1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 #include <net/proto_memory.h> 43 44 #include <linux/compiler.h> 45 #include <linux/gfp.h> 46 #include <linux/module.h> 47 #include <linux/static_key.h> 48 #include <linux/skbuff_ref.h> 49 50 #include <trace/events/tcp.h> 51 52 /* Refresh clocks of a TCP socket, 53 * ensuring monotically increasing values. 54 */ 55 void tcp_mstamp_refresh(struct tcp_sock *tp) 56 { 57 u64 val = tcp_clock_ns(); 58 59 tp->tcp_clock_cache = val; 60 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 61 } 62 63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 64 int push_one, gfp_t gfp); 65 66 /* Account for new data that has been sent to the network. */ 67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 68 { 69 struct inet_connection_sock *icsk = inet_csk(sk); 70 struct tcp_sock *tp = tcp_sk(sk); 71 unsigned int prior_packets = tp->packets_out; 72 73 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 74 75 __skb_unlink(skb, &sk->sk_write_queue); 76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 77 78 if (tp->highest_sack == NULL) 79 tp->highest_sack = skb; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 83 tcp_rearm_rto(sk); 84 85 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 86 tcp_skb_pcount(skb)); 87 tcp_check_space(sk); 88 } 89 90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 91 * window scaling factor due to loss of precision. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 102 (tp->rx_opt.wscale_ok && 103 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 104 return tp->snd_nxt; 105 else 106 return tcp_wnd_end(tp); 107 } 108 109 /* Calculate mss to advertise in SYN segment. 110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 111 * 112 * 1. It is independent of path mtu. 113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 115 * attached devices, because some buggy hosts are confused by 116 * large MSS. 117 * 4. We do not make 3, we advertise MSS, calculated from first 118 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 119 * This may be overridden via information stored in routing table. 120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 121 * probably even Jumbo". 122 */ 123 static __u16 tcp_advertise_mss(struct sock *sk) 124 { 125 struct tcp_sock *tp = tcp_sk(sk); 126 const struct dst_entry *dst = __sk_dst_get(sk); 127 int mss = tp->advmss; 128 129 if (dst) { 130 unsigned int metric = dst_metric_advmss(dst); 131 132 if (metric < mss) { 133 mss = metric; 134 tp->advmss = mss; 135 } 136 } 137 138 return (__u16)mss; 139 } 140 141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 142 * This is the first part of cwnd validation mechanism. 143 */ 144 void tcp_cwnd_restart(struct sock *sk, s32 delta) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 148 u32 cwnd = tcp_snd_cwnd(tp); 149 150 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 151 152 tp->snd_ssthresh = tcp_current_ssthresh(sk); 153 restart_cwnd = min(restart_cwnd, cwnd); 154 155 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 156 cwnd >>= 1; 157 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 158 tp->snd_cwnd_stamp = tcp_jiffies32; 159 tp->snd_cwnd_used = 0; 160 } 161 162 /* Congestion state accounting after a packet has been sent. */ 163 static void tcp_event_data_sent(struct tcp_sock *tp, 164 struct sock *sk) 165 { 166 struct inet_connection_sock *icsk = inet_csk(sk); 167 const u32 now = tcp_jiffies32; 168 169 if (tcp_packets_in_flight(tp) == 0) 170 tcp_ca_event(sk, CA_EVENT_TX_START); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, increase pingpong count. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 178 inet_csk_inc_pingpong_cnt(sk); 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 183 { 184 struct tcp_sock *tp = tcp_sk(sk); 185 186 if (unlikely(tp->compressed_ack)) { 187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 188 tp->compressed_ack); 189 tp->compressed_ack = 0; 190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 191 __sock_put(sk); 192 } 193 194 if (unlikely(rcv_nxt != tp->rcv_nxt)) 195 return; /* Special ACK sent by DCTCP to reflect ECN */ 196 tcp_dec_quickack_mode(sk); 197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 198 } 199 200 /* Determine a window scaling and initial window to offer. 201 * Based on the assumption that the given amount of space 202 * will be offered. Store the results in the tp structure. 203 * NOTE: for smooth operation initial space offering should 204 * be a multiple of mss if possible. We assume here that mss >= 1. 205 * This MUST be enforced by all callers. 206 */ 207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 208 __u32 *rcv_wnd, __u32 *__window_clamp, 209 int wscale_ok, __u8 *rcv_wscale, 210 __u32 init_rcv_wnd) 211 { 212 unsigned int space = (__space < 0 ? 0 : __space); 213 u32 window_clamp = READ_ONCE(*__window_clamp); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (window_clamp == 0) 217 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = space; 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 244 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 245 space = min_t(u32, space, window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 WRITE_ONCE(*__window_clamp, 251 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 252 } 253 EXPORT_SYMBOL(tcp_select_initial_window); 254 255 /* Chose a new window to advertise, update state in tcp_sock for the 256 * socket, and return result with RFC1323 scaling applied. The return 257 * value can be stuffed directly into th->window for an outgoing 258 * frame. 259 */ 260 static u16 tcp_select_window(struct sock *sk) 261 { 262 struct tcp_sock *tp = tcp_sk(sk); 263 struct net *net = sock_net(sk); 264 u32 old_win = tp->rcv_wnd; 265 u32 cur_win, new_win; 266 267 /* Make the window 0 if we failed to queue the data because we 268 * are out of memory. The window is temporary, so we don't store 269 * it on the socket. 270 */ 271 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 272 return 0; 273 274 cur_win = tcp_receive_window(tp); 275 new_win = __tcp_select_window(sk); 276 if (new_win < cur_win) { 277 /* Danger Will Robinson! 278 * Don't update rcv_wup/rcv_wnd here or else 279 * we will not be able to advertise a zero 280 * window in time. --DaveM 281 * 282 * Relax Will Robinson. 283 */ 284 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 285 /* Never shrink the offered window */ 286 if (new_win == 0) 287 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 289 } 290 } 291 292 tp->rcv_wnd = new_win; 293 tp->rcv_wup = tp->rcv_nxt; 294 295 /* Make sure we do not exceed the maximum possible 296 * scaled window. 297 */ 298 if (!tp->rx_opt.rcv_wscale && 299 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 300 new_win = min(new_win, MAX_TCP_WINDOW); 301 else 302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 303 304 /* RFC1323 scaling applied */ 305 new_win >>= tp->rx_opt.rcv_wscale; 306 307 /* If we advertise zero window, disable fast path. */ 308 if (new_win == 0) { 309 tp->pred_flags = 0; 310 if (old_win) 311 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 312 } else if (old_win == 0) { 313 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 314 } 315 316 return new_win; 317 } 318 319 /* Packet ECN state for a SYN-ACK */ 320 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 321 { 322 const struct tcp_sock *tp = tcp_sk(sk); 323 324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 325 if (!(tp->ecn_flags & TCP_ECN_OK)) 326 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 327 else if (tcp_ca_needs_ecn(sk) || 328 tcp_bpf_ca_needs_ecn(sk)) 329 INET_ECN_xmit(sk); 330 } 331 332 /* Packet ECN state for a SYN. */ 333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 334 { 335 struct tcp_sock *tp = tcp_sk(sk); 336 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 337 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 338 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 339 340 if (!use_ecn) { 341 const struct dst_entry *dst = __sk_dst_get(sk); 342 343 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 344 use_ecn = true; 345 } 346 347 tp->ecn_flags = 0; 348 349 if (use_ecn) { 350 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 351 tp->ecn_flags = TCP_ECN_OK; 352 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 353 INET_ECN_xmit(sk); 354 } 355 } 356 357 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 358 { 359 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 360 /* tp->ecn_flags are cleared at a later point in time when 361 * SYN ACK is ultimatively being received. 362 */ 363 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 364 } 365 366 static void 367 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 368 { 369 if (inet_rsk(req)->ecn_ok) 370 th->ece = 1; 371 } 372 373 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 374 * be sent. 375 */ 376 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 377 struct tcphdr *th, int tcp_header_len) 378 { 379 struct tcp_sock *tp = tcp_sk(sk); 380 381 if (tp->ecn_flags & TCP_ECN_OK) { 382 /* Not-retransmitted data segment: set ECT and inject CWR. */ 383 if (skb->len != tcp_header_len && 384 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 385 INET_ECN_xmit(sk); 386 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 387 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 388 th->cwr = 1; 389 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 390 } 391 } else if (!tcp_ca_needs_ecn(sk)) { 392 /* ACK or retransmitted segment: clear ECT|CE */ 393 INET_ECN_dontxmit(sk); 394 } 395 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 396 th->ece = 1; 397 } 398 } 399 400 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 401 * auto increment end seqno. 402 */ 403 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 404 { 405 skb->ip_summed = CHECKSUM_PARTIAL; 406 407 TCP_SKB_CB(skb)->tcp_flags = flags; 408 409 tcp_skb_pcount_set(skb, 1); 410 411 TCP_SKB_CB(skb)->seq = seq; 412 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 413 seq++; 414 TCP_SKB_CB(skb)->end_seq = seq; 415 } 416 417 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 418 { 419 return tp->snd_una != tp->snd_up; 420 } 421 422 #define OPTION_SACK_ADVERTISE BIT(0) 423 #define OPTION_TS BIT(1) 424 #define OPTION_MD5 BIT(2) 425 #define OPTION_WSCALE BIT(3) 426 #define OPTION_FAST_OPEN_COOKIE BIT(8) 427 #define OPTION_SMC BIT(9) 428 #define OPTION_MPTCP BIT(10) 429 #define OPTION_AO BIT(11) 430 431 static void smc_options_write(__be32 *ptr, u16 *options) 432 { 433 #if IS_ENABLED(CONFIG_SMC) 434 if (static_branch_unlikely(&tcp_have_smc)) { 435 if (unlikely(OPTION_SMC & *options)) { 436 *ptr++ = htonl((TCPOPT_NOP << 24) | 437 (TCPOPT_NOP << 16) | 438 (TCPOPT_EXP << 8) | 439 (TCPOLEN_EXP_SMC_BASE)); 440 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 441 } 442 } 443 #endif 444 } 445 446 struct tcp_out_options { 447 u16 options; /* bit field of OPTION_* */ 448 u16 mss; /* 0 to disable */ 449 u8 ws; /* window scale, 0 to disable */ 450 u8 num_sack_blocks; /* number of SACK blocks to include */ 451 u8 hash_size; /* bytes in hash_location */ 452 u8 bpf_opt_len; /* length of BPF hdr option */ 453 __u8 *hash_location; /* temporary pointer, overloaded */ 454 __u32 tsval, tsecr; /* need to include OPTION_TS */ 455 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 456 struct mptcp_out_options mptcp; 457 }; 458 459 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 460 struct tcp_sock *tp, 461 struct tcp_out_options *opts) 462 { 463 #if IS_ENABLED(CONFIG_MPTCP) 464 if (unlikely(OPTION_MPTCP & opts->options)) 465 mptcp_write_options(th, ptr, tp, &opts->mptcp); 466 #endif 467 } 468 469 #ifdef CONFIG_CGROUP_BPF 470 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 471 enum tcp_synack_type synack_type) 472 { 473 if (unlikely(!skb)) 474 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 475 476 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 477 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 478 479 return 0; 480 } 481 482 /* req, syn_skb and synack_type are used when writing synack */ 483 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 484 struct request_sock *req, 485 struct sk_buff *syn_skb, 486 enum tcp_synack_type synack_type, 487 struct tcp_out_options *opts, 488 unsigned int *remaining) 489 { 490 struct bpf_sock_ops_kern sock_ops; 491 int err; 492 493 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 494 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 495 !*remaining) 496 return; 497 498 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 499 500 /* init sock_ops */ 501 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 502 503 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 504 505 if (req) { 506 /* The listen "sk" cannot be passed here because 507 * it is not locked. It would not make too much 508 * sense to do bpf_setsockopt(listen_sk) based 509 * on individual connection request also. 510 * 511 * Thus, "req" is passed here and the cgroup-bpf-progs 512 * of the listen "sk" will be run. 513 * 514 * "req" is also used here for fastopen even the "sk" here is 515 * a fullsock "child" sk. It is to keep the behavior 516 * consistent between fastopen and non-fastopen on 517 * the bpf programming side. 518 */ 519 sock_ops.sk = (struct sock *)req; 520 sock_ops.syn_skb = syn_skb; 521 } else { 522 sock_owned_by_me(sk); 523 524 sock_ops.is_fullsock = 1; 525 sock_ops.sk = sk; 526 } 527 528 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 529 sock_ops.remaining_opt_len = *remaining; 530 /* tcp_current_mss() does not pass a skb */ 531 if (skb) 532 bpf_skops_init_skb(&sock_ops, skb, 0); 533 534 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 535 536 if (err || sock_ops.remaining_opt_len == *remaining) 537 return; 538 539 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 540 /* round up to 4 bytes */ 541 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 542 543 *remaining -= opts->bpf_opt_len; 544 } 545 546 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 547 struct request_sock *req, 548 struct sk_buff *syn_skb, 549 enum tcp_synack_type synack_type, 550 struct tcp_out_options *opts) 551 { 552 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 553 struct bpf_sock_ops_kern sock_ops; 554 int err; 555 556 if (likely(!max_opt_len)) 557 return; 558 559 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 560 561 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 562 563 if (req) { 564 sock_ops.sk = (struct sock *)req; 565 sock_ops.syn_skb = syn_skb; 566 } else { 567 sock_owned_by_me(sk); 568 569 sock_ops.is_fullsock = 1; 570 sock_ops.sk = sk; 571 } 572 573 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 574 sock_ops.remaining_opt_len = max_opt_len; 575 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 576 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 577 578 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 579 580 if (err) 581 nr_written = 0; 582 else 583 nr_written = max_opt_len - sock_ops.remaining_opt_len; 584 585 if (nr_written < max_opt_len) 586 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 587 max_opt_len - nr_written); 588 } 589 #else 590 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 591 struct request_sock *req, 592 struct sk_buff *syn_skb, 593 enum tcp_synack_type synack_type, 594 struct tcp_out_options *opts, 595 unsigned int *remaining) 596 { 597 } 598 599 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 600 struct request_sock *req, 601 struct sk_buff *syn_skb, 602 enum tcp_synack_type synack_type, 603 struct tcp_out_options *opts) 604 { 605 } 606 #endif 607 608 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 609 const struct tcp_request_sock *tcprsk, 610 struct tcp_out_options *opts, 611 struct tcp_key *key, __be32 *ptr) 612 { 613 #ifdef CONFIG_TCP_AO 614 u8 maclen = tcp_ao_maclen(key->ao_key); 615 616 if (tcprsk) { 617 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 618 619 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 620 (tcprsk->ao_keyid << 8) | 621 (tcprsk->ao_rcv_next)); 622 } else { 623 struct tcp_ao_key *rnext_key; 624 struct tcp_ao_info *ao_info; 625 626 ao_info = rcu_dereference_check(tp->ao_info, 627 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 628 rnext_key = READ_ONCE(ao_info->rnext_key); 629 if (WARN_ON_ONCE(!rnext_key)) 630 return ptr; 631 *ptr++ = htonl((TCPOPT_AO << 24) | 632 (tcp_ao_len(key->ao_key) << 16) | 633 (key->ao_key->sndid << 8) | 634 (rnext_key->rcvid)); 635 } 636 opts->hash_location = (__u8 *)ptr; 637 ptr += maclen / sizeof(*ptr); 638 if (unlikely(maclen % sizeof(*ptr))) { 639 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 640 ptr++; 641 } 642 #endif 643 return ptr; 644 } 645 646 /* Write previously computed TCP options to the packet. 647 * 648 * Beware: Something in the Internet is very sensitive to the ordering of 649 * TCP options, we learned this through the hard way, so be careful here. 650 * Luckily we can at least blame others for their non-compliance but from 651 * inter-operability perspective it seems that we're somewhat stuck with 652 * the ordering which we have been using if we want to keep working with 653 * those broken things (not that it currently hurts anybody as there isn't 654 * particular reason why the ordering would need to be changed). 