, missing_bytes);
2739 
2740 		tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2741 
2742 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2743 			is_rwnd_limited = true;
2744 			break;
2745 		}
2746 
2747 		if (tso_segs == 1) {
2748 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2749 						     (tcp_skb_is_last(sk, skb) ?
2750 						      nonagle : TCP_NAGLE_PUSH))))
2751 				break;
2752 		} else {
2753 			if (!push_one &&
2754 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2755 						 &is_rwnd_limited, max_segs))
2756 				break;
2757 		}
2758 
2759 		limit = mss_now;
2760 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2761 			limit = tcp_mss_split_point(sk, skb, mss_now,
2762 						    cwnd_quota,
2763 						    nonagle);
2764 
2765 		if (skb->len > limit &&
2766 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2767 			break;
2768 
2769 		if (tcp_small_queue_check(sk, skb, 0))
2770 			break;
2771 
2772 		/* Argh, we hit an empty skb(), presumably a thread
2773 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2774 		 * We do not want to send a pure-ack packet and have
2775 		 * a strange looking rtx queue with empty packet(s).
2776 		 */
2777 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2778 			break;
2779 
2780 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2781 			break;
2782 
2783 repair:
2784 		/* Advance the send_head.  This one is sent out.
2785 		 * This call will increment packets_out.
2786 		 */
2787 		tcp_event_new_data_sent(sk, skb);
2788 
2789 		tcp_minshall_update(tp, mss_now, skb);
2790 		sent_pkts += tcp_skb_pcount(skb);
2791 
2792 		if (push_one)
2793 			break;
2794 	}
2795 
2796 	if (is_rwnd_limited)
2797 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2798 	else
2799 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2800 
2801 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2802 	if (likely(sent_pkts || is_cwnd_limited))
2803 		tcp_cwnd_validate(sk, is_cwnd_limited);
2804 
2805 	if (likely(sent_pkts)) {
2806 		if (tcp_in_cwnd_reduction(sk))
2807 			tp->prr_out += sent_pkts;
2808 
2809 		/* Send one loss probe per tail loss episode. */
2810 		if (push_one != 2)
2811 			tcp_schedule_loss_probe(sk, false);
2812 		return false;
2813 	}
2814 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2815 }
2816 
2817 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2818 {
2819 	struct inet_connection_sock *icsk = inet_csk(sk);
2820 	struct tcp_sock *tp = tcp_sk(sk);
2821 	u32 timeout, timeout_us, rto_delta_us;
2822 	int early_retrans;
2823 
2824 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2825 	 * finishes.
2826 	 */
2827 	if (rcu_access_pointer(tp->fastopen_rsk))
2828 		return false;
2829 
2830 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2831 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2832 	 * not in loss recovery, that are either limited by cwnd or application.
2833 	 */
2834 	if ((early_retrans != 3 && early_retrans != 4) ||
2835 	    !tp->packets_out || !tcp_is_sack(tp) ||
2836 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2837 	     icsk->icsk_ca_state != TCP_CA_CWR))
2838 		return false;
2839 
2840 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2841 	 * for delayed ack when there's one outstanding packet. If no RTT
2842 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2843 	 */
2844 	if (tp->srtt_us) {
2845 		timeout_us = tp->srtt_us >> 2;
2846 		if (tp->packets_out == 1)
2847 			timeout_us += tcp_rto_min_us(sk);
2848 		else
2849 			timeout_us += TCP_TIMEOUT_MIN_US;
2850 		timeout = usecs_to_jiffies(timeout_us);
2851 	} else {
2852 		timeout = TCP_TIMEOUT_INIT;
2853 	}
2854 
2855 	/* If the RTO formula yields an earlier time, then use that time. */
2856 	rto_delta_us = advancing_rto ?
2857 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2858 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2859 	if (rto_delta_us > 0)
2860 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2861 
2862 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true);
2863 	return true;
2864 }
2865 
2866 /* Thanks to skb fast clones, we can detect if a prior transmit of
2867  * a packet is still in a qdisc or driver queue.
2868  * In this case, there is very little point doing a retransmit !
2869  */
2870 static bool skb_still_in_host_queue(struct sock *sk,
2871 				    const struct sk_buff *skb)
2872 {
2873 	if (unlikely(skb_fclone_busy(sk, skb))) {
2874 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2875 		smp_mb__after_atomic();
2876 		if (skb_fclone_busy(sk, skb)) {
2877 			NET_INC_STATS(sock_net(sk),
2878 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2879 			return true;
2880 		}
2881 	}
2882 	return false;
2883 }
2884 
2885 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2886  * retransmit the last segment.
2887  */
2888 void tcp_send_loss_probe(struct sock *sk)
2889 {
2890 	struct tcp_sock *tp = tcp_sk(sk);
2891 	struct sk_buff *skb;
2892 	int pcount;
2893 	int mss = tcp_current_mss(sk);
2894 
2895 	/* At most one outstanding TLP */
2896 	if (tp->tlp_high_seq)
2897 		goto rearm_timer;
2898 
2899 	tp->tlp_retrans = 0;
2900 	skb = tcp_send_head(sk);
2901 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2902 		pcount = tp->packets_out;
2903 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2904 		if (tp->packets_out > pcount)
2905 			goto probe_sent;
2906 		goto rearm_timer;
2907 	}
2908 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2909 	if (unlikely(!skb)) {
2910 		tcp_warn_once(sk, tp->packets_out, "invalid inflight: ");
2911 		smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2912 		return;
2913 	}
2914 
2915 	if (skb_still_in_host_queue(sk, skb))
2916 		goto rearm_timer;
2917 
2918 	pcount = tcp_skb_pcount(skb);
2919 	if (WARN_ON(!pcount))
2920 		goto rearm_timer;
2921 
2922 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2923 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2924 					  (pcount - 1) * mss, mss,
2925 					  GFP_ATOMIC)))
2926 			goto rearm_timer;
2927 		skb = skb_rb_next(skb);
2928 	}
2929 
2930 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2931 		goto rearm_timer;
2932 
2933 	if (__tcp_retransmit_skb(sk, skb, 1))
2934 		goto rearm_timer;
2935 
2936 	tp->tlp_retrans = 1;
2937 
2938 probe_sent:
2939 	/* Record snd_nxt for loss detection. */
2940 	tp->tlp_high_seq = tp->snd_nxt;
2941 
2942 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2943 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2944 	smp_store_release(&inet_csk(sk)->icsk_pending, 0);
2945 rearm_timer:
2946 	tcp_rearm_rto(sk);
2947 }
2948 
2949 /* Push out any pending frames which were held back due to
2950  * TCP_CORK or attempt at coalescing tiny packets.
2951  * The socket must be locked by the caller.