655 * 656 * At least SACK_PERM as the first option is known to lead to a disaster 657 * (but it may well be that other scenarios fail similarly). 658 */ 659 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 660 const struct tcp_request_sock *tcprsk, 661 struct tcp_out_options *opts, 662 struct tcp_key *key) 663 { 664 __be32 *ptr = (__be32 *)(th + 1); 665 u16 options = opts->options; /* mungable copy */ 666 667 if (tcp_key_is_md5(key)) { 668 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 669 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 670 /* overload cookie hash location */ 671 opts->hash_location = (__u8 *)ptr; 672 ptr += 4; 673 } else if (tcp_key_is_ao(key)) { 674 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 675 } 676 if (unlikely(opts->mss)) { 677 *ptr++ = htonl((TCPOPT_MSS << 24) | 678 (TCPOLEN_MSS << 16) | 679 opts->mss); 680 } 681 682 if (likely(OPTION_TS & options)) { 683 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 684 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 685 (TCPOLEN_SACK_PERM << 16) | 686 (TCPOPT_TIMESTAMP << 8) | 687 TCPOLEN_TIMESTAMP); 688 options &= ~OPTION_SACK_ADVERTISE; 689 } else { 690 *ptr++ = htonl((TCPOPT_NOP << 24) | 691 (TCPOPT_NOP << 16) | 692 (TCPOPT_TIMESTAMP << 8) | 693 TCPOLEN_TIMESTAMP); 694 } 695 *ptr++ = htonl(opts->tsval); 696 *ptr++ = htonl(opts->tsecr); 697 } 698 699 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 700 *ptr++ = htonl((TCPOPT_NOP << 24) | 701 (TCPOPT_NOP << 16) | 702 (TCPOPT_SACK_PERM << 8) | 703 TCPOLEN_SACK_PERM); 704 } 705 706 if (unlikely(OPTION_WSCALE & options)) { 707 *ptr++ = htonl((TCPOPT_NOP << 24) | 708 (TCPOPT_WINDOW << 16) | 709 (TCPOLEN_WINDOW << 8) | 710 opts->ws); 711 } 712 713 if (unlikely(opts->num_sack_blocks)) { 714 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 715 tp->duplicate_sack : tp->selective_acks; 716 int this_sack; 717 718 *ptr++ = htonl((TCPOPT_NOP << 24) | 719 (TCPOPT_NOP << 16) | 720 (TCPOPT_SACK << 8) | 721 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 722 TCPOLEN_SACK_PERBLOCK))); 723 724 for (this_sack = 0; this_sack < opts->num_sack_blocks; 725 ++this_sack) { 726 *ptr++ = htonl(sp[this_sack].start_seq); 727 *ptr++ = htonl(sp[this_sack].end_seq); 728 } 729 730 tp->rx_opt.dsack = 0; 731 } 732 733 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 734 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 735 u8 *p = (u8 *)ptr; 736 u32 len; /* Fast Open option length */ 737 738 if (foc->exp) { 739 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 740 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 741 TCPOPT_FASTOPEN_MAGIC); 742 p += TCPOLEN_EXP_FASTOPEN_BASE; 743 } else { 744 len = TCPOLEN_FASTOPEN_BASE + foc->len; 745 *p++ = TCPOPT_FASTOPEN; 746 *p++ = len; 747 } 748 749 memcpy(p, foc->val, foc->len); 750 if ((len & 3) == 2) { 751 p[foc->len] = TCPOPT_NOP; 752 p[foc->len + 1] = TCPOPT_NOP; 753 } 754 ptr += (len + 3) >> 2; 755 } 756 757 smc_options_write(ptr, &options); 758 759 mptcp_options_write(th, ptr, tp, opts); 760 } 761 762 static void smc_set_option(const struct tcp_sock *tp, 763 struct tcp_out_options *opts, 764 unsigned int *remaining) 765 { 766 #if IS_ENABLED(CONFIG_SMC) 767 if (static_branch_unlikely(&tcp_have_smc)) { 768 if (tp->syn_smc) { 769 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 770 opts->options |= OPTION_SMC; 771 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 772 } 773 } 774 } 775 #endif 776 } 777 778 static void smc_set_option_cond(const struct tcp_sock *tp, 779 const struct inet_request_sock *ireq, 780 struct tcp_out_options *opts, 781 unsigned int *remaining) 782 { 783 #if IS_ENABLED(CONFIG_SMC) 784 if (static_branch_unlikely(&tcp_have_smc)) { 785 if (tp->syn_smc && ireq->smc_ok) { 786 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 787 opts->options |= OPTION_SMC; 788 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 789 } 790 } 791 } 792 #endif 793 } 794 795 static void mptcp_set_option_cond(const struct request_sock *req, 796 struct tcp_out_options *opts, 797 unsigned int *remaining) 798 { 799 if (rsk_is_mptcp(req)) { 800 unsigned int size; 801 802 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 803 if (*remaining >= size) { 804 opts->options |= OPTION_MPTCP; 805 *remaining -= size; 806 } 807 } 808 } 809 } 810 811 /* Compute TCP options for SYN packets. This is not the final 812 * network wire format yet. 813 */ 814 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 815 struct tcp_out_options *opts, 816 struct tcp_key *key) 817 { 818 struct tcp_sock *tp = tcp_sk(sk); 819 unsigned int remaining = MAX_TCP_OPTION_SPACE; 820 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 821 bool timestamps; 822 823 /* Better than switch (key.type) as it has static branches */ 824 if (tcp_key_is_md5(key)) { 825 timestamps = false; 826 opts->options |= OPTION_MD5; 827 remaining -= TCPOLEN_MD5SIG_ALIGNED; 828 } else { 829 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 830 if (tcp_key_is_ao(key)) { 831 opts->options |= OPTION_AO; 832 remaining -= tcp_ao_len_aligned(key->ao_key); 833 } 834 } 835 836 /* We always get an MSS option. The option bytes which will be seen in 837 * normal data packets should timestamps be used, must be in the MSS 838 * advertised. But we subtract them from tp->mss_cache so that 839 * calculations in tcp_sendmsg are simpler etc. So account for this 840 * fact here if necessary. If we don't do this correctly, as a 841 * receiver we won't recognize data packets as being full sized when we 842 * should, and thus we won't abide by the delayed ACK rules correctly. 843 * SACKs don't matter, we never delay an ACK when we have any of those 844 * going out. */ 845 opts->mss = tcp_advertise_mss(sk); 846 remaining -= TCPOLEN_MSS_ALIGNED; 847 848 if (likely(timestamps)) { 849 opts->options |= OPTION_TS; 850 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 851 opts->tsecr = tp->rx_opt.ts_recent; 852 remaining -= TCPOLEN_TSTAMP_ALIGNED; 853 } 854 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 855 opts->ws = tp->rx_opt.rcv_wscale; 856 opts->options |= OPTION_WSCALE; 857 remaining -= TCPOLEN_WSCALE_ALIGNED; 858 } 859 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 860 opts->options |= OPTION_SACK_ADVERTISE; 861 if (unlikely(!(OPTION_TS & opts->options))) 862 remaining -= TCPOLEN_SACKPERM_ALIGNED; 863 } 864 865 if (fastopen && fastopen->cookie.len >= 0) { 866 u32 need = fastopen->cookie.len; 867 868 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 869 TCPOLEN_FASTOPEN_BASE; 870 need = (need + 3) & ~3U; /* Align to 32 bits */ 871 if (remaining >= need) { 872 opts->options |= OPTION_FAST_OPEN_COOKIE; 873 opts->fastopen_cookie = &fastopen->cookie; 874 remaining -= need; 875 tp->syn_fastopen = 1; 876 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 877 } 878 } 879 880 smc_set_option(tp, opts, &remaining); 881 882 if (sk_is_mptcp(sk)) { 883 unsigned int size; 884 885 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 886 opts->options |= OPTION_MPTCP; 887 remaining -= size; 888 } 889 } 890 891 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 892 893 return MAX_TCP_OPTION_SPACE - remaining; 894 } 895 896 /* Set up TCP options for SYN-ACKs. */ 897 static unsigned int tcp_synack_options(const struct sock *sk, 898 struct request_sock *req, 899 unsigned int mss, struct sk_buff *skb, 900 struct tcp_out_options *opts, 901 const struct tcp_key *key, 902 struct tcp_fastopen_cookie *foc, 903 enum tcp_synack_type synack_type, 904 struct sk_buff *syn_skb) 905 { 906 struct inet_request_sock *ireq = inet_rsk(req); 907 unsigned int remaining = MAX_TCP_OPTION_SPACE; 908 909 if (tcp_key_is_md5(key)) { 910 opts->options |= OPTION_MD5; 911 remaining -= TCPOLEN_MD5SIG_ALIGNED; 912 913 /* We can't fit any SACK blocks in a packet with MD5 + TS 914 * options. There was discussion about disabling SACK 915 * rather than TS in order to fit in better with old, 916 * buggy kernels, but that was deemed to be unnecessary. 917 */ 918 if (synack_type != TCP_SYNACK_COOKIE) 919 ireq->tstamp_ok &= !ireq->sack_ok; 920 } else if (tcp_key_is_ao(key)) { 921 opts->options |= OPTION_AO; 922 remaining -= tcp_ao_len_aligned(key->ao_key); 923 ireq->tstamp_ok &= !ireq->sack_ok; 924 } 925 926 /* We always send an MSS option. */ 927 opts->mss = mss; 928 remaining -= TCPOLEN_MSS_ALIGNED; 929 930 if (likely(ireq->wscale_ok)) { 931 opts->ws = ireq->rcv_wscale; 932 opts->options |= OPTION_WSCALE; 933 remaining -= TCPOLEN_WSCALE_ALIGNED; 934 } 935 if (likely(ireq->tstamp_ok)) { 936 opts->options |= OPTION_TS; 937 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 938 tcp_rsk(req)->ts_off; 939 opts->tsecr = READ_ONCE(req->ts_recent); 940 remaining -= TCPOLEN_TSTAMP_ALIGNED; 941 } 942 if (likely(ireq->sack_ok)) { 943 opts->options |= OPTION_SACK_ADVERTISE; 944 if (unlikely(!ireq->tstamp_ok)) 945 remaining -= TCPOLEN_SACKPERM_ALIGNED; 946 } 947 if (foc != NULL && foc->len >= 0) { 948 u32 need = foc->len; 949 950 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 951 TCPOLEN_FASTOPEN_BASE; 952 need = (need + 3) & ~3U; /* Align to 32 bits */ 953 if (remaining >= need) { 954 opts->options |= OPTION_FAST_OPEN_COOKIE; 955 opts->fastopen_cookie = foc; 956 remaining -= need; 957 } 958 } 959 960 mptcp_set_option_cond(req, opts, &remaining); 961 962 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 963 964 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 965 synack_type, opts, &remaining); 966 967 return MAX_TCP_OPTION_SPACE - remaining; 968 } 969 970 /* Compute TCP options for ESTABLISHED sockets. This is not the 971 * final wire format yet. 972 */ 973 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 974 struct tcp_out_options *opts, 975 struct tcp_key *key) 976 { 977 struct tcp_sock *tp = tcp_sk(sk); 978 unsigned int size = 0; 979 unsigned int eff_sacks; 980 981 opts->options = 0; 982 983 /* Better than switch (key.type) as it has static branches */ 984 if (tcp_key_is_md5(key)) { 985 opts->options |= OPTION_MD5; 986 size += TCPOLEN_MD5SIG_ALIGNED; 987 } else if (tcp_key_is_ao(key)) { 988 opts->options |= OPTION_AO; 989 size += tcp_ao_len_aligned(key->ao_key); 990 } 991 992 if (likely(tp->rx_opt.tstamp_ok)) { 993 opts->options |= OPTION_TS; 994 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 995 tp->tsoffset : 0; 996 opts->tsecr = tp->rx_opt.ts_recent; 997 size += TCPOLEN_TSTAMP_ALIGNED; 998 } 999 1000 /* MPTCP options have precedence over SACK for the limited TCP 1001 * option space because a MPTCP connection would be forced to 1002 * fall back to regular TCP if a required multipath option is 1003 * missing. SACK still gets a chance to use whatever space is 1004 * left. 1005 */ 1006 if (sk_is_mptcp(sk)) { 1007 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1008 unsigned int opt_size = 0; 1009 1010 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1011 &opts->mptcp)) { 1012 opts->options |= OPTION_MPTCP; 1013 size += opt_size; 1014 } 1015 } 1016 1017 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1018 if (unlikely(eff_sacks)) { 1019 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1020 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 1021 TCPOLEN_SACK_PERBLOCK)) 1022 return size; 1023 1024 opts->num_sack_blocks = 1025 min_t(unsigned int, eff_sacks, 1026 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1027 TCPOLEN_SACK_PERBLOCK); 1028 1029 size += TCPOLEN_SACK_BASE_ALIGNED + 1030 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1031 } 1032 1033 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1034 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1035 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1036 1037 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1038 1039 size = MAX_TCP_OPTION_SPACE - remaining; 1040 } 1041 1042 return size; 1043 } 1044 1045 1046 /* TCP SMALL QUEUES (TSQ) 1047 * 1048 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1049 * to reduce RTT and bufferbloat. 1050 * We do this using a special skb destructor (tcp_wfree). 1051 * 1052 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1053 * needs to be reallocated in a driver. 1054 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1055 * 1056 * Since transmit from skb destructor is forbidden, we use a tasklet 1057 * to process all sockets that eventually need to send more skbs. 1058 * We use one tasklet per cpu, with its own queue of sockets. 1059 */ 1060 struct tsq_tasklet { 1061 struct tasklet_struct tasklet; 1062 struct list_head head; /* queue of tcp sockets */ 1063 }; 1064 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1065 1066 static void tcp_tsq_write(struct sock *sk) 1067 { 1068 if ((1 << sk->sk_state) & 1069 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1070 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1071 struct tcp_sock *tp = tcp_sk(sk); 1072 1073 if (tp->lost_out > tp->retrans_out && 1074 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1075 tcp_mstamp_refresh(tp); 1076 tcp_xmit_retransmit_queue(sk); 1077 } 1078 1079 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1080 0, GFP_ATOMIC); 1081 } 1082 } 1083 1084 static void tcp_tsq_handler(struct sock *sk) 1085 { 1086 bh_lock_sock(sk); 1087 if (!sock_owned_by_user(sk)) 1088 tcp_tsq_write(sk); 1089 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1090 sock_hold(sk); 1091 bh_unlock_sock(sk); 1092 } 1093 /* 1094 * One tasklet per cpu tries to send more skbs. 1095 * We run in tasklet context but need to disable irqs when 1096 * transferring tsq->head because tcp_wfree() might 1097 * interrupt us (non NAPI drivers) 1098 */ 1099 static void tcp_tasklet_func(struct tasklet_struct *t) 1100 { 1101 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1102 LIST_HEAD(list); 1103 unsigned long flags; 1104 struct list_head *q, *n; 1105 struct tcp_sock *tp; 1106 struct sock *sk; 1107 1108 local_irq_save(flags); 1109 list_splice_init(&tsq->head, &list); 1110 local_irq_restore(flags); 1111 1112 list_for_each_safe(q, n, &list) { 1113 tp = list_entry(q, struct tcp_sock, tsq_node); 1114 list_del(&tp->tsq_node); 1115 1116 sk = (struct sock *)tp; 1117 smp_mb__before_atomic(); 1118 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1119 1120 tcp_tsq_handler(sk); 1121 sk_free(sk); 1122 } 1123 } 1124 1125 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1126 TCPF_WRITE_TIMER_DEFERRED | \ 1127 TCPF_DELACK_TIMER_DEFERRED | \ 1128 TCPF_MTU_REDUCED_DEFERRED | \ 1129 TCPF_ACK_DEFERRED) 1130 /** 1131 * tcp_release_cb - tcp release_sock() callback 1132 * @sk: socket 1133 * 1134 * called from release_sock() to perform protocol dependent 1135 * actions before socket release. 1136 */ 1137 void tcp_release_cb(struct sock *sk) 1138 { 1139 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1140 unsigned long nflags; 1141 1142 /* perform an atomic operation only if at least one flag is set */ 1143 do { 1144 if (!(flags & TCP_DEFERRED_ALL)) 1145 return; 1146 nflags = flags & ~TCP_DEFERRED_ALL; 1147 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1148 1149 if (flags & TCPF_TSQ_DEFERRED) { 1150 tcp_tsq_write(sk); 1151 __sock_put(sk); 1152 } 1153 1154 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1155 tcp_write_timer_handler(sk); 1156 __sock_put(sk); 1157 } 1158 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1159 tcp_delack_timer_handler(sk); 1160 __sock_put(sk); 1161 } 1162 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1163 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1164 __sock_put(sk); 1165 } 1166 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1167 tcp_send_ack(sk); 1168 } 1169 EXPORT_SYMBOL(tcp_release_cb); 1170 1171 void __init tcp_tasklet_init(void) 1172 { 1173 int i; 1174 1175 for_each_possible_cpu(i) { 1176 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1177 1178 INIT_LIST_HEAD(&tsq->head); 1179 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1180 } 1181 } 1182 1183 /* 1184 * Write buffer destructor automatically called from kfree_skb. 1185 * We can't xmit new skbs from this context, as we might already 1186 * hold qdisc lock. 1187 */ 1188 void tcp_wfree(struct sk_buff *skb) 1189 { 1190 struct sock *sk = skb->sk; 1191 struct tcp_sock *tp = tcp_sk(sk); 1192 unsigned long flags, nval, oval; 1193 struct tsq_tasklet *tsq; 1194 bool empty; 1195 1196 /* Keep one reference on sk_wmem_alloc. 1197 * Will be released by sk_free() from here or tcp_tasklet_func() 1198 */ 1199 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1200 1201 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1202 * Wait until our queues (qdisc + devices) are drained. 1203 * This gives : 1204 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1205 * - chance for incoming ACK (processed by another cpu maybe) 1206 * to migrate this flow (skb->ooo_okay will be eventually set) 1207 */ 1208 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1209 goto out; 1210 1211 oval = smp_load_acquire(&sk->sk_tsq_flags); 1212 do { 1213 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1214 goto out; 1215 1216 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1217 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1218 1219 /* queue this socket to tasklet queue */ 1220 local_irq_save(flags); 1221 tsq = this_cpu_ptr(&tsq_tasklet); 1222 empty = list_empty(&tsq->head); 1223 list_add(&tp->tsq_node, &tsq->head); 1224 if (empty) 1225 tasklet_schedule(&tsq->tasklet); 1226 local_irq_restore(flags); 1227 return; 1228 out: 1229 sk_free(sk); 1230 } 1231 1232 /* Note: Called under soft irq. 1233 * We can call TCP stack right away, unless socket is owned by user. 1234 */ 1235 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1236 { 1237 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1238 struct sock *sk = (struct sock *)tp; 1239 1240 tcp_tsq_handler(sk); 1241 sock_put(sk); 1242 1243 return HRTIMER_NORESTART; 1244 } 1245 1246 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1247 u64 prior_wstamp) 1248 { 1249 struct tcp_sock *tp = tcp_sk(sk); 1250 1251 if (sk->sk_pacing_status != SK_PACING_NONE) { 1252 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1253 1254 /* Original sch_fq does not pace first 10 MSS 1255 * Note that tp->data_segs_out overflows after 2^32 packets, 1256 * this is a minor annoyance. 1257 */ 1258 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1259 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1260 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1261 1262 /* take into account OS jitter */ 1263 len_ns -= min_t(u64, len_ns / 2, credit); 1264 tp->tcp_wstamp_ns += len_ns; 1265 } 1266 } 1267 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1268 } 1269 1270 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1271 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1272 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1273 1274 /* This routine actually transmits TCP packets queued in by 1275 * tcp_do_sendmsg(). This is used by both the initial 1276 * transmission and possible later retransmissions. 1277 * All SKB's seen here are completely headerless. It is our 1278 * job to build the TCP header, and pass the packet down to 1279 * IP so it can do the same plus pass the packet off to the 1280 * device. 1281 * 1282 * We are working here with either a clone of the original 1283 * SKB, or a fresh unique copy made by the retransmit engine. 1284 */ 1285 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1286 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1287 { 1288 const struct inet_connection_sock *icsk = inet_csk(sk); 1289 struct inet_sock *inet; 1290 struct tcp_sock *tp; 1291 struct tcp_skb_cb *tcb; 1292 struct tcp_out_options opts; 1293 unsigned int tcp_options_size, tcp_header_size; 1294 struct sk_buff *oskb = NULL; 1295 struct tcp_key key; 1296 struct tcphdr *th; 1297 u64 prior_wstamp; 1298 int err; 1299 1300 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1301 tp = tcp_sk(sk); 1302 prior_wstamp = tp->tcp_wstamp_ns; 1303 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1304 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1305 if (clone_it) { 1306 oskb = skb; 1307 1308 tcp_skb_tsorted_save(oskb) { 1309 if (unlikely(skb_cloned(oskb))) 1310 skb = pskb_copy(oskb, gfp_mask); 1311 else 1312 skb = skb_clone(oskb, gfp_mask); 1313 } tcp_skb_tsorted_restore(oskb); 1314 1315 if (unlikely(!skb)) 1316 return -ENOBUFS; 1317 /* retransmit skbs might have a non zero value in skb->dev 1318 * because skb->dev is aliased with skb->rbnode.rb_left 1319 */ 1320 skb->dev = NULL; 1321 } 1322 1323 inet = inet_sk(sk); 1324 tcb = TCP_SKB_CB(skb); 1325 memset(&opts, 0, sizeof(opts)); 1326 1327 tcp_get_current_key(sk, &key); 1328 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1329 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1330 } else { 1331 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1332 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1333 * at receiver : This slightly improve GRO performance. 1334 * Note that we do not force the PSH flag for non GSO packets, 1335 * because they might be sent under high congestion events, 1336 * and in this case it is better to delay the delivery of 1-MSS 1337 * packets and thus the corresponding ACK packet that would 1338 * release the following packet. 1339 */ 1340 if (tcp_skb_pcount(skb) > 1) 1341 tcb->tcp_flags |= TCPHDR_PSH; 1342 } 1343 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1344 1345 /* We set skb->ooo_okay to one if this packet can select 1346 * a different TX queue than prior packets of this flow, 1347 * to avoid self inflicted reorders. 1348 * The 'other' queue decision is based on current cpu number 1349 * if XPS is enabled, or sk->sk_txhash otherwise. 1350 * We can switch to another (and better) queue if: 1351 * 1) No packet with payload is in qdisc/device queues. 1352 * Delays in TX completion can defeat the test 1353 * even if packets were already sent. 1354 * 2) Or rtx queue is empty. 1355 * This mitigates above case if ACK packets for 1356 * all prior packets were already processed. 1357 */ 1358 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1359 tcp_rtx_queue_empty(sk); 1360 1361 /* If we had to use memory reserve to allocate this skb, 1362 * this might cause drops if packet is looped back : 1363 * Other socket might not have SOCK_MEMALLOC. 1364 * Packets not looped back do not care about pfmemalloc. 1365 */ 1366 skb->pfmemalloc = 0; 1367 1368 skb_push(skb, tcp_header_size); 1369 skb_reset_transport_header(skb); 1370 1371 skb_orphan(skb); 1372 skb->sk = sk; 1373 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1374 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1375 1376 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1377 1378 /* Build TCP header and checksum it. */ 1379 th = (struct tcphdr *)skb->data; 1380 th->source = inet->inet_sport; 1381 th->dest = inet->inet_dport; 1382 th->seq = htonl(tcb->seq); 1383 th->ack_seq = htonl(rcv_nxt); 1384 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1385 tcb->tcp_flags); 1386 1387 th->check = 0; 1388 th->urg_ptr = 0; 1389 1390 /* The urg_mode check is necessary during a below snd_una win probe */ 1391 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1392 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1393 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1394 th->urg = 1; 1395 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1396 th->urg_ptr = htons(0xFFFF); 1397 th->urg = 1; 1398 } 1399 } 1400 1401 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1402 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1403 th->window = htons(tcp_select_window(sk)); 1404 tcp_ecn_send(sk, skb, th, tcp_header_size); 1405 } else { 1406 /* RFC1323: The window in SYN & SYN/ACK segments 1407 * is never scaled. 1408 */ 1409 th->window = htons(min(tp->rcv_wnd, 65535U)); 1410 } 1411 1412 tcp_options_write(th, tp, NULL, &opts, &key); 1413 1414 if (tcp_key_is_md5(&key)) { 1415 #ifdef CONFIG_TCP_MD5SIG 1416 /* Calculate the MD5 hash, as we have all we need now */ 1417 sk_gso_disable(sk); 1418 tp->af_specific->calc_md5_hash(opts.hash_location, 1419 key.md5_key, sk, skb); 1420 #endif 1421 } else if (tcp_key_is_ao(&key)) { 1422 int err; 1423 1424 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1425 opts.hash_location); 1426 if (err) { 1427 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1428 return -ENOMEM; 1429 } 1430 } 1431 1432 /* BPF prog is the last one writing header option */ 1433 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1434 1435 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1436 tcp_v6_send_check, tcp_v4_send_check, 1437 sk, skb); 1438 1439 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1440 tcp_event_ack_sent(sk, rcv_nxt); 1441 1442 if (skb->len != tcp_header_size) { 1443 tcp_event_data_sent(tp, sk); 1444 tp->data_segs_out += tcp_skb_pcount(skb); 1445 tp->bytes_sent += skb->len - tcp_header_size; 1446 } 1447 1448 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1449 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1450 tcp_skb_pcount(skb)); 1451 1452 tp->segs_out += tcp_skb_pcount(skb); 1453 skb_set_hash_from_sk(skb, sk); 1454 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1455 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1456 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1457 1458 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1459 1460 /* Cleanup our debris for IP stacks */ 1461 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1462 sizeof(struct inet6_skb_parm))); 1463 1464 tcp_add_tx_delay(skb, tp); 1465 1466 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1467 inet6_csk_xmit, ip_queue_xmit, 1468 sk, skb, &inet->cork.fl); 1469 1470 if (unlikely(err > 0)) { 1471 tcp_enter_cwr(sk); 1472 err = net_xmit_eval(err); 1473 } 1474 if (!err && oskb) { 1475 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1476 tcp_rate_skb_sent(sk, oskb); 1477 } 1478 return err; 1479 } 1480 1481 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1482 gfp_t gfp_mask) 1483 { 1484 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1485 tcp_sk(sk)->rcv_nxt); 1486 } 1487 1488 /* This routine just queues the buffer for sending. 1489 * 1490 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1491 * otherwise socket can stall. 1492 */ 1493 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1494 { 1495 struct tcp_sock *tp = tcp_sk(sk); 1496 1497 /* Advance write_seq and place onto the write_queue. */ 1498 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1499 __skb_header_release(skb); 1500 tcp_add_write_queue_tail(sk, skb); 1501 sk_wmem_queued_add(sk, skb->truesize); 1502 sk_mem_charge(sk, skb->truesize); 1503 } 1504 1505 /* Initialize TSO segments for a packet. */ 1506 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1507 { 1508 int tso_segs; 1509 1510 if (skb->len <= mss_now) { 1511 /* Avoid the costly divide in the normal 1512 * non-TSO case. 1513 */ 1514 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1515 tcp_skb_pcount_set(skb, 1); 1516 return 1; 1517 } 1518 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1519 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1520 tcp_skb_pcount_set(skb, tso_segs); 1521 return tso_segs; 1522 } 1523 1524 /* Pcount in the middle of the write queue got changed, we need to do various 1525 * tweaks to fix counters 1526 */ 1527 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1528 { 1529 struct tcp_sock *tp = tcp_sk(sk); 1530 1531 tp->packets_out -= decr; 1532 1533 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1534 tp->sacked_out -= decr; 1535 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1536 tp->retrans_out -= decr; 1537 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1538 tp->lost_out -= decr; 1539 1540 /* Reno case is special. Sigh... */ 1541 if (tcp_is_reno(tp) && decr > 0) 1542 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1543 1544 if (tp->lost_skb_hint && 1545 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1546 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1547 tp->lost_cnt_hint -= decr; 1548 1549 tcp_verify_left_out(tp); 1550 } 1551 1552 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1553 { 1554 return TCP_SKB_CB(skb)->txstamp_ack || 1555 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1556 } 1557 1558 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1559 { 1560 struct skb_shared_info *shinfo = skb_shinfo(skb); 1561 1562 if (unlikely(tcp_has_tx_tstamp(skb)) && 1563 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1564 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1565 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1566 1567 shinfo->tx_flags &= ~tsflags; 1568 shinfo2->tx_flags |= tsflags; 1569 swap(shinfo->tskey, shinfo2->tskey); 1570 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1571 TCP_SKB_CB(skb)->txstamp_ack = 0; 1572 } 1573 } 1574 1575 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1576 { 1577 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1578 TCP_SKB_CB(skb)->eor = 0; 1579 } 1580 1581 /* Insert buff after skb on the write or rtx queue of sk. */ 1582 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1583 struct sk_buff *buff, 1584 struct sock *sk, 1585 enum tcp_queue tcp_queue) 1586 { 1587 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1588 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1589 else 1590 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1591 } 1592 1593 /* Function to create two new TCP segments. Shrinks the given segment 1594 * to the specified size and appends a new segment with the rest of the 1595 * packet to the list. This won't be called frequently, I hope. 1596 * Remember, these are still headerless SKBs at this point. 1597 */ 1598 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1599 struct sk_buff *skb, u32 len, 1600 unsigned int mss_now, gfp_t gfp) 1601 { 1602 struct tcp_sock *tp = tcp_sk(sk); 1603 struct sk_buff *buff; 1604 int old_factor; 1605 long limit; 1606 int nlen; 1607 u8 flags; 1608 1609 if (WARN_ON(len > skb->len)) 1610 return -EINVAL; 1611 1612 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1613 1614 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1615 * We need some allowance to not penalize applications setting small 1616 * SO_SNDBUF values. 1617 * Also allow first and last skb in retransmit queue to be split. 1618 */ 1619 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1620 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1621 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1622 skb != tcp_rtx_queue_head(sk) && 1623 skb != tcp_rtx_queue_tail(sk))) { 1624 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1625 return -ENOMEM; 1626 } 1627 1628 if (skb_unclone_keeptruesize(skb, gfp)) 1629 return -ENOMEM; 1630 1631 /* Get a new skb... force flag on. */ 1632 buff = tcp_stream_alloc_skb(sk, gfp, true); 1633 if (!buff) 1634 return -ENOMEM; /* We'll just try again later. */ 1635 skb_copy_decrypted(buff, skb); 1636 mptcp_skb_ext_copy(buff, skb); 1637 1638 sk_wmem_queued_add(sk, buff->truesize); 1639 sk_mem_charge(sk, buff->truesize); 1640 nlen = skb->len - len; 1641 buff->truesize += nlen; 1642 skb->truesize -= nlen; 1643 1644 /* Correct the sequence numbers. */ 1645 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1646 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1647 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1648 1649 /* PSH and FIN should only be set in the second packet. */ 1650 flags = TCP_SKB_CB(skb)->tcp_flags; 1651 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1652 TCP_SKB_CB(buff)->tcp_flags = flags; 1653 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1654 tcp_skb_fragment_eor(skb, buff); 1655 1656 skb_split(skb, buff, len); 1657 1658 skb_set_delivery_time(buff, skb->tstamp, true); 1659 tcp_fragment_tstamp(skb, buff); 1660 1661 old_factor = tcp_skb_pcount(skb); 1662 1663 /* Fix up tso_factor for both original and new SKB. */ 1664 tcp_set_skb_tso_segs(skb, mss_now); 1665 tcp_set_skb_tso_segs(buff, mss_now); 1666 1667 /* Update delivered info for the new segment */ 1668 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1669 1670 /* If this packet has been sent out already, we must 1671 * adjust the various packet counters. 1672 */ 1673 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1674 int diff = old_factor - tcp_skb_pcount(skb) - 1675 tcp_skb_pcount(buff); 1676 1677 if (diff) 1678 tcp_adjust_pcount(sk, skb, diff); 1679 } 1680 1681 /* Link BUFF into the send queue. */ 1682 __skb_header_release(buff); 1683 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1684 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1685 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1686 1687 return 0; 1688 } 1689 1690 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1691 * data is not copied, but immediately discarded. 1692 */ 1693 static int __pskb_trim_head(struct sk_buff *skb, int len) 1694 { 1695 struct skb_shared_info *shinfo; 1696 int i, k, eat; 1697 1698 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1699 eat = len; 1700 k = 0; 1701 shinfo = skb_shinfo(skb); 1702 for (i = 0; i < shinfo->nr_frags; i++) { 1703 int size = skb_frag_size(&shinfo->frags[i]); 1704 1705 if (size <= eat) { 1706 skb_frag_unref(skb, i); 1707 eat -= size; 1708 } else { 1709 shinfo->frags[k] = shinfo->frags[i]; 1710 if (eat) { 1711 skb_frag_off_add(&shinfo->frags[k], eat); 1712 skb_frag_size_sub(&shinfo->frags[k], eat); 1713 eat = 0; 1714 } 1715 k++; 1716 } 1717 } 1718 shinfo->nr_frags = k; 1719 1720 skb->data_len -= len; 1721 skb->len = skb->data_len; 1722 return len; 1723 } 1724 1725 /* Remove acked data from a packet in the transmit queue. */ 1726 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1727 { 1728 u32 delta_truesize; 1729 1730 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1731 return -ENOMEM; 1732 1733 delta_truesize = __pskb_trim_head(skb, len); 1734 1735 TCP_SKB_CB(skb)->seq += len; 1736 1737 skb->truesize -= delta_truesize; 1738 sk_wmem_queued_add(sk, -delta_truesize); 1739 if (!skb_zcopy_pure(skb)) 1740 sk_mem_uncharge(sk, delta_truesize); 1741 1742 /* Any change of skb->len requires recalculation of tso factor. */ 1743 if (tcp_skb_pcount(skb) > 1) 1744 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1745 1746 return 0; 1747 } 1748 1749 /* Calculate MSS not accounting any TCP options. */ 1750 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1751 { 1752 const struct tcp_sock *tp = tcp_sk(sk); 1753 const struct inet_connection_sock *icsk = inet_csk(sk); 1754 int mss_now; 1755 1756 /* Calculate base mss without TCP options: 1757 It is MMS_S - sizeof(tcphdr) of rfc1122 1758 */ 1759 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1760 1761 /* Clamp it (mss_clamp does not include tcp options) */ 1762 if (mss_now > tp->rx_opt.mss_clamp) 1763 mss_now = tp->rx_opt.mss_clamp; 1764 1765 /* Now subtract optional transport overhead */ 1766 mss_now -= icsk->icsk_ext_hdr_len; 1767 1768 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1769 mss_now = max(mss_now, 1770 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1771 return mss_now; 1772 } 1773 1774 /* Calculate MSS. Not accounting for SACKs here. */ 1775 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1776 { 1777 /* Subtract TCP options size, not including SACKs */ 1778 return __tcp_mtu_to_mss(sk, pmtu) - 1779 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1780 } 1781 EXPORT_SYMBOL(tcp_mtu_to_mss); 1782 1783 /* Inverse of above */ 1784 int tcp_mss_to_mtu(struct sock *sk, int mss) 1785 { 1786 const struct tcp_sock *tp = tcp_sk(sk); 1787 const struct inet_connection_sock *icsk = inet_csk(sk); 1788 1789 return mss + 1790 tp->tcp_header_len + 1791 icsk->icsk_ext_hdr_len + 1792 icsk->icsk_af_ops->net_header_len; 1793 } 1794 EXPORT_SYMBOL(tcp_mss_to_mtu); 1795 1796 /* MTU probing init per socket */ 1797 void tcp_mtup_init(struct sock *sk) 1798 { 1799 struct tcp_sock *tp = tcp_sk(sk); 1800 struct inet_connection_sock *icsk = inet_csk(sk); 1801 struct net *net = sock_net(sk); 1802 1803 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1804 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1805 icsk->icsk_af_ops->net_header_len; 1806 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1807 icsk->icsk_mtup.probe_size = 0; 1808 if (icsk->icsk_mtup.enabled) 1809 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1810 } 1811 EXPORT_SYMBOL(tcp_mtup_init); 1812 1813 /* This function synchronize snd mss to current pmtu/exthdr set. 1814 1815 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1816 for TCP options, but includes only bare TCP header. 