2952  */
2953 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2954 			       int nonagle)
2955 {
2956 	/* If we are closed, the bytes will have to remain here.
2957 	 * In time closedown will finish, we empty the write queue and
2958 	 * all will be happy.
2959 	 */
2960 	if (unlikely(sk->sk_state == TCP_CLOSE))
2961 		return;
2962 
2963 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2964 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2965 		tcp_check_probe_timer(sk);
2966 }
2967 
2968 /* Send _single_ skb sitting at the send head. This function requires
2969  * true push pending frames to setup probe timer etc.
2970  */
2971 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2972 {
2973 	struct sk_buff *skb = tcp_send_head(sk);
2974 
2975 	BUG_ON(!skb || skb->len < mss_now);
2976 
2977 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2978 }
2979 
2980 /* This function returns the amount that we can raise the
2981  * usable window based on the following constraints
2982  *
2983  * 1. The window can never be shrunk once it is offered (RFC 793)
2984  * 2. We limit memory per socket
2985  *
2986  * RFC 1122:
2987  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2988  *  RECV.NEXT + RCV.WIN fixed until:
2989  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2990  *
2991  * i.e. don't raise the right edge of the window until you can raise
2992  * it at least MSS bytes.
2993  *
2994  * Unfortunately, the recommended algorithm breaks header prediction,
2995  * since header prediction assumes th->window stays fixed.
2996  *
2997  * Strictly speaking, keeping th->window fixed violates the receiver
2998  * side SWS prevention criteria. The problem is that under this rule
2999  * a stream of single byte packets will cause the right side of the
3000  * window to always advance by a single byte.
3001  *
3002  * Of course, if the sender implements sender side SWS prevention
3003  * then this will not be a problem.
3004  *
3005  * BSD seems to make the following compromise:
3006  *
3007  *	If the free space is less than the 1/4 of the maximum
3008  *	space available and the free space is less than 1/2 mss,
3009  *	then set the window to 0.
3010  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3011  *	Otherwise, just prevent the window from shrinking
3012  *	and from being larger than the largest representable value.
3013  *
3014  * This prevents incremental opening of the window in the regime
3015  * where TCP is limited by the speed of the reader side taking
3016  * data out of the TCP receive queue. It does nothing about
3017  * those cases where the window is constrained on the sender side
3018  * because the pipeline is full.
3019  *
3020  * BSD also seems to "accidentally" limit itself to windows that are a
3021  * multiple of MSS, at least until the free space gets quite small.
3022  * This would appear to be a side effect of the mbuf implementation.
3023  * Combining these two algorithms results in the observed behavior
3024  * of having a fixed window size at almost all times.
3025  *
3026  * Below we obtain similar behavior by forcing the offered window to
3027  * a multiple of the mss when it is feasible to do so.
3028  *
3029  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3030  * Regular options like TIMESTAMP are taken into account.
3031  */
3032 u32 __tcp_select_window(struct sock *sk)
3033 {
3034 	struct inet_connection_sock *icsk = inet_csk(sk);
3035 	struct tcp_sock *tp = tcp_sk(sk);
3036 	struct net *net = sock_net(sk);
3037 	/* MSS for the peer's data.  Previous versions used mss_clamp
3038 	 * here.  I don't know if the value based on our guesses
3039 	 * of peer's MSS is better for the performance.  It's more correct
3040 	 * but may be worse for the performance because of rcv_mss
3041 	 * fluctuations.  --SAW  1998/11/1
3042 	 */
3043 	int mss = icsk->icsk_ack.rcv_mss;
3044 	int free_space = tcp_space(sk);
3045 	int allowed_space = tcp_full_space(sk);
3046 	int full_space, window;
3047 
3048 	if (sk_is_mptcp(sk))
3049 		mptcp_space(sk, &free_space, &allowed_space);
3050 
3051 	full_space = min_t(int, tp->window_clamp, allowed_space);
3052 
3053 	if (unlikely(mss > full_space)) {
3054 		mss = full_space;
3055 		if (mss <= 0)
3056 			return 0;
3057 	}
3058 
3059 	/* Only allow window shrink if the sysctl is enabled and we have
3060 	 * a non-zero scaling factor in effect.
3061 	 */
3062 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3063 		goto shrink_window_allowed;
3064 
3065 	/* do not allow window to shrink */
3066 
3067 	if (free_space < (full_space >> 1)) {
3068 		icsk->icsk_ack.quick = 0;
3069 
3070 		if (tcp_under_memory_pressure(sk))
3071 			tcp_adjust_rcv_ssthresh(sk);
3072 
3073 		/* free_space might become our new window, make sure we don't
3074 		 * increase it due to wscale.
3075 		 */
3076 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3077 
3078 		/* if free space is less than mss estimate, or is below 1/16th
3079 		 * of the maximum allowed, try to move to zero-window, else
3080 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3081 		 * new incoming data is dropped due to memory limits.
3082 		 * With large window, mss test triggers way too late in order
3083 		 * to announce zero window in time before rmem limit kicks in.
3084 		 */
3085 		if (free_space < (allowed_space >> 4) || free_space < mss)
3086 			return 0;
3087 	}
3088 
3089 	if (free_space > tp->rcv_ssthresh)
3090 		free_space = tp->rcv_ssthresh;
3091 
3092 	/* Don't do rounding if we are using window scaling, since the
3093 	 * scaled window will not line up with the MSS boundary anyway.
3094 	 */
3095 	if (tp->rx_opt.rcv_wscale) {
3096 		window = free_space;
3097 
3098 		/* Advertise enough space so that it won't get scaled away.
3099 		 * Import case: prevent zero window announcement if
3100 		 * 1<<rcv_wscale > mss.
3101 		 */
3102 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3103 	} else {
3104 		window = tp->rcv_wnd;
3105 		/* Get the largest window that is a nice multiple of mss.
3106 		 * Window clamp already applied above.
3107 		 * If our current window offering is within 1 mss of the
3108 		 * free space we just keep it. This prevents the divide
3109 		 * and multiply from happening most of the time.
3110 		 * We also don't do any window rounding when the free space
3111 		 * is too small.
3112 		 */
3113 		if (window <= free_space - mss || window > free_space)
3114 			window = rounddown(free_space, mss);
3115 		else if (mss == full_space &&
3116 			 free_space > window + (full_space >> 1))
3117 			window = free_space;
3118 	}
3119 
3120 	return window;
3121 
3122 shrink_window_allowed:
3123 	/* new window should always be an exact multiple of scaling factor */
3124 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3125 
3126 	if (free_space < (full_space >> 1)) {
3127 		icsk->icsk_ack.quick = 0;
3128 
3129 		if (tcp_under_memory_pressure(sk))
3130 			tcp_adjust_rcv_ssthresh(sk);
3131 
3132 		/* if free space is too low, return a zero window */
3133 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3134 			free_space < (1 << tp->rx_opt.rcv_wscale))
3135 			return 0;
3136 	}
3137 
3138 	if (free_space > tp->rcv_ssthresh) {
3139 		free_space = tp->rcv_ssthresh;
3140 		/* new window should always be an exact multiple of scaling factor
3141 		 *
3142 		 * For this case, we ALIGN "up" (increase free_space) because
3143 		 * we know free_space is not zero here, it has been reduced from
3144 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3145 		 * (unlike sk_rcvbuf).
3146 		 */
3147 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3148 	}
3149 
3150 	return free_space;
3151 }
3152 
3153 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3154 			     const struct sk_buff *next_skb)
3155 {
3156 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3157 		const struct skb_shared_info *next_shinfo =
3158 			skb_shinfo(next_skb);
3159 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3160 
3161 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3162 		shinfo->tskey = next_shinfo->tskey;
3163 		TCP_SKB_CB(skb)->txstamp_ack |=
3164 			TCP_SKB_CB(next_skb)->txstamp_ack;
3165 	}
3166 }
3167 
3168 /* Collapses two adjacent SKB's during retransmission. */
3169 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3170 {
3171 	struct tcp_sock *tp = tcp_sk(sk);
3172 	struct sk_buff *next_skb = skb_rb_next(skb);
3173 	int next_skb_size;
3174 
3175 	next_skb_size = next_skb->len;
3176 
3177 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3178 
3179 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3180 		return false;
3181 
3182 	tcp_highest_sack_replace(sk, next_skb, skb);
3183 
3184 	/* Update sequence range on original skb. */
3185 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3186 
3187 	/* Merge over control information. This moves PSH/FIN etc. over */
3188 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3189 
3190 	/* All done, get rid of second SKB and account for it so
3191 	 * packet counting does not break.
3192 	 */
3193 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3194 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3195 
3196 	/* changed transmit queue under us so clear hints */
3197 	if (next_skb == tp->retransmit_skb_hint)
3198 		tp->retransmit_skb_hint = skb;
3199 
3200 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3201 
3202 	tcp_skb_collapse_tstamp(skb, next_skb);
3203 
3204 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3205 	return true;
3206 }
3207 
3208 /* Check if coalescing SKBs is legal. */
3209 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3210 {
3211 	if (tcp_skb_pcount(skb) > 1)
3212 		return false;
3213 	if (skb_cloned(skb))
3214 		return false;
3215 	if (!skb_frags_readable(skb))
3216 		return false;
3217 	/* Some heuristics for collapsing over SACK'd could be invented */
3218 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3219 		return false;
3220 
3221 	return true;
3222 }
3223 
3224 /* Collapse packets in the retransmit queue to make to create
3225  * less packets on the wire. This is only done on retransmission.
3226  */
3227 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3228 				     int space)
3229 {
3230 	struct tcp_sock *tp = tcp_sk(sk);
3231 	struct sk_buff *skb = to, *tmp;
3232 	bool first = true;
3233 
3234 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3235 		return;
3236 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3237 		return;
3238 
3239 	skb_rbtree_walk_from_safe(skb, tmp) {
3240 		if (!tcp_can_collapse(sk, skb))
3241 			break;
3242 
3243 		if (!tcp_skb_can_collapse(to, skb))
3244 			break;
3245 
3246 		space -= skb->len;
3247 
3248 		if (first) {
3249 			first = false;
3250 			continue;
3251 		}
3252 
3253 		if (space < 0)
3254 			break;
3255 
3256 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3257 			break;
3258 
3259 		if (!tcp_collapse_retrans(sk, to))
3260 			break;
3261 	}
3262 }
3263 
3264 /* This retransmits one SKB.  Policy decisions and retransmit queue
3265  * state updates are done by the caller.  Returns non-zero if an
3266  * error occurred which prevented the send.
3267  */
3268 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3269 {
3270 	struct inet_connection_sock *icsk = inet_csk(sk);
3271 	struct tcp_sock *tp = tcp_sk(sk);
3272 	unsigned int cur_mss;
3273 	int diff, len, err;
3274 	int avail_wnd;
3275 
3276 	/* Inconclusive MTU probe */
3277 	if (icsk->icsk_mtup.probe_size)
3278 		icsk->icsk_mtup.probe_size = 0;
3279 
3280 	if (skb_still_in_host_queue(sk, skb)) {
3281 		err = -EBUSY;
3282 		goto out;
3283 	}
3284 
3285 start:
3286 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3287 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3288 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3289 			TCP_SKB_CB(skb)->seq++;
3290 			goto start;
3291 		}
3292 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3293 			WARN_ON_ONCE(1);
3294 			err = -EINVAL;
3295 			goto out;
3296 		}
3297 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) {
3298 			err = -ENOMEM;
3299 			goto out;
3300 		}
3301 	}
3302 
3303 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) {
3304 		err = -EHOSTUNREACH; /* Routing failure or similar. */
3305 		goto out;
3306 	}
3307 
3308 	cur_mss = tcp_current_mss(sk);
3309 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3310 
3311 	/* If receiver has shrunk his window, and skb is out of
3312 	 * new window, do not retransmit it. The exception is the
3313 	 * case, when window is shrunk to zero. In this case
3314 	 * our retransmit of one segment serves as a zero window probe.
3315 	 */
3316 	if (avail_wnd <= 0) {
3317 		if (TCP_SKB_CB(skb)->seq != tp->snd_una) {
3318 			err = -EAGAIN;
3319 			goto out;
3320 		}
3321 		avail_wnd = cur_mss;
3322 	}
3323 
3324 	len = cur_mss * segs;
3325 	if (len > avail_wnd) {
3326 		len = rounddown(avail_wnd, cur_mss);
3327 		if (!len)
3328 			len = avail_wnd;
3329 	}
3330 	if (skb->len > len) {
3331 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3332 				 cur_mss, GFP_ATOMIC)) {
3333 			err = -ENOMEM;  /* We'll try again later. */
3334 			goto out;
3335 		}
3336 	} else {
3337 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) {
3338 			err = -ENOMEM;
3339 			goto out;
3340 		}
3341 
3342 		diff = tcp_skb_pcount(skb);
3343 		tcp_set_skb_tso_segs(skb, cur_mss);
3344 		diff -= tcp_skb_pcount(skb);
3345 		if (diff)
3346 			tcp_adjust_pcount(sk, skb, diff);
3347 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3348 		if (skb->len < avail_wnd)
3349 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3350 	}
3351 
3352 	/* RFC3168, section 6.1.1.1. ECN fallback */
3353 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3354 		tcp_ecn_clear_syn(sk, skb);
3355 
3356 	/* Update global and local TCP statistics. */
3357 	segs = tcp_skb_pcount(skb);
3358 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3359 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3360 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3361 	tp->total_retrans += segs;
3362 	tp->bytes_retrans += skb->len;
3363 
3364 	/* make sure skb->data is aligned on arches that require it
3365 	 * and check if ack-trimming & collapsing extended the headroom
3366 	 * beyond what csum_start can cover.