1817 1818 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1819 It is minimum of user_mss and mss received with SYN. 1820 It also does not include TCP options. 1821 1822 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1823 1824 tp->mss_cache is current effective sending mss, including 1825 all tcp options except for SACKs. It is evaluated, 1826 taking into account current pmtu, but never exceeds 1827 tp->rx_opt.mss_clamp. 1828 1829 NOTE1. rfc1122 clearly states that advertised MSS 1830 DOES NOT include either tcp or ip options. 1831 1832 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1833 are READ ONLY outside this function. --ANK (980731) 1834 */ 1835 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1836 { 1837 struct tcp_sock *tp = tcp_sk(sk); 1838 struct inet_connection_sock *icsk = inet_csk(sk); 1839 int mss_now; 1840 1841 if (icsk->icsk_mtup.search_high > pmtu) 1842 icsk->icsk_mtup.search_high = pmtu; 1843 1844 mss_now = tcp_mtu_to_mss(sk, pmtu); 1845 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1846 1847 /* And store cached results */ 1848 icsk->icsk_pmtu_cookie = pmtu; 1849 if (icsk->icsk_mtup.enabled) 1850 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1851 tp->mss_cache = mss_now; 1852 1853 return mss_now; 1854 } 1855 EXPORT_SYMBOL(tcp_sync_mss); 1856 1857 /* Compute the current effective MSS, taking SACKs and IP options, 1858 * and even PMTU discovery events into account. 1859 */ 1860 unsigned int tcp_current_mss(struct sock *sk) 1861 { 1862 const struct tcp_sock *tp = tcp_sk(sk); 1863 const struct dst_entry *dst = __sk_dst_get(sk); 1864 u32 mss_now; 1865 unsigned int header_len; 1866 struct tcp_out_options opts; 1867 struct tcp_key key; 1868 1869 mss_now = tp->mss_cache; 1870 1871 if (dst) { 1872 u32 mtu = dst_mtu(dst); 1873 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1874 mss_now = tcp_sync_mss(sk, mtu); 1875 } 1876 tcp_get_current_key(sk, &key); 1877 header_len = tcp_established_options(sk, NULL, &opts, &key) + 1878 sizeof(struct tcphdr); 1879 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1880 * some common options. If this is an odd packet (because we have SACK 1881 * blocks etc) then our calculated header_len will be different, and 1882 * we have to adjust mss_now correspondingly */ 1883 if (header_len != tp->tcp_header_len) { 1884 int delta = (int) header_len - tp->tcp_header_len; 1885 mss_now -= delta; 1886 } 1887 1888 return mss_now; 1889 } 1890 1891 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1892 * As additional protections, we do not touch cwnd in retransmission phases, 1893 * and if application hit its sndbuf limit recently. 1894 */ 1895 static void tcp_cwnd_application_limited(struct sock *sk) 1896 { 1897 struct tcp_sock *tp = tcp_sk(sk); 1898 1899 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1900 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1901 /* Limited by application or receiver window. */ 1902 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1903 u32 win_used = max(tp->snd_cwnd_used, init_win); 1904 if (win_used < tcp_snd_cwnd(tp)) { 1905 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1906 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1907 } 1908 tp->snd_cwnd_used = 0; 1909 } 1910 tp->snd_cwnd_stamp = tcp_jiffies32; 1911 } 1912 1913 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1914 { 1915 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1916 struct tcp_sock *tp = tcp_sk(sk); 1917 1918 /* Track the strongest available signal of the degree to which the cwnd 1919 * is fully utilized. If cwnd-limited then remember that fact for the 1920 * current window. If not cwnd-limited then track the maximum number of 1921 * outstanding packets in the current window. (If cwnd-limited then we 1922 * chose to not update tp->max_packets_out to avoid an extra else 1923 * clause with no functional impact.) 1924 */ 1925 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1926 is_cwnd_limited || 1927 (!tp->is_cwnd_limited && 1928 tp->packets_out > tp->max_packets_out)) { 1929 tp->is_cwnd_limited = is_cwnd_limited; 1930 tp->max_packets_out = tp->packets_out; 1931 tp->cwnd_usage_seq = tp->snd_nxt; 1932 } 1933 1934 if (tcp_is_cwnd_limited(sk)) { 1935 /* Network is feed fully. */ 1936 tp->snd_cwnd_used = 0; 1937 tp->snd_cwnd_stamp = tcp_jiffies32; 1938 } else { 1939 /* Network starves. */ 1940 if (tp->packets_out > tp->snd_cwnd_used) 1941 tp->snd_cwnd_used = tp->packets_out; 1942 1943 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1944 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1945 !ca_ops->cong_control) 1946 tcp_cwnd_application_limited(sk); 1947 1948 /* The following conditions together indicate the starvation 1949 * is caused by insufficient sender buffer: 1950 * 1) just sent some data (see tcp_write_xmit) 1951 * 2) not cwnd limited (this else condition) 1952 * 3) no more data to send (tcp_write_queue_empty()) 1953 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1954 */ 1955 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1956 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1957 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1958 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1959 } 1960 } 1961 1962 /* Minshall's variant of the Nagle send check. */ 1963 static bool tcp_minshall_check(const struct tcp_sock *tp) 1964 { 1965 return after(tp->snd_sml, tp->snd_una) && 1966 !after(tp->snd_sml, tp->snd_nxt); 1967 } 1968 1969 /* Update snd_sml if this skb is under mss 1970 * Note that a TSO packet might end with a sub-mss segment 1971 * The test is really : 1972 * if ((skb->len % mss) != 0) 1973 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1974 * But we can avoid doing the divide again given we already have 1975 * skb_pcount = skb->len / mss_now 1976 */ 1977 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1978 const struct sk_buff *skb) 1979 { 1980 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1981 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1982 } 1983 1984 /* Return false, if packet can be sent now without violation Nagle's rules: 1985 * 1. It is full sized. (provided by caller in %partial bool) 1986 * 2. Or it contains FIN. (already checked by caller) 1987 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1988 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1989 * With Minshall's modification: all sent small packets are ACKed. 1990 */ 1991 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1992 int nonagle) 1993 { 1994 return partial && 1995 ((nonagle & TCP_NAGLE_CORK) || 1996 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1997 } 1998 1999 /* Return how many segs we'd like on a TSO packet, 2000 * depending on current pacing rate, and how close the peer is. 2001 * 2002 * Rationale is: 2003 * - For close peers, we rather send bigger packets to reduce 2004 * cpu costs, because occasional losses will be repaired fast. 2005 * - For long distance/rtt flows, we would like to get ACK clocking 2006 * with 1 ACK per ms. 2007 * 2008 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2009 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2010 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2011 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2012 */ 2013 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2014 int min_tso_segs) 2015 { 2016 unsigned long bytes; 2017 u32 r; 2018 2019 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2020 2021 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2022 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2023 bytes += sk->sk_gso_max_size >> r; 2024 2025 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2026 2027 return max_t(u32, bytes / mss_now, min_tso_segs); 2028 } 2029 2030 /* Return the number of segments we want in the skb we are transmitting. 2031 * See if congestion control module wants to decide; otherwise, autosize. 2032 */ 2033 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2034 { 2035 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2036 u32 min_tso, tso_segs; 2037 2038 min_tso = ca_ops->min_tso_segs ? 2039 ca_ops->min_tso_segs(sk) : 2040 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2041 2042 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2043 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2044 } 2045 2046 /* Returns the portion of skb which can be sent right away */ 2047 static unsigned int tcp_mss_split_point(const struct sock *sk, 2048 const struct sk_buff *skb, 2049 unsigned int mss_now, 2050 unsigned int max_segs, 2051 int nonagle) 2052 { 2053 const struct tcp_sock *tp = tcp_sk(sk); 2054 u32 partial, needed, window, max_len; 2055 2056 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2057 max_len = mss_now * max_segs; 2058 2059 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2060 return max_len; 2061 2062 needed = min(skb->len, window); 2063 2064 if (max_len <= needed) 2065 return max_len; 2066 2067 partial = needed % mss_now; 2068 /* If last segment is not a full MSS, check if Nagle rules allow us 2069 * to include this last segment in this skb. 2070 * Otherwise, we'll split the skb at last MSS boundary 2071 */ 2072 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2073 return needed - partial; 2074 2075 return needed; 2076 } 2077 2078 /* Can at least one segment of SKB be sent right now, according to the 2079 * congestion window rules? If so, return how many segments are allowed. 2080 */ 2081 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2082 { 2083 u32 in_flight, cwnd, halfcwnd; 2084 2085 in_flight = tcp_packets_in_flight(tp); 2086 cwnd = tcp_snd_cwnd(tp); 2087 if (in_flight >= cwnd) 2088 return 0; 2089 2090 /* For better scheduling, ensure we have at least 2091 * 2 GSO packets in flight. 2092 */ 2093 halfcwnd = max(cwnd >> 1, 1U); 2094 return min(halfcwnd, cwnd - in_flight); 2095 } 2096 2097 /* Initialize TSO state of a skb. 2098 * This must be invoked the first time we consider transmitting 2099 * SKB onto the wire. 2100 */ 2101 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2102 { 2103 int tso_segs = tcp_skb_pcount(skb); 2104 2105 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2106 return tcp_set_skb_tso_segs(skb, mss_now); 2107 2108 return tso_segs; 2109 } 2110 2111 2112 /* Return true if the Nagle test allows this packet to be 2113 * sent now. 2114 */ 2115 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2116 unsigned int cur_mss, int nonagle) 2117 { 2118 /* Nagle rule does not apply to frames, which sit in the middle of the 2119 * write_queue (they have no chances to get new data). 2120 * 2121 * This is implemented in the callers, where they modify the 'nonagle' 2122 * argument based upon the location of SKB in the send queue. 2123 */ 2124 if (nonagle & TCP_NAGLE_PUSH) 2125 return true; 2126 2127 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2128 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2129 return true; 2130 2131 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2132 return true; 2133 2134 return false; 2135 } 2136 2137 /* Does at least the first segment of SKB fit into the send window? */ 2138 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2139 const struct sk_buff *skb, 2140 unsigned int cur_mss) 2141 { 2142 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2143 2144 if (skb->len > cur_mss) 2145 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2146 2147 return !after(end_seq, tcp_wnd_end(tp)); 2148 } 2149 2150 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2151 * which is put after SKB on the list. It is very much like 2152 * tcp_fragment() except that it may make several kinds of assumptions 2153 * in order to speed up the splitting operation. In particular, we 2154 * know that all the data is in scatter-gather pages, and that the 2155 * packet has never been sent out before (and thus is not cloned). 2156 */ 2157 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2158 unsigned int mss_now, gfp_t gfp) 2159 { 2160 int nlen = skb->len - len; 2161 struct sk_buff *buff; 2162 u8 flags; 2163 2164 /* All of a TSO frame must be composed of paged data. */ 2165 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2166 2167 buff = tcp_stream_alloc_skb(sk, gfp, true); 2168 if (unlikely(!buff)) 2169 return -ENOMEM; 2170 skb_copy_decrypted(buff, skb); 2171 mptcp_skb_ext_copy(buff, skb); 2172 2173 sk_wmem_queued_add(sk, buff->truesize); 2174 sk_mem_charge(sk, buff->truesize); 2175 buff->truesize += nlen; 2176 skb->truesize -= nlen; 2177 2178 /* Correct the sequence numbers. */ 2179 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2180 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2181 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2182 2183 /* PSH and FIN should only be set in the second packet. */ 2184 flags = TCP_SKB_CB(skb)->tcp_flags; 2185 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2186 TCP_SKB_CB(buff)->tcp_flags = flags; 2187 2188 tcp_skb_fragment_eor(skb, buff); 2189 2190 skb_split(skb, buff, len); 2191 tcp_fragment_tstamp(skb, buff); 2192 2193 /* Fix up tso_factor for both original and new SKB. */ 2194 tcp_set_skb_tso_segs(skb, mss_now); 2195 tcp_set_skb_tso_segs(buff, mss_now); 2196 2197 /* Link BUFF into the send queue. */ 2198 __skb_header_release(buff); 2199 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2200 2201 return 0; 2202 } 2203 2204 /* Try to defer sending, if possible, in order to minimize the amount 2205 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2206 * 2207 * This algorithm is from John Heffner. 2208 */ 2209 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2210 bool *is_cwnd_limited, 2211 bool *is_rwnd_limited, 2212 u32 max_segs) 2213 { 2214 const struct inet_connection_sock *icsk = inet_csk(sk); 2215 u32 send_win, cong_win, limit, in_flight; 2216 struct tcp_sock *tp = tcp_sk(sk); 2217 struct sk_buff *head; 2218 int win_divisor; 2219 s64 delta; 2220 2221 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2222 goto send_now; 2223 2224 /* Avoid bursty behavior by allowing defer 2225 * only if the last write was recent (1 ms). 2226 * Note that tp->tcp_wstamp_ns can be in the future if we have 2227 * packets waiting in a qdisc or device for EDT delivery. 2228 */ 2229 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2230 if (delta > 0) 2231 goto send_now; 2232 2233 in_flight = tcp_packets_in_flight(tp); 2234 2235 BUG_ON(tcp_skb_pcount(skb) <= 1); 2236 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2237 2238 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2239 2240 /* From in_flight test above, we know that cwnd > in_flight. */ 2241 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2242 2243 limit = min(send_win, cong_win); 2244 2245 /* If a full-sized TSO skb can be sent, do it. */ 2246 if (limit >= max_segs * tp->mss_cache) 2247 goto send_now; 2248 2249 /* Middle in queue won't get any more data, full sendable already? */ 2250 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2251 goto send_now; 2252 2253 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2254 if (win_divisor) { 2255 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2256 2257 /* If at least some fraction of a window is available, 2258 * just use it. 2259 */ 2260 chunk /= win_divisor; 2261 if (limit >= chunk) 2262 goto send_now; 2263 } else { 2264 /* Different approach, try not to defer past a single 2265 * ACK. Receiver should ACK every other full sized 2266 * frame, so if we have space for more than 3 frames 2267 * then send now. 2268 */ 2269 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2270 goto send_now; 2271 } 2272 2273 /* TODO : use tsorted_sent_queue ? */ 2274 head = tcp_rtx_queue_head(sk); 2275 if (!head) 2276 goto send_now; 2277 delta = tp->tcp_clock_cache - head->tstamp; 2278 /* If next ACK is likely to come too late (half srtt), do not defer */ 2279 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2280 goto send_now; 2281 2282 /* Ok, it looks like it is advisable to defer. 