3367 	 */
3368 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3369 		     skb_headroom(skb) >= 0xFFFF)) {
3370 		struct sk_buff *nskb;
3371 
3372 		tcp_skb_tsorted_save(skb) {
3373 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3374 			if (nskb) {
3375 				nskb->dev = NULL;
3376 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3377 			} else {
3378 				err = -ENOBUFS;
3379 			}
3380 		} tcp_skb_tsorted_restore(skb);
3381 
3382 		if (!err) {
3383 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3384 			tcp_rate_skb_sent(sk, skb);
3385 		}
3386 	} else {
3387 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3388 	}
3389 
3390 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3391 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3392 				  TCP_SKB_CB(skb)->seq, segs, err);
3393 
3394 	if (unlikely(err) && err != -EBUSY)
3395 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3396 
3397 	/* To avoid taking spuriously low RTT samples based on a timestamp
3398 	 * for a transmit that never happened, always mark EVER_RETRANS
3399 	 */
3400 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3401 
3402 out:
3403 	trace_tcp_retransmit_skb(sk, skb, err);
3404 	return err;
3405 }
3406 
3407 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3408 {
3409 	struct tcp_sock *tp = tcp_sk(sk);
3410 	int err = __tcp_retransmit_skb(sk, skb, segs);
3411 
3412 	if (err == 0) {
3413 #if FASTRETRANS_DEBUG > 0
3414 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3415 			net_dbg_ratelimited("retrans_out leaked\n");
3416 		}
3417 #endif
3418 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3419 		tp->retrans_out += tcp_skb_pcount(skb);
3420 	}
3421 
3422 	/* Save stamp of the first (attempted) retransmit. */
3423 	if (!tp->retrans_stamp)
3424 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3425 
3426 	if (tp->undo_retrans < 0)
3427 		tp->undo_retrans = 0;
3428 	tp->undo_retrans += tcp_skb_pcount(skb);
3429 	return err;
3430 }
3431 
3432 /* This gets called after a retransmit timeout, and the initially
3433  * retransmitted data is acknowledged.  It tries to continue
3434  * resending the rest of the retransmit queue, until either
3435  * we've sent it all or the congestion window limit is reached.
3436  */
3437 void tcp_xmit_retransmit_queue(struct sock *sk)
3438 {
3439 	const struct inet_connection_sock *icsk = inet_csk(sk);
3440 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3441 	struct tcp_sock *tp = tcp_sk(sk);
3442 	bool rearm_timer = false;
3443 	u32 max_segs;
3444 	int mib_idx;
3445 
3446 	if (!tp->packets_out)
3447 		return;
3448 
3449 	rtx_head = tcp_rtx_queue_head(sk);
3450 	skb = tp->retransmit_skb_hint ?: rtx_head;
3451 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3452 	skb_rbtree_walk_from(skb) {
3453 		__u8 sacked;
3454 		int segs;
3455 
3456 		if (tcp_pacing_check(sk))
3457 			break;
3458 
3459 		/* we could do better than to assign each time */
3460 		if (!hole)
3461 			tp->retransmit_skb_hint = skb;
3462 
3463 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3464 		if (segs <= 0)
3465 			break;
3466 		sacked = TCP_SKB_CB(skb)->sacked;
3467 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3468 		 * we need to make sure not sending too bigs TSO packets
3469 		 */
3470 		segs = min_t(int, segs, max_segs);
3471 
3472 		if (tp->retrans_out >= tp->lost_out) {
3473 			break;
3474 		} else if (!(sacked & TCPCB_LOST)) {
3475 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3476 				hole = skb;
3477 			continue;
3478 
3479 		} else {
3480 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3481 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3482 			else
3483 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3484 		}
3485 
3486 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3487 			continue;
3488 
3489 		if (tcp_small_queue_check(sk, skb, 1))
3490 			break;
3491 
3492 		if (tcp_retransmit_skb(sk, skb, segs))
3493 			break;
3494 
3495 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3496 
3497 		if (tcp_in_cwnd_reduction(sk))
3498 			tp->prr_out += tcp_skb_pcount(skb);
3499 
3500 		if (skb == rtx_head &&
3501 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3502 			rearm_timer = true;
3503 
3504 	}
3505 	if (rearm_timer)
3506 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3507 				     inet_csk(sk)->icsk_rto, true);
3508 }
3509 
3510 /* We allow to exceed memory limits for FIN packets to expedite
3511  * connection tear down and (memory) recovery.
3512  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3513  * or even be forced to close flow without any FIN.
3514  * In general, we want to allow one skb per socket to avoid hangs
3515  * with edge trigger epoll()
3516  */
3517 void sk_forced_mem_schedule(struct sock *sk, int size)
3518 {
3519 	int delta, amt;
3520 
3521 	delta = size - sk->sk_forward_alloc;
3522 	if (delta <= 0)
3523 		return;
3524 	amt = sk_mem_pages(delta);
3525 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3526 	sk_memory_allocated_add(sk, amt);
3527 
3528 	if (mem_cgroup_sk_enabled(sk))
3529 		mem_cgroup_sk_charge(sk, amt, gfp_memcg_charge() | __GFP_NOFAIL);
3530 }
3531 
3532 /* Send a FIN. The caller locks the socket for us.
3533  * We should try to send a FIN packet really hard, but eventually give up.
3534  */
3535 void tcp_send_fin(struct sock *sk)
3536 {
3537 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3538 	struct tcp_sock *tp = tcp_sk(sk);
3539 
3540 	/* Optimization, tack on the FIN if we have one skb in write queue and
3541 	 * this skb was not yet sent, or we are under memory pressure.
3542 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3543 	 * as TCP stack thinks it has already been transmitted.
3544 	 */
3545 	tskb = tail;
3546 	if (!tskb && tcp_under_memory_pressure(sk))
3547 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3548 
3549 	if (tskb) {
3550 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3551 		TCP_SKB_CB(tskb)->end_seq++;
3552 		tp->write_seq++;
3553 		if (!tail) {
3554 			/* This means tskb was already sent.
3555 			 * Pretend we included the FIN on previous transmit.
3556 			 * We need to set tp->snd_nxt to the value it would have
3557 			 * if FIN had been sent. This is because retransmit path
3558 			 * does not change tp->snd_nxt.
3559 			 */
3560 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3561 			return;
3562 		}
3563 	} else {
3564 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3565 				       sk_gfp_mask(sk, GFP_ATOMIC |
3566 						       __GFP_NOWARN));
3567 		if (unlikely(!skb))
3568 			return;
3569 
3570 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3571 		skb_reserve(skb, MAX_TCP_HEADER);
3572 		sk_forced_mem_schedule(sk, skb->truesize);
3573 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3574 		tcp_init_nondata_skb(skb, tp->write_seq,
3575 				     TCPHDR_ACK | TCPHDR_FIN);
3576 		tcp_queue_skb(sk, skb);
3577 	}
3578 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3579 }
3580 
3581 /* We get here when a process closes a file descriptor (either due to
3582  * an explicit close() or as a byproduct of exit()'ing) and there
3583  * was unread data in the receive queue.  This behavior is recommended
3584  * by RFC 2525, section 2.17.  -DaveM
3585  */
3586 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3587 			   enum sk_rst_reason reason)
3588 {
3589 	struct sk_buff *skb;
3590 
3591 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3592 
3593 	/* NOTE: No TCP options attached and we never retransmit this. */
3594 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3595 	if (!skb) {
3596 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3597 		return;
3598 	}
3599 
3600 	/* Reserve space for headers and prepare control bits. */
3601 	skb_reserve(skb, MAX_TCP_HEADER);
3602 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3603 			     TCPHDR_ACK | TCPHDR_RST);
3604 	tcp_mstamp_refresh(tcp_sk(sk));
3605 	/* Send it off. */
3606 	if (tcp_transmit_skb(sk, skb, 0, priority))
3607 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3608 
3609 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3610 	 * skb here is different to the troublesome skb, so use NULL
3611 	 */
3612 	trace_tcp_send_reset(sk, NULL, reason);
3613 }
3614 
3615 /* Send a crossed SYN-ACK during socket establishment.
3616  * WARNING: This routine must only be called when we have already sent
3617  * a SYN packet that crossed the incoming SYN that caused this routine
3618  * to get called. If this assumption fails then the initial rcv_wnd
3619  * and rcv_wscale values will not be correct.
3620  */
3621 int tcp_send_synack(struct sock *sk)
3622 {
3623 	struct sk_buff *skb;
3624 
3625 	skb = tcp_rtx_queue_head(sk);
3626 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3627 		pr_err("%s: wrong queue state\n", __func__);
3628 		return -EFAULT;
3629 	}
3630 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3631 		if (skb_cloned(skb)) {
3632 			struct sk_buff *nskb;
3633 
3634 			tcp_skb_tsorted_save(skb) {
3635 				nskb = skb_copy(skb, GFP_ATOMIC);
3636 			} tcp_skb_tsorted_restore(skb);
3637 			if (!nskb)
3638 				return -ENOMEM;
3639 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3640 			tcp_highest_sack_replace(sk, skb, nskb);
3641 			tcp_rtx_queue_unlink_and_free(skb, sk);
3642 			__skb_header_release(nskb);
3643 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3644 			sk_wmem_queued_add(sk, nskb->truesize);
3645 			sk_mem_charge(sk, nskb->truesize);
3646 			skb = nskb;
3647 		}
3648 
3649 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3650 		tcp_ecn_send_synack(sk, skb);
3651 	}
3652 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3653 }
3654 
3655 /**
3656  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3657  * @sk: listener socket
3658  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3659  *       should not use it again.
3660  * @req: request_sock pointer
3661  * @foc: cookie for tcp fast open
3662  * @synack_type: Type of synack to prepare
3663  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3664  */
3665 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3666 				struct request_sock *req,
3667 				struct tcp_fastopen_cookie *foc,
3668 				enum tcp_synack_type synack_type,
3669 				struct sk_buff *syn_skb)
3670 {
3671 	struct inet_request_sock *ireq = inet_rsk(req);
3672 	const struct tcp_sock *tp = tcp_sk(sk);
3673 	struct tcp_out_options opts;
3674 	struct tcp_key key = {};
3675 	struct sk_buff *skb;
3676 	int tcp_header_size;
3677 	struct tcphdr *th;
3678 	int mss;
3679 	u64 now;
3680 
3681 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3682 	if (unlikely(!skb)) {
3683 		dst_release(dst);
3684 		return NULL;
3685 	}
3686 	/* Reserve space for headers. */
3687 	skb_reserve(skb, MAX_TCP_HEADER);
3688 
3689 	switch (synack_type) {
3690 	case TCP_SYNACK_NORMAL:
3691 		skb_set_owner_edemux(skb, req_to_sk(req));
3692 		break;
3693 	case TCP_SYNACK_COOKIE:
3694 		/* Under synflood, we do not attach skb to a socket,
3695 		 * to avoid false sharing.
3696 		 */
3697 		break;
3698 	case TCP_SYNACK_FASTOPEN:
3699 		/* sk is a const pointer, because we want to express multiple
3700 		 * cpu might call us concurrently.