2283 * Three cases are tracked : 2284 * 1) We are cwnd-limited 2285 * 2) We are rwnd-limited 2286 * 3) We are application limited. 2287 */ 2288 if (cong_win < send_win) { 2289 if (cong_win <= skb->len) { 2290 *is_cwnd_limited = true; 2291 return true; 2292 } 2293 } else { 2294 if (send_win <= skb->len) { 2295 *is_rwnd_limited = true; 2296 return true; 2297 } 2298 } 2299 2300 /* If this packet won't get more data, do not wait. */ 2301 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2302 TCP_SKB_CB(skb)->eor) 2303 goto send_now; 2304 2305 return true; 2306 2307 send_now: 2308 return false; 2309 } 2310 2311 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2312 { 2313 struct inet_connection_sock *icsk = inet_csk(sk); 2314 struct tcp_sock *tp = tcp_sk(sk); 2315 struct net *net = sock_net(sk); 2316 u32 interval; 2317 s32 delta; 2318 2319 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2320 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2321 if (unlikely(delta >= interval * HZ)) { 2322 int mss = tcp_current_mss(sk); 2323 2324 /* Update current search range */ 2325 icsk->icsk_mtup.probe_size = 0; 2326 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2327 sizeof(struct tcphdr) + 2328 icsk->icsk_af_ops->net_header_len; 2329 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2330 2331 /* Update probe time stamp */ 2332 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2333 } 2334 } 2335 2336 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2337 { 2338 struct sk_buff *skb, *next; 2339 2340 skb = tcp_send_head(sk); 2341 tcp_for_write_queue_from_safe(skb, next, sk) { 2342 if (len <= skb->len) 2343 break; 2344 2345 if (unlikely(TCP_SKB_CB(skb)->eor) || 2346 tcp_has_tx_tstamp(skb) || 2347 !skb_pure_zcopy_same(skb, next)) 2348 return false; 2349 2350 len -= skb->len; 2351 } 2352 2353 return true; 2354 } 2355 2356 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2357 int probe_size) 2358 { 2359 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2360 int i, todo, len = 0, nr_frags = 0; 2361 const struct sk_buff *skb; 2362 2363 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2364 return -ENOMEM; 2365 2366 skb_queue_walk(&sk->sk_write_queue, skb) { 2367 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2368 2369 if (skb_headlen(skb)) 2370 return -EINVAL; 2371 2372 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2373 if (len >= probe_size) 2374 goto commit; 2375 todo = min_t(int, skb_frag_size(fragfrom), 2376 probe_size - len); 2377 len += todo; 2378 if (lastfrag && 2379 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2380 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2381 skb_frag_size(lastfrag)) { 2382 skb_frag_size_add(lastfrag, todo); 2383 continue; 2384 } 2385 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2386 return -E2BIG; 2387 skb_frag_page_copy(fragto, fragfrom); 2388 skb_frag_off_copy(fragto, fragfrom); 2389 skb_frag_size_set(fragto, todo); 2390 nr_frags++; 2391 lastfrag = fragto++; 2392 } 2393 } 2394 commit: 2395 WARN_ON_ONCE(len != probe_size); 2396 for (i = 0; i < nr_frags; i++) 2397 skb_frag_ref(to, i); 2398 2399 skb_shinfo(to)->nr_frags = nr_frags; 2400 to->truesize += probe_size; 2401 to->len += probe_size; 2402 to->data_len += probe_size; 2403 __skb_header_release(to); 2404 return 0; 2405 } 2406 2407 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if 2408 * all its payload was moved to another one (dst). 2409 * Make sure to transfer tcp_flags, eor, and tstamp. 2410 */ 2411 static void tcp_eat_one_skb(struct sock *sk, 2412 struct sk_buff *dst, 2413 struct sk_buff *src) 2414 { 2415 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags; 2416 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor; 2417 tcp_skb_collapse_tstamp(dst, src); 2418 tcp_unlink_write_queue(src, sk); 2419 tcp_wmem_free_skb(sk, src); 2420 } 2421 2422 /* Create a new MTU probe if we are ready. 2423 * MTU probe is regularly attempting to increase the path MTU by 2424 * deliberately sending larger packets. This discovers routing 2425 * changes resulting in larger path MTUs. 2426 * 2427 * Returns 0 if we should wait to probe (no cwnd available), 2428 * 1 if a probe was sent, 2429 * -1 otherwise 2430 */ 2431 static int tcp_mtu_probe(struct sock *sk) 2432 { 2433 struct inet_connection_sock *icsk = inet_csk(sk); 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 struct sk_buff *skb, *nskb, *next; 2436 struct net *net = sock_net(sk); 2437 int probe_size; 2438 int size_needed; 2439 int copy, len; 2440 int mss_now; 2441 int interval; 2442 2443 /* Not currently probing/verifying, 2444 * not in recovery, 2445 * have enough cwnd, and 2446 * not SACKing (the variable headers throw things off) 2447 */ 2448 if (likely(!icsk->icsk_mtup.enabled || 2449 icsk->icsk_mtup.probe_size || 2450 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2451 tcp_snd_cwnd(tp) < 11 || 2452 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2453 return -1; 2454 2455 /* Use binary search for probe_size between tcp_mss_base, 2456 * and current mss_clamp. if (search_high - search_low) 2457 * smaller than a threshold, backoff from probing. 2458 */ 2459 mss_now = tcp_current_mss(sk); 2460 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2461 icsk->icsk_mtup.search_low) >> 1); 2462 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2463 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2464 /* When misfortune happens, we are reprobing actively, 2465 * and then reprobe timer has expired. We stick with current 2466 * probing process by not resetting search range to its orignal. 2467 */ 2468 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2469 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2470 /* Check whether enough time has elaplased for 2471 * another round of probing. 2472 */ 2473 tcp_mtu_check_reprobe(sk); 2474 return -1; 2475 } 2476 2477 /* Have enough data in the send queue to probe? */ 2478 if (tp->write_seq - tp->snd_nxt < size_needed) 2479 return -1; 2480 2481 if (tp->snd_wnd < size_needed) 2482 return -1; 2483 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2484 return 0; 2485 2486 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2487 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2488 if (!tcp_packets_in_flight(tp)) 2489 return -1; 2490 else 2491 return 0; 2492 } 2493 2494 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2495 return -1; 2496 2497 /* We're allowed to probe. Build it now. */ 2498 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2499 if (!nskb) 2500 return -1; 2501 2502 /* build the payload, and be prepared to abort if this fails. */ 2503 if (tcp_clone_payload(sk, nskb, probe_size)) { 2504 tcp_skb_tsorted_anchor_cleanup(nskb); 2505 consume_skb(nskb); 2506 return -1; 2507 } 2508 sk_wmem_queued_add(sk, nskb->truesize); 2509 sk_mem_charge(sk, nskb->truesize); 2510 2511 skb = tcp_send_head(sk); 2512 skb_copy_decrypted(nskb, skb); 2513 mptcp_skb_ext_copy(nskb, skb); 2514 2515 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2516 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2517 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2518 2519 tcp_insert_write_queue_before(nskb, skb, sk); 2520 tcp_highest_sack_replace(sk, skb, nskb); 2521 2522 len = 0; 2523 tcp_for_write_queue_from_safe(skb, next, sk) { 2524 copy = min_t(int, skb->len, probe_size - len); 2525 2526 if (skb->len <= copy) { 2527 tcp_eat_one_skb(sk, nskb, skb); 2528 } else { 2529 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2530 ~(TCPHDR_FIN|TCPHDR_PSH); 2531 __pskb_trim_head(skb, copy); 2532 tcp_set_skb_tso_segs(skb, mss_now); 2533 TCP_SKB_CB(skb)->seq += copy; 2534 } 2535 2536 len += copy; 2537 2538 if (len >= probe_size) 2539 break; 2540 } 2541 tcp_init_tso_segs(nskb, nskb->len); 2542 2543 /* We're ready to send. If this fails, the probe will 2544 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2545 */ 2546 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2547 /* Decrement cwnd here because we are sending 2548 * effectively two packets. */ 2549 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2550 tcp_event_new_data_sent(sk, nskb); 2551 2552 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2553 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2554 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2555 2556 return 1; 2557 } 2558 2559 return -1; 2560 } 2561 2562 static bool tcp_pacing_check(struct sock *sk) 2563 { 2564 struct tcp_sock *tp = tcp_sk(sk); 2565 2566 if (!tcp_needs_internal_pacing(sk)) 2567 return false; 2568 2569 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2570 return false; 2571 2572 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2573 hrtimer_start(&tp->pacing_timer, 2574 ns_to_ktime(tp->tcp_wstamp_ns), 2575 HRTIMER_MODE_ABS_PINNED_SOFT); 2576 sock_hold(sk); 2577 } 2578 return true; 2579 } 2580 2581 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2582 { 2583 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2584 2585 /* No skb in the rtx queue. */ 2586 if (!node) 2587 return true; 2588 2589 /* Only one skb in rtx queue. */ 2590 return !node->rb_left && !node->rb_right; 2591 } 2592 2593 /* TCP Small Queues : 2594 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2595 * (These limits are doubled for retransmits) 2596 * This allows for : 2597 * - better RTT estimation and ACK scheduling 2598 * - faster recovery 2599 * - high rates 2600 * Alas, some drivers / subsystems require a fair amount 2601 * of queued bytes to ensure line rate. 2602 * One example is wifi aggregation (802.11 AMPDU) 2603 */ 2604 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2605 unsigned int factor) 2606 { 2607 unsigned long limit; 2608 2609 limit = max_t(unsigned long, 2610 2 * skb->truesize, 2611 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2612 if (sk->sk_pacing_status == SK_PACING_NONE) 2613 limit = min_t(unsigned long, limit, 2614 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2615 limit <<= factor; 2616 2617 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2618 tcp_sk(sk)->tcp_tx_delay) { 2619 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2620 tcp_sk(sk)->tcp_tx_delay; 2621 2622 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2623 * approximate our needs assuming an ~100% skb->truesize overhead. 2624 * USEC_PER_SEC is approximated by 2^20. 2625 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2626 */ 2627 extra_bytes >>= (20 - 1); 2628 limit += extra_bytes; 2629 } 2630 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2631 /* Always send skb if rtx queue is empty or has one skb. 2632 * No need to wait for TX completion to call us back, 2633 * after softirq/tasklet schedule. 2634 * This helps when TX completions are delayed too much. 2635 */ 2636 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2637 return false; 2638 2639 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2640 /* It is possible TX completion already happened 2641 * before we set TSQ_THROTTLED, so we must 2642 * test again the condition. 2643 */ 2644 smp_mb__after_atomic(); 2645 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2646 return true; 2647 } 2648 return false; 2649 } 2650 2651 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2652 { 2653 const u32 now = tcp_jiffies32; 2654 enum tcp_chrono old = tp->chrono_type; 2655 2656 if (old > TCP_CHRONO_UNSPEC) 2657 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2658 tp->chrono_start = now; 2659 tp->chrono_type = new; 2660 } 2661 2662 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2663 { 2664 struct tcp_sock *tp = tcp_sk(sk); 2665 2666 /* If there are multiple conditions worthy of tracking in a 2667 * chronograph then the highest priority enum takes precedence 2668 * over the other conditions. So that if something "more interesting" 2669 * starts happening, stop the previous chrono and start a new one. 2670 */ 2671 if (type > tp->chrono_type) 2672 tcp_chrono_set(tp, type); 2673 } 2674 2675 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2676 { 2677 struct tcp_sock *tp = tcp_sk(sk); 2678 2679 2680 /* There are multiple conditions worthy of tracking in a 2681 * chronograph, so that the highest priority enum takes 2682 * precedence over the other conditions (see tcp_chrono_start). 2683 * If a condition stops, we only stop chrono tracking if 2684 * it's the "most interesting" or current chrono we are 2685 * tracking and starts busy chrono if we have pending data. 2686 */ 2687 if (tcp_rtx_and_write_queues_empty(sk)) 2688 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2689 else if (type == tp->chrono_type) 2690 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2691 } 2692 2693 /* First skb in the write queue is smaller than ideal packet size. 2694 * Check if we can move payload from the second skb in the queue. 2695 */ 2696 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2697 { 2698 struct sk_buff *next_skb = skb->next; 2699 unsigned int nlen; 2700 2701 if (tcp_skb_is_last(sk, skb)) 2702 return; 2703 2704 if (!tcp_skb_can_collapse(skb, next_skb)) 2705 return; 2706 2707 nlen = min_t(u32, amount, next_skb->len); 2708 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2709 return; 2710 2711 TCP_SKB_CB(skb)->end_seq += nlen; 2712 TCP_SKB_CB(next_skb)->seq += nlen; 2713 2714 if (!next_skb->len) { 2715 /* In case FIN is set, we need to update end_seq */ 2716 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2717 2718 tcp_eat_one_skb(sk, skb, next_skb); 2719 } 2720 } 2721 2722 /* This routine writes packets to the network. It advances the 2723 * send_head. This happens as incoming acks open up the remote 2724 * window for us. 2725 * 2726 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2727 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2728 * account rare use of URG, this is not a big flaw. 2729 * 2730 * Send at most one packet when push_one > 0. Temporarily ignore 2731 * cwnd limit to force at most one packet out when push_one == 2. 2732 2733 * Returns true, if no segments are in flight and we have queued segments, 2734 * but cannot send anything now because of SWS or another problem. 2735 */ 2736 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2737 int push_one, gfp_t gfp) 2738 { 2739 struct tcp_sock *tp = tcp_sk(sk); 2740 struct sk_buff *skb; 2741 unsigned int tso_segs, sent_pkts; 2742 u32 cwnd_quota, max_segs; 2743 int result; 2744 bool is_cwnd_limited = false, is_rwnd_limited = false; 2745 2746 sent_pkts = 0; 2747 2748 tcp_mstamp_refresh(tp); 2749 if (!push_one) { 2750 /* Do MTU probing. */ 2751 result = tcp_mtu_probe(sk); 2752 if (!result) { 2753 return false; 2754 } else if (result > 0) { 2755 sent_pkts = 1; 2756 } 2757 } 2758 2759 max_segs = tcp_tso_segs(sk, mss_now); 2760 while ((skb = tcp_send_head(sk))) { 2761 unsigned int limit; 2762 int missing_bytes; 2763 2764 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2765 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2766 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2767 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2768 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2769 tcp_init_tso_segs(skb, mss_now); 2770 goto repair; /* Skip network transmission */ 2771 } 2772 2773 if (tcp_pacing_check(sk)) 2774 break; 2775 2776 cwnd_quota = tcp_cwnd_test(tp); 2777 if (!cwnd_quota) { 2778 if (push_one == 2) 2779 /* Force out a loss probe pkt. */ 2780 cwnd_quota = 1; 2781 else 2782 break; 2783 } 2784 cwnd_quota = min(cwnd_quota, max_segs); 2785 missing_bytes = cwnd_quota * mss_now - skb->len; 2786 if (missing_bytes > 0) 2787 tcp_grow_skb(sk, skb, missing_bytes); 2788 2789 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 2790 2791 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2792 is_rwnd_limited = true; 2793 break; 2794 } 2795 2796 if (tso_segs == 1) { 2797 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2798 (tcp_skb_is_last(sk, skb) ? 2799 nonagle : TCP_NAGLE_PUSH)))) 2800 break; 2801 } else { 2802 if (!push_one && 2803 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2804 &is_rwnd_limited, max_segs)) 2805 break; 2806 } 2807 2808 limit = mss_now; 2809 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2810 limit = tcp_mss_split_point(sk, skb, mss_now, 2811 cwnd_quota, 2812 nonagle); 2813 2814 if (skb->len > limit && 2815 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2816 break; 2817 2818 if (tcp_small_queue_check(sk, skb, 0)) 2819 break; 2820 2821 /* Argh, we hit an empty skb(), presumably a thread 2822 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2823 * We do not want to send a pure-ack packet and have 2824 * a strange looking rtx queue with empty packet(s). 