3701 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3702 		 */
3703 		skb_set_owner_w(skb, (struct sock *)sk);
3704 		break;
3705 	}
3706 	skb_dst_set(skb, dst);
3707 
3708 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3709 
3710 	memset(&opts, 0, sizeof(opts));
3711 	now = tcp_clock_ns();
3712 #ifdef CONFIG_SYN_COOKIES
3713 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3714 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3715 				      SKB_CLOCK_MONOTONIC);
3716 	else
3717 #endif
3718 	{
3719 		skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3720 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3721 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3722 	}
3723 
3724 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3725 	rcu_read_lock();
3726 #endif
3727 	if (tcp_rsk_used_ao(req)) {
3728 #ifdef CONFIG_TCP_AO
3729 		struct tcp_ao_key *ao_key = NULL;
3730 		u8 keyid = tcp_rsk(req)->ao_keyid;
3731 		u8 rnext = tcp_rsk(req)->ao_rcv_next;
3732 
3733 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3734 							    keyid, -1);
3735 		/* If there is no matching key - avoid sending anything,
3736 		 * especially usigned segments. It could try harder and lookup
3737 		 * for another peer-matching key, but the peer has requested
3738 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3739 		 */
3740 		if (unlikely(!ao_key)) {
3741 			trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3742 			rcu_read_unlock();
3743 			kfree_skb(skb);
3744 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3745 					     keyid);
3746 			return NULL;
3747 		}
3748 		key.ao_key = ao_key;
3749 		key.type = TCP_KEY_AO;
3750 #endif
3751 	} else {
3752 #ifdef CONFIG_TCP_MD5SIG
3753 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3754 					req_to_sk(req));
3755 		if (key.md5_key)
3756 			key.type = TCP_KEY_MD5;
3757 #endif
3758 	}
3759 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3760 	/* bpf program will be interested in the tcp_flags */
3761 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3762 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3763 					     &key, foc, synack_type, syn_skb)
3764 					+ sizeof(*th);
3765 
3766 	skb_push(skb, tcp_header_size);
3767 	skb_reset_transport_header(skb);
3768 
3769 	th = (struct tcphdr *)skb->data;
3770 	memset(th, 0, sizeof(struct tcphdr));
3771 	th->syn = 1;
3772 	th->ack = 1;
3773 	tcp_ecn_make_synack(req, th);
3774 	th->source = htons(ireq->ir_num);
3775 	th->dest = ireq->ir_rmt_port;
3776 	skb->mark = ireq->ir_mark;
3777 	skb->ip_summed = CHECKSUM_PARTIAL;
3778 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3779 	/* XXX data is queued and acked as is. No buffer/window check */
3780 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3781 
3782 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3783 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3784 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3785 	th->doff = (tcp_header_size >> 2);
3786 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3787 
3788 	/* Okay, we have all we need - do the md5 hash if needed */
3789 	if (tcp_key_is_md5(&key)) {
3790 #ifdef CONFIG_TCP_MD5SIG
3791 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3792 					key.md5_key, req_to_sk(req), skb);
3793 #endif
3794 	} else if (tcp_key_is_ao(&key)) {
3795 #ifdef CONFIG_TCP_AO
3796 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3797 					key.ao_key, req, skb,
3798 					opts.hash_location - (u8 *)th, 0);
3799 #endif
3800 	}
3801 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3802 	rcu_read_unlock();
3803 #endif
3804 
3805 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3806 				synack_type, &opts);
3807 
3808 	skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3809 	tcp_add_tx_delay(skb, tp);
3810 
3811 	return skb;
3812 }
3813 EXPORT_IPV6_MOD(tcp_make_synack);
3814 
3815 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3816 {
3817 	struct inet_connection_sock *icsk = inet_csk(sk);
3818 	const struct tcp_congestion_ops *ca;
3819 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3820 
3821 	if (ca_key == TCP_CA_UNSPEC)
3822 		return;
3823 
3824 	rcu_read_lock();
3825 	ca = tcp_ca_find_key(ca_key);
3826 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3827 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3828 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3829 		icsk->icsk_ca_ops = ca;
3830 	}
3831 	rcu_read_unlock();
3832 }
3833 
3834 /* Do all connect socket setups that can be done AF independent. */
3835 static void tcp_connect_init(struct sock *sk)
3836 {
3837 	const struct dst_entry *dst = __sk_dst_get(sk);
3838 	struct tcp_sock *tp = tcp_sk(sk);
3839 	__u8 rcv_wscale;
3840 	u16 user_mss;
3841 	u32 rcv_wnd;
3842 
3843 	/* We'll fix this up when we get a response from the other end.
3844 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3845 	 */
3846 	tp->tcp_header_len = sizeof(struct tcphdr);
3847 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3848 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3849 
3850 	tcp_ao_connect_init(sk);
3851 
3852 	/* If user gave his TCP_MAXSEG, record it to clamp */
3853 	user_mss = READ_ONCE(tp->rx_opt.user_mss);
3854 	if (user_mss)
3855 		tp->rx_opt.mss_clamp = user_mss;
3856 	tp->max_window = 0;
3857 	tcp_mtup_init(sk);
3858 	tcp_sync_mss(sk, dst_mtu(dst));
3859 
3860 	tcp_ca_dst_init(sk, dst);
3861 
3862 	if (!tp->window_clamp)
3863 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3864 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3865 
3866 	tcp_initialize_rcv_mss(sk);
3867 
3868 	/* limit the window selection if the user enforce a smaller rx buffer */
3869 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3870 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3871 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3872 
3873 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3874 	if (rcv_wnd == 0)
3875 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3876 
3877 	tcp_select_initial_window(sk, tcp_full_space(sk),
3878 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3879 				  &tp->rcv_wnd,
3880 				  &tp->window_clamp,
3881 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3882 				  &rcv_wscale,
3883 				  rcv_wnd);
3884 
3885 	tp->rx_opt.rcv_wscale = rcv_wscale;
3886 	tp->rcv_ssthresh = tp->rcv_wnd;
3887 
3888 	WRITE_ONCE(sk->sk_err, 0);
3889 	sock_reset_flag(sk, SOCK_DONE);
3890 	tp->snd_wnd = 0;
3891 	tcp_init_wl(tp, 0);
3892 	tcp_write_queue_purge(sk);
3893 	tp->snd_una = tp->write_seq;
3894 	tp->snd_sml = tp->write_seq;
3895 	tp->snd_up = tp->write_seq;
3896 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3897 
3898 	if (likely(!tp->repair))
3899 		tp->rcv_nxt = 0;
3900 	else
3901 		tp->rcv_tstamp = tcp_jiffies32;
3902 	tp->rcv_wup = tp->rcv_nxt;
3903 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3904 
3905 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3906 	WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
3907 	tcp_clear_retrans(tp);
3908 }
3909 
3910 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3911 {
3912 	struct tcp_sock *tp = tcp_sk(sk);
3913 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3914 
3915 	tcb->end_seq += skb->len;
3916 	__skb_header_release(skb);
3917 	sk_wmem_queued_add(sk, skb->truesize);
3918 	sk_mem_charge(sk, skb->truesize);
3919 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3920 	tp->packets_out += tcp_skb_pcount(skb);
3921 }
3922 
3923 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3924  * queue a data-only packet after the regular SYN, such that regular SYNs
3925  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3926  * only the SYN sequence, the data are retransmitted in the first ACK.
3927  * If cookie is not cached or other error occurs, falls back to send a
3928  * regular SYN with Fast Open cookie request option.
3929  */
3930 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3931 {
3932 	struct inet_connection_sock *icsk = inet_csk(sk);
3933 	struct tcp_sock *tp = tcp_sk(sk);
3934 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3935 	struct page_frag *pfrag = sk_page_frag(sk);
3936 	struct sk_buff *syn_data;
3937 	int space, err = 0;
3938 
3939 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3940 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3941 		goto fallback;
3942 
3943 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3944 	 * user-MSS. Reserve maximum option space for middleboxes that add
3945 	 * private TCP options. The cost is reduced data space in SYN :(
3946 	 */
3947 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3948 	/* Sync mss_cache after updating the mss_clamp */
3949 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3950 
3951 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3952 		MAX_TCP_OPTION_SPACE;
3953 
3954 	space = min_t(size_t, space, fo->size);
3955 
3956 	if (space &&
3957 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3958 				  pfrag, sk->sk_allocation))
3959 		goto fallback;
3960 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3961 	if (!syn_data)
3962 		goto fallback;
3963 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3964 	if (space) {
3965 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3966 		space = tcp_wmem_schedule(sk, space);
3967 	}
3968 	if (space) {
3969 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3970 					    space, &fo->data->msg_iter);
3971 		if (unlikely(!space)) {
3972 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3973 			kfree_skb(syn_data);
3974 			goto fallback;
3975 		}
3976 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3977 				   pfrag->offset, space);
3978 		page_ref_inc(pfrag->page);
3979 		pfrag->offset += space;
3980 		skb_len_add(syn_data, space);
3981 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3982 	}
3983 	/* No more data pending in inet_wait_for_connect() */
3984 	if (space == fo->size)
3985 		fo->data = NULL;
3986 	fo->copied = space;
3987 
3988 	tcp_connect_queue_skb(sk, syn_data);
3989 	if (syn_data->len)
3990 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3991 
3992 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3993 
3994 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
3995 
3996 	/* Now full SYN+DATA was cloned and sent (or not),
3997 	 * remove the SYN from the original skb (syn_data)
3998 	 * we keep in write queue in case of a retransmit, as we
3999 	 * also have the SYN packet (with no data) in the same queue.
4000 	 */
4001 	TCP_SKB_CB(syn_data)->seq++;
4002 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4003 	if (!err) {
4004 		tp->syn_data = (fo->copied > 0);
4005 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4006 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4007 		goto done;
4008 	}
4009 
4010 	/* data was not sent, put it in write_queue */
4011 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4012 	tp->packets_out -= tcp_skb_pcount(syn_data);
4013 
4014 fallback:
4015 	/* Send a regular SYN with Fast Open cookie request option */
4016 	if (fo->cookie.len > 0)
4017 		fo->cookie.len = 0;
4018 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4019 	if (err)
4020 		tp->syn_fastopen = 0;
4021 done:
4022 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4023 	return err;
4024 }
4025 
4026 /* Build a SYN and send it off. */
4027 int tcp_connect(struct sock *sk)
4028 {
4029 	struct tcp_sock *tp = tcp_sk(sk);
4030 	struct sk_buff *buff;
4031 	int err;
4032 
4033 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4034 
4035 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4036 	/* Has to be checked late, after setting daddr/saddr/ops.
4037 	 * Return error if the peer has both a md5 and a tcp-ao key
4038 	 * configured as this is ambiguous.
4039 	 */
4040 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4041 					       lockdep_sock_is_held(sk)))) {
4042 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4043 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4044 		struct tcp_ao_info *ao_info;
4045 
4046 		ao_info = rcu_dereference_check(tp->ao_info,
4047 						lockdep_sock_is_held(sk));
4048 		if (ao_info) {
4049 			/* This is an extra check: tcp_ao_required() in
4050 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4051 			 * md5 keys on ao_required socket.
4052 			 */
4053 			needs_ao |= ao_info->ao_required;
4054 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4055 		}
4056 		if (needs_md5 && needs_ao)
4057 			return -EKEYREJECTED;
4058 
4059 		/* If we have a matching md5 key and no matching tcp-ao key
4060 		 * then free up ao_info if allocated.
4061 		 */
4062 		if (needs_md5) {
4063 			tcp_ao_destroy_sock(sk, false);
4064 		} else if (needs_ao) {
4065 			tcp_clear_md5_list(sk);
4066 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4067 						  lockdep_sock_is_held(sk)));
4068 		}
4069 	}
4070 #endif
4071 #ifdef CONFIG_TCP_AO
4072 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4073 					       lockdep_sock_is_held(sk)))) {
4074 		/* Don't allow connecting if ao is configured but no
4075 		 * matching key is found.
4076 		 */
4077 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4078 			return -EKEYREJECTED;
4079 	}
4080 #endif
4081 
4082 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4083 		return -EHOSTUNREACH; /* Routing failure or similar. */
4084 
4085 	tcp_connect_init(sk);
4086 
4087 	if (unlikely(tp->repair)) {
4088 		tcp_finish_connect(sk, NULL);
4089 		return 0;
4090 	}
4091 
4092 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4093 	if (unlikely(!buff))
4094 		return -ENOBUFS;
4095 
4096 	/* SYN eats a sequence byte, write_seq updated by
4097 	 * tcp_connect_queue_skb().
4098 	 */
4099 	tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN);
4100 	tcp_mstamp_refresh(tp);
4101 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4102 	tcp_connect_queue_skb(sk, buff);
4103 	tcp_ecn_send_syn(sk, buff);
4104 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4105 
4106 	/* Send off SYN; include data in Fast Open. */
4107 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4108 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4109 	if (err == -ECONNREFUSED)
4110 		return err;
4111 
4112 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4113 	 * in order to make this packet get counted in tcpOutSegs.
4114 	 */
4115 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4116 	tp->pushed_seq = tp->write_seq;
4117 	buff = tcp_send_head(sk);
4118 	if (unlikely(buff)) {
4119 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4120 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4121 	}
4122 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4123 
4124 	/* Timer for repeating the SYN until an answer. */
4125 	tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4126 			     inet_csk(sk)->icsk_rto, false);
4127 	return 0;
4128 }
4129 EXPORT_SYMBOL(tcp_connect);
4130 
4131 u32 tcp_delack_max(const struct sock *sk)
4132 {
4133 	u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4134 
4135 	return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min);
4136 }
4137 
4138 /* Send out a delayed ack, the caller does the policy checking
4139  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4140  * for details.
4141  */
4142 void tcp_send_delayed_ack(struct sock *sk)
4143 {
4144 	struct inet_connection_sock *icsk = inet_csk(sk);
4145 	int ato = icsk->icsk_ack.ato;
4146 	unsigned long timeout;
4147 
4148 	if (ato > TCP_DELACK_MIN) {
4149 		const struct tcp_sock *tp = tcp_sk(sk);
4150 		int max_ato = HZ / 2;
4151 
4152 		if (inet_csk_in_pingpong_mode(sk) ||
4153 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4154 			max_ato = TCP_DELACK_MAX;
4155 
4156 		/* Slow path, intersegment interval is "high". */
4157 
4158 		/* If some rtt estimate is known, use it to bound delayed ack.
4159 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4160 		 * directly.