2825 */ 2826 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2827 break; 2828 2829 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2830 break; 2831 2832 repair: 2833 /* Advance the send_head. This one is sent out. 2834 * This call will increment packets_out. 2835 */ 2836 tcp_event_new_data_sent(sk, skb); 2837 2838 tcp_minshall_update(tp, mss_now, skb); 2839 sent_pkts += tcp_skb_pcount(skb); 2840 2841 if (push_one) 2842 break; 2843 } 2844 2845 if (is_rwnd_limited) 2846 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2847 else 2848 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2849 2850 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2851 if (likely(sent_pkts || is_cwnd_limited)) 2852 tcp_cwnd_validate(sk, is_cwnd_limited); 2853 2854 if (likely(sent_pkts)) { 2855 if (tcp_in_cwnd_reduction(sk)) 2856 tp->prr_out += sent_pkts; 2857 2858 /* Send one loss probe per tail loss episode. */ 2859 if (push_one != 2) 2860 tcp_schedule_loss_probe(sk, false); 2861 return false; 2862 } 2863 return !tp->packets_out && !tcp_write_queue_empty(sk); 2864 } 2865 2866 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2867 { 2868 struct inet_connection_sock *icsk = inet_csk(sk); 2869 struct tcp_sock *tp = tcp_sk(sk); 2870 u32 timeout, timeout_us, rto_delta_us; 2871 int early_retrans; 2872 2873 /* Don't do any loss probe on a Fast Open connection before 3WHS 2874 * finishes. 2875 */ 2876 if (rcu_access_pointer(tp->fastopen_rsk)) 2877 return false; 2878 2879 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2880 /* Schedule a loss probe in 2*RTT for SACK capable connections 2881 * not in loss recovery, that are either limited by cwnd or application. 2882 */ 2883 if ((early_retrans != 3 && early_retrans != 4) || 2884 !tp->packets_out || !tcp_is_sack(tp) || 2885 (icsk->icsk_ca_state != TCP_CA_Open && 2886 icsk->icsk_ca_state != TCP_CA_CWR)) 2887 return false; 2888 2889 /* Probe timeout is 2*rtt. Add minimum RTO to account 2890 * for delayed ack when there's one outstanding packet. If no RTT 2891 * sample is available then probe after TCP_TIMEOUT_INIT. 2892 */ 2893 if (tp->srtt_us) { 2894 timeout_us = tp->srtt_us >> 2; 2895 if (tp->packets_out == 1) 2896 timeout_us += tcp_rto_min_us(sk); 2897 else 2898 timeout_us += TCP_TIMEOUT_MIN_US; 2899 timeout = usecs_to_jiffies(timeout_us); 2900 } else { 2901 timeout = TCP_TIMEOUT_INIT; 2902 } 2903 2904 /* If the RTO formula yields an earlier time, then use that time. */ 2905 rto_delta_us = advancing_rto ? 2906 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2907 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2908 if (rto_delta_us > 0) 2909 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2910 2911 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2912 return true; 2913 } 2914 2915 /* Thanks to skb fast clones, we can detect if a prior transmit of 2916 * a packet is still in a qdisc or driver queue. 2917 * In this case, there is very little point doing a retransmit ! 2918 */ 2919 static bool skb_still_in_host_queue(struct sock *sk, 2920 const struct sk_buff *skb) 2921 { 2922 if (unlikely(skb_fclone_busy(sk, skb))) { 2923 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2924 smp_mb__after_atomic(); 2925 if (skb_fclone_busy(sk, skb)) { 2926 NET_INC_STATS(sock_net(sk), 2927 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2928 return true; 2929 } 2930 } 2931 return false; 2932 } 2933 2934 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2935 * retransmit the last segment. 2936 */ 2937 void tcp_send_loss_probe(struct sock *sk) 2938 { 2939 struct tcp_sock *tp = tcp_sk(sk); 2940 struct sk_buff *skb; 2941 int pcount; 2942 int mss = tcp_current_mss(sk); 2943 2944 /* At most one outstanding TLP */ 2945 if (tp->tlp_high_seq) 2946 goto rearm_timer; 2947 2948 tp->tlp_retrans = 0; 2949 skb = tcp_send_head(sk); 2950 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2951 pcount = tp->packets_out; 2952 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2953 if (tp->packets_out > pcount) 2954 goto probe_sent; 2955 goto rearm_timer; 2956 } 2957 skb = skb_rb_last(&sk->tcp_rtx_queue); 2958 if (unlikely(!skb)) { 2959 WARN_ONCE(tp->packets_out, 2960 "invalid inflight: %u state %u cwnd %u mss %d\n", 2961 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2962 inet_csk(sk)->icsk_pending = 0; 2963 return; 2964 } 2965 2966 if (skb_still_in_host_queue(sk, skb)) 2967 goto rearm_timer; 2968 2969 pcount = tcp_skb_pcount(skb); 2970 if (WARN_ON(!pcount)) 2971 goto rearm_timer; 2972 2973 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2974 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2975 (pcount - 1) * mss, mss, 2976 GFP_ATOMIC))) 2977 goto rearm_timer; 2978 skb = skb_rb_next(skb); 2979 } 2980 2981 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2982 goto rearm_timer; 2983 2984 if (__tcp_retransmit_skb(sk, skb, 1)) 2985 goto rearm_timer; 2986 2987 tp->tlp_retrans = 1; 2988 2989 probe_sent: 2990 /* Record snd_nxt for loss detection. */ 2991 tp->tlp_high_seq = tp->snd_nxt; 2992 2993 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2994 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2995 inet_csk(sk)->icsk_pending = 0; 2996 rearm_timer: 2997 tcp_rearm_rto(sk); 2998 } 2999 3000 /* Push out any pending frames which were held back due to 3001 * TCP_CORK or attempt at coalescing tiny packets. 3002 * The socket must be locked by the caller. 3003 */ 3004 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 3005 int nonagle) 3006 { 3007 /* If we are closed, the bytes will have to remain here. 3008 * In time closedown will finish, we empty the write queue and 3009 * all will be happy. 3010 */ 3011 if (unlikely(sk->sk_state == TCP_CLOSE)) 3012 return; 3013 3014 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3015 sk_gfp_mask(sk, GFP_ATOMIC))) 3016 tcp_check_probe_timer(sk); 3017 } 3018 3019 /* Send _single_ skb sitting at the send head. This function requires 3020 * true push pending frames to setup probe timer etc. 3021 */ 3022 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3023 { 3024 struct sk_buff *skb = tcp_send_head(sk); 3025 3026 BUG_ON(!skb || skb->len < mss_now); 3027 3028 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3029 } 3030 3031 /* This function returns the amount that we can raise the 3032 * usable window based on the following constraints 3033 * 3034 * 1. The window can never be shrunk once it is offered (RFC 793) 3035 * 2. We limit memory per socket 3036 * 3037 * RFC 1122: 3038 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3039 * RECV.NEXT + RCV.WIN fixed until: 3040 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3041 * 3042 * i.e. don't raise the right edge of the window until you can raise 3043 * it at least MSS bytes. 3044 * 3045 * Unfortunately, the recommended algorithm breaks header prediction, 3046 * since header prediction assumes th->window stays fixed. 3047 * 3048 * Strictly speaking, keeping th->window fixed violates the receiver 3049 * side SWS prevention criteria. The problem is that under this rule 3050 * a stream of single byte packets will cause the right side of the 3051 * window to always advance by a single byte. 3052 * 3053 * Of course, if the sender implements sender side SWS prevention 3054 * then this will not be a problem. 3055 * 3056 * BSD seems to make the following compromise: 3057 * 3058 * If the free space is less than the 1/4 of the maximum 3059 * space available and the free space is less than 1/2 mss, 3060 * then set the window to 0. 3061 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3062 * Otherwise, just prevent the window from shrinking 3063 * and from being larger than the largest representable value. 3064 * 3065 * This prevents incremental opening of the window in the regime 3066 * where TCP is limited by the speed of the reader side taking 3067 * data out of the TCP receive queue. It does nothing about 3068 * those cases where the window is constrained on the sender side 3069 * because the pipeline is full. 3070 * 3071 * BSD also seems to "accidentally" limit itself to windows that are a 3072 * multiple of MSS, at least until the free space gets quite small. 3073 * This would appear to be a side effect of the mbuf implementation. 3074 * Combining these two algorithms results in the observed behavior 3075 * of having a fixed window size at almost all times. 3076 * 3077 * Below we obtain similar behavior by forcing the offered window to 3078 * a multiple of the mss when it is feasible to do so. 3079 * 3080 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3081 * Regular options like TIMESTAMP are taken into account. 3082 */ 3083 u32 __tcp_select_window(struct sock *sk) 3084 { 3085 struct inet_connection_sock *icsk = inet_csk(sk); 3086 struct tcp_sock *tp = tcp_sk(sk); 3087 struct net *net = sock_net(sk); 3088 /* MSS for the peer's data. Previous versions used mss_clamp 3089 * here. I don't know if the value based on our guesses 3090 * of peer's MSS is better for the performance. It's more correct 3091 * but may be worse for the performance because of rcv_mss 3092 * fluctuations. --SAW 1998/11/1 3093 */ 3094 int mss = icsk->icsk_ack.rcv_mss; 3095 int free_space = tcp_space(sk); 3096 int allowed_space = tcp_full_space(sk); 3097 int full_space, window; 3098 3099 if (sk_is_mptcp(sk)) 3100 mptcp_space(sk, &free_space, &allowed_space); 3101 3102 full_space = min_t(int, tp->window_clamp, allowed_space); 3103 3104 if (unlikely(mss > full_space)) { 3105 mss = full_space; 3106 if (mss <= 0) 3107 return 0; 3108 } 3109 3110 /* Only allow window shrink if the sysctl is enabled and we have 3111 * a non-zero scaling factor in effect. 3112 */ 3113 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3114 goto shrink_window_allowed; 3115 3116 /* do not allow window to shrink */ 3117 3118 if (free_space < (full_space >> 1)) { 3119 icsk->icsk_ack.quick = 0; 3120 3121 if (tcp_under_memory_pressure(sk)) 3122 tcp_adjust_rcv_ssthresh(sk); 3123 3124 /* free_space might become our new window, make sure we don't 3125 * increase it due to wscale. 3126 */ 3127 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3128 3129 /* if free space is less than mss estimate, or is below 1/16th 3130 * of the maximum allowed, try to move to zero-window, else 3131 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3132 * new incoming data is dropped due to memory limits. 3133 * With large window, mss test triggers way too late in order 3134 * to announce zero window in time before rmem limit kicks in. 3135 */ 3136 if (free_space < (allowed_space >> 4) || free_space < mss) 3137 return 0; 3138 } 3139 3140 if (free_space > tp->rcv_ssthresh) 3141 free_space = tp->rcv_ssthresh; 3142 3143 /* Don't do rounding if we are using window scaling, since the 3144 * scaled window will not line up with the MSS boundary anyway. 3145 */ 3146 if (tp->rx_opt.rcv_wscale) { 3147 window = free_space; 3148 3149 /* Advertise enough space so that it won't get scaled away. 3150 * Import case: prevent zero window announcement if 3151 * 1<<rcv_wscale > mss. 3152 */ 3153 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3154 } else { 3155 window = tp->rcv_wnd; 3156 /* Get the largest window that is a nice multiple of mss. 3157 * Window clamp already applied above. 3158 * If our current window offering is within 1 mss of the 3159 * free space we just keep it. This prevents the divide 3160 * and multiply from happening most of the time. 3161 * We also don't do any window rounding when the free space 3162 * is too small. 3163 */ 3164 if (window <= free_space - mss || window > free_space) 3165 window = rounddown(free_space, mss); 3166 else if (mss == full_space && 3167 free_space > window + (full_space >> 1)) 3168 window = free_space; 3169 } 3170 3171 return window; 3172 3173 shrink_window_allowed: 3174 /* new window should always be an exact multiple of scaling factor */ 3175 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3176 3177 if (free_space < (full_space >> 1)) { 3178 icsk->icsk_ack.quick = 0; 3179 3180 if (tcp_under_memory_pressure(sk)) 3181 tcp_adjust_rcv_ssthresh(sk); 3182 3183 /* if free space is too low, return a zero window */ 3184 if (free_space < (allowed_space >> 4) || free_space < mss || 3185 free_space < (1 << tp->rx_opt.rcv_wscale)) 3186 return 0; 3187 } 3188 3189 if (free_space > tp->rcv_ssthresh) { 3190 free_space = tp->rcv_ssthresh; 3191 /* new window should always be an exact multiple of scaling factor 3192 * 3193 * For this case, we ALIGN "up" (increase free_space) because 3194 * we know free_space is not zero here, it has been reduced from 3195 * the memory-based limit, and rcv_ssthresh is not a hard limit 3196 * (unlike sk_rcvbuf). 3197 */ 3198 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3199 } 3200 3201 return free_space; 3202 } 3203 3204 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3205 const struct sk_buff *next_skb) 3206 { 3207 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3208 const struct skb_shared_info *next_shinfo = 3209 skb_shinfo(next_skb); 3210 struct skb_shared_info *shinfo = skb_shinfo(skb); 3211 3212 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3213 shinfo->tskey = next_shinfo->tskey; 3214 TCP_SKB_CB(skb)->txstamp_ack |= 3215 TCP_SKB_CB(next_skb)->txstamp_ack; 3216 } 3217 } 3218 3219 /* Collapses two adjacent SKB's during retransmission. */ 3220 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3221 { 3222 struct tcp_sock *tp = tcp_sk(sk); 3223 struct sk_buff *next_skb = skb_rb_next(skb); 3224 int next_skb_size; 3225 3226 next_skb_size = next_skb->len; 3227 3228 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3229 3230 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3231 return false; 3232 3233 tcp_highest_sack_replace(sk, next_skb, skb); 3234 3235 /* Update sequence range on original skb. */ 3236 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3237 3238 /* Merge over control information. This moves PSH/FIN etc. over */ 3239 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3240 3241 /* All done, get rid of second SKB and account for it so 3242 * packet counting does not break. 3243 */ 3244 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3245 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3246 3247 /* changed transmit queue under us so clear hints */ 3248 tcp_clear_retrans_hints_partial(tp); 3249 if (next_skb == tp->retransmit_skb_hint) 3250 tp->retransmit_skb_hint = skb; 3251 3252 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3253 3254 tcp_skb_collapse_tstamp(skb, next_skb); 3255 3256 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3257 return true; 3258 } 3259 3260 /* Check if coalescing SKBs is legal. */ 3261 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3262 { 3263 if (tcp_skb_pcount(skb) > 1) 3264 return false; 3265 if (skb_cloned(skb)) 3266 return false; 3267 /* Some heuristics for collapsing over SACK'd could be invented */ 3268 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3269 return false; 3270 3271 return true; 3272 } 3273 3274 /* Collapse packets in the retransmit queue to make to create 3275 * less packets on the wire. This is only done on retransmission. 3276 */ 3277 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3278 int space) 3279 { 3280 struct tcp_sock *tp = tcp_sk(sk); 3281 struct sk_buff *skb = to, *tmp; 3282 bool first = true; 3283 3284 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3285 return; 3286 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3287 return; 3288 3289 skb_rbtree_walk_from_safe(skb, tmp) { 3290 if (!tcp_can_collapse(sk, skb)) 3291 break; 3292 3293 if (!tcp_skb_can_collapse(to, skb)) 3294 break; 3295 3296 space -= skb->len; 3297 3298 if (first) { 3299 first = false; 3300 continue; 3301 } 3302 3303 if (space < 0) 3304 break; 3305 3306 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3307 break; 3308 3309 if (!tcp_collapse_retrans(sk, to)) 3310 break; 3311 } 3312 } 3313 3314 /* This retransmits one SKB. Policy decisions and retransmit queue 3315 * state updates are done by the caller. Returns non-zero if an 3316 * error occurred which prevented the send. 3317 */ 3318 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3319 { 3320 struct inet_connection_sock *icsk = inet_csk(sk); 3321 struct tcp_sock *tp = tcp_sk(sk); 3322 unsigned int cur_mss; 3323 int diff, len, err; 3324 int avail_wnd; 3325 3326 /* Inconclusive MTU probe */ 3327 if (icsk->icsk_mtup.probe_size) 3328 icsk->icsk_mtup.probe_size = 0; 3329 3330 if (skb_still_in_host_queue(sk, skb)) 3331 return -EBUSY; 3332 3333 start: 3334 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3335 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3336 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3337 TCP_SKB_CB(skb)->seq++; 3338 goto start; 3339 } 3340 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3341 WARN_ON_ONCE(1); 3342 return -EINVAL; 3343 } 3344 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3345 return -ENOMEM; 3346 } 3347 3348 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3349 return -EHOSTUNREACH; /* Routing failure or similar. */ 3350 3351 cur_mss = tcp_current_mss(sk); 3352 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3353 3354 /* If receiver has shrunk his window, and skb is out of 3355 * new window, do not retransmit it. The exception is the 3356 * case, when window is shrunk to zero. In this case 3357 * our retransmit of one segment serves as a zero window probe. 