4161 		 */
4162 		if (tp->srtt_us) {
4163 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4164 					TCP_DELACK_MIN);
4165 
4166 			if (rtt < max_ato)
4167 				max_ato = rtt;
4168 		}
4169 
4170 		ato = min(ato, max_ato);
4171 	}
4172 
4173 	ato = min_t(u32, ato, tcp_delack_max(sk));
4174 
4175 	/* Stay within the limit we were given */
4176 	timeout = jiffies + ato;
4177 
4178 	/* Use new timeout only if there wasn't a older one earlier. */
4179 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4180 		/* If delack timer is about to expire, send ACK now. */
4181 		if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) {
4182 			tcp_send_ack(sk);
4183 			return;
4184 		}
4185 
4186 		if (!time_before(timeout, icsk_delack_timeout(icsk)))
4187 			timeout = icsk_delack_timeout(icsk);
4188 	}
4189 	smp_store_release(&icsk->icsk_ack.pending,
4190 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
4191 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4192 }
4193 
4194 /* This routine sends an ack and also updates the window. */
4195 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags)
4196 {
4197 	struct sk_buff *buff;
4198 
4199 	/* If we have been reset, we may not send again. */
4200 	if (sk->sk_state == TCP_CLOSE)
4201 		return;
4202 
4203 	/* We are not putting this on the write queue, so
4204 	 * tcp_transmit_skb() will set the ownership to this
4205 	 * sock.
4206 	 */
4207 	buff = alloc_skb(MAX_TCP_HEADER,
4208 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4209 	if (unlikely(!buff)) {
4210 		struct inet_connection_sock *icsk = inet_csk(sk);
4211 		unsigned long delay;
4212 
4213 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4214 		if (delay < tcp_rto_max(sk))
4215 			icsk->icsk_ack.retry++;
4216 		inet_csk_schedule_ack(sk);
4217 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4218 		tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false);
4219 		return;
4220 	}
4221 
4222 	/* Reserve space for headers and prepare control bits. */
4223 	skb_reserve(buff, MAX_TCP_HEADER);
4224 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK | flags);
4225 
4226 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4227 	 * too much.
4228 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4229 	 */
4230 	skb_set_tcp_pure_ack(buff);
4231 
4232 	/* Send it off, this clears delayed acks for us. */
4233 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4234 }
4235 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4236 
4237 void tcp_send_ack(struct sock *sk)
4238 {
4239 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0);
4240 }
4241 
4242 /* This routine sends a packet with an out of date sequence
4243  * number. It assumes the other end will try to ack it.
4244  *
4245  * Question: what should we make while urgent mode?
4246  * 4.4BSD forces sending single byte of data. We cannot send
4247  * out of window data, because we have SND.NXT==SND.MAX...
4248  *
4249  * Current solution: to send TWO zero-length segments in urgent mode:
4250  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4251  * out-of-date with SND.UNA-1 to probe window.
4252  */
4253 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4254 {
4255 	struct tcp_sock *tp = tcp_sk(sk);
4256 	struct sk_buff *skb;
4257 
4258 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4259 	skb = alloc_skb(MAX_TCP_HEADER,
4260 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4261 	if (!skb)
4262 		return -1;
4263 
4264 	/* Reserve space for headers and set control bits. */
4265 	skb_reserve(skb, MAX_TCP_HEADER);
4266 	/* Use a previous sequence.  This should cause the other
4267 	 * end to send an ack.  Don't queue or clone SKB, just
4268 	 * send it.
4269 	 */
4270 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4271 	NET_INC_STATS(sock_net(sk), mib);
4272 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4273 }
4274 
4275 /* Called from setsockopt( ... TCP_REPAIR ) */
4276 void tcp_send_window_probe(struct sock *sk)
4277 {
4278 	if (sk->sk_state == TCP_ESTABLISHED) {
4279 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4280 		tcp_mstamp_refresh(tcp_sk(sk));
4281 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4282 	}
4283 }
4284 
4285 /* Initiate keepalive or window probe from timer. */
4286 int tcp_write_wakeup(struct sock *sk, int mib)
4287 {
4288 	struct tcp_sock *tp = tcp_sk(sk);
4289 	struct sk_buff *skb;
4290 
4291 	if (sk->sk_state == TCP_CLOSE)
4292 		return -1;
4293 
4294 	skb = tcp_send_head(sk);
4295 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4296 		int err;
4297 		unsigned int mss = tcp_current_mss(sk);
4298 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4299 
4300 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4301 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4302 
4303 		/* We are probing the opening of a window
4304 		 * but the window size is != 0
4305 		 * must have been a result SWS avoidance ( sender )
4306 		 */
4307 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4308 		    skb->len > mss) {
4309 			seg_size = min(seg_size, mss);
4310 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4311 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4312 					 skb, seg_size, mss, GFP_ATOMIC))
4313 				return -1;
4314 		} else if (!tcp_skb_pcount(skb))
4315 			tcp_set_skb_tso_segs(skb, mss);
4316 
4317 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4318 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4319 		if (!err)
4320 			tcp_event_new_data_sent(sk, skb);
4321 		return err;
4322 	} else {
4323 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4324 			tcp_xmit_probe_skb(sk, 1, mib);
4325 		return tcp_xmit_probe_skb(sk, 0, mib);
4326 	}
4327 }
4328 
4329 /* A window probe timeout has occurred.  If window is not closed send
4330  * a partial packet else a zero probe.
4331  */
4332 void tcp_send_probe0(struct sock *sk)
4333 {
4334 	struct inet_connection_sock *icsk = inet_csk(sk);
4335 	struct tcp_sock *tp = tcp_sk(sk);
4336 	struct net *net = sock_net(sk);
4337 	unsigned long timeout;
4338 	int err;
4339 
4340 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4341 
4342 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4343 		/* Cancel probe timer, if it is not required. */
4344 		WRITE_ONCE(icsk->icsk_probes_out, 0);
4345 		icsk->icsk_backoff = 0;
4346 		icsk->icsk_probes_tstamp = 0;
4347 		return;
4348 	}
4349 
4350 	WRITE_ONCE(icsk->icsk_probes_out, icsk->icsk_probes_out + 1);
4351 	if (err <= 0) {
4352 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4353 			icsk->icsk_backoff++;
4354 		timeout = tcp_probe0_when(sk, tcp_rto_max(sk));
4355 	} else {
4356 		/* If packet was not sent due to local congestion,
4357 		 * Let senders fight for local resources conservatively.
4358 		 */
4359 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4360 	}
4361 
4362 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4363 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true);
4364 }
4365 
4366 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4367 {
4368 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4369 	struct flowi fl;
4370 	int res;
4371 
4372 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4373 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4374 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4375 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4376 				  NULL);
4377 	if (!res) {
4378 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4379 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4380 		if (unlikely(tcp_passive_fastopen(sk))) {
4381 			/* sk has const attribute because listeners are lockless.
4382 			 * However in this case, we are dealing with a passive fastopen
4383 			 * socket thus we can change total_retrans value.
4384 			 */
4385 			tcp_sk_rw(sk)->total_retrans++;
4386 		}
4387 		trace_tcp_retransmit_synack(sk, req);
4388 		WRITE_ONCE(req->num_retrans, req->num_retrans + 1);
4389 	}
4390 	return res;
4391 }
4392 EXPORT_IPV6_MOD(tcp_rtx_synack);
4393