3358 */ 3359 if (avail_wnd <= 0) { 3360 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3361 return -EAGAIN; 3362 avail_wnd = cur_mss; 3363 } 3364 3365 len = cur_mss * segs; 3366 if (len > avail_wnd) { 3367 len = rounddown(avail_wnd, cur_mss); 3368 if (!len) 3369 len = avail_wnd; 3370 } 3371 if (skb->len > len) { 3372 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3373 cur_mss, GFP_ATOMIC)) 3374 return -ENOMEM; /* We'll try again later. */ 3375 } else { 3376 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3377 return -ENOMEM; 3378 3379 diff = tcp_skb_pcount(skb); 3380 tcp_set_skb_tso_segs(skb, cur_mss); 3381 diff -= tcp_skb_pcount(skb); 3382 if (diff) 3383 tcp_adjust_pcount(sk, skb, diff); 3384 avail_wnd = min_t(int, avail_wnd, cur_mss); 3385 if (skb->len < avail_wnd) 3386 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3387 } 3388 3389 /* RFC3168, section 6.1.1.1. ECN fallback */ 3390 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3391 tcp_ecn_clear_syn(sk, skb); 3392 3393 /* Update global and local TCP statistics. */ 3394 segs = tcp_skb_pcount(skb); 3395 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3396 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3397 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3398 tp->total_retrans += segs; 3399 tp->bytes_retrans += skb->len; 3400 3401 /* make sure skb->data is aligned on arches that require it 3402 * and check if ack-trimming & collapsing extended the headroom 3403 * beyond what csum_start can cover. 3404 */ 3405 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3406 skb_headroom(skb) >= 0xFFFF)) { 3407 struct sk_buff *nskb; 3408 3409 tcp_skb_tsorted_save(skb) { 3410 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3411 if (nskb) { 3412 nskb->dev = NULL; 3413 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3414 } else { 3415 err = -ENOBUFS; 3416 } 3417 } tcp_skb_tsorted_restore(skb); 3418 3419 if (!err) { 3420 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3421 tcp_rate_skb_sent(sk, skb); 3422 } 3423 } else { 3424 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3425 } 3426 3427 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3428 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3429 TCP_SKB_CB(skb)->seq, segs, err); 3430 3431 if (likely(!err)) { 3432 trace_tcp_retransmit_skb(sk, skb); 3433 } else if (err != -EBUSY) { 3434 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3435 } 3436 3437 /* To avoid taking spuriously low RTT samples based on a timestamp 3438 * for a transmit that never happened, always mark EVER_RETRANS 3439 */ 3440 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3441 3442 return err; 3443 } 3444 3445 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3446 { 3447 struct tcp_sock *tp = tcp_sk(sk); 3448 int err = __tcp_retransmit_skb(sk, skb, segs); 3449 3450 if (err == 0) { 3451 #if FASTRETRANS_DEBUG > 0 3452 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3453 net_dbg_ratelimited("retrans_out leaked\n"); 3454 } 3455 #endif 3456 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3457 tp->retrans_out += tcp_skb_pcount(skb); 3458 } 3459 3460 /* Save stamp of the first (attempted) retransmit. */ 3461 if (!tp->retrans_stamp) 3462 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3463 3464 if (tp->undo_retrans < 0) 3465 tp->undo_retrans = 0; 3466 tp->undo_retrans += tcp_skb_pcount(skb); 3467 return err; 3468 } 3469 3470 /* This gets called after a retransmit timeout, and the initially 3471 * retransmitted data is acknowledged. It tries to continue 3472 * resending the rest of the retransmit queue, until either 3473 * we've sent it all or the congestion window limit is reached. 3474 */ 3475 void tcp_xmit_retransmit_queue(struct sock *sk) 3476 { 3477 const struct inet_connection_sock *icsk = inet_csk(sk); 3478 struct sk_buff *skb, *rtx_head, *hole = NULL; 3479 struct tcp_sock *tp = tcp_sk(sk); 3480 bool rearm_timer = false; 3481 u32 max_segs; 3482 int mib_idx; 3483 3484 if (!tp->packets_out) 3485 return; 3486 3487 rtx_head = tcp_rtx_queue_head(sk); 3488 skb = tp->retransmit_skb_hint ?: rtx_head; 3489 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3490 skb_rbtree_walk_from(skb) { 3491 __u8 sacked; 3492 int segs; 3493 3494 if (tcp_pacing_check(sk)) 3495 break; 3496 3497 /* we could do better than to assign each time */ 3498 if (!hole) 3499 tp->retransmit_skb_hint = skb; 3500 3501 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3502 if (segs <= 0) 3503 break; 3504 sacked = TCP_SKB_CB(skb)->sacked; 3505 /* In case tcp_shift_skb_data() have aggregated large skbs, 3506 * we need to make sure not sending too bigs TSO packets 3507 */ 3508 segs = min_t(int, segs, max_segs); 3509 3510 if (tp->retrans_out >= tp->lost_out) { 3511 break; 3512 } else if (!(sacked & TCPCB_LOST)) { 3513 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3514 hole = skb; 3515 continue; 3516 3517 } else { 3518 if (icsk->icsk_ca_state != TCP_CA_Loss) 3519 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3520 else 3521 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3522 } 3523 3524 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3525 continue; 3526 3527 if (tcp_small_queue_check(sk, skb, 1)) 3528 break; 3529 3530 if (tcp_retransmit_skb(sk, skb, segs)) 3531 break; 3532 3533 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3534 3535 if (tcp_in_cwnd_reduction(sk)) 3536 tp->prr_out += tcp_skb_pcount(skb); 3537 3538 if (skb == rtx_head && 3539 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3540 rearm_timer = true; 3541 3542 } 3543 if (rearm_timer) 3544 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3545 inet_csk(sk)->icsk_rto, 3546 TCP_RTO_MAX); 3547 } 3548 3549 /* We allow to exceed memory limits for FIN packets to expedite 3550 * connection tear down and (memory) recovery. 3551 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3552 * or even be forced to close flow without any FIN. 3553 * In general, we want to allow one skb per socket to avoid hangs 3554 * with edge trigger epoll() 3555 */ 3556 void sk_forced_mem_schedule(struct sock *sk, int size) 3557 { 3558 int delta, amt; 3559 3560 delta = size - sk->sk_forward_alloc; 3561 if (delta <= 0) 3562 return; 3563 amt = sk_mem_pages(delta); 3564 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3565 sk_memory_allocated_add(sk, amt); 3566 3567 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3568 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3569 gfp_memcg_charge() | __GFP_NOFAIL); 3570 } 3571 3572 /* Send a FIN. The caller locks the socket for us. 3573 * We should try to send a FIN packet really hard, but eventually give up. 3574 */ 3575 void tcp_send_fin(struct sock *sk) 3576 { 3577 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3578 struct tcp_sock *tp = tcp_sk(sk); 3579 3580 /* Optimization, tack on the FIN if we have one skb in write queue and 3581 * this skb was not yet sent, or we are under memory pressure. 3582 * Note: in the latter case, FIN packet will be sent after a timeout, 3583 * as TCP stack thinks it has already been transmitted. 3584 */ 3585 tskb = tail; 3586 if (!tskb && tcp_under_memory_pressure(sk)) 3587 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3588 3589 if (tskb) { 3590 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3591 TCP_SKB_CB(tskb)->end_seq++; 3592 tp->write_seq++; 3593 if (!tail) { 3594 /* This means tskb was already sent. 3595 * Pretend we included the FIN on previous transmit. 3596 * We need to set tp->snd_nxt to the value it would have 3597 * if FIN had been sent. This is because retransmit path 3598 * does not change tp->snd_nxt. 3599 */ 3600 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3601 return; 3602 } 3603 } else { 3604 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3605 sk_gfp_mask(sk, GFP_ATOMIC | 3606 __GFP_NOWARN)); 3607 if (unlikely(!skb)) 3608 return; 3609 3610 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3611 skb_reserve(skb, MAX_TCP_HEADER); 3612 sk_forced_mem_schedule(sk, skb->truesize); 3613 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3614 tcp_init_nondata_skb(skb, tp->write_seq, 3615 TCPHDR_ACK | TCPHDR_FIN); 3616 tcp_queue_skb(sk, skb); 3617 } 3618 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3619 } 3620 3621 /* We get here when a process closes a file descriptor (either due to 3622 * an explicit close() or as a byproduct of exit()'ing) and there 3623 * was unread data in the receive queue. This behavior is recommended 3624 * by RFC 2525, section 2.17. -DaveM 3625 */ 3626 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 3627 enum sk_rst_reason reason) 3628 { 3629 struct sk_buff *skb; 3630 3631 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3632 3633 /* NOTE: No TCP options attached and we never retransmit this. */ 3634 skb = alloc_skb(MAX_TCP_HEADER, priority); 3635 if (!skb) { 3636 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3637 return; 3638 } 3639 3640 /* Reserve space for headers and prepare control bits. */ 3641 skb_reserve(skb, MAX_TCP_HEADER); 3642 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3643 TCPHDR_ACK | TCPHDR_RST); 3644 tcp_mstamp_refresh(tcp_sk(sk)); 3645 /* Send it off. */ 3646 if (tcp_transmit_skb(sk, skb, 0, priority)) 3647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3648 3649 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3650 * skb here is different to the troublesome skb, so use NULL 3651 */ 3652 trace_tcp_send_reset(sk, NULL, SK_RST_REASON_NOT_SPECIFIED); 3653 } 3654 3655 /* Send a crossed SYN-ACK during socket establishment. 3656 * WARNING: This routine must only be called when we have already sent 3657 * a SYN packet that crossed the incoming SYN that caused this routine 3658 * to get called. If this assumption fails then the initial rcv_wnd 3659 * and rcv_wscale values will not be correct. 3660 */ 3661 int tcp_send_synack(struct sock *sk) 3662 { 3663 struct sk_buff *skb; 3664 3665 skb = tcp_rtx_queue_head(sk); 3666 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3667 pr_err("%s: wrong queue state\n", __func__); 3668 return -EFAULT; 3669 } 3670 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3671 if (skb_cloned(skb)) { 3672 struct sk_buff *nskb; 3673 3674 tcp_skb_tsorted_save(skb) { 3675 nskb = skb_copy(skb, GFP_ATOMIC); 3676 } tcp_skb_tsorted_restore(skb); 3677 if (!nskb) 3678 return -ENOMEM; 3679 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3680 tcp_highest_sack_replace(sk, skb, nskb); 3681 tcp_rtx_queue_unlink_and_free(skb, sk); 3682 __skb_header_release(nskb); 3683 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3684 sk_wmem_queued_add(sk, nskb->truesize); 3685 sk_mem_charge(sk, nskb->truesize); 3686 skb = nskb; 3687 } 3688 3689 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3690 tcp_ecn_send_synack(sk, skb); 3691 } 3692 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3693 } 3694 3695 /** 3696 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3697 * @sk: listener socket 3698 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3699 * should not use it again. 3700 * @req: request_sock pointer 3701 * @foc: cookie for tcp fast open 3702 * @synack_type: Type of synack to prepare 3703 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3704 */ 3705 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3706 struct request_sock *req, 3707 struct tcp_fastopen_cookie *foc, 3708 enum tcp_synack_type synack_type, 3709 struct sk_buff *syn_skb) 3710 { 3711 struct inet_request_sock *ireq = inet_rsk(req); 3712 const struct tcp_sock *tp = tcp_sk(sk); 3713 struct tcp_out_options opts; 3714 struct tcp_key key = {}; 3715 struct sk_buff *skb; 3716 int tcp_header_size; 3717 struct tcphdr *th; 3718 int mss; 3719 u64 now; 3720 3721 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3722 if (unlikely(!skb)) { 3723 dst_release(dst); 3724 return NULL; 3725 } 3726 /* Reserve space for headers. */ 3727 skb_reserve(skb, MAX_TCP_HEADER); 3728 3729 switch (synack_type) { 3730 case TCP_SYNACK_NORMAL: 3731 skb_set_owner_w(skb, req_to_sk(req)); 3732 break; 3733 case TCP_SYNACK_COOKIE: 3734 /* Under synflood, we do not attach skb to a socket, 3735 * to avoid false sharing. 3736 */ 3737 break; 3738 case TCP_SYNACK_FASTOPEN: 3739 /* sk is a const pointer, because we want to express multiple 3740 * cpu might call us concurrently. 3741 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3742 */ 3743 skb_set_owner_w(skb, (struct sock *)sk); 3744 break; 3745 } 3746 skb_dst_set(skb, dst); 3747 3748 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3749 3750 memset(&opts, 0, sizeof(opts)); 3751 now = tcp_clock_ns(); 3752 #ifdef CONFIG_SYN_COOKIES 3753 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3754 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3755 true); 3756 else 3757 #endif 3758 { 3759 skb_set_delivery_time(skb, now, true); 3760 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3761 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3762 } 3763 3764 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3765 rcu_read_lock(); 3766 #endif 3767 if (tcp_rsk_used_ao(req)) { 3768 #ifdef CONFIG_TCP_AO 3769 struct tcp_ao_key *ao_key = NULL; 3770 u8 keyid = tcp_rsk(req)->ao_keyid; 3771 3772 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3773 keyid, -1); 3774 /* If there is no matching key - avoid sending anything, 3775 * especially usigned segments. It could try harder and lookup 3776 * for another peer-matching key, but the peer has requested 3777 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3778 */ 3779 if (unlikely(!ao_key)) { 3780 rcu_read_unlock(); 3781 kfree_skb(skb); 3782 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 3783 keyid); 3784 return NULL; 3785 } 3786 key.ao_key = ao_key; 3787 key.type = TCP_KEY_AO; 3788 #endif 3789 } else { 3790 #ifdef CONFIG_TCP_MD5SIG 3791 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3792 req_to_sk(req)); 3793 if (key.md5_key) 3794 key.type = TCP_KEY_MD5; 3795 #endif 3796 } 3797 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3798 /* bpf program will be interested in the tcp_flags */ 3799 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3800 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3801 &key, foc, synack_type, syn_skb) 3802 + sizeof(*th); 3803 3804 skb_push(skb, tcp_header_size); 3805 skb_reset_transport_header(skb); 3806 3807 th = (struct tcphdr *)skb->data; 3808 memset(th, 0, sizeof(struct tcphdr)); 3809 th->syn = 1; 3810 th->ack = 1; 3811 tcp_ecn_make_synack(req, th); 3812 th->source = htons(ireq->ir_num); 3813 th->dest = ireq->ir_rmt_port; 3814 skb->mark = ireq->ir_mark; 3815 skb->ip_summed = CHECKSUM_PARTIAL; 3816 th->seq = htonl(tcp_rsk(req)->snt_isn); 3817 /* XXX data is queued and acked as is. No buffer/window check */ 3818 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3819 3820 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3821 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3822 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 3823 th->doff = (tcp_header_size >> 2); 3824 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3825 3826 /* Okay, we have all we need - do the md5 hash if needed */ 3827 if (tcp_key_is_md5(&key)) { 3828 #ifdef CONFIG_TCP_MD5SIG 3829 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3830 key.md5_key, req_to_sk(req), skb); 3831 #endif 3832 } else if (tcp_key_is_ao(&key)) { 3833 #ifdef CONFIG_TCP_AO 3834 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 3835 key.ao_key, req, skb, 3836 opts.hash_location - (u8 *)th, 0); 3837 #endif 3838 } 3839 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3840 rcu_read_unlock(); 3841 #endif 3842 3843 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3844 synack_type, &opts); 3845 3846 skb_set_delivery_time(skb, now, true); 3847 tcp_add_tx_delay(skb, tp); 3848 3849 return skb; 3850 } 3851 EXPORT_SYMBOL(tcp_make_synack); 3852 3853 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3854 { 3855 struct inet_connection_sock *icsk = inet_csk(sk); 3856 const struct tcp_congestion_ops *ca; 3857 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3858 3859 if (ca_key == TCP_CA_UNSPEC) 3860 return; 3861 3862 rcu_read_lock(); 3863 ca = tcp_ca_find_key(ca_key); 3864 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3865 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3866 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3867 icsk->icsk_ca_ops = ca; 3868 } 3869 rcu_read_unlock(); 3870 } 3871 3872 /* Do all connect socket setups that can be done AF independent. */ 3873 static void tcp_connect_init(struct sock *sk) 3874 { 3875 const struct dst_entry *dst = __sk_dst_get(sk); 3876 struct tcp_sock *tp = tcp_sk(sk); 3877 __u8 rcv_wscale; 3878 u32 rcv_wnd; 3879 3880 /* We'll fix this up when we get a response from the other end. 3881 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3882 */ 3883 tp->tcp_header_len = sizeof(struct tcphdr); 3884 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3885 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3886 3887 tcp_ao_connect_init(sk); 3888 3889 /* If user gave his TCP_MAXSEG, record it to clamp */ 3890 if (tp->rx_opt.user_mss) 3891 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3892 tp->max_window = 0; 3893 tcp_mtup_init(sk); 3894 tcp_sync_mss(sk, dst_mtu(dst)); 3895 3896 tcp_ca_dst_init(sk, dst); 3897 3898 if (!tp->window_clamp) 3899 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 3900 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3901 3902 tcp_initialize_rcv_mss(sk); 3903 3904 /* limit the window selection if the user enforce a smaller rx buffer */ 3905 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3906 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3907 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 3908 3909 rcv_wnd = tcp_rwnd_init_bpf(sk); 3910 if (rcv_wnd == 0) 3911 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3912 3913 tcp_select_initial_window(sk, tcp_full_space(sk), 3914 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3915 &tp->rcv_wnd, 3916 &tp->window_clamp, 3917 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3918 &rcv_wscale, 3919 rcv_wnd); 3920 3921 tp->rx_opt.rcv_wscale = rcv_wscale; 3922 tp->rcv_ssthresh = tp->rcv_wnd; 3923 3924 WRITE_ONCE(sk->sk_err, 0); 3925 sock_reset_flag(sk, SOCK_DONE); 3926 tp->snd_wnd = 0; 3927 tcp_init_wl(tp, 0); 3928 tcp_write_queue_purge(sk); 3929 tp->snd_una = tp->write_seq; 3930 tp->snd_sml = tp->write_seq; 3931 tp->snd_up = tp->write_seq; 3932 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3933 3934 if (likely(!tp->repair)) 3935 tp->rcv_nxt = 0; 3936 else 3937 tp->rcv_tstamp = tcp_jiffies32; 3938 tp->rcv_wup = tp->rcv_nxt; 3939 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3940 3941 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3942 inet_csk(sk)->icsk_retransmits = 0; 3943 tcp_clear_retrans(tp); 3944 } 3945 3946 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3947 { 3948 struct tcp_sock *tp = tcp_sk(sk); 3949 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3950 3951 tcb->end_seq += skb->len; 3952 __skb_header_release(skb); 3953 sk_wmem_queued_add(sk, skb->truesize); 3954 sk_mem_charge(sk, skb->truesize); 3955 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3956 tp->packets_out += tcp_skb_pcount(skb); 3957 } 3958 3959 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3960 * queue a data-only packet after the regular SYN, such that regular SYNs 3961 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3962 * only the SYN sequence, the data are retransmitted in the first ACK. 3963 * If cookie is not cached or other error occurs, falls back to send a 3964 * regular SYN with Fast Open cookie request option. 3965 */ 3966 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3967 { 3968 struct inet_connection_sock *icsk = inet_csk(sk); 3969 struct tcp_sock *tp = tcp_sk(sk); 3970 struct tcp_fastopen_request *fo = tp->fastopen_req; 3971 struct page_frag *pfrag = sk_page_frag(sk); 3972 struct sk_buff *syn_data; 3973 int space, err = 0; 3974 3975 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3976 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3977 goto fallback; 3978 3979 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3980 * user-MSS. Reserve maximum option space for middleboxes that add 3981 * private TCP options. The cost is reduced data space in SYN :( 3982 */ 3983 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3984 /* Sync mss_cache after updating the mss_clamp */ 3985 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3986 3987 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3988 MAX_TCP_OPTION_SPACE; 3989 3990 space = min_t(size_t, space, fo->size); 3991 3992 if (space && 3993 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3994 pfrag, sk->sk_allocation)) 3995 goto fallback; 3996 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3997 if (!syn_data) 3998 goto fallback; 3999 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 4000 if (space) { 4001 space = min_t(size_t, space, pfrag->size - pfrag->offset); 4002 space = tcp_wmem_schedule(sk, space); 4003 } 4004 if (space) { 4005 space = copy_page_from_iter(pfrag->page, pfrag->offset, 4006 space, &fo->data->msg_iter); 4007 if (unlikely(!space)) { 4008 tcp_skb_tsorted_anchor_cleanup(syn_data); 4009 kfree_skb(syn_data); 4010 goto fallback; 4011 } 4012 skb_fill_page_desc(syn_data, 0, pfrag->page, 4013 pfrag->offset, space); 4014 page_ref_inc(pfrag->page); 4015 pfrag->offset += space; 4016 skb_len_add(syn_data, space); 4017 skb_zcopy_set(syn_data, fo->uarg, NULL); 4018 } 4019 /* No more data pending in inet_wait_for_connect() */ 4020 if (space == fo->size) 4021 fo->data = NULL; 4022 fo->copied = space; 4023 4024 tcp_connect_queue_skb(sk, syn_data); 4025 if (syn_data->len) 4026 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4027 4028 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4029 4030 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 4031 4032 /* Now full SYN+DATA was cloned and sent (or not), 4033 * remove the SYN from the original skb (syn_data) 4034 * we keep in write queue in case of a retransmit, as we 4035 * also have the SYN packet (with no data) in the same queue. 4036 */ 4037 TCP_SKB_CB(syn_data)->seq++; 4038 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4039 if (!err) { 4040 tp->syn_data = (fo->copied > 0); 4041 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4042 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4043 goto done; 4044 } 4045 4046 /* data was not sent, put it in write_queue */ 4047 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4048 tp->packets_out -= tcp_skb_pcount(syn_data); 4049 4050 fallback: 4051 /* Send a regular SYN with Fast Open cookie request option */ 4052 if (fo->cookie.len > 0) 4053 fo->cookie.len = 0; 4054 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4055 if (err) 4056 tp->syn_fastopen = 0; 4057 done: 4058 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4059 return err; 4060 } 4061 4062 /* Build a SYN and send it off. */ 4063 int tcp_connect(struct sock *sk) 4064 { 4065 struct tcp_sock *tp = tcp_sk(sk); 4066 struct sk_buff *buff; 4067 int err; 4068 4069 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4070 4071 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4072 /* Has to be checked late, after setting daddr/saddr/ops. 4073 * Return error if the peer has both a md5 and a tcp-ao key 4074 * configured as this is ambiguous. 4075 */ 4076 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4077 lockdep_sock_is_held(sk)))) { 4078 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4079 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4080 struct tcp_ao_info *ao_info; 4081 4082 ao_info = rcu_dereference_check(tp->ao_info, 4083 lockdep_sock_is_held(sk)); 4084 if (ao_info) { 4085 /* This is an extra check: tcp_ao_required() in 4086 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4087 * md5 keys on ao_required socket. 4088 */ 4089 needs_ao |= ao_info->ao_required; 4090 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4091 } 4092 if (needs_md5 && needs_ao) 4093 return -EKEYREJECTED; 4094 4095 /* If we have a matching md5 key and no matching tcp-ao key 4096 * then free up ao_info if allocated. 4097 */ 4098 if (needs_md5) { 4099 tcp_ao_destroy_sock(sk, false); 4100 } else if (needs_ao) { 4101 tcp_clear_md5_list(sk); 4102 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4103 lockdep_sock_is_held(sk))); 4104 } 4105 } 4106 #endif 4107 #ifdef CONFIG_TCP_AO 4108 if (unlikely(rcu_dereference_protected(tp->ao_info, 4109 lockdep_sock_is_held(sk)))) { 4110 /* Don't allow connecting if ao is configured but no 4111 * matching key is found. 4112 */ 4113 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4114 return -EKEYREJECTED; 4115 } 4116 #endif 4117 4118 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4119 return -EHOSTUNREACH; /* Routing failure or similar. */ 4120 4121 tcp_connect_init(sk); 4122 4123 if (unlikely(tp->repair)) { 4124 tcp_finish_connect(sk, NULL); 4125 return 0; 4126 } 4127 4128 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4129 if (unlikely(!buff)) 4130 return -ENOBUFS; 4131 4132 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 4133 tcp_mstamp_refresh(tp); 4134 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4135 tcp_connect_queue_skb(sk, buff); 4136 tcp_ecn_send_syn(sk, buff); 4137 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4138 4139 /* Send off SYN; include data in Fast Open. */ 4140 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4141 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4142 if (err == -ECONNREFUSED) 4143 return err; 4144 4145 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4146 * in order to make this packet get counted in tcpOutSegs. 4147 */ 4148 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4149 tp->pushed_seq = tp->write_seq; 4150 buff = tcp_send_head(sk); 4151 if (unlikely(buff)) { 4152 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4153 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4154 } 4155 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4156 4157 /* Timer for repeating the SYN until an answer. */ 4158 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4159 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 4160 return 0; 4161 } 4162 EXPORT_SYMBOL(tcp_connect); 4163 4164 u32 tcp_delack_max(const struct sock *sk) 4165 { 4166 const struct dst_entry *dst = __sk_dst_get(sk); 4167 u32 delack_max = inet_csk(sk)->icsk_delack_max; 4168 4169 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) { 4170 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 4171 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1); 4172 4173 delack_max = min_t(u32, delack_max, delack_from_rto_min); 4174 } 4175 return delack_max; 4176 } 4177 4178 /* Send out a delayed ack, the caller does the policy checking 4179 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4180 * for details. 4181 */ 4182 void tcp_send_delayed_ack(struct sock *sk) 4183 { 4184 struct inet_connection_sock *icsk = inet_csk(sk); 4185 int ato = icsk->icsk_ack.ato; 4186 unsigned long timeout; 4187 4188 if (ato > TCP_DELACK_MIN) { 4189 const struct tcp_sock *tp = tcp_sk(sk); 4190 int max_ato = HZ / 2; 4191 4192 if (inet_csk_in_pingpong_mode(sk) || 4193 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4194 max_ato = TCP_DELACK_MAX; 4195 4196 /* Slow path, intersegment interval is "high". */ 4197 4198 /* If some rtt estimate is known, use it to bound delayed ack. 4199 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4200 * directly. 4201 */ 4202 if (tp->srtt_us) { 4203 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4204 TCP_DELACK_MIN); 4205 4206 if (rtt < max_ato) 4207 max_ato = rtt; 4208 } 4209 4210 ato = min(ato, max_ato); 4211 } 4212 4213 ato = min_t(u32, ato, tcp_delack_max(sk)); 4214 4215 /* Stay within the limit we were given */ 4216 timeout = jiffies + ato; 4217 4218 /* Use new timeout only if there wasn't a older one earlier. */ 4219 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4220 /* If delack timer is about to expire, send ACK now. */ 4221 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4222 tcp_send_ack(sk); 4223 return; 4224 } 4225 4226 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4227 timeout = icsk->icsk_ack.timeout; 4228 } 4229 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4230 icsk->icsk_ack.timeout = timeout; 4231 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4232 } 4233 4234 /* This routine sends an ack and also updates the window. */ 4235 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4236 { 4237 struct sk_buff *buff; 4238 4239 /* If we have been reset, we may not send again. */ 4240 if (sk->sk_state == TCP_CLOSE) 4241 return; 4242 4243 /* We are not putting this on the write queue, so 4244 * tcp_transmit_skb() will set the ownership to this 4245 * sock. 4246 */ 4247 buff = alloc_skb(MAX_TCP_HEADER, 4248 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4249 if (unlikely(!buff)) { 4250 struct inet_connection_sock *icsk = inet_csk(sk); 4251 unsigned long delay; 4252 4253 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4254 if (delay < TCP_RTO_MAX) 4255 icsk->icsk_ack.retry++; 4256 inet_csk_schedule_ack(sk); 4257 icsk->icsk_ack.ato = TCP_ATO_MIN; 4258 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4259 return; 4260 } 4261 4262 /* Reserve space for headers and prepare control bits. */ 4263 skb_reserve(buff, MAX_TCP_HEADER); 4264 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4265 4266 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4267 * too much. 4268 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4269 */ 4270 skb_set_tcp_pure_ack(buff); 4271 4272 /* Send it off, this clears delayed acks for us. */ 4273 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4274 } 4275 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4276 4277 void tcp_send_ack(struct sock *sk) 4278 { 4279 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4280 } 4281 4282 /* This routine sends a packet with an out of date sequence 4283 * number. It assumes the other end will try to ack it. 4284 * 4285 * Question: what should we make while urgent mode? 4286 * 4.4BSD forces sending single byte of data. We cannot send 4287 * out of window data, because we have SND.NXT==SND.MAX... 4288 * 4289 * Current solution: to send TWO zero-length segments in urgent mode: 4290 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4291 * out-of-date with SND.UNA-1 to probe window. 4292 */ 4293 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4294 { 4295 struct tcp_sock *tp = tcp_sk(sk); 4296 struct sk_buff *skb; 4297 4298 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4299 skb = alloc_skb(MAX_TCP_HEADER, 4300 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4301 if (!skb) 4302 return -1; 4303 4304 /* Reserve space for headers and set control bits. */ 4305 skb_reserve(skb, MAX_TCP_HEADER); 4306 /* Use a previous sequence. This should cause the other 4307 * end to send an ack. Don't queue or clone SKB, just 4308 * send it. 4309 */ 4310 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4311 NET_INC_STATS(sock_net(sk), mib); 4312 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4313 } 4314 4315 /* Called from setsockopt( ... TCP_REPAIR ) */ 4316 void tcp_send_window_probe(struct sock *sk) 4317 { 4318 if (sk->sk_state == TCP_ESTABLISHED) { 4319 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4320 tcp_mstamp_refresh(tcp_sk(sk)); 4321 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4322 } 4323 } 4324 4325 /* Initiate keepalive or window probe from timer. */ 4326 int tcp_write_wakeup(struct sock *sk, int mib) 4327 { 4328 struct tcp_sock *tp = tcp_sk(sk); 4329 struct sk_buff *skb; 4330 4331 if (sk->sk_state == TCP_CLOSE) 4332 return -1; 4333 4334 skb = tcp_send_head(sk); 4335 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4336 int err; 4337 unsigned int mss = tcp_current_mss(sk); 4338 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4339 4340 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4341 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4342 4343 /* We are probing the opening of a window 4344 * but the window size is != 0 4345 * must have been a result SWS avoidance ( sender ) 4346 */ 4347 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4348 skb->len > mss) { 4349 seg_size = min(seg_size, mss); 4350 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4351 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4352 skb, seg_size, mss, GFP_ATOMIC)) 4353 return -1; 4354 } else if (!tcp_skb_pcount(skb)) 4355 tcp_set_skb_tso_segs(skb, mss); 4356 4357 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4358 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4359 if (!err) 4360 tcp_event_new_data_sent(sk, skb); 4361 return err; 4362 } else { 4363 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4364 tcp_xmit_probe_skb(sk, 1, mib); 4365 return tcp_xmit_probe_skb(sk, 0, mib); 4366 } 4367 } 4368 4369 /* A window probe timeout has occurred. If window is not closed send 4370 * a partial packet else a zero probe. 4371 */ 4372 void tcp_send_probe0(struct sock *sk) 4373 { 4374 struct inet_connection_sock *icsk = inet_csk(sk); 4375 struct tcp_sock *tp = tcp_sk(sk); 4376 struct net *net = sock_net(sk); 4377 unsigned long timeout; 4378 int err; 4379 4380 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4381 4382 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4383 /* Cancel probe timer, if it is not required. */ 4384 icsk->icsk_probes_out = 0; 4385 icsk->icsk_backoff = 0; 4386 icsk->icsk_probes_tstamp = 0; 4387 return; 4388 } 4389 4390 icsk->icsk_probes_out++; 4391 if (err <= 0) { 4392 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4393 icsk->icsk_backoff++; 4394 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4395 } else { 4396 /* If packet was not sent due to local congestion, 4397 * Let senders fight for local resources conservatively. 4398 */ 4399 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4400 } 4401 4402 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4403 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4404 } 4405 4406 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4407 { 4408 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4409 struct flowi fl; 4410 int res; 4411 4412 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4413 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4414 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4415 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4416 NULL); 4417 if (!res) { 4418 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4419 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4420 if (unlikely(tcp_passive_fastopen(sk))) { 4421 /* sk has const attribute because listeners are lockless. 4422 * However in this case, we are dealing with a passive fastopen 4423 * socket thus we can change total_retrans value. 4424 */ 4425 tcp_sk_rw(sk)->total_retrans++; 4426 } 4427 trace_tcp_retransmit_synack(sk, req); 4428 } 4429 return res; 4430 } 4431 EXPORT_SYMBOL(tcp_rtx_synack); 4432